REFERENCES

- [1] Song, C. Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. <u>Catalysis Today</u> 77 (2002): 17-49.
- Haile, S.M. Fuel cell Materials and components. <u>Acta Materialia</u> 51(19) (2003): 5981-6000.
- [3] Brett, D.J., Atkinson, A., Brandon, N.P., and Skinner, S.J. Intermediate temperature solid oxide fuel cells. <u>Chemical Society Reviews</u> 37(8) (2008): 1568-78.
- [4] Jacobson, A.J. Materials for Solid Oxide Fuel Cells. <u>Chemistry of Materials</u> 22(3) (2010): 660-674.
- [5] Cong, L., He, T., Ji, Y., Guan, P., Huang, Y., and Su, W. Synthesis and characterization of IT-electrolyte with perovskite structure. <u>Journal of Alloys</u> <u>and Compounds</u> 348 (2003): 325–331.
- [6] Hayashi, H., et al. Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics 132 (2000): 227–233.
- [7] Raghvendra, Kumar Singh, R., and Singh, P. Synthesis of $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ electrolyte via ethylene glycol route and its characterizations for IT-SOFC. <u>Ceramics International</u> 40(5) (2014): 7177-7184.
- [8] Sammes, N. <u>Fuel cell technology</u>. London: Springer, 2006.
- [9] Sayers, R. and Skinner, S.J. Evidence for the catalytic oxidation of $La_2NiO_{4+\delta}$ Journal of Materials Chemistry 21(2) (2011): 414.
- [10] Singhal, S.C. Advances in solid oxide fuel cell technology. <u>Solid State Ionics</u> 135 (200): 305-313.
- [11] Aguadero, A., et al. Materials development for intermediate-temperature solid oxide electrochemical devices. <u>Journal of Materials Science</u> 47(9) (2012): 3925-3948.
- [12] Fergus, J.W. <u>Solid oxide fuel cells: materials properties and performance</u>. Boca Raton: CRC Press, 2009.
- [13] Sharma, I.B. and Singh, D. Solid state chemistry of Ruddlesden-Popper type complex oxides. <u>The Bulletin of Materials Science</u> 21 (1998): 363-374.
- [14] Tarancón, A., Burriel, M., Santiso, J., Skinner, S.J., and Kilner, J.A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. <u>Journal of Materials Chemistry</u> 20(19) (2010): 3799.

- [15] Bhavaraju, S. <u>Electrochemical Intercalation of Oxygen in A₂BO₄ Oxides</u>. Doctoral disertation, Facuty of the Department of Chemistry University of Houston, 1996.
- [16] Zhang, K., et al. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. <u>RSC Advances</u> 1(9) (2011): 1661.
- [17] Xu, N., et al. Dependence of critical radius of the cubic perovskite ABO₃ oxides on the radius of A- and B-site cations. <u>International Journal of Hydrogen Energy</u> 35(14) (2010): 7295-7301.
- [18] Hui, S., et al. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources 172(2) (2007): 493-502.
- [19] Richter, J., Holtappels, P., Graule, T., Nakamura, T., and Gauckler, L.J. Materials design for perovskite SOFC cathodes. <u>Monatshefte für Chemie-Chemical</u> <u>Monthly</u> 140(9) (2009): 985-999.
- [20] Lashtabeg, A. and Skinner, S.J. Solid oxide fuel cells-a challenge for materials chemists? Journal of Materials Chemistry 16(31) (2006): 3161.
- [21] Huang, W. Interconnects for Intermediate Temperature Solid Oxide Fuel Cells. Doctoral dissertation, College of Engineering, Boston university, 2008.
- [22] Barsoukov, E. and Macdonald, J.R. <u>Impedance spectroscopy</u>, <u>theory</u> <u>experiment and applications</u> 2ed. Hoboken, New Jersey: A John Wiley & Sons, 2005.
- [23] Macdonald, J.R. Impedance Spectroscopy. <u>Annals of Biomedical Engineering</u> 20 (1992): 289-305.
- [24] Nakamura, T., Yashiro, K., Sato, K., and Mizusaki, J. Electronic state of oxygen nonstoichiometric La_{2 x}Sr_xNiO₄ at high temperatures. <u>Phys.Chem. Chem.Phys.</u> 11 (2009): 3055-3062.
- [25] Ratchaun, C. <u>Preparation of La₂ Ca, Ni₁, Co, (Ga, Ti)zO₄ for Solid Oxide Fuel Cells</u>. Master's Thesis, Department of Chemistry, Faculty of Science, Chulalongkorn University, 2010.
- [26] Cherry, M., Islam, M.S., and Catlow, C.R.A. Oxygen ion migration in perovskitetype oxides. Journal of Solid State Chemistry 118 (1995): 125-132.
- [27] Yang, J., Cheng, J., Jiang, Q., Wang, Y., Wang, R., and Gao, J. Preparation and electrochemical properties of strontium doped Pr₂NiO₄ cathode materials for intermediate-temperature solid oxide fuel cells. <u>International Journal of</u> <u>Hydrogen Energy</u> 37(2) (2012): 1746-1751.

- [28] Zhao, F., Wang, X., Wang, Z., Peng, R., and Xia, C. K₂NiF₄ type La_{2-x}Sr_xCo_{0.8} Ni_{0.2}O_{4+δ} as the cathodes for solid oxide fuel cells. <u>Solid State Ionics</u> 179(27-32) (2008): 1450-1453.
- [29] Shen, Y., Zhao, H., Liu, X., and Xu, N. Preparation and electrical properties of Ca-doped La₂NiO₄ cathode materials for IT-SOFC. <u>Physical Chemistry Chemical</u> <u>Physics</u> 12(45) (2010): 15124–31.
- [30] Ding, X., Gao, L., Liu, Y., Zhen, Y., and Guo, L. Thermal expansion and electrochemical properties of I.a_{0.7}AE_{0.3}CuO₃₋₆ (AE=Ca, Sr, Ba) cathode materials for IT-SOFCs. Journal of Electroceramics 18(3-4) (2007): 317-322.
- [31] Chen, X., Liu, H., Wei, Y., Caro, J., and Wang, H. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation. Journal of Alloys and Compounds 484(1-2) (2009): 386-389.
- [32] Park, J., Zou, J., Yoon, H., Kim, G., and Chung, J.S. Electrochemical behavior of Ba_{0.5}Sr_{0.5}Co_{0.2-x}Zn_xFe_{0.8}O_{3-o} (x = 0-0.2) perovskite oxides for the cathode of solid oxide fuel cells. <u>International Journal of Hydrogen Energy</u> 36(10) (2011): 6184-6193.
- [33] Kostogloudis, G.C. and Etikos, C. Oxygen nonstoichiometry in Pr_{1-x}Sr_xCo_{0.2}
 B_{0.8}O₃₋₆ (B=Mn, Fe, x=0.2, 0.4) perovskite oxides. Journal of the European Ceramic Society 27(1) (2007): 273-277.
- [34] Petitjean, M., Caboche, G., Siebert, E., Dessemond, L., and Dufour, L.C. (La_{0.8}Sr_{0.2})(Mn_{1-y}Fe_y)O_{3 6} oxides for ITSOFC cathode materials? <u>Journal of the</u> <u>European Ceramic Society</u> 25(12) (2005): 2651-2654.
- [35] Miyoshi, S., Furuno, T., Matsumoto, H., and Ishihara, T. Conductivity and oxygen permeability of a novel oxide Pr₂Ni_{0.8-x}Cu_{0.2}Fe_xO₄ and its application to partial oxidation of CH4. <u>Solid State Ionics</u> 177(26-32) (2006): 2269-2273.
- [36] Ishihara, T., Matsuda, H., and Takita, Y. Doped LaGaO₃ perovskite type oxide as a new oxide ionic conductor. <u>Journal of the American Chemical Society</u> 116 (1994): 3801-3803.
- [37] Ju, Y.-W., Eto, H., Inagaki, T., Ida, S., and Ishihara, T. Preparation of Ni–Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO₃ based electrolyte film with high power density. <u>Journal of Power Sources</u> 195(19) (2010): 6294-6300.
- [38] Hsieh, T.H., Jhong, F.H., Ray, D.T., and Fu, Y.P. Electrical properties of (La_{0.9}Ca_{0.1})(Co_{1-x}Nix)O_{3-δ} cathode materials for SOFCs. <u>Ceramics International</u> 38(3) (2012): 1785-1791.

- [39] Magnone, E., Miyayama, M., and Traversa, E. Some structural considerations on the perovskite-type $A_{1,y}SryCo_{1,x}Fe_xO_{3-\delta}$ solid solution series. <u>Crystal</u> <u>Research and Technology</u> 45(4) (2010): 355-364.
- [40] Li-Ping, S., et al. Synthesis and performance of Sr_{1.5}La_xMnO₄ as cathode materials for intermediate temperature solid oxide fuel cell. <u>Journal of Power</u> <u>Sources</u> 196(14) (2011): 5835-5839.
- [41] Ruck, K., Krabbes, G., and Vogel, I. Structural and electrical properties of $La_{2-x}Ca_xNiO_{4+\delta}$ (0<x<0.4) with regard to the oxygen content <u>Materials Research</u> <u>Bulletin</u> 34 (1999): 1689-1697.
- [42] Riza, F. and Ftikos, C. Influence of A- and B-site doping on the properties of the system La₂CoO₄₊₆ Journal of the European Ceramic Society 27(2-3) (2007): 571-573.
- [43] Zhao, H., Shen, W., Zhu, Z., Li, X., and Wang, Z. Preparation and properties of Ba_xSr_{1-x}Co_yFe_{1-y}O_{3-δ} cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources 182(2) (2008): 503-509.
- [44] Xiao, G., et al. Synthesis and characterization of Mo-doped $SrFeO_{3-\delta}$ as cathode materials for solid oxide fuel cells. Journal of Power Sources 202 (2012): 63-69.
- [45] Shen, Y., Zhao, H., Xu, J., Zhang, X., Zheng, K., and Świerczek, K. Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La_{2 x}M_xNiO_{4+δ} (M = Ba, Sr) cathode materials. <u>International</u> <u>Journal of Hydrogen Energy</u> 39(2) (2014): 1023-1029.
- [46] Jammali, M., Chaker, H., Cherif, K., and Ben Hassen, R. Investigation on the structural and electrical properties of NdSrNi_{1-x}Cr_xO_{4+δ} (0.1≤x≤0.9) system. Journal of Solid State Chemistry 183(5) (2010): 1194-1199.
- [47] Boehm, E., Bassat, J., Dordor, P., Mauvy, F., Grenier, J., and Stevens, P. Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. <u>Solid</u> <u>State Ionics</u> 176(37-38) (2005): 2717-2725.
- [48] Kharton, V.V., et al. Mixed conductivity, oxygen permeability and redox behavior of K₂NiF₄-type La₂Ni_{0.9}Fe0.1O₄₊₆. Journal of Solid State Chemistry 181(6) (2008): 1425-1433.
- [49] Tsipis, E. Oxygen nonstoichiometry and ionic transport in $La_2Ni(Fe)O_{4+6}$. Solid State lonics 179(1-6) (2008): 57-60.
- [50] Lu, H., Tong, J., Deng, Z., Cong, Y., and Yang, W. Crystal structure, oxygen permeability and stability of Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.1}M_{0.1}O_{3-δ} (M=Fe, Cr, Mn, Zr)

oxygen-permeable membranes. <u>Materials Research Bulletin</u> 41(4) (2006): 683-689.

- [51] Ishihara, T., Nakashima, K., Okada, S., Enoki, M., and Matsumoto, H. Defect chemistry and oxygen permeation property of Pr₂Ni_{0.75}Cu_{0.25}O₄ oxide doped with Ga. <u>Solid State Ionics</u> 179(27-32) (2008): 1367-1371.
- [52] Zhao, H., Li, Q., and Sun, L. Ln₂MO₄ cathode materials for solid oxide fuel cells. <u>Science China Chemistry</u> 54(6) (2011): 898-910.
- [53] Zhou, W., et al. Barium- and strontium-enriched $(Ba_{0.5}Sr_{0.5})_{1+x}Co_{0.8}Fe_{0.2}O_{3-\delta}$ oxides as high-performance cathodes for intermediate-temperature solidoxide fuel cells. <u>Acta Materialia</u> 56(12) (2008): 2687-2698.
- [54] Jiang, S.P., Liu, L., Ong, K.P., Wu, P., Li, J., and Pu, J. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. Journal of Power Sources 176(1) (2008): 82-89.
- [55] Chen, D., Ran, R., Zhang, K., Wang, J., and Shao, Z. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo₂O_{5+δ} cathode on samarium-doped ceria electrolyte. <u>Journal of Power Sources</u> 188(1) (2009): 96-105.
- [56] Cao, Y., Gu, H., Chen, H., Zheng, Y., Zhou, M., and Guo, L. Preparation and characterization of Nd_{2 x}Sr_xCoO_{4+δ} cathodes for intermediate-temperature solid oxide fuel cell. <u>International Journal of Hydrogen Energy</u> 35(11) (2010): 5594-5600.
- [57] Li, Q., Zhao, H., Huo, L., Sun, L., Cheng, X., and Grenier, J.-C. Electrode properties of Sr doped La_2CuO_4 as new cathode material for intermediate-temperature SOFCs. <u>Electrochemistry Communications</u> 9(7) (2007): 1508-1512.
- [58] Ding, H., Xue, X., Liu, X., and Meng, G. A novel layered perovskite cathode for proton conducting solid oxide fuel cells. <u>Journal of Power Sources</u> 195(3) (2010): 775-778.
- [59] Li, Q., Zeng, X., Sun, L., Zhao, H., Huo, L., and Grenier, J.-C. Electrochemical performance of $La_2Cu_{1-x}Co_xO_4$ cathode materials for intermediate-temperature SOFCs. International Journal of Hydrogen Energy 37(3) (2012): 2552-2558.
- [60] Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. <u>Acta Crystallographica</u> A32 (1976): 751-767.

APPENDICIES

APPENDIX A

Tolerance number

The Goldschmidth tolerance numbers were calculated based on equation A.1.

$$t = \frac{(r_{A} + r_{O})}{\sqrt{2} x (r_{B} + r_{O})}$$
(A.1)

where r_A , r_B and r_O represent the ionic crystal radii of A-site cation, B-site cation and oxygen ion, respectively. The example of the tolerance number calculation of La₂NiO₄ was showed as below.

Tolerance number of
$$La_2 |viO_4| = \frac{[(1.356x2)/2 + 1.26]}{\sqrt{2}(0.83 + 1.26)} = 0.885$$

Table A.1	lonic cr	ystal	radii of	concerned	metal	ions	[60]
-----------	----------	-------	----------	-----------	-------	------	------

Metal ion	lonic charge	Coordination No.	Crystal radius (Å)
La	3+	9	1.356
Sr	2+	9	1.45
Ca	2+	9	1.32
Ni	2+	6	0.83
	3+ (LS)		0.7
	3+ (HS)		0.74
	4+ (LS)		0.62
Со	2+ (LS)	6	0.79
	2+ (HS)		0.885
	3+ (LS)		0.685
	3+ (HS)		0.75
	4+ (HS)		0.67
Fe	2+ (LS)	6	0.75
	2+ (HS)		0.92
	3+ (LS)		0.69
	3+ (HS)		0.785
	4+		0.725
Zn	2+	6	0.88
0	2-	6	1.26

LS = Low spin configuration, HS = High spin configuration

APPENDIX B

Activation energy (E_a)

Arrhenius equation (B.1) is shown below. The plot of $\ln(\sigma T)$ versus $\frac{1000}{T}$ (K) gives a straight line, whose slope can be used to determine the E_a of small polaron conduction.

$$\sigma = \left(\frac{A}{T}\right)e^{\frac{-E_a}{RT}}$$

$$\ln(\sigma T) = \ln A e^{\frac{-E_a}{RT}}$$

$$\ln(\sigma T) = \ln e^{\frac{-E_a}{RT}} + \ln A$$

$$\ln(\sigma T) = \left(\frac{-E_a}{R}\right)\left(\frac{1000}{T}\right) + \ln A \qquad (B.1)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$y \qquad slope \qquad x \quad intercept \ y \ axis$$

$$\left(\frac{-E_a}{R}\right) = slope of the linear$$
$$E_a = -slope \ x \ R$$

- Where A = material constant including the carrier concentration term
 - σ = specific conductivity (S/cm)
 - Ea = activation energy (kJ/mol)
 - T = temperature (K)
 - R = gas constant = 8.314472 J/K.mol

APPENDIX C

XRD Data

(La_{1.6}Sr_{0.4})NiO₄ PDF#89-8310

เลขทะเบียน 7136

.

PDF	#89-8310	QM=Ca	culated(C)	; d=Calcul	ated; I=C	alculated							PDP	Card
Lan	thanum Str	ontum N	licke: Oxide											
(1.8	1.0 SID 4)	Ni O4												
Rad	liat:on=Cu#	(a 1					Lampd	a=1.54060			Filter=			1
Cali	bration=						2T=13	901-89 995			Vic(RIR)=6	58		
Ref	Calculated	Of mont b	SD using P	OWD-12+1	•									
Tetr	agonal P	owder Di	ffraction, 14	/mmm (139	91				Z=2		mp≠			I
CEI	L 3819 x	3819 × 1	12 73045 <9	0 0 × 90 0	× 90 0>				P S:	:(14 (?)				
Der	isity(c)=6.7	96	Density(n	n)=6 88A	A40	vt=379 99	Vol=18	5 67	F(30)=243.9(0	038 32/0)			
Ref	Millburn, .	JE, Gree	en, MA, Ne	eumann, U	A , Rosse	insky, M. J.								
	J 2010 2	iste Cher	m , V145 p4	01(1999)							_			
FL	=088633_1	EM 298	RVP NOR	value give	n At leas	tone (Emis:	sing. Evoluti	on of the stru	clure d	I the K2 Ni	F4 phases	La2-x Srx	Ni D4+d will	h
UAR.	Idnun state	OCIANEC		n anu phas	se separa									
Stro	ang Lines. 3	2 84/X 2	70/7 1 91/3	2 06/3 3 66	5/3 1 58/3	2 12/2 3 18/	1 64/1 1 43	U1						
37	Lines, War	velength	ia Compule	Thela = 1	54056A(C	(u), 1% Type	Peak Hei	ght						
#	d(nm)	i(f)	(hk1)	2 Thela	Theta	1/(23)	14	d(nm)	I(†)	(nkl)	2-Theta	Thela	1/(2d)	
1	0 6 3 6 5 2	55	(002)	13 90 1	6.951	0 00786	20	0 137 10	52	(118)	68 367	34 184	0 03647	
2	0 36579	27 0	(101)	24 312	12,156	0 01367	21	0 13502	71	(220)	69 568	34 784	0 03703	
3	0 31826	14.8	(004)	28 013	14 006	0 0 1 5 7 1	22	0 13264	01	(109)	71.002	35 501	0 03770	
4	0 28387	100 0	(103)	31 489	15 745	001761	23	0 13203	01	(222)	71 349	35 674	0 03785	
5	0 27004	71 B	(110)	33 147	16.573	0.01852	24	0 12730	03	(0010)	74 468	37.234	0 03928	
6	0.24860	16	(112)	36 100	18 050	0 0 2 0 1 1	25	0 12667	09	(301)	74 906	37 453	0 03947	
7	0 21184	23.5	(105)	42 644	21 322	0 02360	26	0 12450	61	(217)	76 444	38 222	0 04016	
8	0 21184	23.5	(006)	42 644	21 322	0 02360	27	0 12430	35	{ 2 2 4}	76 588	38.294	0 04023	
9	C.20591	30.4	(114)	43 936	21 968	0 02428	28	0 12225	50	(208)	78 116	39 058	0 04090	
10	0 19095	314	(200)	47 581	23 790	0 026 18	29	0 12193	68	(303)	78.356	39.178	0 04101	
11	C.18290	03	(202)	49.815	24.906	0 02734	30	0 12077	64	(310)	79.259	39 630	0 04140	
12	0 16927	53	(211)	54 136	27 068	0 02954	31	0 11865	0 1	(312)	80 962	40 481	0 04214	
13	0 10084	8.2	(116)	54 093	27 497	0 02597	32	0 11515	15	(1110)	83 969	41.995	0 04342	
14	0 16420	93	(107)	55 955	27 977	C 03045	: 33	0 11391	33	(305)	85 096	42.548	0 04389	- 1
15	0 153/4	114	(204)	50 124	28 062	0 03054	34	0 11391	33	(226)	85 096	42 548	0 04389	
16	0.15913	43	(008)	57 901	28 951	0 03142	135	0 11251	52	(314)	85 031	43.015	0.04428	
	0.13044	20.0	(213)	20 1/0	29.089	0 03156	. 30	0 1 1076	49	(1011)	88 129	44 065	0 04514	- 1
10	0 14184	11.0	(206)	65 /8/	32 893	0.03525	- 37	: 0 10894	01	(219)	89 995	44 997	0 04590	
113	0 14 104	110	(215)	05 /8/	7/ 497	0.03525		±						
			_			_		1.1						
Sim	iulation Pai	ameters	Fixed-Sht I	ntensities.	Two The!	a Range =11	9/91.99/0.0	2, FWHM = 0	11					
				4										
				1										
				1										
				5										
				1.1										
				1										
			2			9 1	U	17						
				1										
			1	· ·				14		18				
			1		ē.,		- 11	남은 영		A	22 24	1 1 1 1	32 . 1	16
ľ	:	20	30	n	40		50	63		1	υ	05		50
1							d-Scale(/	N.						

39:4990606

CaO PDF#48-1467

PDF#48.1467	OM=Cal	culated(C)	- d=Calcul	ated	alculated								DECard
Calcium Oxid	e		, u-caicui	ateu, i-C	alculateu							P	
Ca O	•												(pEAC)
Radiation=Cu	Kal					t ambd	a=1 54059	81		Filler			
Calibration=						27=32	199-147 78	2		//c(RIR)=4	45		
Ref: Reardon	, B., Hubt	ard, C., Ti	M-11948					_					
Oak Ride	je Natl. Li	ab. Rep. O	RNL (U.S.)	(1992;									
Cubic - (Unkr	iown), Fr	n-3m (225))					Z=4		mp=			
CELL: 4.8105	9 x 4.810	59 x 4.810	59 < 90.0 x 9	90.0 × 90.	0>			P.S=	cF8 (CI Na)			
Density(c)=3.	345	Density(m)=2.59A	24.4	v(= 56.08	Vol=11	1.33	F(13)=411.2(.00	24,13/0)			
Ref: McMurdi	с, Н.												
Powder	Diffractio	n, v1 p265	(1986)										
NOTE: See a	lso 37-14	97.											
Strong Lines	2.41/X 1	70/5 2.78	4 0.80/2 1.4	5/2 0.81/	2 1.39/1 1.08	/1 0.98/1 1.1	0/1						
13 Lines, Wa	velength	to Compu	te Theta =	1.5 405 6Å	(Cu), 1%-Ty	pe = Peak A	rea						
# d(nm)	I(f)	(hkl)	2-Theta	Theta	1/(2d)	ส	d(nm)	KO	(bkl)	2-Theta	Theta	1/(2d)	
1 0.27777	40.0	(111)	32.199	16.100	0.01800	8	0.10757	14.0	(420)	91.467	45 733	0.04648	
2 0.24051	100.0	(200)	37.359	18 680	0.02079	9	0.09820	11.0	(422)	103.336	51.668	0.05092	
3 0.17008	51.0	(220)	53.8 59	26.929	0 02940	10	0.09258	7.0	(511)	112.616	56.308	0.05401	
4 0.14504	17.0	(311)	64.158	32.079	0.03447	11	0 08504	5.0	(440)	129.853	64 926	0 05879	
5 0.13887	14.0	(222)	67.378	33.689	0.03601	12	0.08131	15.0	(531)	142.633	71.316	0.06149	
6 . 0.12026	5.0	(400)	79.658	39.829	0.04158	13	0 08018	19.0	(442)	147.782	73.891	0.06236	
7 0.11036	7.0	(331)	88.527	44.263	0.04531								
1													
Simulation Pa	arameters	: Fixed-SI	it Intensitie	es, Two-T	heta Range	=30.2/149.7	8/0.02. FW	HM = 0.1					
2													
1													
1													
		3											
1		i											
		1											
		1											
			4	5		\$							12 13
				1	6	2			10		11		1
		1		1		1.1		1	1		1	N SAME	1.5 1.
47		50	50	/C	25	55 d-Scale(A	160		10	120	130	140	

La₂NiO₄ PDF#34-0314

PDI	#34-0314:	QM=Ind	•xed(i); d=	Guinier; I=	Densitor	neter							PDF	Card
Nic	kel Lantha	num Oxi	de											
Laz	Ni O4													
Rad	diation=Cu	Ka1					Lambd	a=1.5405			Filter=Ge			
Cal	ibration=Ir	iternal(Si	i)				2T=13.	359-96.236			I/Ic(RIR)=			
Ret	Wustenb	erg, H., F	lahn, Inst.	lur Kristal	logr., Tec	hnische Ho	chschule, A							
	ICDD Gra	int-in-Aic	1 (1981)											
Tel	ragonal - (l	Unknowi	i), 14/minn	ו (139)					Z=2		mp=			
CE	LL: 3.8617	x 3.8617	x 12.683 <	90.0 x 90.0	<0.09 x 0	-400 61	Volat2	0.44	P.S=	=ti14 (K2 N	i F4)			
Re	: Ibid.	330	Density	111]-1214	144.5	1-400.31	V01-10	3.14	F (31	11-05.0(01.	10,001			
NO	TE: Samp	le is a de	compositi	on produc	t of La Ni	O3 heated	to 1500 C in	air. To repl	lace 33-	712				
Str	ong Lines:	2.85/X 2	73/9 3.69/	7 1.93/7 2.0	7/6 1.60/	5 3 17/4 2 12	2/4 1 64/3 2 1	1/3						
37	Lines. Wa	velenuth	to Compu	te Theta =	1.54056A	(Cu). 1% T	voe = (Unkno	wn)						
#	d(nm)	1(f)	(hkl)	2 Theta	Theta	1/(2d)	,pc (Gc	d(nm)	1(f)	(5.6.1)	2-Theta	Theta	1//2d)	
1	0.63390	10.0	(002)	13.959	6.980	0.00789	20	0 13241	3.0	(109)	71.146	35.573	0.03776	
2	0.36940	65.0	(101)	24.071	12 036	0.01354	21	0 12805	4.0	(301)	73.961	36.981	0.03905	
3	0.31700	35.0	(004)	28.126	14.063	0 01577	22	0.12684	1.0	(0010)	74 787	37.393	0.03942	
4	0.28510	100.0	(103)	31_350	15.675	0.01754	23	0.12539	8.0	(224)	75.803	37.902	0.03988	
5	0.27320	90.0	(110)	32.753	16.376	0.01830	24	0 12499	180	(217)	76.089	38.044	0.04000	
6	0.25090	5.0	(112)	35.758	17 879	0.01993	25	0 12312	18 0	(303)	77.457	38.729	0 04061	
T	0.21240	35.0	(105)	42.527	21.263	0.02354	26	0 12252	14.0	(208)	77.908	38.954	0.04081	
8	0.21140	25.0	(006)	42.738	21.369	0.02365	27	0.12211	19.0	(310)	78.220	39.110	0.04095	
10	0.19312	65.0	(114)	43.099	21 050	0 02416	28	0 11471	50	(1110)	84 366	42.043	0 04347	
11	0.17118	16.0	(211)	53 485	26 743	0.02921	30	0 11395	20.0	(314)	85.061	42.530	0 04388	
12	0.16721	20.0	(116)	54.860	27 430	0.02990	31	0.11047	15.0	(1011)	88 418	44.209	0 04526	
13	0 16496	20.0	(204)	55.673	27 836	0 03031	32	0 10674	3.0	(321)	92.380	46.190	0.04684	
14	0.16405	30.0	(107)	56.009	28.004	0.03048	33	0.10599	3.0	(2010)	93.229	46.614	0.04717	
15	0.15990	60.0	(213)	57.596	28.798	0 03127	34	0.10573	7.0	(316)	93.527	46.764	0.04729	
16	0 15856	11.0	(008)	58 129	29 065	0.03153	35	0.10493	7.0	(307)	94.461	47.230	0 04765	
17	0.14262	20.0	(206)	65 380	32.690	0.03506	36	0.10381	13.0	(323)	95.806	47.903	0.04816	
18	0.13709	14.0	(118)	63.372	34 186	0.03647	21	0 10346	7.0	(228)	96 236	48.118	0.04633	
113	0.13033	17.0	(220)	30.031	24 240	0.03062								
ļ														
1														
Sin	ulation Pa	rameter	s Fixed-SI	it Intensitie	es, Two-T	heta Range	e =11.96/98 2	4/0.02, FWI	HM = 0.1	I				
			4											
				5										
		2	1			10								
				1		5	1	5						
				1										
					19									
			1				14							
				1	P		12		17		24.25	30		
Ť		i			1		1	14	1	8	2i li	1	2: 	4.4
			i		×.		141	1	1	22 21	길내	20	12	13 37
	20		20		46	5	0	61		10	25		90	
							d Scale(A)						

La₂O₃ PDF#05-0602

PDF#05-060	2: QM=SI	ar(S); d=(Ui	iknowii); i	=Diffracto	meter							PD	F Card
Lanthanum	Oxide												(cSCR)
La2 O3													
Radiation=C	uKat					Lambd	a=1.5405			Filter=Ni			
Calibration=						2T=26.1	10-146.312			l/lc(RIR)=			
Ref: Swanso	on, Fuyat.												
Nati. Bi	ur. Stand	(U.S.), Circ	. 539, vill p	33 (1954)									
Hexagonal -	Powder [Diffraction	P-3m1 (16	54)				Z=1		mp=			
CELL: 3.937	3 x 3.937	3 x 6.1299 <	90.0 x 90.0	0 x 120 0>				P.S≈	hP5 (La2 (03)			
Density(c)=(5.573	Density(m)=6.22A	Mu	vt=325 81	Vol=82	30	F130)=46.8(.016	0.40/0)			
Ref: Ibid.													
NOTE: Sam Sample was Opaque min McCarthy, C following: 2 001; 2:043 < Color: Colo	ple from 5 annealed reral optic 5., North D .278 23 10 1 003; 1 8 rless	Fairmount (d at 1200 C cal data on : Dakota Stat D2; 1.968 28 1744 <1 111	Chemical (for one ho specimen e Univ., Fa 110, 1.75 ; 1.4177 <1	Company bur and m from Nan irgo, Nort 3 23 103 1 113; 1 2	. Spectrosco ounted in pe seke, Ugand II Dakola, US Calculated p 260 <1 005.	pic analysis trolatum to la. R3R%=14 SA, ICDD Gr pattern indic	s: <0.01% C prevent rea 4.2, Disp.=S ant-in-Aid (cates that th	a, Mg, S Ibsorpti itd. VHN 1990). V ne follor	Si: <0.001% ion of C O: 1100=782-1 /alidated b wing reflec	6 AI, Cu, F(2 + H2 O A 813, Patter ly calculate tions migl	2, Pb. Patt ferck Inde n reviewe ed pattern it be obse	lern taken a ex, 8th Ed., id by Holzer n except for ervable: 6.1	at 26 C. p. 608. r, J., the 30 <1
anong time	3. 2.301A	1.3//0 2.20/		41/5 5.05/	3 1.00/2 1.04	12 1.20/1 1.3	1/1						
Jy Lines, W	avelengt	n to Compu	ite Theta =	1.54056/	(Cu), 1%-Ty	pe = (U:ikno	iwn)						
# d(nm)	((f)	(h k t)	2-Theta	Theta	1/(2d)	#	d(nm)	l(f)	(h k i)	2-Theta	Theta	1/(2d)	
1 0.34100	3 34.0	(100)	26.110	13 055	0.01466	21	0.10901	7.0	(213)	89.920	44.960	0.04587	
2 0.30630	31.0	(002)	29 130	14.565	0.01632	22	0 10658	4.0	(302)	92.560	46.280	0.04691	
3 0.29800	100.0	(101)	29.960	14 980	0.01678	23	0.10220	0.0	(006)	97.824	48.912	0.04892	
4 0.22780	58.0	(102)	39 527	19 764	0.02195	24	0.09952	3.0	(205)	101.428	50.714	0.05024	
5 0.19680	63.0	(110)	46.084	23.042	0.02541	25	0 09840	30	(220)	103.036	51.518	0.05081	
6 0.17530	52.0	(103)	52 132	26 066	0.02852	26	0 09787	1.0	(106)	103 820	51.910	0 05109	
7 0 17050	4.0	(200)	53 716	26.858	0.02933	27	0 09459	0 0	(310)	109 043	54.522	0.05286	
8 0.16560	24.0	(112)	55.439	27.720	0.03019	28	0 09372	3.0	(222)	110.550	55.275	0 05335	
9 0 16420	17.0	(201)	55 953	27 977	0.03045	29	0 09345	50	(311)	111 029	55.515	0.05350	
10 0.15320	3.0	(004)	60.370	30.185	0.03264	30	0.09131	2.0	(304)	115.042	57.521	0 0 5 4 7 6	
11 0.14900	50	(202)	62 258	31.125	0.03356	31	0.09070	20	(116)	116.263	58.131	0.05513	
12 0.13980	2.0	(104)	66 870	33.435	0.03577	32	C 8880 0	5.0	(215)	120.256	60.128	0.05629	
13 0.13090	0.70	(203)	72.094	36.047	0 0 3 8 2 0	33	0.08766	1.0	(206)	122.975	61.488	0 05704	
14 0.12890	2.0	(210)	73 393	36 697	0.03879	34	0.08583	40	(313)	127.649	63.825	0 05825	
15 0.12610	12.0	(211)	75.302	37.651	0.03065	35	0.08480	2.0	(107)	130.556	65.278	0.05896	
16 0.12090	0.6	(114)	79.155	39 578	0.04136	36	0.08443	1.0	(401)	131.659	65.829	0.05922	
17 0.11879	9 4.0	(212)	80.848	40.424	0.04209	37	0.08283	2.0	(224)	136.855	68.427	0.06036	
18 0 11538	3 4.0	(105)	83.765	41.882	0.04334	38	0.08050	1.0	(314)	146.222	73.111	0.06211	
19 0.11390	5 2.0	(204)	85.051	42 526	0.04388	39	0.08007	2.0	(216)	148.312	74.156	0.06245	
20 0.1136	4.0	(300)	85 320	42 660	0.04399								
									100				
Simulation	Paramele	rs: Fixed-S	lit Intensiti	ies, Two-1	'heta Ran <mark>ge</mark>	=24.11/150	31/0 02. FW	'HM = 0	.1				
1													
1													
		5											
	1	1 4											
		6											
2		0											
			4										
		1			44.								
					12 16	25	22		29	12	14		
		1	11 1	1 12	1.1 i.	17. 1	1 23	1 26	27 1 30	ει [1 25	37	38 39
30	40	50	50	7	0 63	90 90	10	2	110	120	130	140	
1						c Scale(A)						

$(La_{0.9}Sr_{0.1}) ((Ga_{0.8}Mg_{0.2}) O_{2.87}) \quad \text{PDF\#89-6965}$

PDF	889-6965	OM=Cal	culated(C)	d=Calcul	ated: I=C:	alculated							PDF	Card
Lan	thanum Si	trontium	Gallium M	agnesium	Oxide	are arate (Jura
(La	0.9 Sr0.1)	((Ga0.8	8 Mg0.2) O	2.87)										
Rad	liation=Cu	Kat	5				Lainbd	la=1 54060			Sliter=			
Cali	bration=						27=19	627-89.455			VIc(RIR)=4	.29		
Ref	: Calculate	ed from 1	CSD using	POWD-12							-1 /			
Mor	noclinic - f	Powder [Diffraction,	12/a (15)					2=4		mp=			
CEL	L: 7.8160	3 x 5.588	3 x 5:51 46	7 <90.0 x 9	0.06 x 90.	0>			P.S=	mC19.48 (?)			
Der	nsity(c)=6	685	Density(m)=6.44A	Mw	1=240.33	Vol=23	8.76	F(30)= 28.5(.014	\$0,75/0)			
Ref	: Slater, P	.R., Irvin	e, J.T.S., Isl	hihara, T.,	Takita, Y.									
	J Solid S	State Chi	em., v139 p	135 (1998)										
FIZ	= 051040: 1	CSD SG	112/A1	IT is: 15	SG shor	t form: 12	ATF TEM 29	8. RVP. ITF	TF are c	of mixed by	pe. TF are	converte	d prior to patt	lern
cal	culation. I	TF High-	temperatur	e powder i	neutron d	iffraction	study of the c	ixide ion co	nductor	Li0.9 Sr0.	1 Ga0.8 M	g0.2 O2.8	5	
Str	ong Lines	2.76/X 1	95/3 1.59/	2 1 60/2 3 9	1/2 2.25/1	2.26/1 1	.38/1 1.24/1 1.2	23/1						
64	Lines, Wa	velength	to Compu	te Theta =	1.54056A	(Cu), 1%	Type = Peak H	leight						
#	d(nm)	1(1)	(hki)	2-Theta	Theta	1/(2d)	#	d(nm)	1(f)	(h k l)	2-Theta	Theta	1/(2d)	
1	0.45194	0.1	(110)	19.627	9.813	0.01106	33	0 13237	0.1	(-1.4.1)	71.172	35.586	0.03777	
2	0.39081	16.1	(200)	22.734	11.367	0.01279	34	0.13237	0.1	(141)	71.172	35.586	0.03777	
3	0.39081	16.1	(011)	22 734	11.367	0.01279	35	0 13217	0.1	(-5 1 2)	71.295	35.648	0.03783	
4	0.27645	100.0	(211)	32.358	16.179	0.01809	36	0.13217	0.1	(332)	71.295	35.648	0.03783	
5	0.27645	100.0	(-2 1 1)	32.358	16 179	0.01809	37	0 13201	0.1	(323)	71.394	35.697	0.03788	
6	0.27573	78.9	(002)	32.444	16.222	0.01813	38	0 13201	0.1	(512)	71.394	35.697	0.03788	
7	0.23576	0.6	(310)	38.140	19.070	0.02121	39	0.13184	0.1	(114)	71.497	35.749	0.03792	
8	0.23576	0.6	(121)	38.140	19.070	0.02121	40	0 13042	0.8	(431)	72 401	36 201	0.03834	
9	0.23532	0.5	(-1 1 2)	38.214	19 107	0 02125	41	0.13042	0.8	(-431)	72 401	36 201	0.03834	
10	0.23532	05	(112)	38 214	19 107	0.02125	42	0.13027	0.9	(033)	72.497	36 249	0.03838	
11	0.22597	8.7	(220)	39.861	19.930	0.02213	43	0.13027	0.9	(-4 1 3)	72.497	36.249	0 03838	
12	0.22519	10.7	(202)	40.005	20.002	0.02220	44	0.13008	0.9	(204)	72.623	36.312	0.03844	
13	0.22519	10.7	(202)	40.005	20.002	0 02220	45	0.13008	0.9	(413)	72 623	36.312	0.03844	
14	0.19541	33.7	(400)	46.431	23.216	0.02559	46	0.12361	8.0	(611)	77.091	38.546	0.04045	
15	0.19541	33.7	(022)	16.431	23.216	0.02559	47	0.12361	8 0	(-233)	77.091	38.546	0 04045	
16	0.17970	0.1	(130)	50.764	25 382	0.02782	48	0.12342	4.7	(024)	77.233	38.617	0.04051	
17	0.17910	0.1	(321)	50.944	25.472	0.02792	49	0.11931	C. 1	(341)	80 426	40.213	0.04191	
18	0.17910	0 1	(312)	50.944	25.472	0.02792	50	0 11931	0.1	(530)	80.426	40.213	0.04191	
19	0.17472	3.5	(411)	52.318	26.159	0.02862	51	0.11896	0.1	(314)	80.707	40.353	0.04203	
20	0.17472	3.5	(222)	52.318	26.159	0.02862	52	0.11896	0.1	(-3 1 4)	80.707	40.353	0.04203	
21	0.17447	2.4	(013)	52.400	26.200	0.02866	53	0.11796	0.8	(242)	81.535	40.767	0 04239	
22	0.15977	17.8	(420)	57.649	28.825	0.03130	54	0.11796	0.8	(-2 4 2)	81.535	40.767	0.04239	
23	0.15977	17.8	(231)	57.649	28 825	0.03130	55	0.11788	0.7	(-602)	81.604	40.802	0.04242	
24	0.15925	23.3	(213)	57.852	28.926	0.03140	56	0.11788	0.7	(620)	81.604	40.802	0.04242	
25	0.15925	23 3	(402)	57.852	28.926	0.03140	57	0.11766	1.1	(-224)	81.789	40.894	0.04250	
26	0.15044	0.1	(510)	61.594	30.797	0.03323	58	0.11766	1.1	(224)	81.789	40.894	0.04250	
2/	0 15044	0.1	(-1 2 3)	61.594	JU.797	0.03323	59	0 11299	1.9	(440)	85.962	42.981	0.04425	
28	0.15028	0.1	(123)	61.672	30.836	0 03327	60	0 11271	2.0	(-404)	86.227	43.114	0.04436	
29	0 1 3 8 4 8	3.0	(040)	67 591	33,796	0.03611	61	0 11259	13	(404)	86.333	43.167	0.04441	
100	0.13812	8.b	(422)	67.792	17.886	0.03620	62	0.10969	0.1	(150)	89.213	44 606	0 04558	
137	0.13812	8.6	(-4.2.2)	67.792	73.886	0.03620	63	0.10946	0.1	(134)	89.455	44.727	U_D4568	
32	U.13/0/	6.4	[004]	67.934	77.301	0.03621	64	0.10946	0.1	(710)	89 4 5 5	44 7 2 7	0 04568	
							.92 11.03/31.1	.5.0.01,1 101						
	2				5	14		22 D				45		
				1	6		16 19	70		29 3	3 40	1 45	5 55	67
[:	20		30		2		50	÷0		70		23	- 1	90
1							c-Scale(A	14						

SrLaGa₃O₇ PDF#45-0637

PDF#45-0637	QM=Sta	r(S); d=Diff	ractometer	I= Diffra	ctometer								PDF Card
Strontium Lar	thanum	Gallium Ox	ide										
Sr La Ga3 O7													
Radiation=Cu	Ka1					La	mbda=1.5	4056		Filter=M	ði:		
Calibration=E	xternal(A	1203)				21	=15.540-11	10.206		I/Ic(RIR)=7.21		
Ref: Ivanov, S	, Zhurov	, V., Karpov	linst. of Ph	iysical C	hemistry, I	Moscow	Russia.						
ICDD Gra	ant-in-Air	1 (1994;											
Teiragonal - F	owder D	iffraction, I	P-421m (11	3)				Z=2	2	mp=			
CELL: 8.0541	x 8.0541	x 5.3325 <9	0.0 × 90.0 ×	< 90 O>				P. S	=tP24 (3	?)			
Density(c)=5.	290	Density(m	1)=5.240	Mw	=547.68	Vo	1=345.91	F(3	0)=298.9	9(.0030,33/0)		
Rel: Toropov,	N., Isma	tov, A.											
NOTE: EDD		333R, VI0.		o) - 20 4431	1 - 40 043		4151 6-						
Russia Patte	rn taken	at 22 C. Sin	nij (at. %): S nie-crystak	s of Sr L	, La 19.8(2 a Ga 3 O 7 v), Ga 60. Vere dro	1(5). Samj wn by Czo	pie was prov ochralski me	vided by	Kucheiko,	S., Mos	scow State	Univ.,
Color: Colori	55		g.e c. jului			rere gro				replace 1	1450		
Change Lines	2 00/7 4	0.412 2.5512	2 24/2 4 60	0.0.07/4	2 00/4 4 4								
Strong Lines.	2.9017 1	.84/3 2.55/2	3.21/21.39	12 2.6/11	3.89/1 1.44	1.830	11.55/1						
101 Lines, W	avelengti	n to Compu	te ineta = 1	1.540567	(Cu), 1% -	lype = P	eak Area						
# d(nm)	1(1)	(hkl)	2-Theta	#	d(nni)	1(f)	(hkl)	2-Theta	#	d(nm)	I(f)	(h k ł)	2-Theta
1 0.56975	3.0	(110)	15.540	35	0.15941	15 0	(213)	57.791	69	0.11488	0.0	(622)	84.208
2 0.53334	1.0	(001)	16.608	36	0.15761	2.0	(412)	58.515	70	0.11443	5.0	(523)	84.618
3 0.44469	1.0	(101)	19.950	37	0.15464	7.0	(332)	59.751	71	0.11377	1.0	(542)	85.224
4 0.40264	2.0	(200)	22,058	38	0.15145	20	(511)	61.144	72	0.11169	1.0	(640)	87 210
5 0.38930	12.0	(111)	22.824	39	U.15079	2.0	(223)	61.437	73	U.11117	1.0	(404)	87.723
6 0.36023	1.0	(210)	24.694	40	0.14923	2.0	(422)	62.150	74	0.11063	0.0	(720)	88.262
7 0.32137	18.0	(201)	27.736	41	0.14822	1.0	(303)	62.621	75	0.11012	1.0	(414)	88.770
8 0.29848	100.0	(211)	29.911	42	0.145//	1.0	(313)	63.798	76	0.10933	1.0	(641)	89.586
9 0.28474	4.0	(220)	31.390	43	0.14401	10.0	(521)	64.674	77	0.10909	1.0	(334)	89 832
10 0.26665	14.0	(002)	33.501	44	0.14238	2.0	(440)	63.302	78	0.10832	1.0	(121)	90.051
11 0 254/1	220	(310)	35.206	45	0.13909	1.0	(323)	67.200	80	0.10715	1.0	(424)	91.924
12 0 25100	1.0	(102)	35 714	40	0.13014	1.0	(432)	67.926	81	0.10576	2.0	(730)	93 494
13 0 23120	2.0	(221)	37 204	48	0 13756	1.0	(432)	68 107	82	0.10482	1.0	(1 1 5)	94 590
15 0 23976	1.0	(301)	37 479	40	0 13589	0.0	(512)	69.059	83	0 10476	0.0	(712)	94 667
16 0 22987	1.0	(3311)	39 156	50	0 13421	4.0	(600)	70.050	84	0 10 351	1.0	16231	96.175
17 0 22230	2.0	(202)	40 547	51	0 13333	30	(004)	70.583	85	0.10307	1.0	12051	96.715
18 0 21431	5.0	(212)	42 129	52	0 13240	0.0	(610)	71.150	86	0.10269	2.0	15431	97.202
19 0.20605	2.0	(321)	43.905	53	0.13147	40	(413)	71,732	87	0.10226	3.0	(215)	97.752
20 0 20133	5.0	(400)	44 989	54	0 13044	1.0	(522)	72.387	88	0.10125	0.0	(651)	99.066
21 0 19534	3.0	(410)	46 449	55	0.12977	2.0	(333)	72.821	89	0.09989	1.0	(740)	100 914
22 0 19465	3.0	(222)	46 623	56	0 1 2 8 5 0	1.0	(611)	73.659	90	0.09989	1.0	(225)	100.914
23 0 18985	5.0	(330)	47.875	57	0 12652	0.0	(423)	75.008	91	0.09952	0.0	(524)	101.425
24 0.18922	1,0	(302)	48.043	58	0 12580	0.0	(540)	75.509	92	0.09892	1.0	(801)	102.279
25 0.18837	1.0	(401)	48.275	59	0.12559	1.0	(442)	75.663	93	0.09832	2.0	(732)	103 1 54
26 0.18417	25.0	(312)	49.447	60 .	0.12502	1.0	(214)	76.065	94	0.09819	3.0	(811)	103.338
27 0.18342	9.0	(411)	49.662	61	0.12386	1.0	(621)	76.911	95	0.09732	1.0	(444)	104 651
28 0.18010	3.0	(420)	50.643	62	0.12265	10	(532)	77.809	96	0.09592	1.0	(534)	106.845
29 0 17884	4.0	(331)	51.026	63	0.12242	2.0	(541)	77.983	97	0.09490	1.0	(660)	108 524
30 0.17121	1.0	(322)	53.474	64	0.12073	1.0	(224)	79.287	98	0.09458	2.0	(643)	109.067
31 0 17064	0.0	(421)	53.667	65	0 11990	3.0	(602)	79.944	99	0 09458	2.0	(604)	109 067
32 0.16969	1.0	(113)	53.993	63	0.11940	10	(304)	80.351	100	U.09423	1.0	(405)	109.652
33 0.16262	2.0	(203)	56.544	67	0.11864	0.0	(612)	80.969	101	0.09392	0.0	(723)	110.206
34 0.16068	2.0	(402)	57.290	68	0.11810	6.0	(314)	81.416					
Simulation Pa	rameters	Fixed-Slit	Intensities	, Two-Th	eta Range	=13.54/	112.21/0.0	2, FWHM = (0.1				
		1											
		1											
		1											
	ų.	10 10		1									
1 1 4	6	? (F	4 .u	1. 64	3 40	la tr	44 Jac - 45	10 11 11 11 11	54 6.	69 12 15 1	E =0 82	R4 3+ 85	02 & W 101
20		30	-10	õ	5	60 d Scr	ale(å)	/0	C8	90		100	: 10
						0.964							

•

VITA

Miss Ratanakorn Teerasarunyanon was bom on January 16, 1989 in Nakorn Pathom, Thailand. She graduated with Bachelor's Degree in Chemistry (2nd class honor) from Faculty of Science, Silpakorn University in 2010. She continued the Master's degree in program of Chemistry (Inorganic Chemistry), Faculty of Science, Chulalongkorn University in 2011 and completed in 2013.

PRESENTATIONS

October 21-23, 2013.

Poster Presentation: "Effects of Calcium Doping on Electrical Properties of $La_{1.6}Sr_{0.4}Ni_{0.9}Co_{0.1}O_4$ Materials for SOFCs" The 39th congress on science and technology of Thailand (STF39), BITEC Bangna, Bangkok, Thailand.

January 8-10, 2014.

Poster Presentation: "Electrical Conductivity of $La_{16}Sr_{04}Ni_{09}Co_{01}O_4$ Oxide Doped with Calcium" The 9th Mathematics and Physical Science Graduate Congress at University of Malaya, Malaysia.

Her present address is 44 M.1, Thaplaung sub-district, Muang district, Nakorn Pathom, Thailand 73000. Tel: 098-2490373, E-mail: ratanakornt@gmail.com

