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C H A P T E R  IV

RESULTS A N D  D I S C U S S IO N

This section explains performance evaluation, setting-up parameters of 

neural networks and other estimation techniques, results of feature selection, the 

accuracy of effort estimation obtained by the proposed approach, and discussion of 

estimation results.

4.1 Performance Evaluation

There have been many performance evaluation methods being proposed 

to measure the estimation accuracy of the estimation models. The methods and 

related metrics used in this study are described below.

4.1.1 Error Metrics

Median Magnitude of Relative Error (MdMRE) is based on median of 

Magnitude of Relative Error (MRE) [49]. The MRE measures the effort estimation 

accuracy as follows.

where y  ๓ is the actual effort and y i] is the estimated effort of project /'. it is 

criticized that the measure will penalize over-estimation.

Prediction at Level a  (PRED(a)) is also based on MRE. The value of PRED(o) 

which is the percentage of prediction within a  percent of the actual value. Conte et 

al. [49] suggested an acceptable value of a  =  0.25 at which PRED(0.25) should be 

equal to or greater than 0.75.

Median Magnitude of Error Relative (MdMER) is based on median of 

Magnitude of Error Relative (MER) [52], The MER measures the effort estimation 

accuracy as follows.

- \ I  )y
Since the absolute of residual (| y ๓ —  y n |) from MER is relative to the 

predicted value y ' \  MER penalizes under-estimation but is inclined to over

(26)

M E R
m l  y - y

(27)
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estimation because the predicted value is a divisor, where more over-estimation 

brings to ๒ พ  MER [53],

Median of Balanced Relative Error (MdBRE) is based on median of Balanced 

Relative Error (BRE) [54], The BRE measures the effort estimation accuracy as follows.

Median of Inverted Balanced Relative Error (MdIBRE) is based on median of 

Inverted Balanced Relative Error (BRE) [54], The IBRE measures the effort estimation 

accuracy as follows.

From the Equation (28) and (29), value of BRE is equal to MRE for over 

estimation while is equal to MER for under estimation. เท contrast, value of IBRE is 

equal to MER for over estimation while is equal to MRE for under estimation.

As above mentions, there is no the best criteria of performance evaluation. 

Hence, several error metrics were used to evaluate estimation models for this 

experiment, where median value was concerned. Since MdMRE, MdMER, MdBRE, and 

MdIBRE intend to measure an estimation error, low value of them indicates high 

performance of an estimation. เท contrast, PRED (0.25) intends to measure an 

accuracy, so its high value indicates high performance.

MdMRE, MdMER, MdBRE, and MdIBRE were used to evaluate an estimation 

model because they are based on median value that pinpoints the middle position 

of all the observations arranged in an ascending or descending order. As a result, it 

doesn’t affect to outliers or skewed data. For example, if MRE values of project 1 to 

5 are 0.20, 0.21, 0.25, 0.27, and 1.75, then MdMRE is equal 0.25 while Mean of MRE 

(MMRE) based on mean value is equal 0.54. Consequently, MMRE can wrong 

conclude about performance of the model. Additionally, Foss and Stensrud [55] 

investigated criterion of performance evaluation. They concluded that the MMRE 

doesn’t always choose the best model.

4.1.2 Statistical Fiypothesis Tests

Statistical hypothesis test is used to statistically compare different models 

based on error metrics.

B R E • - £ 9 ,
(28)

(29)
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Wilcoxon Signed-Rank test [56] is a non-parametric hypothesis test that is 

an alternative to parametric Paired Sample t-test. This test is used to find the 

significant difference between a pair of samples.

The p-value is the probability of obtaining the value of the hypothesis test. 

If the p-value is less than the significance level ( a =  0.05), there is a significant 

difference, where the probability distribution of the value can be approximated by 

normal distribution.

4.1.3 Cross-Validation

Cross-validation [57] is to evaluate and compare the performance of 

learning methods. It splits the available data into two non-overlapped parts, namely, 

training and test data sets. There are several cross-validation methods (e.g., repeated 

random sub-sampling cross-validation and leave-one-out cross-validation). However, 

k-fold cross-validation (k-fold) where k - 6 was opted for this study as the cross 

validation technique. Figure 14 shows an example of 6-fold cross-validation. It splits a 

data set into non-overlapped six folds. The first iteration is to use the fist fold as a 

test set and remaining folds as a training set. The second iteration is to use the 

second fold as a test set and remaining folds as a training set. The other iterations 

are the same process. The cross-validation guarantees all software projects will used 

to evaluate an estimation model.

Iteration

1.

2.

3.

4.

5.

6.

Test set Training set
1

Figure 14: An example o f 6-fold cross-validation.
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4.2 Parameters Set-up o f Neural Networks and o ther Estimation Techniques.

Fifteen estimation techniques composed of neural networks (i.e., multilayer 

perceptron (MLP), fuzzy neural network with subtractive clustering (FnnSUB), fuzzy 

neural network with fuzzy c-mean clustering (FnnFCM), and radial basis function (RBF) 

network)), fuzzy inference system (i.e., with subtractive clustering (FisSUB) and with 

fuzzy c-mean (FisFCM)), support vector regression (SVR), regression analysis (i.e., 

ordinary least square (OLS) and robust regression analysis (RoReg)), classification and 

regression tree (CART), and /(-nearest neighbor (i.e., KNN-1, KNN-2, KNN-3, KNN-4, and 

KNN-5). Note that the numbers after “ KNN-” refers to the number of training software 

projects which there is the closet distance to a testing project.

For MLP, the number of input neurons is equal to the number of features 

from the proposed feature selection algorithm, and a single output neuron was used 

representing software effort. Warren [58] suggested a number of hidden neurons to 

be (number of input neurons + number of output neurons) * (2 /  3), which was 

adopted in this study. The hyperbolic and logistic sigmoid functions were used as an 

activation functions in the hidden and output neurons, respectively. The weight and 

bias were initialized with uniformly distributed random numbers corresponding to the 

interval of the activation function, i.e., interval [-1,1] and [0,1] for hyperbolic and 

logistic sigmoid functions, respectively. Levenberg-Marquardt was employed as 

backpropagation training algorithms. The learning rate and momentum were set to 

0.001 and 0.9, respectively. Three conditions are used as the stopping rule to 

terminate network training as follows: (1) the maximum number of training iterations 

(i.e., 1,000 epochs) have been reached, (2) training error does not change, and (3) 

training error reduces to the error threshold. The training error is calculated in each 

iteration by Mean Square Error (MSE). To set the error threshold, assume that each 

software project has five percentage of residual error. Then, the error threshold is 

mean square of five percentage of residual error from all training projects.

For FnnSUB, fuzzy inference system (FIS) with subtractive clustering was 

used for creating rule of fuzzy inference. Input and output membership functions 

were Gaussian and linear function, respectively. Backpropagation gradient descent 

and least square method were for training the membership function parameters. The 

maximum number of training iterations was 1,000 epochs. Error threshold is 

calculated in Root Mean Square Error (RMSE). These parameters also were for 

FnnFCM except replacing subtractive clustering with fuzzy c-mean (FCM) clustering to 

separate sets of inputs and outputs. For RBF, error threshold was the same as MLP. 

Gaussian and linear functions were for hidden and output layers, respectively.
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For FisSUB and FisFCM, fuzzy inference system (FIS) with subtractive and 

fuzzy c-mean clustering was used for creating rule of fuzzy inference, respectively. 

Their Input and output membership functions were Gaussian and linear function, 

respectively, For SVR, Epsilon-insensitive loss function was used as margin-based loss 

for regression while Flyperbolic tangent was used as kernel function. For OLS, the 

output function was a linear function. For RoReg, logistic function was used for 

weighting function. For CART, Tolerance value of each node was set to 0.000001 in 

Euclidian norm. For KNN, Euclidean distance was applied.

4.3 Results o f Features Selection Process

The proposed feature selection process can decrease the number of features, 

but improve the performance of an estimation model as shown in Table 14-18. 

There were three estimation models investigated, i.e., phase-wise, overall, adaptive 

phase-wise effort estimation models. For the first two models, software size/cost 

drivers/effort drivers were defined as features for estimating a software effort. 

Although there were 44 features collected, only 23 features of COCOMO II model 

were used for this experiment for a comparative reason. The proposed feature 

selection process is to find only necessary features from 23 features for estimating a 

software effort.

Figure 15 shows the number of features selected by feature selection process 

for phase-wise and overall effort estimation models averaged from fifteen estimation 

techniques, where the number of features was required for each estimation 

technique as shown in Table 13.
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Figure 15: Average number o f features required for phase-wise and overall

e ffort estimations.

From Figure 15, it indicates there is slightly different number of features 

required for across life cycle and overall estimation. The number ranged from 8.67 to 

9.47.

Table 13: A number o f features required for estimation techniques.
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Requirem

ent
9 6 10 1 1 9 6 7 7 7 6 1 0 10 1 0 1 1 1 2

Design 11 7 10 9 12 6 10 11 7 12 10 9 10 9 9

Coding 11 9 8 11 12 7 7 11 7 10 7 8 9 9 8

Testing 11 11 6 11 11 6 8 10 7 11 7 6 10 9 12

Transition 6 9 9 12 10 6 12 10 7 11 10 7 8 6 7

Overall 10 6 6 12 10 10 8 9 7 11 9 7 8 11 12

For adaptive phase-wise effort estimation model, efforts of prior phases were 

defined as features. Total number of features was different for different phases, i.e., 

one, two, three, and four for estimating at design, coding, testing, and transition 

phases, respectively. As a result, feature selection process was not carried out for 

predicting a software effort of design phase.
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Figure 16 shows an average number of features selected by feature selection 

process for adaptive phase-wise and overall effort estimation models.

Figure 16: Average number o f features (prior phase) required for adaptive

phase-wise effo rt estimation.

A number of features (before taking feature selection process) for design, 

coding, testing, and transition phases were one, two, three, and four, reflectively. The 

process is to select some features or only relevant efforts of prior phases to estimate 

an effort of phase being prediction. From Figure 16, it is true that there was only one 

feature (an effort of planning phase) for design phase. The average number of 

features required was 1.8, 2.5, and 2.8 for coding, testing, and transition phases, 

respectively.

4.4 Results o f Effort Estimation

This section describes the results of effort estimation from phase-wise, 

adaptive phase-wise, and overall estimation models based on all fifteen estimation 

techniques with the help of feature selection process, where thirty three software 

projects from a government organization (PNNE-1 data set) were used to create the 

estimation models cross-validated by 6-fold cross-validation.

Table 14-18 show performance of the estimation models in MdMRE, PRED 

(0.25), MdMER, MdBRE, and MdIBRE, respectively. For Table 14-18, there are three 

parts, namely, (1) the estimation results of phase-wise and overall estimation models
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with feature selection, (2) that without feature selection, and (3) the estimation 

results of adaptive phase-wise estimation model with feature selection. For the first 

and second part, the first five rows provide phase-wise estimation results (i.e., 

requirement, design, coding, testing, and transition). The sixth row (sum-up) is a sum 

of the phase-wise estimations. The last part provides adaptive phase-wise estimation 

results ranging from design phase to transition phase.

Table 14: Results o f e ffo rt estimation in MdMRE.
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Phase-wise and overall estimation with feature selection

Require
0.36 0.43 0.36 0.56 0.47 0.53 0.57 0.5 0.42 0.51 0.69 0.43 0.38 0.34 0.33

Design
0.24 0.22 0.19 0.4 0.27 0.36 0.46 0.46 0.36 0.56 0.42 0.31 0.31 0.32 0.33

Coding
0.38 0.58 0.43 0.42 0.48 0.41 0.45 0.4 0.43 0.3 0.43 0.33 0.34 0.37 0.45

Testing 0.44 0.64 0.53 0.33 0.48 0.48 0.61 0.49 0.42 0.23 0.44 0.5 0.49 0.43 0.42

Trans.
0.64 0.66 0.59 0.68 0.75 0.92 0.61 0.71 0.78 0.68 0.55 0.57 0.59 0.59 0.62

Sum-up
0.31 0.32 0.3 0.45 0.38 0.32 0.43 0.34 0.32 0,41 0.28 0.4 0.34 0.4 0.44

Overall 0.27 0.32 0.41 0.42 0.42 0.38 0.44 0.38 0.31 0.44 0.28 0.44 0.26 0.37 0.39

Phase-wise and overall estimation w ithout feature selection

Require
0.53 0.58 0.66 0.47 0.61 0.51 0.49 0.51 0.52 0.51 0.67 0.45 0.38 0.35 0.33

Design
0.25 0.33 0.22 0.52 0.41 0.47 0.48 0.47 0,37 0.56 0.33 0.30 0.30 0.32 0.33

Coding 0.44 0.48 0.44 0.45 0.61 0.46 0.44 0.46 0.33 0.30 0.40 0.41 0.36 0.37 0.33

Testing
0.35 0.63 0.51 0.38 0.50 0.43 0.51 0.43 0.45 0.23 0.48 0.50 0.44 0.42 0.48

Trans.
0.86 0.63 0.59 0.69 0.58 0.90 0.73 0.90 0.78 0.68 0.55 0.63 0.60 0.61 0.64

Sum-up
0.38 0.38 0.33 0.42 0.40 0.33 0.48 0.33 0.33 0.37 0.28 0.35 0.29 0.33 0.33

Overall
0.37 0.37 0.34 0.44 0.38 0.30 0.47 0.30 0.41 0.46 0.31 0.32 0.35 0.31 0.34

Adaptive phase-wise with feature selection

Design
0.39 0.45 0.52 0.5 0.46 0.41 0.44 0.41 0.46 0.34 0.63 0.58 0.6 0.58 0.54

Coding
0.26 0.24 0.27 0.19 0.24 0.22 0.33 0.28 0.19 0.22 0.25 0.25 0.19 0.21 0.2

Testing
0.56 0.33 0.45 0.45 0.3 0.28 0.43 0.28 0.28 0.52 0.44 0.29 0.31 0.39 0.38

Trans.
0.67 0.56 0.62 0.65 0.44 0.74 0.64 0.8 0.55 0.67 0.4 0.61 0.59 0.56 0.47

Table 15: Results o f e ffo rt estimation in PRED (0.25)
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Require 0.39 0.27 0.39 0.21 0.24 0.27 0.21 0.24 0.36 0.18 0.30 0.39 0.30 0.36 0.42

Design 0.58 0.55 0.52 0.27 0.49 0.39 0.24 0.24 0.36 0.39 0.42 0.42 0.46 0.33 0.24

Coding 0.24 0.15 0.27 0.30 0.18 0.30 0.21 0.27 0.30 0.46 0.21 0.39 0.33 0.30 0.30

Testing 0.39 0.18 0.21 0.39 0.27 0.21 0.24 0.36 0.27 0.52 0.30 0.30 0.30 0.39 0.33

Trans. 0.30 0.21 0.30 0.24 0.27 0.03 0.33 0.09 0.18 0.21 0.39 0.30 0.33 0.21 0.21

Sum-up 0.36 0.42 0.49 0.36 0.27 0.30 0.27 0.30 0.33 0.30 0.46 0.36 0.39 0.36 0.36

Overall 0.49 0.39 0.36 0.33 0.27 0.27 0.24 0.21 0.30 0.24 0.42 0.30 0.46 0.33 0.33

Phase-wise and overall estimation without feature selection

Require 0.15 0.18 0.30 0.27 0.24 0.18 0.27 0.18 0.15 0.24 0.27 0.27 0.18 0.39 0.15

Design 0,52 0.46 0.52 0.36 0.33 0.33 0.21 0.33 0.27 0.39 0.49 0.42 0.46 0.30 0.52

Coding 0.27 0.18 0.21 0.24 0.12 0.27 0.18 0.27 0.30 0.36 0.21 0.21 0.36 0.30 0.27

Testing 0.39 0.27 0.15 0.33 0.27 0.30 0.24 0.30 0.27 0.52 0.24 0.33 0.36 0.39 0.39

Trans. 0.06 0.24 0.18 0.21 0.27 0.06 0.27 0.06 0.15 0.21 0.36 0.33 0.24 0.12 0.06

Sum-up 0.24 0.39 0.24 0.30 0.27 0.36 0.24 0.36 0.33 0.27 0.46 0.39 0.36 0.39 0.24

Overall 0.33 0.42 0.27 0.39 0.33 0.39 0.21 0.39 0.30 0.27 0.42 0.33 0.36 0.36 0.33

Adaptive phase-wise with feature selection

Design 0.27 0.24 0.24 0.3 0.24 0.27 0.24 0.27 0.36 0.27 0.12 0.21 0.21 0.18 0.18

Coding 0.49 0.55 0.46 0.58 0.55 0.55 0.33 0.49 0.58 0.55 0.49 0.49 0.64 0.55 0.61

Testing 0.33 0.3 0.39 0.33 0.39 0.46 0.33 0.46 0.42 0.21 0.39 0.39 0.36 0.39 0.36

Trans. 0.18 0.15 0.12 0.24 0.27 0.21 0.24 0.24 0.27 0.27 0.3 0.15 0.24 0.21 0.27

Table 16: Results o f e ffo rt estimation in MdMER.
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Require 0.36 0.55 0.45

Phase-wise and overall estimation with feature selection 

0.54 0.47 0.54 0.58 0.46 0.42 0.55 0.50 0.42 0.39 0.41 0.39

Design 0.20 0.18 0.23 0.43 0.33 0.30 0.45 0.49 0.37 0.40 0.34 0.28 0.31 0.35 0.35

Coding 0.49 0.56 0.38 0.35 0.53 0.40 0.44 0.51 0.44 0.28 0.35 0.37 0.37 0.41 0.40

Testing 0.39 0.50 0.45 0.37 0.53 0.41 0.45 0.45 0.48 0.30 0.50 0.39 0.41 0.44 0.40

Trans. 0.48 0.55 0.54 0.54 0.59 0.70 0.54 0.58 0.66 0.53 0.55 0.54 0.50 0.49 0.62

Sum-up 0.34 0.33 0.26 0.38 0.41 0.38 0.46 0.40 0.35 0.37 0.27 0.37 0.31 0.33 0.37

Overall 0.27 0.32 0.42 0.37 0.47 0.41 0.49 0.43 0.36 0.39 0.28 0,38 0.28 0.34 0.33

Require 0.58 0.58 0.43

Phase-wise and overall estimation without feature selection 

0.46 0.58 0.50 0.53 0.50 0.45 0.50 0.58 0.53 0.47 0.40 0.46

Design 0.25 0.27 0.21 0.34 0.44 0.49 0.44 0.49 0.34 0.40 0.33 0.25 0.31 0.32 0.31

Coding 0.43 0.56 0.42 0.37 0.57 0.44 0.47 0.44 0.39 0.32 0.40 0.37 0.37 0.37 0.30

Testing 0.38 0.46 0.47 0.36 0.47 0.46 0.44 0.46 0.44 0.30 0.50 0.40 0.34 0.34 0.43

Trans. 0.89 0.52 0.58 0.53 0.74 0.65 0.58 0.65 0.53 0.52 0.55 0.50 0.44 0.49 0.46
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Sum-up 0.36 0.38 0.37 0.38 0.45 0.36 0.47 0.36 0.35 0.34 0.28 0.30 0.34 0.30 0.31

Overall 0.42 0.33 0.38 0.36 0.38 0.36 0.49 0.36 0.39 0.34 0.29 0.30 0.32 0.31 0.32

Adaptive phase-wise with feature selection

Design 0.39 0.4 0.47 0.47 0.45 0.4 0.41 0.4 0.34 0.4 0.63 0.6 0.6 0.6 0.6

Coding 0.23 0.21 0.25 0.22 0.24 0.26 0.33 0.27 0.23 0.22 0.26 0.25 0.17 0.2 0.2

Testing 0.41 0.31 0.36 0.43 0.28 0.32 0.39 0.3 0.34 0.43 0.39 0.38 0.38 0.35 0.31

Trans. 0.64 0.55 0.5 0.65 0.41 0.62 0.55 0.62 0.55 0.6 0.5 0.52 0.47 0.51 0.47

Table 17: Results o f e ffo rt estimation in MdBRE.
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Phase-wise and overall estimation with feature selection

Require 0.42 0.55 0.48 0.91 0.62 0.73 0.83 0.78 0.58 0.73 0.82 0.67 0.59 0.45 0.48

Design 0.25 0.22 0.23 0.52 0.33 0.37 0.57 0.63 0.44 0.63 0.50 0.32 0.31 0.38 0.45

Coding 0.58 0.91 0.50 0.54 0.68 0.50 0.72 0.67 0.63 0.35 0.48 0.49 0.48 0.50 0.52

Testing 0.52 0.83 0.78 0.46 0.65 0.62 0.76 0.80 0.68 0.30 0.74 0.62 0.65 0.68 0.67

Trans. 0.75 0.75 0.99 1.14 1.24 1.67 0.84 0.99 1.42 0.82 0.75 0.68 0.69 0.75 0.73

Sum-up 0.38 0.39 0.32 0.51 0.54 0.46 0.58 0.42 0.39 0.51 0.28 0.48 0.38 0.42 0.51

Overall 0.31 0.36 0.48 0.58 0.60 0.57 0.67 0.46 0.43 0.55 0.31 0.57 0.34 0.45 0.47

Phase-wise and overall estimation w ithout feature selection

Require 0.60 0.91 0.68 0.64 1.00 0.78 0.88 0.78 0.68 0.70 0.82 0.75 0.61 0.46 0.46

Design 0.27 0.37 0.22 0,52 0.60 0.65 0.58 0.65 0.39 0.63 0.50 0.32 0.42 0.33 0.43

Coding 0.58 0.64 0.50 0.54 0.77 0.66 0.69 0.66 0.41 0.37 0.57 0.55 0.54 0.54 0.36

Testing 0.54 0.84 0.64 0.54 0.84 0.71 0.72 0.71 0.65 0.30 0.73 0.61 0.46 0.51 0.72

Trans. 3.48 0.70 1.14 0.94 1.00 1.19 0.85 1.19 1.02 0.82 0.75 0.68 0.75 0.73 0.67

Sum-up 0.50 0.50 0.43 0.56 0.54 0.36 0.59 0.36 0.45 0.51 0.28 0.38 0.41 0.35 0.43

Overall 0.46 0.45 0.46 0.48 0.45 0.42 0.61 0.42 0.55 0.51 0.31 0.37 0.42 0.36 0.45

Adaptive phase-wise with feature! selection

Design 0.52 0.54 0.69 0.63 0.66 0.57 0.57 0.57 0.48 0.5 1.04 0.83 0.85 0.83 0.83

Coding 0.29 0.27 0.32 0.23 0.29 0.27 0.42 0.29 0.23 0.27 0.26 0.32 0.2 0.21 0.24

Testing 0.7 0.4 0.57 0.6 0.31 0.38 0.55 0.38 0.38 0.71 0.55 0.38 0.44 0.5 0.39

Trans. 0.78 1.05 0.91 0.99 0.68 0.97 1.08 1.1 0.62 1.07 0.67 0.95 0.81 0.73 0.77

T ab le  18: Results o f e ffo r t  es tim a tion  in MdIBRE.
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Require 0.29 0.36 0.32 0.48 0.38 0.42 0.45 0.44 0.37 0.42 0.45 0.40 0.37 0.31 0.33

Design 0.20 0.18 0.19 0.34 0.25 0.27 0.36 0.39 0.30 0.39 0.33 0.24 0.24 0.28 0.31

Coding 0.37 0.48 0.33 0.35 0.40 0.33 0.42 0.40 0.39 0.26 0.32 0.33 0.32 0.33 0.34

Testing 0.34 0.45 0.44 0.31 0.40 0.38 0.43 0.45 0.41 0.23 0.43 0.38 0.39 0.40 0.40

Trans. 0.43 0.43 0.50 0.53 0.55 0.63 0.46 0.50 0.59 0.45 0.43 0.40 0.41 0.43 0.42

Sum-up 0.28 0.28 0.24 0.34 0.35 0.31 0.37 0.30 0.28 0.34 0.22 0.32 0.28 0.30 0.34

Overall 0.24 0.27 0.32 0.37 0.38 0.36 0.40 0.31 0.30 0.35 0.24 0.36 0.26 0.31 0.32

Phase-wise and overall estimation without feature selection

Require 0.37 0.48 0.41 0.39 0.50 0.44 0.47 0.44 0.40 0.41 0.45 0.43 0.38 0.32 0.32

Design 0.21 0.27 0.18 0.34 0.38 0.40 0.37 0.40 0.28 0.39 0.33 0.24 0.29 0.25 0.30

Coding 0.37 0.39 0.33 0.35 0.43 0.40 0.41 0.40 0.29 0.27 0.36 0.36 0.35 0.35 0.26

Testing 0.35 0.46 0.39 0.35 0.46 0.42 0.42 0.42 0.40 0.23 0.42 0.38 0.31 0.34 0.42

Trans. 0.78 0.41 0.53 0.49 0.50 0.54 0.46 0.54 0.50 0.45 0.43 0.41 0.43 0.42 0.40

Sum-up 0.33 0.34 0.30 0.36 0.35 0.27 0.37 0.27 0.31 0.34 0.22 0.27 0.29 0.26 0.30

Overall 0.31 0.31 0.31 0.32 0.31 0.29 0.38 0.29 0.36 0.34 0.24 0.27 0.30 0.27 0.31

Adaptive phase-wise with feature selection

Design 0.34 0.35 0.41 0.39 0.4 0.37 0.36 0.37 0.33 0.33 0.51 0.45 0.46 0.45 0.45

Coding 0.23 0.21 0.24 0.19 0.22 0.21 0.29 0.23 0.19 0.21 0.2 0.24 0.17 0.17 0.19

Testing 0.41 0.28 0.36 0.37 0.24 0.27 0.35 0.27 0.28 0.42 0.36 0.28 0.31 0.34 0.28

Trans. 0.44 0.51 0.48 0.5 0.41 0.49 0.52 0.52 0.38 0.52 0.4 0.49 0.45 0.42 0.44

4.4.1 Comparison o f Estimation with and without Feature Selection

Feature selection algorithm was applied to select only relevant features to 

create phase-wise, adaptive phase-wise, and overall estimation models. The 

algorithm as explained in Section 3.3 is based on mathematical function relation, 

outlier detection, correlation, greedy backward search, estimation techniques, and 

cross-validation. Figure 17-21 show estimation results between estimation with 

feature selection and without feature selection in MdMRE, PRED (0.25), MdMER, 

MdBRE, and MdIBRE, respectively. For each phase with or without feature selection, a 

value of MdMRE was a median of values of MRE across 33 software projects. Since 

there were fifteen estimation techniques were taken, there were fifteen values of 

MdMRE were averaged as shown in Figure 17. This computation was applied to other 

error metrics that their results were shown in Figure 18-21.
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Figure 17: Comparison o f estimation with and w ithout feature selection in

MdMRE.

(0.25).

Figure 18: C om parison o f  estim a tion  w ith  and w ith o u t fe a tu re  se lection  in PRED
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Figure 19: Comparison o f estimation with and w ithout feature selection in in

MdMRE.
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Figure 20: Comparison o f estimation with and w ithout feature selection in

MdBRE.

MdIBRE.

Figure 21: C om parison o f estim a tion  w ith  and w ith o u t fe a tu re  se lection  in
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From Figure 17-21, they indicated that the estimation with feature selection 

can slightly outperform that without feature selection.

To statistically compare the estimation results as shown in part 1-2 of Table 

14-17 between estimation with feature selection and without feature selection, 105 

pairs of comparisons (i.e., 7 rows X 15 columns) were tested with Wilcoxon. 

Flypothesis test results indicated that there was no significant different between the 

estimation with and without feature selection for all pairs in terms of MdMRE, PRED 

(0.25), MdMER, MdBRE, and MdIBRE. Flowever, the estimation with feature selection 

required smaller number of features that a project manager spends less time to 

collect them.

4.4.2 Comparison o f Phase-Wise and Overall Effort Estimations

Phase-wise effort estimation tends to estimate an effort of each 

development phase of a project, where estimated effort of all the phases was sum 

to indirectly provide overall effort of the project. This effort was compared with 

estimated effort was directly derived from overall effort estimation. Figure 22 

compares the estimation results of phase-wise and overall effort estimations in (a) 

MdMRE, (b) PRED(0.25), (c) MdMER, and (d) MdBRE, and (e) MdIBRE. To compute value 

of MdMRE for sum-up or overall estimation, the value of MdMRE was a median of 

values of MRE across 33 software projects. There were fifteen estimation techniques 

were taken. So there were fifteen values of MdMRE were averaged. This computation 

was applied to other error metrics.
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Figure 22: Comparison o f phase-wise and overall e ffo rt estimations.

From Figure 22, it indicated that the estimation results of sum of all phases 

derived from phase-wise estimation outperformed that overall estimation for all error 

metrics. Additionally, estimation of sum of all phases and overall estimation with 

feature selection outperformed that without feature selection.

Figure 23 shows comparison of phase-wise, sum of phase-wise, and overall 

estimations across neural networks (Nnet), fuzzy inference (FIS), support vector 

regression (SVR), regression analysis (RA), and k-nearest neighbor (KNN) in MdMRE.
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Figure 23: Comparison o f phase-wise, sum o f phase-wise, and overall estimations

in MdMRE.

From Figure 23, it indicated that sum of efforts from phase-wise estimation 

outperformed overall estimation. Even though phase-wise estimation provided higher 

error estimation compared with other estimations, most errors came from transition 

phase having small proposition of effort to overall effort (i.e., 9.8% for PNNE-1 data 

set).

4.4.3 Comparison o f Phase-Wise and Adaptive Phase-Wise Estimations

Adaptive phase-wise effort estimation provided the estimation result 

starting at second phase (design) because it requires an effort of prior phase to be an 

input for estimating an effort at predicting phase. Figure 24 compares the estimation 

results of adaptive phase-wise and phase-wise estimations in (a) MdMRE, (b) 

PRED(0.25), (c) MdMER, and (d) MdBRE, and (e) MdIBRE. For each phase for phase-wise 

estimation or adaptive phase-wise estimation, a value of MdMRE was a median of 

values of MRE across 33 software projects. Since there were fifteen estimation 

techniques were taken, there were fifteen values of MdMRE were averaged. This 

computation was applied to other error metrics.
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Figure 24: Comparison o f phase-wise and adaptive phase-wise estimations.

From Figure 24, it indicated that adaptive phase-wise estimation more 

outperformed phase-wise estimation in coding and testing phases. For design and 

transition phases, both estimations provided similar results of estimation.

4.4.4 Comparison o f Phase-Wise and COCOMO II Models

Proposed phase-wise estimation model was compared with COCOMO II Post- 

Architecture model [6], Figure 25 shows approaches to estimate software effort for 

the proposed and the COCOMO II model. The proposed phase-wise model is to 

directly estimate an effort of each phase where the effort of all phases can be 

combined as overall effort while the COCOMO II model is to estimate overall effort 

and uses known proportion of an effort of each phase to overall effort (see Section

2.3 for an example of estimating an effort of individual phase).
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Proposed phase-wise effort estimation model COCOMO II model

Figure 25: Proposed and COCOMO II phase-wise estimation.

Table 19 shows estimation results of phase-wise model and COCOMO II 

model for localization and globalization estimations. The “ localization estimation” is 

an effort estimation that software project data for estimating and creating estimation 

model come from the same organization (i.e., PNNE-1 data set was used to create 

and test the model). เท contrast, “ globalization estimation” is that software project 

data come from the different organizations (i.e., instead of PNNE-2 data set to test 

the model). The phase-wise model is based on multilayer perceptron (MLP) was 

used for a comparison. To fairly compare, COCOMO II model was calibrated with 

local project data (PNNE-1 data set) to adjust its parameters. The calibration was 

carefully carried out according to given guideline [6].

Table 19: Estimation results o f phase-wise and COCOMO II models for 

localization and globalization estimations in MdMRE.
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Planning & Requirement 10.22% 0.46 0.36 8.72% 0.85 0.46

Design 20.07% 0.39 0.24 43.68% 0.69 0.67
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Coding 53.03% 0.41 0.38 30.36% 0.39 0.54

Testing 6.80% 0.45 0.44 7.28% 0.89 0.48

Transition 9.87% 0.51 0.64 9.95% 0.85 0.15

Sum-up 100% 0.39 0.31 100% 0.54 0.17

From Table 19, underlined values of MdMRE indicated that phase-wise 

estimation model based on MLP outperforms COCOMO II model for localization 

estimation in all development phases and whole project except transition phase and 

for globalization estimation in all phases and whole project. Although the MLP-based 

proposed model provided high MdMRE in transition phase of the localization, effort 

of this phase contained only 9.87% of whole project. Both the proposed and the 

COCOMO II model often provided better localization estimation results than 

globalization estimation. Nevertheless, they yielded systematic approach to re-create 

or calibrate to local environment. For the proposed phase-wise model, four 

processes to create the model were reported in this dissertation. Twenty one out of 

44 features were not used for this experiment. However, they can be added to re

create the model if a project manager considers them as importance features.

Table 20 shows lists of features required for proposed phase-wise estimation 

model. A gray cell refers to a feature required for each phase.

Table 20: Required features o f proposed phase-wise model.

Feature
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From Table 20, thirteen features were required for the phase-wise model 

while twenty three features were required for COCOMO II model. This means there
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was 24.5% of decreased number of features. Only three features (i.e., PREC, PLEX, 

and LTEX) were common features required for all phases. Even though software size 

was considered as important feature for an effort estimation [6] [7] [8] [9] [10], KSLOC 

was not required for all phases but required for only design and coding phase.

COCOMO II model supports Waterfall and RUP/MBASE while phase-wise 

model appropriates to Waterfall and V-model process which can be applied to 

create an estimation model for iteration software processes such as agile 

development, where each iteration of development are composed of Waterfall 

phase.

Summary of the comparison, the phase-wise estimation model was not 

claimed to be better than COCOMO II model at all since the phase-wise model was 

investigated with low to median scale of software projects, i.e., maximum team size 

ranged from three to fifteen persons, software size ranged from 0.27 to 112.28 

thousand of SLOC, and software effort ranged from 92 to 1,278 man-days.

4.5 Discussion

This section discusses use and limitations of proposed estimation models, 

effect of programming language, and globalization estimation.

4.5.1 Likely Used and Coverage Estimation Ranges o f Estimation Models.

There were three proposed estimation models including phase-wise, adaptive 

phase-wise, and overall effort estimation models. Figure 26 shows likely used and 

coverage estimation ranges of all the models. Estimation range of phase-wise and 

overall estimation models ranges from planning phase to transition phase while that 

of adaptive phase-wise estimation model ranges from design phase to transition 

phase. Likely used range of overall and phase-wise estimation models range from 

planning phase to testing phase while that of adaptive phase-wise estimation model 

ranges from design phase to testing phase because an effort estimation at design 

phase requires the effort of planning phase. Note that adaptive phase-wise 

estimation model can more outperform phase-wise estimation for coding and testing 

phase as shown in Figure 24.
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Figure 26: Likely used and coverage estimation ranges o f a ll the proposed

models.

4.5.2 Limitations o f Estimation Models.

There are some limitations to use these estimation models. Firstly, phase- 

wise and adaptive phase-wise models are for sequential process models (i.e., 

Waterfall and V-model) ranging from planning to transition phase. Nevertheless, the 

proposed approach can be applied to create an estimation model for iteration 

software processes such as agile development. Secondly, since software size was up 

to 112.28 thousand of SLOC, the estimation model will be not appreciate for a 

project that its size is greater than 112.28 thousand of SLOC. However, project 

manager can apply the proposed approach for high SLOC. Lastly, the proposed 

model required lines of code as an input like COCOMO II model for predicting an 

effort. Actually, real lines of code cannot be used to estimate at initial phase. To 

solve this issue, the first is to use PERT technique or other expert judgment 

techniques for estimating lines of code. The second is to use function points, use 

case points, object points, or story points instead of lines of code. Note that 

backfiring table [6] can be used for conversion between function points and lines of 

code.
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4.5.3 Effect o f Programming Language

Since programming langue can effect estimating an effort, they are also 

indeed investigated in this experiment. As shown in Table 2, there was only one 

project written java android (project id 27) while most of projects were written by c#. 

As a result, from 6-fold cross-validation, if project 27 was tested, there was no 

project written by java android was trained to create an estimation model. Table 21 

shows estimation results of projects for investigating effects of programming 

language. The results were derived from phase-wise and overall estimation models 

based on MLP. Project 27 can provide good estimation results. Note that platform 

experience (PLEX) and language and tool experience (LTEX) are required for all 

phases as shown in Table 20. These features directly affect the differences of 

programming languages.

Table 21: Estimation results for a project written by java android.
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Estimated 3.00 51.01 180.61 5.00 3.00 242.62 199.93

Actual 2.00 52.00 140.00 10.00 2.00 206 206

Residual 1.00 -0.99 40.61 -5.00 1.00 36.62 -6.07

MRE 0.50 0.02 0.29 0.50 0.50 0.18 0.03
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