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CHAPTER III
PROPOSED METHODOLOGY

เก this study, three experiments were conducted. The first approach is to 

separately estimate the software effort of each phase of a project, known as “ phase- 

wise” software effort, and sum up these phase-wise software efforts to compare with 

the overall estimation of the project. The second approach is to directly estimate the 

overall software effort of a project only from the input features. The third approach 

is to separately estimate the software effort of any phase using information from 

prior phase. The process of proposed methodology consists of the following steps.

1) Data collection.

2) Data transformation.

3) Feature selection.

4) Phase-wise, overall, and adaptive phase-wise estimation model construction.

3.1 Data Collection

Thirty eight software projects were collected from two local development 

organizations. One government organization is a certified ISO 9001:2008. The other is 

a company with certified CMMI development level 3. At the outset, a set of 

questionnaire was compiled accompanying an interview with the project manager 

and selected developers. Some key development documents were requested during 

the interview, such as software requirements specification, software design 

specifications, and user's manual.

Of the thirty eight projects being developed from 2007 to 2012 were 

primarily written in PHP, c#, Visual Basic, Java, Java Android, and Objective-C. 

Application types consist of web application, mobile application, website, and web- 

APi. Application domains include government and business. Development types were 

composed of new development, enhancement, re-development, and customization. 

Software process models are composed of waterfall and v-model. Intended markets 

are composed public, external, and internal. Note that “ public” , “ external” , and 

“ internal” refer to a project developed for public people, external organization, and 

self-organization, respectively. The maximum team size ranged from three to fifteen 

persons. Software size ranged from 0.27 to 112.28 thousand of SLOC, while software
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effort ranged from 92 to 1,278 man-days. The data collected, hereafter referred to as 

Phase-wise Neural Network Estimation (PNNE). PNNE-1 referred to thirty three projects 

from the government organization while PNNE-2 referred to five projects from the 

company. Summary of data were provided in this section, where the details of all 

software projects were descripted in Appendix A-D.

Table 2-7 show the number of software projects in each programming 

language, application type, application domain, development type, software process 

model, and intended market. Most of software projects are written in c#, came from 

web application and government domain, were new development, were carried out 

under waterfall model, and were for public users. 1

T ab le  2: N um ber o f pro jects  in each program m ing language.

Language PNNE-1 PNNE-2 PNNE

PHP 4 5 9

c ft 20 0 20

Visual Basic 1 0 1

Java 5 0 5

Java android 1 0 1

Objective c 2 0 2

T ab le  3: N um ber o f  p ro jects in each a p p lica tio n  typ e .

A p p lica tio n  Type PNNE-1 PNNE-2 PNNE

Web application 23 5 28

Mobile application 3 0 3

Website 1 0 1

Web API 6 0 6

T ab le  4: N um ber o f  pro jects  in each a p p lica tio n  dom a in .

A p p lica tio n  Dom ain PNNE-1 PNNE-2 PNNE

Government 33 0 33

Business 0 5 5

T ab le  5: N um ber o f  p ro jects in each d e v e lo p m e n t typ e .

Development Type PNNE-1 PNNE-2 PNNE
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New 30 4 34

Enhance 0 1 1

Re-development 2 0 2

Custom 1 0 1

T ab le  6 : N um ber o f  p ro jects in each softw are process m ode l.

Software Process Model PNNE-1 PNNE-2 PNNE

W aterfall 33 0 33

V-model 0 5 5

T ab le  7: N um ber o f  p ro jects in each in te n d e d  m arket.

Software Process Model PNNE-1 PNNE-2 PNNE

Public 2 0 0 2 0

External 8 5 13

Internal 5 0 5

Table 8 shows descriptive statistics of software efforts through 

development phases providing values of min, max, mean, median, standard 

deviation, and p-value tested by using Jarque-Bera [48] with 0.05 (a=0.05) significance 

level. Given p-value is less than a predetermined significance level (p-value < 0.05) 

indicates that software efforts are not normally distributed.

T ab le  8 : Descriptive statistics o f  softw are e ffo rts  th ro u g h  phases.

Descriptive statistics

M in M ax M ean M edian s td . p -va lu e

PNNE-1 data set

R equ irem en t 2 142 36.12 33 30.03 0 . 0 0 2

Design 13 253 76.55 53 62.55 0.004

Coding 45 755 187.33 128 141.21 0 . 0 0 1

Testing c: 77 24.15 16 18.89 0.008

Transition 2 179 38.03 2 1 44.68 ฒ ิ!

O vera ll 1 2 0 1278 362.18 277 252.73 0 . 0 0 1

PNNE-2 data  set

20 14.80 16 5.07 0.500R equ irem ent
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Design 9 259 126.20 65 114.02 0.238

Coding 25 121 62.80 50 36.09 0.354

Testing 3 61 22.00 19 23.75 0.147

Transition 11 31 19.60 21 7.99 0.500

O vera ll 92 422 245.40 195 158.32 0.237

Figure 7 compares averaged effort distribution percentage of PNNE, ISBSG 

[27], CSBSG [26], and COCOMO II [6] data sets. It indicates that the distribution 

percentages of PNNE and COCOMO II data sets are relatively similar in requirement, 

design, and transition phases, but are different in coding and testing phases. Only the 

transition phase of all three data sets exhibits similar the distribution percentage. At 

any rate, the PNNE data set provides the highest distribution percentage in coding 

phase and the lowest distribution percentage in testing phase.

Figure 7: C om parison o f  averaged percentage o f  e f fo r t  d is tr ib u tio n  betw een 

PNNE, ISBSG, CSBSG, and COCOMO II da ta  sets.

Figure 8 compares averaged effort distribution percentage of PNNE-1 and 

PNNE-2 data sets. It indicates that the distribution percentages of PNNE-1 and PNNE-2 

data sets are relatively similar in requirement, testing, and transition phases, but are 

different in coding and design phases.
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Figure 8 : C om parison o f  averaged percentage o f  e f fo r t  d is tr ib u tio n  betw een

PNNE-1 and PNNE-2 data  sets.

There were 44 features of each software project. Twenty three features 

were collected according to COCOMO II model [6], i.e., source lines of code, five 

scale factors, and seventeen effort drivers. Twelve features were according to general 

system characteristics of IFPUG FSM [21], where two features (reusability and 

complex processing) of the system characteristics were not collected for this 

experiment because the meanings were similar to features of the COCOMO II. Four 

features were corresponding to technical complexity of Mk II standard [21], Six 

features were selected from UCP [12].
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Figure 9: Scatter p lo t o f  KSLOC and softw are e f fo r t  in d if fe re n t phases.

Figure 9 shows scatter of KSLOC and software effort of (a) requirement, (b) 

design, (c) coding, (d) testing, (e) transition, and (f) overall estimation. A cycle sign
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indicates the scatter of software projects in PNNE-1 data set while a cross sign 

indicates the scatter of those in PNNE-2 data set.

3.2 Data T rans fo rm a tion

เท PNNE data set as shown in Appendix c, there were two types of data 

including quantitative and qualitative data. There was only one feature (i.e., KSLOC) 

representing as quantitative data in ratio scale which could be instantly used as 

predictor variable for the estimation. เท contrast, all remaining features were 

represented as qualitative data in ordinal scale or 7-likert scale, i.e., extra low (XL), 

very low (VL), low (L), nominal (N), high (H), very high (VH), and extra high (XH). These 

features would be transformed before the estimation. Table 9 provided quantitative 

values of each rating scale in COCOMO II model [6],

Table 10-11 provide the values in IFPUG FSM [19] and Mk II FPA [21] while Table 12 

yields the values in UCP [12], For Table 9-12, first column refers to feature order 

appeared in Appendix c. The second column denotes feature abbreviation, and the 

remaining ones refer to values of each rating scale.

T ab le  9: Values o f rating scales in COCOMO II m o d e l.

No. Feature
Rating Scale

VL L N H VH XH

2 PREC 6.20 4.96 3.72 2.48 1.24 0

S
ca

le
 f

ac
to

r

3 FLEX 5.07 4.05 3.04 2.03 1.01 0

4 RESL 7.07 5.65 4.24 2.83 1.41 0

5 TEAM 5.48 4.38 3.29 2.19 1.10 0

6 PM AT 7.80 6.24 4.68 3.12 1.56 0

7 RELY 0.82 0.92 1 1.10 1.26 -

P
ro

du
ct8 DATA - 0.90 1 1.14 1.28 -

9 CPLX 0.73 0.87 1 1.17 1.34 1.74

1 0 RUSE - 0.95 1 1.07 1.15 1.24

1 1 DOCU 0.81 0.91 1 1.11 1.23 -
1 2 TIME - - 1 1.11 1.29 1.63

P
la

tfo
rm

13 STOR - - 1 1.05 1.17 1.46

14 PVOL - 0.87 1 1.15 1.30 -
15 ACAP 1.42 1.19 1 0.85 0.71 -

P
eo

p

le

16 PCAP 1.34 1.15 1 0.88 0.76 -
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17 PCON 1.29 1.12 1 0.90 0.81 -

18 APEX 1.22 1.10 1 0.88 0.81 -

19 PLEX 1.19 1.09 1 0.910 0.850 -

2 0 LTEX 1.20 1.09 1 0.910 0.840 -

2 1 TOOL 1.17 1.09 1 0.900 0.780 - -H

2 2 SITE 1.22 1.09 1 0.930 0.860 0.800
CD
'๐'

23 SCED 1.43 1.14 1 1 1 -
CL

T ab le  10: Values o f rating scales in IFPUG FSM.

No. Feature
Rating

XL L VL N H VH

24 COMM 0 1 2 3 4 5

25 DIST 0 1 2 3 4 5

26 PREF 0 1 2 3 4 5

27 CON F 0 1 2 3 4 5

28 TRAN 0 1 2 3 4 5

29 DESI 0 1 2 3 4 5

30 ENTR 0 1 2 3 4 5

31 UPDA 0 1 2 3 4 5

32 INST 0 1 2 3 4 5

33 OPER 0 1 2 3 4 5

34 ISIT 0 1 2 3 4 5

35 CHAN 0 1 2 3 4 5

T ab le  11: Values o f rating scales in M k II FPA.

No. Feature
Rating

XL L VL N H VH

36 APPL 0 1 2 3 4 5

37 SECU 0 1 2 3 4 5

38 TRAI 0 1 2 3 4 5

39 PART 0 1 2 3 4 5
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T ab le  12: Values o f rating scales and weights in UCP.

No. Feature Rating Scale

XL L VL N H VH

40 SWPR 0 1 2 3 4 5

41 WORK 0 1 2 3 4 5

42 MOTI 0 1 2 3 4 5

43 LANG 0 1 2 3 4 5

44 REQU 0 1 2 3 4 5

Since there was difference of the value of rating scale from difference data 

formats, the value of COCOMO II model as shown in Table 9 was kept while that of 

IFPUG FSM, Mk II FPA, and UCP was replaced with the value derived from COCOMO II. 

The values of all features of IFPUG FSM and Mk II FPA together with LANG and REQU 

of UCP were replaced with average rating scale value of product perspective of 

COCOMO II. Note that there was no extra low (XL) scale in COCOMO II, so it was 

replaced with very low (VL) for IFPUG FSM, Mk II FPA, and UCP. The values of 

remaining UCP features were replaced with average value of people perspective. 

Figure 10 shows examples of software project data transformed from qualitative data 

to quantitative data to be appreciate data for computing.

T ra n s fo rm e d  q u a lita t iv e  d a ta

ร  ^ 1HHH11 พ  : fi t
ou

1 45.14 2SS 3.04 5.65 j 1.1 4.68 1 0.9 0.8T 1 0.91 J î 0.87 0.S5 a a 3C4

2 42.8Î 3.72 3.03 s.ssj 11 468 1 0,87 1 0.91 î 1 0.87 o.ss 0.88 3.04

3 น.ร3 2.<m 3.04 5.65 ! 1.1 468 1 0.9: 0.87 1 0.51 *î 1 0.87 0.85 0.81 3.04

a 12.32 496 101 4**j น 468 1 0,9 1 0.95 1 3 3 as? o.ss 3 2.03

5 38.83 4.96 101 4.2&I น 468 1 0,9 1 0.95 1 1 3 0.87 0.85 3 2.03

6 26,22 4.96 1,01 424 j 11 468 1 0.9 1 0.93 1 1 1 0.87 0,BS 1 2.03

7 17.52 3J2 1.01 $.65 น 4.68 1 0:9 3 1 0,51 1 1 0.87 0.8ร 0 M 2.03

8 T9,82 4.96 1.01 $.65 น: 468 1 0.9 3 1 OSl ■ î 0.87 0,8$ 0,88 2-03

Figure 10: Exam ples o f  softw are p ro je c t data tra n s fo rm e d  to  q u a n tita tiv e  data.
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3.3 Feature Se lection

Feature selection is a method to choose relevant features for constructing 

the estimation model. Let X =  { * 11X  2 ,.. . ,  X M } fo r i l < / < / V b e  a

training feature set having N  projects and M  features, and y  —  { y  1 , y 2 , ■ ■ ■ , y K ) for 

1 </c < /<  be a training software effort set having K  phases. Effort estimation is based 

on the assumption that there exists some relevant features ท า  out of M  that actually 

exert significant effect on software effort estimation.

Feature Effort
I 1

*1-*2 ̂ M ry?
c
c
'?จิ -

çu
-H1
I  L

(1)

(2)

(พ)

(a) a phase-wise data set for phase k.

Feature Effort

Feature Effort

(c) an adaptive phase-wise data set for phase k. 

Figure 11: Exam ples o f  phase-wise and o ve ra ll da ta  sets.

This assumption leads to the main problem of how to select those relevant 

features. The solution to this problem depends on the observation that estimating 

any software effort from a set of given features is similar to developing a function to 

compute the value of software effort using the given features as its variables. To
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estimate software effort of each phase, let x ‘ ] fo r i 1 < / < A /  be

the value of feature j  of project /'. Thus, the software effort of project / of software 

development phase k , denoted b yy '(), along with the corresponding features

{x*0 11 <  j  <  ท า }  as can be depicted in Figure 11(a) written in the form of a

mathematical function.

n = / *  ( พ ; ,,-  - O  (23)

where the software development phases refer to planning and analysis, design, 

coding, testing, and transition phase. For overall effort estimation in Figure 11(b), the 

form of a mathematical function is shown below.

=  ....* ะ,, ) (24)
(/) yy  o v e r a l l

where y ''1 is the software effort of project / of an overall effort.

Both two equations should be used at the initial phase for planning and 

outsourcing. Adaptive phase-wise estimation would be introduced after a project is 

started. To estimate software effort of each phase, let y U) f o r 2 <  j < k  —  \  be the

value of feature j  of project /'. Thus, the software effort of project / of software 

development phase k , denoted by y*1’ can be depicted in Figure 11(c) written in the

form of a mathematical function.
น)

y k = ร * ฬ 0.y r . - . o (25)

เท the feature selection process, all constant features are investigated first. 

A constant feature is a feature which has the same value for all projects in the 

training set, such as Platform Volatility (PVOL) and Required Development Schedule 

(SCED) (see Appendix c). All constant features are eliminated from project set 

X =  { X  1 , . . . , X N }  because they cannot differentiate one project from the others in a 

data set or have low power of effort estimation.

Then backward search is applied to the remaining features in order to 

select an appropriate set of feature vectors to possibly achieve the highest 

estimation accuracy. There are two cases of anomalous projects that can degrade 

the estimation accuracy, i.e., (1) “ outlying” projects and (2) groups of projects having 

the same features but different software efforts. If two or more projects have the 

same features but different software efforts, estimating the software effort of each 

project is indeterminate since it creates one-to-many relation between the features 

and software efforts. เท this situation, only one project is selected and the others are 

ignored. The latter is called “ i l l e g i t i m a t e ”  project. The selection procedure will be 

elaborated in Algorithm 3.
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For each selected feature set, two tests are conducted to confirm its 

relevancy to the accuracy of software effort estimation. The first test is by training 

the data set with the selected feature set and measuring the mean magnitude of 

relative error (MdMRE) [49]. The cross validation is applied for the training, so the 

final performance is average of MdMRE. The second test is by measuring the sum 

square Spearman rank coefficient of the selected feature set. For a selected feature 

set Sj, let c[ J)1 be the square Spearman coefficient between features k  and [ of 

selected feature set j .  The sum square Spearman rank coefficient of Sj, denoted by r

, is defined as r  =  c kJ)1 .

k  , l \ k * l \ l < k  ,I< M

Let q  be the number of projects that can be excluded from X. เท this study, the 

value of q  was set to 10% of I X I . The algorithm for feature selection is shown 

below.

A lg o rithm  1: Selecting Relevant Features.

1: Let ร be the / h set of indices of selected features.

2: Let ร be a set of each selected feature s e t s  1.

3: Lets be a set of each MdMRE obtained from training the data set with 

each selected feature set.

4: Let R be a set of sum square Spearman rank coefficients of each ร .

5: Let B =  X 1 where all M  features selected.

6: Initialize variable B e s t M e a n S q u a r e E r r o r  obtained from training B by a neural 

network,

where anomalous projects in B are excluded before the training.

7: For each feature / such that M > i > 2 

8: Set s = 0 ; E  =  0 ; R  = 0 .

9: For each feature j  such that 1 <  j  <  /

10: Put all indices of selected features from the first index to the i th index in set

ร .j

11: Exclude feature j  from set ร .

12: Based on selected feature set ร , let A be a set of illegitimate projects in B

found by A lg o rith m  2.

Exclude A from B.13:
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14: If Size of I A |>  q

15: Discard selected feature set ร..

16: Else

17: Find all outlying projects from B — A by Algorithm 3 and put them in o

based on z-score and Mahalanobis distance.

18: Let V/ =q - I A I.

19: If I O |>  V  then

20: Exclude the first (/ projects from B.

21: End if

22: Let e be the MdMRE obtained from training B with

ร by an estimation technique (i.e., a neural network).

23: Let r  be the sum square Spearman rank coefficients computed fromsj .

24: Set S = s u {ร.}.

25: Set E = E L J  { e . }.

26: Set R = R k J { r }.

27: End if

28: End for

29: If all ร for 1 <  j  <  / are discarded then

30: break the for loop.

31: Else

32: Let g be a set of indices of minimum e  G E .

33: For each index k  G g

34: Letb =  argmin1. [ r k GR}.

35: End for

36: If e b >  B e s t M e a n S q u a r e E r r o r

37: Terminate.

38: Else

39: Set B e s t M e a n S q u a r e E r r o r  =  e b .

40: Select feature set ร .

41: End If

42: End if

43: End for
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Consider the following example when 4 features are selected from total 5 

features, forming 5 selected features sets, i.e., s={{2,3,4,51, {1,3,4,51, {1,2,4,51, {1,2,3,51, 

{1,2,3,411. Suppose that the MdMRE after training by using all selected feature sets in 

ร are in £={0.01,0.1,0.5,0.7,0.01}. The sum square Spearman rank coefficient of each Sj 

is in R={2,4,3,3,1}. The minimum MdMRE are e 1 and e 5 which is equal to 0.01 and the 

corresponding indices are 1 and 5. เท set R, the values of sum square Spearman rank 

coefficients corresponding to indices 1 and 5 are 2 and 1, respectively. The minimum 

coefficient is at index 5 which is equal to 1. Therefore, the selected feature set to be 

used for training and testing is 55={1,2,3,4}.

Algorithm 2: Filtering Illegitimate Projects.

1: Compute the squared z-scores of software efforts of all projects in X.

2: Sort all projects according to their squared z-scores in descending order.

3: Set A =  0 .

4: For each project /, 1 <  / <  N  

5: For each project j ,  i  <  j  < N

6: If project X .  and project X  have exactly the same feature values

7: but different effort y (l) and effort y 0> then

8: A =  A U { X . )

9: End if

10: End for

11: End for

Algorithm 3: Filtering Outlying Projects.

1: Let o  =  0  be all outlying projects .

2: Let o  1 =  0  be outlying projects from software efforts.

3: Let (ว 1 =  0  be outlying projects from all projects in X.

4: Compute the squared z-scores of software efforts which are pairs of all projects 

in X and put the z-scores into z  and sort all squared z-scores in descending 

order.

5: Repeat

6: Test null hypothesis of the z-scores with Jarque-Bera test.

7: if the null hypothesis is rejected then

8: Put a project which has the relationship with software effort whose the

top z-score into o  1.
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9: Remove this z-score from z.

10: End if

11: Until test the hypothesis is accepted

12: Compute the Mahalanobis distance between a feature vector of each project and 

mean vector in X and sort the distance of all projects in descending order.

13: Repeat

14: Test null hypothesis of the distance with Mardia's multivariate test

15: if the null hypothesis is rejected then

16: Put the project from top distance into 0 2.

17: Remove this project from X.

18: End if

19: Until test the hypothesis is accepted

20: 0  =  ๐ 1 ท ๐ 2

Outliers (outlying project) can affect low model performance [50]. So they 

should be handled properly before building estimation models. Jarque-Bera [48] and 

Mardia's multivariate [51] tests are used to detect and eliminate the outliers in X. The 

null hypothesis is tested whether the data have normal distribution. If the given p- 

value is less than a predetermined significance level (p-value < 0.001), the null 

hypothesis is rejected. Setting low p-value would enable the estimation to be highly 

tolerant to outlying projects as much as possible. An outlier can be the cause of the 

distances measured from different project features and different values of software 

efforts.

To find the outliers caused by the different software effort values, all effort 

values are transformed into squared z-scores and sorted in descending order. If the 

null hypothesis is rejected, a project which has a relationship with software effort 

whose first z-score is considered as an outlier. This software effort will be removed 

and the hypothesis testing is represented until it is accepted.

Note that the z-score is suitable only to a set of scalar values. Therefore, to 

detect an outlier caused by the distance of project features which are in the form of 

vectors, the Mahalanobis distance between a feature vector of each project and 

mean vector in X is computed and sorted in descending order. If the null hypothesis 

is rejected, a project which belongs to the first distance is considered as an outlying 

project. This project will be removed and the hypothesis testing is repeated until it is 

accepted.
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3.4 Building Estimation Model and Estimating Software Effort.

To build a phase-wise estimation model, an estimation technique is used to 

create a function according to Equation (23). Similarly, an overall estimation and an 

adaptive phase-wise estimation models are built using an estimation technique to 

create a function according to Equation (24) and (25), respectively. Estimation 

techniques composed of neural networks, fuzzy inference system, support vector 

regression, regression analysis, classification and regression tree, and k-nearest 

neighbor.

Figure 12 shows flows of proposed phase-wise and overall effort estimation models 

while

Figure 13 shows those of adaptive phase-wise effort estimation model. Note that 

data transformation process is not included for the adaptive phase-wise model. 

Algorithm 4 describes how to build and evaluate an estimation model.

Step 4 Phase-wise e ffo rt estimation model

step 1

Data

Collection

Overall e ffo rt estimation model

Tlx,X2,..,xm)

Finally estimated 
effort

iy (phase-wise)

estimated effort 
(overall)

overall

Figure 12: Flows o f proposed phase-wise and overall e ffo rt estimation.
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Step 4

Step 1

Data Collection

Figure 13: Flows o f proposed adaptive phase-wise e ffo rt estimation.

Algorithm 4: Building and evaluating estimation model.

Step 1: Data sets with all features are divided into k  sub sets with Ar-fold cross- 

validation.

Step 2: Fori < /  < k ,  let sub set/ be a test set and other sub sets be a training set.

Step 3: The training set is taken into feature selection process.

Step 4: The training set with a feature set derived from the feature selection

process is used to create an estimation model via an estimation technique.

Step 5: The test set is used to evaluate an estimation model by value of error 

metrics.

Step 6: Repeat Step 2.

Step 7: The performance of the model is considered from mean of all the values.
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