การสังเคราะห์ 2-แอริลพิร์โรลโดยตรงจากแคลเซียมคาร์ไบด์

นายณรงค์พล แก้วจังหวัด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DIRECT SYNTHESIS OF 2-ARYLPYRROLE FROM CALCIUM CARBIDE

Mr. Narongpol Kaewchangwat

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Petrochemistry and Polymer

Science

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

The is Title	DIRECT SYNTHESIS OF 2-ARYLPYRROLE FROM		
	CALCIUM CARBID	DE	
Ву	Mr. Narongpol Ka	aewchangwat	
Field cf Study	Petrochemistry a	and Polymer Science	
Thesis Advisor	Assistant Professor Sumrit Wacharasindhu, Ph.D.		
Thesis Co-Advisor	Associate Profess Ph.D.	sor Mongkol Sukwatta	nasinitt,
*			
Accepted by the Faculty	of Science, Chula	alongkorn University in	n Partial
Fulfillment of the Requirements	s for the Master's	Degree	
(Professor Supot Hanno	ongbua Dr. rer. nat	Dean of the Faculty	of Science
(Foressor Super Hurric	5/155dd, 5/11/6/11/dd	••/	
THESIS COMMITTEE TULL	fact	Chairman	4
(Professor Tharapong V	itidsand, Ph.D.)		
	4	Thesis Advisor	
* (Assistant Professor Sur	mrit Wacharasindh	nu, Ph.D.)	1
flight	dix bustnil	Thesis Co-Advisor	
(Associate Professor Mo	3	•	
in Inaka	mpul.	Examiner	
(Associate Professor Wi	monrat Trakarnpr	ruk, Ph.D.)	
James 1/03	7	External Examiner	
(Poonsakdi Ploypradith,	, Ph.D.)		

*

ณรงค์พล แก้วจังหวัด การสังเคราะห์ 2-แอริลพิร์โรลโดยตรงจากแคลเซียมคาร์ไบด์. (DIRECT SYNTHESIS OF 2-ARYLPYRROLE FROM CALCIUM CARBIDE) อ.ที่ ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.สัมฤทธิ์ วัชรสินธุ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร.มงคล สุขวัฒนาสินิทธิ์, 72 หน้า.

2-แอริลพิร์โรลเป็นโครงสร้างหลักที่สำคัญในสารประกอบทางเภสัชวิทยาและ สารประกอบอินทรีย์ วิธีเดิมที่ใช้สังเคราะห์สารชนิดนี้เกี่ยวข้องกับปภิกิริยาโทรฟิมอฟ ซึ่งต้องใช้ แก๊สอะเซทิลีนเป็นสารตั้งต้น อย่างไรก็ตามแก๊สอะเซทิลีนมีข้อเสียหลายประการเช่น ติดไฟไต้ง่าย, มีความเป็นพิษและยากต่อการควบคุมปริมาณของสารเช้าทำปฏิกิริยา ในงานวิจัยนี้เราพัฒนาวิธี ใหม่การสังเคราะห์ 2-แอริลพิร์โรล โดยตรงจากแคลเซียมคาร์ไบด์ ซึ่งมีราคาถูก และมีความเป็น พิษน้อย ในส่วนของการศึกษาภาวะที่เหมาะสม เตรียมโดยใช้แอริลออกซีม, โพแทสเซียมไฮดรอก ไซด์, และแคลเซียมคาร์ไบด์ ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 15 ชั่วโมง ในไดเมทิลซัลฟ อกไซด์ที่มีน้ำผสม พบว่าได้ 2-เฟนิลพิร์โรลร้อยละ 73 และ 2-เฟนิล-เอ็น-ไวนิลพิร์โรลเล็กน้อย การประยุกต์ใช้สภาวะนี้กับออกซีมที่มีหมู่แทนที่ที่แตกต่างกันให้ 2-แอริลพิร์โรลร้อยละ 3-88 และ 2-แอริล-เอ็น-ไวนิลพิร์โรลร้อยละ 0-52 นอกจากนี้ เรายังพัฒนาการสังเคราะห์ 2-แอริลพิร์โรล แบบขั้นตอนเดียวจากอะซีโตฟีโนนให้ผลิตภัณฑ์ร้อยละ 56 โดยไม่ต้องทำการแยกออกซีม สำหรับ การนำไปประยุกต์ใช้ เราสามารถเปลี่ยน 2-เฟนิลพิร์โรลไปเป็น 4,4-ไดฟลูออโร-4-บอรา--3a,4a-ไดเอชา-s-อินแดนซ์ (บอดิพี)ได้ใน 3 ขั้นตอนได้ผลิตภัณฑ์ร้อยละ 54 ซึ่งสะดวกกว่าวิธีตั้งเดิม เนื่องจาก 2-แอริลพิร์โรลมีระบบคอนจูเกตที่ยาวจึงสามารถเตรียมบอดิพีที่ให้ค่าการคายแสง ในช่วงสีแดง (600 นาโนเมตร)

ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ ลายมือชื่อนิสิต ปีการศึกษา 2556

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5471960923 : MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEYWORDS: ACETYLENE / PYRROLE / TROFIMOV REACTION / SUSTAINABLE SYNTHESIS / CHEMICAL FEEDSTOCK

> NARONGPOL KAEWCHANGWAT: DIRECT SYNTHESIS OF 2-ARYLPYRROLE CARBIDE. ADVISOR: ASST. PROF. **SUMRIT** FROM CALCIUM WACHARASINDHU, Ph.D., CO-ADVISOR: ASSOC. PROF. MONGKOL SUKWATTANASINITT, Ph.D., 72 pp.

2-Arylpyrrole is an important building block found in pharmaceuticals and organic material compounds. A conventional way to make such compounds involves Trofimov reaction, requiring acetylene gas as a starting material. This gas however, has many disadvantages such as high flammability, toxicity and difficulty to control the amount of reagent. In this work, we therefore develop a new method to make 2-arylpyrrole directly from primary chemical feedstock calcium carbide which has low cost and less toxicity. In the optimization study, treatment of aryloximes, KOH and calcium carbide at 100°C for 15 h in wet DMSO as a solvent, resulted in the formation of 2-phenylpyrrole in 73% yield along with small amount of 2-phenyl-N-vinylpyrrole in 8% yield. Applying such condition to different oximes carrying various substituents afforded 2-arylpyrroles in 3-88% yield along with 2-aryl-N-vinylpyroles in 0-52% yield. Furthermore, we also developed a one-pot synthesis of 2-phenylpyrrole from acetophenone to give 56% yield of the desired product without purification of the oxime intermediate. For the application of this methodology, we are able to convert 2-phenylpyrrole into 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) in 3 steps in 54% yield which is more convenient than the conventional method. Due to the high conjugation of 2-arylpyrrole, the prepared BODIPY showed the strong emission in the red region (600 nm).

Field of Study: Petrochemistry and

Polymer Science

Academic Year: 2013

Student's Signature Ampl X.

Advisor's Signature Co-Advisor's Signature Millian

ACKNOWLEDGEMENTS

First, of all, I would like to express my sincere gratitude to my advisor, Assistant Profressor Sumrit Wacharasindhu, Ph.D. and my co-advisor, Associate Professor Mongkol Sukwattanasinitt, Ph.D. for valuable advice, guidance and kindness throughout this research. Sincere thank are also extended to Professor Tharapong Vitidsand, Ph.D., Associate Professor Wimonrat Trakranpruk, Ph.D. and Poonsakdi Ploypradith, Ph.D., attending as the committee members, for their valuable comments and suggestions.

I would like to especially thank Miss Pornpichaya Thawepornpuriphong, Mr.Praphan Chanpradub and Mr.Rangsarit Sukato for synthesized some starting material and BODIPY and studied photophysical properties.

In particalar, I am thankful to the Thailand Research Fund (TRF-RSA5480004), National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, throught its program of Center of Excellence Network. This work is part of the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture supported by Thai Government Stimulus Package 2 (TKK2555, SP2) and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (AM1006A-56) and the 90th Anniversary of Chulalongkorn University Fund (Rachadaphiseksomphot Endowment Fund)

Finally, I would like to specially thank my family, MAPS group member and friends for their encouragement and understanding thoughout. I would be able to reach this success without them.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
CHAPTER I INTRODUCTION	1
1.1 Introduction	1
1.2 Introduction to calcium carbide	2
1.3 Introduction to 2-arylpyrrole	3
1.4 Literature reviews	4
1.4.1 Synthesis of 2-arylpyrrole via metal-catalyzed cross-coupling	4
1.4.2 Synthesis of 2-arylpyrrole using protected acetylene	5
1.4.3 Synthesis of 2-arylpyrrole using acetylene gas	6
1.4.3 The uses of calcium carbide in organic synthesis	7
1.5 Objective of this research	9
CHAPTER II EXPERIMENTAL	10
2.1 Preparation of aryloximes	10
2.1.1 Synthesis of oximes	10
2.1.2 Preparation of arylketones (5a-7a, 9a, 20a)	15
2.2 Trofimov reaction using calcium carbide as a starting material	17
2.2.1 Optimization of the reaction conditions	17
2.2.2 Screening of 2-aryloximes	18
2.2.3 Multi-gram scale synthesis of 2-phenylpyrrole (1c)	23
2.2.4 One-pot synthesis of 2-phenylpyrrole	23
2.3 Application of 2-phenylpyrrole for the synthesis of red BODIPY dye	24
CHAPTER III RESULTS AND DISCUSSION	25
3.1 Preparation of aryl oximes	25
3.1.1 Synthesis of oximes	26

Page

VITA......71

LIST OF SCHEMES

Scheme 1.1 Conventional route for the synthesis of 2-arylpyrrole	2
Scheme 1.2 Process of (a) calcium carbide, (b) acetylene gas.	2
Scheme 1.3 Traditional way for synthesis of value-added compounds	3
Scheme 1.4 General method of metallic cross coupling	3
Scheme 1.5 General method of the Trofimov reaction.	4
Scheme 1.6 NH-protection/ C–Br activation of pyrrole for the synthesis of 2-	
arylpyrrole (3).	4
Scheme 1.7 Free NH-pyrrole/C-H activation of pyrrole for the synthesis of 2-	
arylpyrrole (6).	5
Scheme 1.8 Synthesis of pyrroles via rearrangement of <i>O</i> -allyl oximes.	6
Scheme 1.9 Synthesis of pyrroles via thermal rearrangement of oximes	6
Scheme 1.10 Synthesis of pyrroles using a gold-catalyst.	6
Scheme 1.11 One-pot synthesis of 2-arylpyrrole via Trofimov reaction	7
Scheme 1.12 Synthesis of polyynes (19) from calcium carbide	7
Scheme 1.13 The use of calcium carbide for the synthesis of aryltriazoles (21) via	
Click reaction.	8
Click reactionScheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9 ne 27
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9 9 27
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9 9 27 28
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9 9 27 28 28
Scheme 1.14 Synthesis of diarylethynes (23) from calcium carbide	8 9 9 9 27 28 28 29 40

LIST OF TABLES

Table 3.1 Type of oximes for used in this work	26
Table 3.2 Effect of solvent	29
Table 3.3 Effect of bases	30
Table 3.4 Effect of temperature	31
Table 3.5 Effect of additive and amount of CaC_2 and base	32
Table 3.6 Effect of water ^a	33
Table 3.7 Substrates scope: oximes carrying electron donating group	34
Table 3.8 Substract scope : oximes carrying halides group	35
Table 3.9 Substrate scope: oximes carrying of polyaromatic group	37
Table 3.10 Substrate scope: oximes carrying elongation alkyl chain	38
Table 3.11 effect of reaction concentration	39
Table 3.12 effect of base for preparation acetophenone oxime	40

LIST OF FIGURES

Figure 3.1 ¹ H NMR spectra of A) acetophenone oxime (1a), B) 2-phenylpyrrole (1c)	
and C) 2-phenylvinylpyrrole (1c') in CDCl ₃	30
Figure 3.2 Normalized spectra of a) BODIPY D in CH_2Cl_2 solution b) BODIPY solution	l
under blacklight	43
Figure A 1 ¹ H NMR of 2-phenylpyrrole (1c).	50
Figure A 2 ¹³ C NMR of 2-phenylpyrrole (1c)	50
Figure A 3 ¹ H NMR of 2-phenylvinylpyrrole (1c')	51
Figure A 4 ¹ H NMR of 3-methyl-2-phenylpyrrole (2c)	52
Figure A 5 ¹ H NMR of 3-methyl-2-phenylvinylpyrrole (2c')	52
Figure A 6 ¹ H NMR of 2-p-tolylpyrrole (3c)	53
Figure A 7 ¹ H NMR of 2-p-tolylvinylpyrrole (3c')	53
Figure A 8 ¹ H NMR of 2-(4-methoxyphenyl)pyrrole (4c).	54
Figure A 9 ¹³ C NMR of 2-(4-methoxyphenyl)pyrrole (4c).	54
Figure A 10 ¹ H NMR of 2-(4-methoxyphenyl)vinylpyrrole (4c')	55
Figure A 11 ¹ H NMR of 2-(4-butoxyphenyl)pyrrole (5c)	56
Figure A 12 ¹³ C NMR of 2-(4-butoxyphenyl)pyrrole (5c).	56
Figure A 13 ¹ H of 2-(4-butoxyphenyl)vinylpyrrole (5c').	57
Figure A 14 ¹ H NMR of <i>N,N</i> -dimethyl-4-(pyrrol-2-yl)aniline (6c).	58
Figure A 15 ¹³ C NMR of <i>N,N</i> -dimethyl-4-(pyrrol-2-yl)aniline (6c).	58
Figure A 16 ¹ H NMR of <i>N,N</i> -dimethyl-4-(vinylpyrrol-2-yl)aniline (6c')	59
Figure A 17 ¹ H NMR of 2-(4-chlorophenyl)pyrrole (7c)	60
Figure A 18 ¹ H NMR of 2-(4-bromophenyl)pyrrole (8c)	61
Figure A 19 ¹ H NMR of 2-(4-iodophenyl)pyrrole (9c)	62
Figure A 20 ¹ H NMR of 2-(biphenyl-4-yl)pyrrole (10c)	63
Figure A 21 ¹ H NMR of 3-(4-(pyrrol-2-yl)phenyl)pyridine (11c).	64
Figure A 22 ¹³ C NMR of 3-(4-(pyrrol-2-yl)phenyl)pyridine (11c)	64
Figure A 23 ¹ H NMR of 3-(4-(vinylpyrrol-2-yl)phenyl)pyridine (11c')	65
Figure A 24 ¹ H NMR of 2-(4-(thiophen-2-yl)phenylpyrrole (12c).	66
Figure A 25 ¹ H NMR of 2-(naphthalen-1-yl)pyrrole (13c).	67
Figure A 26 ¹³ C NMR of 2-(naphthalen-1-yl)pyrrole (13c)	67

Figure A 27 ¹ H NMR of 2-(naphthalen-1-yl)vinylpyrrole (13c')	68
Figure A 28 ¹ H NMR of 2-(naphthalen-2-yl)pyrrole (14c)	69
Figure A 29 ¹ H NMR of 2-(naphthalen-2-yl)vinylpyrrole (14c')	69
Figure A 30 ¹ H NMR of 4,5-dihydro-1H-benzo[g]indole (16c)	70
Figure A 31 ¹ H NMR of <i>1H-</i> benzo[g]indole (16d).	70
Figure A 32 ¹ H NMR of BODIPY 34	71

