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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 S o ftw a re  Size M e a s u re m e n t

Software size is argued as an important factor contributing to software effort 

estimation model [6] [7] [8] [9] [10], and the relating technical and environment 

factors are considered as additional factors [11] [12]. As a result, software size 

measurement constitutes the basis for effort estimation to be described below.

2.1.1 L ines o f  C ode  M e a s u re m e n t

Lines of code (LOC) measurement is an early approach of software sizing 

metrics. It can be visually and easily applied with the help of a tool to count the 

number of lines in a program. Nonetheless, a few issues are of concerned, (1) LOC is 

not available in early development phases until the software project is finished, and 

(2) it depends on coding technique and programming language, which is difficult to 

define the counting rule of LOC for different languages [6], The following LOC metrics 

are principal software size measurement. Delivered source instructions (DSI) was 

defined by Boehm [4] to be used as a primary metric for estimating software 

development cost in COCOMO 81 model. Logical source statements (LSS) was 

defined by Park [13] and appeared in the Software Engineering Institute (SEI) 

definition check list of logical source statement counting. Source lines of code (SLOC) 

was defined by Boehm [6] to be used as a primary metric of estimating software 

development cost in COCOMO II model. The SLOC mainly obtained counting rule 

from the LSS.

2.1.2 F u n c tio n a l Size M e a s u re m e n t

There are several methods to measure functional software size. The original 

method is Function Point Analysis (FPA). Most successive methods are derived from 

this method. FPA is a standardized methodology for measuring various functionalities 

of a software application from the user's point of view [14]. It was first published by 

Albrecht [15] of the IBM Corporation in 1979 and later published in 1983 by Albrecht
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and Gaffney [16], เท 1984, GUIDE 84 version was introduced as a guideline for 

identifying complexity level of function types [17] [18],

One of the advantages of FPA is that it can be created at the early stage of 

the software development life cycle. Moreover, it is easy to understand than lines of 

code by the user because it directly comes from user requirements [16], There have 

been five functional size measurement methods recognized as ISO standards, 

namely, IFPUG Functional Size Measurement Method [19], Mk II Function Point 

Analysis [11], COSMIC Functional Size Measurement Method [20], NESMA Function 

Point Analysis, and FiSMA Functional Size Measurement Method. Gencel and 

Demirors [7] reviewed the functional size measurement methods and indicated open 

issues to improve the methods.

The IFPUG Functional Size Measurement Method is a successive version of 

Function Point Analysis (FPA). It was formed by International Function Point User 

Group (IFPUG) which continuously has improved the original FPA method for 

measuring functional software size. Function points can be computed from five 

function types (i.e., External Input (El), External Output (EO), External Inquiry (EQ), 

Internal Logical File (ILF), and External Interface File (EIF)) and fourteen general 

system characteristics.

The Mk II Function Point Analysis was introduced by Symons [11] to be the 

alternative of FPA. It has subsequently been maintained by the United Kingdom 

Software Metrics Association (UKSMA). The Mk II Function Point Analysis can be 

applied early in software development phases primarily in business information 

systems [21], Provision for Mk II Function Point Analysis application to other software 

domains can be done by extending the original rules. Function points can be 

computed from three function types (i.e., Input Data Element Types (Ni), Data Entity 

Type Referenced (Ne), and Output Data Element Types (No)) and nineteen technical 

complexity adjustment.

The COSMIC Functional Size Measurement Method designed and 

maintained by Common Software Measurement International Consortium (COSMIC). 

The COSMIC method is applied to either business application or real-time software. 

Flowever, it has not yet been designed to use with mathematically-intensive software 

[20], Function points are from four data movement (i.e., Entry (E), Read (R), Write (พ), 

and Exit (X)).

Use Case Point Analysis was developed by Karner [12] in 1993 for software 

functional size measurement, which was considered as an attractively alternative 

measurement method because of its simplicity and high level of functionality
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measurement [22], To measure the Use Case Points (UCP), the functionalities of the 

system are first counted based on Use Case model of requirement analysis. All 

relating technical and environmental factors are assessed to adjust the value of the 

UCP, where some technical factors are derived from the original FPA

Object Points analysis was developed by Banker et al. [23] in 1992 to be an 

output measurement for cost estimation and development productivity in 

Computer-Aided Software Engineering (CASE) environments based project [23]. 

“ Object Points” is not necessarily related to objects in Object-Oriented Programming. 

The Object Points analysis is an alternative measurement approach having higher 

level of functionality measurement. Boehm et al. [6] proposed Application Points 

procedure to estimate software effort involved in Application Composition and 

Prototyping software project. This procedure is an emerging extension of COCOMO II. 

The Application Points procedure was derived from Object Points analysis having two 

main differences, (1) the rating scales for identifying a productivity rate of the 

application points/man-month, and (2) Object Points renaming as Application Points 

to avoid confusion with sizing metrics for conventional object-oriented application. 

The Application Points can be calculated from object types (i.e., SCREEN, REPORT, 

and 3GL Component).

2.2 E s tim a tio n  T e c h n iq u e s

There are many estimation techniques for software effort estimation to be 

described below.

2.2.1 A r t if ic ia l N e u ra l N e tw orks

An artificial neural network, generally called a neural network, is a 

computational model that is inspired by the structure characteristics of biological 

neural networks. The neural network imitates the brain in two respects, i.e., (1) 

knowledge is acquired by the network from its environment through a learning 

process, and (2) interneuron connection strengths are used to store the acquired 

knowledge [24], เท neural networks, artificial neurons are connected and processed 

information using a connectionist approach. They are regularly employed to model 

complex relationships between inputs and outputs.
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2.2.2.1 M ultilaye r Perceptron

A multilayer perceptron (MLP) is a feed forward artificial neural network 

that is applied from the standard linear perceptron to model relationships between 

groups of inputs and group of outputs. The MLP composes of three main layers, 

namely, input, hidden, and output layer where the hidden layer can contain more 

than one layer. The MLP generally uses back-propagation, which is a supervised 

learning technique, for training the network. The MLP together with a single hidden 

layer and sigmoid activation function is recognized as a universal function.

Figure 1: A n  e x a m p le  o f  m u lt i la y e r  p e rc e p tro n  a rc h ite c tu re .

Figure 1 shows the architecture of a multilayer perceptron with an input 

layer, a hidden layer, and an output layer, where ทา represents the numbers of 

neurons in the input layer, ก denotes the number of neurons in the hidden layer, 

and y  is the value of an output neuron derived from the function fix ) as shown in 

Equation (1)

(1)
i=1

where fix ) is represented as the approximation function of input vector X, พ; is the 

weight of the output neuron /', and g(x) is the output of the hidden neuron / as 

shown in Equation (2).
ทา

g ,(x ) =  / £ w ( x ) . (2)
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where พ / is the weight vector j  of the hidden neuron and X is the input vector X.
เท the general form, all input nodes are connected to each hidden neuron, and all 

hidden nodes are also connected to each output node. The activation function can 

be a linear or nonlinear function. Logistic-Sigmoid function is often used to represent 

activation function for nonlinear data as shown in Equation (3).

(f) น) = — —̂ . (3)
l  +  ex

If a sigmoid function is used as an activation function, inputs and outputs 

must be scaled to the interval of the function. เท this case, Min-max normalization 

can be used for scaling as shown in Equation (3).

- น) 
X .

(x W — กา/ท. {x ^ })
-------- ; ' X ( b - Q )  +  Q,
(ทาa x . { x ‘ } —  minj { x j  })

(4)

where xj* and x ' 1 denote the new and original values of the input variable j  in

sample /', m in ( X j )  and max(xj) denote the maximum and minimum values of the 

original range of input variable j  that are derived from the training set, and a and b 

denote the minimum and maximum values of the new range, respectively.

2.2.2.2 Fuzzy Neurol Network

A fuzzy neural network (FNN) [25] encompasses artificial neural network into 

fuzzy inference system (FIS) to incorporate their capability. It can provide reason of 

estimating software effort with human-like knowledge representation. For instance, if 

the analyst’s capability is low and software size is high, and then software effort is 

high. Typically, the artificial neural network is used to extract the relationships 

between inputs (e.g., analyst’s capability and software size) and outputs (i.e., 

software effort).

FNN builds a fuzzy inference system where its membership function 

parameters are adjusted by a backpropagation algorithm or combined 

backpropoagation algorithm and least squares method. The adjustment allows the 

fuzzy inference system to learn input/output data being modeling.

A network structure of FNN maps inputs through input membership functions 

and associated parameters, then maps output membership functions and associated 

parameters to outputs. The parameters associated with the membership functions
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change during the learning process. Computations of these parameters are aided by 

a gradient vector which measures how well the fuzzy inference system is modeling 

the input/output data for a given set of parameters. When the gradient vector is 

obtained, backpropagation algorithm or least square method, or both can be applied 

to adjust the parameters to reduce an error between actual and target outputs.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 2: An exam p le  o f  fu z z y  neu ra l n e tw ork  diagram .

Figure 2 shows a diagram of fuzzy neural network that contain five layers, namely, (0) 

input layer, (1) if-part layer, (2) fuzzy rule layer, (3) normalization layer, (4) then-part 

layer, and (5) output layer.

— (*1— c 1 )2
o .  =  jU A ( x 1)  =  e  2<T' , for node /=1 to 2 at layer 1 ^

where o  is the output of membership function A . , (J2 is the variance, and c is the 

center of membership function A . .

— (x2— c.1 )2

o. = jL l8 (x2) = e  2cr' , for node /ะ=3 to 4 at layer 1 ^

Similarly, o  is the output of membership function B  1 c r2 is the variance, and c is 

the center of membership function B  .

พ .  =  เ แ A (x 1)เ น 8 (x2) , for node /=1 to 2 at layer 2 

W j is the output of layer 2.

(7)
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พ ,  = -------1---- , for node /=1 to 2 at layer 3 (a )

พ  1 +  พ  2

พิ. is the output of layer 3.

/โ =  พิ. (p.Xj +  q . x  2 +  b . ) for /=1 to 2 at layer 4 (9)

w  f  is the output of layer 4, p  1, q.1, and b . are parameters derived from learning

algorithm. Finally,

ÿ  is the final output.

(10)

2 . 2 . 2 . 3  R o d i o i  B a s is  F u n c t i o n  N e t w o r k

A radial basis function (RBF) network is also a feed forward artificial neural 

network that takes radial basis functions as the activation function. This is a linear 

sum of radial basis functions. The radial basis function network normally has three 

layers, i.e., input layer, hidden layer with a non-linear RBF activation function, and 

linear output layer. Let m  be the dimension of the input space. The network 

represents a map from the ท า  dimension input space to the single dimensional 

output space as shown in Equation (11)

y  =  (11)

The output neuron can be a function f i x )  that has the form as shown in Equation

(12).
ท

/ น ) = y v ( เ )น , ç ). (12)
/=1

where f i x )  represents the approximation function, ก is the number of neurons in the 

hidden layer, ci is the center vector for neuron i, W j is the weight of the linear output 

neuron. เท the general form, all inputs are connected to each hidden neuron. The 

norm utilizes Euclidean distance whilst the basis function is taken to be Gaussian as 

shown in Equation (13).

( f ) { x , c . )  =  e x p [ -------- -Il X — e l l 2]. (1 3 )
2CT

An input vector X is used as input to all basis functions, each of which is 

accompanied by different parameters. The output of the network is a linear 

combination of the outputs from radial basis functions.
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Figure 3: A rch ite c tu re  o f a rad ia l basis fu n c tio n  netw ork.

2.2.3 Fuzzy In fe rence  System

Fuzzy inference system (FIS) is the process of mapping from an input to an 

output using fuzzy logic. Fuzzy inference systems have been successfully applied in 

fields such as automatic control, data classification, decision analysis, expert systems, 

and computer vision. Fuzzy inference process is composed of (1) fuzzify inputs, (2) 

apply operator (AND or OR), (3) apply implementation method, (4) apply aggregation 

method, and (5) defuzzify fuzzy output to a crisp number.

2.2.4 S uppo rt V ecto r Regression

Support vector regression (SVR) applies the principle of the support vector 

machine (SVM) to solve a regression task.

The principle of SVM is based on supervised learning methods for 

classification. The principle lies in decision planes that separate a set of samples 

having different class memberships as shown in Figure 4 .
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Figure 4: An exam p le  o f  lin e a rly  separable  patterns.

เท Figure 4, samples can be separated into two groups by a line that represents the 

decision plane. However, this is not always the case in some situations where 

samples are not distinctive by separated into groups. To solve this problem, a 

transformation process must be performed to resolve such a problem as shown in 

Figure 5.

Figure 5: T rans fo rm a tion  o f  n o n lin e a rly  to  lin e a rly  separab le  patterns.

เท Figure 5, the original samples appeared on the left side of in the figure are 

transformed using kernel functions, which can be a polynomial learning machine, 

radial basis function, or hyperbolic tangent. The transformed samples on the right are 

linearly separable by the kernel functions. The samples on margin are called support 

vectors. The equation for this decision planes is shown in Equation (14).

พ T ( f ) { x )  +  b  =  0. (14)

where พ  denotes transpose of weight, xis the input vector, and b  is the bias.
ก

พ  —  V o .d . j i i tx .  ).
/=!

(15)
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where O/ is Lagrange Multiplier of vector I, d  is class of vector / (+1/-1) and X j  is the 

input vector /.

where/ 6c) is decision function and k ( x  X j)  represents the kernel function.

The concept of SVR is to minimize the generalization error bound for 

achieving generalized performance. The idea is based on computation of a linear 

regression function in a high dimensional feature space, where the input data are 

mapped via a nonlinear function.

2.2.5 Regression Analysis

Ordinary Least Square (OLS) regression is a classical statistic method for 

approximating the desired values in a linear regression model. This method 

minimizes the sum of squared residual errors of the actual software effort and 

estimated software effort given by the linear approximation. The OLS regression is a 

generally recognized method and is applied in many research fields such as 

economics, electrical engineering, and software engineering. A general form of the 

OLS equation is shown in Equation (17).

where j = { l , 2 , . . . , n }  is a set of software projects, /={l,2,...,m} is a set of effort drivers, B 0 

is a constant, B j is the coefficient of effort driver /', ÿ. is the estimated effort in 

project j ,  and X jj is the value of the effort driver / in project j .

OLS is carried out under an assumption that the data are normally 

distributed to provide favorable estimation results. Robust regression analysis is 

designed to be not affected by the assumption. Generally, it is not sensitive to 

outliers.

2.2.6 C lassification and Regression Tree

Classification and regression tree is one of decision tree learning. It builds a 

decision tree for predicting the software effort. To predict the effort, the process 

starts with root node and traverses down to leaf nodes, where the leaf nodes hold 

the effort. Figure 6 illustrates an example of a decision tree for predicting software 

effort. Let El, EO, and IL F  be effort/cost drivers in the tree. If E l is more than or equal 

to 50 and E O  more than 35 or equal to, then the software effort is 110.

(16)

(17)
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Figure 6 : An exam p le  o f  a decis ion tree.

2.2.7 Analogy

Analogy-based estimation is a form of Case-Based Reasoning (CBR) which 

predicts software effort like expert judgment. As a result, experts try to estimate the 

effort from their experience in effort estimation while the analogy derives the effort 

from historically completed projects. K-nearest neighbor (K N N ) algorithm with 

Euclidian distance often used for the analogy-based estimation. K N N  can be 

computed by Equation (18).

where y i] ,1 <  / <  k  is the predicted software effort of project / and k  is the number 

of closest projects (note that k  can be derived from k - fold cross-validation, y (°is a 

known value of the software effort of the closest project l , and ๘๓ is the weight of 

project i . The weight can be computed from Equation (19).

where s i m ( X . , X  1) is the similarity function used to measure the similarity between 

the projects X .  and X 1 as shown in Equation (20).

where d i s t ( x . , x  1) is the Euclidian or Mahalanobis distance applied to measuring the 

distance between the project the projects X .  and X ( as shown in Equation (21) and 

(22), respectively.

(18)

(19)

s i m ( X . , X  1 ) =
d i s t i x . , X 1 )

(20)
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(21)

where X .  = {x |,),x 'l l ,X j),...)x^)} and X( = {x j° .X*0,x'° 1: ; x ^ } , and M is the total 

number of features.

where S D 1 is the standard deviation of feature j .

2.3 Phase Effort Distribution

เท a software development project, software effort is distributed over 

development phases of a software development process model. There have been 

research works studied about phase effort distribution across software development 

life cycle such as [15] [6] [26] [27],

Albrecht [15] reported mean phase effort distribution percentage, where 

requirements phase took about 7.9% of the work hours. The numbers for system 

design, program development, system test and demonstration, and user 

documentation were 12.1%, 62.4%, 11.6%, and 6.0%, respectively. The distribution 

percentages were derived from software development projects of IBM Data 

Processing Services. The projects covered many industries over 3-4 years coded in 

three programming languages, namely PL/1, COBOL, and DMS/VS.

Boehm et al. [6] provided the percentages of 7%, 17%, 25%, 33%, 25%, and 

12% for planning and requirements, product design, detailed design, coding and unit 

test, integration and testing, and transition, respectively. However, these percentages 

omit two added provisions, namely, the missing 7% front-end and 12% back-end 

effort that must be added to the total estimation based on his COCOMO model. For 

example, if the phase distribution percentage is 100 person-months, the total 

estimated effort would be 119 person-months. เท other words, the core 

development by COCOMO effort estimation begins at product design phase and ends 

at the completion of the integration and testing phase.

Yang et al. [26] reported the percentages of 16.14%, 14.88%, 40.36%, 

21.57%, and 7.06% for planning and requirements, design, coding, test, and 

transition, respectively. These percentages were derived from 75 projects in China 

Software Benchmarking standard Groups (CSBSG) data repository.
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Kultur et. al [27] reported the percentage was about 25%, 2%, 47%, 22%, 

and 4 for planning and analysis, design, coding, testing, and transaction, respectively. 

This percentage was derived from 395 projects in International Software 

Benchmarking standard Groups (ISBSG) data repository.

2.4 Estim ation T echn iques

The early techniques for software effort estimation were typically based on 

regression analysis. Putnam's Software Lifecycle Management (SLIM) [28] and Boehm's 

constructive cost Model (COCOMO) [4] [29] [30] [31] [6] are early well-known 

software effort estimation models. These models require lines of code as the primary 

input factor. However, lines of code exhibit high dependency on programming 

language used. To overcome this issue, Albrecht and Gaffney [16] proposed an effort 

estimation model using function points as the primary factor. Recently, other 

prediction techniques have been applied for effort estimation such as decision tree, 

neural networks, support vector machine, case-based reasoning, and fuzzy logic. 

Nevertheless, lines of code and function points are still used as the principal metrics.

T ab le  1: An overview  o f  e ffo r t  es tim a tion  research work.

Year (Author)

(2006) Oliveia [32]
(2007) Chiu and Huang 
[33]
(2008) Huang et al. [34]
(2008) Barcelos tronto 
et. al. [35]
(2008) Keung et al. [36]
(2008) Kumar et al. 
[37]
(2008) Liu et al. [38]
(2009) Huang and Chiu 
[39]
(2009) Elish [40]
(2010) Mittal et al. [41]
(2012) Kocaguneli et al 
[42], T.;-- j

(2012) Kocaguneli et 
al. [43] 1 v:j j l

, A ■■■ :
1 T

(2012) Dejaeger et al. 
[44]
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Table 1 provides an overview of techniques that have been used in various 

research publications for overall effort estimation. Typically, the techniques are 

divided into five groups, namely, software size, data pre-processing, estimation 

technique, performance evaluation, and validation.

The abbreviations are as follows: LOC = Lines of Code, FP = Function 

Points, MV = Missing Value Flandling, OD = Outlier Detection and Handling, FS = 

Feature Selection, RA = Regression Analysis, DT = Decision Tree, NN = Neural 

Network, SVM = Support Vector Machine, CBR = Case-Base Reasoning, KNN = k -  

Nearest Neighbor, FL = Fuzzy Logic, OLS = Ordinary Least Square, RR = Robust 

Regression, CART = Classification and Regression Tree, MART = Multiple Additive 

Regression Tree, FNN = Fuzzy Neural Networks, MLP = Multilayer Perceptron, WNN = 

Wavelet Neural Networks, SVR = Support Vector Regression, HOL = Holdout 

Validation, REP = Repeated Random Sub-sampling Cross-validation, KFOL = /c-fold 

Cross-validation, and LOO = Leave-One-Out Cross-Validation. A gray cell refers to a 

technique or a method being used. Abbreviations in the estimation technique section 

denote cited techniques. Numbers in column HOL, REP, KFL represent proportion of 

training and test data, number of repeated random sub-sampling, and a number of 

folds, respectively.

Three estimation techniques are commonly used. The first technique is to 

use known proportion of phase effort to overall effort for predicting the phase effort. 

It is a traditional way to get a rough prediction. For example, suppose that the 

proportion of coding effort is equal to 40%, and the estimated overall effort is equal 

to 200 man-month, then the estimated coding phase effort is equal to 80 man- 

month.

The second technique is to create a phase effort estimation model using 

prior phase effort as an input variable. Azzeh et al. [3] proposed integrating of fuzzy 

set and association rule-based estimation model. MacDonell and Shepperd [45] built 

a regression analysis-based estimation model, where system environment and 

primary programming language features were used as additional inputs. Abrahamsson 

et al. [46] established an estimation model for iteration effort estimation in agile 

development to replace phase effort estimation. Wang et al. [47] set up an 

estimation model for stage (month) effort estimation instead of phase effort 

estimation. This model was later improved by integrating of Verhulst method and 

grey system [1],
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The last technique is to create phase effort estimation model using 

software size as an input variable. Kultur et al. [27] built regression analysis-based 

effort estimation using function point count as an input for each industrial sector.

เท this study, not only software size but also other features are analyzed to 

derive an estimation model, where neural network and other estimation techniques 

are used to create the proposed estimation models.
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