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Chapter 1

Introduction

A minimal surface, intuitively, is a surface which for each sufficiently small
portion of it has the minimum area among all surfaces with the same bound-
ary. Minimal surface can physically be interpreted as a soap film that spans
a wire frame when it is dipped in soap solution. Some standard examples
of minimal surfaces in Euclidean space are the plane, the catenoid, and the
helicoid. History of minimal surfaces can be traced back to 1744 when Euler
first described the catenoid surface. Since then minimal surface has become
one of the most interesting geometric object which challenges a lot of great
mathematicians.

Theory of minimal surfaces involves many branches in mathematics, in-
cluding differential geometry, partial differential equation and complex analy-
sis. One of the most important techniques to construct new minimal surfaces
is called the Weierstrass representation.

Our work will focus on special class of minimal surfaces called minimal
graphs. A minimal graph is a minimal surface which is lifted from its domain.
One well-known example of minimal graph is Scherk’s doubly periodic surface
which has a square as its domain. There are several papers that study this
kind of surfaces such as [5], [7], and [8]. Constructions of minimal graphs
in those papers are involving constructing harmonic univalent mapping of
the unit disc D, which is defined as an one to one function from D to C
whose real part and imaginary part satisfy Laplace equation, and then use
modified Weierstrass representation to construct minimal graphs. Two main
techniques that use to construct harmonic univalent mapping are Clunie and
Sheil-Small shearing method [3] (see example [7], and [8]) and Radd-Kneser-
Choquet theorem [9, Chapter 3 and 4] (see example [5], and [10]).

In this project, we will try to apply those methods mentioned above to
obtain certain harmonic univalent mapping of the unit disc D and use it to
construct minimal graphs over certain domains.



Chapter 2

Preliminaries

Our approach to construct minimal surfaces involve various branches in
mathematics, including differential geometry, complex analysis and harmonic
mapping theory, so we dedicate this chapter to provide all facts that we will
use in later chapters. We divide this chapter into five sections. First, we give
some basic background of differential geometry in section 2.1, just sufficient
to rigorously define minimal surfaces and some special classes of them in
section 2.2. In section 2.3, we provide some facts in complex analysis and
harmonic mapping theory that are necessary for our method to construct
minimal surfaces. Then we introduce the Weierstrass representation, the for-
mula to construct minimal surfaces, in section 2.4. Finally, in section 2.5,
we review some research papers that we have studied and also describe the
main goal of our work.

All of theorems in this chapter will be stated without proof, but most of
them can be found on [6], [9] and [12].

2.1 Background in differential geometry

The main objective of our project is to construct some minimal surfaces,
which we have already described in the introduction that a minimal surface
is “a surface which each sufficiently small portion of it has the minimum
area among all surfaces with the same boundary”. But in order to rigorously
define this kind of surfaces, we need some essential background in differential
geometry in R3. So we begin this chapter by providing some definitions and
facts in differential geometry.

Two main objects that we study in differential geometry in R? are curves
and surfaces. Roughly speaking, a curve is an one dimensional subset of R?
while a surface is a two dimensional subset of R3.
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Definition 2.1.1. A (parametrized) curve in R3 is a map v : [ — R3,
for some open interval I C R. Moreover, the curve v is called a unit speed
curve or arclenght-parametrized curve if |7/ (t)| =1 for allt € I.

Definition 2.1.2. The curvature x(t) of an unit speed curve v at t is
defined by k(t) = |"(t)].

Examples 2.1.3. Here are some examples of curve:

1. A unit speed line, parametrized by ~(t) = (zo+at, yo+bt, zo+ct) for all
t € R and fized real numbers xq, yo, 20, a, b, ¢ such that a*> +b* 4+ =1,
is an unit speed curve in R® with zero curvature at every point.

2. A unit circle, parametrized by y(t) = (cos 2t,sin 2t, zo) for all t € [0, 7)
and fized real number zy, is a in R® which is not an unit speed curve
because v (t) = 2 for all t € [0, 7).

Definition 2.1.4. A connected subset S C R? is called a (parametrized)
surface if each point p in S has a neighborhood U, a domain Q C R?, and C?
one-to-one function x : Q@ — U where x(u,v) = (z1(u,v), ra(u, v), x3(u, v)).
The function x(u,v) is called a parametrization of a surface S, and a pair
(Q,x) is called a chart at p. The collection of charts that covers S is called
an atlas of S.

Figure 2.1: Parametrized surface.
(6], Figure 2.7, p. 106)

Definition 2.1.5. The unit normal vector of a surface S at a point p =
x (a,b) is N(a,b) = % A tangent vector at a point p is a vector

v started at p which orthogonal to N(a,b), i.e. v- N(a,b) = 0.

Note that not every surface has a well-defined unit normal vector, which
we called non-orientable surface, Mobius band for instance, but in this
project, we consider only on surface which has well-defined unit normal vec-
tor. We called such a surface, an orientable surface.
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The unit normal vector can also be considered as a map from € to 2-
dimensional sphere S?. This map is called the Gauss map. And if we
compose this map by stereographic projection with respect to (0,0,1), we
get the map G which maps from  C R? «~ C to C . We also called G, the
(steroegraphic projection of the) Gauss map.

Definition 2.1.6. The tangent plane of a surface S at a point p is

T,S = {v|v is tangent to S at p} .

The geometric interpretation of 7,5 is the plane which perpendicular to
the unit normal vector and attached to S at p (see Figure 2.2) and it can be
proved that 7,5 = span{z,, z,}.

Next we will define the way to measure curvature of a surface S at a

Figure 2.2: A tangent plane and unit normal vector.
([6], Figure 2.13, p. 112)

point p. Surely, the definition of curvature of a surface should be related to
a curve. After we defined a curve and a surface, we can also talk about a
curve on a surface which is a curve v : I C R — R? such that its image
v(I) is in S. We say that the curve 7 passing through a point p in S if p is
in an image of .

Definition 2.1.7. Let S be a surface parametrized by x(u,v) = (z1(u,v),
za(u,v), x3(u,v)), p = x(a,b) be a point on S, w be a unit vector in T,S,
and vy be a unit speed curve on S such that y(t) = p and v'(t) = w. The
normal curvature of S at p in the w direction is k(w) = ~"(t) - N(a,b).

We can think of the normal curvature of S at p in the w direction as a
curvature (with a sign) of the curve obtained by intersecting S with a plane
span by w and N (a,b) (see Figure 2.3).

If we rotate w around the point p and compute normal curvature in
every direction around p, in the case that x is non-constant, we can find one
direction with the maximal value of k, denoted by k1(p),and one direction
with the minimal value of k, denoted by ka(p). These two directions are
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Figure 2.3: Normal curvatures in different directions.
([11], Figure 2.2, p. 45)

called the principal direction at a point p and ka(p), k2(p) are called the
principal curvature at p.

It can be proved that principal directions of S at a point p are always
perpendicular to each other.

The next definition is the main key to define minimal surface, which we
will explain in the next section.

Definition 2.1.8. The mean curvature (i.e., average curvature) of a surface

SatpisH:%.

Figure 2.4: Principal curvatures and principal direction.
(Gaba, Eric. (June 2006). Minimal surface curvature planes-en.svg.
Available at: https://commons.wikimedia.org/wiki/
File:Minimal surface_curvature_planes-en.svg [Accessed 23 Feb 2020])

It turns out that, according to the definition, the mean curvature is very
hard to compute because we have to find the maximal and minimal curvatures
at that point. The next theorem, which we state without a proof, gives us a
practical way to compute it.

Theorem 2.1.9. The mean curvature can be expressed in the form
H— Eg+ Ge - 2Ff
- 2(EG - F?)

(2.1)
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where B = x, - X, F' = x, - x,, G = X,X,, the coefficients of the first funda-
mental form, and e = N - Xy, f = N Xy, g = N - Xy, the coefficients of the
second fundamental form.

Examples 2.1.10. Here are some examples of surfaces:

1. The plane, parametrized by x(u,v) = (u,v,0);V(u,v) € Q C R? is a

surface in R with zero curvature at every point, k; = ko = 0. This
implies that its mean curvature H = &2“2 = 0 at every point. See
Figure 2.5.

Figure 2.5: The plane.

. A sphere with given radius r > 0, parametrized by x(u,v) = (r cos usin v,
rsinusinov,rcosv) for all w € (0,27) and v € (0,7) is a surface in
R3.By some computation, we found that Kk, = kg = —% at every point

on the sphere, so H = % = —% at every point.

Figure 2.6: Sphere with radius 1.
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3. A cylinder with given radius r > 0, parametrized by x(u,v) = (r coswv,
rsinv,u) for allu € R and v € (0,27), is a surface in R®. By some

computation, we found that k1 = 0 and kg = —% at every point on the
cylinder, so H = % = —% at every point.

Figure 2.7: A cylinder with radius 1.

4. A helicoid, parametrized by x(u,v) = (ucosv,usinv, bv); Ja,b > 0,Vu €
[0,a) and Yv € R, is a surface. By Equation (2.1) and some calcula-
tion, we found that it has zero mean curvature at every point.

(see
Figure 2.8 for a helicoid with a = 1,b = 0.2).

Figure 2.8: A helicoid.

5. A catenoid, parametrized by x(u,v) = (a cosh v cosu, a coshvsinu, av),Vu €
[0,27) and Yv € R, is a surface. By Equation (2.1) and some calcu-

lation, we found that it has zero mean curvature at every point. (see
Figure 2.9 for a catenoid with a = 1).

Figure 2.9: A catenoid.
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6. The Enneper’s surface, parametrized by x(u,v) = (u—§u3+uvz,v—
s0° +u?v,u? — v?) for all u € R and v € (0,2n), is a surface. By
Equation (2.1) and some calculation, we found that it has zero mean

curvature at every point. (see Figure 2.10).

Figure 2.10: The Enneper’s surface.

7. The Scherk’s doubly periodic surface, parametrized by x(u,v) =
(w,v, In (£22))for all u € (—7/2,7/2) and v € (—7/2,7/2), is a sur-

COsS v
face. By Equation (2.1) and some calculation, we found that it has zero

mean curvature at every point. (see Figure 2.11).

Figure 2.11: The Scherk’s doubly periodic surface.

2.2 Minimal surfaces, minimal graphs and JS
surfaces

Now, we are ready to define a minimal surface.

Definition 2.2.1. A minimal surface in R? is a surface S such that its
mean curvature H = % s zero at every points on S.

One way to understand this definition is by imagining a surface that every
point on this surface is saddle point, i.e. a point that look like a peak in one
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direction, but look like a bottom in other direction (look at the middle point
of a surface shown in Figure 2.12 for an example). This is because mean
curvature of a minimal surface is vanish everywhere, which mean that at
every point, two principle directions of its are curved equally but just in
opposite direction (k; = —ka).

Figure 2.12: Saddle point.

Note that, according to this definition, it isn’t obvious that a minimal
surface is a surface, as we described in the introduction, with minimum area
among all surfaces with the same boundary, but it can be proved that these
two definitions are equivalent. In fact, there is a lot of equivalent ways to
define minimal surface, but these are beyond our scope, so we do not mention
them here.

In this research project, we focus on special class of minimal surfaces
called minimal graphs which is defined as follow:

Definition 2.2.2. A minimal graph is a minimal surface such that can
be parametrized in the form (u,v,F (u,v)) where F (u,v) is function from
Q C R? to R. Shortly, a minimal graph is a minimal surface which is also a
graph over some domain in R2.

Remark 2.2.3. Equivalently, we can define minimal graph as a surface S
parametrized by (u,v, F (u,v)) where F (u,v) is function from Q C R? to
Ruwhich satisfies minimal surface equation:

(1= F2) Fuu = 2FuFoFun + (1= F2) Fuu = 0.

One special kind of minimal graphs which we focus on is JS surface.
Roughly speaking, JS surface, which named after Jenkins and Serrin, is a
minimal graph over simple bounded polygonal domains where, on approach-
ing each edge bounding the domain, the graph becomes either positively or
negatively infinite.
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Definition 2.2.4. Let P be a polygonal domain with finitely many bounding
edges partitioned into sets {A;} and {B;}. The minimal graph (u,v, F (u,v))
for (u,v) € P is a JS surface if it satisfies boundary values:

F(u,v) = 400 as(u,v) — intA;,

F(u,v) = —o0  as(u,v) — intB;,

for all (u,v) € P.

Examples 2.2.5. Here are some examples of minimal surfaces:

1.

The plane. As shown in Example 2.1.10, mean curvature of the plane is
zero everywhere, so it is a minimal surface and hence a minimal graph.
(See Figure 2.5).

A helicoid. As shown in Example 2.1.10, mean curvature of helicoid is
zero everywhere, so it is a minimal surface. Otherwise, helicoid is not
a minimal graph because it can not be parametrized as (u,v, F(u,v)).
(see Figure 2.8).

A catenoid. As shown in Example 2.1.10, mean curvature of catenoid is
zero everywhere, so it is a minimal surface. Otherwise, catenoid is not
a minimal graph because it can not be parametrized as (u,v, F(u,v)).
(see Figure 2.9).

The Enneper’s surface. As shown in Example 2.1.10, mean curvature
of Enneper’s surface is zero everywhere, so it is a minimal surface.
Otherwise, Enneper’s surface is not a minimal graph because it can not
be parametrized as (u,v, F(u,v)). (see Figure 2.10).

The Scherk’s doubly periodic surface. As shown in Example 2.1.10,
mean curvature of Scherk’s doubly periodic surface is zero everywhere,
s0 it is a minimal surface and hence a minimal graph over a square (see

Figure 2.11). From its parametrization z(u,v) = (u, v, In (<2%))for all

COosv
u € (—m/2,7/2) and v € (—7/2,7/2), we found that as u approaches
/2 or —mw/2, In (%) will go to negative infinity while as v approaches
/2 or —m/2, In (%) will go to positive infinity. Hence Scherk’s dou-

bly periodic surface is JS surface.

Following from Example 2.1.10, we found that sphere and cylinder are
not minimal surfaces.

It is interesting to ask that which polygonal domain can be a domain for
a JS surface. The theorem , following from [5], stated below is the result of
Jenkins and Serrin which completely answers this question.
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Theorem 2.2.6. Let P be a polygonal domain with finitely many bounding
edges partitioned into sets A; and B;. Let 11 be a connected polygonal subset
of P whose boundary is the union of some segments from A; and B;, possibly
including additional line segments contained in P whose endpoints are ver-
tices of P. Let |II| be the length of the boundary of 1I. Then there exists a
JS surface (u,v, F (u,v)) : (u,v) € P if and only if

(a) no two edges of A; nor of B; meet at a conver vertet,

(b) 2> 4 en [Ail < || and 25 iy | Bi| < [H] for each such I, T1 # P,

(c) D> |A4;| = > |Bi| when Il = P.
If the JS surface exists, it is unique up to translation.

It is not hard to see that a square satisfies all the criterion given above,
hence there exist a JS surface over a square, which is, in fact, Scherk’s doubly
periodic surface introduced in Example 2.2.5.

2.3 Background in complex analysis and har-
monic mapping theory

As mentioned above, our construction of minimals graphs is involved theory
of harmonic univalent mapping on unit disk ). In this section, we will
briefly introduce some definitions and facts about this kind of map. We also
introduce two main methods to construct them, which called Clunie and
Sheil-Small shearing method and Radd-Kneser-Choquet theorem.

Definition 2.3.1. A holomorphic function is a complex-valued function
of complex variable that is, at every point of its domain, complex differentiable
in a neighbourhood of the point. A meromorphic function is a function
that is holomorphic on all of domain except for a set of isolated points, which
are poles of the function.

Definition 2.3.2. A complez-valued of complex variable function f(z) is
called a conformal mapping if and only if it preserves local angles.

Theorem 2.3.3. An holomorphic function is conformal at any point where
it has a nonzero derivative.

Examples 2.3.4. Here are some examples of complex-valued of complex vari-
able function:

1. f(z) = €Y%, for some 0 € R, is a holomorphic function and a conformal
mapping from C to C,
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2. f(z) =1/z is a meromorphic function on C with only one pole at z = 0
and it is a conformal mapping on C\ {0},

3. f(z) = In(z) is a holomorphic function on C\ (—oo,0] which is not a
meromorphic function on C because it cannot be defined on the whole
complex plane while only excluding a set of isolated points,

4. f(z) = 1/sin(z) is a meromorphic function on C with countable poles
at z = 2nmw for all n € N.

Theorem 2.3.5 (Cauchy-Riemann equations). Let f = u+iv be a complez-
valued function where uw and v are real-valued functions. If f is complex
diffrentiable at zy = xo + Yo, then u and v satisfy the Cauchy-Riemann equa-
tion:

v

%(%,yo) = g—Z(xo,yo) and g—Z(Io,yo) = — 5 (%0, Yo)-

A pair of functions (u,v) that satisfies the Cauchy—Riemann equations is said
to be a conjugate pair, and v is called the harmonic conjugate of u.

Definition 2.3.6. A rational function

n

B(2) :cH "

1 —a.z
k=1 k

1s called finite Blaschke product of order n for the unit disc where
lel =1 and |ax| < 1,1 < k < n.

Remark 2.3.7. A finite Blaschke product of order n is holomorphic on unit
disk D. A finite Blaschke product of order 1 is called Mobius transforma-
tion which is an automorphism on D.

Definition 2.3.8. Let Q be a domain in R?. A function u : Q — R is (real)

harmonic if it satisfies Laplace’s equation:

2 2
Au(e,y) = 24 + T

"o g T et =l

Examples 2.3.9. By using little calculation, it’s easy to show that these
following functions are real harmonic:

1 u(r,y) = xy

2. u(x,y) = 2% — 3zy? and v(z,y) = —32%y + ¢*
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3. u(z,y) = In(x? + y?).

Definition 2.3.10. A (planar) harmonic mapping is a complex-valued
function f(z) = u(z) + iv(z) defined on some domain Q@ C C such that
u(z) = u(x +1y) = u(z,y) and v(z) = v(x +iy) = v(x,y) are real harmonic
function.

Definition 2.3.11. A harmonic mapping is said to be univalent if and only
if it is one-to-one mapping. A harmonic mapping f = u + v is said to be
locally univalent at z in its domain Q if and only if there is a neighborhood
U of z in Q such that f|y is univalent. Moreover, if f is univalent and its
Jacobian J¢(z) = uyv, — uyv, > 0, we said that f is sense-preserving (or
orientation-preserving). On other hand, if f is univalent and its Jacobian
Jp(2) = uzvy — uyv, < 0, we said that f is sense-reversing.

Theorem 2.3.12. Let f be harmonic mapping defined on domain €2 C C.
If Q) is a simply-connected domain then there exist holomorphic functions h
and g defined on §2 such that f = h 4+ g. Moreover, a pair of h and g is
unique up to an additive constant.

Remark 2.3.13. The harmonic function f = h 4+ g can also be written in
the form f(z) = R(h(z) + g(2)) + iS(h(2) — g(2)).

Definition 2.3.14. The dilation of f = h+ g, where h and g are holomor-

phic functions on domain Q C C of f is defined by w(z) = fgLiEz;

Examples 2.3.15. These are some examples of harmonic mappings:

1. Any holomorphic function f : Q@ C C — C. Consider f as u + iv
where w and v are real-valued functions. By Cauchy-Riemann equa-
tion, 9%(x,y) = 5¢(x,y) and §4(x,y) = —%2(x,y) for all (z,y) € C.

B2y diﬁ"efnentz'atz'ng2 these two equgtions, we get2 %(z,y) = %(m,y) =
aigy(yax) = —ng(x,y) and g_yg(%y) = aay(;;(%y) = aigy(fﬂ,y) =
_ 9%

55(2,y). Sow and v satisfy Laplace’s equation ., + u,, = 0 and
Vg + Uyy = 0, which mmply f is harmonic mapping. It also easy to
see that f can be expressed as h + g where g is a constant function
and h = f — g is a holomorphic function. Thus we can conclude that
dilation of f is w(z) = % =0
2. f(2) = f(z,y) = 2®=3zy* +i(=32%y+y?) defined on D. From exzample
2.3.9, we have known that u(z,y) = z° —3zy* and v(z,y) = =32y +1°
are real harmonic, therefore f is harmonic mapping. We can express
f(2) as h(z) + g(z) = z + £2° and its dilation w(z) = 22,
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Theorem 2.3.16. A harmonic mapping f = h + g defined on D s locally
univalent and sense-preserving if and only if |w(z)| < 1 for all z in D,

Definition 2.3.17. A domain Q) is convex in the direction e if, for
every a € C, the set '

QN {a+te?|t € R}
s either connected or empty. In particular, a domain ) is convex in the
direction of the real axis or convex in horizontal direction, CHD

for short, if every line parallel to the real axis has a connected intersection
with Q (see figure 2.13 for an example of CHD domain).

The next two theorems are criterion for a function that maps a disk
Dunivalently onto a domain convex in one direction. The first one is for a
holomorphic function, which proved by W.C.Royster and M. Ziegler in 1976,
but unfortunately we can not find their original publication, titled “Univalent
functions convez in one direction”, so we follow the statement from [4]. The
second one is for a harmonic function, proved by Clunie and Sheil-Small in
1984, which is one of the most important theorem for our project.

Theorem 2.3.18 (W.C.Royster and M. Ziegler). Let F' be a non-constant
holomorphic function in D. The function F maps D univalently onto a do-
main conver in the direction of ¢ if and only if there are numbers yu and v
where 0 < p < 2w and 0 < v < 7 so that

%[67;(“—@)(1 —2cosve Mz 4 e P F(2)] > 0. (2.2)

Theorem 2.3.19 (Clunie and Sheil-Small,[3]). Let ¢ € [0,7). A harmonic
f = h+ g locally univalent in D is a univalent mapping of D onto a domain
convex in the direction of ¢ if and only if h — e€*%g is a conformal univalent
mapping of D onto a domain convex in the direction of .

Remark 2.3.20. In particular, A harmonic f = h + g locally univalent in
D is a univalent mapping of D onto a CHD domain if and only if h — g is a
conformal univalent mapping of D onto a CHD domain.

This theorem gives us a method to construct harmonic univalent map-
pings onto certain CHD domain from given dilation w = ¢'/h’ which |w(z)| <
1 for all z in D (according to Theorem 2.3.16, this condition required to
make sure that a harmonic mapping constructed from this method is lo-
cally univalent on D, and hence univalent on D) and a conformal univalent
mapping ' = h — g. By differentiating the relation F' = h — g, we get
FF=h—-g=nN1l-w)=¢ (I_T”) So we can find h and g by integration,

h(z) = /O lejl—f()odg and g(z) = /0 Z%dg (2.3)
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This method is called Clunie and Sheil-Small shearing method or
shearing method for short.

Examples 2.3.21. These are some examples of constructon of harmonic
univalent mappings by using shearing method:

1. Let F(z) = z — %23, which is a conformal univalent mapping of D onto

a CHD domain (see Figure 2.13), and w(z) = 2*. By equation (2.3)

, we get h(z) = z and g(z) = 32 We rediscover the harmonic map

mentioned in Ezample 2.5.15, f(2) = h(z) + g(2)(2) = z + 2%, we
can conclude that it is a harmonic univalent mapping of D onto a CHD
domain, as shown in figure 2.14.

Figure 2.13: Image of D under F(z) = z — 32%.

Figure 2.14: Image of D under f(z) = z + £z

2. Let F(z) = %log (if—j), which is a conformal univalent mapping of
D onto a horizontal strip convex in the direction of the real axis (see
figure 2.15), and w(z) = —2z% By equation (2.3) , we get h(z) =

+log (}fj) + ilpg (22) and g(z) = —1log (3£2) + Llog (£2). Hence
f(z) = R log (f_r—j) + i%%log (}fj), we can conclude that it is a har-
monic univalent mapping of D onto a CHD domain. In fact, the image

of D under f is a square as shown in figure 2.16.




16 CHAPTER 2. PRELIMINARIES

Figure 2.15: Image of D under F(z) = L log(2).

-2 1—z

Figure 2.16: Image of D under f(z) = Rilog (£2) + i35 log (H£2).

See [6] and [12] for more examples.

The next theorem, followed statement from [9], is one of the important
theorem that give us another method to construct a harmonic univalent
mapping of D onto a fixed bounded convex domain.

Theorem 2.3.22 (Radé-Kneser-Choquet theorem). Let 2 C C be a bounded
convexr domain whose boundary is a simple closed curve I'. Let ¢ map 0D
continuously onto T' and suppose that (e) runs once around I' monotoni-
cally as e runs around OD. Then the harmonic extension

1 2m 1— 2 )
1O =g | el (24

T o
15 univalent in D and defines a harmonic mapping of D onto €.

In fact, according to [9], the theorem remains true even if ¢ has points of
discontinuity, provided that ¢(9D) does not lie on a line and the values of ¢
go monotonically once around I'. The harmonic extension f will then map
D univalently onto the interior of the convex hull of p(0D). For instance, if
© is piecewise constant and monotonic, and its values are not collinear, then
f maps D univalently onto the interior of the convex polygon whose vertices
are the values of .

In [10], P. Duren, J. McDougall and L. Schaubroeck generalized this result
for general polygonal domain.
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Suppose that §2 is a general polygon with vertices ¢y, ¢s, ..., ¢,,, taken in
counterclockwise order on the boundary I' = dD. For

0<ty <ty <... <ty, =ty + 2m, (25)

let the points '
by =€ k=0,1,....,m, (2.6)

determine an arbitrary partition of the unit circle into m subarcs. Note that
b, = by. Given the boundary correspondence

f(eit) = ¢, for e € (bkfl,bk), k=1,2,...,m,

construct the harmonic extension

PO =g | et

21T |€zt _

which, in this case, can be expressed as
E Cr, ar —¢,zeD (2.7)
k g E 1 Y *

A 1 \m b
where ¢ = - > " | cparg {bk—

- } It can be proved that the dilatation of any

function f of the form (2 7) is a Blaschke product with at most m — 2 factors
of the form ¢(z) = .|¢| # 1. Some zeros ¢ of the dilatation may be
situated outside D.

P. Duren, J. McDougall and L. Schaubroeck also gave a criterion for
function of this form to be univalent as follow:

Theorem 2.3.23. [10] Let f be a harmonic function of the form (2.7), con-
structed as above from a piecewise constant boundary function with values
on the m wvertices of a polygonal region €1, so that the dilatation w of f is a
Blaschke product with at most m — 2 factors. Then f is univalent in D if

and only if all zeros of w lie in D. In this case, f is a harmonic mapping of
D onto Q2.

1Cz

Example 2.3.24. Consider ) to be a square with vertices ¢; = \/Lﬁe”/4 =
' _ o 3im/a ' _ Sir/4 _ ‘ _ Tin/d _
E"‘%, _752/__2+%’ —\%ez/——ﬁ—%,64—\/§€l/—

T — T, taken in counterclockwise order on the boundary I' = OD. Let the

poznts b1 =1,by =i,by = —1 by = —i. Apply to Equation (2.7) with some
computatz’on we get f( )= (arg{ ‘1 +iarg {z“ }) = h(z) + g(z) where
() = b (log (222)  ilog (2)) and g(=) = 1 (— log (221) — i log ().
Hence we can compute its dilation w(z) = —2* whzch s a Blaschke product
with at most 2 factors and all zeros are lied in ID. Therefore this map f is a
harmonic univalent mapping of D onto the square €.
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Remark 2.3.25. By using similar argument, we can construct a harmonic
univalent mapping of D onto a regular n—gon and prove that its dilation is

w(z) = —2""2. (See [9], Chapter /).

Although Clunie and Sheil-Small shearing method and Radé-Kneser-
Choquet theorem gave us two different ways to construct a harmonic uni-
valent mapping of I, these two methods have different advantages and dis-
advantages. Even though we can fix dilation of a map if we construct it
by using shearing method, we can’t fixed its image. In contrast, for Radé-
Kneser-Choquet theorem, we can fix its image, but can’t fix its dilation. In
the next section, we will show that why this is a big disadvantage for using
Radé-Kneser-Choquet theorem.

2.4 Connection between harmonic univalent
mapping and minimal graph

So far, theory of minimal surface and harmonic mapping are constructed
separately, but surprisingly these two subjects have a lot of connections.
In this section, we will introduce some of these connections which will be
important for our construction of minimal surfaces.

Definition 2.4.1. Let x and y be isothermal parametrizations (i.e. E =
Xy Xy =Xy Xy, = G and F = x, - x, = 0) of minimal surfaces such that
their component functions are pairwise harmonic conjugates. That is,

Xy =V and X, = —yy.
In such a case, x and 'y are called conjugate minimal surfaces.
Theorem 2.4.2. If x and y are conjugate minimal surfaces then

z = (cost)x + (sint)y

where t € R is also a minimal surface. Note that when t = 0 we have
the minimal surface parametrized by x, and when t = 5 we have the minimal
surface parametrized byy. So for 0 <t < 7, we have a continuous parameter

of minimal surfaces known as associated surfaces.

Example 2.4.3. The helicoid and the catenoid are conjugate surfaces (see
Figure 2.17).
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Figure 2.17: Associate surfaces of the helicoid and the catenoid with various
value of ¢. ([6], Figure 2.25, p. 132)

Lemma 2.4.4. Let &, Dy, P3 be holomorphic functions on the simply con-
nected domain Q such that ®? + @3+ ®2 =0 and 0 < |P?| + | P3| + |P2| < oo
and 1s finite. Let zo € 2 Then the formula

x(2) = <9%/ @1(w)dw,§R/Z: @g(w)dw,%/zoz @3(w)dw> eq

parameterizes a minimal surface on 2.

Consider a holomorphic function p and a meromorphic function ¢ in some
domain €2 C C having the property that at each point where ¢ has a pole of
order m, p has a zero of order at least 2m. Let ®; = p(1+¢?), 3 = —ip(1—¢?)
and ®3 = —2ipg. These functions satisfy the requirement of the lemma
mentioned above. Hence we get:

Theorem 2.4.5 ((General) Weierstrass representation). Let p be a holomor-
phic function and q a meromorphic function in some domain 2 C C having
the property that at each point where q has a pole of order m, p has a zero
of order at least 2m. Then every minimal surface has a local isothermal
parametric representation (i.e. E =G and F =0) of the form

x(2) = (»{ [+ i} [ v Py} ] [ ~2ipgic |

(2.8)
where zg is a constant in )

Example 2.4.6. Using p(z) = 1 and q(z) = iz, the Weierstrass representa-
tion yields

- (nfe oY (o4 1) onen)
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Letting z = u+iv, this yields x(u,v) = (u— 3

which s the Enneper surface.

w? +uv?, v — 0P +uv, u? —v?)

The representation above give us the method to construct minimal sur-
faces, but our approach is more specific. As mentioned before, we want to
construct minimal graphs. The next theorem, though less general than the
previous one, gives us the easier way to construct minimal graphs and it
connects theory of harmonic mapping to theory of minimal surface.

Let f = h + g be a harmonic univalent mapping of D onto domain {2
which its dilation can be expressed as ¢* where ¢ is analytic (holomorphic).
Consider ®; = I/ + ¢/, ®y = —i(h — ¢') and &3 = —2i\/I'g = —2il/\J/w.
These functions satisfy the requirement of Lemma 2.4.4, hence we get:

Theorem 2.4.7 ((Modified) Weierstrass representation for minimal graph).
If f = h+ g is a sense-preserving harmonic univalent mapping of D onto
some domain 0 with dilatation w = ¢* for some analytic function q in D,
then the formulas

u=R{h(z) +9(2)} =R{f(2)},
v=S{h(z) —g(2)} =S{f(2)}, (2.9)

F(u,v) = F(z) = 23 {/0 \/mdg} .

define a minimal graph whose projection onto the complex plane i f(D). If
x*(u,v) = (27 (u,v), x5 (u,v), x5(u,v)) is a parametrization of conjugate sur-
face defined above, we get

r1(2) = R{h(2) = g(2)},
5(2) = S{h(2) + 9(2)},

wi(z) = 2%{/: mdc}.

Theorem 2.4.8. If (u,v, F(u,v)) is a parametrization of the minimal graph
defined by (2.9), then the (stereographic projection of the) Gauss map G of
the surface, where we take the surface normal to be upward so that |G(z)| > 1,
1s related to the dilation w of a harmonic map f by the relation

1

w(z) = G (2.11)

Examples 2.4.9. Here are some examples:

(2.10)

1. Apply modified Weierstrass reprentation to any holomorphic function
f:ID — C, then we get a plane.
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2. Consider f as in the second example in FExamples 2.3.21 which is a
harmonic univalent mapping which maps D to a square. Since w(z) =
g (2)/I(z) = —2% is a square of an analytic function in D, we can
apply modified Weierstrass reprentation. This yields

o= (8o (722 (e (725)] 0 s (+22) )

which is a parametrization of Scherk’s doubly-periodic surface.

The next two theorems are the results of D. Bshouty, and A. Weitsman in
[2]. The first one makes us know when F(u,v) of JS surface over polygonal
domain €2 will change its sign around the boundary 0€2. While the second
one gives us a criterion for a minimal graph to be a JS surface.

Let S be a JS surface over a polygonal domain €2 parametrized by (2.9).
Now, f is the Poisson integral of a step function having values zy, 2o, ..., 2,
which are vertices of Q2. If

21 when @ € (t]_,tQ)
i 29 when @ € (tg, tg)
fe?) =

Zn when S (tna thrl)

where t] < ty < tys < ... <tpy1 =10+ 2m. Let Cj = {Gi@|30 € (tj,tj+1)} and
let ¢; =e for j =1,2,3,..,n+ 1. If 0 < a; < 27 is the interior angle at z;
and we take a continuous branch of arg(w(z)) on C; , then

5 (ang(w(G ) — ars(w($))) = g (212)
3 (arg(e(Gran)) — argw() = a; = (2.13)

In case 0 < a; < m, then z; is a point of convexity and (2.12) must hold.
However, if a; > 7 and (2.12) still holds, we call z; a full resting point.

Theorem 2.4.10. [2] If z; is a full resting point for the JS surface S given
by F(u,v), then F changes sign on the sides adjacent to z; . If z; is neither
a point of convexity nor full resting point then F does not change sign at z;.

Theorem 2.4.11 (Criterion for JS surface, [2]). Let S be a minimal graph
over a polygonal domain D having k sides. If the Gauss map G for S in
the parametrization (2.4.7) has the form c¢/B(z) where ¢ is a constant of
modulus 1 and B(z) is a Blaschke product of order n, then S is a JS surface,
and k > 2n + 2.



22 CHAPTER 2. PRELIMINARIES

2.5 Previous results and our objectives

Our work is mainly followed from research paper titled “Harmonic shears of
elliptic integrals” [8] written by M. Dorff and J. Szynal in 2005. They applied
shearing method to shear elliptic integral of the first and second kind, which
can be represented in the following forms, respectively:

_ [ d¢ .
FeR =l e
E(z,k) = [} /5222,

where k,m € D.

M. Dorff and J. Szynal showed that for any fixed complex number k €
D, F(z,k) maps D univalently onto a convex region. Let m be a complex
number with modulus less than or equal to 1. By applying Theorem 2.3.19 to
F(z, k) with dilation w(z) = m?z?, they constructed a collection of harmonic
univalent mappings of D onto a CHD domain. Then they consider special
case when k£ = 1 which the corresponding harmonic mapping is f = h + g
where

h(z):ﬁbg(ij) + 2(mT— 5 1og(iﬂm;); (2.14)

9(2) zﬂlT—%log(itj) +2<m72n_ 3 1ogGJ_rZi>. (2.15)

They found that, in this case, if m = €%, the image of the map f
is a parallelogram with four vertices (7w(1 — cos@)/4sinf,7/4), (—mx(1 +
cosf)/4sinf,w/4), (—m(1—cosf)/4sinf, —m/4), and (w(14cos)/4sin b, —7 /4).
Although the authors didn’t mention, it can be easy to prove that this paral-
lelogram is, in fact, a rhombus with angle 6 and length 7/2sin 6, see Figure

2.18.

For elliptic integral of the second kind, let # be any fixed real number in
0,27), E(z,€"?) maps D univalently onto a domain convex in the direction
e™/2 i.e. convex the direction of the imaginary axis. By applying Theorem
2.3.19 to E(z, €) with dilation w(z) = m?22z?%, they constructed a collection of
harmonic univalent mappings of D onto a domain convex in the direction of
the imaginary axis. Despite the fact that the authors discovered interesting
special case for image of D under harmonic shear of F'(z, k), they didn’t know

much for E(z, k), except for its convexity in the direction of the imaginary
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Figure 2.18: Image of D under f(2) when m = ™3, m = ¢™? and m = €*>*/3

respectively.

axis, see some figures from [8] for examples.

Since all harmonic univalent maps above recived from shearing method
with dilation w(z) = m?2? which has analytic square root, we can use modi-
fied Weierstrass representation (Theorem 2.4.7) to construct a minimal graph
over image of D under such harmonic univalent mapping. The authors mainly
focus on harmonic shear f(z) of F(z,1) with dilation w(z) = €*?2%, which
mentioned above that f(D) is a rhombus. They found that if § = 7 /2, f(D)
is a square and a minimal graph over f(ID) is Scherk’s doubly periodic surface
and by varying value of , they found a family of minimal graphs over rhom-
bus which they called slanted Scherk surfaces, which in fact are JS surfaces,
see Figure 2.19. They also proved that as 6 approching to zero, surfaces will
approch to a helicoid. Moreover, they investigated their conjugate surfaces,
see Figure 2.20, which has catenoid as a limit surface when 6 approching to
Zero.

Figure 2.19: Minimal graphs corresponding to f(z) when m = ™3 m = ¢™/?

and m = e*™/3 respectively.

In 2008, J. McDougall and L. Schaubroeck investigated a new family of
minimal graphs in their publication “Minimal surfaces over stars”[5]. The
authors applied modified Weierstrass representation to harmonic univalent
mappings of I onto star domains, which they already constructed in [10]
by using Radé-Kneser-Choquet theorem. They also proved that minimal
graphs over stars that they constructed are JS surfaces (See Figure 2.21).
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Figure 2.20: Conjugate minimal graphs corresponding to f(z) when m =
e™3, m = e™/? and m = e>™/? respectively.

By including this family to the list of previous JS surfaces mentioned in the

third section of their paper, we get:

1. Scherk’s doubly periodic surface (see Example 2.1.10), discovered in
1834 by H. Scherk.

2. The JS surface over a regular hexagon, studied by Hermann Schwarz.

3. The JS surface over a regular 2n-gon , where n > 3, studied by Karcher
in the context of constructing saddle towers.

4. The JS surface over a rhombus (see Figure 2.19), as mentioned above,
studied by M.Dorf and J. Szynal in 2005 [8].

5. The JS surface over a star.

Figure 2.21: A minimal graph over a star domain.
([5], Fig. 3., p. 731)

Our objectives are to use shearing method or Radé-Kneser-Choquet the-
orem to construct a harmonic univalent mapping of D onto certain domain
and then use modified Weierstrass represntation to lift such domain to a
minimal graph over it. We divided our results into two chapters as follow:
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Chapter 3: Construction of harmonic univalent mapping. Since
minimal graph over rhombus was already constructed in [8] and it is a gen-
eralization of Scherk’s doubly periodic surface, at first we try to generalize
to arbitrary parallelogram. Hence we try to construct a harmonic mapping
onto parallelogram domain. As we discussed in the last paragraph of section
2.3, Rado-Kneser-Choquet theorem is a better choice of method to construct
this kind of map because we want to construct a harmonic map onto a fixed
domain. Unfortunately, dilation of harmonic map that we construction in
this approach turns out to has non analytic square root (except for the case
of rhombus which the map concise with construction via shearing method in
[8]), which doesn’t match the requirement of modified Weierstrass represen-
tation. So we can’t construct minimal graph corresponding to this map.

To avoid this problem, we change our approach to shearing method. In
[8], M. Dorff and M. Szynal sheared the elliptic integral F'(z, 1) with dilation
w(z) = m?2% where |m| < 1 and found that in the case |m| = 1, the map
will map D to a rhombus. We try to follow this construction and generalize
this by changing the dilation to be w(z) = m?"2*", which has analytic square
root, where |m| < 1 and n € N. It turns out that, by the same argument
given in [8], we can prove that the map will map D to a parallelogram, which
is not a rhombus for n > 2.

Chapter 4: Minimal graphs over parallelograms and their conju-
gate surfaces. In this chapter, we apply modified Weierstrass representation
to the maps constructed in Chapter 3 to get minimal graphs over parallelo-
grams. We can also prove that these minimal graphs are JS surfaces and can
conclude interesting trigonometric identity as a corollary.



Chapter 3

Construction of harmonic
univalent mappings

3.1 Using Radé-Kneser-Choquet theorem to
construct harmonic mapping onto paral-
lelogram domain

In this section, we going to construct harmonic univalent mapping onto arbi-

trary parallelogram domain by using Radé-Kneser-Choquet theorem. Given
arbitrary positive real numbers a,b and 0,3 € (0, 7). Consider the convex

quadrilateral with vertices ¢; = (Mragost asnf) o, — (=btacosd asinb) o, —
(=hgcosh _asinfy and ¢y = (begest _asind) aken in counterclockwise or-

der. It is easy to see that this quadrilateral is a parallelogram with cico =
C3Cqy = b, CoC3 = C4C1 = Q and 046162 = 026304 = 0, 616203 = 036461 =T — 0, as
shown in Figure 3.1. Let tg =0,t; =7 — (,ty = m,t3 = 27 — [ and t4 = 27.

Figure 3.1: A parallelogram.

It is obvious that 0 <ty < t; <ty < t3 <ty =ty+2m. For k =0,1,2,3,4,
let b, = €' be points on the unit circle. Define a step function on the unit
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circle.
Cy, S (t07 tl)
. . e (bt
flety = { & TElhuta) (3.1)
3, b€ (ty,13)
cy, tE (tg, t4)
Then, by (2.7) the harmonic extension to D is
1 1 z—>b
— Dg R
f(z):;;ckarg{z_bk_l}—c,zE]D (3.2)
4
R 1 b
where ¢ = %;ckarg{ﬁ}
1 b+acos€+iasin9 ( 8)+ 1 —b+acos€+iasin9 5
= —_—— 7T — —_—
2T 2 2 27 2 2
1 /—b—acosf idasinf ( 8)+ 1 /b—acosf iasin®
o 2 2 i o 2 2
= 0.

Hence
4
1 zZ — bk
f(z) = ;;ckarg{z_ bkl}
1 (b4 acost N ia sin 0 2 — ei(™=h)
= — ar e —
@ 2 2 8 z2—1
+1 —b+acos€+z'asin€ z+1
= arg { ————
m 2 2 8\ 7 _ citn—»
. 1 /—b—acosf iasinf 2 — t2m=F)
= — arg { ———M—
T 2 2 s z+1
—1—1 b—acosf iasinf z—1
il _ D
m 2 SR A i)
1 —_ 7:(77-_/8) 1
= {barg {%} + a(cos @ +isinf) arg{it . H .
And f can be expressed in the form h + g where

1 Br+1 1
h(z) = ~5- [bilog (%) + a(icos — sin ) log (z+ )]

by — z—1
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eBr4+1

1 1
and g(z) = —5- [bi log <m> + a(icosf + sinf) log <j i 1)} :

We get

oy L], et _ et , L 11
h'(z) = 5 bi P — + a(icosf — sind) P S

1 [ bie” N ai(cosf + isinf)
e2ify2 — 1 22 -1

™

1 e e 1 1
R Y _ . . _
g (z) = 5 [bz(ei5~|—1 6iﬁ_1)+a(zcos0+sm9)(z+1 z—l)}

1 [ bie? ai(cos @ — isin 9)}

Tor|e2iB2 22 -1

So we can compute the dilation

g(z)  (be? 4 ael®P=9)22 — (be'® + ae™)

w(z) = W(z)  (bel® + ac'®0))22 — (belP + aet)
beif 1 aei@-9) /2 4
beif + ae? (1 - AZ?)
betS +ae 1

where A = 2-46—5. Suppose A = r(cosa +isina) where r > 0 and o €

[0,27) and let B = \/r(cos § + isin §). Hence w(z) = —beif;gf;if;‘” <1Z:§z)

(1:(:;)3) which is a Blaschke product of order 2. Theorem 2.3.23 tells us

that this map is univalent in D if and only if B lie in D which means that
Al =r < 1.

Since 0,5 € (0,7), sinf > 0 and sin 5 > 0. Hence sin@sin 5 > 0 which
implies that cos(f + 3) < cos(f — ). And since

be + ae~
be'd + aet2F=0)
> |be? + ae™) < |be + e
= (bew + ae_w)(be_w + aeie) < (beiﬁ + aei(m_e))(be_iﬁ + aeiw_m))
s (BH0) 4 i(BH) _ i(0-B) | i(5-0)
<= cos(f + B) < cos(f — B),

|A| = <1

we can conclude that |A| = r < 1 and hence the map f is univalent in I and
it maps D onto the parallelogram mentioned above.
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Because we want to use this map to construct minimal surface over par-
allelogram, we should consider when its dilation w is analytic square root.
Since w has two roots, B and —B in D, if B # 0, B and — B are single roots
of w, square root of w should have a branch cut emerge from B and —B
which means that w is not a square of an analytic function.

If B=0, l)@%ﬁ% = A = 0. Therefore be*” 4 ae~* = 0. Since a,b > 0
and 6,8 € (0,7), a =band § = 7 — 3. So w is analytic square root if and
only if a = b and § = m — [ and the image of D under f is a rhombus. We

can conclude this theorem.

Theorem 3.1.1. The harmonic map f which obtained from the construction
above has analytic square root dilation if and only if a = b and 0 = 7 — 3
and the image of D under f is a rhombus.

In fact, in this case, if we give a = 57— and m = e, this map will

concise with the map constructed in [8] which we mentioned in (2.14) and
(2.15).

So we can’t construct minimal graph over a parallelogram domain which
is not a rhombus via these collection of maps and in the case of rhombus, its
corresponding minimal graph is already known. In the next section, we will
try to use other approach, the shearing method, to construct the map.

3.2 Harmonic shear of F(z,1) with dilation

w(z) = m*2* where |m| < 1 and natural

number n

In [8], M. Dorff and M. Szynal sheared the elliptic integral F(z,1) with
dilation w(z) = m?2% where |m| < 1. We try to follow this construction
and generalize this by changing the dilation to be w(z) = m?"2*", which has
analytic square root, where |m| <1 and n € N.

Let n € Nand m € C such that |m| < 1. Let fom(2) = hnm(2) + gnm(2),
where h,, ., and g, ,,, are holomorphic functions on D, be a harmonic shear of

F(z,1) = [; % with dilation w(z) = m*2*". By Equation (2.3), we get

B z F/(C) B z 1
() = / —w 0™~ / A= —mmen® 33

CERQUQ, [ mae
)= [ TS50 | A (4
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First, we will find h,, ,,(2) by computing the partial fraction decomposi-
tion of

1 1

(1 —¢2)(1 —m2n(2m) (1= C2)(1 — m2¢2)(1 — m2w3, €2)...(1 — m2w 2(n 1) Cz)

where wy, = €™ is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

Ay n Ay - A, N Ania
(1-=m2¢?)  (1-m2w3,(?) 7 (1 —m2i™ ey (1-¢%)

where A; € Cforall j =1,2,3,...,n+ 1. We get
_ (1-¢)A —m>¢) (1-¢)A —m>¢)
1‘&< s R N (e o) R A

(1—-¢)A —m*¢) 2n 20
+ A, = + Appa (1 = m¢m).
(20 s i

L¢P = (1Pl ) (LemP g Cbm w2 DD (20D,

we get

(1—¢3)(1 —m*¢?)
(1 — m2wyh(?)

= (1= )1+ muwg(® +mlwp (! 4 .m0 D)

S
—

247 2pjJ 29 27 2p7 ~2(5+1
(m ]szjg T —m JWQZJC G+ ))

g

<
> 1

-1

n—1
— 25, ,20J 125 E : 27, ,2p7 ~2(j+1)
- m = Woy, C ) - < m =Wy, C

J=0

— 1 — m2=1), 2pn 1§2n+zm j—1) 2pJC2J( w2—n2p).
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Therefore

n—1

1=5" 4,1 (1 — 2D gD 2y Z m?0 0w (¥ (m? wEf”))
p=0
+ An+1(1 o m2nc2n)

=(A+A+ A3+ +Ap) — n1C2n< 2An+1+z 2pn1 p+1>

n—1 n—1
+ Z <m2(j1)<2j (Z(ngj (mQ _ w2—n2p)Ap+1)>> )
j=1 p=0

Comparing the coefficient of (¥ for j = 0,1,2,...,n and get
]:O, A1+A2+...+An+1 =1

n—1

j€1,2,3,...,n—1;m* (Z(u@g] (m? — w;jp)ApH)) =0

p=0

Since m # 0, we can divide equations by m and get

(0), Al + AQ + ...+ An+1 =1

n—1

(); Y (Wi (m® — wy, ) Apyr) = 0 for j =1,2,3,..,n— 1

p=0
(*) mAn+1+Z (Wi VA, ) =0.
By m?(0) — (x), we get
szp" —wy M)Ay = m?.

For 7 =0,1,2,...,n — 1, consider ) 7 L Wi (5) and get

n n—1

Z <w2np+r)1 w2—n2p) Ap+1> — m?2

j:1 p=0

n—1 n
p+7“ 2
m - w2n AP-H § <w2n ) =m

p=0 7=1
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Since for p+r =1,2,3,....,n — 1(mod n), w2 are roots of z + 22 + 23 +

o+ 2" =0, we get

n
2(p+r)j

Way, =0forallp+r=1,2,3,...,n — 1(mod n).
j=1
Therefore
nA,_pi1(m? — w;f(n_r)) =m?
Aprir = m

1

Which means A; = m—i(l_ﬂ) for j =1,2,3,...,n. Since (
Wan

n(m2— 1= (1-—m?"¢2m) —
e + o ot (kmzézn—“g?) + G255, we get
£l (]
(1= ¢3) (1 —m2n¢) = L \n(m? - will=9)) 1 — m2w2V Y2 (1-¢?)
it ’ITL2 1 An+1
= (o) () )+ i

And since Ay + Ao+ ...+ A1 = 1, we get

A =1-) 4,
j=1

" m?2 1
—1-3" .
2 (n<m2 - @fﬁ‘”))

Jj=1
n—1
1 m? 1
o 2 _ 2
n j=0 n(m - w2n)
Zn—l m2" wgﬁln
1 m? 7=0 \ m2n w3
n m2n — 1
2 n—1 n—1___2(n—1-p), ,2jp
n m2n — 1
n—1__ 2(n—1-p) n—1 2jp
=1- —
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Since > 77, LWt =0 forallp=1,2,3,....,n— 1, we get

m2 [ nm2n-1
Appr1=1— — | —/—
i n ( m2n —1 )

Hence

(1- CQ)(ll— m2" ) nz_f K —szn )) ( m1w2£C2>] (m?r — 11)(1 - ()

Jj=

For 7 =0,1,2,...,n — 1, consider

z 1 1 [* 1 1
/ e d=: / ( . . ) dc
o 1—m2wy’ 2 2o \1—mwj,¢ 1+mwl

1 # 1 .
- —d(1 + mah,C)

2mwy,, 14+ mw,C
1 * 1 ;
o [ - mad,)
2mwi, Jo 1 —mwi,

( 1 ) 1+ mwj, ¢
2mwy,, 1 —mwi,C

And fOZ #d = %foz (1_C 1+§> dC % |: OZ 1+¢ (1 + C) ()Z 11Cd(1 - C) =
1log (3£2), hence

/ 1 — <2 1 _ m2n<‘2n) dC

”Zl( )10 1+ muwd 2 +< 1 )10 (1+z>
—wxw@n *\T = w2 20 —m) ) B\T=2)

J=

Next, we will find g, ,,(2) by computing the partial fraction decomposition
of

m2n C2n m2n <2n

(L= )L =mP ) (1 ¢2)(1 = m2¢) (1 — mu, (). (1 — mPuile ()
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where wy, = €™ is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

By By Bn B
A=—m®) (A=, " A= 22 Oy | (1= )

where B; € C for all j =1,2,3,...,n+ 1. We get

= () (e )

1 — 2 1 — 2n 2n
B <( (1 _C;(zwz(:jl)é) )> + Bnga (1 —m?"¢*).
2n

By the same argument above, we get

]:0,B1+BQ++Bn+1:O

n—1

je€1,2,3,.,n—1mY (Z(w;’f (m? — w23p>Bp+1>) —0

p=0
n—1
. . 2(n—1) 2p(n—1) _ _2n
j=n; —m? <m Api1 + E (way, Bp+1)> =m
p=0

Since m # 0, we can divide equations by m and get

(0)7 B1 + BQ + + Bn+1 = O

n—1

(7); D> (Wi (m? — wy, ) Byay) =0 for j =1,2,3,..,n — 1
p=0

(*); m* By +Z (Win" "V Bpyy) = —m?.

By m?(0) — (x), we get
szm m® — w; ) Bypy = m”.

We can solve this system of equations (0) — (n) and get B; = YR
for j =1,2,3,...,n and !

2n

n+1 ZB m2n_1'
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Hence

m2n C2n n—1 2 1 m2n
(1= (1= m2¢™) ;ﬂ( —@?Q(mwﬂ&@ﬂ‘WW—nu—@y

We get
2n<’2n
mn, m d
9 /0 1 — <2 1 _ anCQn) C
- | 1+ mwgnz N m2" | 1+2
. og | —— — X | lo .
>\ ) (et )| ) e (=

By Clunie and Sheil-Small shearing method, we can conclude that f, ,,,(2) =
Pnn(2) + Gnm(2) where

n—1 )
1 7 1 1
el K TK%jy%&ﬂy¢M+@T—w)%C+ﬁ
=0 277/( - w2n )w2n 1 — mw2nz ( —m ) —
n—1 )
1+ muwy,2 ( m2" ) (1+z)
nm - lo - enT ol lo

is a harmonic univalent mapping of D onto a CHD domain with dilation
w(z) = mnzn

In the case that n = 1, this mapping is exactly the same as a map
constructed by M. Dorff and M. Szynal in [8] which is fi ,,(2) = h1m(2) +

91.m(z) where

i~ e (1) (22

(2) = m? o 1+ 2 N m? o 1+mz
Pl =\ o1 —m2) ) B \1=2) " 20 —m2) B\1-mz )"

Although we know that f, ,,(ID) is convex in direction of the real axis, we
do not know much about it, see Figure 3.2 which show images of D under
fn,m for various values of n and m. However, in the next section, we will
analyse the image of D under f,,,, where |m| = 1.

.
o

and
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(a) n=2and m = 0.95¢ 7 (b) n=1and m = 0.95¢ 5
(¢c)n=3and m = 0.99¢ ¢ (d)n=3and m = 0.99¢ %
(e)7”L:3fmdm:€%r (f)n:3andm:e%
(@ n=4andm=e% (h) n =4 and m = e

Figure 3.2: images of D under f,,,, for various values of n and m
3.3 Images of D under f,,, where |m| =1 and
natural number n

In [8], M. Dorff and M. Szynal have proven that the image of D under f;,,
where |m| = 1, in fact this should except the cases that m = 1, —1 to avoid
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zero denominator, is a parallelogram which in fact is a rhombus. We will
prove the same result for f,,, where |m| = 1 such that m** # 1 and an
arbitrary natural number n. The restriction of value of m is to avoid zero
denominator in formula of f,,,. Then we will find the proportion of non-
parallel sides of the parallelogram and conclude that for the case n > 1 the
image of D under f,,, is a parallelogram which is not a rhombus.

Firstly, we will prove some propositions.

Proposition 3.3.1. For any complex number z, R(iz) = —3(2).

Proof. Let z be a complex number. Then iz = i (R(z) +i3(2)) = iR(z) —
J(z). Since R(z) and —(z) are real numbers, we get R(iz) = —3(z) as
desired. 0

Proposition 3.3.2. For any non-zero complex number z, ¥ (log(z)) = arg(z).

Proof. Let z = re® be a non-zero complex number where r is a positive real
number and 6 € [0,27). Therefore (log(z)) = S(log(r) + ). Since log(r)
and @ are real numbers, we get § (log(z)) = 0 = arg(z2). O

Proposition 3.3.3. For a complex number z = €%, z and 2> — 1 are per-
: z_ )
pendicular and 5 =

_QSincp'
Proof. Let z = € be a complex number, then |z]?2Z = 1 and 5 =
2Z S 1 4 P : z _ (1 /2
(22—=1)z = 2—z = 2ising sing” This lmphes that 22—-1 ( singo)e
where —ﬁ is a real number. This means z and 22 — 1 are perpendicular,
as shown in Figure 3.3. [

Figure 3.3: Geometric interpretation of Proposition 3.3.3 when ¢ € (0,7/2).
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Proposition 3.3.4. For a complex number z = €%, z+1 and z — 1 are
perpendicular and % =icot .

Proof. Let z = ¢ be a complex number, then |z[?2zZ = 1 and £ =
(A+2)(1+72) _ 2+42+Z _ 2+42cosp i(14-cos ¢) Since cot (£) _ Cos(§) _ QCOSQ(%) _
(1-2)(1+2) —2tZz —2ising singp ° 2 sin(%) QSin(%)cos %)
(14+cos ¢)

L2052)  we get 12 = icot £. This implies that 122 = cot (£) "/ where
in ¢ z z

cot (%) is a real number. This means 1 4+ 2z and 1 — 2z are perpendicular.
Geometrically, 14+ z and 1 — z can interpret as diagonals of a rhombus which

each side has 1 unit length, as shown in Figure 3.4. [

Figure 3.4: Geometric interpretation of Proposition 3.3.4 when ¢ € (0,7/2).

From now, we let n be an arbitrary natural number and m = e be
a complex number where 0 < 6 < Z. The reason we focus only on 0 <
0 < » is that the image of D under f, . is periodic with period 7 respect
to 0. We will consider the value of f,,, at the boundary of I which is
St = {z € C|[z] =1}. Let z = ¢ where 0 < ¢ < 27 and ¢ # 7, —0 + X
where k£ = 1,2,3,...,2n. This restriction is to avoid zero denominator and
zero argument of logarithm in formula of f,, ,,. Consider f, (2) = hym(2) +
Gnm(2) = R (hpm(2) + Gnm(2)) + (hnm(2) — gnm(2)), we will find real part
and imaginary part of f,,,. From formulas of A, m,, gnm, Proposition 3.3.2
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and Proposition 3.3.4, we get
S (frm)

| |
—~
>
S

3
—~
I\
~—
)
S

3
—~
I\
~—
~—

1
=3 arg (z’cot g)

i /2 s

Since cot £ is a real number and i = /%, the value of arg (z cot %) is § or
-5 depending only on sign of cot £. Since 0 < £ < , cot £ is positive when
0 < £ < 7 and negative when 7 < 5 <m. We get

1 7 if0<op<
%<fn,m) = —arg (z cot f) — 4 _ 1 (%2 s
2 2 1 ifm<o<2rm

Next we will find R (fn) = R (hnm(2) + gnm(2)) which is more compli-
cated.

R (frm) =R (ham(2) + gnm(2))

n—1 .
m 1+ mw3, 2 ( 1+ m?" ) <1+z)
=R{> —Jlog | — = ||+ | s+——= | lo .
(M [(mmz —w;,?)w;n) ; (1 —mwanzﬂ 21—y ) BT

. . m m mwjn
For j :'O, 1,2, ...,ﬁ—l, consider S e g 1 o n(m%j =t
Since mw?, = ¢(P+5) and by Proposition 3.3.3, we get ﬁ =
w2n
: Since m?" = €2 and by Proposition 3.3.4, we get (1 oy =

o 2n sin (9+j%) )
1+mw2nz

Lcot(nd). Similarly, we get 12 = icot(£) and i~ = icot( 5- + ;—n)

forall j =0,1,2,....,n—1. So

R (f0) = me Qnsin(l'9+%))log(icot(“Th;;))
# ((Goottn) )t (1ot (£)) )

By Proposition 3.3.1 and Proposition 3.3.2, we get

n—1 1 . 0_'_%0 in
%(fn,m)zz<2n81n(9+%)>arg (ZCOt( 5 +2n))

7=0

_ (% cot(ne)) arg (icot (3)).

2n
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For k = 1,2,3,...,2n, we will consider value of arg (z cot (9“" + jﬂ)) where
(,06(%”—9,@—9) and 7 =0,1,2,...,n—1. Smce 9<<p<(k+1) -0,

n
(ki) _ 04¢ | jm _ (ktj+D)w
t 2n < 2 + < 2n

(. (H—HD jﬂ)) r ifj<n—k—lorj>2n—k
arg | ecot (| —— + = ) .
2 2n —5 fn—k<j<2n—-k-1

For 1 <k <n-—1, we get

n—1 .
, 0+ ¢ jﬂ))
arg (tcot | —— + =—
— <2nsm 0+ “)) & < ( 2 2n

n—k—1 1
%, (wwtrm) 2 (wwin)

For k = n, we get

S ar (icot (94_—90%- )) S
— 2nsm (9+]7r) & 2 — 4nsm 77;)

J

we ge . Hence

<.

3

Forn+1<k<2n—1, we get

n—1

E - L . arg<icot (edﬂp%—‘m))
— \ 2nsin (9 + J—”) 2 2n
7=0 n

2n—k—1 n—1
T T
o Z (4nsin(«9+%)>+.2k (4nsin(9+%)>

7=0 j=2n

Finally, for £ = 2n which, in fact, equivalent to k = 0, we get

§<2nsin(10+%)>arg <iCOt <9%+ )> :ji(zmsm 9+J”)>

And since

_ © 3 f0<p<m
arg(zcot—)z . ,
2 -5 ifr<p<2r

we can conclude that
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R, (fn,m) =
4 - n—1 1 T f - 9
4An £aj=0 sin (0+22) —3C Ho<p<?—
ﬁ ;Z:_g sm <4n51n 6+ n— 1>Tf ) - %COJE(TLG) if % —0 < p < 27” -0
s n—3 n - - -
in Jj=0 sin (9+j—7r) ]: -2 (4ns1n (9+(n Dﬂ)) 4 COt(n@) lf 2? N 0 < ¥y < 3? N 0
n—1 T T .
D T (07 E) — T cot(nd) fr—0<p<mw
_ Z;l:_ol FROeRY PY AT E;Jrjl) + 7 cot(nd) ifr << (n+1) _ 0
. n—2 s T T (n+1 (TH-Q)
Zj:(] 4n sin («9+%r) + <4nsin (6+ ("—nl)ﬂ)) + 4 COt(n@) if —0< » <
n—3 T T e (n+2)7 n+3
= 2j=0 \ Gowm (5755 i (4nsm(a+<_n 1>ﬁ)> + §cot(nf) if PEAT g < o < R
s n—1 1 T .
| 10 Zej=0 (—Sin(gwﬁ) + 7§ cot(nd) if 27 — 0 < p < 2m

Combining R (fy,m) with I (fnm), we can conclude that the restriction

of the map f, ,, on JD except for the points 1,-1 and ¢ =0) where k =
1,2,...,2n — 1 is a piecewise step function to 2n + 2 points. Now, let

( =0 (sm 0 + Jw)) - %cot(n@) 4+ <%>

:’“Iﬂ

3
)

T 1 T

- ™ s
by = — | — — —cot(nf) | +i(~
: an j=0 <Sin (9+%)> 4n sin (9+@) 4CO (n) 1(4)

b1 = <_ <4n sin ETH + %)) B %cot(n@)) +1 <%>
)+ Geoson) =i (3)

bn+2 = <_

—_

3

I
- o

3 <.

< T
« \ 4nsin (9 + ”)

<.
Il
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n—2
v

m .
n+3 ]Z: (4n81n 9 + )> + A sin (9 N (n— 1)7r> + ZCOt<n9) —1 (

bant2 = < (Sm 7 N)> + %cot(n@)) — 1 (%) .

j=0

We can express [, by

™

4

(b when ¢ € (0, ;—r 6)
b when ¢ € ( ;L — 0,5 — §) where k =2,3,4,...,n
i bny1  when ¢ € (7 —6,7)
fam(e¥) = b (n+1)m
nt2  When ¢ € (7, = —0)
by, when ¢ € ((lg A _ g, (k_nl)” —0) where k =n+3,..,2n+ 1
(bont2  when ¢ € (2 — 0, 2m).

in the complex
and these two

It’s easy to see that by, by, ..., by lie on the line I(¢) = §

plane, while b,12,bp13, ..., banyo lie on the line I(¢) = =%
n (6+4F)

0,1,2,...,n—1, we can conclude that by, b3, ..., b, lie between b; and b,, 1, while
bnis, bniay ..y boni lie between b, and bg, 9. Moreover the line through b,
and by,,o has slope — tan(nf) as same as the line through b, and b, .
S0 by, bo, ..., bay, o all lie counterclockwise on the boundary of a parallelogram
whose vertices are by, b, 11, b0 and by, yo.

Now, we can conclude the lemma:

lines are parallel. Because of the fact that (#) > 0 for all j =

Lemma 3.3.5. The restriction of the map fr,m where m = € which 0 < 0 <
= on JD except for the points 1,-1 and ¢ (5 =0) where k = 1,2,...2n—11s a
piecewise step function and it maps D counterclockwise to 2n + 2 points on
the boundary of a parallelogram whose vertices are by, b,11,b,40 and by o.

Next, we will prove that the map f,,, map D to the interior of this
parallelogram. We will start by proving some lemma.

Lemma 3.3.6. Let ¢ € (0,7) and ® be a complex variable function defined

on D by i
- — ez
(I)(Z) =je ¥ (W) .

Then ® maps D to the right half plane Cxso = {¢ € C|R(¢) > 0}.

)
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Proof. Let ¢ € (0,7) and ® defined as above. We get

R(2(2)) = 5 (2(2) + ()
1) )
?(< |2—1><2’1_z’2 )
-y

(kg

Since |z| < 1 for all z € D and sing > 0, we get R(P(z)) > 0 for all z € D.
This means that ® maps I to the right half plane Cg~. ]

Proposition 3.3.7. For m = € which 0 < 0 < =, the map fnm maps D
onto a parallelogram whose vertices are by, b,y1,bn 12 and bay,o.

Proof. First we will show that the image of D is convex. By Theorem 2.3.19,
it is equivalent to prove that the function

F(2) = hnm(2) = €2 gnm(2)
— 2 1 2ip 1 + 7
( - 2( :J : J log ( mwinz
r 2n(m? — wy,” )wi, 1 —mwl,z
n 1 — e?lem?n | 1+2
——— | 1lo
21 —m2) ) P \1-2
is convex in the direction €' for all ¢ € [0,7). From the construction, we

already known that this holds for ¢ = 0. So we will prove in the case that
¢ € (0,7). According to Theorem 2.3.18, this can be done by showing that

3
-

¥
=)

9%[6i(“_“0)(1 —2cosve Mz 4 G_Qi”ZQ)F/(z)] >0 (3.5)

for some real numbers p and v where 0 < < 27 and 0 < v < 7.
We choose = 5 and v = 7. Let

H(z) = W9 (1 — 2cosve "z + e 2122 F'(2)
=279 (1 = 22 F'(2).
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Since
F'(z) = hy, . (2) — €¥%g), ,,(2)
1 e2igom2n22n
T (1= 22)(1—m22) (1 — 22)(1 — m2na2n)
1 — e2igom2nz2n
© (1= 22)(1 — m2nz2n)’
we get

1 — eQumenZZn)

H(z) = ie™™ ( 1 )

Let ®(2) = ie™™ (%) and o(z) = m*"2?". Hence H(z) = (® o 0)(2).
By Proposition 3.3.6, ® maps D to the right half plane Cg~o, while o is a
conformal mapping on D. So H maps D to Cg~o which means R(H(z)) > 0
for all z € D. Hence the image of D under f,,,, is convex in every direction
¢ € [0, 7). This implies the image of D under f,, ,,, is convex.

Lemma 3.3.5 shows that the boundary of the D gets mapped to 2n + 2
points, by, by41,bpto and bonio, under f,,,,. According to Remark 3.4 of
[1], Bshouty and Hengartner note that in this case the image of I under
fn.m must be the convex polygon. That is, the image of D under f, ,, is a
parallelogram bounded by by, b1, by10 and by, yo. O

Next, we will analyze some geometric properties of this parallelogram. For
a natural number n and a complex number m = e where 0 < 6 < = let P
be the image of D under f, ,,. We known that P, ,, is a parallelogram whose
vertices are by, b,11,b,10 and by, 0. For k=1,2,3,...,2n+2, let oy be the in-
terior angle of the P, ,, at the point b;. Since bg, b3, ba, ...bp, bpts, by, .. oy
are on the sides of P, ,,,, we can conclude that ay, oz, ..., iy, Qpys, Qpga, ..oy oy =
7. And since the line through b; and by, 5 has slope — tan(nf) = tan(m —nf)
as same as the line through b,.; and b, 15, we can conclude that o, ; =
Qopyo = nb and oy = appe = ™ — nd. This also implies that P, ,, is a
rectangle if and only if m = e2» which is the middle of the interval (0, 7).

For points A and B in the complex plane, denote the length of line seg-
ment AB by [(A, B).

According to the formula by, it is easy to see that for £k =1,2,3,...,n,

T
U(br, bgi1) = R
2n sin (9 + u)

n

And for k=n+2,n+3..2n + 1,
L(bk, b1) =

T
2n sin (9 + M)

n
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And hence

—_

n—

T 1
(b1, bng1) = U(bns2, banya) = o 2 (m) : (3.6)

<.
Il
)

By Pythagorean theorem, we can compute

[(bany2,b1) = Ubng1, bugz) = \/(% COt(ne))Q t <g>2 (3.7)

T

T2 sin(nf)’

Notice that [(ban42,b1), {(bnt1, butz) don’t depend on m. By dividing (3.6)
by (3.7), we get the ratio of length of non parallel sides of the parallelogram

Py
[(by,bpi1) 14 sin(n0)
—_ = — . 3.8
(bant2,b1)  n z; sin(6 + M) (38)

For a fixed natural number n, let r,, : (0,7) — R be a function defined by

1 - sin(nf) 1 2 ((—1) sin(n(d + iny)
ra(0) = n Z <sin(0 + %)) n Z < sin(6 + %) ) .

j=0 Jj=0

We will investigate some properties of r,. Firstly, it’s obvious that r, is
smooth on (0,%). And

7r 1 sin(n(% — 0))
(E-0) ==
" (n ) njz()(sm 0+‘”)>
1 — sin(m — nf)
nis sm((jf”r —0)
1 — sin(nf)
n =0 Sln((nj—l + 6)

n—1
1 sin n@w —r(0)
ni= sin(6 + %)

for all 6 € (0,%). Next, we will consider asymtotic behavior of r,. If 0
converges to 0, we get

. sin(nf) . sin(nf) 0\ ]
ra(0 )_eli{%+ nsin 6 = . no sing )
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Combine with the above relation, we get

W)

Figure 3.5: For fixed n, the Image when m = ¢ (left) and when m = ei(50)
(right) is a reflection of each other. This figure illustrates this fact for the
case n =2 and 0 = .

For example, in the case that n = 1, we get r,(f) = 1 for all § € (0, %)
which implies that P, ,, is a rhombus, as we mentioned in Section 2.5. Let

look at the case n = 2. We get r5(0) = % (Ssifn(éé;) + S;i?gf%) = sinf + cos .
2

In this case, we can see that r5(0) = cosf — sin@ which is positive when
0 < 6 < % and negative when § < 6 < 7. So ry(f) is increasing when
0 < 0 < %, decreasing when 7 < 6 < 7 and maximum when 6 = 7 which
its value is 7, (¥) = v/2. And in that case (§ = ), the image P, is a
rectangle. And since 1 < 75(f) = sinf + cos@ < v/2 when 0 < 6 < 5, we can
conclude that P, is not a rhombus for all 0 < 6 < 5. We will prove the
same result for an arbitrary natural number n > 2.

We will use the following facts:

Proposition 3.3.8. For real numbers a,d and a natural number k,

k-1 . kd
sin (% k—1)d
Zcos(a + jd) = .Lfl)cos (a + u) .
, sin 5 2
Proof. Let a,d be real numbers and k be a natural number. Let w = €', we

get

k—1
ia j wh —1 ia
e g w! = e
e

- —1
7=0
kd_l ]
"))

w
==

cikd _ 1 pid/2 (45044
=\ gikd/2 cid —1)° : :
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From Propositon 3.3.3, we get

2sin (M) —3 L (k=1)d
eza w] 2 67’(“+ 2 )
Z < ' 2sin ¢
_ [ 2sin (de) pi(a+521)
N 2sin %l '

By comparing the real parts of two sides of the equation, we get this propo-
sition. O

Proposition 3.3.9. For a natural number k and a real number «,

sin(ka) 2
=1+2 E — f k is odd
— + 2 cos( ra) if kis o
odd r
and
sin(ko) -~
=2 g - k
- > cos( ra) if k is even.
oddr

Proof. Let k be a natural number and « be a real number. We get
sin(ka) = sin((k — 1)a) cosa + cos((k — 1)) sin «v
= {sin((k — 2)a) cos & + cos((k — 2)a) sina} cos a + cos((k — 1)a) sin v
in(k in((k—2
sm'( o) = sin( : )o) cos® a + cos((k — 2)a) cos a + cos((k — 1)a)
sin «v sin «v
in((k—2
= W(l —sin? ) + cos((k — 2)a) cos a + cos((k — 1)a)
sin((k —2)a) .
= k—2 k—2
p— sin(( o) sin v 4 cos(( ) cos
+ cos((k — 1))
in((k —2
S =20 s os((k = 1)a).
sin «v
By mathematical induction and this identity, we can conclude this proposi-

tion. ]

First, let consider when n is even. From Proposition 3.3.9, we get

sin(n(0 + =) Jm
i S SO TP VA _ al
ey~ (00 (04 5))

odd lc

oS an (o)),

odd k
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Hence
n—1 ;. T
iy = 12 (0 - )
" n = sin(6 4 27)
9 n—1 n—1 i
=— (—1) Z cos (k: <0 + —))
n 7=0 k=1 n
odd k
n—1 n—1 . n—1 n—1 .
2 2
= — cos(k(9+‘7l))—— cos(k‘<9+]—ﬂ))
n j=0 k=1 n n =0 k=1 n
even jodd k odd jodd k
9 n—1 n-—1 . 9 n—1 n—1 .
= — Cos(k(ﬁ—i-‘ﬂ))—— cos<k<9+j—7r>>
n , n n , n
k=1 3=0 k=1 7=0
odd k even J odd k odd 7
n—1 n—1
n—1 —3 n—1 2
2 2 2 2 1
= — cos(k(9+ﬂ))——z cos(k:(9+(T+ >7T)>
n n n n
k=1 r=0 k=1 r=0
odd k odd k

jo cos (k (9 + 2’%)) = (Zz E”;E:;) cos <k0 + %)

and
S (i (o 2 207)) ( Eii) o ( (55 022
() =)

k=1
odd k
n—1 [ km
_2 31kn( ) - (2 sin <k6 + (n 2>7Tk) sin <7T—k>)
n 2sin (2—”) cos (2—) 2n 2n
odd k

n—1 (2 sin (%’r) sin <k9 + —(n;i)”k> )

cos (4%)
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! (cos (k9— g—ﬁ) — COS (7rk’—|—k’0 — g—ﬁ))

coS (k”)

n

Il
S|
g

o

o}
o
B

i
L

I
(]

k=1
odd k
p mk
=— k0) + sin(k6) tan | —
s (cos( ) + sin(k0) an(2n)>
odd k

Differentiating this equation two times, we get

r’(0) = 2 ni (k:2 cos(k@) + k*sin(kf) tan (g—k»

n n

k=1

odd k
For 0 € (0, %], 0 < kO <7 foral k=1,3,..,n—1. Hence cos(k0)) > 0,
sin(kf) > 0 and tan (3%) > 0 for all k = 1,3,...,n — 1. This implies that
r(6) < 0 for all 6 € (0,5]. And since r,(Z) = r,(f), we can conclude that
(%) =1 (0) for all 6 € 20, ). So r(f) < 0 for all 6 € (0, Z) which means

n
/

r1,(9) is decreasing on (0, T).

Since 7, (% — ) = r,(0), we can conclude that 7}, (T —6) = —r, () for all
6 € (0,%). This implies that 7/,(3) = 0. And since 7,() is decreasing on
(0,Z), we can conclude that /() > 0 on (0,4) and 7,(f) < 0 on (&, T).
Hence r,(0) is increasing when 0 < 6 < 7-, decreasing when - < 6 < T and

maximum when ¢ = -, which has value

n—1
™ 2 km
() =2 | e (5)

k=1

odd k
And in that case (6 = 5-), the image P, ,, is a rectangle. Moreover, since
r(0) is increasing when 0 < 6 < - and r,(0%) = 1, 1 < r,(#) when
0 < 0 < 5-. Similarly, since 7,,(f) is decreasing when 5~ < 6 < =, 1 < r,(0)
when 0 < 0 < 5-. So 1 < ry,(0) when 0 < 6 < Z. Now, we can conclude that
Py 18 not a rhombus for all 0 < 6 < 7.

Next, let consider when n is odd. From Proposition 3.3.9, we get

odd k

n—1 .
=142 Z cos<k<9+%>).
k=1

even k
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Hence
) 1< )7 sin(n(0 + L&)
ro(0) = —
ne sin(0 + £°)
1 n—1 n—1 .
= — 1+22(—1)J coS (k (9+]—))
n 7=0 k:1k n
1 n—1 n—1 T n—1 n—1 .
=—]11+2 cos<k<9+]—>)—22 cos(l{:(9+‘7—))
n 71=0 k=1 n 7=0 k=1 n
even j even k odd jeven k
1 2, n-l o 3, ol (2r +1)
= — 1—1—22 Cos(k‘(0+—>)—2 cos(k(@—i— ))
n r=0 k=1 n r=0 k=1 n
even k even k
1 %5 15t
1 -— 2 — o + 1
= — 1+2ZZ€03(I¢(«9+£>>—2 cos(k(&—ku))
n kzlk r=0 n k:1kz r=0 n

and

ot gipy ((En=Dr -

> cos <k <Q+M)> — M oS (k; (9+§>+(n 3)7rk:)
—0 n sin ( ;) n 2n

sin k(n—1)m B

sin (M5) ) =

sin (%’r) 2n
Hence
_ (n—1)mk
1 = [cos (W T —) . (k(n+ D . (k(n— )7
PO =112 | [ (T) ~sin (T)]
e\’fe_nlk
1 n—1 { cos (k;@ + W) L kr
=—11+2 2 — | sin [ —
n + kz:; 2s1n(k”) CoS (’;—Z) ( COS( 2 )Sm(Qn))

even k
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1 2
— 142

n ;k cos (&%)
1 ) n—1 [ cos <k0 + (2n;)ﬂk> + cos (k6 — £)
ol T & cos (&)

even k

1 1 [ 2cos (k@ — ’”) )
== |1+ 2

n ;k ( cos (42)
B l N z ”Z_i cos k0 cos (g—g) + sin k6 sin (’;—Z)
noon =1 cos (&%)

1 24 . ke
=+ = (cos(k;&) + sin(kf) tan (%)>

Differentiating this equation two times, we get

() = —% :i; (k2 cos(kh) + k2 sin(kf) tan (g—k»

n

even k

For 0 € (0, %], 0 < kO < 7 forall k=24,.,n—1 Hence cos(kt) > 0,
sin(kf) > 0 and tan (%) > 0 for all £k = 2,4,...,n — 1. This implies that
(0) < 0 for all 6 € (0,5=]. And since r,(Z) = r,(f), we can conclude that
(%) =1 (0) for all 6 € 20, ). So r(f) < 0 for all # € (0,Z) which means
r1,(6) is decreasing on (0, Z).

Since 7, (% — ) = r,(0), we can conclude that 7}, (T — ) = —r,, () for all
0 € (0,%). This implies that 7/,(3) = 0. And since 7,() is decreasing on
(0,Z), we can conclude that /() > 0 on (0,4) and 7,(f) < 0 on (&, T).
Hence r,(0) is increasing when 0 < 6 < 7-, decreasing when - < 6 < T and

maximum when 6 = = which has value

o0
T 1 2| &1 km
(g =ata | 2o ()
even k

And in that case (6 = 5-), the image P, ,, is a rectangle. Moreover, since

m(0) is increasing when 0 < 6 < - and r,(0%) = 1, 1 < r,(f) when

0 < 0 < 5-. Similarly, since 7,,(f) is decreasing when 5~ < 0 < =, 1 < r,(0)
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when 0 < 6 < 7-. So 1 < r,(f) when 0 < 6 < =. Now, we can conclude that
Py is not a rthombus for all 0 < 6 < 7.

Finally, we will prove that for a given real number A > 1, there exist a
natural number n and a complex number m = € where 0 < 0 < = such that

the ratio of lengths of the non parallel sides of P, ,, is equal to A, equivalently
ro(6) = A.

Theorem 3.3.10. Let A > 1, then there exist a natural number n and a
complex number m = € where 0 < 6 < = such that r,(0) = \.

Proof. Let ¢ be an odd positive integer. Let [ € {1,3,5,...,¢}. Since

.2 (n—Dm .2 1
lim — (sec | —— = lim - | ——
n—soo N 2n n—00 N \ o5 <(nfl)7r>

there exists a positive integer N; such that for all n > N,

I qlg+)m n 2n Ir q¢q+ 1)

Let N = max {Ny, N3, Ns,...,N,, q}. Let n be an even positive integer
greater that V. We get

4 2 —1 4
L < — (sec (u)) < —+L forall [ =1,3,5,....,q.

Ir qlg+)r n 2n Im qlg+ D7

Consider

n—1
T 2 km
w(g)=a | 2 ()
odd k

Since 0 < 5% < Z for all k = 1,3,5,....,n — 1, sec (&) > 0 for all k =

2n 2n
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1,3,5,...,n — 1. Hence

“(5)-

S

3

|

— =
n
D
o

N
l\')|??‘
T

N———

v
S
ML
n
]
A~
S
S
~

I
-
S
VRS

VA

@

)
/N

S
AN
3 o~

5
N—
N—

q
4 4
> J— -
20| 0
=1
odd
q—1
4 1
= DY
=1
odd [

Therefore for each positive odd integer ¢ there exists a natural number N
such that for all positive even number n greater than N,

—1

T 4 &1
nloo)> - -
" <2n> T ;l
ociil

Let A be any positive real number greater than 1. Since

Hence there exists a natural number Ng such that for all positive even num-
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bers n greater than Ny,

ACIE DO ER!

Since 7, (07) = 1 < A < 7, (&) and r, is continuous on (0, 4=), we can

conclude by Intermediate Value Theorem that there exists 0 € (TE), 5-) such
that r,(0) = A = r, (L —0). O

Although this theorem implies that we can find a harmonic map f, .,
which maps D onto a parallelogram that has the ratio of lengths of the non
parallel sides equals to a given number A > 1, it doesn’t imply that for
any given parallelogram (up to similarity) there exists a harmonic map f,
which maps D onto it. In fact, a parallelogram (up to similarity) can be
characterized by only one of its angel a together with its ratio of lengths of
the non parallel sides \. It is easy to see that if we fix n and «, we should
choose m = € where § = % or § = = to get the parallelogram which has
one of its angle equals to a. But this means that n and « control the value
of A = r,(#). So we may can not find a harmonic map f,,,, which maps D
onto a parallelogram with fixed v and .

In the next chapter, we will construct a minimal graph corresponding to
the map f,



Chapter 4

Minimal graphs over
parallelograms and their
conjugate surfaces

In this chapter, we will construct minimal graphs over parallelograms by
applying modified Weierstrass representation (Theorem 2.4.7) to the map
fn.m constructed in Chapter 3. We also construct their conjugate surfaces.

4.1 Construction
Applying Equation (2.9) to harmonic mapping f, ., we get the parametrize

of minimal graph (u(z2),v(z), Frm(2)) = (R{fom(2)},S{fom(2)}, Fom(z))

where

Fanl?) =234 [\ fl i OatonlO1tc}
=23 { [h 0V}

_ 2%{ /0 m"cnh;,m@)dc}.

From Equation (3.3), we get h;, , (2) = (kzg)(limgnzzn). Hence

) =2 [t )

From now, we will consider for n > 2 because the case that n = 1 is
already done by M.Dorff and J.Szynal and the method that we use here is

95
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not compatible with that case. find 7, ,,,(2) by computing the partial fraction
decomposition of

(1= (@ =m¢) (1= mw)(1 — mwi,()..(1 —mwii¢)(1 — (1 +¢)
where wy,, = €™ is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

Cy Cy Coy, Cant1 Conyo
+ +o + +
(1= mw¢) (1 —mw3,C) (1=mwin¢)  (1-¢) 1+
where C; € Cfor all j =1,2,3,...,2n 4+ 2. We get
1 — 2 1 — 2n ~2n 1— 2 1— 2n ~2n
e (< Ly R L P

(1 = mwsn() (1 = mw3, ()

+ ((1 - CQ)( QNCQ”)) + 02n+1(1 + C)(l . mZ"CQ")

(1 —mw3i()
+C’2n+2(1—C)(1—m 2”).

For p = 1,2, ..., 2n, consider <(1_§)_(717;?22)<2n)>' Since
2n

1—m2¢? = (1 —muwh O(1+mwb ¢ +m?F ¢+ . +m*™ 1w§,f” be2n— D,
we get
(1_{2)(1_m2n62n) 2 2 2p +2 o2n—1 p(2n—1) -2n—1
=(1-C)(1 4+ muh, ¢ +miwb” + ... +m™" ™ wpn ¢
Comagg) - Tt me 2 2 )
2n—1 ‘ '
= > (Ml ¢ —mIwg )
=0

2n—1 2n—1
§ 3,,P3 3 E J j+2
m- Wy, - m w2nC

j=0 7=0
2n—1 2n+1

J.opisi\ j—2, p(i—2) ~j
E m’wsy, ¢ E m’ " wy, 7C
j=0 j

_ P 2n—2 p(2n 2) ~2n 2n—1, p(2n—1) ~2n+1
= 14 muwy, ¢ —m™ Twy, T = mT w0

2n—1
g, g i=2 p(i=2) 45
+ § (m Woy G m? " wy, ¢
Jj=2
_ 2n—2 _ 2n—1
2n—2, p(2n )CQn_m%z 1wp( n )<-2n+1

_ P
=1+ mws,,( —m Wop, 2n
2n—1

+ Z (mJ 2wp(y 2) mzwgg )CJ)
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Therefore

2n
_ 2 : D 2n—2, p(2n—2) ~2n m2n—1 p(2n—1) ~2n+1
- Op <1 + manC —-m an C - w2n C

p*l
2n—1

+ZC’ (Z <m] 2 5( 2)(m2w§ﬁ 1)Cj>>

+ C2n+1(1 + (1 = m*¢*") + Conga(1 — (1 — m*¢*")

2n—+2 2n
= Z Cp + ((Z Cpmw§n> + Cong1 — 02n+2> ¢
p=1

p=1
2n—1 n
> (ZC mi 2 (s, >> ¢

_ <Zcm2n 2 §n2n 2) + (02n+1 +02n+2> m2n C2n

_ (ZC m2n—1 gnzn 1)) + (Conr1 — Consa) m?r | ¢,

Comparing the coefficient of ¢7 for j =0,1,2,....2n + 1, we get

J=0;C1+Co+ ... +Copa=10
2n
J=1 (Z Cpmw§n> + Cong1 — Copyo =0
p=1
J€1{2,3,4,....2n — 1} \ {n}; ZC m? 2BV (2w — 1) = 0
J=n; ZC’ m™ 2 (m2w — 1) = m”

(ZC m2n 2 §n2n 2) ) + (C2n+1 + C2n+2) m2n —0

.j =2n + 17 (Z C an ! gn2n 1)> + (02n+1 - 02n+2> m2n = 0.
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Since m # 0, we can divide the equations by m and get

(0); Ci+Co+ ... + Co0 =0

2n
1); <Z Cpmw§n> + 02n+1 — 02n+2 = 0

p=1

Z pw;(a] DmPw —1) =0for j =2,3,4,...,n—Ln+1,..,2n—1
ZOpwé’fJ‘ Dl — 1) =m?
(Z Cpw 2n ? ) + (Cong1 + Conga) m* =0

<Z Cub"Y ) + (Conyr — Conya) m = 0.
By m?(0) — (x), we get
(2n); Z Cu?" ™ (m2w2 — 1) = 0.
By m(1) — (xx), we get
(2n +1); Z Cout?" N (m2w2 — 1) = 0.

For r = 1,2,3, ..., 2n, consider Z?Tgl w7 (5) and get

2n+1 2n

E E 2 2p o —rn, 2
Opw2n m Wop — 1) =Wy, M

Jj=2 p=1
2n 2n+1
}: 2 2p 2: PT)J _ . —rn, 2
Cp(m w?n w2n w - w2n m
p=1

Since for p —r = 1,2,3,...,2n — 1(mod 2n), wb " are roots of 22 + 2724 +
L 22 =0, we get

2n+1
Z W (P=1)J _ () for all p—r=1,23,..,2n— 1(mod 2n).
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Therefore
2nC, (m2wd — 1wy 2 = wy ™ m?
—r(n—2) 9
m
2
C. = =

forall r =1,2,3,...,2n.
From (x), we get

1 2n (_1)17
Cont1+ Conta = Z gt = o Z — (4.1)

mawy, — 1

From (xx), we get

2
Pub
Cont1 — Conpa = —— Z Cpwy, = Z —znl (4.2)

Solving this system of equations, we get

2n
: _ 1 (1)
() + (4D)iCors =~ >

N —

2n
1 1 (—=1)P
—((4.1) = (4.2)); Copy0 = — —_—
We get
; (S (et mig))
1 ZZT:LI (Z]2161 mjwéi;f—n)p)
T in m2m — 1
(X (Ziil ”gjn)p)
T m2n — 1
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and

n 2n
(_1)p+1 (_1)p+1
n+p 1 + Z n+p 1

man

( 1
2n n
1 —1)p—n+l —1)ptntl
T PIR T e or c
mws,, — 1 = mwy, = — 1

pn+l n (_1)p+n+1>

P
mwsy,, — 1

]
3T
Sl

|

.

+

p=1

(=™t 2nmn

- 4n m2n — 1

_ (_1)n+1mn

C2(m2n — 1)
Hence

mncn B Zzn wQ_nj(n_Q)m2 < 1 )
(1—C2)(1 —m2nC2n) on(m2wsl —1) ) \1 —mwi ¢

B mn N (_l)nJrlmn
2(m* —1)(1—-¢)  2(m* —1)(1+ ()

Despite the fact that this method is not compatible with the case n =1,
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the result above also holds for that case.
m( —me 1
A=) —mnez) " (= )1 = mn¢)

1 1 m? 1
:mc(l_mQ (1—c2>_1—m2 (1—m2<2)>
m ¢ m? m¢
T 1-m? (1—g2> T1-m2 (1—m2C2)
m 1 1 m? 1 1
T 2(1—m?) (1—g B 1+¢) T 2(1—m?) (1—m< B 1—mg)
m? 1 m? 1
T o(m2— 1) (1—mc) S 2(m2—1) (1+m<>
m 1 m 1
ETE 1>(1—<)+2<m2—1)<1+<>
—J(n D 1
_Z [(271 (m2w3? — 1)) (1—mw§n(>
mr (_1)n+1mn

T2 —1(A-0) | 2(m@ —1)(1+()

where n = 1. So from now we let n be an arbitrary natural number. We will

ﬁnd fo < 1— CQZ m2nc2n )dc
For j =1,2,3,...,2n, consider

# 1 1 # 1 -
/ b gL / (1 — mud, 0)

1 .
S (mw%n) log (1 — mw},z)

and [ 77xd( = — [§ 12pd(1-C) = —log(1~2), [§ 7ed( = [§ ed(1+¢) =
log(1 + z). Hence,

: m"¢" e " m ;
/0 <<1 — )1 - WQ"C%)) = ]21 [_ <2n(m2w§£ — 1)> tog (1 - manz)]
—m" 0 — (= ) 0 z
+ (e ) s =)+ S g1+ 2
S [ Ftmed, o
B Z [(27’L(7’n2w2fZ — 1)> log (1 2 ]

) log(1—2) + (Q(m): 1: log(1 + 2).

dto=
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n/ n

From F,, ,.(2) = 2S {foz (l_cg)ﬁjﬂgn@n)dg}, we get

2n ; j
—1)i+1 J )
Fom(2) =) S { (()—%mwi”> log (1 — mwgnz)}

j=1 n(mzw% )

+%{(m§fn_ 1) log(1 —z)} +s{(%—+jqﬂ) log(1 +2)}.

Next, we will construct the conjugate surface Sy, of Sy, ,,. Let x*(z) =
(z1(2), 25(2), v5(2)) be a parametrization of S} . By Equation (2.10), we
get

— 1V el :
COmm ) 150 (1= e, 2)
n(miw;) — 1)

n

—HR{(m#n—l) log(1 —z)} +%{(%) 1og(1+z)}.

Figure 4.1 shows some figures of S, and S}, ..

In the next section, we will prove that if m = e where 0 < 6 < ~, Spm is
a JS surface over parallelogram domain and then conclude some interesting
corollaries.

< m > o 14+ mwl 2 N ( 1+ m2" ) o <
n(m? — ) o\ 1= mah,2 21 —m>y)
(

)
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(a) Spm; n=2and m = e (b) Sy n=2and m = e

(¢) Spm; n=2and m = 0.95¢ T (d) S!,.;n=2and m= 0.95¢ T

n,m»

(€) Spm; n=2and m = % (f) Spm;n=2and m = %
(8) Spm; n =3 and m = e (h) Sy, where n = 3 and m = e

Figure 4.1: Minimal graphs over f, (D) and their conjugate surfaces for
various values of n and m
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4.2 Some corollaries

For the case that m = € where 0 < 0 < 7, the parametrization (u(z),v(2),
Fum(z)) is a minimal graph S, ,, over a parallelogram domain with 2n +
2, bi,bo,...,bon2, and hence 2n + 2 sides (see Section 3.3). Since this
parametrization obtained from harmonic mapping f,,, which has dilation
w(z) = m*z*", the Equation (2.11) tell us that (the stereographic projec-
tion of) the Gauss map G(z) of S, is

Glz) = i

which is in the form ¢/B(z) where ¢ is a constant of modulus 1 and B(z) is a
Blaschke product of order n. By Theorem 2.4.11, we can conclude that S, ,,
is a JS surface.

For j =1,2,3,...,2n, let a; be the interior angle of the parallelogram at
the vertex b;. According to Section 3.3, we get oy = a9 = ™ — nb and
Qpy1 = Qanpyo = nb, while the rests are m. So by, 0,11, 0,42 and by, .o are
points of convexity and Theorem 2.4.10 tells us that F,,,,(z) must change
signs on the sides adjacent to each of these four points.

For j = 2,3,4,...,n, we known that f,,,(e"?) = b; when ¢ € (@ —
0, — 6). Consider

(sra(ele® ) = arg(ufe"F=1))

(oo (2 0)) o (52 )

=jr—(j—Dr
:WZOZJ'.

N | —

For j =n+3,n+4,n+5,..,2n+ 1, we known that f,,(e"?) = b; when
= ((J—n2)7r —p, U ). Consider

n

(arg(ew(e " 57) — arg(w(e 7))

— 5 (o (o (U5 0) ) -2 (04 (U520 -0) )

=(U-Ur=0 -2

N | —

So for j = 2,3,4,...,n,n+3,n+4n+5,..,2n+1, b; is a full resting
point. We can conclude by Theorem 2.4.10 that F,,,,(z) must also change
signs on the sides adjacent to each of these points.
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Now, we can get the corollary:

Corollary 4.2.1. For a natural number n and a complex number m = e*

where 0 < 6 < = minimal graph Sy, parametrized by (u(z),v(2), Fnm(2)) is
a JS surface over parallelogram domain with 2n + 2 vertices, by, ba, ..., bopio.

Moreover, F,.,(z) changes signs on the sides adjacent to b; every j =
1,2,3,....2n+ 2.

Since we can construct JS surface over parallelogram P, ,, with vertices
by, by, b3, ..., bay o, Theorem 2.2.6 tells us that this parallelogram must satisfy

(a) no two edges of A; nor of B; meet at a convex vertex,

(b) 2> 4 e [Ail <[ and 235 .y | Bi| <[] for each such II, IT # P,

(c) DJ1A;l = > | Bi| when II = P.
where P, ,, has finitely many bounding edges partitioned into sets A; and B;.
IT is a connected polygonal subset of P, ,, whose boundary is the union of
some segments from A; and B;, possibly including additional line segments
contained in P, ,, whose endpoints are vertices of P, ,,. |II| is the length of
the boundary of II.

We will focus only on condition (c).

In the case that n is even, F has the same sign when it approaches
the sides 0109, b3by, ..., byi1byio, ..y boni1bono Which have opposite sign to
the sides bybs, bybs, ..., bubyi1, ..., bopban i1, bapioby. From Section 3.3, we have

known that
T

2sin(nh)

while F has opposite sign when it approaches the sides b,,.1b,, 12 and b, 2b;.
And for k=1,2,3,...,n+1

l(bgn+2, bl) = = l(bn+1> bn+2)>

™

2n sin (9 + ”_—k)”>

(

by, brs1) =

m
o sin (9 n (2n+1—(k+n+1))7r>

n

= l(bk’—i-n—i-la bk+n+2)-

Since k and k£ + n + 1 have different parity, F also has opposite sign when it
approaches the sides bibg11 and by, 110g1n12. SO we can pair the sides with
opposite sign which has the same length bijectively. This obviously implies
the condition (c).

It is much more interesting for the case that n is odd. In this case, we can
not pair the sides as for the previous case. Since n is odd, F has the same
sign when it approaches the sides b1bs, b3by, ..., bybpi1, ..., bap 102,12 Which are
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opposite sign to the sides bybs, bybs, ..., byi1bnia, ..., banbon i1, bopioby. Accord-
ing to the condition (c), this implies that the sum of the lengths of the sides
biba, bsby, ..., bbbyt .., bopi1ban o must be equal to the sum of the lengths
of the sides bobs, bybs, ..., bpi1bpi9,s ... bopboni1, bayrobi. According to Section
3.3, we can conclude an interesting trigonometric identity as follow:

Corollary 4.2.2. For odd n,
"zjl sm 9 + ’”)) B
— sm 9 + k“) -

Proof. From the argument above, we get

2n+1 2n
Z l bk: bk+1 Z l<bk7 karl) + l(b2n+27 bl) (43>
orid cvenk

Consider the left hand side,

2n+1 n 2n+1
Z bk brst) = D Wbk bia) + > 1, bist)
k=1 k=n+2
ok odd k odd k
n . 2n+1 -
= -
; 2n sin <9 4 (o= kﬁ) k;rg 2n sin (9 + M)
odd k odd k
u T u T
= oy | (n—k)
k=1 \ 2nsin <9 + ¥> k=1 \ 2nsin <9 + ¥>
odd k odd k
n
= .
=1 \ msin (6 4 (= k>7r>
odd k
Similarly for the right hand side,
2n n—1
D Ubk, brgr) + Ubzngz, br) = Y Uk, brgr) + Z (b, br1)
k=2 k=2 k=n+3
even k even k even k
A 1(bng1, bnsz) + U(b2n+2, b1)
n—1
_ T n T
—~ \ nsin <9 | (n=h)r kr) ) sin(nf)
even k
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From (4.3), we get

odd k even k
k=t n sin (9 + n) ) =1 nsin (9 + (nfk)ﬂ) sin(n)
n (— 1)k+1 - 1
k=1 \ 7SN (9 + (o= k)“> sin(nf)
" (=1)F*1sin(nd)
> .
1 \ sin <9+ n— k:)7r>
Hence
"\ [sin (n (6 + =)
Z 3 km =n
— sin (6 + 7)
n 1 Sln 0 4 km krr sin (n8—|—nﬂ-) -
1 sin ( e+'“f sn(0t+7m)
n—1 Sln( (0+kkﬂ)) +—Sln(9) .
i\ sin (04 57) —sin (9)
= sin ( (9 + kﬂ-)) Sln (TLH)
=n
=1 ( ) sin (0)
nzl Sln 0 4 km ’W )
 \  sin ( (9 4+ b k”
as desired. .

Remark 4.2.3. In fact, this corollary can be proven purely algebraically, as
follow:

Proof. (Algebraic proof of Cor. 4.2.2) By Prop 3.3.9, for k =0,1,2,....,n—1,

Sin( (49—{—’” km
sm(Q—l—’” —1+22005(n—r (9—}—7))

odd T
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Therefore,
n—1 km n—1 n—2
0
Z sin (n ( +k ) =n+2 Zcos((n—r} <0+k_7r>>
-0 sin (0 + %) k=0 r=1 "
T oddr
—n+2 cos<n—7’ (0+k1)>
r=1 k=0
odd r

For fixed r € {1,3,...,n — 2}, by Prop 3.3.8, we get

nzlcos ( ) (9+ lmr)) ::Z:‘;COS ((n—r)9+k (WTW))
in (3 ((n—r)9+ n=1) (("_T)W)) -

sin (((n;)w)) 2n

0 Wthh implies

:Z_:cos ((n—r) (9+k—ﬂ>) = 0.

1 (sin (9—{—’”))
z;( sin 9—}—’“;) )Zn

as desired. O

Therefore




Chapter 5

Conclusion

5.1 Our Results

We obtained some harmonic mappings onto an arbitrary parallelogram do-
main via Radé-Kneser-Choquet theorem but we can prove that this kind of
maps has analytic square root dilation only when it maps ID onto a rhombus,
see Theorem 3.1.1. We then constructed harmonic shear f, ,, of elliptic inte-
gral F(z,1) = [; = C2 with dilation w(z) = m?"2*" where n is an arbitrary
natural number and m is a complex number such that |m| < 1. In the case
that |m| = 1, we found that the image of D under f,,, is a parallelogram,
see Proposition 3.3.7. We applied the Weierstrass representation to the har-
monic map f,, », where |m| = 1 and received a family of minimal graphs which
are JS surfaces over parallelogram domains, see Corollary 4.2.1. In fact, the
result in the case n = 1 is the same as result of M.Dorff and J.Szynal in
[8] which is a minimal graph over a rhombus, but when n > 2 the minimal
graph that we construct is a minimal graph over a parallelogram which is
not a thombus. We also rediscover an interesting trigonometry identity, see
Corollary 4.2.2.

5.2 Problems for further investigation

Although there is a lot of researches on minimal surfaces, there are still a lot
of problems to investigate. Here are some interesting questions arising from
our work:

1. Describe the image of D under f,,, where n is an arbitrary natural
number and m is a complex number where |m| < 1 and its associated
minimal graph. Figure 3.2 shows some image of D under f,,, where
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Im| < 1. We can make a interesting claim that for this case the image
of D under f, ., is a hexagon but we haven’t prove it yet.

. Construct minimal graph over an arbitrary parallelogram domain and

determine whether it is JS surface or not. In Chapter 3, we have
constructed a harmonic map which maps D onto an arbitrary paral-
lelogram domain via Radé-Kneser-Choquet theorem but unfortunately
its dilation has non analytic square root, see Theorem 3.1.1. However,
there is a lot of possible way to construct a harmonic map which maps
D onto a parallelogram domain via Radé-Kneser-Choquet theorem so
that there still a hope to find some of these maps with analytic square
root dilation.

. Apply shearing method to elliptic integral F'(z,k) and E(z, k) by us-

ing other dilations. Investigate the image of D under this map and
construct minimal graph over it.

. Construct minimal graphs over other polygonal domains and examine

whether it is a JS surface or not.
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The Project Proposal of Course 2301399 Project Proposal
Academic Year 2019

Project Tittle (Thai) msAnwuRaddueaaynsdauusludn

Project Tittle (English) Minimal surfaces and harmonic mappings

Project Advisor Assoc. Prof. Dr. Nataphan Kitisin

By Mr. Poom Lertpinyowong Student ID 5933539723

Mathematics, Department of Mathematics and Computer Science,
Faculty of Science, Chulalongkorn University

Background and Rationale

A minimal surface, intuitively, is a surface which for each sufficiently small portion of
it has the minimum area among all surfaces with the same boundary. Minimal surface can
physically be interpreted as a soap film that spans a wire frame when it is dipped in soap
solution. Some standard examples of minimal surfaces in Euclidean space are the plane, the
catenoid, and the helicoid. History of minimal surfaces can be traced back to 1744 when Euler
first described the catenoid surface. Since then minimal surface has become one of the most
interesting geometric object which challenges a lot of great mathematicians.

Theory of minimal surfaces involves many branches in mathematics, including
differential geometry, partial differential equation and complex analysis. One of the most
important techniques to construct new minimal surfaces is called the Weierstrass representation.

Our work will focus on special class of minimal surfaces called minimal graphs. A
minimal graph is a minimal surface which is lifted from its domain. One general example of
minimal graph is Scherk’s doubly periodic surface which has a square as its domain in the
complex plane. There are several papers that study this kind of surfaces such as [3], [5], [6], and
[8]. Constructions of minimal graphs in those papers are involving constructing harmonic
univalent mapping of the unit disc D, which is defined as an one to one function from D to C
whose real part and imaginary part are twice differentiable and satisfy Laplace equation, and
then use modified Weierstrass representation to construct minimal graphs. Two main techniques
that use to construct harmonic univalent mapping are Clunie and Sheil-Small shearing method



[2] (see example [5], and [6]) and Rad6-Kneser-Choquet theorem [7, Chapter 3&4] (see example
[3], and [8]).

In this project, we will try to apply those methods mentioned above to obtain certian
harmonic univalent mapping of the unit disc D and use it to construct minimal graphs over
certain domains.

Objectives

To construct minimal graphs over certain domains by using harmonic univalent
mapping of the unit disc D, given by Clunie and Sheil-Small shearing method or Radé-Kneser-
Choquet theorem.

Scope

In this project, we focus only on minimal graphs over certain domains.

Project Activities
A. Processes

1. Reviewing basic knowledges about minimal surfaces and harmonic univalent
mapping from [2], [7], and [9].

2. Reading related research papers from [1], [3], [4], [5], [6], and [8].

3. Presenting project proposal.

4. Constructing minimal graphs over certain domains.

5. Writing the project report and project presenting.



B. Duration

2019 2020

Processes

1. Reviewing basic
knowledges about
minimal surfaces
and harmonic
univalent mapping
from [2], [7], and
[9].

2. Reading related
research papers
from [1], [3], [4],
[5], [6], and [8].

3. Presenting project
proposal.

4. Constructing
minimal graphs

over certain
domains.

5. Writing the project
report and project
presenting

Benefits
A. The benefits for students who implement this project

1. To improve mathematical thinking and proving skill.

2. To improve academic research skill.

3. To review some knowledges in mathematics, especially in differential geometry and
complex analysis.

4. To learn some new knowledges in mathematics, especially in differential geometry
and complex analysis.

5. To understand properties of minimal graphs and univalent harmonic mappings.

B. The benefits for users of the project

1. To obtain minimal graphs over certain domains.



2. To understand more about properties of minimal graphs and univalent harmonic
mappings.

Equipment
A. Hardware

1. Computer
2. Printer

3. Textbooks
4. Stationery

B. Software

1. Microsoft Window 10
2. Microsoft Office 2010
3. Wolfram Mathemaica 9
4. Complex Tool 6.0

5. MinSurfTool 3.0

6. LaTeX
Budget
1. Textbooks 4,500 Baht
2. Stationery 500 Baht
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