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APPENDIX A DISSERTATION PROPOSAL

Prediction Model of Water Quality in Chaophraya River using Artificial Neural
Network

ABSTRACT

Water quality is one of the major concerns of countries around the world. This
study aims to predict the water quality parameters in the Chaophraya River. The model
s used to analyze historical data generated through monitoring of water quality
parameters at 19 water sampling stations on the Chaophraya to predict nine water
quality parameters. Water quality parameters are selected for multilayer perceptron
(ANN), adaptive neuro-fuzzy inference system (ANFIS) and support vector machine
(SVM) modelling.

OBJECTIVES
1 Design and develop the model for predicting water quality in Chaophraya

River by using artificial neural network

2. Determine the best set of input parameters for predicting water quality by
using artificial neural network

3. Predict water quality in Chaophraya River under different management
scenarios by using the proposed model

PROBLEM FORMULATION
Model design for water quality prediction is often difficult due to the
complexity of water parameter relations. Several factors are associated with each

parameter making difficulty in model prediction and become major problems of water
quality modelling.

The best sets of input parameters for predicting water quality are determined.
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The model could be used for predicting the water quality of other rivers that
are similar to Chaophraya R,

SCOPE OF THE WORKS
this dissertation, the model is constrained as follows:

- The scope of this dissertation is aimed to design a model from water quality
data of Chaophraya River during 2539 - 2556 EE that have heen collected by the
Pollution Control Department, Ministry of Natural Resources and Environment.

- The model prediicts water quality at monitoring stations i+2 by using iand i+
monitoring station Cata.

-The historical water quality data of Chaophraya River came from 19 monitoring
station along the river that start from Dechatiwong Brioge station to Phra Samut Chedl
station

- The model can prediict ning water parameters which are pH, d'ssolved oxygen
(O, total solid (TS), fecal coliforms, nitrate (NO3), phosphate (PO43), turbiaity,
temperature and biochemical oxygen demand (BCD)

INTRODUCTION

Water is an essential resource needed for all aspects of human health and
ecosystems.  addition to drinking water and personal hygiene, water is essential for
agricultural production, incustrial processes and hydropower generation, waste
processing, navigation, recreation, fish and wildlife, and a variety of other purposes.
(Biswes, 1981). Water quality is a term used to describe the condition of the water,
Including chemical, physical and biological characteristics. Water quality is one of the
main characteristics of the river affecting the suitability for use (Dogan, et al. 2009).

Water quality modelling isthe basis of water pollution control. Models are used
to predict trends in water quality based on current water conditions, inclucing
pollutant concentrations. Several deterministic and stochastic water quality models
have been developed to manage best practices for conserving water quality (HUIl et
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al. 2008; Einex et al 1999). Most of these models are very complex and require a
significant amount of field data to support the analysis. Furthermore, many statistically
based water quality models assume the relationship between the response and
prediction variables are linear and normally distributed. A5 water quality can be
affected by many factors, traditional data processing methods are no longer sufficient
for analysis (Xiang et al. 2006) as many factors exhibit complex nonlingar relationships
to water quality predict variables. Therefore, utilizing a statistical approach usually
does not provice high precision.

Water quality modelling isthe basis of water pollution control. Models are used
to predict trends in water quality based on current water conditions, inclucing
pollutant concentrations. Several deterministic and stochastic water quality models
have heen developed to manage best practices for conserving water quality (Hull et
al. 2008; Einex et al. 1999). Most of these models are very complex and require a
significant amount of field data to support the analysis. Furthermore, many statistically
based water quality models assume the relationship between the response and
prediction variables are linear and normally distributed. As water quality can be
affected by many factors, traditional data processing methods are no longer sufficient
for analysis (Xiang et al. 2006) as many factors exhibit complex nonlingar relationships
to water quality predict variables. Therefore, utilizing a statistical approach usually
does not provice high precision.

Recently, neural networks have been applied to computational problems in
many branches of science. Anumber of studies in which neural networks were used
to address water resource problems can be considered. Atificial neural networks
(ANNS) were first applied by French and Recknagel (1994) to the task of leaming to
predict algal blooms hased on water quality catabases. their application, a feed-
forward ANN was trained to make predictions of phytoplankton abundance in the
Saicenbach reservoir, Germany. Similarly, Yabunaka et al. (1997) applied ANNs to
predict algal blooms by simulating the future growth of five phytoplankton Species
and chlorophyll-A concentrations inthe same lake.
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Motivated by success in modelling nonlinear system behavior in a wide range
of systems, ANNs have heen applied to water quality prediction in complex systems.
The literature offers some recent successful ANN applications related to water quality
prediction and water resource analysis (Najah et al. 2009; Ahmed et al. 2009; B-Srafie
et al. 2008, 2009). The primary goals were to minimize fieldwork and improve the
accuracy of prediction. For instance, Hatzikos et al. (2005) utilized neural networks with
active neurons to predict seawater quality indicators such as water temperature, pH
DO and turbidity. Singh et al. (2009) constructed an ANN model to predict the water
quality at Gomti Rver, Inclia. The coefficients of determination hetween the measured
and model computed values of DOfor the training, validation and test sets were 0.70,
0.74, and 0.76, respectively. Ko et al. (2007) used the back-propagation neural
network for predicting the DO in the Te-Chi Reservoir in Tawen. The correlation
coefficients between the predicted values and measured data of DO were ahove 0.7
for training and testing data sets.

The ANNs models showed reasonable accuracies for average water quality
prediction overcoming most of the drawbacks of conventional models. Although ANNs
are powerful tools for modelling real-world problems, they also have shortcomings.
The AN model still has a major limitation at extreme events. Therefore, an approach
that can provide accurate water quality prediction at average and extreme events is
highly necessitated for efficient decision meking. Therefore, inthese situations, a fuzzy
system such as the adaptive neuro-fuzzy Inference system (ANHS) may be a better
option. The ANAS model exhibits significantly higher accuracy and reliability in terms
of prediction than ANNs (El-Sefie et al. 2007, Najah et al. 2010). The present study
demonstrates the application of ANAS to predict water quality parameters, with the
dynamic processes concealed inthe measurement data. The use of the ANHS model
in water quality prediction in the Chaophraya River could be effective in capturing
patterns in historical data Sets to improve prediction accuracy.
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METHODS AND MATERIALS
Study area data analysis

Chaophraya River is the main river of Thailand. Occurred to the combination of
four main rivers of the region. Then flow down to the south and prior to the Gulf of
Thailand. Chaophraya river basin has an area of 20,125 square kilometers. There are a
number of tributaries and canals. The river is used as a transportation industries, and
is also a natural drainage as well. By human activities and nature, water quality in the
river has changed dramatically over the past several decades.

The water quality of the Chaophraya River is deteriorating because of the
increasing levels of several pollutants, it continues to be silted and contaminated by
waste given the lack of enforcement by local authorities. These contaminants
eventually flow into the estuaries of the Chaophraya River, which are rich habitats that
provide spawning and feeding areas for fish and birds,

According to the historical water quality data of Chaophraya River during 2539
- 2556 BEthat have been collected by the Pollution Control Department, Ministry of
Natural Resources and Environment, we will design and develop a model for predicting
the water quality parameters and simulating the river management scenarios.

Selection of appropriate input parameters is a very important aspect in
modelling. To use the model structures effectively, the input parameters must be
selected with great care. This is strongly dependent on a solid understanding of the
problem.

Proposed method

This dissertation is divided into two parts. The first part is the design and
development of a model and the second part is the simulation of a few scenarios by
using the model. The proposed model consists of three main steps: data imputation,
input selection and value prediction. At each step, several techniques are used to
compare with each other as shown in figure 1 The inputs of model are the water
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quality parameters at monitoring stations i and i+1 and output are water quality
parameters at monitoring station i+2 at the same monitoring period. There are 18 water
quality input parameters (at a single monitoring station and same monitoring period)
consisting of monitoring month, monitoring year, pH, electrical conductivity (EC),
salinity, dissolved oxygen (DO), suspended solids (S5), total solicis [116], total dissolved
solids (TDS), total coliforms, fecal coliforms, nitrite (NO2-), nitrate (NO3-), ammonia
(NH3), phosphate (P043-), turhidity, temperature and biochemical oxygen demand
(BOD).

The missing values in the original water quality data are imputed by three
different techniques (Small value imputation, K-mean imputation and interpolation).
Then the input selection step extracts some important features from imputed data
using three techniques. The input selection step starts with feeding all water quality
parameters into each of the three techniques. Each of three techniques will generate
new features from water quality parameters and then feed these features into each of
the three techniques inthe Value prediction step in step three. Each technique in step
three will predict one output value. After the first iteration, the process in step three
Is repeated with the same input features excluding the least important feature, step
three is repeated until only one feature is fed into each of the technique in step three.
The output parameter from each technique in step three is recorded. Next, step two
is repeated. This time one of the parameters is removed, there will be only 17 input
parameters that are fed to each technique in step two. Each of the technique will
generate new features and feed these new features into the techniques in step three
as before, Step two is repeated for the number of selection of n+ parameters from
distinct parameters where i=1.2,...,.n-l and is the number of all input parameters.
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Mokl overview
1 Data imputation step
Small value K-mean Interpolation
imputation imputation
2. Input selection step
Principle Partial Wavelet
component mutual transform
analysis information
3. Value prediction step
Support Adaptive
. vector ro-fuzz
Multi-layer neu y
machine inference
Perceptron

system

Figure AO.L Model overview

The inputs of step three are divided into training set (60%), testing set (20%)
and validation set (20%) for all techniques. The training of the model is set the 1000
epochs. After the model was trained, testing set is used for checking the efficiency of
the model.  addition, validation set is used to avoid overfitting problem.

The three main steps (consisted of nine mathematical modelling techniques)
are fully connected to form 27 combinations of unique models. The output parameter
from each unique model is compared with real data to determine pred ction efficiency
and optimality. The output parameters are pH, dissolved oxygen (DO), total solids
[116], fecal coliforms, nitrate (NO3-), phosphate (P043-), turbidity, temperature and
biochemical oxygen demand (BOD). For each output, the model is constructed
individually.

The second part of dissertation is the simulation of water quality management
scenarios. The model is used to show the water quality when management scenarios
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are processing. The first scenario is environmental shock avoidance, and the second
one is pre-release treatment plant. Environmental shock avoidance (ESA) is pollutant
dilution strategy by distributing the major point source pollutant along the bank of the
river instead of releasing it at a single point. Pre-release treatment plant (PRTP) is the
simple way to treat the water by treating it again before releasing to the river. However,
those two strategies are only the pioneer simulation on Chaophraya River.

Performance criteria

The performance of the proposed models will be examined and evaluated
using water quality parameter measurements accumulated over a ten-year period. The
performance of each module will be evaluated according to two statistical indices.
The coefficient of determination (R2) was introduced by Nash and Sutcliffe (1970) and
is often used to evaluate model performance. Another metric used for evaluation is
the root mean square error (RVEE)
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APPENDIX B COMPLEMENTARY RESULT

B.| Historical data chart
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Figure B.o.| Historical data of total dissolved solid from monitoring stations along
Chaophraya River during 2538-2556 BE
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Figure B.0.2 Historical data of total solid from monitoring stations along Chaophraya
River during 2538-2556 BE.
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Figure B.0.3 Historical data of ECfrom monitoring stations along Chaophraya River
during 2538-2556 BE
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Figure B.0.4 Historical data of suspended solid from monitoring stations along
Chaophraya River during 2538-2556 BE
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Figure B0 Historical data of dissolved oxygen from monitoring stations along
Chaophraya River during 2538-2556 BE
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Figure B0.6 Historical data of NOZ from monitoring stations along Chaophraya River
during 2538-2556 BE
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Figure B.0.7 Historical data of NO3 from monitoring stations along Chaophraya River
during 2538-2556 BE
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Figure B.08 Historical data of P043 from monitoring stations along Chaophraya River

during 2538-2556 BE
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Figure B.0.9 Historical data of fecal coliform from monitoring stations along

Chaophraya River during 2538-2556 BE
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Figure B0.10 Historical data of total coliform from monitoring stations along
Chaophraya River during 2538-2556 BE

]20 stl S3T——— St6 = St8 - S tiO 1St12 -Stl5
ﬁ <;f2n A

20

00

bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb

year

Figure BO.11 Historical data of pH from monitoring stations along Chaophraya River
during 2538-2556 BE
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Figure B.0.12 Historical data of water temperature from monitoring stations along
Chaophraya River during 2538-2556 BE
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Figure B.0.13 Historical data of NH3from monitoring stations along Chaophraya River
during 2538-2556 BE
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Figure B.0.14 Historical data of biochemical oxygen demand from monitoring stations
along Chaophraya River during 2538-2556 BE



B.2 Pre-processing result

Table B.o.l Three imputation methods performance evaluation show by individual
model
Model code name  Imputation method  Argument  RVBE

AveEvoSVM : 1419 0621
mean replacement

AveEvoANN : 1417 0.662
Knn2EvoSVM = 139 0645
Knn2EvoANN k= 1.387 0675
Knmn3EvoSVM k=3  13% 0638
Knn3EvoANN k=3 1506 0.69
KnndEvoSVM == 1393 0644
Knn4BEvoANN KN k=4 1403 0687
Knn5EvoSVM k= 1392 0.645
KnnSEvoANN k=5 1432 0687
KnnbEvoSVM k6 1303 0643
KnndEVOANN k6 133 0693
Knn7EvoSVM k=7 139 0648
Knn7EvoANN k=7 1566 0.689
ANNEVSVM AN 154 0597

ANNEVOANN 179 0626
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Table B0.2 Performance comparison of transformed data and non-transformed data

on various models

Modkel RVEE
GAANN 0.085
GASW 0.083
PCAANN 0.096
PCASW 0.084
Tran-GAANN  0.127
Trans-GASW - 0.124
Trans-PCAANN  0.140
Trans-PCASWM  0.125

B.3 Parameter selection result

p
0671
0.665
0.578
0.653
0.663
0.661
0.631
0.660

Table B.0.3 Forward selection performance of various BOD model

Model epoch RVEE

50
100
200
300
400
500
600
700
600
900
1000

1449
1483
1488
1489
1493
1420
1410
1430
1434
1432
1431
1318

0640 2
0.701
0.700
0.700
0.6%
0.685
0.68/
0.676
0.674
0.674
0.675
0.654

(6 TR~ G S S S T~ i =

finputs  Selected parameter

Distance N\H

month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
month DO NO NH3
Distance P043 NH3



Table B0.4 Backward elimination performance of various BOD model

Model epoch RVEE

50
100
200
300
400
ANN 500
600
700
600
900
1000
W

1464
1621
1719
1.255
1480
1413
1.380
1.367
1161
1161
1175
1516

P
0.722

0.727
0.740
0.729
0.726
0.730
0.725
0.720
0.720
0.725
0.724
0.691

#inputs
1

U1 O O O O O OO O O» 0o ©o

month WT pH DO P043 NO3 NH3

Selected parameter

155

month WT pH Con DO P043 NO3 NH3
month WT pH Con DO P043 NO3 NH3

month
month
month
month
month
month
month
month

pH DO NO3 NH3
WT POS'NO3 NH3
WT P04 NO3'NH3
WT P04 NO3 NHS3
WT P04 NO3'NHS3
WT DO P043 NH3
WT DO P043 NH3
WT DO P043 NH3

month WT DO NO3 NH3

Table B0.5 PCA performance of various BCD model
model epoch RVEE

100
200
300
400
500
600
700
800
900
1000

L1707
1632
1629
1629
1612
1606
1605
1.604
1.604
1.604
1749

P
0.331

0415
0422
0.425
0.444
0.449
0451
0451
0.452
0.453
0.292
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Table B0.6 Genetic algorithm performance of various BOD model
Model epochs RMSE 0 #inputs Selected parameter
50 1250 0752 7 month pH Con DO P043 N0O3 NH
100 1324 0736 6 pH DO P043 NO NH
200 1198 0730 6 pH DO P043 NO NH
300 1315 0730 5  pH Con DO P043 NH
400 1314 0731 5  pHCon DO P043 NH
ANN 500 1312 0733 5  pH Con DO P043 NH
600 1310 0734 5  pH Con DO P043 NH
700 1309 0735 5  pH Con DO P043 NH
800 1309 0736 5  pHCon DO P043 NH
900 1657 0739 7  month pH Con DO NO3"NH
1000 1672 0740 7  month pH Con DO NOs' NH
SW - 1285 0731 6 month tern pH DO P043 NH

B4 Selected parameter from proposed model

Parameter name is follow by two number, the first is number of upstream
monitoring station and the second is the time delay. Parameter of EC model, TDS
model and PC43 are shown as follow.

There are 77 parameters selected by genetic algorithm for EC P'ediction model
which are BOD02, BOD11, BOD13, BOD21, BOD22, EC01, EC13, EC21, Distance03,
Distancell, Distanced, Distance2l, Distance23, D022, Fecal coliform02, Fecal
coliforml3, Fecal coliform21, Fecal coliform22, Fecal coliform23, morthOO, monthOl,
month02, onth03, monthl2, monthl3, month22, month23, NHs01, NH:Q, NFCs,
NHzlI, NOz'Ol, NO202, NO2T3, N0223, NOs'01, NOs II, NOs 12, N0313, N0s22, pHOI,
pHO2, pHO3, pH13, Sall2, Sall3, Sal21, Sal23, SS01, SSI 1, SS13, SS23, TDS01, TDS02,
TDS13, TDS22, TDS23, Temp02, Templ2, Temp22, Total coliform03, Total coliformll,
Total coliforml3, Total coliform22, Total coliform23, PO#'02, PO403, P0411, P04'12,
TS02, TS03, TS12, TS24, TurOl, Turll, Tur2l, Tur23
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There are 52 parameters selected by genetic algorithm for TDS prediction
model which are BOD02, BOD11, BOD12, ECO1, ECU, EC21, EC22, DistanceQO,
DistanceOl, Distance02, Distancell, Distanced, DOOI, D022, Fecal coliformOl, Fecal
coliform02, Fecal coliforml2, monthOO, monthll, month21, month22, NHsOI, NH:Q,
NHsl2, M®'LL, NO212, N0221, N0222, NQsl 2, pHOI, pH12, pH21, Sal21, SS02, SSiI,
SS22, TDS02, TDS11, TDS21, TDS22, Temp21, Total coliformOl, Total coliform02, Total
coliforml2, P04'12, P04'22, TSOI, TS11, TS21, TurOl, Tur02, Turll

There are 38 parameters selected hy genetic algorithm for PO43 prediction
model which are BOD02, BOD21, BOD22, EC02, EC12, EC22, DistanceQO, Distance02,
Distancell, Distance21, DOII, D022, Fecal coliformOl, Fecal coliform02, monthll,
NH:OI, NHsQ:, NHsll, NHsl2, NHs22, NO2'02, NOz'll, N02'21, N0222, NOs'02, N03'12,
N0s22, [H12, peH2, Sal22, TDSO01, Temp22, Total coliformll, Total coliform21, P04
01, PO£02, P0421 and Turll.
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