ผลของการโดปโลหะบน La₂NiO₄ เพื่อเป็นแคโทดสำหรับเซลล์เชื้อเพลิงออกไซด์ของแข็ง

นางสาวรัตนากร ธีรศรัณยานนท์

3914990606

วิทยานิวงนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF METAL DOPING ON La_2NiO_4 AS CATHODE FOR SOLID OXIDE FUEL CELL

3914990606

•

Miss Ratanakorn Teerasarunyanon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

EFFECTS OF METAL DOPING ON La_2NiO_4 AS
CATHODE FOR SOLID OXIDE FUEL CELL
Miss Ratanakorn Teerasarunyanon
Chemistry
Assistant Professor Soamwadee
Chaianansutcharit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

> Manuardberg Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

Womnhum Chining Chairman

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

(Assistant Professor Soamwadee Chaianansutcharit, Ph.D.)

2 Tranpate Examiner

(Assistant Professor Boosayarat Tompatanaget, Ph.D.)

TANAWAT KANJANABOO NMALECT External Examiner

(Tanawat Kanjanaboonmalert, Ph.D.)

.

รัตนากร ธีรครัณยานนท์ : ผลของการโดปโลหะบน La₂NiO₄ เพื่อเป็นแคโทดสำหรับ เซลล์เชื้อเพลิงออกไซด์ของแข็ง. (EFFECTS OF METAL DOPING ON La₂NiO₄ AS CATHODE FOR SOLID OXIDE FUEL CELL) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร. โสมวดี ไชยอนันต์สุจริต , 75 หน้า.

ศึกษาสมบัติของวัสดุสำหรับใช้เป็นแคโทดในเชลล์เชื้อเพลิงออกไชด์ของแข็ง $(La_{0.8}Sr_{0.2})_{2-x}Ca_xNiO_4$ (LSN-Ca_x), $(La_{0.8}Sr_{0.2})_{2-x}Ca_xNi_{0.9}Co_{0.1}O_4$ (LSNC-Ca_x) $uaeLa_{2-x}Ca_xNi_{0.9-y}$ $Co_{0,1}(Fe,Zn)_vO_4$ (LNCF-Ca_x and LNCZ-Ca_x) แสดงโครงสร้าง K₂NiF₄ แบบเตตระโกนัล และ สามารถสังเคราะห์ได้จากวิธีซิเทรตประยุกต์โดยการเผาและชินเทอร์ที่อณหภมิ 950 และ 1350 ้องศาเซลเซียสเป็นเวลา 10 ชั่วโมงตามลำดับ LSN-Ca, and LSNC-Ca, (x=0-0.5) ที่มีการแทนที่ ไอออนตำแหน่ง A ด้วยไอออน Ca²⁺ สัดส่วน x=0.2 แสดงโครงสร้างเฟสเดี่ยวและให้ค่าการนำ ไฟฟ้าสูงสุด คือ 176.9 และ 166.9 ซีเมนส์ต่อเซนติเมตรที่อุณหภูมิ 800 องคาเซลเซียส ตามลำดับ พัฒนาการซึมผ่านออกซิเจนของ La₂Ni_{0.9}Co_{0.1}O₄ (LNC) โดยแทนที่นิกเกิลด้วย ไอออน Fe³⁺ และ Zn²⁺ ได้เป็น LNC-Fe_y และ LNC-Zn_y (y=0-0.2) จากนั้นทำการเติมไอออน Ca²⁺ ที่ตำแหน่งแลนทานัมใน LNC-Fe₀₀₅ และ LNC-Zn₀₀₅ ที่มีค่าการซึมผ่านออกซิเจนสูงที่สุด ของแต่ละระบบเพื่อเพิ่มค่าการนำไฟฟ้า พบว่า LNCF-Ca₀₅ และ LNCZ-Ca₀₅ ให้ค่าการนำไฟฟ้า สูงสุดคือ 98.4 และ 84.9 ซีเมนส์ต่อเซนติเมตรที่ 800 องศาเซลเซียสตามลำดับ นอกจากนี้ได้ทำ การวัดประสิทธิภาพเซลล์เดี่ยวของ LNCF-Ca_{0.5} และ LNCZ-Ca_{0.5} กับอิเล็กโทรไลต์ LSGM พบว่าให้ค่ากำลังไฟฟ้าสูงสุดที่ 322 และ 312 มิลลิวัตต์ต่อตารางเซนติเมตรที่อุณหภูมิ 800 องศา เซลเซียสตามลำดับ สามารถนำไปประยุกต์ใช้ในเซลล์เชื้อเพลิงออกไซด์ของแข็งที่อุณหภูมิปาน กลางได้

ภาควิชา เคมี สาขาวิชา เคมี ปีการศึกษา 2556

ลายมือชื่อนิสิต	Teniens	รัตรัณษา	IT IT LI		
ลายมือชื่อ อ.ที่เ	ปรึกษาวิทย	- านิพนธ์หลัก	200.5	Serior -	

3914990606

ĪV

5472076323 : MAJOR CHEMISTRY KEYWORDS: SOLID OXIDE FUEL CELL / CATHODE MATERIAL / ELECTRICAL CONDUCTIVITY / PEROVSKITE

RATANAKORN TEERASARUNYANON: EFFECTS OF METAL DOPING ON La_2NiO_4 AS CATHODE FOR SOLID OXIDE FUEL CELL. ADVISOR: ASST. PROF. SOAMWADEE CHAIANANSUTCHARIT, Ph.D., 75 pp.

The properties of $(La_0 Sr_0)_{2-x}Ca_xNiO_4 (LSN-Ca_x), (La_0 Sr_0)_{2-x}Ca_xNi_0 O_0 O_1 O_4$ (LSNC-Ca_x) and La_{2-x}Ca_xNi_{0.9-y}Co_{0.1}(Fe, Zn)_yO₄ (LNCF-Ca_x and LNCZ-Ca_x) as cathode materials for solid oxide fuel cell were investigated. All compounds prepared by modified citrate method exhibited K₂NiF₄-type with tetragonal structure using calcination and sintering temperature of 900°C and 1350°C for 10 hours, respectively. LSN-Ca_x and LSNC-Ca_x (x=0-0.5) substituted with Ca²⁺ on the A-site in composition of x=0.2 showed the single phase of K_2NiF_4 -type structure and the highest electrical conductivity of 176.9 and 166.9 S/cm at 800°C, respectively. To improve oxygen permeation of $La_2Ni_{0.9}Co_{0.1}O_4$ (LNC), Ni-site was firstly substituted with Fe^{3+} or Zn^{2+} to obtain LNC-Fe_y and LNC-Zn_y (y=0-0.2). Then Ga^{2+} was incorporated into La-site of LNC-Fe_{0.05} and LNC-Zn_{0.05} which had the highest oxygen permeation rate, to improve the electrical conductivity. The highest electrical conductivity was achieved for LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} and the values were 98.4 and 84.9 S/cm at 800°C. Additionally, the single cell performance of LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} with LSGM electrolyte was measured and maximum power densities were 322 and 312 mW/cm² at 800°C, respectively. This indicated that LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} could be potential cathode materials for IT-SOFC.

Department: Chemistry Field of Study: Chemistry Academic Year: 2013 Student's Signature RATANA XOEN TEERASAR UN JA NUN Advisor's Signature Sommache Chart

ACKNOWLEDGEMENTS

The author would like to express my sincere gratitude to my advisor, Assistant Professor Dr. Soamwadee Chaianansutcharit for her guidance and encouragement. Without her advice and persistent help, this thesis would not have been possible.

The author would like to thank Assistant Professor Dr.Warinthorn Chavasiri, Assistant Professor Dr. Boosayarat Tomapatanaget, and Dr. Tanawat Kanjanaboonmalert for serving as this thesis committee.

The author gratefully acknowledge Office National Research Council of Thailand (NRCT), Department of chemistry, Faculty of science, Chulalongkorn university and Development and Promotion of Science and Technology Talents Project scholarship for financial and facility supports.

Finally, She would also like to thank her family, all her friends and coworkers for their support and love which helped her achieve her objectives.

VI

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
1.1 Fuel Cells	
1.2 Solid Oxide Fuel cells (SOFCs)	2
1.2.1 Operation of SOFCs	2
1.2.2 Materials in SOFCs	3
1.2.2.1 Electrolyte	3
1.2.2.2 Anode	4
1.2.2.3 Cathode	5
1.3 Perovskite	7
1.4 Electrical conductivity	10
1.5 Current-Voltage characterization	12
1.7 Literature reviews	14
1.8 The objectives of this thesis	17
2.1 Chemicals	
2.2 Material preparation	19
2.2.1 Cathode preparation	19
2.2.2 Anode preparation	21
2.2.3 Electrolyte preparation	21
2.3 Material characterization	22
2.3.1 X-ray diffractrometry (XRD)	22
2.3.2 Scanning electron microscopy (SEM)	22
2.3.3 Density	22
2.3.4 Electrical conductivity measurement	22
2.3.5 Oxygen permeation measurement	23

3914990606

VIII

F	^{>} age
2.3.6 Electrochemical measurement	24
3.1 Tolerance factor	26
3.2 Synthesis and properties of $(I_{a_0}Sr_{02})_{2x}Ca_xNiO_4$ (LSN-Ca _x)	27
3.2.1 XRD analyses	27
3.2.2 SEM analyses	29
3.2.3 Electrical conductivity analyses	30
3.3 Synthesis and properties of $(La_{0.8}Sr_{0.2})_{2x}Ca_xNi_{0.9}Co_{0.1}O_4$ (LSNC-Ca _x)	33
3.3.1 XRD analyses	33
3.3.2 SEM analyses	35
3.3.3 Electrical conductivity analyses	35
3.4 Synthesis and properties of $La_2Ni_{0.9,y}Co_{0.1}M_yO_4$ (M=Fe, Zn and y=0-0.2)	38
3.4.1 XRD analyses	38
3.4.2 SEM analyses	41
3.4.3 Oxygen permeation analyses	42
3.5 Synthesis and properties of La _{2-x} Ca _x Ni _{0.85} Co _{0.1} $M_{0.05}O_4$ (M=Fe, Zn and x=0-0.7)	45
3.5.1 XRD analyses	45
3.5.2 SEM analyses	48
3.5.3 Electrical conductivity analyses	49
3.6 Electrochemical analyses	51
3.6.1 Material compatibility	51
3.6.2 Impedance and single cell performance analyses	55
4.1 Conclusion	59
4.2 Suggestions	60
REFERENCES	61
APPENDICIES	66
APPENDIX A	67
APPENDIX B	68

	Page
APPENDIX C	69
VITA	.75

.

LIST OF FIGURES

Figure 1.1 SOFC operation scheme	2
Figure 1.2 Conductivity of YSZ, GDC and LSGM	4
Figure 1.3 Active areas for oxygen reduction reaction	6
Figure 1.4 The perovskite structure (ABX ₃)	8
Figure 1.5 The A_2BO_4 structure showing the location of an interstitial oxygen atom	19
Figure 1.6 Derivation of the tolerance factor	10
Figure 1.7 Covalent bonds between anionic p orbital and t_{2g} orbital of B-site catio	n 11
Figure 1.8 The migration of the oxygen ion passes through the saddle point	12
Figure 1.9 Characteristics of a typical current-voltage curve in SOFC	13
Figure 1.10 Typical power/current relation	13
Figure 1.11 Schematic of a Nyquist plot	14
Figure 2.1 KBr die assembly	21
Figure 2.2 schematic diagram of specimen with four platinum (Pt) wire contacts	23
Figure 2.3 Cross-sectional view of the membrane reactor	24
Figure 2.4 Schematic configuration of the single cell performance test set-up	25
Figure 3.1 XRD patterns of LSN Ca _x discs	28
Figure 3.2 SEM images of LSN-Ca _x discs	29
Figure 3.3 Temperature dependence of the specific conductivity of LSN-Ca $_{\rm x}$	30
Figure 3.4 Arrhenius plot of the electrical conductivity of LSN-Ca _x	32
Figure 3.5 XRD patterns of LSNC-Ca _x discs	34
Figure 3.6 SEM images of LSNC-Ca _x discs	35
Figure 3.7 Temperature dependence of the specific conductivity of LSNC-Ca _x	36
Figure 3.8 Arrhenius plot of the electrical conductivity of LSNC-Ca $_{\rm x}$	38
Figure 3.9 XRD patterns of LNC-Fe _y discs	39
Figure 3.10 XRD patterns of LNC-Zn _y discs	40
Figure 3.11 SEM images of LNC-Fey and I.NC-Zny discs	41
Figure 3.12 Temperature dependence of oxygen permeation for LNC-Fe _y	42
Figure 3.13 Temperature dependence of oxygen permeation for LNC-Zn _y	43
Figure 3.14 Oxygen migration path in the a-b plane and c direction	44
Figure 3.15 XRD patterns of LNCF-Ca _x discs	46

.

3914990606

Figure 3.16 XRD patterns of LNCZ-Ca _x discs	47
Figure 3.17 SEM images of LNCF-Ca _x and LNCZ-Ca _x discs	48
Figure 3.18 Temperature dependence of the specific conductivity of LNCF-Ca _x	49
Figure 3.19 Temperature dependence of the specific conductivity of $LNCZ-Ca_x$	50
Figure 3.20 XRD patterns of LNCF-Ca $_{0.5}$ –LSGM and LNCZ-Ca $_{0.5}$ -LSGM mixtures	
after fired at 1000°C for 10 hours	52
Figure 3.21 XRD patterns of LSN-Ca $_{02}$ -LSGM and LSNC-Ca $_{02}$ -LSGM mixtures	
after fired at 1000°C for 10 hours	53
Figure 3.22 XRD patterns of LSN-Ca $_{0.2}$ -LSGM and LSNC-Ca $_{0.2}$ -LSGM mixtures	
after fired at 950°C for 10 hours	54
Figure 3.23 XRD patterns of LSN-Ca _{0.2} -LSGM and LSNC-Ca _{0.2} -LSGM mixtures	
after fired at 900°C for 10 hours	55
Figure 3.24 The AC impedance spectra of LNCF-Ca _{0.5} /LSGM/Ni-Fe and	
LNCZ-Ca _{0.5} / LSGM/Ni-Fe	56
Figure 3.25 I–V curves and corresponding power density curves of	
LNCF-Ca0.5/ LSGM/Ni-Fe and LNCZ-Ca0.5/LSGM/Ni-Fe	56

LIST OF TABLES

Table 1.1 Types of fuel cells	1
Table 1.2 Thermal expansion coefficients of various electrolytes	4
Table 1.3 Micro-structural and property of SOFC component	7
Table 2.1 Chemicals and reagents for synthesis of materials	18
Table 2.2 The composition of all prepared cathodes	19
Table 3.1 The tolerance factors of all prepared oxides	26
Table 3.2 Lattice parameter and unit cell volume of LSN-Ca $_{\rm x}$	29
Table 3.3 Average grain size and relative density of LSN-Ca _x discs	30
Table 3.4 The specific conductivity of LSN-Ca _x	32
Table 3.5 Activation energy (E_a) of LSN-Ca _x at 300-800°C	33
Table 3.6 Lattice parameter and unit cell volume of LSNC-Ca $_{\rm x}$	34
Table 3.7 Average grain size and relative density of LSNC-Ca _x discs	35
Table 3.8 The specific conductivity of LSNC-Ca _x	37
Table 3. 9 Activation energy (E _a) of LSNC-Ca _x at 300-800°C	37
Table 3.10 Lattice parameters and unit cell volume of LNC-Fey	39
Table 3.11 Laitice parameters and unit cell volume of LNC-Zn _y	40
Table 3.12 Average grain size and relative density of LNC-Fe _y and LNC-Zn _y , discs	42
Table 3.13 Lattice parameters and unit cell volume of LNCF-Ca _x	46
Table 3.14 Lattice parameters and unit cell volume of LNCZ-Ca _x	47
Table 3.15 Average grain size and relative density of LNCF-Ca $_{\rm x}$ and LNCZ-Ca $_{\rm x}$ disc	549
Table 3.16 The specific conductivity of LNCF-Ca _x	50
Table 3.17 The specific conductivity of LNCZ-Ca _x	50
Table 3.18 Polarization resistance and power density of LNCF-Ca _{0.5} /LSGM/Ni-Fe	
and INCZ-Case/ISGM/Ni-Ee	

÷

xii

LIST OF ABBREVIATIONS

SOFCs	Solid oxide fuel cells
AFC	Alkaline fuel cell
PMEFC	Polymer electrolyte membrane fuel cell
PAFC	Phosphoric acid fuel cell
MCFC	Molten carbonate fuel cell
XRD	X-ray diffractrometry
SEM	Scanning electron microscopy
Т	temperature
°C	degree Celsius
К	Kelvin
9	gram
mm	millimeter
cm	centimeter
μm	micrometer
Å	angstrom
σ	specific conductivity
Ea	activation energy
%	percent
а, с	unit lattice parameter
t	tolerance factor
r	ionic radius
L	length
1	current
Т	thickness
V	voltage
W	width
Ρ	power density
R	resistance
Z	impedance