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Chapter 1

Introduction

A minimal surface, intuitively, is a surface which for each sufficiently small
portion of it has the minimum area among all surfaces with the same bound-
ary. Minimal surface can physically be interpreted as a soap film that spans
a wire frame when it is dipped in soap solution. Some standard examples
of minimal surfaces in Euclidean space are the plane, the catenoid, and the
helicoid. History of minimal surfaces can be traced back to 1744 when Euler
first described the catenoid surface. Since then minimal surface has become
one of the most interesting geometric object which challenges a lot of great
mathematicians.

Theory of minimal surfaces involves many branches in mathematics, in-
cluding differential geometry, partial differential equation and complex analy-
sis. One of the most important techniques to construct new minimal surfaces
is called the Weierstrass representation.

Our work will focus on special class of minimal surfaces called minimal
graphs. A minimal graph is a minimal surface which is lifted from its domain.
One well-known example of minimal graph is Scherk’s doubly periodic surface
which has a square as its domain. There are several papers that study this
kind of surfaces such as [5], [7], and [8]. Constructions of minimal graphs
in those papers are involving constructing harmonic univalent mapping of
the unit disc D, which is defined as an one to one function from D to C
whose real part and imaginary part satisfy Laplace equation, and then use
modified Weierstrass representation to construct minimal graphs. Two main
techniques that use to construct harmonic univalent mapping are Clunie and
Sheil-Small shearing method [3] (see example [7], and [8]) and Radó-Kneser-
Choquet theorem [9, Chapter 3 and 4] (see example [5], and [10]).

In this project, we will try to apply those methods mentioned above to
obtain certain harmonic univalent mapping of the unit disc D and use it to
construct minimal graphs over certain domains.

1



Chapter 2

Preliminaries

Our approach to construct minimal surfaces involve various branches in
mathematics, including differential geometry, complex analysis and harmonic
mapping theory, so we dedicate this chapter to provide all facts that we will
use in later chapters. We divide this chapter into five sections. First, we give
some basic background of differential geometry in section 2.1, just sufficient
to rigorously define minimal surfaces and some special classes of them in
section 2.2. In section 2.3, we provide some facts in complex analysis and
harmonic mapping theory that are necessary for our method to construct
minimal surfaces. Then we introduce the Weierstrass representation, the for-
mula to construct minimal surfaces, in section 2.4. Finally, in section 2.5,
we review some research papers that we have studied and also describe the
main goal of our work.

All of theorems in this chapter will be stated without proof, but most of
them can be found on [6], [9] and [12].

2.1 Background in differential geometry

The main objective of our project is to construct some minimal surfaces,
which we have already described in the introduction that a minimal surface
is “a surface which each sufficiently small portion of it has the minimum
area among all surfaces with the same boundary”. But in order to rigorously
define this kind of surfaces, we need some essential background in differential
geometry in R3. So we begin this chapter by providing some definitions and
facts in differential geometry.

Two main objects that we study in differential geometry in R3 are curves
and surfaces. Roughly speaking, a curve is an one dimensional subset of R3

while a surface is a two dimensional subset of R3.

2



2.1. BACKGROUND IN DIFFERENTIAL GEOMETRY 3

Definition 2.1.1. A (parametrized) curve in R3 is a map γ : I → R3,
for some open interval I ⊆ R. Moreover, the curve γ is called a unit speed
curve or arclenght-parametrized curve if |γ′(t)| = 1 for all t ∈ I.

Definition 2.1.2. The curvature κ(t) of an unit speed curve γ at t is
defined by κ(t) = |γ′′(t)|.

Examples 2.1.3. Here are some examples of curve:

1. A unit speed line, parametrized by γ(t) = (x0 +at, y0 +bt, z0 +ct) for all
t ∈ R and fixed real numbers x0, y0, z0, a, b, c such that a2 + b2 + c2 = 1,
is an unit speed curve in R3 with zero curvature at every point.

2. A unit circle, parametrized by γ(t) = (cos 2t, sin 2t, z0) for all t ∈ [0, π)
and fixed real number z0, is a in R3 which is not an unit speed curve
because γ′(t) = 2 for all t ∈ [0, π).

Definition 2.1.4. A connected subset S ⊆ R3 is called a (parametrized)
surface if each point p in S has a neighborhood U , a domain Ω ⊆ R2, and C2

one-to-one function x : Ω → U where x(u, v) = (x1(u, v), x2(u, v), x3(u, v)).
The function x(u, v) is called a parametrization of a surface S, and a pair
(Ω,x) is called a chart at p. The collection of charts that covers S is called
an atlas of S.

Figure 2.1: Parametrized surface.
([6], Figure 2.7, p. 106)

Definition 2.1.5. The unit normal vector of a surface S at a point p =
x (a, b) is N(a, b) = xu(a,b)×xv(a,b)

|xu(a,b)×xv(a,b)| . A tangent vector at a point p is a vector

v started at p which orthogonal to N(a, b), i.e. v ·N(a, b) = 0.

Note that not every surface has a well-defined unit normal vector, which
we called non-orientable surface, Möbius band for instance, but in this
project, we consider only on surface which has well-defined unit normal vec-
tor. We called such a surface, an orientable surface.
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The unit normal vector can also be considered as a map from Ω to 2-
dimensional sphere S2. This map is called the Gauss map. And if we
compose this map by stereographic projection with respect to (0, 0, 1), we
get the map G which maps from Ω ⊆ R2 w C to C . We also called G, the
(steroegraphic projection of the) Gauss map.

Definition 2.1.6. The tangent plane of a surface S at a point p is

TpS = {v|v is tangent to S at p} .

The geometric interpretation of TpS is the plane which perpendicular to
the unit normal vector and attached to S at p (see Figure 2.2) and it can be
proved that TpS = span {xu, xv}.

Next we will define the way to measure curvature of a surface S at a

Figure 2.2: A tangent plane and unit normal vector.
([6], Figure 2.13, p. 112)

point p. Surely, the definition of curvature of a surface should be related to
a curve. After we defined a curve and a surface, we can also talk about a
curve on a surface which is a curve γ : I ⊆ R → R3 such that its image
γ(I) is in S. We say that the curve γ passing through a point p in S if p is
in an image of γ.

Definition 2.1.7. Let S be a surface parametrized by x(u, v) = (x1(u, v),
x2(u, v), x3(u, v)), p = x(a, b) be a point on S, w be a unit vector in TpS,
and γ be a unit speed curve on S such that γ(t) = p and γ′(t) = w. The
normal curvature of S at p in the w direction is κ(w) = γ′′(t) ·N(a, b).

We can think of the normal curvature of S at p in the w direction as a
curvature (with a sign) of the curve obtained by intersecting S with a plane
span by w and N(a, b) (see Figure 2.3).

If we rotate w around the point p and compute normal curvature in
every direction around p, in the case that κ is non-constant, we can find one
direction with the maximal value of κ, denoted by κ1(p),and one direction
with the minimal value of κ, denoted by κ2(p). These two directions are
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Figure 2.3: Normal curvatures in different directions.
([11], Figure 2.2, p. 45)

called the principal direction at a point p and κ2(p), κ2(p) are called the
principal curvature at p.

It can be proved that principal directions of S at a point p are always
perpendicular to each other.

The next definition is the main key to define minimal surface, which we
will explain in the next section.

Definition 2.1.8. The mean curvature (i.e., average curvature) of a surface
S at p is H = κ1+κ2

2
.

Figure 2.4: Principal curvatures and principal direction.
(Gaba, Eric. (June 2006). Minimal surface curvature planes-en.svg.

Available at: https://commons.wikimedia.org/wiki/
File:Minimal surface curvature planes-en.svg [Accessed 23 Feb 2020])

It turns out that, according to the definition, the mean curvature is very
hard to compute because we have to find the maximal and minimal curvatures
at that point. The next theorem, which we state without a proof, gives us a
practical way to compute it.

Theorem 2.1.9. The mean curvature can be expressed in the form

H =
Eg +Ge− 2Ff

2(EG− F 2)
, (2.1)
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where E = xu · xu, F = xu · xv, G = xvxv, the coefficients of the first funda-
mental form, and e = N ·xuu, f = N ·xuv, g = N ·xvv, the coefficients of the
second fundamental form.

Examples 2.1.10. Here are some examples of surfaces:

1. The plane, parametrized by x(u, v) = (u, v, 0);∀(u, v) ∈ Ω ⊆ R2, is a
surface in R3 with zero curvature at every point, κ1 = κ2 = 0. This
implies that its mean curvature H = κ1+κ2

2
= 0 at every point. See

Figure 2.5.

Figure 2.5: The plane.

2. A sphere with given radius r > 0, parametrized by x(u, v) = (r cosu sin v,
r sinu sin v, r cos v) for all u ∈ (0, 2π) and v ∈ (0, π) is a surface in
R3.By some computation, we found that κ1 = κ2 = −1

r
at every point

on the sphere, so H = κ1+κ2
2

= −1
r

at every point.

Figure 2.6: Sphere with radius 1.
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3. A cylinder with given radius r > 0, parametrized by x(u, v) = (r cos v,
r sin v, u) for all u ∈ R and v ∈ (0, 2π), is a surface in R3. By some
computation, we found that κ1 = 0 and κ2 = −1

r
at every point on the

cylinder, so H = κ1+κ2
2

= − 1
2r

at every point.

Figure 2.7: A cylinder with radius 1.

4. A helicoid, parametrized by x(u, v) = (u cos v, u sin v, bv); ∃a, b > 0,∀u ∈
[0, a) and ∀v ∈ R, is a surface. By Equation (2.1) and some calcula-
tion, we found that it has zero mean curvature at every point. (see
Figure 2.8 for a helicoid with a = 1, b = 0.2).

Figure 2.8: A helicoid.

5. A catenoid, parametrized by x(u, v) = (a cosh v cosu, a cosh v sinu, av),∀u ∈
[0, 2π) and ∀v ∈ R, is a surface. By Equation (2.1) and some calcu-
lation, we found that it has zero mean curvature at every point. (see
Figure 2.9 for a catenoid with a = 1).

Figure 2.9: A catenoid.
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6. The Enneper’s surface, parametrized by x(u, v) = (u− 1
3
u3+uv2, v−

1
3
v3 + u2v, u2 − v2) for all u ∈ R and v ∈ (0, 2π), is a surface. By

Equation (2.1) and some calculation, we found that it has zero mean
curvature at every point. (see Figure 2.10).

Figure 2.10: The Enneper’s surface.

7. The Scherk’s doubly periodic surface, parametrized by x(u, v) =
(u, v, ln

(
cosu
cos v

)
)for all u ∈ (−π/2, π/2) and v ∈ (−π/2, π/2), is a sur-

face. By Equation (2.1) and some calculation, we found that it has zero
mean curvature at every point. (see Figure 2.11).

Figure 2.11: The Scherk’s doubly periodic surface.

2.2 Minimal surfaces, minimal graphs and JS

surfaces

Now, we are ready to define a minimal surface.

Definition 2.2.1. A minimal surface in R3 is a surface S such that its
mean curvature H = κ1+κ2

2
is zero at every points on S.

One way to understand this definition is by imagining a surface that every
point on this surface is saddle point, i.e. a point that look like a peak in one
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direction, but look like a bottom in other direction (look at the middle point
of a surface shown in Figure 2.12 for an example). This is because mean
curvature of a minimal surface is vanish everywhere, which mean that at
every point, two principle directions of its are curved equally but just in
opposite direction (κ1 = −κ2).

Figure 2.12: Saddle point.

Note that, according to this definition, it isn’t obvious that a minimal
surface is a surface, as we described in the introduction, with minimum area
among all surfaces with the same boundary, but it can be proved that these
two definitions are equivalent. In fact, there is a lot of equivalent ways to
define minimal surface, but these are beyond our scope, so we do not mention
them here.

In this research project, we focus on special class of minimal surfaces
called minimal graphs which is defined as follow:

Definition 2.2.2. A minimal graph is a minimal surface such that can
be parametrized in the form (u, v,F (u, v)) where F (u, v) is function from
Ω ⊆ R2 to R. Shortly, a minimal graph is a minimal surface which is also a
graph over some domain in R2.

Remark 2.2.3. Equivalently, we can define minimal graph as a surface S
parametrized by (u, v,F (u, v)) where F (u, v) is function from Ω ⊆ R2 to
Rwhich satisfies minimal surface equation:(

1−F2
u

)
Fuu − 2FuFvFuv +

(
1−F2

v

)
Fvv = 0.

One special kind of minimal graphs which we focus on is JS surface.
Roughly speaking, JS surface, which named after Jenkins and Serrin, is a
minimal graph over simple bounded polygonal domains where, on approach-
ing each edge bounding the domain, the graph becomes either positively or
negatively infinite.
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Definition 2.2.4. Let P be a polygonal domain with finitely many bounding
edges partitioned into sets {Ai} and {Bi}. The minimal graph (u, v,F (u, v))
for (u, v) ∈ P is a JS surface if it satisfies boundary values:

F (u, v)→ +∞ as (u, v)→ intAi,

F (u, v)→ −∞ as (u, v)→ intBi,

for all (u, v) ∈ P.

Examples 2.2.5. Here are some examples of minimal surfaces:

1. The plane. As shown in Example 2.1.10, mean curvature of the plane is
zero everywhere, so it is a minimal surface and hence a minimal graph.
(See Figure 2.5).

2. A helicoid. As shown in Example 2.1.10, mean curvature of helicoid is
zero everywhere, so it is a minimal surface. Otherwise, helicoid is not
a minimal graph because it can not be parametrized as (u, v,F(u, v)).
(see Figure 2.8).

3. A catenoid. As shown in Example 2.1.10, mean curvature of catenoid is
zero everywhere, so it is a minimal surface. Otherwise, catenoid is not
a minimal graph because it can not be parametrized as (u, v,F(u, v)).
(see Figure 2.9).

4. The Enneper’s surface. As shown in Example 2.1.10, mean curvature
of Enneper’s surface is zero everywhere, so it is a minimal surface.
Otherwise, Enneper’s surface is not a minimal graph because it can not
be parametrized as (u, v,F(u, v)). (see Figure 2.10).

5. The Scherk’s doubly periodic surface. As shown in Example 2.1.10,
mean curvature of Scherk’s doubly periodic surface is zero everywhere,
so it is a minimal surface and hence a minimal graph over a square (see
Figure 2.11). From its parametrization x(u, v) = (u, v, ln

(
cosu
cos v

)
)for all

u ∈ (−π/2, π/2) and v ∈ (−π/2, π/2), we found that as u approaches
π/2 or −π/2, ln

(
cosu
cos v

)
will go to negative infinity while as v approaches

π/2 or −π/2, ln
(

cosu
cos v

)
will go to positive infinity. Hence Scherk’s dou-

bly periodic surface is JS surface.

Following from Example 2.1.10, we found that sphere and cylinder are
not minimal surfaces.

It is interesting to ask that which polygonal domain can be a domain for
a JS surface. The theorem , following from [5], stated below is the result of
Jenkins and Serrin which completely answers this question.
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Theorem 2.2.6. Let P be a polygonal domain with finitely many bounding
edges partitioned into sets Ai and Bi. Let Π be a connected polygonal subset
of P whose boundary is the union of some segments from Ai and Bi, possibly
including additional line segments contained in P whose endpoints are ver-
tices of P . Let |Π| be the length of the boundary of Π. Then there exists a
JS surface (u, v, F (u, v)) : (u, v) ∈ P if and only if

(a) no two edges of Ai nor of Bi meet at a convex vertex,
(b) 2

∑
Ai∈Π |Ai| < |Π| and 2

∑
Bi∈Π |Bi| < |Π| for each such Π, Π 6= P ,

(c)
∑
|Ai| =

∑
|Bi| when Π = P .

If the JS surface exists, it is unique up to translation.

It is not hard to see that a square satisfies all the criterion given above,
hence there exist a JS surface over a square, which is, in fact, Scherk’s doubly
periodic surface introduced in Example 2.2.5.

2.3 Background in complex analysis and har-

monic mapping theory

As mentioned above, our construction of minimals graphs is involved theory
of harmonic univalent mapping on unit disk D. In this section, we will
briefly introduce some definitions and facts about this kind of map. We also
introduce two main methods to construct them, which called Clunie and
Sheil-Small shearing method and Radó-Kneser-Choquet theorem.

Definition 2.3.1. A holomorphic function is a complex-valued function
of complex variable that is, at every point of its domain, complex differentiable
in a neighbourhood of the point. A meromorphic function is a function
that is holomorphic on all of domain except for a set of isolated points, which
are poles of the function.

Definition 2.3.2. A complex-valued of complex variable function f(z) is
called a conformal mapping if and only if it preserves local angles.

Theorem 2.3.3. An holomorphic function is conformal at any point where
it has a nonzero derivative.

Examples 2.3.4. Here are some examples of complex-valued of complex vari-
able function:

1. f(z) = eiθz, for some θ ∈ R, is a holomorphic function and a conformal
mapping from C to C,
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2. f(z) = 1/z is a meromorphic function on C with only one pole at z = 0
and it is a conformal mapping on C \ {0},

3. f(z) = ln(z) is a holomorphic function on C \ (−∞, 0] which is not a
meromorphic function on C because it cannot be defined on the whole
complex plane while only excluding a set of isolated points,

4. f(z) = 1/ sin(z) is a meromorphic function on C with countable poles
at z = 2nπ for all n ∈ N.

Theorem 2.3.5 (Cauchy-Riemann equations). Let f = u+ iv be a complex-
valued function where u and v are real-valued functions. If f is complex
diffrentiable at z0 = x0 + y0, then u and v satisfy the Cauchy-Riemann equa-
tion:

∂u
∂x

(x0, y0) = ∂v
∂y

(x0, y0) and ∂u
∂y

(x0, y0) = − ∂v
∂x

(x0, y0).

A pair of functions (u, v) that satisfies the Cauchy–Riemann equations is said
to be a conjugate pair, and v is called the harmonic conjugate of u.

Definition 2.3.6. A rational function

B(z) = c
n∏
k=1

z − ak
1− ākz

is called finite Blaschke product of order n for the unit disc where
|c| = 1 and |ak| < 1, 1 ≤ k ≤ n.

Remark 2.3.7. A finite Blaschke product of order n is holomorphic on unit
disk D. A finite Blaschke product of order 1 is called Möbius transforma-
tion which is an automorphism on D.

Definition 2.3.8. Let Ω be a domain in R2. A function u : Ω→ R is (real)
harmonic if it satisfies Laplace’s equation:

∆u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= uxx + uyy = 0.

Examples 2.3.9. By using little calculation, it’s easy to show that these
following functions are real harmonic:

1. u(x, y) = xy

2. u(x, y) = x3 − 3xy2 and v(x, y) = −3x2y + y3
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3. u(x, y) = ln(x2 + y2).

Definition 2.3.10. A (planar) harmonic mapping is a complex-valued
function f(z) = u(z) + iv(z) defined on some domain Ω ⊆ C such that
u(z) = u(x+ iy) = u(x, y) and v(z) = v(x+ iy) = v(x, y) are real harmonic
function.

Definition 2.3.11. A harmonic mapping is said to be univalent if and only
if it is one-to-one mapping. A harmonic mapping f = u + iv is said to be
locally univalent at z in its domain Ω if and only if there is a neighborhood
U of z in Ω such that f |U is univalent. Moreover, if f is univalent and its
Jacobian Jf (z) := uxvy − uyvx > 0, we said that f is sense-preserving (or
orientation-preserving). On other hand, if f is univalent and its Jacobian
Jf (z) := uxvy − uyvx < 0, we said that f is sense-reversing.

Theorem 2.3.12. Let f be harmonic mapping defined on domain Ω ⊆ C.
If Ω is a simply-connected domain then there exist holomorphic functions h
and g defined on Ω such that f = h + ḡ. Moreover, a pair of h and g is
unique up to an additive constant.

Remark 2.3.13. The harmonic function f = h + ḡ can also be written in
the form f(z) = <(h(z) + g(z)) + i=(h(z)− g(z)).

Definition 2.3.14. The dilation of f = h+ ḡ, where h and g are holomor-
phic functions on domain Ω ⊆ C of f is defined by ω(z) = g′(z)

h′(z)
.

Examples 2.3.15. These are some examples of harmonic mappings:

1. Any holomorphic function f : Ω ⊆ C → C. Consider f as u + iv
where u and v are real-valued functions. By Cauchy-Riemann equa-
tion, ∂u

∂x
(x, y) = ∂v

∂y
(x, y) and ∂u

∂y
(x, y) = − ∂v

∂x
(x, y) for all (x, y) ∈ C.

By differentiating these two equations, we get ∂2u
∂x2

(x, y) = ∂2v
∂x∂y

(x, y) =
∂2v
∂x∂y

(y, x) = −∂2u
∂y2

(x, y) and ∂2v
∂y2

(x, y) = ∂2u
∂y∂x

(x, y) = ∂2u
∂x∂y

(x, y) =

− ∂2v
∂x2

(x, y). So u and v satisfy Laplace’s equation uxx + uyy = 0 and
vxx + vyy = 0, which imply f is harmonic mapping. It also easy to
see that f can be expressed as h + ḡ where g is a constant function
and h = f − ḡ is a holomorphic function. Thus we can conclude that
dilation of f is ω(z) = g′(z)

h′(z)
= 0

2. f(z) = f(x, y) = x3−3xy2 +i(−3x2y+y3) defined on D. From example
2.3.9, we have known that u(x, y) = x3−3xy2 and v(x, y) = −3x2y+y3

are real harmonic, therefore f is harmonic mapping. We can express
f(z) as h(z) + ¯g(z) = z + 1

3
z̄3 and its dilation ω(z) = z2.
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Theorem 2.3.16. A harmonic mapping f = h + ḡ defined on D is locally
univalent and sense-preserving if and only if |ω(z)| < 1 for all z in D.

Definition 2.3.17. A domain Ω is convex in the direction eiϕ if, for
every a ∈ C, the set

Ω ∩
{
a+ teiϕ|t ∈ R

}
is either connected or empty. In particular, a domain Ω is convex in the
direction of the real axis or convex in horizontal direction, CHD
for short, if every line parallel to the real axis has a connected intersection
with Ω (see figure 2.13 for an example of CHD domain).

The next two theorems are criterion for a function that maps a disk
Dunivalently onto a domain convex in one direction. The first one is for a
holomorphic function, which proved by W.C.Royster and M. Ziegler in 1976,
but unfortunately we can not find their original publication, titled “Univalent
functions convex in one direction”, so we follow the statement from [4]. The
second one is for a harmonic function, proved by Clunie and Sheil-Small in
1984, which is one of the most important theorem for our project.

Theorem 2.3.18 (W.C.Royster and M. Ziegler). Let F be a non-constant
holomorphic function in D. The function F maps D univalently onto a do-
main convex in the direction of ϕ if and only if there are numbers µ and ν
where 0 ≤ µ < 2π and 0 ≤ ν ≤ π so that

<[ei(µ−ϕ)(1− 2 cos νe−iµz + e−2iµz2)F ′(z)] ≥ 0. (2.2)

Theorem 2.3.19 (Clunie and Sheil-Small,[3]). Let ϕ ∈ [0, π). A harmonic
f = h+ ḡ locally univalent in D is a univalent mapping of D onto a domain
convex in the direction of ϕ if and only if h− e2iϕg is a conformal univalent
mapping of D onto a domain convex in the direction of ϕ.

Remark 2.3.20. In particular, A harmonic f = h + ḡ locally univalent in
D is a univalent mapping of D onto a CHD domain if and only if h− g is a
conformal univalent mapping of D onto a CHD domain.

This theorem gives us a method to construct harmonic univalent map-
pings onto certain CHD domain from given dilation ω = g′/h′ which |ω(z)| <
1 for all z in D (according to Theorem 2.3.16, this condition required to
make sure that a harmonic mapping constructed from this method is lo-
cally univalent on D, and hence univalent on D) and a conformal univalent
mapping F = h − g. By differentiating the relation F = h − g, we get
F ′ = h′ − g′ = h′ (1− ω) = g′

(
1−ω
ω

)
. So we can find h and g by integration,

h(z) =

∫ z

0

F ′(ζ)

1− ω(ζ)
dζ and g(z) =

∫ z

0

F ′(ζ)ω(ζ)

1− ω(ζ)
dζ. (2.3)
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This method is called Clunie and Sheil-Small shearing method or
shearing method for short.

Examples 2.3.21. These are some examples of constructon of harmonic
univalent mappings by using shearing method:

1. Let F (z) = z− 1
3
z3, which is a conformal univalent mapping of D onto

a CHD domain (see Figure 2.13), and ω(z) = z2. By equation (2.3)
, we get h(z) = z and g(z) = 1

3
z3. We rediscover the harmonic map

mentioned in Example 2.3.15, f(z) = h(z) + ¯g(z)(z) = z + 1
3
z̄3, we

can conclude that it is a harmonic univalent mapping of D onto a CHD
domain, as shown in figure 2.14.

Figure 2.13: Image of D under F (z) = z − 1
3
z3.

Figure 2.14: Image of D under f(z) = z + 1
3
z̄3.

2. Let F (z) = 1
2

log
(

1+z
1−z

)
, which is a conformal univalent mapping of

D onto a horizontal strip convex in the direction of the real axis (see
figure 2.15), and ω(z) = −z2. By equation (2.3) , we get h(z) =
1
4

log
(

1+z
1−z

)
+ i

4
log
(
i+z
i−z

)
and g(z) = −1

4
log
(

1+z
1−z

)
+ i

4
log
(
i+z
i−z

)
. Hence

f(z) = < i
2

log
(
i+z
i−z

)
+ i=1

2
log
(

1+z
1−z

)
, we can conclude that it is a har-

monic univalent mapping of D onto a CHD domain. In fact, the image
of D under f is a square as shown in figure 2.16.
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Figure 2.15: Image of D under F (z) = 1
2

log(1+z
1−z ).

Figure 2.16: Image of D under f(z) = < i
2

log
(
i+z
i−z

)
+ i=1

2
log
(

1+z
1−z

)
.

See [6] and [12] for more examples.
The next theorem, followed statement from [9], is one of the important

theorem that give us another method to construct a harmonic univalent
mapping of D onto a fixed bounded convex domain.

Theorem 2.3.22 (Radó-Kneser-Choquet theorem). Let Ω ⊆ C be a bounded
convex domain whose boundary is a simple closed curve Γ. Let ϕ map ∂D
continuously onto Γ and suppose that ϕ(eit) runs once around Γ monotoni-
cally as eit runs around ∂D. Then the harmonic extension

f(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
ϕ(eit)dt (2.4)

is univalent in D and defines a harmonic mapping of D onto Ω.

In fact, according to [9], the theorem remains true even if ϕ has points of
discontinuity, provided that ϕ(∂D) does not lie on a line and the values of ϕ
go monotonically once around Γ. The harmonic extension f will then map
D univalently onto the interior of the convex hull of ϕ(∂D). For instance, if
ϕ is piecewise constant and monotonic, and its values are not collinear, then
f maps D univalently onto the interior of the convex polygon whose vertices
are the values of ϕ.

In [10], P. Duren, J. McDougall and L. Schaubroeck generalized this result
for general polygonal domain.
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Suppose that Ω is a general polygon with vertices c1, c2, ..., cm, taken in
counterclockwise order on the boundary Γ = ∂D. For

0 ≤ t0 < t1 < ... < tm = t0 + 2π, (2.5)

let the points
bk = eitk , k = 0, 1, ...,m, (2.6)

determine an arbitrary partition of the unit circle into m subarcs. Note that
bm = b0. Given the boundary correspondence

f(eit) = ck for eit ∈ (bk−1, bk), k = 1, 2, ...,m,

construct the harmonic extension

f(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
ϕ(eit)dt

which, in this case, can be expressed as

f(z) =
1

π

m∑
k=1

ck arg

{
z − bk
z − bk−1

}
− ĉ, z ∈ D (2.7)

where ĉ = 1
2π

∑m
k=1 ck arg

{
bk
bk−1

}
. It can be proved that the dilatation of any

function f of the form (2.7) is a Blaschke product with at most m−2 factors
of the form ϕζ(z) = ζ−z

1−ζz , |ζ| 6= 1. Some zeros ζ of the dilatation may be

situated outside D.
P. Duren, J. McDougall and L. Schaubroeck also gave a criterion for

function of this form to be univalent as follow:

Theorem 2.3.23. [10] Let f be a harmonic function of the form (2.7), con-
structed as above from a piecewise constant boundary function with values
on the m vertices of a polygonal region Ω, so that the dilatation ω of f is a
Blaschke product with at most m − 2 factors. Then f is univalent in D if
and only if all zeros of ω lie in D. In this case, f is a harmonic mapping of
D onto Ω.

Example 2.3.24. Consider Ω to be a square with vertices c1 = π√
2
eiπ/4 =

π
4

+ iπ
4
, c2 = π√

2
e3iπ/4 = −π

4
+ iπ

4
, c3 = π√

2
e5iπ/4 = − π

4π
− iπ

4
, c4 = π√

2
e7iπ/4 =

π
4
− iπ

4
, taken in counterclockwise order on the boundary Γ = ∂D. Let the

points b1 = 1, b2 = i, b3 = −1, b4 = −i. Apply to Equation (2.7) with some
computation, we get f(z) = 1

2

(
arg
{
z−i
z+i

}
+ i arg

{
z+1
z−1

})
= h(z) + ¯g(z) where

h(z) = 1
4

(
log
(
z+1
z−1

)
− i log

(
z−i
z+i

))
and g(z) = 1

4

(
− log

(
z+1
z−1

)
− i log

(
z−i
z+i

))
.

Hence we can compute its dilation ω(z) = −z2 which is a Blaschke product
with at most 2 factors and all zeros are lied in D. Therefore this map f is a
harmonic univalent mapping of D onto the square Ω.
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Remark 2.3.25. By using similar argument, we can construct a harmonic
univalent mapping of D onto a regular n−gon and prove that its dilation is
ω(z) = −zn−2. (See [9], Chapter 4).

Although Clunie and Sheil-Small shearing method and Radó-Kneser-
Choquet theorem gave us two different ways to construct a harmonic uni-
valent mapping of D, these two methods have different advantages and dis-
advantages. Even though we can fix dilation of a map if we construct it
by using shearing method, we can’t fixed its image. In contrast, for Radó-
Kneser-Choquet theorem, we can fix its image, but can’t fix its dilation. In
the next section, we will show that why this is a big disadvantage for using
Radó-Kneser-Choquet theorem.

2.4 Connection between harmonic univalent

mapping and minimal graph

So far, theory of minimal surface and harmonic mapping are constructed
separately, but surprisingly these two subjects have a lot of connections.
In this section, we will introduce some of these connections which will be
important for our construction of minimal surfaces.

Definition 2.4.1. Let x and y be isothermal parametrizations (i.e. E =
xu · xu = xv · xv = G and F = xu · xv = 0) of minimal surfaces such that
their component functions are pairwise harmonic conjugates. That is,

xu = yv and xv = −yu.

In such a case, x and y are called conjugate minimal surfaces.

Theorem 2.4.2. If x and y are conjugate minimal surfaces then

z = (cos t)x + (sin t)y

where t ∈ R is also a minimal surface. Note that when t = 0 we have
the minimal surface parametrized by x, and when t = π

2
we have the minimal

surface parametrized by y. So for 0 ≤ t ≤ π
2
, we have a continuous parameter

of minimal surfaces known as associated surfaces.

Example 2.4.3. The helicoid and the catenoid are conjugate surfaces (see
Figure 2.17).
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Figure 2.17: Associate surfaces of the helicoid and the catenoid with various
value of t. ([6], Figure 2.25, p. 132)

Lemma 2.4.4. Let Φ1,Φ2,Φ3 be holomorphic functions on the simply con-
nected domain Ω such that Φ2

1 + Φ2
2 + Φ2

3 = 0 and 0 < |Φ2
1|+ |Φ2

2|+ |Φ2
3| <∞

and is finite. Let z0 ∈ Ω Then the formula

x(z) =

(
<
∫ z

z0

Φ1(w)dw,<
∫ z

z0

Φ2(w)dw,<
∫ z

z0

Φ3(w)dw

)
, z ∈ Ω

parameterizes a minimal surface on Ω.

Consider a holomorphic function p and a meromorphic function q in some
domain Ω ⊆ C having the property that at each point where q has a pole of
orderm, p has a zero of order at least 2m. Let Φ1 = p(1+q2),Φ2 = −ip(1−q2)
and Φ3 = −2ipq. These functions satisfy the requirement of the lemma
mentioned above. Hence we get:

Theorem 2.4.5 ((General) Weierstrass representation). Let p be a holomor-
phic function and q a meromorphic function in some domain Ω ⊆ C having
the property that at each point where q has a pole of order m, p has a zero
of order at least 2m. Then every minimal surface has a local isothermal
parametric representation (i.e. E = G and F = 0) of the form

x(z) =

(
<
{∫ z

z0

p(1 + q2)dζ

}
,<
{∫ z

z0

−ip(1− q2)dζ

}
,<
{∫ z

z0

−2ipqdζ

})
(2.8)

where z0 is a constant in Ω

Example 2.4.6. Using p(z) = 1 and q(z) = iz, the Weierstrass representa-
tion yields

x(z) =

(
<
{
z − 1

3
z3

}
,<
{
−i
(
z +

1

3
z3

)}
,<(z2)

)
.
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Letting z = u+ iv, this yields x(u, v) = (u− 1
3
u3 +uv2, v− 1

3
v3 +u2v, u2−v2)

which is the Enneper surface.

The representation above give us the method to construct minimal sur-
faces, but our approach is more specific. As mentioned before, we want to
construct minimal graphs. The next theorem, though less general than the
previous one, gives us the easier way to construct minimal graphs and it
connects theory of harmonic mapping to theory of minimal surface.

Let f = h + ḡ be a harmonic univalent mapping of D onto domain Ω
which its dilation can be expressed as q2 where q is analytic (holomorphic).
Consider Φ1 = h′ + g′,Φ2 = −i(h′ − g′) and Φ3 = −2i

√
h′g′ = −2ih′

√
w.

These functions satisfy the requirement of Lemma 2.4.4, hence we get:

Theorem 2.4.7 ((Modified) Weierstrass representation for minimal graph).
If f = h + ḡ is a sense-preserving harmonic univalent mapping of D onto
some domain Ω with dilatation ω = q2 for some analytic function q in D,
then the formulas

u = <{h(z) + g(z)} = <{f(z)} ,
v = ={h(z)− g(z)} = ={f(z)} ,

F(u, v) = F(z) = 2=
{∫ z

0

√
h′(ζ)g′(ζ)dζ

}
.

(2.9)

define a minimal graph whose projection onto the complex plane i f(D). If
x∗(u, v) = (x∗1(u, v), x∗2(u, v), x∗3(u, v)) is a parametrization of conjugate sur-
face defined above, we get

x∗1(z) = <{h(z)− g(z)} ,
x∗2(z) = ={h(z) + g(z)} ,

x∗3(z) = 2<
{∫ z

0

√
h′(ζ)g′(ζ)dζ

}
.

(2.10)

Theorem 2.4.8. If (u, v,F(u, v)) is a parametrization of the minimal graph
defined by (2.9), then the (stereographic projection of the) Gauss map G of
the surface, where we take the surface normal to be upward so that |G(z)| > 1,
is related to the dilation ω of a harmonic map f by the relation

ω(z) = − 1

G2(z)
(2.11)

Examples 2.4.9. Here are some examples:

1. Apply modified Weierstrass reprentation to any holomorphic function
f : D→ C, then we get a plane.
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2. Consider f as in the second example in Examples 2.3.21 which is a
harmonic univalent mapping which maps D to a square. Since ω(z) =
g′(z)/h′(z) = −z2 is a square of an analytic function in D, we can
apply modified Weierstrass reprentation. This yields

x(z) =

(
<
[
i

2
log

(
i+ z

i− z

)]
,=
[

1

2
log

(
1 + z

1− z

)]
, 2=

[
i log

(
1 + z2

1− z2

)])
which is a parametrization of Scherk’s doubly-periodic surface.

The next two theorems are the results of D. Bshouty, and A. Weitsman in
[2]. The first one makes us know when F(u, v) of JS surface over polygonal
domain Ω will change its sign around the boundary ∂Ω. While the second
one gives us a criterion for a minimal graph to be a JS surface.

Let S be a JS surface over a polygonal domain Ω parametrized by (2.9).
Now, f is the Poisson integral of a step function having values z1, z2, ..., zn
which are vertices of Ω. If

f(eiϕ) =


z1 when ϕ ∈ (t1, t2)

z2 when ϕ ∈ (t2, t3)
...

zn when ϕ ∈ (tn, tn+1)

where t1 < t2 < t3 < ... < tn+1 = t0 + 2π. Let Cj = {eiϕ|ϕ ∈ (tj, tj+1)} and
let ζj = eitj for j = 1, 2, 3, ..., n+ 1. If 0 < αj < 2π is the interior angle at zj
and we take a continuous branch of arg(ω(z)) on Cj , then

1

2
(arg(ω(ζj+1))− arg(ω(ζj))) = αj (2.12)

or
1

2
(arg(ω(ζj+1))− arg(ω(ζj))) = αj − π (2.13)

In case 0 < αj < π, then zj is a point of convexity and (2.12) must hold.
However, if αj ≥ π and (2.12) still holds, we call zj a full resting point .

Theorem 2.4.10. [2] If zj is a full resting point for the JS surface S given
by F(u, v), then F changes sign on the sides adjacent to zj . If zj is neither
a point of convexity nor full resting point then F does not change sign at zj.

Theorem 2.4.11 (Criterion for JS surface, [2]). Let S be a minimal graph
over a polygonal domain D having k sides. If the Gauss map G for S in
the parametrization (2.4.7) has the form c/B(z) where c is a constant of
modulus 1 and B(z) is a Blaschke product of order n, then S is a JS surface,
and k ≥ 2n+ 2.
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2.5 Previous results and our objectives

Our work is mainly followed from research paper titled “Harmonic shears of
elliptic integrals” [8] written by M. Dorff and J. Szynal in 2005. They applied
shearing method to shear elliptic integral of the first and second kind, which
can be represented in the following forms, respectively:

F (z, k) =
∫ z

0
dζ√

(1−ζ2)(1−k2ζ2)
;

E(z, k) =
∫ z

0

√
1−k2ζ2
1−ζ2 dζ,

where k,m ∈ D.
M. Dorff and J. Szynal showed that for any fixed complex number k ∈

D̄, F (z, k) maps D univalently onto a convex region. Let m be a complex
number with modulus less than or equal to 1. By applying Theorem 2.3.19 to
F (z, k) with dilation ω(z) = m2z2, they constructed a collection of harmonic
univalent mappings of D onto a CHD domain. Then they consider special
case when k = 1 which the corresponding harmonic mapping is f = h + ḡ
where

h(z) =
1

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 +mz

1−mz

)
; (2.14)

g(z) =
m2

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 +mz

1−mz

)
. (2.15)

They found that, in this case, if m = eiθ, the image of the map f
is a parallelogram with four vertices (π(1 − cos θ)/4 sin θ, π/4), (−π(1 +
cos θ)/4 sin θ, π/4), (−π(1−cos θ)/4 sin θ,−π/4), and (π(1+cos θ)/4 sin θ,−π/4).
Although the authors didn’t mention, it can be easy to prove that this paral-
lelogram is, in fact, a rhombus with angle θ and length π/2 sin θ, see Figure
2.18.

For elliptic integral of the second kind, let θ be any fixed real number in
[0, 2π), E(z, eiθ) maps D univalently onto a domain convex in the direction
eiπ/2, i.e. convex the direction of the imaginary axis. By applying Theorem
2.3.19 to E(z, eiθ) with dilation ω(z) = m2z2, they constructed a collection of
harmonic univalent mappings of D onto a domain convex in the direction of
the imaginary axis. Despite the fact that the authors discovered interesting
special case for image of D under harmonic shear of F (z, k), they didn’t know
much for E(z, k), except for its convexity in the direction of the imaginary
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Figure 2.18: Image of D under f(z) when m = eπ/3, m = eπ/2 and m = e2π/3

respectively.

axis, see some figures from [8] for examples.

Since all harmonic univalent maps above recived from shearing method
with dilation ω(z) = m2z2 which has analytic square root, we can use modi-
fied Weierstrass representation (Theorem 2.4.7) to construct a minimal graph
over image of D under such harmonic univalent mapping. The authors mainly
focus on harmonic shear f(z) of F (z, 1) with dilation ω(z) = e2iθz2, which
mentioned above that f(D) is a rhombus. They found that if θ = π/2, f(D)
is a square and a minimal graph over f(D) is Scherk’s doubly periodic surface
and by varying value of θ, they found a family of minimal graphs over rhom-
bus which they called slanted Scherk surfaces, which in fact are JS surfaces,
see Figure 2.19. They also proved that as θ approching to zero, surfaces will
approch to a helicoid. Moreover, they investigated their conjugate surfaces,
see Figure 2.20, which has catenoid as a limit surface when θ approching to
zero.

Figure 2.19: Minimal graphs corresponding to f(z) when m = eπ/3, m = eπ/2

and m = e2π/3 respectively.

In 2008, J. McDougall and L. Schaubroeck investigated a new family of
minimal graphs in their publication “Minimal surfaces over stars”[5]. The
authors applied modified Weierstrass representation to harmonic univalent
mappings of D onto star domains, which they already constructed in [10]
by using Radó-Kneser-Choquet theorem. They also proved that minimal
graphs over stars that they constructed are JS surfaces (See Figure 2.21).
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Figure 2.20: Conjugate minimal graphs corresponding to f(z) when m =
eπ/3, m = eπ/2 and m = e2π/3 respectively.

By including this family to the list of previous JS surfaces mentioned in the
third section of their paper, we get:

1. Scherk’s doubly periodic surface (see Example 2.1.10), discovered in
1834 by H. Scherk.

2. The JS surface over a regular hexagon, studied by Hermann Schwarz.

3. The JS surface over a regular 2n-gon , where n ≥ 3, studied by Karcher
in the context of constructing saddle towers.

4. The JS surface over a rhombus (see Figure 2.19), as mentioned above,
studied by M.Dorf and J. Szynal in 2005 [8].

5. The JS surface over a star.

Figure 2.21: A minimal graph over a star domain.
([5], Fig. 3., p. 731)

Our objectives are to use shearing method or Radó-Kneser-Choquet the-
orem to construct a harmonic univalent mapping of D onto certain domain
and then use modified Weierstrass represntation to lift such domain to a
minimal graph over it. We divided our results into two chapters as follow:
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Chapter 3: Construction of harmonic univalent mapping. Since
minimal graph over rhombus was already constructed in [8] and it is a gen-
eralization of Scherk’s doubly periodic surface, at first we try to generalize
to arbitrary parallelogram. Hence we try to construct a harmonic mapping
onto parallelogram domain. As we discussed in the last paragraph of section
2.3, Radó-Kneser-Choquet theorem is a better choice of method to construct
this kind of map because we want to construct a harmonic map onto a fixed
domain. Unfortunately, dilation of harmonic map that we construction in
this approach turns out to has non analytic square root (except for the case
of rhombus which the map concise with construction via shearing method in
[8]), which doesn’t match the requirement of modified Weierstrass represen-
tation. So we can’t construct minimal graph corresponding to this map.

To avoid this problem, we change our approach to shearing method. In
[8], M. Dorff and M. Szynal sheared the elliptic integral F (z, 1) with dilation
ω(z) = m2z2 where |m| ≤ 1 and found that in the case |m| = 1, the map
will map D to a rhombus. We try to follow this construction and generalize
this by changing the dilation to be ω(z) = m2nz2n, which has analytic square
root, where |m| ≤ 1 and n ∈ N. It turns out that, by the same argument
given in [8], we can prove that the map will map D to a parallelogram, which
is not a rhombus for n ≥ 2.

Chapter 4: Minimal graphs over parallelograms and their conju-
gate surfaces. In this chapter, we apply modified Weierstrass representation
to the maps constructed in Chapter 3 to get minimal graphs over parallelo-
grams. We can also prove that these minimal graphs are JS surfaces and can
conclude interesting trigonometric identity as a corollary.



Chapter 3

Construction of harmonic
univalent mappings

3.1 Using Radó-Kneser-Choquet theorem to

construct harmonic mapping onto paral-

lelogram domain

In this section, we going to construct harmonic univalent mapping onto arbi-
trary parallelogram domain by using Radó-Kneser-Choquet theorem. Given
arbitrary positive real numbers a, b and θ, β ∈ (0, π). Consider the convex
quadrilateral with vertices c1 = ( b+a cos θ

2
, a sin θ

2
), c2 = (−b+a cos θ

2
, a sin θ

2
), c3 =

(−b−a cos θ
2

,−a sin θ
2

) and c4 = ( b−a cos θ
2

,−a sin θ
2

) taken in counterclockwise or-
der. It is easy to see that this quadrilateral is a parallelogram with c1c2 =
c3c4 = b, c2c3 = c4c1 = a and c4ĉ1c2 = c2ĉ3c4 = θ, c1ĉ2c3 = c3ĉ4c1 = π − θ, as
shown in Figure 3.1. Let t0 = 0, t1 = π − β, t2 = π, t3 = 2π − β and t4 = 2π.

Figure 3.1: A parallelogram.

It is obvious that 0 ≤ t0 < t1 < t2 < t3 < t4 = t0 + 2π. For k = 0, 1, 2, 3, 4,
let bk = eitk be points on the unit circle. Define a step function on the unit

26
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circle.

f(eit) =


c1, t ∈ (t0, t1)

c2, t ∈ (t1, t2)

c3, t ∈ (t2, t3)

c4, t ∈ (t3, t4)

(3.1)

Then, by (2.7) the harmonic extension to D is

f(z) =
1

π

4∑
k=1

ck arg

{
z − bk
z − bk−1

}
− ĉ, z ∈ D (3.2)

where ĉ =
1

2π

4∑
k=1

ck arg

{
bk
bk−1

}
=

1

2π

(
b+ a cos θ

2
+
ia sin θ

2

)
(π − β) +

1

2π

(
−b+ a cos θ

2
+
ia sin θ

2

)
β

+
1

2π

(
−b− a cos θ

2
− ia sin θ

2

)
(π − β) +

1

2π

(
b− a cos θ

2
− ia sin θ

2

)
β

= 0.

Hence

f(z) =
1

π

4∑
k=1

ck arg

{
z − bk
z − bk−1

}
=

1

π

(
b+ a cos θ

2
+
ia sin θ

2

)
arg

{
z − ei(π−β)

z − 1

}
+

1

π

(
−b+ a cos θ

2
+
ia sin θ

2

)
arg

{
z + 1

z − ei(π−β)

}
+

1

π

(
−b− a cos θ

2
− ia sin θ

2

)
arg

{
z − ei(2π−β)

z + 1

}
+

1

π

(
b− a cos θ

2
− ia sin θ

2

)
arg

{
z − 1

z − ei(2π−β)

}
=

1

π

[
b arg

{
z − ei(π−β)

z − ei(2π−β)

}
+ a(cos θ + i sin θ) arg

{
z + 1

z − 1

}]
.

And f can be expressed in the form h+ ḡ where

h(z) = − 1

2π

[
bi log

(
eiβz + 1

eiβz − 1

)
+ a(i cos θ − sin θ) log

(
z + 1

z − 1

)]
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and g(z) = − 1

2π

[
bi log

(
eiβz + 1

eiβz − 1

)
+ a(i cos θ + sin θ) log

(
z + 1

z − 1

)]
.

We get

h′(z) = − 1

2π

[
bi

(
eiβ

eiβ + 1
− eiβ

eiβ − 1

)
+ a(i cos θ − sin θ)

(
1

z + 1
− 1

z − 1

)]
=

1

π

[
bieiβ

e2iβz2 − 1
+
ai(cos θ + i sin θ)

z2 − 1

]
and

g′(z) = − 1

2π

[
bi

(
eiβ

eiβ + 1
− eiβ

eiβ − 1

)
+ a(i cos θ + sin θ)

(
1

z + 1
− 1

z − 1

)]
=

1

π

[
bieiβ

e2iβz2 − 1
+
ai(cos θ − i sin θ)

z2 − 1

]
.

So we can compute the dilation

ω(z) =
g′(z)

h′(z)
=

(beiβ + aei(2β−θ))z2 − (beiβ + ae−iθ)

(beiβ + aei(2β+θ))z2 − (beiβ + aeiθ)

= −be
iβ + aei(2β−θ)

beiβ + aeiθ

(
z2 − A
1− Āz2

)
where A = beiβ+ae−iθ

beiβ+aei(2β−θ)
. Suppose A = r(cosα+ i sinα) where r ≥ 0 and α ∈

[0, 2π) and let B =
√
r(cos α

2
+ i sin α

2
). Hence ω(z) = − beiβ+aei(2β−θ)

beiβ+aeiθ

(
z−B
1−B̄z

)
(
z−(−B)

1−(−B̄)z

)
which is a Blaschke product of order 2. Theorem 2.3.23 tells us

that this map is univalent in D if and only if B lie in D which means that
|A| = r < 1.

Since θ, β ∈ (0, π), sin θ > 0 and sin β > 0. Hence sin θ sin β > 0 which
implies that cos(θ + β) < cos(θ − β). And since

|A| =
∣∣∣∣ beiβ + ae−iθ

beiβ + aei(2β−θ)

∣∣∣∣ < 1

⇐⇒ |beiβ + ae−iθ| < |beiβ + aei(2β−θ)|
⇐⇒ (beiβ + ae−iθ)(be−iβ + aeiθ) < (beiβ + aei(2β−θ))(be−iβ + aei(θ−2β))

⇐⇒ ei(β+θ) + e−i(β+θ) < ei(θ−β) + ei(β−θ)

⇐⇒ cos(θ + β) < cos(θ − β),

we can conclude that |A| = r < 1 and hence the map f is univalent in D and
it maps D onto the parallelogram mentioned above.
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Because we want to use this map to construct minimal surface over par-
allelogram, we should consider when its dilation ω is analytic square root.
Since ω has two roots, B and −B in D, if B 6= 0, B and −B are single roots
of ω, square root of ω should have a branch cut emerge from B and −B
which means that ω is not a square of an analytic function.

If B = 0, beiβ+ae−iθ

beiβ+aei(2β−θ)
= A = 0. Therefore beiβ + ae−iθ = 0. Since a, b > 0

and θ, β ∈ (0, π), a = b and θ = π − β. So ω is analytic square root if and
only if a = b and θ = π − β and the image of D under f is a rhombus. We
can conclude this theorem.

Theorem 3.1.1. The harmonic map f which obtained from the construction
above has analytic square root dilation if and only if a = b and θ = π − β
and the image of D under f is a rhombus.

In fact, in this case, if we give a = π
2 sin θ

and m = eiβ, this map will
concise with the map constructed in [8] which we mentioned in (2.14) and
(2.15).

So we can’t construct minimal graph over a parallelogram domain which
is not a rhombus via these collection of maps and in the case of rhombus, its
corresponding minimal graph is already known. In the next section, we will
try to use other approach, the shearing method, to construct the map.

3.2 Harmonic shear of F (z, 1) with dilation

ω(z) = m2nz2n where |m| ≤ 1 and natural

number n

In [8], M. Dorff and M. Szynal sheared the elliptic integral F (z, 1) with
dilation ω(z) = m2z2 where |m| ≤ 1. We try to follow this construction
and generalize this by changing the dilation to be ω(z) = m2nz2n, which has
analytic square root, where |m| ≤ 1 and n ∈ N.

Let n ∈ N and m ∈ C such that |m| ≤ 1. Let fn,m(z) = hn,m(z)+gn,m(z),
where hn,m and gn,m are holomorphic functions on D, be a harmonic shear of
F (z, 1) =

∫ z
0

dζ
(1−ζ2)

with dilation ω(z) = m2nz2n. By Equation (2.3), we get

hn,m(z) =

∫ z

0

F ′(ζ)

1− ω(ζ)
dζ =

∫ z

0

1

(1− ζ2)(1−m2nζ2n)
dζ (3.3)

gn,m(z) =

∫ z

0

F ′(ζ)ω(ζ)

1− ω(ζ)
dζ =

∫ z

0

m2nζ2n

(1− ζ2)(1−m2nζ2n)
dζ. (3.4)
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First, we will find hn,m(z) by computing the partial fraction decomposi-
tion of

1

(1− ζ2)(1−m2nζ2n)
=

1

(1− ζ2)(1−m2ζ2)(1−m2ω2
2nζ

2)...(1−m2ω
2(n−1)
2n ζ2)

where ω2n = eiπ/n is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

A1

(1−m2ζ2)
+

A2

(1−m2ω2
2nζ

2)
+ ...+

An

(1−m2ω
2(n−1)
2n ζ2)

+
An+1

(1− ζ2)

where Aj ∈ C for all j = 1, 2, 3, ..., n+ 1. We get

1 = A1

(
(1− ζ2)(1−m2nζ2n)

(1−m2ζ2)

)
+ A2

(
(1− ζ2)(1−m2nζ2n)

(1−m2ω2
2nζ

2)

)
+ ...

+ An

(
(1− ζ2)(1−m2nζ2n)

(1−m2ω
2(n−1)
2n ζ2)

)
+ An+1(1−m2nζ2n).

For p = 0, 1, 2, ..., n− 1, consider
(

(1−ζ2)(1−m2nζ2n)

(1−m2ω2p
2nζ

2)

)
. Since

1−m2nζ2n = (1−m2ω2p
2nζ

2)(1+m2ω2p
2nζ

2+m4ω4p
2nζ

4+...+m2(n−1)ω
2p(n−1)
2n ζ2(n−1)),

we get

(1− ζ2)(1−m2nζ2n)

(1−m2ω2p
2nζ

2)
= (1− ζ2)(1 +m2ω2p

2nζ
2 +m4ω4p

2nζ
4 + ...+m2(n−1)ω

2p(n−1)
2n ζ2(n−1))

=
n−1∑
j=0

(m2jω2pj
2n ζ

2j −m2jω2pj
2n ζ

2(j+1))

=

(
n−1∑
j=0

m2jω2pj
2n ζ

2j

)
−

(
n−1∑
j=0

m2jω2pj
2n ζ

2(j+1)

)

= 1−m2(n−1)ω
2p(n−1)
2n ζ2n +

n−1∑
j=1

m2(j−1)ω2pj
2n ζ

2j(m2 − ω−2p
2n ).
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Therefore

1 =
n−1∑
p=0

Ap+1

(
1−m2(n−1)ω

2p(n−1)
2n ζ2n +

n−1∑
j=1

m2(j−1)ω2pj
2n ζ

2j(m2 − ω−2p
2n )

)
+ An+1(1−m2nζ2n)

= (A1 + A2 + A3 + ...+ An+1)−m2(n−1)ζ2n

(
m2An+1 +

n−1∑
p=0

(ω
2p(n−1)
2n Ap+1)

)

+
n−1∑
j=1

(
m2(j−1)ζ2j

(
n−1∑
p=0

(ω2pj
2n (m2 − ω−2p

2n )Ap+1)

))
.

Comparing the coefficient of ζ2j for j = 0, 1, 2, ..., n and get

j = 0; A1 + A2 + ...+ An+1 = 1

j ∈ 1, 2, 3, ..., n− 1; m2(j−1)

(
n−1∑
p=0

(ω2pj
2n (m2 − ω−2p

2n )Ap+1)

)
= 0

j = n; −m2(n−1)

(
m2An+1 +

n−1∑
p=0

(ω
2p(n−1)
2n Ap+1)

)
= 0.

Since m 6= 0, we can divide equations by m and get

(0); A1 + A2 + ...+ An+1 = 1

(j);
n−1∑
p=0

(ω2pj
2n (m2 − ω−2p

2n )Ap+1) = 0 for j = 1, 2, 3, ..., n− 1

(∗); m2An+1 +
n−1∑
p=0

(ω
2p(n−1)
2n Ap+1) = 0.

By m2(0)− (∗), we get

(n);
n−1∑
p=0

ω2pn
2n (m2 − ω−2p

2n )Ap+1 = m2.

For r = 0, 1, 2, ..., n− 1, consider
∑n

j=1 ω
2rj
2n (j) and get

n∑
j=1

n−1∑
p=0

(
ω

2(p+r)j
2n

(
m2 − ω−2p

2n

)
Ap+1

)
= m2

n−1∑
p=0

((
m2 − ω−2p

2n

)
Ap+1

n∑
j=1

(
ω

2(p+r)j
2n

))
= m2
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Since for p + r ≡ 1, 2, 3, ..., n − 1(mod n), ω
2(p+r)
2n are roots of z + z2 + z3 +

...+ zn = 0, we get

n∑
j=1

ω
2(p+r)j
2n = 0 for all p+ r ≡ 1, 2, 3, ..., n− 1(mod n).

Therefore

nAn−r+1(m2 − ω−2(n−r)
2n ) = m2

An−r+1 =
m2

n(m2 − ω−2(n−r)
2n )

.

Which means Aj = m2

n(m2−ω2(1−j)
2n )

for j = 1, 2, 3, ..., n. Since 1
(1−ζ2)(1−m2nζ2n)

=

A1

(1−m2ζ2)
+ A2

(1−m2ω2
2nζ

2)
+ ...+ An

(1−m2ω
2(n−1)
2n ζ2)

+ An+1

(1−ζ2)
, we get

1

(1− ζ2)(1−m2nζ2n)
=

n∑
j=1

[(
m2

n(m2 − ω2(1−j)
2n )

)(
1

1−m2ω
2(j−1)
2n ζ2

)]
+

An+1

(1− ζ2)

=
n−1∑
j=0

[(
m2

n(m2 − ω−2j
2n )

)(
1

1−m2ω2j
2nζ

2

)]
+

An+1

(1− ζ2)
.

And since A1 + A2 + ...+ An+1 = 1, we get

An+1 = 1−
n∑
j=1

Aj

= 1−
n∑
j=1

m2

n

(
1

n(m2 − ω2(1−j)
2n )

)

= 1− m2

n

(
n−1∑
j=0

1

n(m2 − ω2j
2n)

)

= 1− m2

n


∑n−1

j=0

(
m2n−ω2jn

2n

m2n−ω2j
2n

)
m2n − 1


= 1− m2

n

(∑n−1
j=0

∑n−1
p=0 m

2(n−1−p)ω2jp
2n

m2n − 1

)

= 1− m2

n

∑n−1
p=0 m

2(n−1−p)
(∑n−1

j=0 ω
2jp
2n

)
m2n − 1

 .
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Since
∑n−1

j=0 ω
2jp
2n = 0 for all p = 1, 2, 3, ..., n− 1, we get

An+1 = 1− m2

n

(
nm2(n−1)

m2n − 1

)
= 1− m2n

m2n − 1

= − 1

m2n − 1
.

Hence

1

(1− ζ2)(1−m2nζ2n)
=

n−1∑
j=0

[(
m2

n(m2 − ω−2j
2n )

)(
1

1−m2ω2j
2nζ

2

)]
− 1

(m2n − 1)(1− ζ2)
.

For j = 0, 1, 2, ..., n− 1, consider∫ z

0

1

1−m2ω2j
2nζ

2
dζ =

1

2

∫ z

0

(
1

1−mωj2nζ
+

1

1 +mωj2nζ

)
dζ

=
1

2mωj2n

∫ z

0

1

1 +mωj2nζ
d(1 +mωj2nζ)

− 1

2mωj2n

∫ z

0

1

1−mωj2nζ
d(1−mωj2nζ)

=

(
1

2mωj2n

)
log

(
1 +mωj2nζ

1−mωj2nζ

)
.

And
∫ z

0
1

1−ζ2dζ = 1
2

∫ z
0

(
1

1−ζ + 1
1+ζ

)
dζ = 1

2

[∫ z
0

1
1+ζ

d(1 + ζ)−
∫ z

0
1

1−ζd(1− ζ)
]

=
1
2

log
(

1+z
1−z

)
, hence

hn,m(z) =

∫ z

0

1

(1− ζ2)(1−m2nζ2n)
dζ

=
n−1∑
j=0

[(
m

2n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
1

2(1−m2n)

)
log

(
1 + z

1− z

)
.

Next, we will find gn,m(z) by computing the partial fraction decomposition
of

m2nζ2n

(1− ζ2)(1−m2nζ2n)
=

m2nζ2n

(1− ζ2)(1−m2ζ2)(1−m2ω2
2nζ

2)...(1−m2ω
2(n−1)
2n ζ2)
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where ω2n = eiπ/n is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

B1

(1−m2ζ2)
+

B2

(1−m2ω2
2nζ

2)
+ ...+

Bn

(1−m2ω
2(n−1)
2n ζ2)

+
Bn+1

(1− ζ2)

where Bj ∈ C for all j = 1, 2, 3, ..., n+ 1. We get

m2nζ2n = B1

(
(1− ζ2)(1−m2nζ2n)

(1−m2ζ2)

)
+B2

(
(1− ζ2)(1−m2nζ2n)

(1−m2ω2
2nζ

2)

)
+ ...

+Bn

(
(1− ζ2)(1−m2nζ2n)

(1−m2ω
2(n−1)
2n ζ2)

)
+Bn+1(1−m2nζ2n).

By the same argument above, we get

j = 0; B1 +B2 + ...+Bn+1 = 0

j ∈ 1, 2, 3, ..., n− 1; m2(j−1)

(
n−1∑
p=0

(ω2pj
2n (m2 − ω−2p

2n )Bp+1)

)
= 0

j = n; −m2(n−1)

(
m2An+1 +

n−1∑
p=0

(ω
2p(n−1)
2n Bp+1)

)
= m2n.

Since m 6= 0, we can divide equations by m and get

(0); B1 +B2 + ...+Bn+1 = 0

(j);
n−1∑
p=0

(ω2pj
2n (m2 − ω−2p

2n )Bp+1) = 0 for j = 1, 2, 3, ..., n− 1

(∗); m2Bn+1 +
n−1∑
p=0

(ω
2p(n−1)
2n Bp+1) = −m2.

By m2(0)− (∗), we get

(n);
n−1∑
p=0

ω2pn
2n (m2 − ω−2p

2n )Bp+1 = m2.

We can solve this system of equations (0) − (n) and get Bj = m2

n(m2−ω2(1−j)
2n )

for j = 1, 2, 3, ..., n and

Bn+1 = −
n∑
j=0

Bj = − m2n

m2n − 1
.
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Hence

m2nζ2n

(1− ζ2)(1−m2nζ2n)
=

n−1∑
j=0

[(
m2

n(m2 − ω−2j
2n )

)(
1

1−m2ω2j
2nζ

2

)]
− m2n

(m2n − 1)(1− ζ2)
.

We get

gn,m(z) =

∫ z

0

m2nζ2n

(1− ζ2)(1−m2nζ2n)
dζ

=
n−1∑
j=0

[(
m

2n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
m2n

2(1−m2n)

)
log

(
1 + z

1− z

)
.

By Clunie and Sheil-Small shearing method, we can conclude that fn,m(z) =

hn,m(z) + gn,m(z) where

hn,m(z) =
n−1∑
j=0

[(
m

2n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
1

2(1−m2n)

)
log

(
1 + z

1− z

)
and

gn,m(z) =
n−1∑
j=0

[(
m

2n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
m2n

2(1−m2n)

)
log

(
1 + z

1− z

)
is a harmonic univalent mapping of D onto a CHD domain with dilation
ω(z) = m2nz2n.

In the case that n = 1, this mapping is exactly the same as a map
constructed by M. Dorff and M. Szynal in [8] which is f1,m(z) = h1,m(z) +

g1,m(z) where

h1,m(z) =

(
1

2(1−m2)

)
log

(
1 + z

1− z

)
+

1

2(1−m2)
log

(
1 +mz

1−mz

)
and

g1,m(z) =

(
m2

2(1−m2n)

)
log

(
1 + z

1− z

)
+

m2

2(1−m2)
log

(
1 +mz

1−mz

)
.

Although we know that fn,m(D) is convex in direction of the real axis, we
do not know much about it, see Figure 3.2 which show images of D under
fn,m for various values of n and m. However, in the next section, we will
analyse the image of D under fn,m where |m| = 1.
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(a) n = 2 and m = 0.95e
iπ
4 (b) n = 1 and m = 0.95e

iπ
3

(c) n = 3 and m = 0.99e
iπ
6 (d) n = 3 and m = 0.99e

iπ
5

(e) n = 3 and m = e
iπ
6 (f) n = 3 and m = e

iπ
5

(g) n = 4 and m = e
iπ
8 (h) n = 4 and m = e

iπ
10

Figure 3.2: images of D under fn,m for various values of n and m

3.3 Images of D under fn,m where |m| = 1 and

natural number n

In [8], M. Dorff and M. Szynal have proven that the image of D under f1,m

where |m| = 1, in fact this should except the cases that m = 1,−1 to avoid
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zero denominator, is a parallelogram which in fact is a rhombus. We will
prove the same result for fn,m where |m| = 1 such that m2n 6= 1 and an
arbitrary natural number n. The restriction of value of m is to avoid zero
denominator in formula of fn,m. Then we will find the proportion of non-
parallel sides of the parallelogram and conclude that for the case n > 1 the
image of D under fn,m is a parallelogram which is not a rhombus.

Firstly, we will prove some propositions.

Proposition 3.3.1. For any complex number z, <(iz) = −=(z).

Proof. Let z be a complex number. Then iz = i (<(z) + i=(z)) = i<(z) −
=(z). Since <(z) and −=(z) are real numbers, we get <(iz) = −=(z) as
desired.

Proposition 3.3.2. For any non-zero complex number z, = (log(z)) = arg(z).

Proof. Let z = reiθ be a non-zero complex number where r is a positive real
number and θ ∈ [0, 2π). Therefore =(log(z)) = =(log(r) + iθ). Since log(r)
and θ are real numbers, we get = (log(z)) = θ = arg(z).

Proposition 3.3.3. For a complex number z = eiϕ, z and z2 − 1 are per-
pendicular and z

z2−1
= − i

2 sinϕ
.

Proof. Let z = eiϕ be a complex number, then |z|2zz̄ = 1 and z
z2−1

=

zz̄
(z2−1)z̄

= 1
z−z̄ = 1

2i sinϕ
= − i

sinϕ
. This implies that z

z2−1
=
(
− 1

sinϕ

)
eiπ/2

where − 1
sinϕ

is a real number. This means z and z2 − 1 are perpendicular,
as shown in Figure 3.3.

Figure 3.3: Geometric interpretation of Proposition 3.3.3 when ϕ ∈ (0, π/2).
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Proposition 3.3.4. For a complex number z = eiϕ, z + 1 and z − 1 are
perpendicular and 1+z

1−z = i cot ϕ
2

.

Proof. Let z = eiϕ be a complex number, then |z|2zz̄ = 1 and 1+z
1−z =

(1+z)(1+z̄)
(1−z)(1+z̄)

= 2+z+z̄
−z+z̄ = 2+2 cosϕ

−2i sinϕ
= i(1+cosϕ)

sinϕ
. Since cot

(
ϕ
2

)
=

cos(ϕ2 )
sin(ϕ2 )

=
2 cos2(ϕ2 )

2 sin(ϕ2 ) cos(ϕ2 )
=

(1+cosϕ)
sinϕ

, we get 1+z
1−z = i cot ϕ

2
. This implies that 1+z

1−z = cot
(
ϕ
2

)
eiπ/2 where

cot
(
ϕ
2

)
is a real number. This means 1 + z and 1 − z are perpendicular.

Geometrically, 1 + z and 1− z can interpret as diagonals of a rhombus which
each side has 1 unit length, as shown in Figure 3.4.

Figure 3.4: Geometric interpretation of Proposition 3.3.4 when ϕ ∈ (0, π/2).

From now, we let n be an arbitrary natural number and m = eiθ be
a complex number where 0 < θ < π

n
. The reason we focus only on 0 <

θ < π
n

is that the image of D under fn,eiθ is periodic with period π
n

respect
to θ. We will consider the value of fn,m at the boundary of D which is
S1 = {z ∈ C||z| = 1}. Let z = eiϕ where 0 < ϕ < 2π and ϕ 6= π,−θ + kπ

n

where k = 1, 2, 3, ..., 2n. This restriction is to avoid zero denominator and
zero argument of logarithm in formula of fn,m. Consider fn,m(z) = hn,m(z) +

gn,m(z) = < (hn,m(z) + gn,m(z))+= (hn,m(z)− gn,m(z)), we will find real part
and imaginary part of fn,m. From formulas of hn,m, gn,m, Proposition 3.3.2



3.3. IMAGES OF D UNDER HARMONIC SHEAR 39

and Proposition 3.3.4, we get

= (fn,m) = = (hn,m(z)− gn,m(z))

= =
(

1

2
log

(
1 + z

1− z

))
=

1

2
arg

(
1 + z

1− z

)
=

1

2
arg
(
i cot

ϕ

2

)
.

Since cot ϕ
2

is a real number and i = eiπ/2, the value of arg
(
i cot ϕ

2

)
is π

2
or

−π
2

depending only on sign of cot ϕ
2
. Since 0 < ϕ

2
< π, cot ϕ

2
is positive when

0 < ϕ
2
< π

2
and negative when π

2
< ϕ

2
< π. We get

= (fn,m) =
1

2
arg
(
i cot

ϕ

2

)
=

{
π
4

if 0 < ϕ < π

−π
4

if π < ϕ < 2π

Next we will find < (fn,m) = < (hn,m(z) + gn,m(z)) which is more compli-
cated.

< (fn,m) = < (hn,m(z) + gn,m(z))

= <

(
n−1∑
j=0

[(
m

n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
1 +m2n

2(1−m2n)

)
log

(
1 + z

1− z

))
.

For j = 0, 1, 2, ..., n−1, consider m

n(m2−ω−2j
2n )ωj2n

= m

n(m2ω2j
2n−1)ω−j2n

=
mωj2n

n(m2ω2j
2n−1)

.

Since mωj2n = ei(θ+
jπ
n ) and by Proposition 3.3.3, we get m

n(m2−ω−2j
2n )ωj2n

=

− i

2n sin (θ+ jπ
n )

. Since m2n = e2niθ and by Proposition 3.3.4, we get 1+m2n

2(1−m2n)
=

i
2

cot(nθ). Similarly, we get 1+z
1−z = i cot(ϕ

2
) and

1+mωj2nz

1−mωj2nz
= i cot

(
θ+ϕ

2
+ jπ

2n

)
for all j = 0, 1, 2, ..., n− 1. So

< (fn,m) =
n−1∑
j=0

<

[(
− i

2n sin
(
θ + jπ

n

)) log

(
i cot

(
θ + ϕ

2
+
jπ

2n

))]

+ <
((

i

2
cot(nθ)

)
log
(
i cot

(ϕ
2

)))
.

By Proposition 3.3.1 and Proposition 3.3.2, we get

< (fn,m) =
n−1∑
j=0

(
1

2n sin
(
θ + jπ

n

)) arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))
−
(

1

2
cot(nθ)

)
arg
(
i cot

(ϕ
2

))
.
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For k = 1, 2, 3, ..., 2n, we will consider value of arg
(
i cot

(
θ+ϕ

2
+ jπ

2n

))
where

ϕ ∈ (kπ
n
−θ, (k+1)π

n
−θ) and j = 0, 1, 2, ..., n−1. Since kπ

n
−θ < ϕ < (k+1)π

n
−θ,

we get (k+j)π
2n

< θ+ϕ
2

+ jπ
2n
< (k+j+1)π

2n
. Hence

arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))
=

{
π
2

if j ≤ n− k − 1 or j ≥ 2n− k
−π

2
if n− k ≤ j ≤ 2n− k − 1

For 1 ≤ k ≤ n− 1, we get

n−1∑
j=0

(
1

2n sin
(
θ + jπ

n

)) arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))

=
n−k−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))− n−1∑
j=n−k

(
π

4n sin
(
θ + jπ

n

))
For k = n, we get

n−1∑
j=0

(
1

2n sin
(
θ + jπ

n

)) arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))
= −

n−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))

For n+ 1 ≤ k ≤ 2n− 1, we get

n−1∑
j=0

(
1

2n sin
(
θ + jπ

n

)) arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))

= −
2n−k−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))+
n−1∑

j=2n−k

(
π

4n sin
(
θ + jπ

n

))
Finally, for k = 2n which, in fact, equivalent to k = 0, we get

n−1∑
j=0

(
1

2n sin
(
θ + jπ

n

)) arg

(
i cot

(
θ + ϕ

2
+
jπ

2n

))
=

n−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))

And since

arg
(
i cot

ϕ

2

)
=

{
π
2

if 0 < ϕ < π

−π
2

if π < ϕ < 2π
,

we can conclude that
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< (fn,m) =



π
4n

∑n−1
j=0

(
1

sin (θ+ jπ
n )

)
− π

4
cot(nθ) if 0 < ϕ < π

n
− θ

π
4n

∑n−2
j=0

(
1

sin (θ+ jπ
n )

)
−
(

π

4n sin (θ+ (n−1)π
n )

)
− π

4
cot(nθ) if π

n
− θ < ϕ < 2π

n
− θ

π
4n

∑n−3
j=0

(
1

sin (θ+ jπ
n )

)
−
∑n−1

j=n−2

(
π

4n sin (θ+ (n−1)π
n )

)
− π

4
cot(nθ) if 2π

n
− θ < ϕ < 3π

n
− θ

...

−
∑n−1

j=0

(
π

4n sin (θ+ jπ
n )

)
− π

4
cot(nθ) if π − θ < ϕ < π

−
∑n−1

j=0

(
π

4n sin (θ+ jπ
n )

)
+ π

4
cot(nθ) if π < ϕ < (n+1)π

n
− θ

−
∑n−2

j=0

(
π

4n sin (θ+ jπ
n )

)
+

(
π

4n sin (θ+ (n−1)π
n )

)
+ π

4
cot(nθ) if (n+1)π

n
− θ < ϕ < (n+2)π

n
− θ

−
∑n−3

j=0

(
π

4n sin (θ+ jπ
n )

)
+
∑n−1

j=n−2

(
π

4n sin (θ+ (n−1)π
n )

)
+ π

4
cot(nθ) if (n+2)π

n
− θ < ϕ < (n+3)π

n
− θ

...

π
4n

∑n−1
j=0

(
1

sin (θ+ jπ
n )

)
+ π

4
cot(nθ) if 2π − θ < ϕ < 2π

Combining < (fn,m) with = (fn,m), we can conclude that the restriction

of the map fn,m on ∂D except for the points 1,-1 and ei(
kπ
n
−θ) where k =

1, 2, ..., 2n− 1 is a piecewise step function to 2n+ 2 points. Now, let

b1 =

(
π

4n

n−1∑
j=0

(
1

sin
(
θ + jπ

n

))− π

4
cot(nθ)

)
+ i
(π

4

)

b2 =

 π

4n

n−2∑
j=0

(
1

sin
(
θ + jπ

n

))−
 π

4n sin
(
θ + (n−1)π

n

)
− π

4
cot(nθ)

+ i
(π

4

)
...

bn+1 =

(
−

n−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))− π

4
cot(nθ)

)
+ i
(π

4

)
bn+2 =

(
−

n−1∑
j=0

(
π

4n sin
(
θ + jπ

n

))+
π

4
cot(nθ)

)
− i
(π

4

)
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bn+3 =

− n−2∑
j=0

(
π

4n sin
(
θ + jπ

n

))+

 π

4n sin
(
θ + (n−1)π

n

)
+

π

4
cot(nθ)

− i(π
4

)
...

b2n+2 =

(
π

4n

n−1∑
j=0

(
1

sin
(
θ + jπ

n

))+
π

4
cot(nθ)

)
− i
(π

4

)
.

We can express fn,m by

fn,m(eiϕ) =



b1 when ϕ ∈ (0, π
n
− θ)

bk when ϕ ∈ ( (k−1)π
n
− θ, kπ

n
− θ) where k = 2, 3, 4, ..., n

bn+1 when ϕ ∈ (π − θ, π)

bn+2 when ϕ ∈ (π, (n+1)π
n
− θ)

bk when ϕ ∈ ( (k−2)π
n
− θ, (k−1)π

n
− θ) where k = n+ 3, ..., 2n+ 1

b2n+2 when ϕ ∈ (2π − θ, 2π).

It’s easy to see that b1, b2, ..., bn+1 lie on the line =(ζ) = π
4

in the complex
plane, while bn+2, bn+3, ..., b2n+2 lie on the line =(ζ) = −π

4
and these two

lines are parallel. Because of the fact that

(
1

sin (θ+ jπ
n )

)
> 0 for all j =

0, 1, 2, ..., n−1, we can conclude that b2, b3, ..., bn lie between b1 and bn+1, while
bn+3, bn+4, ..., b2n+1 lie between bn+2 and b2n+2. Moreover the line through b1

and b2n+2 has slope − tan(nθ) as same as the line through bn+1 and bn+2.
So b1, b2, ..., b2n+2 all lie counterclockwise on the boundary of a parallelogram
whose vertices are b1, bn+1, bn+2 and b2n+2.

Now, we can conclude the lemma:

Lemma 3.3.5. The restriction of the map fn,m where m = eiθ which 0 < θ <
π
n

on ∂D except for the points 1,-1 and ei(
kπ
n
−θ) where k = 1, 2, ..., 2n− 1 is a

piecewise step function and it maps ∂D counterclockwise to 2n+ 2 points on
the boundary of a parallelogram whose vertices are b1, bn+1, bn+2 and b2n+2.

Next, we will prove that the map fn,m map D to the interior of this
parallelogram. We will start by proving some lemma.

Lemma 3.3.6. Let ϕ ∈ (0, π) and Φ be a complex variable function defined
on D by

Φ(z) = ie−iϕ
(

1− e2iϕz

(1− z)

)
.

Then Φ maps D to the right half plane C<>0 = {ζ ∈ C|<(ζ) > 0}.
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Proof. Let ϕ ∈ (0, π) and Φ defined as above. We get

<(Φ(z)) =
1

2

(
Φ(z) + Φ(z)

)
=

1

2

(
ie−iϕ

(
1− e2iϕz

(1− z)

)
− ieiϕ

(
1− e−2iϕz̄

(1− z̄)

))
=

1

2

(
−i(eiϕ − e−iϕ) + i|z|2(eiϕ − e−iϕ)

|1− z|2

)
=

1

2

(
i(|z|2 − 1)(2i sinϕ)

|1− z|2

)
=

(1− |z|2)(sinϕ)

|1− z|2
.

Since |z| < 1 for all z ∈ D and sinϕ > 0, we get <(Φ(z)) > 0 for all z ∈ D.
This means that Φ maps D to the right half plane C<>0.

Proposition 3.3.7. For m = eiθ which 0 < θ < π
n

, the map fn,m maps D
onto a parallelogram whose vertices are b1, bn+1, bn+2 and b2n+2.

Proof. First we will show that the image of D is convex. By Theorem 2.3.19,
it is equivalent to prove that the function

F (z) = hn,m(z)− e2iϕgn,m(z)

=
n−1∑
j=0

(
m2(1− e2iϕ)

2n(m2 − ω−2j
2n )ωj2n

log

(
1 +mωj2nz

1−mωj2nz

))

+

(
1− e2iϕm2n

2(1−m2n)

)
log

(
1 + z

1− z

)
is convex in the direction eiϕ for all ϕ ∈ [0, π). From the construction, we
already known that this holds for ϕ = 0. So we will prove in the case that
ϕ ∈ (0, π). According to Theorem 2.3.18, this can be done by showing that

<[ei(µ−ϕ)(1− 2 cos νe−iµz + e−2iµz2)F ′(z)] ≥ 0 (3.5)

for some real numbers µ and ν where 0 ≤ µ < 2π and 0 ≤ ν ≤ π.

We choose µ = π
2

and ν = π
2
. Let

H(z) = ei(µ−ϕ)(1− 2 cos νe−iµz + e−2iµz2)F ′(z)

= ei(
π
2
−ϕ)(1− z2)F ′(z).
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Since

F ′(z) = h′n,m(z)− e2iϕg′n,m(z)

=
1

(1− z2)(1−m2nz2n)
− e2iϕm2nz2n

(1− z2)(1−m2nz2n)

=
1− e2iϕm2nz2n

(1− z2)(1−m2nz2n)
,

we get

H(z) = ie−iϕ)

(
1− e2iϕm2nz2n

(1−m2nz2n)

)
.

Let Φ(z) = ie−iϕ
(

1−e2iϕz
(1−z)

)
and σ(z) = m2nz2n. Hence H(z) = (Φ ◦ σ)(z).

By Proposition 3.3.6, Φ maps D to the right half plane C<>0, while σ is a
conformal mapping on D. So H maps D to C<>0 which means <(H(z)) > 0
for all z ∈ D. Hence the image of D under fn,m is convex in every direction
ϕ ∈ [0, π). This implies the image of D under fn,m is convex.

Lemma 3.3.5 shows that the boundary of the D gets mapped to 2n + 2
points, b1, bn+1, bn+2 and b2n+2, under fn,m. According to Remark 3.4 of
[1], Bshouty and Hengartner note that in this case the image of D under
fn,m must be the convex polygon. That is, the image of D under fn,m is a
parallelogram bounded by b1, bn+1, bn+2 and b2n+2.

Next, we will analyze some geometric properties of this parallelogram. For
a natural number n and a complex number m = eiθ where 0 < θ < π

n
, let Pn,m

be the image of D under fn,m. We known that Pn,m is a parallelogram whose
vertices are b1, bn+1, bn+2 and b2n+2. For k = 1, 2, 3, ..., 2n+2, let αk be the in-
terior angle of the Pn,m at the point bk. Since b2, b3, b4, ...bn, bn+3, bn+4, ..., b2n+1

are on the sides of Pn,m, we can conclude that α2, α3, ..., αn, αn+3, αn+4, ..., α2n+1 =
π. And since the line through b1 and b2n+2 has slope − tan(nθ) = tan(π−nθ)
as same as the line through bn+1 and bn+2, we can conclude that αn+1 =
α2n+2 = nθ and α1 = αn+2 = π − nθ. This also implies that Pn,m is a

rectangle if and only if m = e
iπ
2n which is the middle of the interval (0, π

n
).

For points A and B in the complex plane, denote the length of line seg-
ment AB by l(A,B).

According to the formula bk, it is easy to see that for k = 1, 2, 3, ..., n,

l(bk, bk+1) =
π

2n sin
(
θ + (n−k)π

n

) .
And for k = n+ 2, n+ 3...2n+ 1,

l(bk, bk+1) =
π

2n sin
(
θ + (2n+1−k)π

n

) .
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And hence

l(b1, bn+1) = l(bn+2, b2n+2) =
π

2n

n−1∑
j=0

(
1

sin(θ + jπ
n

)

)
. (3.6)

By Pythagorean theorem, we can compute

l(b2n+2, b1) = l(bn+1, bn+2) =

√(π
2

cot(nθ)
)2

+
(π

2

)2

=
π

2 sin(nθ)
.

(3.7)

Notice that l(b2n+2, b1), l(bn+1, bn+2) don’t depend on m. By dividing (3.6)
by (3.7), we get the ratio of length of non parallel sides of the parallelogram
Pn,m.

l(b1, bn+1)

l(b2n+2, b1)
=

1

n

n−1∑
j=0

(
sin(nθ)

sin(θ + jπ
n

)

)
. (3.8)

For a fixed natural number n, let rn : (0, π
n
) −→ R be a function defined by

rn(θ) =
1

n

n−1∑
j=0

(
sin(nθ)

sin(θ + jπ
n

)

)
=

1

n

n−1∑
j=0

(
(−1)j sin(n(θ + jπ

n
))

sin(θ + jπ
n

)

)
.

We will investigate some properties of rn. Firstly, it’s obvious that rn is
smooth on (0, π

n
). And

rn

(π
n
− θ
)

=
1

n

n−1∑
j=0

(
sin(n(π

n
− θ))

sin(π
n
− θ + jπ

n
)

)

=
1

n

n−1∑
j=0

(
sin(π − nθ)

sin( (j+1)π
n
− θ)

)

=
1

n

n−1∑
j=0

(
sin(nθ)

sin( (n−j−1)π
n

+ θ)

)

=
1

n

n−1∑
j=0

(
sin(nθ)

sin(θ + jπ
n

)

)
= rn(θ)

for all θ ∈ (0, π
n
). Next, we will consider asymtotic behavior of rn. If θ

converges to 0, we get

rn(0+) = lim
θ−→0+

sin(nθ)

n sin θ
= lim

θ−→0+

(
sin(nθ)

nθ

)(
θ

sin θ

)
= 1.



46 CHAPTER 3. CONSTRUCTION OF HARMONIC MAPPING

Combine with the above relation, we get

rn

(π
n

−)
= 1.

Figure 3.5: For fixed n, the Image when m = eiθ (left) and when m = ei(
π
n
−θ)

(right) is a reflection of each other. This figure illustrates this fact for the
case n = 2 and θ = π

6
.

For example, in the case that n = 1, we get rn(θ) = 1 for all θ ∈ (0, π
n
)

which implies that P1,m is a rhombus, as we mentioned in Section 2.5. Let

look at the case n = 2. We get r2(θ) = 1
2

(
sin(2θ)
sin(θ)

+ sin(2θ)
sin(θ+π

2
)

)
= sin θ + cos θ.

In this case, we can see that r′2(θ) = cos θ − sin θ which is positive when
0 < θ < π

4
and negative when π

4
< θ < π

2
. So r2(θ) is increasing when

0 < θ < π
4
, decreasing when π

4
< θ < π

2
and maximum when θ = π

4
which

its value is rn
(
π
4

)
=
√

2. And in that case (θ = π
4
), the image P2,m is a

rectangle. And since 1 < r2(θ) = sin θ+ cos θ ≤
√

2 when 0 < θ < π
2
, we can

conclude that P2,m is not a rhombus for all 0 < θ < π
2
. We will prove the

same result for an arbitrary natural number n ≥ 2.
We will use the following facts:

Proposition 3.3.8. For real numbers a, d and a natural number k,

k−1∑
j=0

cos(a+ jd) =
sin
(
kd
2

)
sin d

2

cos

(
a+

(k − 1)d

2

)
.

Proof. Let a, d be real numbers and k be a natural number. Let ω = eid, we
get

eia
k−1∑
j=0

ωj =

(
ωk − 1

ω − 1

)
eia

=

(
eikd − 1

eid − 1

)
eia

=

(
eikd − 1

eikd/2

)(
eid/2

eid − 1

)
ei(

(k−1)d
2

+a).
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From Propositon 3.3.3, we get

eia
k−1∑
j=0

ωj =

(
2 sin

(
kd
2

)
−i

)(
−i

2 sin d
2

)
ei(a+

(k−1)d
2 )

=

(
2 sin

(
kd
2

)
2 sin d

2

)
ei(a+

(k−1)d
2 ).

By comparing the real parts of two sides of the equation, we get this propo-
sition.

Proposition 3.3.9. For a natural number k and a real number α,

sin(kα)

sinα
= 1 + 2

k−2∑
r=1
odd r

cos((k − r)α) if k is odd

and
sin(kα)

sinα
= 2

k−1∑
r=1
odd r

cos((k − r)α) if k is even.

Proof. Let k be a natural number and α be a real number. We get

sin(kα) = sin((k − 1)α) cosα + cos((k − 1)α) sinα

= {sin((k − 2)α) cosα + cos((k − 2)α) sinα} cosα + cos((k − 1)α) sinα

sin(kα)

sinα
=

sin((k − 2)α)

sinα
cos2 α + cos((k − 2)α) cosα + cos((k − 1)α)

=
sin((k − 2)α)

sinα
(1− sin2 α) + cos((k − 2)α) cosα + cos((k − 1)α)

=
sin((k − 2)α)

sinα
− sin((k − 2)α) sinα + cos((k − 2)α) cosα

+ cos((k − 1)α)

=
sin((k − 2)α)

sinα
+ 2 cos((k − 1)α).

By mathematical induction and this identity, we can conclude this proposi-
tion.

First, let consider when n is even. From Proposition 3.3.9, we get

sin(n(θ + jπ
n

))

sin(θ + jπ
n

)
= 2

n−1∑
k=1

odd k

cos

(
(n− k)

(
θ +

jπ

n

))

= 2
n−1∑
k=1

odd k

cos

(
k

(
θ +

jπ

n

))
.
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Hence

rn(θ) =
1

n

n−1∑
j=0

(
(−1)j sin(n(θ + jπ

n
))

sin(θ + jπ
n

)

)

=
2

n

n−1∑
j=0

(−1)j
n−1∑
k=1

odd k

cos

(
k

(
θ +

jπ

n

))
=

2

n

n−1∑
j=0

even j

n−1∑
k=1

odd k

cos

(
k

(
θ +

jπ

n

))
− 2

n

n−1∑
j=0

odd j

n−1∑
k=1

odd k

cos

(
k

(
θ +

jπ

n

))

=
2

n

n−1∑
k=1

odd k

n−1∑
j=0

even j

cos

(
k

(
θ +

jπ

n

))
− 2

n

n−1∑
k=1

odd k

n−1∑
j=0

odd j

cos

(
k

(
θ +

jπ

n

))

=
2

n

n−1∑
k=1

odd k

n−1
2∑

r=0

cos

(
k

(
θ +

2rπ

n

))
− 2

n

n−1∑
k=1

odd k

n−1
2∑

r=0

cos

(
k

(
θ +

(2r + 1)π

n

))
By Proposition 3.3.8, we get

n−1
2∑

r=0

cos

(
k

(
θ +

2rπ

n

))
=

(
sin
(
kπ
2

)
sin
(
kπ
n

)) cos

(
kθ +

(n− 2)πk

2n

)
and
n−1
2∑

r=0

cos

(
k

(
θ +

(2r + 1)π

n

))
=

(
sin
(
kπ
2

)
sin
(
kπ
n

)) cos

(
k
(
θ +

π

n

)
+

(n− 2)πk

2n

)

=

(
sin
(
kπ
2

)
sin
(
kπ
n

)) cos
(
k
(
θ +

π

2

))
.

Hence

rn(θ) =
2

n

n−1∑
k=1

odd k

(
sin
(
kπ
2

)
sin
(
kπ
n

))[cos

(
kθ +

(n− 2)πk

2n

)
− cos

(
k
(
θ +

π

2

))]

=
2

n

n−1∑
k=1

odd k

[(
sin
(
kπ
2

)
2 sin

(
kπ
2n

)
cos
(
kπ
2n

))(2 sin

(
kθ +

(n− 2)πk

2n

)
sin

(
πk

2n

))]

=
1

n

n−1∑
k=1

odd k

2 sin
(
kπ
2

)
sin
(
kθ + (n−2)πk

2n

)
cos
(
kπ
2n

)

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=
1

n

n−1∑
k=1

odd k

(
cos
(
kθ − πk

2n

)
− cos

(
πk + kθ − πk

2n

)
cos
(
kπ
2n

) )

=
2

n

n−1∑
k=1

odd k

(
cos
(
kθ − πk

2n

)
cos
(
kπ
2n

) )

=
2

n

n−1∑
k=1

odd k

(
cos(kθ) + sin(kθ) tan

(
πk

2n

))
Differentiating this equation two times, we get

r′′n(θ) = − 2

n

n−1∑
k=1

odd k

(
k2 cos(kθ) + k2 sin(kθ) tan

(
πk

2n

))
For θ ∈

(
0, π

2n

]
, 0 < kθ < π

2
for all k = 1, 3, ..., n − 1. Hence cos(kθ) > 0,

sin(kθ) > 0 and tan
(
πk
2n

)
> 0 for all k = 1, 3, ..., n − 1. This implies that

r′′n(θ) < 0 for all θ ∈
(
0, π

2n

]
. And since rn(π

n
) = rn(θ), we can conclude that

r′′n(π
n
) = r′′n(θ) for all θ ∈

(
0, π

n

)
. So r′′n(θ) < 0 for all θ ∈

(
0, π

n

)
which means

r′n(θ) is decreasing on
(
0, π

n

)
.

Since rn(π
n
− θ) = rn(θ), we can conclude that r′n(π

n
− θ) = −r′n(θ) for all

θ ∈
(
0, π

n

)
. This implies that r′n( π

2n
) = 0. And since r′n(θ) is decreasing on(

0, π
n

)
, we can conclude that r′n(θ) > 0 on

(
0, π

2n

)
and r′n(θ) < 0 on

(
π
2n
, π
n

)
.

Hence rn(θ) is increasing when 0 < θ < π
2n

, decreasing when π
2n
< θ < π

n
and

maximum when θ = π
2n

, which has value

rn

( π
2n

)
=

2

n

 n−1∑
k=1

odd k

sec

(
kπ

2n

) .

And in that case (θ = π
2n

), the image Pn,m is a rectangle. Moreover, since
rn(θ) is increasing when 0 < θ < π

2n
and rn(0+) = 1, 1 < rn(θ) when

0 < θ < π
2n

. Similarly, since rn(θ) is decreasing when π
2n
< θ < π

n
, 1 < rn(θ)

when 0 < θ < π
2n

. So 1 < rn(θ) when 0 < θ < π
n
. Now, we can conclude that

Pn,m is not a rhombus for all 0 < θ < π
n
.

Next, let consider when n is odd. From Proposition 3.3.9, we get

sin(n(θ + jπ
n

))

sin(θ + jπ
n

)
= 1 + 2

n−1∑
k=1

odd k

cos

(
(n− k)

(
θ +

jπ

n

))

= 1 + 2
n−1∑
k=1

even k

cos

(
k

(
θ +

jπ

n

))
.
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Hence

rn(θ) =
1

n

n−1∑
j=0

(
(−1)j sin(n(θ + jπ

n
))

sin(θ + jπ
n

)

)

=
1

n

1 + 2
n−1∑
j=0

(−1)j
n−1∑
k=1

even k

cos

(
k

(
θ +

jπ

n

))

=
1

n

1 + 2
n−1∑
j=0

even j

n−1∑
k=1

even k

cos

(
k

(
θ +

jπ

n

))
− 2

n−1∑
j=0

odd j

n−1∑
k=1

even k

cos

(
k

(
θ +

jπ

n

))
=

1

n

1 + 2

n−1
2∑

r=0

n−1∑
k=1

even k

cos

(
k

(
θ +

2rπ

n

))
− 2

n−1
2∑

r=0

n−1∑
k=1

even k

cos

(
k

(
θ +

(2r + 1)π

n

))
=

1

n

1 + 2
n−1∑
k=1

even k

n−1
2∑

r=0

cos

(
k

(
θ +

2rπ

n

))
− 2

n−1∑
k=1

even k

n−1
2∑

r=0

cos

(
k

(
θ +

(2r + 1)π

n

))
By Proposition 3.3.8, we get

n−1
2∑

r=0

cos

(
k

(
θ +

2rπ

n

))
=

sin
(
k(n+1)π

2n

)
sin
(
kπ
n

)
 cos

(
kθ +

(n− 1)πk

2n

)
and
n−1
2∑

r=0

cos

(
k

(
θ +

(2r + 1)π

n

))
=

sin
(
k(n−1)π

2n

)
sin
(
kπ
n

)
 cos

(
k
(
θ +

π

n

)
+

(n− 3)πk

2n

)

=

sin
(
k(n−1)π

2n

)
sin
(
kπ
n

)
 cos

(
kθ +

(n− 1)πk

2n

)
.

Hence

rn(θ) =
1

n

1 + 2
n−1∑
k=1

even k

cos
(
kθ + (n−1)πk

2n

)
sin
(
kπ
n

)
[sin(k(n+ 1)π

2n

)
− sin

(
k(n− 1)π

2n

)]
=

1

n

1 + 2
n−1∑
k=1

even k

cos
(
kθ + (n−1)πk

2n

)
2 sin

(
kπ
2n

)
cos
(
kπ
2n

)
(2 cos

(
kπ

2

)
sin

(
kπ

2n

))
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=
1

n

1 + 2
n−1∑
k=1

even k

cos
(
kθ + (n−1)πk

2n

)
cos
(
kπ
2

)
cos
(
kπ
2n

)



=
1

n

1 +
n−1∑
k=1

even k

cos
(
kθ + (2n−1)πk

2n

)
+ cos

(
kθ − kπ

2n

)
cos
(
kπ
2n

)



=
1

n

1 +
n−1∑
k=1

even k

(
2 cos

(
kθ − kπ

2n

)
cos
(
kπ
2n

) )
=

1

n
+

2

n

n−1∑
k=1

even k

(
cos kθ cos

(
kπ
2n

)
+ sin kθ sin

(
kπ
2n

)
cos
(
kπ
2n

) )

=
1

n
+

2

n

n−1∑
k=1

even k

(
cos(kθ) + sin(kθ) tan

(
kπ

2n

))
Differentiating this equation two times, we get

r′′n(θ) = − 2

n

n−1∑
k=1

even k

(
k2 cos(kθ) + k2 sin(kθ) tan

(
πk

2n

))

For θ ∈
(
0, π

2n

]
, 0 < kθ < π

2
for all k = 2, 4, ..., n − 1. Hence cos(kθ) > 0,

sin(kθ) > 0 and tan
(
πk
2n

)
> 0 for all k = 2, 4, ..., n − 1. This implies that

r′′n(θ) < 0 for all θ ∈
(
0, π

2n

]
. And since rn(π

n
) = rn(θ), we can conclude that

r′′n(π
n
) = r′′n(θ) for all θ ∈

(
0, π

n

)
. So r′′n(θ) < 0 for all θ ∈

(
0, π

n

)
which means

r′n(θ) is decreasing on
(
0, π

n

)
.

Since rn(π
n
− θ) = rn(θ), we can conclude that r′n(π

n
− θ) = −r′n(θ) for all

θ ∈
(
0, π

n

)
. This implies that r′n( π

2n
) = 0. And since r′n(θ) is decreasing on(

0, π
n

)
, we can conclude that r′n(θ) > 0 on

(
0, π

2n

)
and r′n(θ) < 0 on

(
π
2n
, π
n

)
.

Hence rn(θ) is increasing when 0 < θ < π
2n

, decreasing when π
2n
< θ < π

n
and

maximum when θ = π
2n

, which has value

rn

( π
2n

)
=

1

n
+

2

n

 n−1∑
k=1

even k

sec

(
kπ

2n

) .

And in that case (θ = π
2n

), the image Pn,m is a rectangle. Moreover, since
rn(θ) is increasing when 0 < θ < π

2n
and rn(0+) = 1, 1 < rn(θ) when

0 < θ < π
2n

. Similarly, since rn(θ) is decreasing when π
2n
< θ < π

n
, 1 < rn(θ)
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when 0 < θ < π
2n

. So 1 < rn(θ) when 0 < θ < π
n
. Now, we can conclude that

Pn,m is not a rhombus for all 0 < θ < π
n
.

Finally, we will prove that for a given real number λ > 1, there exist a
natural number n and a complex number m = eiθ where 0 < θ < π

n
such that

the ratio of lengths of the non parallel sides of Pn,m is equal to λ, equivalently
rn(θ) = λ.

Theorem 3.3.10. Let λ > 1, then there exist a natural number n and a
complex number m = eiθ where 0 < θ < π

n
such that rn(θ) = λ.

Proof. Let q be an odd positive integer. Let l ∈ {1, 3, 5, ..., q}. Since

lim
n−→∞

2

n

(
sec

(
(n− l)π

2n

))
= lim

n−→∞

2

n

 1

cos
(

(n−l)π
2n

)


= lim
n−→∞

2

n

(
1

cos
(
π
2
− lπ

2n

))

= lim
n−→∞

4

lπ

(
lπ
2n

sin
(
lπ
2n

))
=

4

lπ
,

there exists a positive integer Nl such that for all n ≥ Nl,

4

lπ
− 8

q(q + 1)π
<

2

n

(
sec

(
(n− l)π

2n

))
<

4

lπ
+

8

q(q + 1)π

Let N = max {N1, N3, N5, ..., Nq, q}. Let n be an even positive integer
greater that N . We get

4

lπ
− 8

q(q + 1)π
<

2

n

(
sec

(
(n− l)π

2n

))
<

4

lπ
+

8

q(q + 1)π
for all l = 1, 3, 5, ..., q.

Consider

rn

( π
2n

)
=

2

n

 n−1∑
k=1

odd k

sec

(
kπ

2n

) .

Since 0 < kπ
2n

< π
2

for all k = 1, 3, 5, ..., n − 1, sec
(
kπ
2n

)
> 0 for all k =
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1, 3, 5, ..., n− 1. Hence

rn

( π
2n

)
=

2

n

 n−1∑
k=1

odd k

sec

(
kπ

2n

)
≥ 2

n

 n−1∑
k=n−q
odd k

sec

(
kπ

2n

)
=

q∑
l=1

odd l

2

n

(
sec

(
(n− l)π

2n

))

>

 q∑
l=1

odd l

4

lπ

− 4

qπ

=
4

π

 q−1∑
l=1

odd l

1

l

 .

Therefore for each positive odd integer q there exists a natural number N
such that for all positive even number n greater than N ,

rn

( π
2n

)
>

4

π

 q−1∑
l=1

odd l

1

l

 .

Let λ be any positive real number greater than 1. Since

lim
q−→∞

4

π

 q−1∑
l=1

odd l

1

l

 =∞,

there exists Q ∈ N such that

4

π

Q−1∑
l=1

odd l

1

l

 > λ

Hence there exists a natural number NQ such that for all positive even num-
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bers n greater than NQ,

rn

( π
2n

)
>

4

π

Q−1∑
l=1

odd l

1

l

 > λ.

Since rn (0+) = 1 < λ < rn
(
π
2n

)
and rn is continuous on (0, π

2n
), we can

conclude by Intermediate Value Theorem that there exists θ ∈ (0, π
2n

) such
that rn(θ) = λ = rn(π

n
− θ).

Although this theorem implies that we can find a harmonic map fn,m
which maps D onto a parallelogram that has the ratio of lengths of the non
parallel sides equals to a given number λ > 1, it doesn’t imply that for
any given parallelogram (up to similarity) there exists a harmonic map fn,m
which maps D onto it. In fact, a parallelogram (up to similarity) can be
characterized by only one of its angel α together with its ratio of lengths of
the non parallel sides λ. It is easy to see that if we fix n and α, we should
choose m = eiθ where θ = α

n
or θ = π−α

n
to get the parallelogram which has

one of its angle equals to α. But this means that n and α control the value
of λ = rn(θ). So we may can not find a harmonic map fn,m which maps D
onto a parallelogram with fixed α and λ.

In the next chapter, we will construct a minimal graph corresponding to
the map fn,m



Chapter 4

Minimal graphs over
parallelograms and their
conjugate surfaces

In this chapter, we will construct minimal graphs over parallelograms by
applying modified Weierstrass representation (Theorem 2.4.7) to the map
fn,m constructed in Chapter 3. We also construct their conjugate surfaces.

4.1 Construction

Applying Equation (2.9) to harmonic mapping fn,m, we get the parametrize
of minimal graph (u(z), v(z),Fn,m(z)) = (<{fn,m(z)} ,={fn,m(z)} ,Fn,m(z))
where

Fn,m(z) = 2=
{∫ z

0

√
h′n,m(ζ)g′n,m(ζ)dζ

}
= 2=

{∫ z

0

h′n,m(ζ)
√
ω(ζ)dζ

}
= 2=

{∫ z

0

mnζnh′n,m(ζ)dζ

}
.

From Equation (3.3), we get h′n,m(z) = 1
(1−z2)(1−m2nz2n)

. Hence

Fn,m(z) = 2=
{∫ z

0

mnζn

(1− ζ2)(1−m2nζ2n)
dζ

}
.

From now, we will consider for n ≥ 2 because the case that n = 1 is
already done by M.Dorff and J.Szynal and the method that we use here is

55
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not compatible with that case. find Fn,m(z) by computing the partial fraction
decomposition of

mnζn

(1− ζ2)(1−m2nζ2n)
=

mnζn

(1−mω2nζ)(1−mω2
2nζ)...(1−mω2n

2nζ)(1− ζ)(1 + ζ)

where ω2n = eiπ/n is the primitive 2n-th root of unity. Suppose that the
above fraction can be written in the form

C1

(1−mω2nζ)
+

C2

(1−mω2
2nζ)

+ ...+
C2n

(1−mω2n
2nζ)

+
C2n+1

(1− ζ)
+

C2n+2

(1 + ζ)

where Cj ∈ C for all j = 1, 2, 3, ..., 2n+ 2. We get

mnζn = C1

(
(1− ζ2)(1−m2nζ2n)

(1−mω2nζ)

)
+ C2

(
(1− ζ2)(1−m2nζ2n)

(1−mω2
2nζ)

)
+ ...

+ C2n

(
(1− ζ2)(1−m2nζ2n)

(1−mω2n
2nζ)

)
+ C2n+1(1 + ζ)(1−m2nζ2n)

+ C2n+2(1− ζ)(1−m2nζ2n).

For p = 1, 2, ..., 2n, consider
(

(1−ζ2)(1−m2nζ2n)
(1−mωp2nζ)

)
. Since

1−m2nζ2n = (1−mωp2nζ)(1 +mωp2nζ +m2ω2p
2nζ

2 + ...+m2n−1ω
p(2n−1)
2n ζ2n−1),

we get

(1− ζ2)(1−m2nζ2n)

(1−mωp2nζ)
= (1− ζ2)(1 +mωp2nζ +m2ω2p

2nζ
2 + ...+m2n−1ω

p(2n−1)
2n ζ2n−1)

=
2n−1∑
j=0

(mjωpj2nζ
j −mjωpj2nζ

j+2)

=

(
2n−1∑
j=0

mjωpj2nζ
j

)
−

(
2n−1∑
j=0

mjωpj2nζ
j+2

)

=

(
2n−1∑
j=0

mjωpj2nζ
j

)
−

(
2n+1∑
j=2

mj−2ω
p(j−2)
2n ζj

)
= 1 +mωp2nζ −m2n−2ω

p(2n−2)
2n ζ2n −m2n−1ω

p(2n−1)
2n ζ2n+1

+
2n−1∑
j=2

(
mjωpj2nζ

j −mj−2ω
p(j−2)
2n ζj

)
= 1 +mωp2nζ −m2n−2ω

p(2n−2)
2n ζ2n −m2n−1ω

p(2n−1)
2n ζ2n+1

+
2n−1∑
j=2

(
mj−2ω

p(j−2)
2n (m2ω2p

2n − 1)ζj
)
.
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Therefore

mnζn =
2n∑
p=1

Cp

(
1 +mωp2nζ −m2n−2ω

p(2n−2)
2n ζ2n −m2n−1ω

p(2n−1)
2n ζ2n+1

)
+

2n∑
p=1

Cp

(
2n−1∑
j=2

(
mj−2ω

p(j−2)
2n (m2ω2p

2n − 1)ζj
))

+ C2n+1(1 + ζ)(1−m2nζ2n) + C2n+2(1− ζ)(1−m2nζ2n)

=
2n+2∑
p=1

Cp +

((
2n∑
p=1

Cpmω
p
2n

)
+ C2n+1 − C2n+2

)
ζ

+
2n−1∑
j=2

(
2n∑
p=1

Cpm
j−2ω

p(j−2)
2n (m2ω2p

2n − 1)

)
ζj

−

[(
2n∑
p=1

Cjm
2n−2ω

p(2n−2)
2n

)
+ (C2n+1 + C2n+2)m2n

]
ζ2n

−

[(
2n∑
p=1

Cpm
2n−1ω

p(2n−1)
2n

)
+ (C2n+1 − C2n+2)m2n

]
ζ2n+1.

Comparing the coefficient of ζj for j = 0, 1, 2, ..., 2n+ 1, we get

j = 0; C1 + C2 + ...+ C2n+2 = 0

j = 1;

(
2n∑
p=1

Cpmω
p
2n

)
+ C2n+1 − C2n+2 = 0

j ∈ {2, 3, 4, ..., 2n− 1} \ {n} ;
2n∑
p=1

Cpm
j−2ω

p(j−2)
2n (m2ω2p

2n − 1) = 0

j = n;
2n∑
p=1

Cpm
n−2ω

p(n−2)
2n (m2ω2p

2n − 1) = mn

j = 2n;

(
2n∑
p=1

Cjm
2n−2ω

p(2n−2)
2n

)
+ (C2n+1 + C2n+2)m2n = 0

j = 2n+ 1;

(
2n∑
p=1

Cjm
2n−1ω

p(2n−1)
2n

)
+ (C2n+1 − C2n+2)m2n = 0.
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Since m 6= 0, we can divide the equations by m and get

(0); C1 + C2 + ...+ C2n+2 = 0

(1);

(
2n∑
p=1

Cpmω
p
2n

)
+ C2n+1 − C2n+2 = 0

(j);
2n∑
p=1

Cpω
p(j−2)
2n (m2ω2p

2n − 1) = 0 for j = 2, 3, 4, ..., n− 1, n+ 1, ..., 2n− 1

(n);
2n∑
p=1

Cpω
p(n−2)
2n (m2ω2p

2n − 1) = m2

(∗);

(
2n∑
p=1

Cpω
p(2n−2)
2n

)
+ (C2n+1 + C2n+2)m2 = 0

(∗∗);

(
2n∑
p=1

Cpω
p(2n−1)
2n

)
+ (C2n+1 − C2n+2)m = 0.

By m2(0)− (∗), we get

(2n);
2n∑
p=1

Cpω
p(2n−2)
2n (m2ω2p

2n − 1) = 0.

By m(1)− (∗∗), we get

(2n+ 1);
2n∑
p=1

Cpω
p(2n−1)
2n (m2ω2p

2n − 1) = 0.

For r = 1, 2, 3, ..., 2n, consider
∑2n+1

j=2 ω−rj2n (j) and get

2n+1∑
j=2

2n∑
p=1

Cpω
p(j−2)−rj
2n (m2ω2p

2n − 1) = ω−rn2n m2

2n∑
p=1

(
Cp(m

2ω2p
2n − 1)ω−2p

2n

(
2n+1∑
j=2

ω
(p−r)j
2n

))
= ω−rn2n m2

Since for p − r ≡ 1, 2, 3, ..., 2n − 1(mod 2n), ωp−r2n are roots of z2 + z+z4 +
...+ z2n+1 = 0, we get

2n+1∑
j=2

ω
(p−r)j
2n = 0 for all p− r ≡ 1, 2, 3, ..., 2n− 1(mod 2n).
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Therefore

2nCr(m
2ω2r

2n − 1)ω−2r
2n = ω−rn2n m2

Cr =
ω
−r(n−2)
2n m2

2n(m2ω2r
2n − 1)

for all r = 1, 2, 3, ..., 2n.
From (∗), we get

C2n+1 + C2n+2 = − 1

m2

2n∑
p=1

Cpω
−2p
2n = − 1

2n

2n∑
p=1

(−1)p

m2ω2p
2n − 1

. (4.1)

From (∗∗), we get

C2n+1 − C2n+2 = − 1

m

2n∑
p=1

Cpω
−p
2n = −m

2n

2n∑
p=1

(−1)pωp2n
m2ω2p

2n − 1
. (4.2)

Solving this system of equations, we get

1

2
((4.1) + (4.2)) ;C2n+1 = − 1

4n

2n∑
p=1

(−1)p

mωp2n − 1

1

2
((4.1)− (4.2)) ;C2n+2 =

1

4n

2n∑
p=1

(−1)p

mωp2n + 1
.

We get

C2n+1 = − 1

4n

∑2n
p=1

(
(−1)p

∑2n−1
j=0 mjωpj2n

)
m2n − 1


= − 1

4n

∑2n
p=1

(∑2n−1
j=0 mjω

(j+n)p
2n

)
m2n − 1


= − 1

4n

∑2n−1
j=0 mj

(∑2n
p=1 ω

(j+n)p
2n

)
m2n − 1


= − 1

4n

(
2nmn

m2n − 1

)
= − mn

2(m2n − 1)
,
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and

C2n+2 =
1

4n

2n∑
p=1

(−1)p

mω2n+p
2n + 1

=
1

4n

(
n∑
p=1

(−1)p

mω2n+p
2n − ωn2n

+
2n∑

p=n+1

(−1)p

mω2n+p
2n − ωn2n

)

=
1

4n

(
n∑
p=1

(−1)p

(mωn+p
2n − 1)ωn2n

+
2n∑

p=n+1

(−1)p

(mωn+p
2n − 1)ωn2n

)

=
1

4n

(
n∑
p=1

(−1)p+1

mωn+p
2n − 1

+
2n∑

p=n+1

(−1)p+1

mωn+p
2n − 1

)

=
1

4n

(
2n∑

p=n+1

(−1)p−n+1

mωp2n − 1
+

n∑
p=1

(−1)p+n+1

mω2n+p
2n − 1

)

=
1

4n

(
2n∑

p=n+1

(−1)p+n+1

mωp2n − 1
+

n∑
p=1

(−1)p+n+1

mωp2n − 1

)

=
1

4n

(
2n∑
p=1

(−1)p+n+1

mωp2n − 1

)

=
(−1)n+1

4n

(
2n∑
p=1

(−1)p

mωp2n − 1

)

=
(−1)n+1

4n

(
2nmn

m2n − 1

)
=

(−1)n+1mn

2(m2n − 1)
.

Hence

mnζn

(1− ζ2)(1−m2nζ2n)
=

2n∑
j=1

[(
ω
−j(n−2)
2n m2

2n(m2ω2j
2n − 1)

)(
1

1−mωj2nζ

)]

− mn

2(m2n − 1)(1− ζ)
+

(−1)n+1mn

2(m2n − 1)(1 + ζ)
.

Despite the fact that this method is not compatible with the case n = 1,
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the result above also holds for that case.

mζ

(1− ζ2)(1−m2nζ2n)
= mζ

(
1

(1− ζ2)(1−m2nζ2n)

)
= mζ

(
1

1−m2

(
1

1− ζ2

)
− m2

1−m2

(
1

1−m2ζ2

))
=

m

1−m2

(
ζ

1− ζ2

)
− m2

1−m2

(
mζ

1−m2ζ2

)
=

m

2(1−m2)

(
1

1− ζ
− 1

1 + ζ

)
− m2

2(1−m2)

(
1

1−mζ
− 1

1−mζ

)
=

m2

2(m2 − 1)

(
1

1−mζ

)
− m2

2(m2 − 1)

(
1

1 +mζ

)
− m

2(m2 − 1)

(
1

1− ζ

)
+

m

2(m2 − 1)

(
1

1 + ζ

)
=

2n∑
j=1

[(
ω
−j(n−2)
2n m2

2n(m2ω2j
2n − 1)

)(
1

1−mωj2nζ

)]

− mn

2(m2n − 1)(1− ζ)
+

(−1)n+1mn

2(m2n − 1)(1 + ζ)

where n = 1. So from now we let n be an arbitrary natural number. We will

find
∫ z

0

(
mnζn

(1−ζ2)(1−m2nζ2n)

)
dζ

For j = 1, 2, 3, ..., 2n, consider∫ z

0

1

1−mωj2nζ
dζ = − 1

mωj2n

∫ z

0

1

1−mωj2nζ
d(1−mωj2nζ)

= −
(

1

mωj2n

)
log
(
1−mωj2nz

)
,

and
∫ z

0
1

1−ζdζ = −
∫ z

0
1

1−ζd(1−ζ) = − log(1−z),
∫ z

0
1

1+ζ
dζ =

∫ z
0

1
1+ζ

d(1+ζ) =

log(1 + z). Hence,∫ z

0

(
mnζn

(1− ζ2)(1−m2nζ2n)

)
dζ =

2n∑
j=1

[
−

(
ω
−j(n−1)
2n m

2n(m2ω2j
2n − 1)

)
log
(
1−mωj2nz

)]

+

(
mn

2(m2n − 1)

)
log(1− z) +

(−1)n+1mn

2(m2n − 1)
log(1 + z)

=
2n∑
j=1

[(
(−1)j+1mωj2n

2n(m2ω2j
2n − 1)

)
log
(
1−mωj2nz

)]

+

(
mn

2(m2n − 1)

)
log(1− z) +

(−1)n+1mn

2(m2n − 1)
log(1 + z).
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From Fn,m(z) = 2=
{∫ z

0
mnζn

(1−ζ2)(1−m2nζ2n)
dζ
}

, we get

Fn,m(z) =
2n∑
j=1

=

{(
(−1)j+1mωj2n
n(m2ω2j

2n − 1)

)
log
(
1−mωj2nz

)}

+ =
{(

mn

m2n − 1

)
log(1− z)

}
+ =

{(
(−1)n+1mn

m2n − 1

)
log(1 + z)

}
.

Next, we will construct the conjugate surface S∗n,m of Sn,m. Let x∗(z) =
(x∗1(z), x∗2(z), x∗3(z)) be a parametrization of S∗n,m. By Equation (2.10), we
get

x∗1(z) = <{hn,m(z)− gn,m(z)} ,
x∗2(z) = ={hn,m(z) + gn,m(z)} ,

x∗3(z) = 2<
{∫ z

0

√
h′n,m(ζ)g′n,m(ζ)dζ

}
.

Hence,

x∗1(z) =
1

2
<
(

log

(
1 + z

1− z

))
x∗2(z) = =

(
n−1∑
j=0

[(
m

n(m2 − ω−2j
2n )ωj2n

)
log

(
1 +mωj2nz

1−mωj2nz

)]
+

(
1 +m2n

2(1−m2n)

)
log

(
1 + z

1− z

))

x∗3(z) =
2n∑
j=1

<

{(
(−1)j+1mωj2n
n(m2ω2j

2n − 1)

)
log
(
1−mωj2nz

)}

+ <
{(

mn

m2n − 1

)
log(1− z)

}
+ <

{(
(−1)n+1mn

m2n − 1

)
log(1 + z)

}
.

Figure 4.1 shows some figures of Sn,m and S∗n,m.
In the next section, we will prove that if m = eiθ where 0 < θ < π

n
, Sn,m is

a JS surface over parallelogram domain and then conclude some interesting
corollaries.
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(a) Sn,m; n = 2 and m = e
iπ
4 (b) S∗n,m; n = 2 and m = e

iπ
4

(c) Sn,m; n = 2 and m = 0.95e
iπ
4 (d) S∗n,m; n = 2 and m = 0.95e

iπ
4

(e) Sn,m; n = 2 and m = e
iπ
5 (f) S∗n,m; n = 2 and m = e

iπ
5

(g) Sn,m; n = 3 and m = e
iπ
6 (h) S∗n,m where n = 3 and m = e

iπ
6

Figure 4.1: Minimal graphs over fn,m(D) and their conjugate surfaces for
various values of n and m
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4.2 Some corollaries

For the case that m = eiθ where 0 < θ < π
n
, the parametrization (u(z), v(z),

Fn,m(z)) is a minimal graph Sn,m over a parallelogram domain with 2n +
2 , b1, b2, ..., b2n+2, and hence 2n + 2 sides (see Section 3.3). Since this
parametrization obtained from harmonic mapping fn,m which has dilation
ω(z) = m2nz2n, the Equation (2.11) tell us that (the stereographic projec-
tion of) the Gauss map G(z) of Sn,m is

G(z) =
i√
ω(z)

=
i

mnzn

which is in the form c/B(z) where c is a constant of modulus 1 and B(z) is a
Blaschke product of order n. By Theorem 2.4.11, we can conclude that Sn,m
is a JS surface.

For j = 1, 2, 3, ..., 2n, let αj be the interior angle of the parallelogram at
the vertex bj. According to Section 3.3, we get α1 = αn+2 = π − nθ and
αn+1 = α2n+2 = nθ, while the rests are π. So b1, bn+1, bn+2 and b2n+2 are
points of convexity and Theorem 2.4.10 tells us that Fn,m(z) must change
signs on the sides adjacent to each of these four points.

For j = 2, 3, 4, ..., n, we known that fn,m(eiϕ) = bj when ϕ ∈ ( (j−1)π
n
−

θ, jπ
n
− θ). Consider

1

2

(
arg(ω(e

jπi
n
−θ))− arg(ω(e

(j−1)π
n
−θ))

)
=

1

2

(
2n

(
θ +

(
jπi

n
− θ
))
− 2n

(
θ +

(
(j − 1)π

n
− θ
)))

= jπ − (j − 1)π

= π = αj.

For j = n+ 3, n+ 4, n+ 5, ..., 2n+ 1, we known that fn,m(eiϕ) = bj when

ϕ ∈ ( (j−2)π
n
− θ, (j−1)π

n
− θ). Consider

1

2

(
arg(ω(e

(j−1)πi
n
−θ))− arg(ω(e

(j−2)π
n
−θ))

)
=

1

2

(
2n

(
θ +

(
(j − 1)πi

n
− θ
))
− 2n

(
θ +

(
(j − 2)π

n
− θ
)))

= (j − 1)π − (j − 2)π

= π = αj

So for j = 2, 3, 4, ..., n, n + 3, n + 4, n + 5, ..., 2n + 1, bj is a full resting
point. We can conclude by Theorem 2.4.10 that Fn,m(z) must also change
signs on the sides adjacent to each of these points.
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Now, we can get the corollary:

Corollary 4.2.1. For a natural number n and a complex number m = eiθ

where 0 < θ < π
n

, minimal graph Sn,m parametrized by (u(z), v(z),Fn,m(z)) is
a JS surface over parallelogram domain with 2n+ 2 vertices, b1, b2, ..., b2n+2.
Moreover, Fn,m(z) changes signs on the sides adjacent to bj every j =
1, 2, 3, ..., 2n+ 2.

Since we can construct JS surface over parallelogram Pn,m with vertices
b1, b2, b3, ..., b2n+2, Theorem 2.2.6 tells us that this parallelogram must satisfy

(a) no two edges of Ai nor of Bi meet at a convex vertex,
(b) 2

∑
Ai∈Π |Ai| < |Π| and 2

∑
Bi∈Π |Bi| < |Π| for each such Π, Π 6= P ,

(c)
∑
|Ai| =

∑
|Bi| when Π = P .

where Pn,m has finitely many bounding edges partitioned into sets Ai and Bi.
Π is a connected polygonal subset of Pn,m whose boundary is the union of
some segments from Ai and Bi, possibly including additional line segments
contained in Pn,m whose endpoints are vertices of Pn,m. |Π| is the length of
the boundary of Π.

We will focus only on condition (c).
In the case that n is even, F has the same sign when it approaches

the sides b1b2, b3b4, ..., bn+1bn+2, ..., b2n+1b2n+2 which have opposite sign to
the sides b2b3, b4b5, ..., bnbn+1, ..., b2nb2n+1, b2n+2b1. From Section 3.3, we have
known that

l(b2n+2, b1) =
π

2 sin(nθ)
= l(bn+1, bn+2),

while F has opposite sign when it approaches the sides bn+1bn+2 and b2n+2b1.
And for k = 1, 2, 3, ..., n+ 1

l(bk, bk+1) =
π

2n sin
(
θ + (n−k)π

n

)
=

π

2n sin
(
θ + (2n+1−(k+n+1))π

n

)
= l(bk+n+1, bk+n+2).

Since k and k+ n+ 1 have different parity, F also has opposite sign when it
approaches the sides bkbk+1 and bk+n+1bk+n+2. So we can pair the sides with
opposite sign which has the same length bijectively. This obviously implies
the condition (c).

It is much more interesting for the case that n is odd. In this case, we can
not pair the sides as for the previous case. Since n is odd, F has the same
sign when it approaches the sides b1b2, b3b4, ..., bnbn+1, ..., b2n+1b2n+2 which are
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opposite sign to the sides b2b3, b4b5, ..., bn+1bn+2, ..., b2nb2n+1, b2n+2b1. Accord-
ing to the condition (c), this implies that the sum of the lengths of the sides
b1b2, b3b4, ..., bnbn+1, ..., b2n+1b2n+2 must be equal to the sum of the lengths
of the sides b2b3, b4b5, ..., bn+1bn+2, ..., b2nb2n+1, b2n+2b1. According to Section
3.3, we can conclude an interesting trigonometric identity as follow:

Corollary 4.2.2. For odd n,

n−1∑
k=0

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
= n.

Proof. From the argument above, we get

2n+1∑
k=1

odd k

l(bk, bk+1) =
2n∑
k=2

even k

l(bk, bk+1) + l(b2n+2, b1). (4.3)

Consider the left hand side,

2n+1∑
k=1

odd k

l(bk, bk+1) =
n∑
k=1

odd k

l(bk, bk+1) +
2n+1∑
k=n+2
odd k

l(bk, bk+1)

=
n∑
k=1

odd k

 π

2n sin
(
θ + (n−k)π

n

)
+

2n+1∑
k=n+2
odd k

 π

2n sin
(
θ + (2n+1−k)π

n

)


=
n∑
k=1

odd k

 π

2n sin
(
θ + (n−k)π

n

)
+

n∑
k=1

odd k

 π

2n sin
(
θ + (n−k)π

n

)


=
n∑
k=1

odd k

 π

n sin
(
θ + (n−k)π

n

)
 .

Similarly for the right hand side,

2n∑
k=2

even k

l(bk, bk+1) + l(b2n+2, b1) =
n−1∑
k=2

even k

l(bk, bk+1) +
2n∑

k=n+3
even k

l(bk, bk+1)

+ l(bn+1, bn+2) + l(b2n+2, b1)

=
n−1∑
k=2

even k

 π

n sin
(
θ + (n−k)π

n

)
+

π

sin(nθ)
.
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From (4.3), we get

n∑
k=1

odd k

 π

n sin
(
θ + (n−k)π

n

)
 =

n−1∑
k=2

even k

 π

n sin
(
θ + (n−k)π

n

)
+

π

sin(nθ)
.

n∑
k=1

odd k

 π

n sin
(
θ + (n−k)π

n

)
− n−1∑

k=2
even k

 π

n sin
(
θ + (n−k)π

n

)
 =

π

sin(nθ)
.

n∑
k=1

 (−1)k+1

n sin
(
θ + (n−k)π

n

)
 =

1

sin(nθ)
.

n∑
k=1

 (−1)k+1 sin(nθ)

sin
(
θ + (n−k)π

n

)
 = n.

Hence

n∑
k=1

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
= n

n−1∑
k=1

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
+

sin (nθ + nπ)

sin (θ + π)
= n

n−1∑
k=1

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
+
− sin (θ)

− sin (θ)
= n

n−1∑
k=1

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
+

sin (nθ)

sin (θ)
= n

n−1∑
k=0

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
= n

as desired.

Remark 4.2.3. In fact, this corollary can be proven purely algebraically, as
follow:

Proof. (Algebraic proof of Cor. 4.2.2) By Prop 3.3.9, for k = 0, 1, 2, ..., n−1,

sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) = 1 + 2
n−2∑
r=1

odd r

cos

(
(n− r)

(
θ +

kπ

n

))
.
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Therefore,

n−1∑
k=0

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
= n+ 2

n−1∑
k=0

n−2∑
r=1

odd r

cos

(
(n− r)

(
θ +

kπ

n

))

= n+ 2
n−2∑
r=1

odd r

n−1∑
k=0

cos

(
(n− r)

(
θ +

kπ

n

))
.

For fixed r ∈ {1, 3, ..., n− 2}, by Prop 3.3.8, we get

n−1∑
k=0

cos

(
(n− r)

(
θ +

kπ

n

))
=

n−1∑
k=0

cos

(
(n− r)θ + k

(
(n− r)π

n

))

=
sin
(

((n−r)π)
2

)
sin
(

((n−r)π)
2n

) cos

(
(n− r)θ +

(n− 1) ((n− r)π)

2n

)
.

Since n, r are odds, n−r is even. Hence n−r
2

is an integer. So sin
(

((n−r)π)
2

)
=

0 which implies
n−1∑
k=0

cos

(
(n− r)

(
θ +

kπ

n

))
= 0.

Therefore
n−1∑
k=0

(
sin
(
n
(
θ + kπ

n

))
sin
(
θ + kπ

n

) )
= n

as desired.
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Conclusion

5.1 Our Results

We obtained some harmonic mappings onto an arbitrary parallelogram do-
main via Radó-Kneser-Choquet theorem but we can prove that this kind of
maps has analytic square root dilation only when it maps D onto a rhombus,
see Theorem 3.1.1. We then constructed harmonic shear fn,m of elliptic inte-
gral F (z, 1) =

∫ z
0

dζ
(1−ζ2)

with dilation ω(z) = m2nz2n where n is an arbitrary

natural number and m is a complex number such that |m| 6 1. In the case
that |m| = 1, we found that the image of D under fn,m is a parallelogram,
see Proposition 3.3.7. We applied the Weierstrass representation to the har-
monic map fn,m where |m| = 1 and received a family of minimal graphs which
are JS surfaces over parallelogram domains, see Corollary 4.2.1. In fact, the
result in the case n = 1 is the same as result of M.Dorff and J.Szynal in
[8] which is a minimal graph over a rhombus, but when n ≥ 2 the minimal
graph that we construct is a minimal graph over a parallelogram which is
not a rhombus. We also rediscover an interesting trigonometry identity, see
Corollary 4.2.2.

5.2 Problems for further investigation

Although there is a lot of researches on minimal surfaces, there are still a lot
of problems to investigate. Here are some interesting questions arising from
our work:

1. Describe the image of D under fn,m where n is an arbitrary natural
number and m is a complex number where |m| < 1 and its associated
minimal graph. Figure 3.2 shows some image of D under fn,m where

69
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|m| < 1. We can make a interesting claim that for this case the image
of D under fn,m is a hexagon but we haven’t prove it yet.

2. Construct minimal graph over an arbitrary parallelogram domain and
determine whether it is JS surface or not. In Chapter 3, we have
constructed a harmonic map which maps D onto an arbitrary paral-
lelogram domain via Radó-Kneser-Choquet theorem but unfortunately
its dilation has non analytic square root, see Theorem 3.1.1. However,
there is a lot of possible way to construct a harmonic map which maps
D onto a parallelogram domain via Radó-Kneser-Choquet theorem so
that there still a hope to find some of these maps with analytic square
root dilation.

3. Apply shearing method to elliptic integral F (z, k) and E(z, k) by us-
ing other dilations. Investigate the image of D under this map and
construct minimal graph over it.

4. Construct minimal graphs over other polygonal domains and examine
whether it is a JS surface or not.
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physically be interpreted as a soap film that spans a wire frame when it is dipped in soap 
solution. Some standard examples of minimal surfaces in Euclidean space are the plane, the 
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important techniques to construct new minimal surfaces is called the Weierstrass representation. 

Our work will focus on special class of minimal surfaces called minimal graphs. A 
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[2] (see example [5], and [6]) and Radó-Kneser-Choquet theorem [7, Chapter 3&4] (see example 
[3], and [8]). 

In this project, we will try to apply those methods mentioned above to obtain certian 
harmonic univalent mapping of the unit disc 𝔻 and use it to construct minimal graphs over 
certain domains. 

 

Objectives 

To construct minimal graphs over certain domains by using harmonic univalent 
mapping of the unit disc 𝔻, given by Clunie and Sheil-Small shearing method or Radó-Kneser-
Choquet theorem. 

 

Scope 

In this project, we focus only on minimal graphs over certain domains. 

 

Project Activities 

A. Processes 

1. Reviewing basic knowledges about minimal surfaces and harmonic univalent 
mapping from [2], [7], and [9]. 

2. Reading related research papers from [1], [3], [4], [5], [6], and [8]. 
3. Presenting project proposal. 
4. Constructing minimal graphs over certain domains. 
5. Writing the project report and project presenting. 

 

 

 

 

 

 

 



B. Duration 

Processes 
2019 2020 

Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. 
1. Reviewing basic 

knowledges about 
minimal surfaces 
and harmonic 
univalent mapping 
from [2], [7], and 
[9]. 

         

2. Reading related 
research papers 
from [1], [3], [4], 
[5], [6], and [8]. 

         

3. Presenting project 
proposal. 

         

4. Constructing 
minimal graphs 
over certain 
domains. 

         

5. Writing the project 
report and project 
presenting 

         

 

Benefits 

A. The benefits for students who implement this project 

1. To improve mathematical thinking and proving skill. 
2. To improve academic research skill. 
3. To review some knowledges in mathematics, especially in differential geometry and 

complex analysis. 
4. To learn some new knowledges in mathematics, especially in differential geometry 

and complex analysis. 
5. To understand properties of minimal graphs and univalent harmonic mappings. 

B. The benefits for users of the project 

1. To obtain minimal graphs over certain domains. 



2. To understand more about properties of minimal graphs and univalent harmonic 
mappings. 

 

Equipment 

A. Hardware 

1. Computer 
2. Printer 
3. Textbooks 
4. Stationery 

B. Software 

1. Microsoft Window 10 
2. Microsoft Office 2010 
3. Wolfram Mathemaica 9 
4. Complex Tool 6.0 
5. MinSurfTool 3.0 
6. LaTeX 

 

Budget 

1. Textbooks         4,500 Baht 
2. Stationery         500  Baht 
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