แบบจำลองโครงสร้างของเมคาโนเซนซิทีฟแซนนัลจากข้อมูลแอกเซสซิบิลิตีและการจำลองพลวัต เชิงโมเลกุล

นายจเรวัตร จักรมุณี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

STRUCTURE MODELS OF MECHANOSENSITIVE CHANNEL FROM ACCESSIBILITY DATA AND MOLECULAR DYNAMICS SIMULATION

Mr. Jarewat Jakmunee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

Thesis Title	STRUCTURE MODELS OF MECHANOSENSITIVE
	CHANNEL FROM ACCESSIBILITY DATA AND
	MOLECULAR DYNAMICS SIMULATION
Ву	Mr. Jarewat Jakmunee
Field of Study	Chemistry
Thesis Advisor	Associate Professor Pornthep Sompornpisut, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

Warmhan Chanwoln Chairman

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

Da K Thesis Advisor

(Associate Professor Pornthep Sompornpisut, Ph.D.)

(Assistant Professor Somsak Pianwanit, Ph.D.)

______External Examiner

(Arthorn Loisruangsin, Ph.D.)

จเรวัตร จักรมุณี : แบบจำลองโครงสร้างของเมคาโนเชนซิทีฟแชนนัลจากข้อมูลแอกเชส ซิบิลิตีและการจำลองพลวัตเชิงโมเลกุล. (STRUCTURE MODELS OF MECHANOSENSITIVE CHANNEL FROM ACCESSIBILITY DATA AND MOLECULAR DYNAMICS SIMULATION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.พร เทพ สมพรพิสุทธิ์, 71 หน้า.

เมคาโนเซนซิทีฟแชนนัลชนิดค่านำไฟฟ้าสูง (MscL) เป็นเมมเบรนโปรตีนประเภทโฮ โมเพนตาเมอร์ที่ทำหน้าที่เสมือนวาล์วนิรภัยสำหรับควบคุมแรงดันออสโมติกในเซลล์โปรคาริโอต โปรตีนชนิดนี้รับรู้และแปลงสัญญาณจากสิ่งเร้าเชิงกลไปเป็นการเคลื่อนที่ของโปรตีน MscL มี ้ลักษณะพิเศษในการเปลี่ยนแปลงคอมฟอร์เมชันเพื่อตอบสนองเมมเบรนเทนชัน ในการศึกษานี้ ใช้ ข้อมูลอีพีอาร์สองกลุ่มสำหรับสร้างคอนฟอร์เมชั้นของ MscL จากแบคทีเรียชนิดอีโคไล ที่สภาวะ ้ปิด (cl-ecoMscL) และสภาวะอินเทอร์มิเดียด (in-ecoMscL) ด้วยวิธี PaDSAR ซึ่งเป็นวิธีการ ้จำลองพลวัติเชิงโมเลกุลแบบมีรีสเตรนที่นำมาจากการทดลอง แบบจำลองของ in-ecoMscL มี สภาพโดยรวมคล้ายคลึงอย่างมากกับแบบจำลอง cl-ecoMscL ซึ่งชี้แนะว่าแบบจำลองนี้อาจจะ สอดคล้องกับแชนนัลสภาวะปิดที่ขยายตัวก่อน การเปรียบเทียบเชิงโครงสร้างระหว่าง clecoMscL และ in-ecoMscL ทำให้เห็นว่าการขยับตัวส่วนใหญ่ของท่อนทรานสเมมเบรนอยู่ใกล้ เกทไฮโดรโฟบิกที่ประกอบด้วยเรสซิดิวซ์ Leu19 และ Val23 เพื่อสำรวจสมบัติเชิงโครงสร้างและ พลวัติ ได้ทำชิมุเลชันแบบ MD เป็นเวลา 100 นาโนวินาที สำหรับคอนฟอร์เมชันที่สภาวะปิดและ สภาวะอินเทอร์มิเดียตในไบเลเยอร์ชนิดพามิโทอิล-โอเลอิล-ฟอสฟาทิดิลโคลีนและไดลาวโรอิล-กลี เซอโร-ฟอสฟาทิดิลโคลีน ตามลำดับ ผลการซิมุเลขันแสดงให้เห็นถึงความเสถียรเชิงโครงสร้างของ MscL ค่าโมบิลิตี้เชิงเปรียบเทียบของท่อน TM1 และ TM2 สอดคล้องกับข้อมูลโมบิลิตี้จากการ ทดลอง การเปลี่ยนแปลงความหนาของไบเลเยอร์ที่สังเกตได้จากซิมุเลชันชี้ให้เห็นว่าโปรตีนซักนำ ให้เกิดการบิดรูปของไบเลเยอร์อันเนื่องมาจากอิทธิพลของไฮโดรโฟบิกมิสแมทช์

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2556 ลายมือชื่อนิสิต 4155 ตาร จักรรณ์ ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก <u>พระเท</u>พ

5471924323 : MAJOR CHEMISTRY

KEYWORDS: MSCL / MOLECULAR DYNAMICS SIMULATION / ACCESSIBILITY / EPR / PADSAR

JAREWAT JAKMUNEE: STRUCTURE MODELS OF MECHANOSENSITIVE CHANNEL FROM ACCESSIBILITY DATA AND MOLECULAR DYNAMICS SIMULATION. ADVISOR: ASSOC. PROF. PORNTHEP SOMPORNPISUT, Ph.D., 71 pp.

The mechanosensitive channel of large conductance (MscL) is a homopentameric membrane protein that serves as effective osmotic safety valves in prokaryotes. It senses and transduces mechanical stimuli into protein motion. MscL is specifically designed to change its conformation in response to changes in membrane tension. In this study, two different EPR dataset were used in modeling the Escherichia coli MscL channel in its closed (cl-ecoMscL) and intermediate (inecoMscL) conformations through PaDSAR, an experimentally restrained molecular dynamics simulation method. The in-ecoMscL model is in overall very similar to the cl-ecoMscL, suggesting the model may be correspond to pre-expanded closed state. Structure comparison between cl-ecoMscL and in-ecoMscL revealed the major transmembrane (TM) movement is located near the hydrophobic gate residues: Leu19 and Val23. To investigate structure and dynamics properties of the protein, 100ns molecular dynamics (MD) simulations of the closed and state conformations were performed in palmitoyl-oleoylintermediate phosphatidyl cholines bilayer and dilauroyl-glycero-phosphocholines bilayer, respectively. The results show structure stability of MscL during the course of MD simulations. The relative mobility of TM1 and TM2 segments is consistent with the experimental mobility data. The bilayer thickness change observed from the MD simulations indicates the protein-induced bilayer deformation due to the effect of hydrophobic mismatch.

Department: Chemistry Field of Study: Chemistry Academic Year: 2013

Student's Signature Jarewat Jakmunee Advisor's Signature

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor, Associate Professor Dr. Pornthep Sompornpisut, for all help and support during thesis work. I would also like to express my sincere appreciation to all the exam committee, Assistant Professor Dr. Warinthorn Chavasiri, Assistant Professor Dr. Somsak Pianwanit and Dr. Arthorn Loisruangsin for their useful advice.

I also wish to express my thanks to my family and my friends, Miss Sunan Kitijaruwankul, Miss Wannaruedee Wannapukdee, Miss Pattama Wapeesittipan, Miss Kanokporn Petnapapun, Mr. Kanon Sujaree, Miss Sunit Fuklang and Mr. Chirayut Supunyabut for their friendships and valuable suggestions. I would like to acknowledge the computational chemistry unit cell (CCUC) at Department of Chemistry, Faculty of Science, Chulalongkorn University for providing facilities throughout the course of this research.

Finally, I would like to acknowledge the National Research University Project of CHE (HR1155A), Ratchadaphiseksomphot Endowment Fund, RES560530217-HR, the Thai Government Stimulus Package 2 (TKK2555) and Kasetsart University scholarship from the Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand for facilities and finance.

CONTENTS

THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTS
CONTENTS
LIST OF TABLESix
LIST OF FIGURESx
LIST OF ABBREVIATIONSxv
CHAPTER 1 INTRODUCTION
1.1 Cell membrane
1.2 Ion channel
1.3 Mechanosensitive channel5
1.4 Mechanosensitive channel of large conductance
1.5 Osmotic regulation of cell bacteria9
1.6 Electron Paramagnetic Resonance and Spin Labeling
1.7 Literature reviews
1.7.1 Lipid-driven conformational changes of MscL: Hydrophobic mismatch and geometric consequences of bilayer12
1.7.2 Structure refinement of membrane proteins based on SDSL-EPR
1.8 Inspiration and objectives of this research
CHAPTER 2 THEORY
2.1 Molecular Dynamics
2.2 Molecular mechanics force fields
2.3 Expansion based integration algorithm
2.4 The Periodic boundary conditions (PBC)
2.5 The Particle Mesh Ewald (PME)
CHAPTER 3 METERIALS AND METHOD
3.1 Materials

Vİİ

	•	٠	
	£.		
v	1	L	L
•	۰	٠	

Page

	Page
3.1.1 Hardware	
3.1.2 Software	
NAMD	
CHARMM	
Visual molecular dynamics (VMD)	
SSH Secure Shell	
APBS (Adaptive Poisson-Boltzmann Solver)	32
wordom	
DSSP (Define Secondary Structure of Proteins)	
HOLE program	32
3.2. Methodology	
3.2.1 Model building of the MscL in its closed conformation	33
3.2.2 Model building of the MscL in an intermediate conformation	
3.2.3 Molecular dynamics simulations	39
3.2.4 Analysis of MD trajectory	41
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Sequence alignment	
4.2 PaDSAR models of cl-ecoMscL and in-ecoMscL	
4.3 Structural stabilities of the cl-ecoMscL and in-ecoMscL models	50
4.3 Inter-subunit distance changes at the hydrophobic gate residues	60
4.4 Protein-induced lipid perturbation	62
4.5 Proposed transition model	65
CHAPTER 5 CONCLUSION	66
REFERENCES	67
VITA	71

2432385467

LIST OF TABLES

TABLE 3.1	Residue number of EcoMscL with an assignment of the EP-types for clos	se
	state modeling. The assignment was done by an analysis of ΠO_2 ,	
	\prod NiEDDA and ΔH_0^{-1} profiles.	33
TABLE 3.2	Residue number of EcoMscL with an assignment of the EP-types for the	
	intermediate state modeling. The assignment was done by an analysis o	of
	Π O2, Π NiEDDA and ΔH_0^{-1} profiles	38

LIST OF FIGURES

FIGURE 1.1	The fluid mosaic model representation of cell membrane or plasma
	membrane structure2
FIGURE 1.2	Classification of ion channels based on external stimuli. From left to
	right: voltage-gated ion channels, ligand-gated (extracellular ligand) ion
	channels, ligand-gated (intracellular ligand) ion channels and
	mechanically gated ion channels4
FIGURE 1.3	Typical current traces of MscS (A) and MscK (B) in the presence of
	MscL(C). Recordings were generated from patches derived from E. coli
	giant sphero plast at-20 mV. MscL is a homopentamer in which each
	monomer has two TM segments. The open state is characterized by a
	very large single channel conductance (~3.5 nS) and activation tensions
	close to the lytic limit of biological membranes. MscS, as originally
	described, is actually the result of two distinct gene products, YggB,
	which underlies MscS proper, and KefA, which is now known as MscK
	because of the role of potassium ions in modulating activity. Both
	channels have similar single channel conductances (~1 nS) and are
	activated at intermediate tensions. MscS activity also shows a distinctive
	inactivation/adaptation phenomenon6
FIGURE 1.4	Schematic representation of (A) the pentamer structure and (B) the
	monomer structure of mtbMscL. Three structure domains including
	transmembrane helices (TM1 and TM2), N-terminal and C-terminal in
	cytoplasmic domains are illustrated
FIGURE 1.5	Cellular responses to changes in the osmotic environment
FIGURE 1.6	Reaction of the methanethiosulfonate spin label (MTSSL) with the
	sulfhydryl group of a cysteine side chain, generating the spin label side
	chain11
FIGURE 1.7	A model depicting the evolution of structurally distinct conformations
	during MscL gating. The top row represents a hypothetical sequence of
	kinetic events MscL undergoes on its way to the fully open state.
	Manipulating the lipid environment surrounding the channel can trap at
	least three of these distinct conformations: (i) the closed state is stable
	in PC18, (ii) PC14 stabilizes a closed conformation further along the
	kinetic path and (iii) the fully open state can be locked by addition of
	conical-shaped lipids (LPC) on one leaflet of the bilayer. The possibility

- **FIGURE 2.3** The potential energy function, U. that potential energy of each term is the y-axis. (A) The interaction energy of two bonded atoms as a function of the distance of their atomic centers with ideal distance b0 as harmonic term. (B) The harmonic term, similar in form to (A), but of lower energy, that describes the interaction of two atoms bonded to a third atom as a function of the angle between them with the ideal angle θ_0 . (C) A typical periodic (n=2) cosine term with a minimum ϕ_0 at 0 used to describe both in- and out-of-plane dihedral angle energies. Plots (A–C) share the same range for energy. (D) The van der Waals interaction energy of two atoms with ε and r₀ the geometric mean of their respective ε and r₀. (E) Three typical electrostatic interactions. The

2432385467

xi

- FIGURE 4.3 Ramachandran plot calculation of the psi/phi angle distribution of the model (A) Close conformation (B) Intermediate conformation, as computed by PROCHECK program. The cl-ecoMscL and in-ecoMscL structures superimpose with an overall root mean square deviation (RMSD) of about 1.8Å using all backbone atoms, and thus reveal small conformational changes between the two states. Figure 4.4 shows superimposed structural models derived from PaDSAR. As can be seen from the figure, the TM1 region exhibits the most structural deviation

	with RMSD of 1.8Å. Superposition of the two transmembrane domains
	of the in-ecoMscL onto the corresponding domains of cl-ecoMscL
	revealed that the cytoplasmic side of the TM1 helix is slightly tilted,
	resulting in a small increase of the pore diameter
FIGURE 4.4	Represent TM1 and TM2 helices of Eco-MscL derived from PaDSAR 46
FIGURE 4.5	(A) Represented model of channel in close conformation and
	intermediate conformation (B) Represented by molecular surface of
	Eco-MscL on Top view. (C) Graphical presentation of pore diameter
	profiles of the closed (red line) and the intermediate conformation
	(blue line)
FIGURE 4.6	Movement of hydrophobic residues possibly involves with gating of Eco-
	MscL channel
FIGURE 4.7	Number of closed contact residues along the TM1 and TM2 residues of
	cl-ecoMscL (black line) and in-ecoMscL (red line) models
FIGURE 4.8	Backbone RMSD with respect to the starting structure of two MD systems
	as a function of simulation time
FIGURE 4.9	The RMSD profiles of the different domain (TM1, TM2, Periplasmic loop,
	C terminal and N terminal) of two MD system as a function of time52 $$
FIGURE 4.10	RMSD of individual TM segment (Chain A-E) of two MD systems (Up is a
	close conformation and Down is a intermediate conformation) as a
	function of time
FIGURE 4.11	Average backbone RMSF of closed system (I) (black) and Intermediate
	system (red). Illustrate the different domains (TM1, TM2, Periplasmic
	loop, C terminal and N terminal) of proteins
FIGURE 4.12	Backbone RMSF as a function of residue number of close state (PC18).56
FIGURE 4.13	Backbone RMSF as a function of residue number of intermediate state
	(PC12)
FIGURE 4.14	RMSF box plot of accessibility data from EPR (Up) and alpha carbon of
	two transmembrane helices (Down). The bottom and the top of the box
	are 25 and 75 percentile. The median is the straight line, and the mean
	is plotted as a square
FIGURE 4.15	Show that stability of secondary structure helices of the five
	transmembrane segments included TM1 and TM2 of close state and
	intermediate state as a function of simulation time calculated by DSSP.
	The each color mean : α -helix (red), stand in β -sheet (blue), β -bridge
	(yellow), β-turn (black), coil (green), unassigned (white)

xiii

FIGURE 4.16 Color scale represents the distance pair of gated of channel in Eco-MscL
in close state and intermediate state61
FIGURE 4.17 Hydrophobic thickness of pure POPC bilayer is about 4 Å greater than
that of DLPC bilayer63
FIGURE 4.18 Membrane thickness profiles of POPC and DLPC bilayer obtained from
the simulations in the presence of cl-ecoMscL and in-ecoMscL,
respectively. The thickness was measured from an average distance
between the N-atom of tertiary amine head group
FIGURE 4.19 The closed gate in the pore at the constriction region occluding the
passage of water. (A) Water molecules enter to the pore but do not
penetrate throughout the channel. Water occlusion is located near the
narrowest region of the pore (orange) constituting of two hydrophobic
residues, L19 and V23. (B) Extracellular and cytoplasmic views illustrate
these residues forms a hydrophobic plug64
FIGURE 4.20 Proposed mechanism for the closed - intermediate transition

LIST OF ABBREVIATIONS

Ms	Mechanosesitive channels
MscL	Mechanosesitive channels of Large conductance
MscS	Mechanosesitive channels of Small conductance
PD	pore domain
ТМ	transmembrane
Å	angstrom
0	degree
MD	molecular dynamics
PDB	protein data bank
PSF	protein structure file
VMD	visual molecular dynamics
APBS	adaptive Poisson-Boltzmann solver
PBE	Poisson-Boltzmann equation
PaDSAR	pseudoatom-driven solvent accessibility refinement
EPR	electron paramagnetic resonance
α	alpha
SDSL	site directed spin labeling
V	Valine
L	Leucine
ΔG_{elec}	electrostatic salvation free energy
L _{mem}	range of membrane bilayer thickness
٤m	dielectric constant of the membrane
ε	dielectric constant of the water
E protein	dielectric constant of the protein
POPC	palmitoyl oleoyl phosphatidyl cholines
DLPC	Dilauroylglycero phospho cholines

ns	nanosecond
RMSD	root-mean-square-deviation
RMSF	root-mean-square-fluctuation
3D	three dimensional
Kcal	kilocalorie
mV	milivolt
DSSP	database of secondary structure assignments of all protein
nS	nanosiemens

