
CHAPTER 6

DISCUSSIONS

6.1 Data descriptive statistics

Missing data percentage that showed in 5.1 can occur for several reasons. The 
group which had the missing value percentage more than 90% was pesticide parameter 
group. According to Enhancement and Conservation of the National Environmental 
Quality Act 2535 B.E., pesticides were monitored every five years [174], Thus, when 
recorded into the database, it appears to be missing data. Similarly, heavy metal 
parameter are scheduled to be monitored at least once a year. This causes both groups 
to have insufficient data for modeling to predict water quality.

The parameters with less than 15% missing ratio is a group of primary water 
quality parameters that are scheduled to be monitored four times a year. The 
disappearance of this data may be due to not collecting data at that time or occurring 
due to limitations of measurement methods or measurement errors. For these reasons, 
16 water quality parameter data need to be imputed in the next step.

Basic statistics of the parameters in Table 5.1 illustrated the different units of 
measurement of parameters and the range of observed data between 2538-2556 B.E. 
This could be bias in the process of training model because some models focus on 
parameters with high value more than the parameters that are less. To prevent 
problems, the data must be transformed and normalized before the modeling process.

Spearman correlation coefficient between water quality parameter and 
monitoring year showed long term trend of each parameter overtime, as showed in 
Table 5.2. Long term trend roughly indicated slightly change of half of parameters over 
the year (8 of the 16 parameters). On the other side, 10 of the 16 parameters are 
significantly related to the month. This shows the relationship of seasons with most 
parameters. เท this study, water quality model focus on prediction of parameters in
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less than one year in the future. Therefore, timestamp in purposed model was 
represented by months instead of years for more accurate in short term prediction.

The location of the monitoring stations, which were represented by the 
distance from the sea related to almost parameters. As shown in Table 5.4, TDS, TS, 
salinity and conductivity were significantly correlated parameters. It could be 
interpreted that the some parameters are related to the affected by sea water. The 
distance from the sea directly correlates with the salinity of river water. Salinity is the 
concentration of ions of dissolved salts in the water, which is proportional to the TDS 
and TS. Furthermore, high ionic salt in water also increase electrical conductivity as 
well.

Another group of parameters which also significant correlated with monitoring 
station location is DO, BOD, P043g N03‘, N02', NFI3 and ss. Unlike the previous group. 
These parameters increases along the flow distance of water from upstream to 
downstream (except for DO, which decreases), due to the accumulation of organic 
matter from various sources, such as wastewater from industrial, household and 
agriculture. Degradation of organic matter could be observed by concentration of PO43' 
1 N03‘, N02" and NH3. It is directly related to the ss and BOD, which inc'eases with the 
organic matter degradation activity in the water. When oxygen is used to degrade, it 
lowers the DO value. Thus, monitoring station was added to the model as one of the 
parameter which represented by using distance from estuary.

Spearman correlation coefficient between water temperature and other 
parameters was analysed to be an example of interaction among parameters. The 
result in Table 5.5, could indicate the limitation of Pearson correlation coefficient was 
that it only measures linear relationships between a parameter to another one. If the 
relationship was not linear then the result was inaccurate. This limitation was shown 
by non-significant correlated of temperature and DO which is non-linea'ity relationship 
[213, 214], This was confirmation of complex and non-linear relationship between
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water quality parameters. Therefore, the models to be used for prediction must 
support this nonlinear relationship.

6.2 Imputation

Three imputation methods: mean replacement, K-nearest neighbor (K-nn) and 
artificial neural network (ANN) were implemented to fill the missing data. The mean 
replacement used only the value of a parameter to calculate the average without 
consider other parameters (known as univariate calculation). The missing parameter 
was calculated from average of that parameter measured in other stations and time. 
The results from several prediction model showed the highest error.

เท contrast, artificial neural networks (ANN) calculated missing values from 
other parameters that were collected at the same time and same monitoring station. 
The results was better than mean replacement method. However, ANN was trained 
using an overview of the relationship of the parameters to be a single model that 
could be used for all missing value.

Unlike the previous methods, K-nearest neighbor (K-nn) clustered the similar 
events and used them to calculate missing value. Similarity of event was determined 
by Euclidean distance. The predicted results showed that the different k values had a 
significant effect on performance. The k values are two and seven gave the worst 
predictive performance in all trials. The value of k is equal to five got the highest 
predictive efficiency. Too small k value makes the calculated value depend on only 
the few closest events. On the other hand, with too large k values, the mean value 
becomes the mean of most events. At K equal to the number of record, this is not 
different from the mean replacement method. The imputed data by K-nearest 
neighbor with k=5 were used in the next step as the complete dataset.
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6.3 Data transformation

The Osborne’s transformation is an estimate of X by measure the skewness as 
close to 0 as possible [189], Table 5.7 showed skewness results of various X 

transformation. Some parameters have been transform reasonably by logarithmic 
transformation, such as total coliform and fecal coliform, measured by the Most 
Probable Number (MPN) method. The MPN procedure is dilution of the water sample 
concentration by 10 times until the amount of bacteria cultured in the sample water 
is countable. Then, colony count was multiplied by the proportion of dilution. The 
MPN method is standard measurement for estimate the concentration of 
microorganisms. This is consistent with the exponential growth rate of microorganisms 
when there is no limiting factors. Therefore, these logarithmic transformation are 
reasonable.

On the other hand, there were some transformed physical parameters that did 
not make sense when considering environmental aspect, such as logarithm of electrical 
conductivity or distance from the sea.

However, when these values are used to predicted the water quality 
parameters by several models. On average, the models generated from the 
transformed data are less effective than the unmodified data. Transformation to the 
data may change the pattern of the parameter relationship. The models could not be 
predicted effectively. เท other words, the models used in this study can deal with non­
normal distribution data. This is consistent with a number of studies that support this 
statement. It could be concluded that the data transformation is unnecessary for 
predicting water quality parameters in this study.

6.4 Normalization

According to the results showed in 5.4, Z-normalization gave the highest 
performance when compare with other methods, therefore it was used in the next 
step. However, after finished parameter selection step and model comparison step,
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genetic algorithm (GA) was proved to be an optimal parameter selection method and 
artificial neural network (ANN) was proved to be an optimal model (result of these two 
step would be discussed in detail on 6.5 and 6.6). The imputation, transformation and 
normalization were rechecked again to confirm validity of results. Normalization 
methods performance comparison of individual model were shown in Table 6.1. The 
result showed that there was no difference between normalization methods on GA- 
ANN model. This could be concluded that GA-ANN could adapt itself to different types 
of normalization equally. Instead of using z normalization, range normalization was 
applied for the next step on 4.5, 4.6 and 4.7, because it could be easier to interpret 
the relationship of parameter without sign conversion.

Table 6.1 Normalization methods performance comparison show by individual model
Model code name Normalization Parameter Selection model RMSE p
ZPcaAnn z 1.471 0.625
RPcaAnn Range

PCA
1.472 0.667

PPcaAnn Proportion 1.539 0.599
1 PeaAnn InterQuatile

ANN
1.615 0.446

ZGaAnn z 1.353 0.673
RGaAnn Range

Genetic Algorithm
1.353 0.673

PGaAnn Proportion 1.353 0.673
IGaAnn InterQuatile 1.353 0.673
ZPcaSvm z 1.399 0.635
RPcaSvm Range

PCA
1.464 0.584

PPcaSvm Proportion 1.413 0.628
IPcaSvm InterQuatile

SVM
1.762 0.292

ZGaSvm z 1.368 0.634
RGaSvm Range

Genetic Algorithm
1.365 0.629

PGaSvm Proportion 1.375 0.643
IGaSvm InterQuatile 1.369 0.632
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6.5 Parameter selection

Since principal component analysis (PCA) generates synthetic variables from 
the water quality parameter to use as inputs for predicting, instead c f selecting the 
actual parameters, the results showed that principal component analysis (PCA) was 
the least predictive performance method, compared with forward selection (FS), 
backward elimination (BE) and genetic algorithm (GA). เท mathematical aspect, PCA is 
another types of transformation, which affects to the predictive performance as 
discussed in 6.3. So this could be concluded that an advantage of PCA which is 
independent synthesized variables was not suitable for predicting water quality, 
because each parameter values are relevant and effect each other.

Selection of parameters using forward selection (FE) and backward elimination 
(BE) are classified as greedy algorithm, which input parameter are systematically added 
or removed to model, iteratively. Predictive performance was used as criteria to 
add/remove a parameter in each iteration without considering an overview of the 
prediction. So it is possible to miss some complex relationship of several parameters. 
For example, BOD is positively correlated with the concentration of nutrients in water 
(N03‘ and P043') as it demonstrates the biological degradation activity in water. 
However, when the temperature is not appropriate, Biodegradation activities were 
inhibited. These phenomena could not be detected by either FS or BE method, 
therefore both methods were not suitable for selection of parameters to predict the 
water quality.

Genetic algorithm (GA) is the global optimization method based on Charles 
Darwin's theory of natural evolution which was the dominant method for parameter 
selection, according to results in 5.5. The disadvantage of this method was longer 
calculation time compared with other methods. However, this study focuses on the 
effectiveness of prediction and when considering the actual application, 
supercomputer is often used for large environmental projects which could significantly 
shorten the calculation time, thus GA is used in the next step.
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6.6 Prediction models comparison

The multiple linear regression (MLR) model was used as a benchmark model 
to compare with two machine learning models which were support vector regression 
(SVR) and artificial neural network (ANN). The results of the MLR predictive performance 
was significantly lower than SVR and ANN. This confirms the nonlinear relationship of 
water quality parameters. Therefore, it could be concluded that the MLR model is not 
suitable for predicting water quality, due to limitations in dealing with non-linear data.

Considering both machine learning models, it was found that water quality 
prediction performance was similar. Notice the standard deviation (SD) values of root 
mean square error (RMSE) and spearman correlation with overlapping sections. The 
results table 5.11 shows the average of the predictive performance of all 16 water 
quality parameters. However, when considering each parameter, SVR provided some 
predicted parameters that close to the actual measured parameters more than ANN. 
เท general, ANN has also been shown to be superior, so ANN was selected for using as 
the main structure for purposed method development.

6.7 Space and time neural network

Predicted EC value from three models (space and time neural network, time 
delay neural network, and distance neural network) were analyzed to clarify the 
predictive efficiency. Relationship between observed EC and predicted EC from three 
models is show in Figure 6.1. Ideally, the perfect prediction could be showed diagonal 
line between predicted data and real data and every point are exactly on the line. 
The data point of space and time neural network (STNN) is closest to the fitted line 
compared with other two models. A closely followed pattern of variation by real data 
and STNN mocel computed EC in the river water were shown in Figure 6.2. While the 
time delay model tents to overestimate and distance model was under estimator, this 
could be confirmed by Figure 6.3 which showed the histogram of prediction error.
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6.1 Relationship between normalized observed EC and normalized predicted 
ท three models

->— real 

« space 21

* time 01 

— •— time-space 23

100 150 200 250 300
data point

Figure 6.2 Comparisons of the models computed and measured EC in Chaophraya 
River during 2552 to 2556 B.E.
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Figure 6.3 Histogram of difference in EC predicted (observed data -  predicted data)
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Predicted TDS value from three models (space and time neural network, time 
delay neural network, and distance neural network) were analyzed to clarify the 
predictive efficiency. Relationship between observed TDS and predicted TDS from 
three models is show in Figure 6.4. The data point of space and time neural network 
(STNN) is closest to the fitted line compared with other two models. A closely followed 
pattern of variation by real data and STNN model computed TDS in the river water 
were shown in Figure 6.5. While time delay model and distance model tent to 
underestimate, this could be confirmed by Figure 6.6 which showed the histogram of 
prediction error.

Figure 6.4 Relationship between observed TDS and predicted TDS from three models
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Figure 6.5 Comparisons of the models computed and measured TDS in Chaophraya

River during 2552 to 2556 B.E.
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Figure 6.6 Flistogram of difference in TDS predicted (observed data -  predicted data)

from a) time delay model, b) distance model and c) space and time model
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Predicted phosphate concentration from three models (space and time neural 
network, time delay neural network, and distance neural network) were analyzed to 
clarify the predictive efficiency. Relationship between observed phosphate and 
predicted phosphate from three models is show in Figure 6.7. The data point of three 
models were mostly cluster closed to the minimum value. A followed pattern of 
variation by real data and three models computed phosphate in the river water were 
shown in Figure 6.8. เท this case, all models tent to underestimate, this could be 
confirmed by Figure 6.9 which showed the similar pattern of histogram of prediction 
error.
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Figure 6.8 Comparisons o f the models computed and measured TDS in Chaophraya
River during 2552 to  2556 B.E.
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According to the important rank of the model which showed in Table 5.15 - 
5.17, the same parameter could be summed up to indicated the relationship of 
parameter with space and time regardless. The parameter importance on EC and TDS 
model were shown in Table 6.2 and Table 6.3, respectively. These two parameters 
theoretically related to each other; this is consistent with relative importance that 
calculated from the purposed model. Furthermore, EC and TDS shared three common 
parameters in top five importance, namely, distance from sea, fecal coliform and 
turbidity. Distance from sea was the most importance parameter for predicting both 
EC and TDS, this could be interpreted that EC and TDS is strongly related to location 
of Chaophraya River. High negative decomposed weight of distance means EC and TDS 
values are increased by the flow of the river. It had the lowest value at the upstream 
and the highest at the downstream which might be affect from accumulative of 
pollution along the river or an effect from the sea water. However, this strong effect 
could not be clearly indicated the reason behind which need more study to determine 
this relationship in detail.

Table 6.2 Top five important parameters on EC model.
Importance rank Parameter Decomposed weight Relative importance (%)

1 Distance -41.40 16.69%
2 Fecal Coliform 39.13 15.78%
3 Turbidity 25.20 10.16%
4 Total Coliform 20.56 8.29%
5 TDS 18.63 7.51%

Table 6.3 Top five important parameters on TDS model.
Importance rank Parameter Decomposed weight Relative importance (%)

1 Distance -27.63 20.55%
2 nh3 18.56 13.81%
3 EC 13.55 10.08%
4 Fecal Coliform 10.30 7.67%
5 Turbidity 9.75 7.25%
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Top five important parameter on P043' model was shown in Table 6.4. Unlike 
EC and TDS, Fecal coliform, BOD, salinity and P043' (in the past or upstream) have 
positive effect to predicted P043'. Fecal coliform and BOD can indicate organic 
pollution in the water, which proportional related to phosphate concentration in 
water.

Table 6.4 Top five important parameters on P043‘ model.
Importance rank Parameter Decomposed weight Relative importance (%)

1 Fecal Coliform 10.45 13.21%
2 Temperature -8.18 10.34%
3 BOD 8.08 10 .22%
4 Salinity 7.75 9.80%
5 P043' 7.61 9.62%

This relative importance of each parameter modelling are very useful for used 
as the recommendation of water management regulations. Hopefully, this dissertation 
is useful for the Chaophraya River quality management in future.
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