
CHAPTER II
PRELIMINARIES

In this chapter, we collect notation and basic results that will be used through
out this research.

2.1 Notation
Let 6 be a real number and p : R" —» (o. oo) be defined by 

p(x) : = (ln(e + I:r12) )61 X G R”.

For ท G N, we denote the weighted Lebesgue space on Rn with weight p to be the 
set

L°°’p ( พ )  { /: R” —» R : /  is measuarable and 11/IIL00,,, < oo} ,

where Il/IIL00,,, is the weighted Lebesgue norm on the L°°,p(พ )  defined by

11/llioo.p =  ess sup p{x) |/(x ) | . xeR"
For convenience, we use ||-|| instead of ||-||L00,p and also denote C(Rn) to be the 
set of all continuous real-valued functions on IRn. Finally, we denote

L™'p{พ )  := Lx,p{พ )  ก C(Rn).

For any function /  and g 1 the notation /  < g means th a t there exists a positive
constant c  such th a t /  < Cg at every point in the domain. For any X G R” , the

Japanese bracket is (x) J 1 +  |.r|2.
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2.2 Basic Analysis
In this section, we provide fundamental knowledges that will be used through

out in this work. See [5], [7], [11] for more information.
T h e o r e m  2.1  (Holder’s inequality). Let 1 < ซ, q < oo with — I—  =  1. If f  and

~ P Vg are measurable functions on a measure space (X,p),  then

J I fg\ à PL < (J \f \r dp] p (J \g\q dp^j " .

T h e o r e m  2 .2  (Minskowski’s inequality). Let 1 < p < oo and f . , g £  Lp(X,p) ,  
then

(Jx\f + 9\p - (/xl/|p ̂ )p + [Jx \9\p dvJP -
L em m a  2 .3 . Let 1 < p < oo and ï , ÿ £ R .  Then

\x M P_1 -  y |y f _1| < Cp{\x\ V |y|)p_1 \x -  y\.
where Cp — p if a and b have the same sign and Cp = 2P if a and b have different 
signs.
T h e o r e m  2 .4  (Generalized Dominated Convergence Theorem). Let ( X ,A ,p )  be 
a measure space and (/„) a sequence of measurable functions on a measurable 
subset E of X  that converges pointwise a.e. on E to a function f . Suppose there is 
a sequence gn of nonnegative measurable functions on E that converges pointwise 
a.e. on E to g and | / n(a;)| < gn(x) for a.e. X G E and all ท € N. If  lim j  gn =

g < oo then lim fn — /  /.J e ท̂ oo J e J e
T h e o r e m  2 .5  (Weierstrass M-test). Suppose that (X. แ-แ) is a Banach space, 
(Y,d ) is a metric space, for each ท € N, f n : Y  —> X,  and there exists a sequence 
of positive real number {Mn} ๐̂ satisfying;

sup ll/n(y)ll ท Vn 6 Nyev
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and \ ^ M n < 0 0 . Then Sn (v) := fn(y) converges absolutely and uniformly to

T heorem  2.6 (Banach Fixed Point Theorem). Let X  be a complete metric space 
with the metric d. Let A : X  —» X  be a map. If A is strictly contractive on X , i.e. 
there exists a constant 0 < k < 1 such that d(Ax, Ay) < kd(x , y), for all X, y £ X . 
Then A has a unique fixed point.

2.3 Uniformly Continuous Semigroups
D efinition 2.7. [11] Let X  be a Banach space. A family {G(t)}t>0 of bounded 
linear operators from X  into A is a semigroup if

2. G(t + s) — G(t)G(s) for every t, ร > 0.

D efinition 2.8. [11] A semigroup of bounded linear operators {G(t)}t>0 on a
Banach space X  is uniformly continuous if

Moreover, if fn 6 C ( Y , X ) for all ท e  N, then ร  € C(Y, X) .

1. G(0) ะ= idx

t—>0+lim IIG(t) -  idx II = 0.

where II - II is the operator norm of bounded linear operators on X.
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Lem m a 2.9. [11] Let {G(t)}t>0 be a uniformly continuous semigroup of bounded 
linear operators on a Banach space X . Then we have for any ร, t >  0 that

lim \\Q(t) — £(ร)แ = 0.

Proof. Let s . t  > 0. Assume ร < t. Then

hm IIG(t) -  G(ร)Il = hm IIG((t -  ร) + ร) -  ^ (ร)II 
= hm \\G(s)G{t -  ร) -  G{ร)II 
= (hm แ^(ร) (G{t - ร ) -  idx)  II 
=  0 ,

because \\G(ร) Il < oo and IIG(t -  ร) — idx II —> 0 as t —> ร+. So, the proof is 
complete. □

E xam ple 2.10. [11] Let X  be a Banach space and A : X  —> X  is a bounded
linear operator. Then

jew  = e'A(tAY t > 0ท!

is a uniformly continuous semigroup of bounded linear operators on X .
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