COLOR STABILITY, NANOHARDNESS AND ELASTIC MODULUS OF DENTURE BASE ACRYLIC RESINS WITH VARIOUS POLYMERIZATION TECHNIQUES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Prosthodontics Department of Prosthodontics FACULTY OF DENTISTRY Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University เสถียรภาพของสี ความแข็งผิวระดับนาโน และ ค่าโมดูลัสยึดหยุ่นของอะคริลิกเรซินสำหรับทำฐาน พื้นเทียมที่มีกระบวนการพอลิเมอไรเซชันที่แตกต่างกัน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประคิษฐ์ ภาควิชาทันตกรรมประคิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิบสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	COLOR STABILITY, NANOHARDNESS AND ELASTIC
	MODULUS OF DENTURE BASE ACRYLIC RESINS WITH
	VARIOUS POLYMERIZATION TECHNIQUES
Ву	Miss Sawita Losuphakarn
Field of Study	Prosthodontics
Thesis Advisor	Associate Professor MANSUANG ARKSORNNUKIT, D.D.S.,
	M.S., Ph.D.

Accepted by the FACULTY OF DENTISTRY, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

		Dean of the FACULTY OF
	1 AGA	DENTISTRY
	(Assistant Professor SUCHIT POOLT	HONG, D.D.S., M.Sc.,
	Ph.D.)	
THESIS COMMI	TTEE	Chairman
	(Associate Professor VIRITPON SRI	MANEEPONG, D.D.S.,
	M.D.Sc., Ph.D.)	/ERSITY
		Thesis Advisor
	(Associate Professor MANSUANG A	RKSORNNUKIT, D.D.S.,
	M.S., Ph.D.)	
		Examiner
	(Assistant Professor WACHARASAK	TUMRASVIN, D.D.S.,
	Ph.D.)	
		External Examiner
	(Pisaisit Chaijareenont, D.D.S., M.Sc.	, Ph.D.)

ศวิตา โล่ศุภกาญจน์ : เสถียรภาพของสี ความแข็งผิวระดับนาโน และ ค่าโมดูลัส ยึดหยุ่นของอะคริลิกเรซินสำหรับทำฐานฟื้นเทียมที่มีกระบวนการพอลิเมอไรเซชันที่ แตกต่างกัน. (COLOR STABILITY, NANOHARDNESS AND ELASTIC MODULUS OF DENTURE BASE ACRYLIC RESINS WITH VARIOUS POLYMERIZATION TECHNIQUES) อ.ที่ปรึกษาหลัก : รศ. ทพ. คร.แมนสรวง อักษรนุกิจ

้วัตถประสงค์ของงานวิจัย เพื่อศึกษาเสถียรภาพของสี ความแข็งผิวระคับนาโน และ ค่า ้ โมดูลัสยึดหยุ่นของอะคริลิกเรซินสำหรับทำฐานฟันเทียมที่มีกระบวนการพอลิเมอไรเซชันที่ แตกต่างกันหลังจากนำตัวอย่างแช่ในกาแฟ น้ำกลั่นหรือเก็บในที่มืด โดยเตรียมชิ้นตัวอย่างรูป เหรียญ (9 X 2 มม.) จำนวน 90 ชิ้นด้วยอะคริลิกเรซินชนิดบ่มตัวด้วยความร้อน (TRX) รังสี ใม โครเวฟ (BTC) และแสง (TRD) และวัดค่าความเปลี่ยนแปลงสีด้วยเครื่องสเปคโตโฟโตมิเตอร์ ที่เวลา 1 7 28 และ 56 วัน จากนั้นส่มชิ้นตัวอย่าง 3 ชิ้นต่อ 1 กล่ม เพื่อทคสอบความแข็งผิวระคับ นาโนและค่าโมดูลัสยึคหยุ่น 3 ครั้งต่อชิ้นงานในวันที่ 1 และ 56 ทำการวิเคราะห์ทางสถิติด้วย ้ความแปรปรวนแบบผสมซ้ำตามด้วยการวิเคราะห์การเปรียบเทียบหลากหลายชนิดทุกีเอชเอสดี และการทดสอบความแตกต่างค่ากลางของสองประชากรไม่อิสระที่ระดับความเชื่อมั่นร้อยละ 95 ผลการศึกษายืนยันความสัมพันธ์ระหว่างชนิดของวัสดอะคลิริกเรซิน สิ่งแวดล้อมสำหรับเก็บชิ้น ศึกษาและเวลาต่อค่าเสถียรภาพสี (p<0.001) อะคริลิกเรซินทุกกลุ่มในกาแฟมีการเปลี่ยนสีมาก ี้ที่สุดตั้งแต่วันที่ 7 และพบว่า TRD มีค่ามากที่สุด ตามด้วย BTC และ TRX ทั้งกลุ่มที่แช่ในกาแฟ และน้ำกลั่น สีของอะคริลิกเรซินในกาแฟมีแนวโน้มมืดลง สีแดงน้อยลง และสีเหลืองมาก ขึ้น นอกจากนี้ไม่พบความสัมพันธ์ระหว่างสามปัจจัยต่อความแข็งผิวระดับนาโนและก่าโมดูลัส ยึดหยุ่นอย่างมีนัยสำคัญทางสถิติ (p=0.103, 0.138) กลุ่ม TRX มีค่าแข็งผิวระดับนาโนและค่า โมคลัสยึดหยุ่นต่ำที่สุด ในขณะที่ BTC และ TRD มีก่าใกล้เกียงกัน กลุ่มตัวอย่างทุกกลุ่มในกาแฟ และน้ำกลั่นมีความแข็งผิวระดับนาโนและค่าโมดูลัสยึดหยุ่นลดลงหลังจากแช่ 56 วัน และค่า ดังกล่าวในกาแฟมีค่าลดลงมากกว่าในน้ำกลั่น

สาขาวิชา	ทันตกรรมประคิษฐ์	ลายมือชื่อนิสิต
ปีการศึกษา	2562	ลายมือชื่อ อ.ที่ปรึกษาหลัก

##6175842232 : MAJOR PROSTHODONTICS

KEYWORD: Acrylic resin, Denture base, color stability, Nanohardness, Elastic modulus Sawita Losuphakarn : COLOR STABILITY, NANOHARDNESS AND ELASTIC MODULUS OF DENTURE BASE ACRYLIC RESINS WITH VARIOUS POLYMERIZATION TECHNIQUES. Advisor: Assoc. Prof. MANSUANG ARKSORNNUKIT, D.D.S., M.S., Ph.D.

The objective of this study was to evaluate color stability, nanohardness and elastic modulus of denture base acrylic resins with various polymerization techniques after storing in coffee, distilled water or dark chamber. Ninety disc-shaped (9X2 mm) specimens of heat-cured (TRX), microwave-cured (BTC) and light-cured (TRD) were fabricated, and randomly divided in three conditions (n=10). The color difference (DE*) was measured using a spectrophotometer at 1, 7, 28 and 56 days; The nanohardness and the elastic modulus were measured from three randomly selected of each group at day 1 and day 56 after color measurement. The repeated mixed analysis of variance following with Tukey's HSD multiple comparison and paired samples t-test were statistically analyzed at the confidence level of 95%. The interaction among material groups, storage media over the period of time were observed in the DE* (p < 0.001). The DE* of the coffee storage group showed the greatest color change since day 7; TRD was greater color change than BTC and TRX both in coffee and distilled water. All specimens in coffee storage group were darker, less red and more yellow. Moreover, the interaction among three factors of nanohardness and elastic modulus showed no significant difference (p=0.103, 0.138). Those of TRX demonstrated the lowest nanohardness and elastic modulus while BTC and TRD showed almost similar. The nanohardness and the elastic modulus of coffee storage group showed the greatest reduction at 56-day storage, following by those in water.

Field of Study: Prosthodontics Academic Year: 2019 Student's Signature Advisor's Signature

ACKNOWLEDGEMENTS

This research was supported by Faculty of Dentistry Chulalongkorn University

I would like to express my sincere thanks to my advisor, Dr. Natthavoot Koottathape and Assoc. Prof. Mansuang Arksornnukit for his invaluable help, encouragement and advise throughout the course of this research. I am lucky to have a supervisor who cared not only the research methodology, but also methodology in life. This thesis would not have been completed without all the support that I have always received from him. I am very fortunate to be his student.

Finally, I most gratefully acknowledge my parents and my classmates for their always supports during this research progression.

Sawita Losuphakarn

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

TABLE OF CONTENTS

	Page
ABSTRACT (THAI)	iii
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
CHAPTER I INTRODUCTION	10
Background and Rationale	10
Research Objective	11
Research Hypothesis	11
Keywords	12
Research design	12
Proposed benefits	12
CHAPTER II REVIEW LITERATURE	13
Basic chemistry and polymerization process of acrylic resin	13
Denture base acrylic resins	15
Color stability of acrylic resins	21
The factors related to the color stability	22
Nanohardness and elastic modulus of acrylic resins	24
The factors related to the hardness and the elastic modulus	29
CHAPTER III RESEARCH AND METHODOLOGY	31

The materials used	
The color stability test	
The nanohardness and the elastic modulus	
CHAPTER IV RESULTS	
CHAPTER V DISCUSSION AND CONCLUSION	
Discussion	
Conclusion	
APPENDIX	
REFERENCES	
VITA	
จุหาลงกรณ์มหาวิ	

Chulalongkorn University

LIST OF TABLES

n

rage
Table 1 the classification, compositions and curing process of denture base polymers
Table 2 The materials used in this study and curing methods of denture base resins by
nanufacturers
Table 3 Repeated mixed ANOVA of color difference (Δ E*)
Table 4 The ΔE^* , ΔL^* , Δa^* and Δb^* of color parameters at day 1, 7, 28, 56
Table 5 Repeated mixed ANOVA of the nanohardness (H) and the elastic modulus (E_i)
Table 6 The means (Stardard deviations, SD) of the nanohardness (H) and the elastic modulus
(E _i) at day 1, 56

LIST OF FIGURES

Page
Figure 1 (a) The structure of methyl methacrylate (MMA) molecules as a monomer of
Polymethylmethacrylate (PMMA), (b) The structure of Urethane dimethacrylate resin and the
construction of dimethacrylate network
Figure 2 The polymerization reaction of the acrylic resin using heat, chemical and light activators
Figure 3 Load-displacement curve of nanoindentation test
Figure 4 Stress-strain curve
Figure 5 Specimen preparation of (a) the heat-cured acrylic resin group (b) the microwave-cured
acrylic resin group (c) the light-cured acrylic resin group
Figure 6 Color stability test (a) acrylic resin rack (b) an orbital shaker incubator
Figure 7 The nanohardness and the elastic modulus test (a) the nanoindentation machine and (b)
the testing map on the representative specimen diagram
Figure 8 All specimens after 56-day storage in coffee, distilled water and kept in dark chamber.

CHULALONGKORN UNIVERSITY

CHAPTER I

INTRODUCTION

Background and Rationale

The worldwide increase of the over 60-year-old population in 2025 was estimated by WHO organization in the different increasing population proportion of each country. (1, 2) Several public health reports predicted that the aging population in Thailand was also approximately 10% in 2010, and then will increase to be 30% in 2050 (3), and 20% in 2025. (4) The most common oral health problems in the elderly are tooth loss, dental caries, periodontitis, dry mouth and oral cancer. (1) The tooth loss is one of the crucial oral health problems in the elderly (4, 5) and their quality of life including physical, psychological and social performances. (4) The oral health survey in Thailand in 2017 illustrated the 8.1% of the stage of losing natural teeth, edentulism, in the over 60-year-old population. (5) Therefore, the removable partial prostheses are an alternative of tooth/teeth and adjacent tissue replacement for improving the chewing ability, phonetic and appearance. The removable prostheses consist of the artificial teeth which simulate the function of the lost natural teeth, and the denture base which replaces the alveolar ridge resorption, also increases the mechanical properties of the prostheses. (4, 6)

Regarding the denture base, the considerable materials are polymer based materials, for example acrylic resin, rubber, and metal alloys such as cobalt-chromium alloy. The acrylic resin has been chosen under the reasons of acceptable dimensional stability, physical properties, mechanical properties, the acceptable appearance to predict the duration of denture service and patient satisfaction and biocompatible. (7) The acrylic resin denture base materials have been classified by the various polymerization method following the ISO 20795-1: 2013 to be heat activator, chemical activator, light activator or microwave-length activator. (8) Each type of acrylic resin performs the different characteristics including physical and mechanical properties. One of the most important physical properties which predict the appearance are the color stability that the color changes in the prostheses might represented the lifetime of denture as an indication of damage and ageing of dentures. (7) Several studies reported the effect of color change when acrylic resins immersed in beverages such as coffee, tea, cola and red wine which were significantly changed. (9-12) However, the color change was not significantly changed after immersing in the food colorants.(13) The porosities, excessive residual monomers, unfavorable surface roughness, also the physical property, such as the water sorption and water solubility, would have mentioned to be the causation of color change. (14)

The mechanical property of the acrylic resin denture base material is also the crucial to the survival of the prostheses. Several studies reported the flexural strength, flexural modulus, impact strength and yield distance of the acrylic resins which resisted to the masticating forces of normal occlusion. (15-17) The hardness which represents the resistance of the material to plastic deformation, and the elastic modulus which indicates the resistance of elastically deform when a force is applied, are considered. (18) Some studies reported the microhardness and elastic modulus of the several acrylic resins with various polymerization methods and compositions. (19-23) However, the nanohardness and elastic modulus which indirectly calculated from a nanoindentater are still rarely reported.

The color stability after a period of service and the mechanical properties, especially the nanohardness and elastic modulus might be the crucial keys to predict the longevity of the removable prostheses. Moreover, the effect of the various polymerization methods of the denture base acrylic resin is still not elucidated. Therefore, the objective of this research is to investigate the color stability, nanohardness and elastic modulus of denture base acrylic resins with various polymerization techniques.

UHULALONGKORN UNIVERSITY

Research Objective

To investigate the color stability, the nanohardness and the elastic modulus of denture base acrylic resins with various polymerization techniques when immersed in coffee or distilled water and kept in dark chamber.

Research Hypothesis

1. H₀: There would be no significant difference among the color change of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.

 H_a : There would be significant difference among the color change of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.

2. H₀: There would be no significant difference among the nanohardness values of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.

H_a: There would be significant difference among the nanohardness values of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.

H₀: There would be no significant difference among the elastic modulus of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.
H_a: There would be significant difference among the elastic modulus of various acrylic denture base materials when immersed in coffee and water, and kept in dark chamber.

Keywords

Acrylic resin, Denture base, Color stability, Nanohardness, Elastic modulus

Research design

Experimental study

Proposed benefits

The denture base acrylic resin materials have been considered to be the material of choice for replacing the destructive oral structure after tooth/teeth lost because their well appearance and acceptable mechanical properties. The materials have been developed their compositions and polymerization methods for the purpose of fabrication time while remained their mechanical properties and esthetics. Therefore, the color stability and mechanical properties of the acrylic resins, especially the nanohardness and the elastic modulus, might be under the influence of the various polymerization methods. The proposed benefits of this *in vitro* study was to select the acrylic resin materials with the different polymerization mode that are suitable to the prostheses workflow in the aspect of the esthetics and the mechanical properties, i.e. the nanohardness and the elastic modulus.

CHAPTER II

REVIEW LITERATURE

Basic chemistry and polymerization process of acrylic resin

Basically, the chemistry of methacrylate based materials which is one of the polymeric materials used in dental service is consist of the repeat the smallest units called "monomer/mer" to be a large linear molecule called "polymer". The repeated same mers in the polymer is called "homopolymer"; whereas, the repeated different mers in the same polymeric structure is called "heteromer". Other forms of polymer might be the combination between the main polymer molecules and different monomer called "copolymers", and the same small sets of oligomers to bind another polymer molecule called "cross-linking polymer". (18)

The acrylic resin is the general dental term referring to polymethyl methacrylate (PMMA, polymer) which is consisted of the repeated methyl methacrylate molecules (MMA, mer) as the main composition with/ without the additive copolymer and/or the additive fillers. The manufactures actually design the preparation of the acrylic resin to be powder and liquid. The powder contains the PMMA with highly reactive double bonds, the initiator such as benzoyl peroxide and the color pigments. The main composition of the liquid is the MMA with/without the cross-linking agent and an activator for initiation of the redox reaction, also the inhibitor for increasing the storage time. (18) (Figure 1a). Another preparation form of the acrylic resin is a light-cured acrylic resin which contains urethane dimethacrylate (UDMA), the polymeric cross-linking network molecules incorporating with a photo-initiator. (24) (Figure 1b).

Regarding the polymerization reaction of the PMMA, two basic reaction systems are available. The first system, called a redox reaction initiated system, combines the MMA residuals together to be the longer polymeric chains. The activation system might be heat (heat-cured acrylic resin) or free radical producing chemical substances as tertiary amine (chemical-cured acrylic resin). The second system is based on the photo-initiation reactions that the specific spectrum light in the combination with the free radical producing chemical substances as champhoroquinoneamine produces the free radical. (24) The polymerization of PMMA basically consist of the initiation, the propagation and the inhibition or the termination. The initiation is begun when the chemical groups with unshared electrons in the free radical molecules were produced from the reaction of a peroxide initiator and amine accelerator. The free radicals attack the double bonds of monomer molecules, and form the activated monomer molecules instead. The propagation occurs when the free radicals continuously attack the double bonds of other monomer molecules, and grow up the length of polymer chain. The termination depends on the presence of the inhibitors such as hydroquinone. The inhibitor is not only combine between the main polymeric linear structures and the initiators forming the branches and cross-links, but also diminishes the initiation rate to prolong shelf life. (25, 26) (Figure 2)

Figure 1 (a) The structure of methyl methacrylate (MMA) molecules as a monomer of Polymethylmethacrylate (PMMA), (b) The structure of Urethane dimethacrylate resin and the construction of dimethacrylate network

Modified from Cook WD, Beech DR, Tyas MJ. Structure and properties of methaerylate based dental restorative materials. Biomaterials 1985;6:362-68. and Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips' Science of dental materials. 12th ed. St. Louis: Elsevier Saunders; 2013.

Figure 2 The polymerization reaction of the acrylic resin using heat, chemical and light activators Modified from Wayne DC, Derrick RB, Beech JT, Martin JT. Structure and properties of methacrylate based dental restorative materials. Biomaterials 1985;6:362-68. (a) and O'Brieb WJ. Dental materials and their selection. 4thed. Chicago: Quintessence; 2008. (b)

Denture base acrylic resins

According the development of the denture from the natural materials, for example wood, bone and ivory, were considered in the first era, but lack of esthetics, poor mechanical properties and ill-fitting fabrication which often irritated the oral tissues. Thereafter, many durable materials, for example the porcelain and gold, were used; however, the price and the unpredictable fabrication process were still the problems. The rubber materials such as, gutta percha, dry-heat vulcanization of rubber and vulcanite rubber were used as a standard denture material in 1936, and continuously used for over 75 years because these materials could produce the dentures exactly fitting the edentulous ridge with reasonable service price. The celluloid tortoise shell was also a material of choice which showed the good appearance rather than vulcanite rubber, but the bad taste, odor and dimensional instability during function were the disadvantages. Aluminum was also introduced instead of gold, but the bonding strength to the denture tooth was still re-evaluated. In the early of

the 20th decade, the usage of Bakelite which is a phenol-formaldehyde resin with high dimensional stability and variation of colors but very technique sensitive. The metal alloys such as stainless steel, base metal alloys, also the vinyl resins as denture base materials was high cost and difficult fabrication. The PMMA was firstly introduced since 1937 by the invention of Dr. Walter Wright. That the better physical properties, acceptable mechanical properties and aesthetics, user friendly and biocompatibility have leaded the PMMA to be the material of choice. (27, 28)

The ISO 20795 (8) classified the acrylic resin denture base materials due to the various activation methods. (Table 1)

Heat-polymerized polymer is the worldwide used material for denture base material according to their acceptable physical and mechanical properties as well as their appearance. The optimal heat is required to initiate the polymerization reaction. The manufacturers produce their product to be 2 compositions, the powder with mainly PMMA, and the liquid consisting of mainly MMA, initiator (Benzoyl peroxide) and inhibitor (Hydroquinone). The Additive styrene butadiene rubber is included to improve impact strength of the material, called high impact strength resin. (Table 1) Compression molding technique and injection molding technique are available to fabricate the denture according to the product preparation.

Compression molding technique is a conventional prefabrication method which needs to make a plaster mold incorporation with a wax trial denture model, subsequently losses and washes the wax out. The mixture of the resin following the manufacturer recommendation, powder to liquid ratio is 23.4 g/ 10 mL, would be prepared until the dough stage, and then packed into the fabricated plaster mold after the separating media would be lightly painted over the plaster mold surface. (18) The hydraulic pressure equipment is needed to limit the volumetric polymerization shrinkage between 5-7%. (7, 18) On the other hand, the injection molding technique needs a special designed flask with two entrance holes that bind the wax pattern with wax sprues. After all wax pattern would be burnt out, the heated resin material would be injected into the mold under a special injecting machine. The study of polymerization shrinkage between two different technique reported that the comparative accuracy of denture base from two different fabrication technique was still questionable (18), but the other reported the greater dimensional stability and expansion of the injection molding technique comparing to the compression molding technique. (29)

The polymerization temperature is a crucial factor affecting on the mechanical properties of the denture base. The polymerization reaction of the acrylic resin material creating the temperature, called exothermic reaction. The suggested temperature would be above 70°C to form the free radicals from benzoyl peroxide but not over 100.8°C of the boiling point of monomer; otherwise, the greater amount of the residual monomer and porosities inside the denture bases would be observed. The guideline in table 2 suggests two curing process which the long cycle keeps constant temperature of 74°C for 8 hours, and which the short cycle keeps the temperature of 74°C for 2 hours, and then 100°C for 1 hour. For reducing the distortion of the denture base, the flasks should be slowly cooled down to the room temperature approximately 30 minutes, immersed in cool tap water before deflasked. (30)

Regarding the physical and mechanical properties of the heat-polymerized polymers, the less amount of residual monomer, low water sorption and solubility were reported comparing the auto-polymerized polymers under the condition of oral environment. (18) Poor fatigue resistance and flexural strength of the heat-polymerized resins were reported as seen in the clinical evidences of denture fracture especially at the midline of maxillary denture base. (31)

High impact strength resins were invented to increase the impact strength of acrylic resin denture base by adding the inclusion of the styrene/butadiene rubber. The other additive particles such as hydroxyapatite, alumina, zirconia and titanium particles were also considered to increase the mechanical strength. The greater flexural strength, impact strength, thermal conductivity and the less of polymerization shrinkage, water sorption have been reported. Nevertheless, the newest materials with the hybrid fibers, hybrid fillers or the combination of hybrid fiber and fillers might be an alternative denture base material that enhance the mechanical properties of acrylic resin. (32-34) One study reported that the additive fillers, for examples hydroxyapatite fillers, silica-based fillers, carbon family fillers, and the additive fibers, natural fibers etc., significantly improved mechanical properties of denture base. (34)

Туре	Class	Mode of polymerization	Preparation	Compositions	Curing process		
1	1	Heat-polymerized	Liquid and	Powder: PMMA, High impact	Long cycle: 74°C/8 hr		
		polymers	powder	strength resins, Additive	Short cycle: 74°C/2 hr		
				styrene/butadiene rubber	and then 100°C/1 hr		
	2	Heat-polymerized	Plastic cake	Liquid: MMA			
		polymers		Initiator: Benzoyl peroxide			
				Inhibitor: Hydroquinone			
2	1	Auto-polymerized	Liquid and	Powder: PMMA	Generate polymerization		
		polymers	powder	Liquid: MMA	by activator		
	2	Auto-polymerized	Liquid and	Initiator: Benzoyl peroxide	(tertiary amine)		
		polymers	powder for	Inhibitor: Hydroquinone	at room temperature		
			pour-type resins				
3	-	Thermoplastic	-///	PMMA with nylon, polyamide,	Heat-press injection		
		polymerized polymers		polycarbonate resin	technique		
			///þ@4				
4	-	Light-polymerized	//ROK	Urethane dimethacrylate	Emission of visible light		
		polymers		PMMA - derivative material	in the shorter blue 400 to		
				High molecular weight acrylic	500 nm		
			1 Alexandress	resin monomers			
			ET BY SK	Activator: Camphoroquinone-			
		R		amine			
5	-	Microwave-polymerized	-	Powder: PMMA/PMEA,	Curing cycle of 3-5		
		polymers		copolymer	minutes at 500-600 W		
				Liquid: MMA	by microwaves		

Table 1 the classification, compositions and curing process of denture base polymers.

Abbreviation. PMMA: Polymethylmethacrylate, MMA: Methylmathacrylate, PMEA: Polymethylethacrylate

Modified from the international organization for standardization. ISO 20795 Dentistry – Base polymers – Part 1: Denture base polymers. 2013. and Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips' Science of dental materials. 12th ed. St. Louis: Elsevier Saunders; 2013.

Injection-molded thermoplastic resins have been considered to be used as an alternative choice of denture base polymeric resin which required a sophisticate machine to turn the large hard polymeric grains to be liquid form, and then pressed into a plater mold. The materials consist of the different molecular weight linear polymeric molecules which can commercially be classified to be 4 groups; the thermoplastic acetal polymer, the thermoplastic polycarbonate, the thermoacrylic and the nylon modified thermoplastic resin. The thermoplastic acetal polymers containing the

copolymers demonstrate better long term stability, occlusal wear resistance and patient vertical dimension maintenance during the provisional prosthodontic treatment; whereas, the thermoplastic polycarbonates containing the bis-phenol-A carbonate polymeric chains are considered to fabricate a provisional crown or bridge excluding the partial denture framework. The thermoacrylic resin is suggested to produce the temporary crowns and thermal polymerized denture base. The nylon modified thermoplastic resin, e.g. nylon polyamides, which is introduced in 1950s, is formed by the condensation reactions between dibasic acid and diamine. Some modification of the latest was done by adding the reinforced the glass fiber for decreasing the water sorption and melting point. (7, 14, 35)

Several researchers reported the advantages of the thermoplastic resins over the conventional denture base materials. The thermoplastic resins showed the greater flexibility characterized by the lower relative ratio of the proportional limit to the ultimate flexural strength and the lower flexural moduli; therefore, the patients would feel easy to familiar to the dentures with the thermoplastic denture bases. (36, 37) The polyamide and the polycarbonate resin denture bases showed the greater impact strength. (37) However, the thermoplastic resins trended to undergo permanent deformation during mastication due to the lower flexural strength at the proportional limit and the lower elastic modulus. (17, 37) The greater porosities and the more susceptible to discoloration by daily food and drink were also reported. (38, 39)

Self-cured/Auto-polymerized polymer consists of the same chemical polymeric structure molecules as the heat-polymerized polymer. (Table 1) The additive tertiary amine as chemical activators, e.g. dimethyl-para-toluidine, initiate the polymerization reaction when the powder and liquid were mixed together, and gradually increased the viscosity from the sandy stage, the fibrous stage, to the dough stage. The products would be fabricated in this stage, and leaved them to rubber stage in the room temperature, and then set. Generally, the dentists or the dental technicians would quickly process at room temperature for the optimal working time. (7, 14) However, some studies reported the greater amount of leachable residual monomer rather than the heat-polymerized polymer due to the incomplete polymerization. The remaining incomplete polymerized residual monomer would irritate the surrounding tissue, and then compromise the biocompatibility of denture base resins. (40, 41) The mechanical properties of denture base resins, especially the

transverse strength, the fatigue strength, the fracture toughness and the flexural modulus, would be affected from the presence of the unreacted monomer. (14, 41, 42) One study reported the approximately 80 % of the transverse strength, poor color stability and poor bond strength in the chemical-polymerized polymer comparing to the heat-polymerized polymer. (43)

Visible light-polymerized polymers have been classified to be an alternative denture base material for the patient with hypersensitive to the MMA-based materials. The main composition is urethane dimethacrylate matrix (UDMA) with hydrophilic functional group similar to resin composite restorative material. The polymerization reaction occurs when the photosensitizing agent, camphorquinone, was stimulated by the emission of high intensity visible light. The acrylic resin beads are added for strengthening the polymer. (7, 18)

Several studies reported the advantages of the light-cured resins. The fabrication process was familiar for the dentists or the dental technicians to handle with acceptable working time. The manufacturers claimed their products that were reduce the processing time, especially the loss wax technique, good biocompatibility, less bacteria adherence, good dimensional stability and high fitting accuracy. (44, 45) Moreover, the greater microhardness, transverse strength, flexural strength, tensile strength and elastic modulus were reported comparing to the conventional acrylic resin denture base materials. (15, 44, 46, 47) However, one study reported the disadvantages of the light-cured resins including the porosities which leaded to the formation of microcracks under loading and the poor bond strength between the denture teeth and the light-cured resins (48), even the pre-treatment conditioning liquid to promote the bonding was applied. (49)

Microwave-polymerized resins are one of the PMMA based resins which were polymerized under the non-metallic glass fiber- reinforced flask and a microwave producing machine. The asymmetrically polarized molecules of MMA are rapidly flipped over in the 500-600 Watts/cycle electromagnetic field for 3 minutes. The heat was generated due to the molecular friction to complete the polymerization reaction. (7, 18, 50) Comparing the conventional heat-cured resins, many studies reported the equal or better dimensional stability (51), the equal microhardness, transverse strength and flexural modulus (16, 42, 52-54), the greater residual monomer and the greater porosity during microwave processing of the dentures due to the short

polymerizing cycle (50), higher shear bond strength than acrylic resin teeth (55) and poor color stability. (56)

Color stability of acrylic resins

The nature of color is referred to the visual sensation when the visible 400 to 800 nm-wave length electromagnetic radiation affected to an object, and then reflected to the eye. During the light projected to the object, some wavelength wave would be absorbed into the object, and the others would be reflected to the eye in term of the object color. The scientific color measurement systems used in dentistry are Munsell color order system and the commission International de I'Eclairage (CIE) Lab color system. (57-59)

1. Munsell color order system is the common used color measuring system in dentistry as the dimension of color. The visual measurement method classified the color depending on the factor of visual response to the light and observer experience. The system gives explanation of the color to be 3 parameters:

Hue refers to the name of color which could be distinguished one color family from another by the separately-wavelengths of radiant energy quality of the observer sensation as red, green, blue, etc., but white, gray and black are considered with no hue.

Value refers to the lightness of color determined by gray scale which indicated the darkness to brightness, low values refer to dark colors and high values to light colors.

Chroma refers to the strength of color as the intensity of hue which the change in value by adding gray color always theoretically decreases chroma. (57, 58)

2. CIE Lab color system initiated by the Commission International de l'Eclairage in 1931, which defined the standardization of three dimensional XYZ tristimulus values as the three primary colors of red, green, blue and all mixtures of these three colors with the standard light source and calculated the quantitative color values.

Moreover, the most common collecting and analyzing methods of the color stability tests are the colorimetric and the spectrophotometric measurement methods which allow a digital, quantitative and reproducible means of color evaluation. These measuring methods could eliminate the human interpretation of color difference by imitating the visual perception of the human eyes which consist of the illumination source, the object and the observer sensor. The colorimetric measurement can interpret the color change in the specific range of the human eyes perception under the entire wavelength of day light (380 - 780 nm); whereas, the spectrophotometric measurement can interpret the wider wavelength of color changes apart from the visual human perception. (59)

In the CIE Lab color system, the color difference was calculated as follows eq 1.

$$\Delta E^*_{ab}(L^*a^*b^*) = \left[(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2 \right]^{\frac{1}{2}}$$
(eq 1)

where ΔE^* refers to color difference between two colors under specified condition, ΔL^* refers to the difference of value (blackness to whiteness), Δa^* refers to the difference level of color in the range of red (+a^{*}) and green (-a^{*}) and Δb^* refers to the difference level of color in the range of yellow (+b^{*}) and blue (-b^{*}).

According to the National Bureau of Standards (NBS), the noticeable color differences (ΔE^*) were quantified with NBS units (NBS unit = ΔE^*x 0.92) from 1.5 to 3.0. The unacceptable ΔE^* is over 3.0. (60) Some studies reported that the 50% of the observer could recognize the ΔE^* greater than 1 (61), the ΔE^* greater than 2 could be perceptible, and ΔE^* greater than 3.7 could clinically unacceptable. (62)

The factors related to the color stability

Color stability is one of the common used parameters to evaluate the esthetics and to indicate the aging and the damage of the denture acrylic resin material after a period of service. Several factors effect on the color stability including the polymerization methods (43, 56, 63-68), the staining solutions (9-13, 64, 65, 70-75), the immersion period (9-12, 64, 65, 70-72), the denture base resins composition (9, 13, 34, 39, 76, 77) and the usage of denture cleansers. (9, 63, 64, 78)

1. Polymerization methods – Several studies have reported that the different polymerization activators, from heat, chemical, light or microwave, in denture base acrylic resins showed the different color stability. The past reports from many research centers still reported the controversy of the color stability under the different polymerization methods. The fast heat-polymerized acrylic resin showed the greatest color change rather than the chemical-polymerized acrylic resin and the

light-polymerized acrylic resin respectively. (56, 63) Other studies reported the greater color change of the light-polymerized acrylic resin than the heat-polymerized acrylic resin under immersion of the staining solutions (64), and the conventional heat-cured acrylic resins showed better color stability than the self-cured acrylic resins. (43) The color change of the microwave-polymerized acrylic resin was greater than that of normal and fast setting heat-polymerized acrylic resins (56); however, another study reported the similar color change of the microwave-cured and that of the heat-cured acrylic resins, but lower than self-cured resins. (65) Each polymerization method and its environment condition were affected on the amount of leached out monomer from the deeper layer or the surface of the denture base resins (66, 67) and the greater degree of conversion in resin composite were reported the lower color change in water storage. (68)

2. Types of staining solutions – Many studies reported the effect of the staining solution on color change of denture base acrylic resins. (9-13, 64, 65, 69-72) Regarding the staining solution, the daily beverages such as coffee, tea, cola or red wine and the artificial stains are common considered. The coffee is the most chromogenic staining solution and the most famous beverage with mild acidity, used in the color stability test and the daily consumption of coffee in patient behavior were reported approximately to be 3.2 cups a day with 120 ml cup. (73, 74) Many studies used the coffee as the staining solution, and exhibited the significant effect of the color change of the acrylic resins rather than tea and distilled water over the observation periods. (10, 69-72) The others reported the greater color change of acrylic resin immersed in tea, organic juice and grape juice comparing to that immersed in coffee and cola. (12, 64, 69) Moreover, one studies used the food colorants reported the greater of color change in 3% erythrosine colorant group rather than the tartrazine and sunset yellow. (13)

3. Immersion periods – The influence of the immersion period on the color stability of the denture base acrylic resins under the staining solution have been reported. Several reports exhibited the increase color change after the longer immersion periods. (9-12, 64, 65, 69-72)

4. The composition of each types of denture base resins – The relationship of the acrylic resin compositions and the color stability have been reported. The conventional acrylic resin and the cross-linked acrylic resin showed the different color change after the immersion in the food colorants (13), the higher molecular weight and complicate molecular structure as the UDMA-

based resin showed greater color stability than the PMMA-based resin. (75) The additive fillers into the denture base resins also affected on the color stability. The fiber-reinforced heatpolymerized acrylic resins exhibited more susceptible to discoloration comparing to the conventional heat-polymerized denture base material, but the rubber-reinforced high impact heatpolymerized denture base material showed lower color change. (9, 39) The high impact heatpolymerized acrylic resin with additive titanium oxide nanofillers exhibited the greater color change than the conventional heat-polymerized and microwave-polymerized acrylic resins. (76) However, the acrylic resin with the additive zirconium nanoparticles showed significant low color change. (34)

5. The usage of denture cleansers – Some studies reported the effect of color change on the immersion of the different denture cleansers. The longer immersion was, the greater color change of the acrylic resin. (9, 63, 64, 77)

Moreover, the studies reported the different color change in each acrylic resins might be the effect from surface roughness of the materials which the standard recommendation of Ra for defensing the biofilm accumulation on the surface of acrylic denture base resin was less than 30-750 nm. (78, 79)

Nanohardness and elastic modulus of acrylic resins

Hardness is one of the considered mechanical properties which indicates the resistance to the plastic deformation of the surface penetration indented from a hard asperity with non-critical force. The low hardness indicates the soft material. (7, 18) Several hardness testing methods are available depending on the shape, the size and the materials of the indenters used to deform the surface. The simple, reproducible, cheap and nondestructive hardness tests method could be classified to be macro-indentation test with the load over 1 kg and micro-indentation test with load less than 1 kg. (80, 81)

Macrohardness testing

1. Brinell hardness testing is the oldest hardness testing method especially for metals and alloy in dentistry. Basically, a 1.6 mm in diameter small steel or tungsten carbide ball is loaded with the weight of 123 N on the testing object for 30 seconds. The Brinell hardness number (BHN) is

computed as a ratio of the load applied to the produced area of the indentation (kg/mm²). The harder materials show the high BNH with the small area of indentation. The Brinell hardness test yields relatively large indentation area; therefore, the object with concrete hardness would not be suitable for this method.

2. Rockwell hardness testing is a rapid hardness testing method which a 1.5 - 13 mm diameter ball diamond indenter with the minimum load of 10 N and the major load of 60, 100 and 150 N is applied on the testing object surface. This method is suitable for the viscoelastic materials and the plastics because of the remaining loading time selected for measuring the percent of recovery. (81)

Apart from the macrohardness test with high load and larger indentation area, several materials with microstructural constituents and microphases which need more accuracy of the measurement required the hardness testing machine with smaller indenter size and controllable location. Therefore, the microindentation hardness testing machine were invented. (80)

Microhardness testing

1. Vickers hardness testing is a microindentation testing method with a 136-degree diamond square-based pyramidal indenter which is suitable to measure very hard materials and creates a small indenting area. The diagonal shaped impression ranging $10 - 100 \mu m$ is created under the applied load of 1 N or less, and then calculated the hardness value followed eq 2. (80-82)

Hardness Value =
$$\frac{L^2}{L^2}$$
 (eq 2)

where K is equal to 1.854, P the selected of applied loads and L the average diagonal length of the impression.

2. Knoop hardness testing needs a diamond rhombic-based pyramidal indenter in cooperated with the load of 1 N or less. The impression of the Knoop indenters presents the diagonal shape with a short- and a long-diagonal lines, and the ratio of the long line to the short line is 7:1. The Knoop hardness number (HK) is also calculated following the eq 2; however, L is the longest diagonal line, P the applied loads and K the constant number of 14.229. (81, 83)

Nanohardness testing

The nanoindentation method is a hardness measurement in much smaller scale. The testing method could measure the hardness and the elastic modulus of the materials while the microindentation can only perform the hardness measurement. (84) The nanohardness testing machine could calculate both the nanohardness and the elastic modulus from the curve of penetrated depth when the load was applied. A pyramidal diamond Berkovich indenter with triangular tip at the bottom in combination with the load of $0.1 - 100 \text{ mN} (\pm 1 \mu \text{N})$ applies to the object surface, and then creates an impression depth of less than 50 nm or equivalent (±0.2 nm). (80, 84, 85)

The depth-sensing equipment in the nanohardness testing machine can continuously measure the hardness without the visualization of the impression as the microindentation testing machine but the correlation between the microhardness and the nanohardness in many materials was still unclear because of the different load and morphology of the indenter. (82, 86) In corporation with a computer-controlled high precision X-Y table, the nanohardness and elastic modulus was calculated from the load-displacement graph as shown in Figure 3. The maximum indentation load (P_{max}), the indenter displacement at the maximum load (h_{max}), the displacement at the final depth of the contact impression after unloading when the plastic depth is defined to calculate the area from the depth of the indenter in contact with the sample under load (h_r) and the initial unloading stiffness from the slope of the linear which fit tangent to the unloading curve at maximum load (S) are the factors observed. (80, 81)

The nanohardness number is calculated from the load-displacement graph by the proportion of the maximum applying load (P) and the surface area at maximum applying load (A) following eq 3. (80, 84)

Nanohardness =
$$\frac{P}{A} = \frac{P}{k (h_p)^2}$$
 (eq 3)

where k is 1.167 as the geometric constant of indenter from Berkovich tip and h_p ; the depth of the pressing area that is permanent deformation

Elastic modulus

The elastic modulus represents the elastic deformation of the materials when the gradually increasing force was applied. The measurement of elastic modulus could be measured from the direct methods, for example flexural strength test and the tensile strength test, and the indirect method as the depth-sensing nanoindentation test. The common flexural strength test could be performed by the three-point bending method that the compressive load would apply on the tested specimen using a universal testing machine until failure, and then calculate the elastic modulus from the linear slope of the stress-strain curve. (Figure 4) The elastic modulus of the flexural strength at the opposite site. Therefore, the tensile strength test is another measurement of the elastic modulus that the load would apply on two ends of the specimen apart. The elastic modulus of the tensile strength test was calculated tensile modulus following eq 4. (18, 87)

Figure 3 Load-displacement curve of nanoindentation test

Modified from (1) Willems G, Celis JP, Lambrechts P, Braem M, Vanherle G. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res 1993;27:747-55., (2) Suwannaroop P, Chaijareenont P, Koottathape N, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent Mater J 2011;30:461-8.

While, the correlation between the flexural modulus from conventional method and the Vicker's hardness test were confirmed, (88) the correlation between nanohardness and elastic modulus from the depth-sensing nanoindentation machine in several resin composites were also

reported. (89) Moreover, the elastic modulus of the materials from the nanohardness testing machine could be measured without the specimen failure comparing the direct methods and calculated at maximum loading force (E) as followed eq 4. (80, 84)

$$E = \frac{Stress}{Strain} = \frac{\sigma}{\epsilon} = \frac{P/A}{\Delta I/I}$$
(eq 4)

where P is the applied force, A; the cross-sectional area of the material under stress, ΔI ; the increase length and I; the original length.

$$\frac{1}{E^*} = \frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i}$$
(eq 5)

where E_i is the elastic modulus of testing specimen, E^* ; the reduced modulus calculated from the slope of regression line at maximum loading force of unloading curve of the load-displacement graph (Figure 3), E; the elastic modulus of Berkovich diamond indenter as 1,050 GPa, v; the Poisson's ratio of Berkovich indenter as 0.07 and v_i ; the Poisson's ratio of acrylic resin as 0.38. (84)

Figure 4 Stress-strain curve

Modified from Lee HH, Lee CJ, Asaoka K, Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J 2012;31:157-64.

The factors related to the hardness and the elastic modulus

The hardness and the elastic modulus of the acrylic resin denture base material could predict the survival of the removable prostheses. Several factors effect on these mechanical properties including polymerization methods (15, 16, 19-21, 42, 44, 46, 51, 52, 90), the composition of each type of denture base resins and other additional compositions (17, 21, 22, 36, 37), immersion in the disinfectant solutions (77, 91, 92), the testing velocity, the various loads to the specimens and the distance between each tested impression (37, 80, 84), the pH of the storage solution and the water absorption or the adsorption of the materials. (93-98)

1. Polymerization methods – Denture base acrylic resins with the different polymerization methods and the post-polymerization after activation by environmental stimuli were reported the effect on the hardness and the elastic modulus. (15, 19-21, 44, 46, 90) One study reported the greater hardness of the conventional heat-polymerized resins than the microwaved-polymerized, the autopolymerized denture base resins. (19) The other studies reported that the hardness, the transverse strength, the flexural strength, the tensile strength and the elastic modulus of the light-polymerized denture base resins were greater than the conventional heat and self- cured denture base resin. (15, 20, 21, 44, 46) Comparing the conventional heat-cured resins, several studies reported the equal transverse strength and flexural modulus between conventional heat-polymerized resins and microwaved-polymerized resins. (16, 42, 52, 53)

2. Composition of each type of denture base resins – The structure and molecular weight of the polymer might affect on the hardness and elastic modulus. The presence of the additive spherical amorphous silica fillers of the light-polymerized denture base resin could increase the hardness and the elastic modulus comparing to the conventional heat-polymerized and self-polymerized denture base resins. (21) However, another study reported no statistical difference of the hardness between the heat-polymerized and the auto-polymerized denture base materials because the new auto-polymerized resins were changed the initiator system and replaced copper and barbituric acid ions instead of tertiary amine. (22) Moreover, the injection-molding denture base materials with mainly polyamide resins was reported the lower hardness and elastic modus than other conventional denture base resins because of their components. (17, 36, 37)

3. Immersion in disinfectant solutions – The disinfectant solutions do not only keep the prostheses cleaned, but also reduce the hardness of the acrylic resin after some period of usage. Therefore,

the reduction of hardness after immersing in in the disinfectants was significantly greater in the conventional heat-polymerized resin than high impact and polyamide acrylic resins. It might be concluded that the resistance of the material to the action of solvents were increased by the cross linking of acrylic resin materials. (77, 91) One study, however, reported no significant difference of the hardness among the denture base acrylic resins after immersing in the sodium perborate or microwaved irradiation. (92)

4. Testing velocity, various loads to specimens and distance between load to specimen site – The testing condition is also a factor influencing to the hardness and the elastic modulus. The previous studies set the various testing situations. The constant speed of 0.05-0.2 mN/s, the maximum load of up to 1-10 mN and the space between two impressions of 50 μ m were reported. (37, 80, 84)

5. The pH of the storage solution and Water absorption or adsorption of the materials – The polymeric based materials were reported the influence of the acidicity of the storage solution and water sorption to decrease the elastic modulus of the materials. (93, 94) Moreover, the residual monomer content in each polymerizing acrylic denture base resin combination with the water absorption or adsorption properties was decrease the mechanical properties. (95-98)

6. The polymerization shrinkage of the materials – The correlation between stress from polymerization shrinkage during polymerization and Knoop hardness in the resin composites, meanwhile the much low correlation to the flexural modulus were also reported. (99) However, the polymerization shrinkage of the denture base acrylic resin affected on other mechanical properties still have no report yet.

CHAPTER III

RESEARCH AND METHODOLOGY

The materials used

Three commercial denture base polymeric resins used in this study were shown in Table 2 **Table 2** The materials used in this study and curing methods of denture base resins by manufacturers.

Types	Code	Manufacturers	Curing methods		
Heat-cured acrylic resin	TRX	Triplex [®] , Ivoclar Vivadent,	Heat-polymerization		
		Schaan, Liechtenstein	under 80°C for 8 hours		
Microwave-cured acrylic resin	BTC	Basis TWIN CURE®,	Heat-polymerization by using		
		Yamahashi Dental MFG.Co.,	microwave to the flask		
		Aichi, Japan	at 500W for 3 minutes		
Light-cured acrylic resin	TRD	Triad®, Dentply International,	Light-polymerization by		
		Inc., York, Pa.	blue light (300-500 nm)		

Regarding the fabrication of the heat-cured and the microwave-cured acrylic resin groups, sixty 9.0±0.1 mm in diameter and 2.0±0.1 mm in thickness disc-shaped specimens were fabricated in the plaster stone molds and flasks with the standard silicone specimens, and then the standard silicone specimens were removed before packing and curing the mixture of powder and liquid following the manufacturer recommendations. The additive nylon in the powder was removed before mixing. (Figure 5a-b) The light-cured acrylic resin specimens with the same shape and size were produced thirty specimens with the 9.0±0.1 mm inner diameter and 2.0±0.1 mm in thickness glass tubes, and then were polymerized with the double glass slide technique and the laboratory light-curing oven (blue light 500 nm,120 W / LABOLIGHT LV-III, GC corp., Japan) for 5 minutes. (Figure 5c) All specimens were polished by using the SiC abrasive papers until the #1000 grid and the suspension of alumina oxide (0.05 μ m) in water before ultrasonic clean for 10 minutes. All specimens were immersed in the distilled water at 37°C for 24 hours before test.

Figure 5 Specimen preparation of (a) the heat-cured acrylic resin group (b) the microwave-cured acrylic resin group (c) the light-cured acrylic resin group.

The color stability test

All specimens in each group were randomly divided into three interventions. The first group was immersed in the instant coffee solution (2.3 g/ 120 mL) at 37°C which was changed every 24 hours, while the second group was immersed in the distilled water at 37°C and then brought the two storage of setting intervention into an orbital shaker incubator (ES-20 Biosan, Medical-Biological Research & technologies, Liga, Latvia) at $37\pm2^{\circ}$ C and the frequency of 1 Hz. The other was stored in the dry condition, and wrapped with foil paper at room temperature as a control group. All group were placed perpendicular and parallel from each other in the acrylic resin racks. (Figure 6)

The color of all specimens were measured by a spectrophotometry (UltraScan PRO, Hunter Associates Laboratory, Inc., Virginia, USA) before testing as the baseline data. The ΔE^* , ΔL^* , Δa^* and Δb^* were observed and calculated comparing the baseline color, following the eq 1 at day 1, and then every week for 2 months.

Figure 6 Color stability test (a) acrylic resin rack (b) an orbital shaker incubator

The nanohardness and the elastic modulus

After the measurement of the color difference by spectrophotometry in color stability test, the nanohardness and elastic modulus were measured using a nanoindentation testing machine (Hysitron Ti Premier, Billerica, Massachusetts, USA) (Figure 7a) including a penetrating three-sided pyramidal diamond Berkovich indenter, an optical microscope and a mobile table. Three randomly chosen specimens from each experimental group were tested after 1-day and 56-day in storage media following the mapping diagram as shown in Figure 7b. Each specimen was pressed three impressions which were the 50 μ m apart from each other in a linear line with the maximum load of 10 mN and a constant speed of 0.1 mN/s. The load-displacement curve was automatically generated and calculated the nanohardness and elastic modulus using the plug-in TriboScanTM software following eq 3, 5.

Figure 7 The nanohardness and the elastic modulus test (a) the nanoindentation machine and (b) the testing map on the representative specimen diagram.

The color parameter, the nanohardness and the elastic modulus of all groups were statistically analyzed using the SPSS program for window version 22.0 (IBM Corp. 2013, Armonk, New York, USA). The Kolmogrov-Smirnov test were firstly proved the normal distribution, and then the Levene's test were used for indicating the homogeneity of variance. The repeated mixed analysis of variance followed by the multiple comparison (Tukey's HSD) and pair sample t-test were performed at the significant level of 95%

CHAPTER IV

RESULTS

The color stability including ΔE^* , ΔL^* , Δa^* and Δb^* of all groups after immersed in the coffee, water and kept in the dark container for 1 day, 7 day, 28 day and 56 day are illustrated in Table 5. Before the color stability examination, the surface roughness (Ra) of all specimens were confirmed for controlling the effect of the surface roughness on the color staining. The average Ra (±SD) of the TRX (12.41±1.06 nm) were the greatest, following with TRD (7.81±2.05 nm) and BTC (3.01±0.23 nm) respectively. The repeated mixed analysis of variance (Table 3) suggests significant interaction among the types of denture base materials, storage media and the storage period as well as the interaction between factors and each individual factor. (p < 0.001) After 56-day storage in the coffee, the color of all materials were significantly the greatest ΔE^* , darker (ΔL^*), shift to the green (Δa^*) and the yellow (Δb^*), whereas TRX immersed in the distilled water showed no significant color change during the experiment period. The ΔE^* of BTC and TRD became significant difference due to lower ΔL^* and Δa^* (darker and shift to green) at 7 day, but Δb^* were almost similar at day 56.

Table	3	Repeated	mixed	AN	OV	/A	ofco	olor	difference	$(\Delta$	E*)
-------	---	----------	-------	----	----	----	------	------	------------	-----------	----	---

	Type III Sum	F	Sig		
	of Squares	huvene			
Material	490.207	2	245.104	202.978	<.001
Storage media	2367.207	2	1183.603	980.180	<.001
Material *Storage media	574.304	2	143.576	118.900	<.001
Error (Between subjects)	97.810	81	1.208		
Time	989.719	1.627	608.433	429.574	<.001
Time*Material	364.803	3.253	112.132	79.169	<.001
Time*Storage media	1431.553	3.253	440.026	310.673	<.001
Time*Material*Storage 1	nedia 487.985	6.507	74.998	52.951	<.001
Error (Within subjects)	186.621	131.760	1.416		

The ΔE^* of all experimental groups kept in dark chamber were not significant difference until day 56 storage. ΔL^* of TRX and TRD showed darker since the day 7, but that of BTC became darker at day 56. The Δa^* and the Δb^* of TRX showed no color change, while the BTC and TRD were shift to the green at day 56. TRD was shift to the yellow at day 7.

			Co	ffee			Distille	ed water		Dark				
	Material	Day 1	Day 7	Day 28	Day 56	Day 1	Day 7	Day 28	Day 56	Day 1	Day 7	Day 28	Day 56	
		0.86 ^{Aa}	1.75 ^{Ab}	2.09 ^{Ac}	4.40 ^{Ad}	0.51 ^{Aa}	0.40 ^{Aa}	0.76 ^{Aa}	0.73 ^{Aa}	0.55 ^{Aa}	0.30 ^{Aa}	0.43 ^{Aa}	0.45 ^{Aa}	
	TRX	(0.01)	(0.01)	(0.01)	(0.01)	(0.03)	(0.07)	(0.02)	(0.01)	(0.08)	(0.02)	(0.01)	(0.01)	
•		0.78 ^{Aa}	4.30 ^{Bb}	8.92 ^{Bc}	12.52 ^{Bd}	0.33 ^{Aa}	0.80 ^{Ab}	0.71^{Ab}	0.71^{Ab}	0.36 ^{Aa}	0.57^{Ba}	0.42^{Aa}	0.57 ^{Aa}	
ΔE*	BTC	(0.01)	(0.01)	(0.02)	(0.02)	(0.01)	(0.03)	(0.02)	(0.05)	(0.09)	(0.02)	(0.01)	(0.01)	
		0.95 ^{Aa}	4.33 ^{Bb}	11.99 ^{Cc}	20.81 ^{Cd}	0.40 ^{Aa}	1.45 ^{Bb}	3.44 ^{Bc}	3.25 ^{Bc}	0.41 ^{Aa}	0.48^{ABa}	0.38 ^{Aa}	0.42 ^{Aa}	
	TRD	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	
		-0.72 ^{Aa}	-1.34 ^{Aa}	-2.24 ^{Ab}	-4.00 ^{Ac}	-0.18 ^{Aab}	$0.01^{\rm Abc}$	0.52^{Ac}	-0.62 ^{Aa}	0.44 ^{Aa}	0.01 ^{Ab}	0.28^{Aab}	-0.40 ^{ABc}	
	TRX	(0.01)	(0.01)	(0.01)	(0.01)	(0.11)	(0.07)	(0.01)	(0.01)	(0.09)	(0.03)	(0.01)	(0.01)	
A e a	DEG	-0.43 ^{Ba}	-2.34 ^{Ba}	-5.91 ^{Bb}	-9.32 ^{Bc}	-0.17 ^{Aa}	-0.68 ^{Bb}	-0.59 ^{Bb}	-0.57 ^{Ab}	-0.14 ^{Ba}	-0.31 ^{ABa}	-0.29 ^{Ba}	-0.68 ^{Ab}	
∆L*	BIC	(0.02)	(0.03)	(0.01)	(0.02)	(0.01)	(0.03)	(0.01)	(0.05)	(0.10)	(0.01)	(0.01)	(0.01)	
		-0.42 ^{Ba}	-2.86 ^{Cb}	-9.37 ^{Cc}	-17.56 ^{Cd}	0.08^{Aa}	-0.94^{Bb}	-3.18 ^{Cc}	-3.20 ^{Bc}	0.11^{Ba}	-0.41 ^{Bb}	-0.24 ^{Bb}	-0.22 ^{Bb}	
	TRD	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
	TDV	-0.24 ^{Aa}	-0.74 ^{Ab}	-0.99 ^{Ab}	-1.67 ^{Ac}	-0.12 ^{Aa}	0.02 ^{Aa}	0.21 ^{Ab}	-0.10 ^{Aa}	-0.12 ^{Aa}	-0.05 ^{ABa}	-0.02 ^{Aa}	-0.12 ^{ABa}	
	IKX	(0.02)	(0.01)	(0.01)	(0.02)	(0.09)	(0.05)	(0.01)	(0.01)	(0.02)	(0.01)	(0.02)	(0.01)	
Λ	DEC	-0.32 ^{Aa}	-1.74 ^{Bb}	-2.61 ^{Bc}	-3.63 ^{Bd}	0.12^{Ba}	-0.29 ^{Bb}	-0.29 ^{Bb}	-0.27 ^{Ab}	0.05 ^{Aa}	-0.13 ^{Aab}	-0.05 ^{Aa}	-0.22 ^{Ab}	
∐a≁	BIC	(0.02)	(0.03)	(0.03)	(0.02)	(0.02)	(0.08)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.02)	
	TDD	-0.45 ^{Aa}	-1.77 ^{Bb}	-3.89 ^{Cc}	-5.51 ^{Cd}	0.25 ^{Ba}	-0.28 ^{Bb}	-0.60 ^{Cc}	-0.29 ^{Abc}	0.29 ^{Ba}	-0.11^{Bab}	0.12^{Aab}	0.04^{Bb}	
	TRD	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	
	TDV	0.35 ^{Aa}	0.72^{Aa}	1.51 ^{Ab}	0.36 ^{Aa}	-0.11 ^{Aa}	0.01 ^{Aa}	0.27 ^{Ab}	0.03 ^{Aab}	-0.03 ^{Aa}	-0.08 ^{ABa}	-0.04 ^{Aa}	-0.06 ^{Aa}	
	IKA	(0.02)	(0.02)	(0.01)	(0.03)	(0.06)	(0.02)	(0.04)	(0.02)	(0.04)	(0.02)	(0.01)	(0.02)	
∧ ե ⊭	DTC	0.43 ^{Aa}	3.04^{Bb}	6.06 ^{Bc}	7.33 ^{Bc}	0.02^{Aa}	-0.18 ^{Bb}	-0.13 ^{Bb}	0.11 ^{Aa}	0.09 ^{ABa}	-0.05 ^{Aa}	-0.01 ^{Aa}	0.08 ^{Aa}	
Ω_{0^*}	віс	(0.02)	(0.01)	(0.02)	(0.04)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	
	TDD	0.67^{Ba}	2.70 ^{Bb}	6.36 ^{Bc}	9.55 ^{Cd}	-0.09 ^{Aa}	-1.06 ^{Cb}	-1.17 ^{Cb}	-0.10 ^{Aa}	0.11^{Ba}	-0.17 ^{Bb}	-0.02^{Aab}	0.07 ^{Aa}	
	TRD	(0.03)	(0.03)	(0.03)	(0.03)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	

Table 4 The ΔE^* , ΔL^* , Δa^* and Δb^* of color parameters at day 1, 7, 28, 56

The different upper-case letters in the same column show the significant level of color parameter among each material. ($\alpha = 0.05$) The different lower-case letters in the same row show the significant level of color parameter in each storage media. ($\alpha = 0.05$)

Apart to the materials with the different polymerization methods, TRX showed the lowest color change and the greater darkness following BTC, while TRD showed the greatest color change after immersed in the coffee. The color of TRD became shift to greenish and yellowish rather than BTC and TRX respectively. The results were quite different when storing in the distilled water.
The color change prominently showed in the TRD, especially ΔE^* and ΔL^* . All specimens stored in the dark chamber showed no significant color change until day 56. Each material demonstrated the different effect of the color parameters individually. (Table 4)

		Type III Sum	df	Mean	F	Sig
		of Squares		Square		
	Material	0.148	2	0.074	105.789	<.001
	Storage media	0.112	2	0.056	80.005	<.001
	Material*Storage media	0.007	4	0.002	2.663	0.039
	Error (Within between)	0.05	72	0.001		
Nanohardness	Time S	0.187	1	0.187	356.218	<.001
	Time*Material	0.011	2	0.006	10.703	<.001
	Time*Storage media	0.103	2	0.052	98.238	<.001
	Time*Material*Storage media	0.004	4	0.001	2.001	0.103
	Error (Within subjects)	0.038	72	0.001		
	Material	18.101	2	9.05	38.436	<.001
	Storage media	20.86	2	10.43	44.294	<.001
	Material*Storage media	1.053	4	0.263	1.118	0.355
	Error (Between subjects)	16.954	72	0.235		
Elastic modulus	Time	67.284	1	67.284	275.222	<.001
	Time*Material าลงกรณ์มห	าวิทย 1.924ย	2	0.962	3.936	0.024
	Time*Storage media	22.190	2	11.095	45.384	<.001
	Time*Material*Storage media	1.762	4	0.440	1.801	0.138
	Error (Within subjects)	17.602	72	0.244		

Table 5 Repeated mixed ANOVA of the nanohardness (H) and the elastic modulus (E_i)

The repeated mixed ANOVA of the nanohardness of the experimental groups suggested the significant differences of the interaction between time and storage media, time and type of material and type of material dand storage media including each individual influencing factors; however, the interaction among time, type of material and storage media showed no significant difference. (Table 5) The nanohardness and the elastic modulus of the tested groups at 1-day and 56-day immersion were shown in Table 6. After storage in each condition for 1 day, the nanohardness of BTC and TRD showed almost similar (0.24 - 0.25 GPa), accepting for TRD in coffee (0.22 GPa). TRX showed the lowest nanohardness (0.15 - 0.17 GPa). The nanohardness of all groups immersed in coffee and distilled water decreased, but those stored in the dark chamber showed almost similar after 56 days. TRD seemed to decrease more than the others.

Table 6 The means (Stardard deviations, SD) of the nanohardness (H) and the elastic modulus (E_i) at day 1, 56

		Coffee		Distilled water		Dark	
	Material	Day 1	Day 56	Day 1	Day 56	Day 1	Day 56
Nanohardness (GPa)	TRX	0.17 ^{Aa} (0.00)	0.06 ^{Ab} (0.01)	0.15 ^{Aa} (0.02)	0.11 ^{Ab} (0.04)	0.17 ^{Aa} (0.01)	0.18 ^{Aa} (0.02)
	BTC	0.25 ^{Ba} (0.01)	0.10 ^{Ab} (0.03)	0.24 ^{Ba} (0.01)	0.19 ^{Bb} (0.02)	0.24 ^{Ba} (0.01)	0.24 ^{Ba} (0.01)
	TRD	0.22 ^{Ca} (0.02)	0.08 ^{Ab} (0.05)	0.24 ^{Ba} (0.02)	0.16 ^{Bb} (0.03)	0.25 ^{Ba} (0.04)	0.21 ^{Ca} (0.03)
	TRX	2.98 ^{Aa} (0.14)	0.82 ^{Ab} (0.29)	2.68 ^{Aa} (0.55)	1.49 ^{Ab} (0.89)	3.04 ^{Aa} (0.12)	2.51 ^{Ab} (0.54)
Elastic modulus (GPa)	BTC	3.65 ^{Ba} (0.31)	1.28 ^{Ab} (0.80)	3.37 ^{Ba} (0.10)	2.68 ^{Bb} (0.22)	3.34 ^{ABa} (0.16)	3.34 ^{Ba} (0.22)
	TRD	3.62 ^{Ba} (0.34)	1.40 ^{Ab} (0.88)	3.87 ^{Ca} (0.41)	2.23 ^{Bb} (0.35)	3.80 ^{Ba} (0.66)	2.99 ^{ABa} (0.57)

The different upper-case letters in the same column show the significant level of color parameter among each material. ($\alpha = 0.05$), The different lower-case letters in the same row show the significant level of color parameter in each storage media. ($\alpha = 0.05$)

The ANOVA of the elastic modulus also suggested the same fashion as the nanohardness, accepting the interaction between material and storage media. The elastic modulus of BTC and TRD were almost similar, and greater than TRX. Only TRX and BTC in dark chamber showed significantly different in day 1. The elastic modulus of all groups after immersed in coffee and water decreased after 56 day. BTC and TRD in dark condition showed no significant difference between 1-day and 56-day storage.

CHAPTER V

DISCUSSION AND CONCLUSION

Discussion

Regarding the color stability of the denture based acrylic resins, the repeated mixed analysis of variance rejected the null hypothesis which confirmed the effect of the immersion time, the type of materials with different polymerization methods and storage media over the storage periods on the color change, also the interactions between factors and each individual factor. (p < 0.001) Similar to the present study, the effect of the interaction among the acrylic resins with different curing methods, the beverage used over the immersion time, and each considered factors on the color changes were confirmed. (9, 65) Another study also reported the significant effect of the polymerization method of the acrylic resins and the beverage on the color stability (69). The result would be explained by the remaining residual monomer amount of the acrylic resins with different polymerization methods and the environmental condition during the polymerization that affected on the amount of leached out monomer from the resin surface or the deeper layer. (66, 67) This phenomenon might increase the absorption or adsorption of colorants into the denture base acrylic resins. An in vitro study of the in-laboratory fabricated resin composites with different degree of conversion on the color change after stored in water reported that the resin composite with greater degree of conversion demonstrated the lower internal color change from the lower existing double bond carbon groups. (68) Moreover, another study (65) showed the greater color change after simulated material degradation using an ultraviolet B radiation machine than the control group without the UVB accelerated.

The effect of beverage on ΔE^* of the denture base acrylic resins were confirmed similar to the other studies. (12, 61, 69-72) The color of the groups immersing in coffee increased greater than that of the groups immersing in distilled water and storing in the dark chamber. Considering all groups immersed in the coffee solution, the ΔE^* of all materials significantly increased in day 7. (70, 71) TRD showed the greater color stability than the others. The explanation would be the difference of the composition and the polymerization methods. Although TRX with heat-polymerizing method and BTC with either selective heat shock method and microwavepolymerizing method consist of the almost similar formula, mainly PMMA and MMA, the clue of the greater color change of BTC than that of TRX would be the difference of the polymerization method. (9, 63) However, TRD which is consist of UDMA, some additive organic fillers and tertiary amine, and polymerized by the blue light showed the greatest color change. The present of UDMA would be under the influence of water sorption, and consequently degraded and leached out of the UDMA. (61) Apart to the $\Delta L^* \Delta a^*$ and Δb^* , all specimens immersed in coffee became darker, less red and more yellow (12, 61, 69-72), but Foungfu and Koottathape (70, 71) showed the acrylic resin denture teeth darker, redder and yellower. That might be the color baseline of the denture teeth acrylic resins which display the more yellow and less red comparing to the color baseline of the denture base acrylic resin. Moreover, the presence of several color pigment molecule, mainly tannin with the brown and the compound pigments of chlorogenic acid which later decomposed to be the greenish pigment and tannic pigments would turn the specimen color to be darker and greener after roasting, blending and brewing. (73) Similar to our previous study (70, 71), the yellow occurred from another pigment of derivative ionic phenolic compound molecules in coffee. (61, 72)

Considering all groups immersed in the distilled water, TRD group showed the greater ΔE^* than BTC and TRX since day 7. The reason would be the exposure of the amorphous silica fillers on TRD surface after immersion. (21) Moreover, the formation of the hydrophilic functional UDMA in TRD might increase the water absorption properties rather than the linear chain polymer in BTC and TRX. (95)

Nevertheless, the water sorption and the polymerization methods including the heat- and microwave-polymerization were not correlated. (96) The tested material kept in the dark chamber were included in this study with the purpose of the effect of the remaining monomer on the color change. The acrylic resins after the polymerization following the manufacturer recommendation theoretically produced the residual monomer on the material surface which might increase the color change of acrylic resins. Comparing to the experimental groups in water, the ΔE^* of the groups kept in the dark chamber demonstrated no significant difference during the experiment periods;

therefore, the post-cured degree of conversion and the residual monomer amount on the surface of denture base resin material might be a crucial factor affecting on the color stability.

The surface roughness would be considered as a factor influencing on the color stability. (78) The present study measured the surface roughness of all specimens for eliminating this confounding factor. The ISO standard (8) suggested only the polishing until the 1,000-grid SiC abrasive paper following the alumina oxide paste; however, the present study fabricated the specimens with Ra of 3.01 - 13.41 nm which meet the standard, and smoother than the clinical recommendation (less than 30 - 750 nm) for preventing the biofilm accumulation on the removable prostheses surface. (79) The TRD showed the greatest ΔE^* although the surface roughness met the acceptable roughness. That could be explained by the preparation from the manufacturer of TRD in the plastic sheet form and the fabrication procedure that different from TRX and BTC under the hydraulic pressure of 2 bars.

Comparing to the patient behavior, the average number of coffee which is consumed daily estimated to be 3.2 cups a day with 120 ml cup. (74) The one-day immersion in the coffee solution in this *in vitro* study would equal to approximately 3 months of coffee drinker, and 56-day immersion equal to 14.7 years. However, the storage time in this *in vitro* study was designed to cover the average service time of the prosthesis wear, also the factor of the daily cleaning protocol was not considered. Apart to the perception of the color change, the 50% of normal people could distinguish two colors with the ΔE^* greater than 1.5, and could not clinically accept the color difference greater than 3.7. (60, 62) The present results showed the ΔE^* of TRX greater than 1.5 at day 7, and those of BTC and TRD greater than 1.5 before day 7. The color change of BTC and TRD were greater than the acceptable color change at day 7, while those of TRX were at day 56.

Considering the mechanical properties of the materials after stored in the different conditions, the nanohardness of BTC and TRD were greater than TRX. The similar result pointed out that the transverse strength and microhardness of the light-polymerizing acrylic resin were significantly greater than conventional heat-polymerizing acrylic resin, and emphasized the presence of the amorphous silica filler with highly cross-linked UDMA matrix which would increase microhardness and flexural modulus, but would reduce fracture toughness and impact strength. (20) Although TRX and BTC were almost similar composition containing mainly PMMA with different polymerization method, the nanohardness of BTC were greater than that of TRX at 1 day storage in coffee and water. The similar study of the nanohardness study between the other heat-polymerizing and the microwave-polymerizing acrylic resins confirmed the present study results. (85) However, the Vicker's hardness study of the same acrylic resin with microwave activation and heat activation presented no significant difference between the polymerization method. (54) The correlation between the microhardness and the nanohardness was still elucidated because several factors, i.e. the morphology of the indenter, the mechanical properties of the tested material, were significantly affected on the results. (82) Furthermore, the nanohardness of the groups immersed in coffee and distilled water decreased, excepting the groups stored in the dark chamber. The polymerization reaction of polymer generally keep continuing after the activation with the environmental stimuli such as the light, environmental temperature etc.; therefore, the nanohardness and elastic modulus of polymer should be greater after polymerization for a period of time. (90) The present results contrary decreased after 56-day storage especially in coffee and water that might be the effect of free radical monomer leach out from the specimen surface in the combination with the water adsorption and absorption upon the material properties. (95-98)

The elastic modulus could be determined by the several conventional mechanical testing methods such as the flexural strength test, tensile strength test, and the indirectly calculated by the correlation between surface hardness and the elastic modulus following eq 3 and eq 5. The correlation between the nanohardness and the elastic modulus of several resin composites were reported as a nonlinear regression with the contingency of determinant of 0.88. (89) The present research considered the latter method because this study method needed to examine both color stability and the mechanical properties in the same specimen at the different period. The elastic modulus of TRD were similar to BTC, and greater than TRX at 1-day storage in coffee and distilled water, and then those of all specimens dramatically decreased at 56-day storage. The decrease of the elastic modulus might be under the influence of the water sorption of the hydrophilic material with high polarity, especially in the polymeric based materials. (93) Moreover, the elastic modulus of the specimens immersed in coffee seemed to be reduced much more than those in distilled water.

That might be the reason of the acidity of coffee approximately 5.5-6.0 (73), and then the polymeric material would be decomposed in the acidic beverage, and reduced the mechanical properties including the elastic modulus. (94) This study included all materials stored in the dark chamber because the remaining monomer might not only be a crucial factor that affected on the color stability, but also the nanohardness and the elastic modulus. (98) This study presented no significant difference of elastic modulus in BTC and TRD in dark chamber between 1-day and 56-day storage, whereas that of TRX significantly reduced at 56-day storage. One of the importance factors affecting on the color stability as well as the nanohardness and the elastic modulus would be the voids, the grooves or the pits on the material surface. One representative specimen of TRX in the dark chamber which was examined both the color stability and the mechanical properties showed the decrease of the elastic modulus after 56-day storage rather than the other specimens in the same group due to the comparable presence of voids and scratches shown in Figure 8.

The reliability and the correlation between the nanohardness and the microhardness are also considerably. Several surface hardness studies of the polymeric materials have been considered the microhardness indentor, for example Vicker's hardness (20) and Knoop's hardness (83), while the others considered the nanohardness indentor (Berkovich diamond indenter). The correlation between both surface hardness measurement among different surface hardness materials including metals, ceramics, rubbers and acrylic resin has been reported (82); however, a resin composite study reported no correlation between the Vicker's hardness and the nanohardness, and the Vicker's hardness showed greater than the nanohardness. (86) Aside the correlation between the surface hardness and elastic modulus, the linear correlation between the two different surface hardness tests of the resin composite was reported with the contingency of determinant of 0.99 (83), while the correlation between nanoindentation and elastic modulus of several resin composites were reported as a nonlinear regression with the contingency of determinant of 0.88. (89) The directly flexural modulus of resin composites also was correlated to the elastic modulus determined by the Vicker's hardness test with the pearson correlation of 0.94. (88) Therefore, the nanohardness and the elastic modulus determination of this study would be a reliable alternative measurement.

Clinically, the appearance, the durability and the longevity of the removable prostheses are the crucial considering factors to predict the success of the tooth/teeth replacement treatment. This *in vitro* study confirmed the influencing factors of the polymerization methods, the storage conditions on the color stability, the nanohardness and the elastic modulus of the acrylic resins. The oral cavity is considerably tremendous environment with for example the dynamic pH and oral temperature changes from the daily food and beverage, also the subcritical continuous biting load, and the daily cleaning with the disinfectant. (9, 63, 64, 77, 90, 91) The comparative report between the *in vitro* study of color stability and the predictable *in vivo* study has also not been elucidated. Moreover, the color change and the mechanical properties would be under the influence of the remaining residual monomer inside or on the acrylic resin surface, their degree of conversion and the stress from the polymerization shrinkage of the resin materials. Several studies indicated the influence of them on the color stability and the mechanical properties, and be confirmed by the present results. However, the correlation between the color stability and the nanohardness, and the elastic modulus needs to be further studied.

Conclusion

Within the limitations of the present study, the color stability, the nanohardness and the elastic modulus of the denture base acrylic resins were under the influence of the polymerization methods, the storage condition and time. All specimens stored in coffee demonstrated the greatest color change than distilled water and dark chamber after 7-day storage. TRD showed more color change than TRX and BTC in both coffee and distilled water, whereas the materials in dark chamber showed no significant difference. All materials in the coffee were significantly darker ($-\Delta L^*$), shifted to green ($-\Delta a^*$) and yellow ($+\Delta b^*$) after 56-day storage. The TRX showed no significant color change in distilled water, while the ΔL^* and Δa^* of BTC and TRD were lower (darker and shift toward green) at 7-day.

The nanohardness and the elastic modulus of all groups in coffee and distilled water decreased after 56-day storage. Those values in coffee decreased greater than those in water. TRX showed the lowest nanohardness and elastic modulus.

APPENDIX

Repeated mixed Analysis of variance: ΔE^*

Within-Subj	ects Fact	tors			Descri	ptive Statisti	cs	
Measure: dE			•		Testing Groups	Mean	Std. Deviation	N
Immertion Time	Dep Va	endent riable		dE dav1	BTC/C	78100	207817	
1	dE_d	ay1		,.	BTC/D	35833	131283	
2	dE_d	ay7			BTC/W	32700	126934	
3	dE_d	ay28			TRD/C	95100	298569	
4	dE_d	ay56			TRD/D	40933	150733	
Between-Sul	hiects Fac	tors			TRD/W	.40000	.106875	
2000000	.,	N	1.		TRX/C	.86000	.163775	
Testing_Groups	BTC/C	10			TRX/D	.54533	.268007	
	BTC/D	10	-10		TRXW	.51000	.335890	
	TRD/C	10			Total	.57133	.301066	
	TRD/D	10		dE_day7	BTC/C	4.29600	.344616	
		10			BTC/D	.57400	.215021	
	TRX/D	10			BTC/W	.79900	.367104	
	TRXW	10			TRD/C	4.32800	.648088	
					TRD/D	.48367	.267930	
Box's T	est of	-	1		TRD/W	1.45400	.247799	
Equali	ity of				TRX/C	1.74600	.171672	
Covari	ance				TRX/D	.29633	.131820	
Matri	cesa				TRXW	.39600	.252507	
Boy's M	447	125			Total	1.59700	1.561827	
D0x 3 W	447	.425	-	dE_day28	BTC/C	8.92200	1.829121	
F	4	.547	-1010-		BTC/D	.41833	.216083	
df1		80	าสาล		BTC/W	.70900	.293767	
df2	7963	.845	1		TRD/C	11.99600	1.807166	
Sig		000	ULAL		TRD/D	.38267	.146673	
oly.		.000			TRD/W	3.44300	.268413	
lests the	null				TRX/C	2.91000	.684673	
nypotnesi	s that	the			TRX/D	.42833	.283768	
observed		inen			TRXW	.75900	.306973	
covariance of the dep	e mau ondor	ices			Total	3.32981	4.137477	
variables	enuer aro.og	แม่งไ		dE_day56	BTC/C	12.51600	4.014909	
across dr	aie ey nun s	uai			BTC/D	.92067	.267585	
aci035 git	oups.				BTC/W	.70800	.404567	
a. Design	i: Inter	cept			TRD/C	20.80833	2.116251	
+ Testi	ng_Gr	oups			TRD/D	.42333	.128438	
Within	Subje	CIS			TRD/W	3.24900	.460121	
Design	1. 1. – – –	ina c			TRX/C	4.39900	1.190768	
immen	ion_1	ime			TRX/D	.45267	.188829	
					TRXW	.72600	.481543	
					Total	4.91144	6.911771	

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
Immertion_Time	Pillai's Trace	.957	582.677 ^b	3.000	79.000	.000	.957
	Wilks' Lambda	.043	582.677 ^b	3.000	79.000	.000	.957
	Hotelling's Trace	22.127	582.677 ^b	3.000	79.000	.000	.957
	Roy's Largest Root	22.127	582.677 ^b	3.000	79.000	.000	.957
Immertion_Time *	Pillai's Trace	1.669	12.688	24.000	243.000	.000	.556
lesting_Groups	Wilks' Lambda	.009	39.156	24.000	229.725	.000	.793
	Hotelling's Trace	43.423	140.521	24.000	233.000	.000	.935
	Roy's Largest Root	42.011	425.361°	8.000	81.000	.000	.977

a. Design: Intercept + Testing_Groups

Within Subjects Design: Immertion_Time

b. Exact statistic

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

Mauchly's Test of Sphericity^a

Measure: dE								
					Epsilon ^b			
		Approx. Chi-	-16	<u>.</u>	Greenhouse-	Liumb Coldt	Lower bound	
Within Subjects Effect	Mauchiy's w	Square	ατ	Sig.	Geisser	Huynn-Felat	Lower-bound	
Immertion_Time	.107	178.467	5	.000	.542	.606	.333	

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept + Testing_Groups

Within Subjects Design: Immertion_Time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Subjects Effects

Measure: dE

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Immertion_Time	Sphericity Assumed	989.719	3	329.906	429.574	.000	.841
	Greenhouse-Geisser	989.719	1.627	608.433	429.574	.000	.841
	Huynh-Feldt	989.719	1.819	544.025	429.574	.000	.841
	Lower-bound	989.719	1.000	989.719	429.574	.000	.841
Immertion_Time *	Sphericity Assumed	2284.342	24	95.181	123.936	.000	.924
lesting_Groups	Greenhouse-Geisser	2284.342	13.013	175.538	123.936	.000	.924
	Huynh-Feldt	2284.342	14.554	156.956	123.936	.000	.924
	Lower-bound	2284.342	8.000	285.543	123.936	.000	.924
Error(Immertion_Time)	Sphericity Assumed	186.621	243	.768			
	Greenhouse-Geisser	186.621	131.760	1.416			
	Huynh-Feldt	186.621	147.359	1.266			
	Lower-bound	186.621	81.000	2.304			

Tests of Within-Subjects Contrasts

Measure: dE							
Source	Immertion_Time	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Immertion_Time	Linear	979.449	1	979.449	746.416	.000	.902
	Quadratic	6.955	1	6.955	11.206	.001	.122
	Cubic	3.315	1	3.315	8.933	.004	.099
Immertion_Time *	Linear	2201.564	8	275.195	209.720	.000	.954
Testing_Groups	Quadratic	72.692	8	9.086	14.641	.000	.591
	Cubic	10.086	8	1.261	3.397	.002	.251
Error(Immertion_Time)	Linear	106.288	81	1.312			
	Quadratic	50.271	81	.621			
	Cubic	30.062	81	.371			

Levene's Test of Equality of Error Variances^a

	F	df1	df2	Sig.
dE_day1	2.554	8	81	.016
dE_day7	4.161	8	81	.000
dE_day28	6.820	8	81	.000
dE_day56	20.992	8	81	.000

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Testing_Groups Within Subjects Design: Immertion_Time

Tests of Between-Subjects Effects

Measure: dE

Transformed Variable: Av	verage
--------------------------	--------

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	2438.091	1	2438.091	2019.061	.000	.961
Testing_Groups	3431.718	8	428.965	355.239	.000	.972
Error	97.810	81	1.208			

Estimate marginal means

1. Material_Types

Measure: dE

			95% Confidence Interval		
Material_Types	Mean	Std. Error	Lower Bound	Upper Bound	
heat-cured	1.169	.100	.969	1.369	
Light-cured	4.027	.100	3.828	4.227	
microwave-cured	2.611	.100	2.411	2.810	
		(LAL) Z		NO	

2. Solution

Measure: dE

			95% Confide	Sei	
Solution	Mean	Std. Error	Lower Bound	Upper Bound	10
coffee	6.209	.100	6.010	6.409	SIT
dark	.474	.100	.275	.674	
water	1.123	.100	.924	1.323	

3. Time

Measu	re: dE								
			95% Confidence Interval						
Time	Mean	Std. Error	Lower Bound	Upper Bound					
1	.571	.023	.526	.616					
2	1.597	.034	1.528	1.666					
3	3.330	.096	3.139	3.521					
4	4.911	.168	4.578	5.245					

4. Material_Types * Solution

Measure: dE					
				95% Confide	ence Interval
Material_Types	Solution	Mean	Std. Error	Lower Bound	Upper Bound
heat-cured	coffee	2.479	.174	2.133	2.824
	dark	.431	.174	.085	.776
	water	.598	.174	.252	.943
Light-cured	coffee	9.521	.174	9.175	9.867
	dark	.425	.174	.079	.770
	water	2.136	.174	1.791	2.482
microwave-cured	coffee	6.629	.174	6.283	6.974
	dark	.568	.174	.222	.914
	water	.636	.174	.290	.981

6. Solution * Time

Measure:	dE				
				95% Confide	ence Interval
Solution	Time	Mean	Std. Error	Lower Bound	Upper Bound
coffee	1	.864	.039	.786	.942
	2	3.457	.060	3.338	3.576
	3	7.943	.166	7.611	8.274
	4	12.574	.290	11.997	13.152
dark	1	.438	.039	.360	.515
	2	.451	.060	.332	.570
	3	.410	.166	.079	.741
	4	.599	.290	.021	1.176
water	1	.412	.039	.335	.490
	2	.883	.060	.764	1.002
	3	1.637	.166	1.306	1.968
	4	1.561	.290	.983	2.139

		5. Materia	_Types ~ Tin	ie	
Measure: dE					
95% Confidence Interval					
Material_Types	Time	Mean	Std. Error	Lower Bound	Upper Bound
heat-cured	1	.638	.039	.561	.716
	2	.813	.060	.694	.932
	3	1.366	.166	1.035	1.697
	4	1.859	.290	1.282	2.437
Light-cured	1	.587	.039	.509	.664
	2	2.089	.060	1.970	2.207
	3	5.274	.166	4.943	5.605
	4	8.160	.290	7.583	8.738
microwave-cured	1	.489	.039	.411	.566
	2	1.890	.060	1.771	2.009
	3	3.350	.166	3.019	3.681
	4	4.715	.290	4.137	5.292

5. Material_Types * Time

Measure: dE						
					95% Confide	ence Interval
Material_Types	Solution	Time	Mean	Std. Error	Lower Bound	Upper Bound
heat-cured	coffee	1	.860	.068	.725	.995
		2	1.746	.103	1.540	1.952
		3	2.910	.288	2.336	3.484
		4	4.399	.503	3.399	5.399
	dark	1	.545	.068	.411	.680
		2	.296	.103	.090	.502
		3	.428	.288	145	1.002
		4	.453	.503	548	1.453
	water	1	.510	.068	.375	.645
		2	.396	.103	.190	.602
		3	.759	.288	.185	1.333
		4	.726	.503	274	1.726
Light-cured	coffee	1	.951	.068	.816	1.086
		2	4.328	.103	4.122	4.534
		3	11.996	.288	11.422	12.570
		4	20.808	.503	19.808	21.809
	dark	1	.409	.068	.275	.544
		2	.484	.103	.278	.690
		3	.383	.288	191	.956
		4	.423	.503	577	1.424
	water	1	.400	.068	.265	.535
		2	1.454	.103	1.248	1.660
		3	3.443	.288	2.869	4.017
		4	3.249	.503	2.249	4.249
microwave-cured	coffee	1	.781	.068	.646	.916
		2	4.296	.103	4.090	4.502
		3	8.922	.288	8.348	9.496
		4	12.516	.503	11.516	13.516
	dark	1	.358	.068	.224	.493
		2	.574	.103	.368	.780
		3	.418	.288	155	.992
		4	.921	.503	080	1.921
	water	1	.327	.068	.192	.462
		2	.799	.103	.593	1.005
		3	.709	.288	.135	1.283
		4	.708	.503	292	1.708

7. Material_Types * Solution * Time

One way Analysis of variance: $\Delta E^* \Delta L^* \Delta a^*$ and Δb^*

TRX in coffee solution

		A	NOVA			
		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	70.306	3	23.435	48.246	.000
	Within Groups	17.487	36	.486		
	Total	87.793	39			
dL	Between Groups	61.033	3	20.344	50.370	.000
	Within Groups	14.540	36	.404		
	Total	75.573	39			
dA	Between Groups	10.646	3	3.549	63.979	.000
	Within Groups	1.997	36	.055		
	Total	12.643	39			
dB	Between Groups	9.005	3	3.002	11.944	.000
	Within Groups	9.047	36	.251		
	Total	18.051	39			
		-		1.70. 70.7.10		

Multiple Comparisons

			Mean			95% Confid	ence Interval
			Difference (I-	Std Error	Cia	Lower Bound	Linner Bound
Dependent Variable	(I) Immertion_Time	(J) Immertion_Time	J)	Std. Error	Sig.	Lower Bound	Opper Bound
αE	1.0	7.0	886000	.311689	.035	-1.72545	04655
		28.0	-2.050000	.311689	.000	-2.88945	-1.21055
	7.0	56.0	-3.539000	.311689	.000	-4.3/845	-2.69955
	7.0	1.0	.886000	.311689	.035	.04655	1.72545
		28.0	-1.164000	.311689	.003	-2.00345	32455
	20.0	56.0	-2.653000	.311689	.000	-3.49245	-1.81355
	20.0	7.0	2.050000	.311689	.000	1.21055	2.88945
		7.0	1.164000	.311689	.003	.32455	2.00345
	56.0	56.0	-1.489000	.311689	.000	-2.32845	64955
	50.0	7.0	3.539000	.311089	.000	2.09955	4.37845
		7.0	2.653000	.311089	.000	1.81355	3.49245
di	1.0	20.0	1.489000	.311089	.000	.64955	2.32845
uL	1.0	7.0	.015000	.284210	.153	15046	1.38046
		28.0	1.519000	.284210	.000	./5354	2.28446
	7.0	56.0	3.2/666/	.284216	.000	2.51121	4.04213
	7.0	1.0	615000	.284216	.153	-1.38046	.15046
		20.0	.904000	.284210	.015	.13854	1.00940
	20.0	56.0	2.001007	.284216	.000	1.89621	3.42/13
	20.0	7.0	-1.519000	.284216	.000	-2.28446	/5354
		7.0	904000	.284216	.015	-1.66946	13854
	50.0	56.0	1./5/66/	.284216	.000	.99221	2.52313
	50.U	7.0	-3.2/666/	.284216	.000	-4.04213	-2.51121
		7.0	-2.661667	.284216	.000	-3.42713	-1.89621
40	1.0	28.0	-1./5/66/	.284216	.000	-2.52313	99221
dA	1.0	7.0	.504000	.105326	.000	.22033	./8/6/
		28.0	./54000	.105326	.000	.47033	1.03/6/
	- 7.0	56.0	1.432333	.105326	.000	1.14867	1./1600
	7.0	1.0	504000	.105326	.000	/8/6/	22033
		28.0	.250000	.105326	.101	03367	.53367
		56.0	.928333	.105326	.000	.64467	1.21200
	28.0	1.0	/54000	.105326	.000	-1.03767	47033
		7.0	250000	.105326	.101	53367	.03367
	50.0	56.0	.678333	.105326	.000	.39467	.96200
	56.0	1.0	-1.432333	.105326	.000	-1./1600	-1.14867
		7.0	928333	.105326	.000	-1.21200	64467
10		28.0	678333	.105326	.000	96200	39467
ав	1.0	7.0	378000	.224188	.346	98179	.22579
		28.0	-1.169000	.224188	.000	-1.77279	56521
		56.0	014000	.224188	1.000	61779	.58979
	7.0	1.0	.378000	.224188	.346	22579	.98179
		28.0	791000	.224188	.006	-1.39479	18721
		56.0	.364000	.224188	.379	23979	.96779
	28.0	1.0	1.169000	.224188	.000	.56521	1.77279
		7.0	.791000	.224188	.006	.18721	1.39479
		56.0	1.155000	.224188	.000	.55121	1.75879
	56.0	1.0	.014000	.224188	1.000	58979	.61779
		7.0	364000	.224188	.379	96779	.23979
		28.0	1 1 5 5 0 0 0	1 22/100	000	1 75970	1 55121

BTC in coffee solution

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	795.566	3	265.189	54.045	.000
	Within Groups	176.644	36	4.907		
	Total	972.210	39			
dL	Between Groups	464.765	3	154.922	49.397	.000
	Within Groups	112.906	36	3.136		
	Total	577.671	39			
dA	Between Groups	58.762	3	19.587	43.905	.000
	Within Groups	16.061	36	.446		
	Total	74.822	39			
dB	Between Groups	288.313	3	96.104	35.992	.000
	Within Groups	96.125	36	2.670		
	Total	384.438	39			

Multiple Comparisons

			Mean			95% Confid	ence Interval
			Difference (I-	Std Error	Sig	Lower Bound	Linner Bound
Dependent Variable	(I) Immertion_Time	(J) Immertion_Time	J)	Sta. Error	Sig.		Opper Bound
ae	1.0	7.0	-3.515000	.990634	.006	-6.18300	84700
		28.0	-8.141000	.990634	.000	-10.80900	-5.47300
		56.0	-11.735000	.990634	.000	-14.40300	-9.06700
	7.0	1.0	3.515000	.990634	.006	.84700	6.18300
		28.0	-4.626000	.990634	.000	-7.29400	-1.95800
		56.0	-8.220000	.990634	.000	-10.88800	-5.55200
	28.0	1.0	8.141000	.990634	.000	5.47300	10.80900
		7.0	4.626000	.990634	.000	1.95800	7.29400
		56.0	-3.594000	.990634	.005	-6.26200	92600
	56.0	1.0	11.735000	.990634	.000	9.06700	14.40300
		7.0	8.220000	.990634	.000	5.55200	10.88800
		28.0	3.594000	.990634	.005	.92600	6.26200
dL	1.0	7.0	1.912000	.791995	.092	22102	4.04502
		28.0	5.483000	.791995	.000	3.34998	7.61602
		56.0	8.892667	.791995	.000	6.75964	11.02569
	7.0	1.0	-1.912000	.791995	.092	-4.04502	.22102
		28.0	3.571000	.791995	.000	1.43798	5.70402
		56.0	6.980667	.791995	.000	4.84764	9.11369
	28.0	1.0	-5.483000	.791995	.000	-7.61602	-3.34998
		7.0	-3.571000	.791995	.000	-5.70402	-1.43798
		56.0	3.409667*	.791995	.001	1.27664	5.54269
	56.0	1.0	-8.892667	.791995	.000	-11.02569	-6.75964
		7.0	-6.980667	.791995	.000	-9.11369	-4.84764
		28.0	-3.409667	.791995	.001	-5.54269	-1.27664
dA	1.0	7.0	1.416000	.298706	.000	.61152	2.22048
		28.0	2.284000	.298706	.000	1.47952	3.08848
		56.0	3.304667	.298706	.000	2.50018	4.10915
	7.0	1.0	-1.416000	.298706	.000	-2.22048	61152
		28.0	.868000	.298706	.030	.06352	1.67248
		56.0	1.888667	.298706	.000	1.08418	2.69315
	28.0	1.0	-2.284000	.298706	.000	-3.08848	-1.47952
		7.0	868000	.298706	.030	-1.67248	06352
		56.0	1.020667	.298706	.008	.21618	1.82515
	56.0	1.0	-3.304667	.298706	.000	-4.10915	-2.50018
		7.0	-1.888667	.298706	.000	-2.69315	-1.08418
		28.0	-1.020667	.298706	.008	-1.82515	21618
dB	1.0	7.0	-2.613000	.730774	.005	-4.58114	64486
		28.0	-5.636000	.730774	.000	-7.60414	-3.66786
		56.0	-6.900333	730774	.000	-8.86847	-4.93219
	7.0	1.0	2.613000	730774	005	.64486	4.58114
		28.0	-3 023000"	730774	001	-4 99114	-1 05486
		56.0	-4 287333	730774	000	-6 25547	-2 31919
	28.0	1.0	5.636000	730774	000	3 66786	7 60414
	20.0	-	0.000000			0.00700	
	20.0	7.0	3.023000	730774	001	1 05486	4 99114
	20.0	7.0 56.0	3.023000	.730774	.001	1.05486	4.99114
	56.0	7.0 56.0	3.023000 [*] -1.264333 6.900332 [*]	.730774 .730774 730774	.001 .323	1.05486 -3.23247 4.93219	4.99114 .70381 8.86847
	56.0	7.0 56.0 1.0 7.0	3.023000 [*] -1.264333 6.900333 [*] 4.287322 [*]	.730774 .730774 .730774 .730774	.001 .323 .000	1.05486 -3.23247 4.93219 2.31919	4.99114 .70381 8.86847 6.25547

TRD in coffee solution

		1	NOVA			
		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	2926.953	3	975.651	597.730	.000
	Within Groups	75.084	46	1.632		
	Total	3002.037	49			
dL	Between Groups	2170.065	3	723.355	504.621	.000
	Within Groups	65.939	46	1.433		
	Total	2236.004	49			
dA	Between Groups	199.607	3	66.536	111.092	.000
	Within Groups	27.550	46	.599		
	Total	227.157	49			
dB	Between Groups	602.309	3	200.770	469.182	.000
	Within Groups	19.684	46	.428		
	Total	621.993	49			

Multiple Comparisons

			Mean			95% Confid	ence Interval
			Difference (I-	Otal Enner	Oim	Lower Bound	Upper Bound
Dependent Variable	(I) Immertion_Time	(J) Immertion_Time	J)	Sta. Error	Sig.	Lower Bound	Opper Bound
dE	1.0	7.0	-3.377000	.494812	.000	-4.69592	-2.05808
		28.0	-11.045000	.494812	.000	-12.36392	-9.72608
		56.0	-19.857333	.494812	.000	-21.17625	-18.53841
	7.0	1.0	3.377000	.494812	.000	2.05808	4.69592
		28.0	-7.668000	.571360	.000	-9.19096	-6.14504
		56.0	-16.480333	.571360	.000	-18.00329	-14.95738
	28.0	1.0	11.045000	.494812	.000	9.72608	12.36392
		7.0	7.668000	.571360	.000	6.14504	9.19096
		56.0	-8.812333	.571360	.000	-10.33529	-7.28938
	56.0	1.0	19.857333	.494812	.000	18.53841	21.17625
		7.0	16.480333	.571360	.000	14.95738	18.00329
		28.0	8.812333	.571360	.000	7.28938	10.33529
dL	1.0	7.0	2.434000	.463702	.000	1.19800	3.67000
		28.0	8.950000	.463702	.000	7.71400	10.18600
		56.0	17.136667	.463702	.000	15.90067	18.37266
	7.0	1.0	-2.434000	.463702	.000	-3.67000	-1.19800
		28.0	6.516000	.535437	.000	5.08880	7.94320
		56.0	14.702667	.535437	.000	13.27546	16.12987
	28.0	1.0	-8.950000	.463702	.000	-10.18600	-7.71400
		7.0	-6.516000	.535437	.000	-7.94320	-5.08880
		56.0	8.186667	.535437	.000	6.75946	9.61387
	56.0	1.0	-17.136667	.463702	.000	-18.37266	-15.90067
		7.0	-14.702667	.535437	.000	-16.12987	-13.27546
		28.0	-8.186667	.535437	.000	-9.61387	-6.75946
dA	1.0	7.0	1.326000	.299731	.000	.52707	2.12493
		28.0	3.448000	.299731	.000	2.64907	4.24693
		56.0	5.068333	.299731	.000	4.26940	5.86726
	7.0	1.0	-1.326000	.299731	.000	-2.12493	52707
		28.0	2.122000	.346099	.000	1.19947	3.04453
		56.0	3.742333	.346099	.000	2.81981	4.66486
	28.0	1.0	-3.448000	.299731	.000	-4.24693	-2.64907
		7.0	-2.122000	.346099	.000	-3.04453	-1.19947
		56.0	1.620333	.346099	.000	.69781	2.54286
	56.0	1.0	-5.068333	.299731	.000	-5.86726	-4.26940
		7.0	-3.742333	.346099	.000	-4.66486	-2.81981
		28.0	-1.620333	.346099	.000	-2.54286	69781
dB	1.0	7.0	-2.029000	.253352	.000	-2.70431	-1.35369
		28.0	-5.690000	.253352	.000	-6.36531	-5.01469
		56.0	-8.879000	.253352	.000	-9.55431	-8.20369
	7.0	1.0	2.029000*	.253352	.000	1.35369	2.70431
		28.0	-3.661000	.292545	.000	-4.44078	-2.88122
		56.0	-6.850000"	.292545	.000	-7.62978	-6.07022
	28.0	1.0	5.690000	.253352	.000	5.01469	6.36531
		7.0	3.661000	.292545	.000	2.88122	4.44078
		56.0	-3.189000	.292545	.000	-3.96878	-2.40922
	56.0	1.0	8.879000	.253352	.000	8.20369	9.55431
		7.0	6.850000	.292545	.000	6.07022	7.62978
		28.0	3.189000*	.292545	.000	2.40922	3.96878

TRX in distilled water

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
dE	Between Groups	.909	3	.303	2.410	.083						
	Within Groups	4.524	36	.126								
	Total	5.433	39									
dL	Between Groups	6.661	3	2.220	10.004	.000						
	Within Groups	7.989	36	.222								
	Total	14.650	39									
dA	Between Groups	.698	3	.233	5.710	.003						
	Within Groups	1.467	36	.041								
	Total	2.165	39									
dB	Between Groups	.744	3	.248	5.378	.004						
	Within Groups	1.661	36	.046								
	Total	2.405	39									

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Immertion Time	(J) Immertion Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	.114000	.158540	.889	31298	.54098
		28.0	249000	.158540	.408	67598	.17798
		56.0	216000	.158540	.530	64298	.21098
	7.0	1.0	114000	.158540	.889	54098	.31298
		28.0	363000	.158540	.119	78998	.06398
		56.0	330000	.158540	.179	75698	.09698
	28.0	1.0	.249000	.158540	.408	17798	.67598
		7.0	.363000	.158540	.119	06398	.78998
		56.0	.033000	.158540	.997	39398	.45998
	56.0	1.0	.216000	.158540	.530	21098	.64298
		7.0	.330000	.158540	.179	09698	.75698
		28.0	033000	.158540	.997	45998	.39398
dL	1.0	7.0	191000	.210678	.801	75840	.37640
		28.0	702000"	.210678	.010	-1.26940	13460
		56.0	.435000	.210678	.184	13240	1.00240
	7.0	1.0	.191000	.210678	.801	37640	.75840
		28.0	511000	.210678	.090	-1.07840	.05640
		56.0	.626000"	.210678	.026	.05860	1.19340
	28.0	1.0	.702000	.210678	.010	.13460	1.26940
		7.0	.511000	.210678	.090	05640	1.07840
		56.0	1.137000	.210678	.000	.56960	1.70440
	56.0	1.0	435000	.210678	.184	-1.00240	.13240
		7.0	626000"	.210678	.026	-1.19340	05860
		28.0	-1.137000	.210678	.000	-1.70440	56960
dA	1.0	7.0	132000	.090282	.470	37515	.11115
		28.0	330000"	.090282	.004	57315	08685
		56.0	014333	.090282	.999	25748	.22882
	7.0	1.0	.132000	.090282	.470	11115	.37515
		28.0	198000	.090282	.145	44115	.04515
		56.0	.117667	.090282	.567	12548	.36082
	28.0	1.0	.330000	.090282	.004	.08685	.57315
		7.0	.198000	.090282	.145	04515	.44115
		56.0	.315667	.090282	.007	.07252	.55882
	56.0	1.0	.014333	.090282	.999	22882	.25748
		7.0	117667	.090282	.567	36082	.12548
		28.0	315667	.090282	.007	55882	07252
dB	1.0	7.0	118000	.096048	.613	37668	.14068
		28.0	376000	.096048	.002	63468	11732
		56.0	139667	.096048	.475	39835	.11901
	/.U	1.0	.118000	.096048	.613	14068	.37668
		28.0	258000	.096048	.051	51668	.00068
		56.0	021667	.096048	.996	28035	.23701
	28.0	1.0	.376000	.096048	.002	.11732	.63468
		7.0	.258000	.096048	.051	00068	.51668
	56.0	50.U	.236333	.096048	.084	02235	.49501
	50.0	1.0	.139667	.096048	.4/5	11901	.39835
		200	.021667	.096048	.996	23701	.28035
		20.U	230333	1.096048	.084	49501	02235

BTC in distilled water

		1	NOVA			
		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	1.326	3	.442	4.409	.010
	Within Groups	3.608	36	.100		
	Total	4.933	39			
dL	Between Groups	1.579	3	.526	4.044	.014
	Within Groups	4.686	36	.130		
	Total	6.266	39			
dA	Between Groups	1.230	3	.410	11.866	.000
	Within Groups	1.244	36	.035		
	Total	2.473	39			
dB	Between Groups	.538	3	.179	24.464	.000
	Within Groups	.264	36	.007		
	Total	.802	39			

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Immertion Time	(J) Immertion Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	472000	.141572	.010	85328	09072
		28.0	382000	.141572	.049	76328	00072
		56.0	381000	.141572	.050	76228	.00028
	7.0	1.0	.472000	.141572	.010	.09072	.85328
		28.0	.090000	.141572	.920	29128	.47128
		56.0	.091000	.141572	.917	29028	.47228
	28.0	1.0	.382000	.141572	.049	.00072	.76328
		7.0	090000	.141572	.920	47128	.29128
		56.0	.001000	.141572	1.000	38028	.38228
	56.0	1.0	.381000	.141572	.050	00028	.76228
		7.0	091000	.141572	.917	47228	.29028
		28.0	001000	.141572	1.000	38228	.38028
dL	1.0	7.0	.517000	.161356	.014	.08243	.95157
		28.0	.419000	.161356	.062	01557	.85357
		56.0	.409333	.161356	.071	02524	.84390
	7.0	1.0	517000	.161356	.014	95157	08243
		28.0	098000	.161356	.929	53257	.33657
		56.0	107667	.161356	.909	54224	.32690
	28.0	1.0	419000	.161356	.062	85357	.01557
		7.0	.098000	.161356	.929	33657	.53257
		56.0	009667	.161356	1.000	44424	.42490
	56.0	1.0	409333	.161356	.071	84390	.02524
		7.0	.107667	.161356	.909	32690	.54224
		28.0	.009667	.161356	1.000	42490	.44424
dA	1.0	7.0	.413000	.083122	.000	.18913	.63687
		28.0	.408000"	.083122	.000	.18413	.63187
		56.0	.392667	.083122	.000	.16880	.61653
	7.0	1.0	413000	.083122	.000	63687	18913
		28.0	005000	.083122	1.000	22887	.21887
		56.0	020333	.083122	.995	24420	.20353
	28.0	1.0	408000	.083122	.000	63187	18413
		7.0	.005000	.083122	1.000	21887	.22887
		56.0	015333	.083122	.998	23920	.20853
	56.0	1.0	392667	.083122	.000	61653	16880
		7.0	.020333	.083122	.995	20353	.24420
		28.0	.015333	.083122	.998	20853	.23920
dB	1.0	7.0	.205000	.038297	.000	.10186	.30814
		28.0	.153000	.038297	.002	.04986	.25614
		56.0	084333	.038297	.142	18748	.01881
	7.0	1.0	205000	.038297	.000	30814	10186
		28.0	052000	.038297	.533	15514	.05114
		56.0	289333	.038297	.000	39248	18619
	28.0	1.0	153000	.038297	.002	25614	04986
		7.0	.052000	.038297	.533	05114	.15514
		56.0	237333	.038297	.000	34048	13419
	56.0	1.0	.084333	.038297	.142	01881	.18748
		7.0	.289333	.038297	.000	.18619	.39248
		28.0	.237333	.038297	.000	.13419	.34048

TRD in distilled water

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
dE	Between Groups	64.258	3	21.419	240.274	.000						
	Within Groups	3.209	36	.089								
	Total	67.468	39									
dL	Between Groups	81.095	3	27.032	269.823	.000						
	Within Groups	3.607	36	.100								
	Total	84.702	39									
dA	Between Groups	3.695	3	1.232	24.932	.000						
	Within Groups	1.779	36	.049								
	Total	5.474	39									
dB	Between Groups	12.755	3	4.252	83.484	.000						
	Within Groups	1.833	36	.051								
	Total	14.589	39									

Multiple Comparisons

Tukey HSD							
			Mean Difference (la			95% Confid	ence Interval
Dependent Variable	(I) Immertion Time	(J) Immertion Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	-1.054000	.133526	.000	-1.41362	69438
		28.0	-3.043000*	.133526	.000	-3.40262	-2.68338
		56.0	-2.849000	.133526	.000	-3.20862	-2.48938
	7.0	1.0	1.054000	.133526	.000	.69438	1.41362
		28.0	-1.989000	.133526	.000	-2.34862	-1.62938
		56.0	-1.795000	.133526	.000	-2.15462	-1.43538
	28.0	1.0	3.043000	.133526	.000	2.68338	3.40262
		7.0	1.989000	.133526	.000	1.62938	2.34862
		56.0	.194000	.133526	.476	16562	.55362
	56.0	1.0	2.849000*	.133526	.000	2.48938	3.20862
		7.0	1.795000*	.133526	.000	1.43538	2.15462
		28.0	194000	.133526	.476	55362	.16562
dL	1.0	7.0	1.010000	.141551	.000	.62877	1.39123
		28.0	3.250000	.141551	.000	2.86877	3.63123
		56.0	3.273333*	.141551	.000	2.89210	3.65456
	7.0	1.0	-1.010000	.141551	.000	-1.39123	62877
		28.0	2.240000	.141551	.000	1.85877	2.62123
		56.0	2.263333	.141551	.000	1.88210	2.64456
	28.0	1.0	-3.250000	.141551	.000	-3.63123	-2.86877
		7.0	-2.240000	.141551	.000	-2.62123	-1.85877
		56.0	.023333	.141551	.998	35790	.40456
	56.0	1.0	-3.273333	.141551	.000	-3.65456	-2.89210
		7.0	-2.263333	.141551	.000	-2.64456	-1.88210
		28.0	023333	.141551	.998	40456	.35790
dA	1.0	7.0	.521000	.099402	.000	.25329	.78871
		28.0	.847000	.099402	.000	.57929	1.11471
		56.0	.533333	.099402	.000	.26562	.80105
	7.0	1.0	521000	.099402	.000	78871	25329
		28.0	.326000	.099402	.012	.05829	.59371
		56.0	.012333	.099402	.999	25538	.28005
	28.0	1.0	847000	.099402	.000	-1.11471	57929
		7.0	326000	.099402	.012	59371	05829
		56.0	313667	.099402	.016	58138	04595
	56.0	1.0	5333333	.099402	.000	80105	26562
		7.0	012333	.099402	.999	28005	.25538
		28.0	.313667	.099402	.016	.04595	.58138
dB	1.0	7.0	.970000"	.100924	.000	.69819	1.24181
		28.0	1.079000"	.100924	.000	.80719	1.35081
		56.0	188667	.100924	.259	46048	.08315
	7.0	1.0	970000	.100924	.000	-1.24181	69819
		28.0	.109000	.100924	.704	16281	.38081
		56.0	-1.158667	.100924	.000	-1.43048	88685
	28.0	1.0	-1.079000	.100924	.000	-1.35081	80719
		7.0	109000	.100924	.704	38081	.16281
		56.0	-1.267667	.100924	.000	-1.53948	99585
	56.0	1.0	.188667	.100924	.259	08315	.46048
		7.0	1.158667	.100924	.000	.88685	1.43048
		28.0	1.267667	.100924	.000	.99585	1.53948

TRX in dark chamber

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
dE	Between Groups	.317	3	.106	2.057	.123						
	Within Groups	1.848	36	.051								
	Total	2.165	39									
dL	Between Groups	4.058	3	1.353	14.800	.000						
	Within Groups	3.291	36	.091								
	Total	7.349	39									
dA	Between Groups	.080	3	.027	1.266	.301						
	Within Groups	.760	36	.021								
	Total	.840	39									
dB	Between Groups	.012	3	.004	.228	.876						
	Within Groups	.647	36	.018								
	Total	.659	39									

Multiple Comparisons

			Mean			0.500 0	
			Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Immertion_Time	(J) Immertion_Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	.249000	.101337	.084	02392	.52192
		28.0	.117000	.101337	.659	15592	.38992
		56.0	.092667	.101337	.797	18026	.36559
	7.0	1.0	249000	.101337	.084	52192	.02392
		28.0	132000	.101337	.567	40492	.14092
		56.0	156333	.101337	.423	42926	.11659
	28.0	1.0	117000	.101337	.659	38992	.15592
		7.0	.132000	.101337	.567	14092	.40492
		56.0	024333	.101337	.995	29726	.24859
	56.0	1.0	092667	.101337	.797	36559	.18026
		7.0	.156333	.101337	.423	11659	.42926
		28.0	.024333	.101337	.995	24859	.29726
dL	1.0	7.0	.431000	.135209	.015	.06685	.79515
		28.0	.162000	.135209	.632	20215	.52615
		56.0	.841667	.135209	.000	.47752	1.20581
	7.0	1.0	431000	.135209	.015	79515	06685
		28.0	269000	.135209	.211	63315	.09515
		56.0	.410667	.135209	.022	.04652	.77481
	28.0	1.0	162000	.135209	.632	52615	.20215
		7.0	.269000	.135209	.211	09515	.63315
		56.0	.679667	.135209	.000	.31552	1.04381
	56.0	1.0	841667*	.135209	.000	-1.20581	47752
		7.0	410667	.135209	.022	77481	04652
		28.0	679667	.135209	.000	-1.04381	31552
dA	1.0	7.0	071000	.064958	.696	24595	.10395
		28.0	104333	.064958	.388	27928	.07061
		56.0	002667	.064958	1.000	17761	.17228
	7.0	1.0	.071000	.064958	.696	10395	.24595
		28.0	033333	.064958	.955	20828	.14161
		56.0	.068333	.064958	.720	10661	.24328
	28.0	1.0	.104333	.064958	.388	07061	.27928
		7.0	.033333	.064958	.955	14161	.20828
		56.0	.101667	.064958	.411	07328	.27661
	56.0	1.0	.002667	.064958	1.000	17228	.17761
		7.0	068333	.064958	.720	24328	.10661
		28.0	101667	.064958	.411	27661	.07328
dB	1.0	7.0	.047667	.059960	.856	11382	.20915
		28.0	.012667	.059960	.997	14882	.17415
		56.0	.024000	.059960	.978	13749	.18549
	7.0	1.0	047667	.059960	.856	20915	.11382
		28.0	035000	.059960	.936	19649	.12649
		56.0	023667	.059960	.979	18515	.13782
	28.0	1.0	012667	.059960	.997	17415	.14882
		7.0	.035000	.059960	.936	12649	.19649
		56.0	.011333	.059960	.998	15015	.17282
	56.0	1.0	024000	.059960	.978	18549	.13749
		7.0	.023667	.059960	.979	13782	.18515
		28.0	011333	.059960	.998	17282	.15015

BTC in dark chamber

		,	NOVA			
		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.348	3	.116	2.863	.050
	Within Groups	1.458	36	.040		
	Total	1.806	39			
dL	Between Groups	1.583	3	.528	2.863	.050
	Within Groups	6.637	36	.184		
	Total	8.220	39			
dA	Between Groups	.418	3	.139	2.982	.044
	Within Groups	1.684	36	.047		
	Total	2.102	39			
dB	Between Groups	.130	3	.043	2.715	.059
	Within Groups	.573	36	.016		
	Total	.702	39			

Multiple Comparisons

			Mean			0.500 0	
			Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Immertion_Time	(J) Immertion_Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	215667	.089999	.096	45806	.02672
		28.0	060000	.089999	.909	30239	.18239
		56.0	207400	.089999	.116	44979	.03499
	7.0	1.0	.215667	.089999	.096	02672	.45806
		28.0	.155667	.089999	.324	08672	.39806
		56.0	.008267	.089999	1.000	23412	.25066
	28.0	1.0	.060000	.089999	.909	18239	.30239
		7.0	155667	.089999	.324	39806	.08672
		56.0	147400	.089999	.371	38979	.09499
	56.0	1.0	.207400	.089999	.116	03499	.44979
		7.0	008267	.089999	1.000	25066	.23412
		28.0	.147400	.089999	.371	09499	.38979
dL	1.0	7.0	.167000	.192022	.820	35016	.68416
		28.0	.148667	.192022	.866	36849	.66583
		56.0	.539667	.192022	.038	.02251	1.05683
	7.0	1.0	167000	.192022	.820	68416	.35016
		28.0	018333	.192022	1.000	53549	.49883
		56.0	.372667	.192022	.230	14449	.88983
	28.0	1.0	148667	.192022	.866	66583	.36849
		7.0	.018333	.192022	1.000	49883	.53549
		56.0	.391000	.192022	.194	12616	.90816
	56.0	1.0	539667	.192022	.038	-1.05683	02251
		7.0	372667	.192022	.230	88983	.14449
		28.0	391000	.192022	.194	90816	.12616
dA	1.0	7.0	.184667	.096724	.242	07583	.44517
		28.0	.102667	.096724	.715	15783	.36317
		56.0	.277333*	.096724	.033	.01683	.53783
	7.0	1.0	184667	.096724	.242	44517	.07583
		28.0	082000	.096724	.831	34250	.17850
		56.0	.092667	.096724	.774	16783	.35317
	28.0	1.0	102667	.096724	.715	36317	.15783
		7.0	.082000	.096724	.831	17850	.34250
		56.0	.174667	.096724	.287	08583	.43517
	56.0	1.0	277333	.096724	.033	53783	01683
		7.0	092667	.096724	.774	35317	.16783
		28.0	174667	.096724	.287	43517	.08583
dB	1.0	7.0	.138000	.056411	.086	01393	.28993
		28.0	.099667	.056411	.306	05226	.25159
		56.0	.018000	.056411	.989	13393	.16993
	7.0	1.0	138000	.056411	.086	28993	.01393
		28.0	038333	.056411	.904	19026	.11359
		56.0	120000	.056411	.164	27193	.03193
	28.0	1.0	099667	.056411	.306	25159	.05226
		7.0	.038333	.056411	.904	11359	.19026
		56.0	081667	.056411	.479	23359	.07026
	56.0	1.0	018000	.056411	.989	16993	.13393
		7.0	.120000	.056411	.164	03193	.27193
		28.0	.081667	.056411	.479	07026	.23359

TRD in dark chamber

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
dE	Between Groups	.055	3	.018	.552	.650						
	Within Groups	1.193	36	.033								
	Total	1.247	39									
dL	Between Groups	1.397	3	.466	7.563	.000						
	Within Groups	2.217	36	.062								
	Total	3.615	39									
dA	Between Groups	.349	3	.116	4.318	.011						
	Within Groups	.970	36	.027								
	Total	1.319	39									
dB	Between Groups	.443	3	.148	6.378	.001						
	Within Groups	.833	36	.023								
	Total	1.276	39									

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Immertion Time	(J) Immertion Time	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	7.0	074333	.081399	.798	29356	.14489
		28.0	.026667	.081399	.988	19256	.24589
		56.0	014000	.081399	.998	23323	.20523
	7.0	1.0	.074333	.081399	.798	14489	.29356
		28.0	.101000	.081399	.606	11823	.32023
		56.0	.060333	.081399	.880	15889	.27956
	28.0	1.0	026667	.081399	.988	24589	.19256
		7.0	101000	.081399	.606	32023	.11823
		56.0	040667	.081399	.959	25989	.17856
	56.0	1.0	.014000	.081399	.998	20523	.23323
		7.0	060333	.081399	.880	27956	.15889
		28.0	.040667	.081399	.959	17856	.25989
dL	1.0	7.0	.517333	.110989	.000	.21841	.81625
		28.0	.344000	.110989	.019	.04508	.64292
		56.0	.325000*	.110989	.029	.02608	.62392
	7.0	1.0	517333	.110989	.000	81625	21841
		28.0	173333	.110989	.413	47225	.12559
		56.0	192333	.110989	.322	49125	.10659
	28.0	1.0	344000	.110989	.019	64292	04508
		7.0	.173333	.110989	.413	12559	.47225
		56.0	019000	.110989	.998	31792	.27992
	56.0	1.0	325000	.110989	.029	62392	02608
		7.0	.192333	.110989	.322	10659	.49125
		28.0	.019000	.110989	.998	27992	.31792
dA	1.0	7.0	.186000	.073407	.071	01170	.38370
		28.0	.171333	.073407	.109	02637	.36903
		56.0	.253333	.073407	.008	.05563	.45103
	7.0	1.0	186000	.073407	.071	38370	.01170
		28.0	014667	.073407	.997	21237	.18303
		56.0	.067333	.073407	.796	13037	.26503
	28.0	1.0	171333	.073407	.109	36903	.02637
		7.0	.014667	.073407	.997	18303	.21237
		56.0	.082000	.073407	.682	11570	.27970
	56.0	1.0	253333	.073407	.008	45103	05563
		7.0	067333	.073407	.796	26503	.13037
		28.0	082000	.073407	.682	27970	.11570
dB	1.0	7.0	.274667	.068037	.001	.09143	.45791
		28.0	.123000	.068037	.286	06024	.30624
		56.0	.040000	.068037	.935	14324	.22324
	7.0	1.0	274667	.068037	.001	45791	09143
		28.0	151667	.068037	.135	33491	.03157
		56.0	234667	.068037	.008	41791	05143
	28.0	1.0	123000	.068037	.286	30624	.06024
		1.U	.151667	.068037	.135	03157	.33491
	56.0	1.0	083000	.068037	.619	26624	.10024
	50.0	7.0	040000	.068037	.935	22324	.14324
		7.U 20 N	.23400/	.008037	.008	.05143	.41/91
		20.0	.083000	.00803/	.019	10024	.20024

Each material in coffee solution at day 1

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.145	2	.072	1.364	.273
	Within Groups	1.432	27	.053		
	Total	1.577	29			
dL	Between Groups	.592	2	.296	4.925	.015
	Within Groups	1.624	27	.060		
	Total	2.216	29			
dA	Between Groups	.217	2	.108	2.325	.117
	Within Groups	1.257	27	.047		
	Total	1.474	29			
dB	Between Groups	.584	2	.292	7.051	.003
	Within Groups	1.118	27	.041		
	Total	1.702	29			

ANOVA

Multiple Comparisons

			Mean Difference (I			95% Confide	ence Interval
Dependent Variable	(I) Material Types	(J) Material Types	J) Dillerence	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	.079000	.103006	.726	17639	.33439
		3.0	091000	.103006	.655	34639	.16439
	2.0	1.0	079000	.103006	.726	33439	.17639
		3.0	170000	.103006	.243	42539	.08539
	3.0	1.0	.091000	.103006	.655	16439	.34639
		2.0	.170000	.103006	.243	08539	.42539
dL	1.0	2.0	294000	.109666	.032	56591	02209
		3.0	302000	.109666	.027	57391	03009
	2.0	1.0	.294000	.109666	.032	.02209	.56591
		3.0	008000	.109666	.997	27991	.26391
	3.0	1.0	.302000*	.109666	.027	.03009	.57391
		2.0	.008000	.109666	.997	26391	.27991
dA	1.0	2.0	.085000	.096495	.657	15425	.32425
		3.0	.207000	.096495	.100	03225	.44625
	2.0	1.0	085000	.096495	.657	32425	.15425
		3.0	.122000	.096495	.427	11725	.36125
	3.0	1.0	207000	.096495	.100	44625	.03225
		2.0	122000	.096495	.427	36125	.11725
dB	1.0	2.0	081000	.090999	.651	30662	.14462
		3.0	328000	.090999	.003	55362	10238
	2.0	1.0	.081000	.090999	.651	14462	.30662
		3.0	247000	.090999	.030	47262	02138
	3.0	1.0	.328000	.090999	.003	.10238	.55362
		2.0	.247000	.090999	.030	.02138	.47262

Each material in distilled water at day 1

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.170	2	.085	1.814	.182
	Within Groups	1.263	27	.047		
	Total	1.433	29			
dL	Between Groups	.410	2	.205	1.692	.203
	Within Groups	3.267	27	.121		
	Total	3.677	29			
dA	Between Groups	.680	2	.340	14.946	.000
	Within Groups	.614	27	.023		
	Total	1.294	29			
dB	Between Groups	.103	2	.052	2.044	.149
	Within Groups	.683	27	.025		
	Total	.787	29			

ANOVA

Tukey HSD								
			Mean Difference (l-			95% Confid	ence Interval	
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
dE	1.0	2.0	.183000	.096732	.160	05684	.42284	
		3.0	.110000	.096732	.500	12984	.34984	
	2.0	1.0	183000	.096732	.160	42284	.05684	
		3.0	073000	.096732	.733	31284	.16684	
	3.0	1.0	110000	.096732	.500	34984	.12984	
		2.0	.073000	.096732	.733	16684	.31284	
dL	1.0	2.0	015000	.155571	.995	40072	.37072	
		3.0	255000	.155571	.247	64072	.13072	
	2.0	1.0	.015000	.155571	.995	37072	.40072	
		3.0	240000	.155571	.288	62572	.14572	
	3.0	1.0	.255000	.155571	.247	13072	.64072	
		2.0	.240000	.155571	.288	14572	.62572	
dA	1.0	2.0	238000	.067459	.004	40526	07074	
		3.0	363000	.067459	.000	53026	19574	
	2.0	1.0	.238000	.067459	.004	.07074	.40526	
		3.0	125000	.067459	.172	29226	.04226	
	3.0	1.0	.363000	.067459	.000	.19574	.53026	
		2.0	.125000	.067459	.172	04226	.29226	
dB	1.0	2.0	131000	.071152	.176	30742	.04542	
		3.0	014000	.071152	.979	19042	.16242	
	2.0	1.0	.131000	.071152	.176	04542	.30742	
		3.0	.117000	.071152	.245	05942	.29342	
	3.0	1.0	.014000	.071152	.979	16242	.19042	
		2.0	117000	.071152	.245	29342	.05942	

Multiple Comparisons

60

Each material in dark chamber at day 1

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.187	2	.093	2.508	.100
	Within Groups	1.006	27	.037		
	Total	1.193	29			
dL	Between Groups	1.721	2	.860	9.652	.001
	Within Groups	2.407	27	.089		
	Total	4.127	29			
dA	Between Groups	.876	2	.438	20.799	.000
	Within Groups	.569	27	.021		
	Total	1.444	29			
dB	Between Groups	.114	2	.057	4.465	.021
	Within Groups	.346	27	.013		
	Total	.461	29			

ANOVA

Tukey HSD								
			Mean Difference (I-			95% Confid	ence Interval	
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
dE	1.0	2.0	.187000	.086326	.096	02704	.40104	
		3.0	.136000	.086326	.273	07804	.35004	
	2.0	1.0	187000	.086326	.096	40104	.02704	
		3.0	051000	.086326	.826	26504	.16304	
	3.0	1.0	136000	.086326	.273	35004	.07804	
		2.0	.051000	.086326	.826	16304	.26504	
dL	1.0	2.0	.584667	.133519	.000	.25362	.91572	
		3.0	.334000	.133519	.048	.00295	.66505	
	2.0	1.0	584667	.133519	.000	91572	25362	
		3.0	250667	.133519	.165	58172	.08038	
	3.0	1.0	334000	.133519	.048	66505	00295	
		2.0	.250667	.133519	.165	08038	.58172	
dA	1.0	2.0	177333	.064895	.029	33823	01643	
		3.0	417000	.064895	.000	57790	25610	
	2.0	1.0	.177333	.064895	.029	.01643	.33823	
		3.0	239667	.064895	.003	40057	07877	
	3.0	1.0	.417000	.064895	.000	.25610	.57790	
		2.0	.239667	.064895	.003	.07877	.40057	
dB	1.0	2.0	123667	.050634	.054	24921	.00188	
		3.0	137333	.050634	.030	26288	01179	
	2.0	1.0	.123667	.050634	.054	00188	.24921	
		3.0	013667	.050634	.961	13921	.11188	
	3.0	1.0	.137333	.050634	.030	.01179	.26288	
		2.0	.013667	.050634	.961	11188	.13921	

Multiple Comparisons

Each material in coffee solution at day 7

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	43.901	2	21.950	115.885	.000
	Within Groups	5.114	27	.189		
	Total	49.015	29			
dL	Between Groups	11.905	2	5.952	37.242	.000
	Within Groups	4.316	27	.160		
	Total	16.220	29			
dA	Between Groups	6.846	2	3.423	36.788	.000
	Within Groups	2.512	27	.093		
	Total	9.359	29			
dB	Between Groups	31.313	2	15.656	48.963	.000
	Within Groups	8.633	27	.320		
	Total	39.946	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (la			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	-2.550000	.194636	.000	-3.03258	-2.06742
		3.0	-2.582000*	.194636	.000	-3.06458	-2.09942
	2.0	1.0	2.550000*	.194636	.000	2.06742	3.03258
		3.0	032000	.194636	.985	51458	.45058
	3.0	1.0	2.582000	.194636	.000	2.09942	3.06458
		2.0	.032000	.194636	.985	45058	.51458
dL	1.0	2.0	1.003000	.178792	.000	.55970	1.44630
		3.0	1.517000	.178792	.000	1.07370	1.96030
	2.0	1.0	-1.003000	.178792	.000	-1.44630	55970
		3.0	.514000	.178792	.021	.07070	.95730
	3.0	1.0	-1.517000	.178792	.000	-1.96030	-1.07370
		2.0	514000	.178792	.021	95730	07070
dA	1.0	2.0	.997000	.136418	.000	.65876	1.33524
		3.0	1.029000	.136418	.000	.69076	1.36724
	2.0	1.0	997000	.136418	.000	-1.33524	65876
		3.0	.032000	.136418	.970	30624	.37024
	3.0	1.0	-1.029000	.136418	.000	-1.36724	69076
		2.0	032000	.136418	.970	37024	.30624
dB	1.0	2.0	-2.316000	.252886	.000	-2.94301	-1.68899
		3.0	-1.979000	.252886	.000	-2.60601	-1.35199
	2.0	1.0	2.316000	.252886	.000	1.68899	2.94301
		3.0	.337000	.252886	.390	29001	.96401
	3.0	1.0	1.979000	.252886	.000	1.35199	2.60601
		2.0	337000	.252886	.390	96401	.29001

Each material in distilled water at day 7

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	6.191	2	3.096	49.175	.000
	Within Groups	1.637	26	.063		
	Total	7.828	28			
dL	Between Groups	4.797	2	2.399	18.876	.000
	Within Groups	3.431	27	.127		
	Total	8.228	29			
dA	Between Groups	.595	2	.298	8.874	.001
	Within Groups	.906	27	.034		
	Total	1.501	29			
dB	Between Groups	6.561	2	3.280	212.852	.000
	Within Groups	.416	27	.015		
	Total	6.977	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	219556	.115280	.158	50601	.06690
		3.0	-1.058000	.112205	.000	-1.33682	77918
	2.0	1.0	.219556	.115280	.158	06690	.50601
		3.0	838444	.115280	.000	-1.12490	55199
	3.0	1.0	1.058000	.112205	.000	.77918	1.33682
		2.0	.838444	.115280	.000	.55199	1.12490
dL	1.0	2.0	.693000	.159418	.001	.29774	1.08826
		3.0	.946000*	.159418	.000	.55074	1.34126
	2.0	1.0	693000	.159418	.001	-1.08826	29774
		3.0	.253000	.159418	.268	14226	.64826
	3.0	1.0	946000	.159418	.000	-1.34126	55074
		2.0	253000	.159418	.268	64826	.14226
dA	1.0	2.0	.307000	.081915	.002	.10390	.51010
		3.0	.290000*	.081915	.004	.08690	.49310
	2.0	1.0	307000	.081915	.002	51010	10390
		3.0	017000	.081915	.977	22010	.18610
	3.0	1.0	290000	.081915	.004	49310	08690
		2.0	.017000	.081915	.977	18610	.22010
dB	1.0	2.0	.192000*	.055519	.005	.05434	.32966
		3.0	1.074000	.055519	.000	.93634	1.21166
	2.0	1.0	192000	.055519	.005	32966	05434
		3.0	.882000	.055519	.000	.74434	1.01966
	3.0	1.0	-1.074000	.055519	.000	-1.21166	93634
		2.0	882000	.055519	.000	-1.01966	74434

Each material in dark chamber at day 7

Tukey HSD

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.401	2	.201	4.444	.021
	Within Groups	1.219	27	.045		
	Total	1.620	29			
dL	Between Groups	.965	2	.482	4.430	.022
	Within Groups	2.940	27	.109		
	Total	3.905	29			
dA	Between Groups	.295	2	.148	3.514	.044
	Within Groups	1.134	27	.042		
	Total	1.429	29			
dB	Between Groups	.081	2	.040	3.559	.042
	Within Groups	.307	27	.011		
	Total	.388	29			

ANOVA

Multiple Comparisons

			Mean Difference (L			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J) J	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	277667*	.095008	.018	51323	04210
		3.0	187333	.095008	.139	42290	.04823
	2.0	1.0	.277667*	.095008	.018	.04210	.51323
		3.0	.090333	.095008	.614	14523	.32590
	3.0	1.0	.187333	.095008	.139	04823	.42290
		2.0	090333	.095008	.614	32590	.14523
dL	1.0	2.0	.320667	.147577	.094	04524	.68657
		3.0	.420333	.147577	.022	.05443	.78624
	2.0	1.0	320667	.147577	.094	68657	.04524
		3.0	.099667	.147577	.780	26624	.46557
	3.0	1.0	420333	.147577	.022	78624	05443
		2.0	099667	.147577	.780	46557	.26624
dA	1.0	2.0	.078333	.091646	.673	14889	.30556
		3.0	160000	.091646	.207	38723	.06723
	2.0	1.0	078333	.091646	.673	30556	.14889
		3.0	238333	.091646	.038	46556	01111
	3.0	1.0	.160000	.091646	.207	06723	.38723
		2.0	.238333	.091646	.038	.01111	.46556
dB	1.0	2.0	033333	.047687	.766	15157	.08490
		3.0	.089667	.047687	.164	02857	.20790
	2.0	1.0	.033333	.047687	.766	08490	.15157
		3.0	.123000	.047687	.040	.00476	.24124
	3.0	1.0	089667	.047687	.164	20790	.02857
		2.0	123000*	.047687	.040	24124	00476

Each material in coffee solution at day 28

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	427.163	2	213.582	90.497	.000
	Within Groups	63.723	27	2.360		
	Total	490.886	29			
dL	Between Groups	254.187	2	127.094	90.299	.000
	Within Groups	38.002	27	1.407		
	Total	292.189	29			
dA	Between Groups	42.259	2	21.130	53.889	.000
	Within Groups	10.587	27	.392		
	Total	52.846	29			
dB	Between Groups	147.626	2	73.813	61.601	.000
	Within Groups	32.352	27	1.198		
	Total	179.978	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	-6.012000	.687038	.000	-7.71545	-4.30855
		3.0	-9.086000*	.687038	.000	-10.78945	-7.38255
	2.0	1.0	6.012000	.687038	.000	4.30855	7.71545
		3.0	-3.074000	.687038	.000	-4.77745	-1.37055
	3.0	1.0	9.086000	.687038	.000	7.38255	10.78945
		2.0	3.074000	.687038	.000	1.37055	4.77745
dL	1.0	2.0	3.670000*	.530562	.000	2.35451	4.98549
		3.0	7.129000	.530562	.000	5.81351	8.44449
	2.0	1.0	-3.670000	.530562	.000	-4.98549	-2.35451
		3.0	3.459000	.530562	.000	2.14351	4.77449
	3.0	1.0	-7.129000	.530562	.000	-8.44449	-5.81351
		2.0	-3.459000	.530562	.000	-4.77449	-2.14351
dA	1.0	2.0	1.615000	.280034	.000	.92068	2.30932
		3.0	2.901000*	.280034	.000	2.20668	3.59532
	2.0	1.0	-1.615000	.280034	.000	-2.30932	92068
		3.0	1.286000	.280034	.000	.59168	1.98032
	3.0	1.0	-2.901000*	.280034	.000	-3.59532	-2.20668
		2.0	-1.286000	.280034	.000	-1.98032	59168
dB	1.0	2.0	-4.548000*	.489538	.000	-5.76177	-3.33423
		3.0	-4.849000	.489538	.000	-6.06277	-3.63523
	2.0	1.0	4.548000*	.489538	.000	3.33423	5.76177
		3.0	301000	.489538	.813	-1.51477	.91277
	3.0	1.0	4.849000*	.489538	.000	3.63523	6.06277
		2.0	.301000	.489538	.813	91277	1.51477

Each material in distilled water at day 28

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	48.937	2	24.469	290.627	.000
	Within Groups	2.273	27	.084		
	Total	51.210	29			
dL	Between Groups	72.014	2	36.007	301.096	.000
	Within Groups	3.229	27	.120		
	Total	75.243	29			
dA	Between Groups	3.371	2	1.685	46.257	.000
	Within Groups	.984	27	.036		
	Total	4.354	29			
dB	Between Groups	11.076	2	5.538	160.012	.000
	Within Groups	.934	27	.035		
	Total	12.010	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	.050000	.129763	.922	27174	.37174
		3.0	-2.684000	.129763	.000	-3.00574	-2.36226
	2.0	1.0	050000	.129763	.922	37174	.27174
		3.0	-2.734000	.129763	.000	-3.05574	-2.41226
	3.0	1.0	2.684000*	.129763	.000	2.36226	3.00574
		2.0	2.734000	.129763	.000	2.41226	3.05574
dL	1.0	2.0	1.106000	.154653	.000	.72255	1.48945
		3.0	3.697000*	.154653	.000	3.31355	4.08045
	2.0	1.0	-1.106000	.154653	.000	-1.48945	72255
		3.0	2.591000	.154653	.000	2.20755	2.97445
	3.0	1.0	-3.697000	.154653	.000	-4.08045	-3.31355
		2.0	-2.591000	.154653	.000	-2.97445	-2.20755
dA	1.0	2.0	.500000*	.085362	.000	.28835	.71165
		3.0	.814000	.085362	.000	.60235	1.02565
	2.0	1.0	500000	.085362	.000	71165	28835
		3.0	.314000	.085362	.003	.10235	.52565
	3.0	1.0	814000	.085362	.000	-1.02565	60235
		2.0	314000	.085362	.003	52565	10235
dB	1.0	2.0	.398000	.083198	.000	.19172	.60428
		3.0	1.441000	.083198	.000	1.23472	1.64728
	2.0	1.0	398000	.083198	.000	60428	19172
		3.0	1.043000	.083198	.000	.83672	1.24928
	3.0	1.0	-1.441000	.083198	.000	-1.64728	-1.23472
		2.0	-1.043000	.083198	.000	-1.24928	83672

Each material in dark chamber at day 28

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.012	2	.006	.116	.891
	Within Groups	1.339	27	.050		
	Total	1.350	29			
dL	Between Groups	1.986	2	.993	9.358	.001
	Within Groups	2.865	27	.106		
	Total	4.851	29			
dA	Between Groups	.167	2	.083	3.556	.043
	Within Groups	.634	27	.023		
	Total	.801	29			
dB	Between Groups	.007	2	.004	.200	.820
	Within Groups	.488	27	.018		
	Total	.495	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (l-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	.010000	.099575	.994	23689	.25689
		3.0	.045667	.099575	.891	20122	.29256
	2.0	1.0	010000	.099575	.994	25689	.23689
		3.0	.035667	.099575	.932	21122	.28256
	3.0	1.0	045667	.099575	.891	29256	.20122
		2.0	035667	.099575	.932	28256	.21122
dL	1.0	2.0	.571333	.145673	.002	.21015	.93252
		3.0	.516000	.145673	.004	.15482	.87718
	2.0	1.0	571333	.145673	.002	93252	21015
		3.0	055333	.145673	.924	41652	.30585
	3.0	1.0	516000	.145673	.004	87718	15482
		2.0	.055333	.145673	.924	30585	.41652
dA	1.0	2.0	.029667	.068528	.902	14024	.19958
		3.0	141333	.068528	.117	31124	.02858
	2.0	1.0	029667	.068528	.902	19958	.14024
		3.0	171000	.068528	.048	34091	00109
	3.0	1.0	.141333	.068528	.117	02858	.31124
		2.0	.171000	.068528	.048	.00109	.34091
dB	1.0	2.0	036667	.060131	.816	18576	.11242
		3.0	027000	.060131	.895	17609	.12209
	2.0	1.0	.036667	.060131	.816	11242	.18576
		3.0	.009667	.060131	.986	13942	.15876
	3.0	1.0	.027000	.060131	.895	12209	.17609
		2.0	009667	.060131	.986	15876	.13942

Each material in coffee solution at day 56

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	1346.382	2	673.191	91.732	.000
	Within Groups	198.143	27	7.339		
	Total	1544.526	29			
dL	Between Groups	933.249	2	466.625	84.557	.000
	Within Groups	148.998	27	5.518		
	Total	1082.247	29			
dA	Between Groups	73.852	2	36.926	32.342	.000
	Within Groups	30.827	27	1.142		
	Total	104.678	29			
dB	Between Groups	460.029	2	230.014	75.688	.000
	Within Groups	82.052	27	3.039		
	Total	542.081	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (l-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	-8.117000	1.211499	.000	-11.12081	-5.11319
		3.0	-16.409333	1.211499	.000	-19.41314	-13.40552
	2.0	1.0	8.117000	1.211499	.000	5.11319	11.12081
		3.0	-8.292333	1.211499	.000	-11.29614	-5.28852
	3.0	1.0	16.409333	1.211499	.000	13.40552	19.41314
		2.0	8.292333	1.211499	.000	5.28852	11.29614
dL	1.0	2.0	5.322000	1.050566	.000	2.71721	7.92679
		3.0	13.558000	1.050566	.000	10.95321	16.16279
	2.0	1.0	-5.322000	1.050566	.000	-7.92679	-2.71721
		3.0	8.236000	1.050566	.000	5.63121	10.84079
	3.0	1.0	-13.558000	1.050566	.000	-16.16279	-10.95321
		2.0	-8.236000	1.050566	.000	-10.84079	-5.63121
dA	1.0	2.0	1.957333	.477855	.001	.77253	3.14214
		3.0	3.843000	.477855	.000	2.65820	5.02780
	2.0	1.0	-1.957333	.477855	.001	-3.14214	77253
		3.0	1.885667	.477855	.001	.70086	3.07047
	3.0	1.0	-3.843000	.477855	.000	-5.02780	-2.65820
		2.0	-1.885667	.477855	.001	-3.07047	70086
dB	1.0	2.0	-6.967333	.779612	.000	-8.90032	-5.03435
		3.0	-9.193000	.779612	.000	-11.12598	-7.26002
	2.0	1.0	6.967333	.779612	.000	5.03435	8.90032
		3.0	-2.225667	.779612	.022	-4.15865	29268
	3.0	1.0	9.193000	.779612	.000	7.26002	11.12598
		2.0	2.225667	.779612	.022	.29268	4.15865

Each material in distilled water at day 56

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	42.742	2	21.371	105.575	.000
	Within Groups	5.465	27	.202		
	Total	48.207	29			
dL	Between Groups	45.202	2	22.601	96.018	.000
	Within Groups	6.355	27	.235		
	Total	51.557	29			
dA	Between Groups	.210	2	.105	1.426	.258
	Within Groups	1.985	27	.074		
	Total	2.195	29			
dB	Between Groups	.033	2	.016	.257	.775
	Within Groups	1.724	27	.064		
	Total	1.757	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (l-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	.018000	.201208	.996	48088	.51688
		3.0	-2.523000	.201208	.000	-3.02188	-2.02412
	2.0	1.0	018000	.201208	.996	51688	.48088
		3.0	-2.541000	.201208	.000	-3.03988	-2.04212
	3.0	1.0	2.523000	.201208	.000	2.02412	3.02188
		2.0	2.541000	.201208	.000	2.04212	3.03988
dL	1.0	2.0	040667	.216972	.981	57863	.49730
		3.0	2.583333	.216972	.000	2.04537	3.12130
	2.0	1.0	.040667	.216972	.981	49730	.57863
		3.0	2.624000	.216972	.000	2.08604	3.16196
	3.0	1.0	-2.583333	.216972	.000	-3.12130	-2.04537
		2.0	-2.624000	.216972	.000	-3.16196	-2.08604
dA	1.0	2.0	.169000	.121273	.358	13169	.46969
		3.0	.184667	.121273	.296	11602	.48535
	2.0	1.0	169000	.121273	.358	46969	.13169
		3.0	.015667	.121273	.991	28502	.31635
	3.0	1.0	184667	.121273	.296	48535	.11602
		2.0	015667	.121273	.991	31635	.28502
dB	1.0	2.0	075667	.113005	.783	35585	.20452
		3.0	063000	.113005	.844	34319	.21719
	2.0	1.0	.075667	.113005	.783	20452	.35585
		3.0	.012667	.113005	.993	26752	.29285
	3.0	1.0	.063000	.113005	.844	21719	.34319
		2.0	012667	.113005	.993	29285	.26752

Each material in dark chamber at day 56

		Sum of Squares	df	Mean Square	F	Sig.
dE	Between Groups	.012	2	.006	.191	.827
	Within Groups	.861	27	.032		
	Total	.873	29			
dL	Between Groups	1.099	2	.550	3.773	.036
	Within Groups	3.933	27	.146		
	Total	5.033	29			
dA	Between Groups	.353	2	.177	4.428	.022
	Within Groups	1.077	27	.040		
	Total	1.430	29			
dB	Between Groups	.105	2	.053	1.560	.229
	Within Groups	.912	27	.034		
	Total	1.017	29			

ANOVA

Multiple Comparisons

Tukey HSD							
			Mean Difference (l-			95% Confid	ence Interval
Dependent Variable	(I) Material_Types	(J) Material_Types	J)	Std. Error	Sig.	Lower Bound	Upper Bound
dE	1.0	2.0	019667	.079849	.967	21765	.17831
		3.0	.029333	.079849	.929	16865	.22731
	2.0	1.0	.019667	.079849	.967	17831	.21765
		3.0	.049000	.079849	.814	14898	.24698
	3.0	1.0	029333	.079849	.929	22731	.16865
		2.0	049000	.079849	.814	24698	.14898
dL	1.0	2.0	.282667	.170694	.240	14055	.70589
		3.0	182667	.170694	.540	60589	.24055
	2.0	1.0	282667	.170694	.240	70589	.14055
		3.0	465333	.170694	.029	88855	04211
	3.0	1.0	.182667	.170694	.540	24055	.60589
		2.0	.465333	.170694	.029	.04211	.88855
dA	1.0	2.0	.102667	.089322	.493	11880	.32413
		3.0	161000	.089322	.188	38247	.06047
	2.0	1.0	102667	.089322	.493	32413	.11880
		3.0	263667*	.089322	.017	48513	04220
	3.0	1.0	.161000	.089322	.188	06047	.38247
		2.0	.263667	.089322	.017	.04220	.48513
dB	1.0	2.0	129667	.082188	.272	33345	.07411
		3.0	121333	.082188	.318	32511	.08245
	2.0	1.0	.129667	.082188	.272	07411	.33345
		3.0	.008333	.082188	.994	19545	.21211
	3.0	1.0	.121333	.082188	.318	08245	.32511
		2.0	008333	.082188	.994	21211	.19545

Power analysis of ΔE^* **outcome variable** (Power = 0.99)

Power analysis of Δa^* **outcome variable** (Power = 0.99)

Power analysis of Δb^* outcome variable (Power = 0.99)

				PPP A.	Tart and		100		
🚵 G*Power 3.1.9.2						×	_		
File Edit View	Tests Calculat	or Help							
Central and noncer	ntral distributio	ns Protocol of po	ower analyses						
critical F =	2.05488								
0.8 0.6 0.4 0.2 B	α		_						
0	5	10	15		20	-	Effect size	edure from means	~
Test family	Statistical test								
F tests \sim	ANOVA: Fixed	d effects, omnibus	s, one-way			\sim		Number of groups	9 🌲
Type of power ana	lysis						iD of	within each group	1.393792493
Post hoc: Comput	e achieved pow	er – given α, samp	ole size, and effec	t size		\sim			
Input Parameters			Output Parame	ters			Group	Mean	Size ^
Determine =>	Effect size f	0.9428964	Noncentralit	y parameter λ	80.014	8259	1	0.723	10
	α err prob	0.05		Critical F	2.054	8816	2	3.039	10
Tot	tal sample size	90		Numerator df		8	3	2.702	10
Nun	nber of groups	9	De	nominator df		81	4	0.012	10
			Power	(1-β err prob)	0.999	9999	Ę	-0.181	10 ¥
								Equal n	10
								Total sample size	90
							Calculate	Effect size f	0.9428964
							Calculat	e and transfer to m	ain window
									Close
			X-Y plot for a r	ange of values	Calc	ulate	1	1	

Repeated mixed Analysis of variance: Nanohardness

Within-Subjects Factors

Measure: Hardness						
time	Dependent Variable					
1	H_day1					
2	H_day56					

Between-Subjects Factors

		Ν
Material	1.0	27
	2.0	27
	3.0	27
Solution	1.0	27
	2.0	27
	3.0	27

Box's Test of Equality of Covariance Matrices^a

Box's M	134.680				
F	5.040				
df1	24				
df2	15845.434				
Sig.	.000				
Tests the null					

hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + Material + Solution + Material * Solution Within Subjects Design: time

Descriptive Statistics Mean Material Solution H_day1 1.0 1.0 .17188889

H_day1	1.0	1.0	.17188889	.003218868	9
		2.0	.15044444	.023163069	9
		3.0	.16966667	.007615773	9
		Total	.16400000	.016804303	27
	2.0	1.0	.25368356	.009525759	9
		2.0	.24386422	.007713615	9
		3.0	.24010944	.008808334	9
		Total	.24588574	.010203574	27
	3.0	1.0	.22362800	.022699990	9
		2.0	.24404300	.024761069	9
		3.0	.24885800	.036557034	9
		Total	.23884300	.029708884	27
	Total	1.0	.21640015	.037077385	27
		2.0	.21278389	.048886460	27
		3.0	.21954470	.041927592	27
		Total	.21624291	.042456469	81
H_day56	1.0	1.0	.06466500	.010813245	9
		2.0	.10985556	.042858236	9
		3.0	.17650122	.015525511	9
		Total	.11700726	.053540741	27
	2.0	1.0	.09865844	.033684914	9
		2.0	.19338011	.022726140	9
		3.0	.23804622	.012563431	9
		Total	.17669493	.063748469	27
	3.0	1.0	.08381878	.048656081	9
		2.0	.15969889	.026511724	9
		3.0	.20973133	.025862586	9
		Total	.15108300	.062713726	27
	Total	1.0	.08238074	.036257638	27
		2.0	.15431152	.046506749	27
		3.0	.20809293	.031392869	27
		Total	.14826173	.064310617	81

73

Ζ

Std. Deviation

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
time	Pillai's Trace	.832	356.218 ^b	1.000	72.000	.000	.832
	Wilks' Lambda	.168	356.218 ^b	1.000	72.000	.000	.832
	Hotelling's Trace	4.947	356.218 ^b	1.000	72.000	.000	.832
	Roy's Largest Root	4.947	356.218 ^b	1.000	72.000	.000	.832
time * Material	Pillai's Trace	.229	10.703 ^b	2.000	72.000	.000	.229
	Wilks' Lambda	.771	10.703 ^b	2.000	72.000	.000	.229
	Hotelling's Trace	.297	10.703 ^b	2.000	72.000	.000	.229
	Roy's Largest Root	.297	10.703 ^b	2.000	72.000	.000	.229
time * Solution	Pillai's Trace	.732	98.238 ^b	2.000	72.000	.000	.732
	Wilks' Lambda	.268	98.238 ^b	2.000	72.000	.000	.732
	Hotelling's Trace	2.729	98.238 ^b	2.000	72.000	.000	.732
	Roy's Largest Root	2.729	98.238 ^b	2.000	72.000	.000	.732
time * Material * Solution	Pillai's Trace	.100	2.001 ^b	4.000	72.000	.103	.100
	Wilks' Lambda	.900	2.001 ^b	4.000	72.000	.103	.100
	Hotelling's Trace	.111	2.001 ^b	4.000	72.000	.103	.100
	Roy's Largest Root	.111	2.001 ^b	4.000	72.000	.103	.100

a. Design: Intercept + Material + Solution + Material * Solution Within Subjects Design: time

b. Exact statistic

Mauchly's Test of Sphericity^a

Measure: Hardness

					Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
time	1.000	.000	0		1.000	1.000	1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept + Material + Solution + Material * Solution

Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Subjects Effects

Measure: Hardness								
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	
time	Sphericity Assumed	.187	1	.187	356.218	.000	.832	
	Greenhouse-Geisser	.187	1.000	.187	356.218	.000	.832	
	Huynh-Feldt	.187	1.000	.187	356.218	.000	.832	
	Lower-bound	.187	1.000	.187	356.218	.000	.832	
time * Material	Sphericity Assumed	.011	2	.006	10.703	.000	.229	
	Greenhouse-Geisser	.011	2.000	.006	10.703	.000	.229	
	Huynh-Feldt	.011	2.000	.006	10.703	.000	.229	
	Lower-bound	.011	2.000	.006	10.703	.000	.229	
time * Solution	Sphericity Assumed	.103	2	.052	98.238	.000	.732	
	Greenhouse-Geisser	.103	2.000	.052	98.238	.000	.732	
	Huynh-Feldt	.103	2.000	.052	98.238	.000	.732	
	Lower-bound	.103	2.000	.052	98.238	.000	.732	
time * Material * Solution	Sphericity Assumed	.004	4	.001	2.001	.103	.100	
	Greenhouse-Geisser	.004	4.000	.001	2.001	.103	.100	
	Huynh-Feldt	.004	4.000	.001	2.001	.103	.100	
	Lower-bound	.004	4.000	.001	2.001	.103	.100	
Error(time)	Sphericity Assumed	.038	72	.001				
	Greenhouse-Geisser	.038	72.000	.001				
	Huynh-Feldt	.038	72.000	.001				
	Lower-bound	.038	72.000	.001				

Tests of Within-Subjects Contrasts

Measure:	Hardness
----------	----------

Source	time	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
time	Linear	.187	1	.187	356.218	.000	.832
time * Material	Linear	.011	2	.006	10.703	.000	.229
time * Solution	Linear	.103	2	.052	98.238	.000	.732
time * Material * Solution	Linear	.004	4	.001	2.001	.103	.100
Error(time)	Linear	.038	72	.001			

Levene's Test of Equality of Error Variances^a

	F	df1	df2	Sig.
H_day1	5.471	8	72	.000
H_day56	2.596	8	72	.015

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Material + Solution + Material * Solution

Within Subjects Design: time

Tests of Between-Subjects Effects

Measure: Hardness

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	5.381	1	5.381	7673.001	.000	.991
Material	.148	2	.074	105.789	.000	.746
Solution	.112	2	.056	80.005	.000	.690
Material * Solution	.007	4	.002	2.663	.039	.129
Error	.050	72	.001			

จุหาลงกรณมหาวิทยาลัย

Estimate marginal means

1. Material

			95% Confidence Interval		
Material	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	.141	.004	.133	.148	
2.0	.211	.004	.204	.218	
3.0	.195	.004	.188	.202	

Measure: Hardness

2. Solution

Measure: Hardness

			95% Confidence Interval		
Solution	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	.149	.004	.142	.157	
2.0	.184	.004	.176	.191	
3.0	.214	.004	.207	.221	

3. time

Measure: Hardness

			95% Confidence Interval		
time	Mean	Std. Error	Lower Bound	Upper Bound	
1	.216	.002	.212	.220	
2	.148	.003	.142	.155	

4. Material * Solution

Measure: Hardness

				95% Confidence Interval	
Material	Solution	Mean	Std. Error	Lower Bound	Upper Bound
1.0	1.0	.118	.006	.106	.131
	2.0	.130	.006	.118	.143
	3.0	.173	.006	.161	.186
2.0	1.0	.176	.006	.164	.189
	2.0	.219	.006	.206	.231
	3.0	.239	.006	.227	.252
3.0	1.0	.154	.006	.141	.166
	2.0	.202	.006	.189	.214
	3.0	.229	.006	.217	.242

5. Material * time

Measure:	Hardne	SS			
				95% Confide	ence Interval
Material	time	Mean	Std. Error	Lower Bound	Upper Bound
1.0	1	.164	.004	.157	.171
	2	.117	.006	.106	.128
2.0	1	.246	.004	.239	.253
	2	.177	.006	.165	.188
3.0	1	.239	.004	.231	.246
	2	.151	.006	.140	.162

6. Solution * time

Measure: Hardness						
				95% Confide	ence Interval	
Solution	time	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	1	.216	.004	.209	.224	
	2	.082	.006	.071	.094	
2.0	1	.213	.004	.205	.220	
	2	.154	.006	.143	.166	
3.0	1	.220	.004	.212	.227	
	2	.208	.006	.197	.219	

7. Material * Solution * time

Measure:	Hardness	5				
					95% Confidence Interval	
Material	Solution	time	Mean	Std. Error	Lower Bound	Upper Bound
1.0	1.0	1	.172	.006	.159	.185
		2	.065	.010	.045	.084
	2.0	1	.150	.006	.138	.163
		2	.110	.010	.090	.129
	3.0	1	.170	.006	.157	.182
		2	.177	.010	.157	.196
2.0	1.0	1	.254	.006	.241	.266
		2	.099	.010	.079	.118
	2.0	1	.244	.006	.231	.257
		2	.193	.010	.174	.213
	3.0	1	.240	.006	.227	.253
		2	.238	.010	.219	.258
3.0	1.0	1	.224	.006	.211	.236
		2	.084	.010	.064	.103
	2.0	1	.244	.006	.231	.257
		2	.160	.010	.140	.179
	3.0	1	.249	.006	.236	.262
		2	.210	.010	.190	.229

Repeated mixed Analysis of variance: Elastic modulus

Within-Subjects Factors

Measure: Ei

	Dependent			
time	Variable			
1	Ei_day1			
2	Ei_day56			

Between-Subjects Factors

		Ν
Material	1.0	27
	2.0	27
	3.0	27
Solution	1.0	27
	2.0	27
	3.0	27

Box's Test of Equality of Covariance Matrices^a

Box's M	145.636
F	5.450
df1	24
df2	15845.434
Sig.	.000

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + Material + Solution + Material * Solution Within Subjects Design: time

Descriptive Statistics								
	Material	Solution	Mean	Std. Deviation	N			
Ei_day1	1.0	1.0	2.981426671	.1407917350	9			
		2.0	2.682472465	.5547572426	9			
		3.0	3.043054347	.1235093091	9			
		Total	2.902317828	.3622702097	27			
	2.0	1.0	3.652647173	.3090189133	9			
		2.0	3.370611639	.1003363895	9			
		3.0	3.342132725	.1585013626	9			
		Total	3.455130513	.2461851270	27			
	3.0	1.0	3.616683027	.3378396312	9			
		2.0	3.868260331	.4106668420	9			
		3.0	3.799238893	.6567355124	9			
		Total	3.761394084	.4810573477	27			
	Total	1.0	3.416918957	.4114583822	27			
		2.0	3.307114812	.6286006980	27			
		3.0	3.394808655	.4955205924	27			
		Total	3.372947475	.5152855896	81			
Ei_day56	1.0	1.0	.8249282060	.2910650685	9			
		2.0	1.492946367	.8906764274	9			
		3.0	2.513005283	.5386656902	9			
		Total	1.610293285	.9272496718	27			
	2.0	1.0	1.278409815	.8040921823	9			
		2.0	2.684163175	.2225032133	9			
		3.0	3.341565722	.2231525426	9			
		Total	2.434712904	.9992641627	27			
	3.0	1.0	1.403637433	.8796041249	9			
		2.0	2.225626448	.3533737763	9			
		3.0	2.991928561	.5650047835	9			
		Total	2.207064147	.9008354138	27			
	Total	1.0	1.168991818	.7261221531	27			
		2.0	2.134245330	.7400546284	27			
		3.0	2.948833188	.5679884771	27			
		Total	2.084023445	.9950131971	81			

Multivariate	Tests ^a
--------------	--------------------

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
time	Pillai's Trace	.793	275.222 ^b	1.000	72.000	.000	.793
	Wilks' Lambda	.207	275.222 ^b	1.000	72.000	.000	.793
	Hotelling's Trace	3.823	275.222 ^b	1.000	72.000	.000	.793
	Roy's Largest Root	3.823	275.222 ^b	1.000	72.000	.000	.793
time * Material	Pillai's Trace	.099	3.936 ^b	2.000	72.000	.024	.099
	Wilks' Lambda	.901	3.936 ^b	2.000	72.000	.024	.099
	Hotelling's Trace	.109	3.936 ^b	2.000	72.000	.024	.099
	Roy's Largest Root	.109	3.936 ^b	2.000	72.000	.024	.099
time * Solution	Pillai's Trace	.558	45.384 ^b	2.000	72.000	.000	.558
	Wilks' Lambda	.442	45.384 ^b	2.000	72.000	.000	.558
	Hotelling's Trace	1.261	45.384 ^b	2.000	72.000	.000	.558
	Roy's Largest Root	1.261	45.384 ^b	2.000	72.000	.000	.558
time * Material * Solution	Pillai's Trace	.091	1.801 ^b	4.000	72.000	.138	.091
	Wilks' Lambda	.909	1.801 ^b	4.000	72.000	.138	.091
	Hotelling's Trace	.100	1.801 ^b	4.000	72.000	.138	.091
	Roy's Largest Root	.100	1.801 ^b	4.000	72.000	.138	.091

a. Design: Intercept + Material + Solution + Material * Solution Within Subjects Design: time

b. Exact statistic

Mauchly's Test of Sphericity^a

Measure: Ei

					Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
time	1.000	.000	0		1.000	1.000	1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept + Material + Solution + Material * Solution

Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Subjects Effects

Measure: Ei							
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
time	Sphericity Assumed	67.284	1	67.284	275.222	.000	.793
	Greenhouse-Geisser	67.284	1.000	67.284	275.222	.000	.793
	Huynh-Feldt	67.284	1.000	67.284	275.222	.000	.793
	Lower-bound	67.284	1.000	67.284	275.222	.000	.793
time * Material	Sphericity Assumed	1.924	2	.962	3.936	.024	.099
	Greenhouse-Geisser	1.924	2.000	.962	3.936	.024	.099
	Huynh-Feldt	1.924	2.000	.962	3.936	.024	.099
	Lower-bound	1.924	2.000	.962	3.936	.024	.099
time * Solution	Sphericity Assumed	22.190	2	11.095	45.384	.000	.558
	Greenhouse-Geisser	22.190	2.000	11.095	45.384	.000	.558
	Huynh-Feldt	22.190	2.000	11.095	45.384	.000	.558
	Lower-bound	22.190	2.000	11.095	45.384	.000	.558
time * Material * Solution	Sphericity Assumed	1.762	4	.440	1.801	.138	.091
	Greenhouse-Geisser	1.762	4.000	.440	1.801	.138	.091
	Huynh-Feldt	1.762	4.000	.440	1.801	.138	.091
	Lower-bound	1.762	4.000	.440	1.801	.138	.091
Error(time)	Sphericity Assumed	17.602	72	.244			
	Greenhouse-Geisser	17.602	72.000	.244			
	Huynh-Feldt	17.602	72.000	.244			
	Lower-bound	17.602	72.000	.244			

Tests of Within-Subjects Contrasts

Measure: Ei	
-------------	--

Source	time	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
time	Linear	67.284	1	67.284	275.222	.000	.793
time * Material	Linear	1.924	2	.962	3.936	.024	.099
time * Solution	Linear	22.190	2	11.095	45.384	.000	.558
time * Material * Solution	Linear	1.762	4	.440	1.801	.138	.091
Error(time)	Linear	17.602	72	.244			

Levene's Test of Equality of Error Variances^a

	F	df1	df2	Sig.
Ei_day1	4.078	8	72	.000
Ei_day56	4.343	8	72	.000

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Material + Solution + Material * Solution

Within Subjects Design: time

Tests of Between-Subjects Effects

Measure: Ei

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	1206.031	1	1206.031	5121.814	.000	.986
Material	18.101	2	9.050	38.436	.000	.516
Solution	20.860	2	10.430	44.294	.000	.552
Material * Solution	1.053	4	.263	1.118	.355	.058
Error	16.954	72	.235			

าหาลงกรณมหาวทยาลย

Estimated marginal means

1. Material

			95% Confidence Interval		
Material	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	2.256	.066	2.125	2.388	
2.0	2.945	.066	2.813	3.077	
3.0	2.984	.066	2.853	3.116	

Measure: Ei

2. Solution

Measure: Ei						
			95% Confide	ence Interval		
Solution	Mean	Std. Error	Lower Bound	Upper Bound		
1.0	2.293	.066	2.161	2.425		
2.0	2.721	.066	2.589	2.852		
3.0	3.172	.066	3.040	3.303		

3. time

Measure: Ei

			95% Confidence Interval		
time	Mean	Std. Error	Lower Bound	Upper Bound	
1	3.373	.040	3.292	3.453	
2	2.084	.066	1.953	2.215	

4. Material * Solution

Measure:	Ei
	_

				95% Confidence Interval		
Material	Solution	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	1.0	1.903	.114	1.675	2.131	
	2.0	2.088	.114	1.860	2.316	
	3.0	2.778	.114	2.550	3.006	
2.0	1.0	2.466	.114	2.238	2.694	
	2.0	3.027	.114	2.799	3.255	
	3.0	3.342	.114	3.114	3.570	
3.0	1.0	2.510	.114	2.282	2.738	
	2.0	3.047	.114	2.819	3.275	
	3.0	3.396	.114	3.168	3.624	

VIIULALUNUKUIIN VIIITLIIJIII

5. Material * time

Measure: Ei

				95% Confidence Interval		
Material	time	Mean	Std. Error	Lower Bound	Upper Bound	
1.0	1	2.902	.070	2.763	3.042	
	2	1.610	.114	1.384	1.837	
2.0	1	3.455	.070	3.316	3.594	
	2	2.435	.114	2.208	2.661	
3.0	1	3.761	.070	3.622	3.901	
	2	2.207	.114	1.981	2.433	

6. Solution * time

Measure:	Ei				
				95% Confide	ence Interval
Solution	time	Mean	Std. Error	Lower Bound	Upper Bound
1.0	1	3.417	.070	3.278	3.556
	2	1.169	.114	.943	1.395
2.0	1	3.307	.070	3.168	3.446
	2	2.134	.114	1.908	2.361
3.0	1	3.395	.070	3.255	3.534
	2	2.949	.114	2.723	3.175

7. Material * Solution * time

Measure:	Ei					
					95% Confide	ence Interval
Material	Solution	time	Mean	Std. Error	Lower Bound	Upper Bound
1.0	1.0	1	2.981	.121	2.740	3.223
		2	.825	.197	.433	1.217
	2.0	1	2.682	.121	2.441	2.924
		2	1.493	.197	1.101	1.885
	3.0	1	3.043	.121	2.802	3.284
		2	2.513	.197	2.121	2.905
2.0	1.0	1	3.653	.121	3.411	3.894
		2	1.278	.197	.886	1.670
	2.0	1	3.371	.121	3.129	3.612
		2	2.684	.197	2.292	3.076
	3.0	1	3.342	.121	3.101	3.584
		2	3.342	.197	2.950	3.734
3.0	1.0	1	3.617	.121	3.375	3.858
		2	1.404	.197	1.012	1.796
	2.0	1	3.868	.121	3.627	4.110
		2	2.226	.197	1.834	2.618
	3.0	1	3.799	.121	3.558	4.041
		2	2.992	.197	2.600	3.384

Pair samples t-test: Nanohardness and Elastic modulus

TRX in coffee solution

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.17189	9	.003219	.001073
	H_day56	.06466500	9	.010813245	.003604415
Pair 2	Ei_day1	2.981426671	9	.1407917350	.0469305783
	Ei_day56	.8249282060	9	.2910650685	.0970216895

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	.562	.115
Pair 2	Ei_day1 & Ei_day56	9	019	.960

	Paired Samples Test								
Paired Differences									
					95% Confidence	e Interval of the			
			Otd Davistics	Std. Error	Diller	Upper			
		Mean	Std. Deviation	Mean	Lower	Opper	t	ατ	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.107223889	.009388098	.003129366	100007558	.114440220	34.264	8	.000
Pair 2	Ei_day1 - Ei_day56	2.156498465	.3257858498	.1085952833	1.906077292	2.406919637	19.858	8	.000

BTC in coffee solution

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean	
Pair 1	H_day1	.25368356	9	.009525759	.003175253	PI -
	H_day56	.09865844	9	.033684914	.011228305	Ы.
Pair 2	Ei_day1	3.652647173	9	.3090189133	.1030063044	
	Ei_day56	1.278409815	9	.8040921823	.2680307274	

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	180	.643
Pair 2	Ei_day1 & Ei_day56	9	532	.140

			Paired Differences						
		95% Confidence Interval of the Std. Error Difference							
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.155025111	.036616802	.012205601	.126878945	.183171277	12.701	8	.000
Pair 2	Ei_day1 - Ei_day56	2.374237359	1.003327839	.3344426130	1.603011310	3.145463407	7.099	8	.000

TRD in coffee solution

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.22362800	9	.022699990	.007566663
	H_day56	.08381878	9	.048656081	.016218694
Pair 2	Ei_day1	3.616683027	9	.3378396312	.1126132104
	Ei_day56	1.403637433	9	.8796041249	.2932013750

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	.189	.626
Pair 2	Ei_day1 & Ei_day56	9	369	.328
				9

				Paired Sample	s Test				
	Paired Differences								
					95% Confidenc	e Interval of the			
				Std. Error	Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.139809222	.049642126	.016547375	.101650906	.177967538	8.449	8	.000
Pair 2	Ei_day1 - Ei_day56	2.213045595	1.052342294	.3507807647	1.404143701	3.021947488	6.309	8	.000

TRX in distilled water

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.15044	9	.023163	.007721
	H_day56	.10985556	9	.042858236	.014286079
Pair 2	Ei_day1	2.682472465	9	.5547572426	.1849190809
	Ei_day56	1.492946367	9	.8906764274	.2968921425
		Ξ.			

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	.935	.000
Pair 2	Ei_day1 & Ei_day56	9	.891	.001

	Paired Differences								
	95% Confidence Interval of the Std. Error Difference								
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.040588889	.022724111	.007574704	.023121591	.058056187	5.358	8	.001
Pair 2	Ei_day1 - Ei_day56	1.189526099	.4693892113	.1564630704	.8287216112	1.550330586	7.603	8	.000

BTC in distilled water

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.24386422	9	.007713615	.002571205
	H_day56	.19338011	9	.022726140	.007575380
Pair 2	Ei_day1	3.370611639	9	.1003363895	.0334454632
	Ei_day56	2.684163175	9	.2225032133	.0741677378

Paired Samples Correlations

		Ν	Correlation	Sig.				
Pair 1	H_day1 & H_day56	9	293	.444				
Pair 2	Ei_day1 & Ei_day56	9	815	.007				
		Paired Samples Test						

	Fancy Samples Test									
	Paired Differences									
				Std. Error	95% Confidence Interval of the Difference					
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)	
Pair 1	H_day1 - H_day56	.050484111	.026052967	.008684322	.030458028	.070510194	5.813	8	.000	
Pair 2	Ei_day1 - Ei_day56	.6864484644	.3098081557	.1032693852	.4483088349	.9245880938	6.647	8	.000	

TRD in distilled water

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	H_day1	.24404300	9	.024761069	.008253690	
	H_day56	.15969889	9	.026511724	.008837241	
Pair 2	Ei_day1	3.868260331	9	.4106668420	.1368889473	
	Ei_day56	2.225626448	9	.3533737763	.1177912588	21
		- P				- 21

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	.119	.761
Pair 2	Ei_day1 & Ei_day56	9	141	.717

	Paired Differences								
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.084344111	.034061003	.011353668	.058162506	.110525716	7.429	8	.000
Pair 2	Ei_day1 - Ei_day56	1.642633883	.5783130982	.1927710327	1.198103084	2.087164682	8.521	8	.000

TRX in dark chamber

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.16967	9	.007616	.002539
	H_day56	.17650122	9	.015525511	.005175170
Pair 2	Ei_day1	3.043054347	9	.1235093091	.0411697697
	Ei_day56	2.513005283	9	.5386656902	.1795552301

Paired Samples Correlations

		Ν	Correlation	Sig.		
Pair 1	H_day1 & H_day56	9	.925	.000		
Pair 2	Ei_day1 & Ei_day56	9	.961	.000		

	Paired Samples Test												
	Paired Differences												
					95% Confidence Interval of the								
				Std. Error	Difference								
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)				
Pair 1	H_day1 - H_day56	006834556	.008955002	.002985001	013717980	.000048869	-2.290	8	.051				
Pair 2	Ei_day1 - Ei_day56	.5300490647	.4213545699	.1404515233	.2061672712	.8539308582	3.774	8	.005				

BTC in dark chamber

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.24010944	9	.008808334	.002936111
	H_day56	.23804622	9	.012563431	.004187810
Pair 2	Ei_day1	3.342132725	9	.1585013626	.0528337875
	Ei_day56	3.341565722	9	.2231525426	.0743841809
		9			

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	.673	.047
Pair 2	Ei_day1 & Ei_day56	9	.710	.032

ſ			Paired Differences							
				Std. Error	95% Confidence Interval of the Difference					
			Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
ſ	Pair 1	H_day1 - H_day56	.002063222	.009294290	.003098097	005081001	.009207446	.666	8	.524
l	Pair 2	Ei_day1 - Ei_day56	.0005670031	.1571477105	.0523825702	120227420	.1213614266	.011	8	.992

TRD in dark chamber

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	H_day1	.24885800	9	.036557034	.012185678
	H_day56	.20973133	9	.025862586	.008620862
Pair 2	Ei_day1	3.799238893	9	.6567355124	.2189118375
	Ei_day56	2.991928561	9	.5650047835	.1883349278

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	H_day1 & H_day56	9	549	.126
Pair 2	Ei_day1 & Ei_day56	9	777	.014

Paired Samples Test

			F	Paired Differences					
			Std. Error		95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	H_day1 - H_day56	.039126667	.055160231	.018386744	003273240	.081526573	2.128	8	.066
Pair 2	Ei_day1 - Ei_day56	.8073103325	1.152065023	.3840216745	078245237	1.692865902	2.102	8	.069

One way Analysis of variance: Nanohardness and Elastic modulus

Each material in coffee solution at day 1

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
Hardness	Between Groups	.031	2	.015	74.981	.000						
	Within Groups	.005	24	.000								
	Total	.036	26									
Ei	Between Groups	2.566	2	1.283	16.776	.000						
	Within Groups	1.836	24	.076								
	Total	4.402	26									

Multiple Comparisons

Tukey HSD											
			Mean Difference (I-			95% Confide	ence Interval				
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound				
Hardness	1.0	2.0	081794667	.006757113	.000	09866912	06492022				
		3.0	051739111	.006757113	.000	06861356	03486466				
	2.0	1.0	.081794667	.006757113	.000	.06492022	.09866912				
		3.0	.030055556	.006757113	.000	.01318110	.04693001				
	3.0	1.0	.051739111	.006757113	.000	.03486466	.06861356				
		2.0	030055556	.006757113	.000	04693001	01318110				
Ei	1.0	2.0	671220503	.1303700198	.000	996791874	345649132				
		3.0	635256357	.1303700198	.000	960827728	309684985				
	2.0	1.0	.671220503	.1303700198	.000	.3456491316	.9967918740				
		3.0	.0359641462	.1303700198	.959	289607225	.3615355174				
	3.0	1.0	.635256357	.1303700198	.000	.3096849854	.9608277278				
		2.0	035964146	.1303700198	.959	361535517	.2896072250				

*. The mean difference is significant at the 0.05 level.

Each material in distilled water at day 1

	ANOVA											
		Sum of Squares	df	Mean Square	F	Sig.						
Hardness	Between Groups	.052	2	.026	65.084	.000						
	Within Groups	.010	24	.000								
	Total	.062	26									
Ei	Between Groups	6.382	2	3.191	19.678	.000						
	Within Groups	3.892	24	.162								
	Total	10.274	26									

Multiple Comparisons

Tukey HSD	Tukey HSD											
			Mean Difference (I-			95% Confide	ence Interval					
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound					
Hardness	1.0	2.0	093419778	.009463920	.000	11705390	06978565					
		3.0	093598556	.009463920	.000	11723268	06996443					
	2.0	1.0	.093419778	.009463920	.000	.06978565	.11705390					
		3.0	000178778	.009463920	1.000	02381290	.02345535					
	3.0	1.0	.093598556	.009463920	.000	.06996443	.11723268					
		2.0	.000178778	.009463920	1.000	02345535	.02381290					
Ei	1.0	2.0	688139174	.1898284302	.004	-1.16219527	214083080					
		3.0	-1.18578787	.1898284302	.000	-1.65984396	711731772					
	2.0	1.0	.688139174	.1898284302	.004	.2140830802	1.162195268					
		3.0	497648692	.1898284302	.038	971704786	023592598					
	3.0	1.0	1.18578787	.1898284302	.000	.7117317722	1.659843960					
		2.0	.497648692	.1898284302	.038	.0235925982	.9717047858					

*. The mean difference is significant at the 0.05 level.

/ fireee () possil)

Each material in dark chamber at day 1

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Hardness	Between Groups	.034	2	.017	34.575	.000
	Within Groups	.012	24	.000		
	Total	.046	26			
Ei	Between Groups	2.611	2	1.305	8.302	.002
	Within Groups	3.773	24	.157		
	Total	6.384	26			

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Hardness	1.0	2.0	070442778	.010442092	.000	09651968	04436587
		3.0	079191333	.010442092	.000	10526824	05311443
	2.0	1.0	.070442778	.010442092	.000	.04436587	.09651968
		3.0	008748556	.010442092	.684	03482546	.01732835
	3.0	1.0	.079191333	.010442092	.000	.05311443	.10526824
		2.0	.008748556	.010442092	.684	01732835	.03482546
Ei	1.0	2.0	299078378	.1869202176	.265	765871830	.1677150741
		3.0	756184546	.1869202176	.001	-1.22297800	289391094
	2.0	1.0	.2990783777	.1869202176	.265	167715074	.7658718296
		3.0	457106168	.1869202176	.056	923899620	.0096872835
	3.0	1.0	.756184546	.1869202176	.001	.2893910942	1.222977998
		2.0	.4571061683	.1869202176	.056	009687284	.9238996201

*. The mean difference is significant at the 0.05 level.

Each material in coffee solution at day 56

		AN	OVA			
		Sum of Squares	df	Mean Square	F	Sig.
Hardness	Between Groups	.005	2	.003	2.167	.136
	Within Groups	.029	24	.001		
	Total	.034	26			
Ei	Between Groups	1.669	2	.834	1.663	.211
	Within Groups	12.040	24	.502		
	Total	13,709	26			

Multiple Comparisons

Tukey HSD							
			Mean Difference (I			95% Confidence Interval	
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Hardness	1.0	2.0	033993444	.016372999	.116	07488152	.00689464
		3.0	019153778	.016372999	.482	06004186	.02173430
	2.0	1.0	.033993444	.016372999	.116	00689464	.07488152
		3.0	.014839667	.016372999	.642	02604841	.05572775
	3.0	1.0	.019153778	.016372999	.482	02173430	.06004186
		2.0	014839667	.016372999	.642	05572775	.02604841
Ei	1.0	2.0	453481609	.3338869323	.378	-1.28729314	.3803299267
		3.0	578709227	.3338869323	.214	-1.41252076	.2551023089
	2.0	1.0	.4534816089	.3338869323	.378	380329927	1.287293144
		3.0	125227618	.3338869323	.926	959039153	.7085839178
	3.0	1.0	.5787092267	.3338869323	.214	255102309	1.412520762
		2.0	.1252276178	.3338869323	.926	708583918	.9590391534

1 Marco

Each material in distilled water at day 56

			-22	os veri		
		AN	OVA			
		Sum of Squares	df	Mean Square	F	Sig.
Hardness	Between Groups	.032	2	.016	15.601	.000
	Within Groups	.024	24	.001		
	Total	.056	26			
Ei	Between Groups	6.498	2	3.249	10.073	.001
	Within Groups	7.741	24	.323		
	Total	14.240	26			

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Hardness	1.0	2.0	083524556	.015046046	.000	12109885	04595026
		3.0	049843333	.015046046	.008	08741763	01226904
	2.0	1.0	.083524556	.015046046	.000	.04595026	.12109885
		3.0	.033681222	.015046046	.085	00389308	.07125552
	3.0	1.0	.049843333	.015046046	.008	.01226904	.08741763
		2.0	033681222	.015046046	.085	07125552	.00389308
Ei	1.0	2.0	-1.19121681	.2677319284	.000	-1.85982030	522613312
		3.0	732680082	.2677319284	.030	-1.40128358	064076585
	2.0	1.0	1.19121681	.2677319284	.000	.5226133118	1.859820305
		3.0	.4585367267	.2677319284	.221	210066770	1.127140223
	3.0	1.0	.732680082	.2677319284	.030	.0640765852	1.401283578
		2.0	458536727	.2677319284	.221	-1.12714022	.2100667697

*. The mean difference is significant at the 0.05 level.

Each material in dark chamber at day 56

		AN	OVA			
		Sum of Squares	df	Mean Square	F	Sig.
Hardness	Between Groups	.017	2	.009	23.996	.000
	Within Groups	.009	24	.000		
	Total	.026	26			
Ei	Between Groups	3.114	2	1.557	7.087	.004
	Within Groups	5.274	24	.220		
	Total	8,388	26			

Multiple Comparisons

Tukey HSD							
			Mean Difference (I-			95% Confide	ence Interval
Dependent Variable	(I) Material	(J) Material	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Hardness	1.0	2.0	061545000	.008893421	.000	08375443	03933557
		3.0	033230111	.008893421	.003	05543954	01102069
	2.0	1.0	.061545000	.008893421	.000	.03933557	.08375443
		3.0	.028314889	.008893421	.011	.00610546	.05052431
	3.0	1.0	.033230111	.008893421	.003	.01102069	.05543954
		2.0	028314889	.008893421	.011	05052431	00610546
Ei	1.0	2.0	828560439	.2209722940	.003	-1.38039170	276729176
		3.0	478923278	.2209722940	.098	-1.03075454	.0729079853
	2.0	1.0	.828560439	.2209722940	.003	.2767291758	1.380391703
		3.0	.3496371610	.2209722940	.272	202194103	.9014684246
	3.0	1.0	.4789232783	.2209722940	.098	072907985	1.030754542
		2.0	349637161	.2209722940	.272	901468425	.2021941025

*. The mean difference is significant at the 0.05 level.

V (freedomant) V

Power analysis of nanohardness outcome variable (Power = 0.99)

Power analysis of elastic modulus outcome variable (Power = 0.99)

REFERENCES

1. Petersen PE, Yamamoto T. Improving the oral health of older people: the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 2005;33:81-92.

2. Thomson WM, Ma S. An ageing population poses dental challenges. Singapore Dent J 2014;35:3-8.

3. Naorungroj S, Naorungroj T. Oral health-related quality of life in the elderly: a review and future challenges in Thailand. Siriraj Med J 2016;67:248-53.

4. Srisilapanan P, Korwanich N, Jienmaneechotchai S, Dalodom S, Veerachai N, Vejvitee W, et al. Estimate of impact on the oral health-related quality of life of older thai people by the provision of dentures through the royal project. Int J Dent 2016;2016:7.

 สำนักทันตสาธารณสุข กรมอนามัย กระทรวงสาธารณสุข. ผลการสำรวจสภาวะสุขภาพช่อง ปากแห่งชาติ ครั้งที่ 8, 2560.

6. Ali Z, Baker SR, Shahrbaf S, Martin N, Vettore MV. Oral health-related quality of life after prosthodontic treatment for patients with partial edentulism: a systematic review and meta-analysis. J Prosthet Dent 2018;121:59-68.

McCabe JF, Walls AWG. Applied dental materials. 9th ed. Oxford: Blackwell Publishing;
2008.

8. The international organization for standardization. ISO 20795 dentistry – base polymers – part 1: denture base polymers. 2013.

9. Goiato MC, Nobrega AS, dos Santos DM, Andreotti AM, Moreno A. Effect of different solutions on color stability of acrylic resin-based dentures. Braz Oral Res 2014;28:1-7.

10. Imirzalioglu P, Karacaer O, Yilmaz B, Ozmen I. Color stability of denture acrylic resins and a soft lining material against tea, coffee, and nicotine. J Prosthodont 2010;19:118-24.

Gregorius WC, Kattadiyil MT, Goodacre CJ, Roggenkamp CL, Powers JM, Paravina RD.
Effects of ageing and staining on color of acrylic resin denture teeth. J Dent 2012;40:e47-54.

12. Hatim NA, Al-Tahho OZ. Comparative evaluation of color change between two types of acrylic resin and flexible resin after thermo cycling. an in vitro study. J Indian Prosthodont Soc 2013;13:327-37.

13. Hersek N, Canay S, Uzun G, Yildiz F. Color stability of denture base acrylic resins in three food colorants. J Prosthet Dent 1999;81:375-9.

14. Noort RV. Introduction to dental materials. 4th ed. Edinburgh: Mosby Elsevier; 2013.

15. Mumcu E, Cilingir A, Gencel B, Sülün T. Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives. J Adv Prosthodont 2011;3:136-9.

16. Spartalis GK, Cappelletti LK, Schoeffel AC, MichÉL MD, Pegoraro TA, Arrais CAG, et al. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins. Dent Mater J 2015;34:623-8.

17. Ucar Y, Akova T, Aysan I. Mechanical properties of polyamide versus different PMMA denture base materials. J Prosthodont 2012;21:173-6.

Anusavice KJ, Phillips RW, Shen C, Rawls HR. Phillips' science of dental materials. 12th ed.
St. Louis: Elsevier Saunders; 2013.

19. Farina AP, Cecchin D, Soares RG, Botelho AL, Takahashi JMFK, Mazzetto MO, et al. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement. Gerodontology 2012;29:e155-60.

20. Ali IL, Yunus N, Abu-Hassan MI. Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems. J Prosthodont 2008;17:545-9.

21. Al-Mulla MAS, Huggett R, Brooks SC, Murphy WM. Some physical and mechanical properties of a visible light-activated material. Dent Mater 1988;4:197-200.

22. Bahrani F, Safari A, Vojdani M, Karampoor G. Comparison of Hardness and Surface Roughness of Two Denture bases Polymerized by Different Methods. World J dent 2012;3:171-5.

23. Hamanaka I, Iwamoto M, Lassila LVJ, Vallittu PK, Takahashi Y. Wear resistance of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2016;2:31-7.

24. Cook WD, Beech DR, Tyas MJ. Structure and properties of methaerylate based dental restorative materials. Biomaterials 1985;6:362-8.

 Powers JM, Wataha JC. Dental materials : properties and manipulation. 9th ed. St. Louis: Mosby Elsevier; 2008.

26. O'Brien WJ. Dental materials and their selection. 4^{ed} ed. Chicago: Quintessence; 2008.

27. Johnson WW. The history of prosthetic dentistry. J Prosthet Dent 1959;9:841-6.

28. Murray MD, Darvell BW. The evolution of the complete denture base. Theories of complete denture retention--a review. Part 1. Aust Dent J 1993;38:216-9.

29. Keenan PL, Radford DR, Clark RK. Dimensional change in complete dentures fabricated by injection molding and microwave processing. J Prosthet Dent 2003;89:37-44.

30. Ferracane JL. Materials in dentistry : principles and applications. Philadelphia: J.B. Lippincott; 1995.

31. Cheng YY, Cheung WL, Chow TW. Strain analysis of maxillary complete denture with threedimensional finite element method. J Prosthet Dent 2010;103:309-18.

32. Hirajima Y, Takahashi H, Minakuchi S. Influence of a denture strengthener on the deformation of a maxillary complete denture. Dent Mater J 2009;28:507-12.

33. Kul E, Aladağ LI, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent 2016;116:803-10.

34. Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017;12:3801-12.

35. Kohli S, Bhatia S. Polyamides in dentistry-a review. Int J Sci Res 2013;1:20-5.

36. Lee HH, Lee JH, Yang TH, Kim YJ, Kim SC, Kim GR, et al. Evaluation of the flexural mechanical properties of various thermoplastic denture base polymers. Dent Mater J 2018;37:950-6.

37. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2011;69:75-9.

38. Quassem M, Mahross H. Comparative evaluation of porosities and solubility for different non-metallic denture base material. J Clin Diagn Res 2018;12:ZC18-22.

39. Wieckiewicz M, Opitz V, Richter G, Boening KW. Physical properties of polyamide-12 versus PMMA denture base material. Biomed Res Int 2014;2014:1-8.

40. Kostic M, Pejcic A, Igic M, Gligorijevic N. Adverse reactions to denture resin materials. Eur Rev Med Pharmacol Sci 2017;21:5298-305.

41. Bates JF, Stafford GD, Huggett R, Handley RW. Current status of pour type denture base resins. J Dent 1977;5:177-89.

42. Stafford GD, Bates JF, Huggett R, Handley RW. A review of the properties of some denture base polymers. J Dent 1980;8:292-306.

43. Caul HJ, Stanford JW, Serio AF. Properties of Self-Curing Denture Base Resins. J Am Dent Assoc 1952;44:295-8.

44. Ogle RE, Sorensen SE, Lewis EA. A new visible light-cured resin system applied to removable prosthodontics. J Prosthet Dent 1986;56:497-506.

45. Fellman S. Visible light-cured denture resin used in making dentures with conventional teeth.J Prosthet Dent 1989;62:356-9.

46. Machado C, Sanchez E, Azer SS, Uribe JM. Comparative study of the transverse strength of three denture base materials. J Dent 2007;35:930-3.

47. Khan Z, von Fraunhofer JA, Razavi R. The staining characteristics, transverse strength, and microhardness of a visible light-cured denture base material. J Prosthet Dent 1987;57:384-6.

48. Tan HK, Brudvik JS, Nicholls JI, Smith DE. Adaptation of a visible light-cured denture base material. J Prosthet Dent 1989;61:326-31.

49. Palitsch A, Hannig M, Ferger P, Balkenhol M. Bonding of acrylic denture teeth to MMA/PMMA and light-curing denture base materials: The role of conditioning liquids. J Dent 2012;40:210-21.

50. Doori DA, Huggett R, Bates JF, Brooks SC. A comparison of denture base acrylic resins polymerised by microwave irradiation and by conventional water bath curing systems. Dent Mater 1988;4:25-32.

51. Wallace PW, Graser GN, Myers ML, Proskin HM. Dimensional accuracy of denture resin cured by microwave energy. J Prosthet Dent 1991;66:403-8.

52. De Clerck JP. Microwave polymerization of acrylic resins used in dental prostheses. J Prosthet Dent 1987;57:650-8.

53. Azzarri MJ, Cortizo MS, Alessandrini JL. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerised. J Dent 2003;31:463-8.

54. Ilbay SG, Güvener S, Alkumru HN. Processing dentures using a microwave technique. J Oral Rehabil 1994;21:103-9.

55. Geerts GAVM, Jooste CH. A comparison of the bond strengths of microwave- and water bath-cured denture material. J Prosthet Dent 1993;70:406-9.

56. May KB, Shotwell JR, Koran A, Wang RF. Color stability: denture base resins processed with the microwave method. J Prosthet Dent 1996;76:581-9.

57. Sproull RC. Color matching in dentistry. part I. the three-dimensional nature of color. J Prosthet Dent 1973;29:416-24.

58. Sikri VK. Color: implications in dentistry. J Conserv Dent 2010;13:249-55.

59. Johnston WM. Color measurement in dentistry. J Dent 2009;37:e2-6.

60. The national bureau of standards. Monograph 104 Colorimetry. 1968.

61. Lai YL, Lui HF, Lee SY. In vitro color stability, stain resistance, and water sorption of four removable gingival flange materials. J Prosthet Dent 2003;90:293-300.

62. Goldstein GR, Schmitt GW. Repeatability of a specially designed intraoral colorimeter. J Prosthet Dent 1993;69:616-9.

63. Hong G, Murata H, Li Y, Sadamori S, Hamada T. Influence of denture cleansers on the color stability of three types of denture base acrylic resin. J Prosthet Dent 2009;101:205-13.

64. Hollis S, Eisenbeisz E, Versluis A. Color stability of denture resins after staining and exposure to cleansing agents. J Prosthet Dent 2015;114:709-14.

65. Bonatti MR, Cunha TR, Regis RR, Silva-Lovato CH, Paranhos HF, de Souza RF. The effect of polymerization cycles on color stability of microwave-processed denture base resin. J Prosthodont 2009;18:432-7.

66. Ivkovic N, Božovi $\mathbf{\acute{C}}$ D, Ristic S, Mirjani $\mathbf{\acute{C}}$ V, Jankovi $\mathbf{\acute{C}}$ O. The residual monomer in dental acrylic resin and its adverse effect. Contemp Mat 2013;4:84-91.

67. Çelebi N, Yüzügüllü B, Canay Ş, Yücel Ü. Effect of polymerization methods on the residual monomer level of acrylic resin denture base polymers. Polym Adv Technol 2008;19:201-6.

68. Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y. Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 1995;14:23-30.

69. Dayan C, Guven MC, Gencel B, Bural C. A comparison of the color stability of conventional and CAD/CAM polymethyl methacrylate denture base materials. Acta Stomatol Croat 2019;53:158-67.

70. Foungfu P, Kootthathep N. Effect of compositions and beverages on color stability of acrylic resin teeth after the periods of storage. The 20th national graduate research conference; 2019 March 15; Khon Kaen University: 1381–7.

71. Foungfu P, Kootthathep N. Color stability, water sorption and water solubility of various artificial acrylic resin teeth [Master of Science]. Bangkok: Faculty of Dentistry, Chulalongkorn University; 2019.

72. Uttamang P, Tipart P, Prunkngarmpun C. Effects of different beverages on color stability of heat-cured acrylic resin. M Dent J 2016;36:123-32.

73. Hutami S, Triaminingsih S, Indrani D. Effect of tooth immersion in the coffee drink with different types of coffee roast temperature on tooth discoloration. Journal of Physics: Conference Series 2018;1073:032026.

74. Güler AU, Güler E, Yücel AC, Erta**Ş** E. Effects of polishing procedures on color stability of composite resins. J Appl Oral Sci 2009;17:108-12.

75. Asal SaA, Fahmy MM, Abdulla SM. Chromatic stability of light-activated resin and heatcure acrylic resin submitted to accelerated aging. Saudi J Dent Res 2015;6:41-7.

76. Aziz HK. TiO_2 -nanofillers effects on some properties of highly-impact resin using different processing techniques. Open Dent J 2018;12:202-12.

77. Porwal A, Khandelwal M, Punia V, Sharma V. Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins. J Indian Prosthodont Soc 2017;17:61-7.

78. Turker SB, Şener ID, AkkuŞ E, Buğurman B. Effect of staining solutions on the colour stability and surface properties of denture base material. Balk J Stom 2012;16:49-56.

79. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-69.

80. Willems G, Celis JP, Lambrechts P, Braem M, Vanherle G. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res 1993;27:747-55.

81. Sundararajan G, Roy M. Hardness testing. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2001.

Sawa T. Correlation between nanoindentation test result and Vickers hardness. MEKO TC3,
TC5 and TC22 conferences metrology in modern context; 2010 November 22-25; Pattaya, Chonburi,
Thailand: 171-4.

83. Takahashi H, Finger WJ, Endo T, Kanehira M, Koottathape N, Komatsu M, et al. Comparative evaluation of mechanical characteristics of nanofiller containing resin composites. Am J Dent 2011;24:264-70.

84. Suwannaroop P, Chaijareenont P, Koottathape N, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent Mater J 2011;30:461-8.

85. Bindo MJF, Nakamae AEM, Santos LDB, Ishikawa KH, Guarnieri TdC, Tamaki R. Study of the surface hardness and modulus of elasticity of conventional and microwave-cured acrylic resins. Braz Oral Res 2009;23:68-75.

 Drummond JL. Nanoindentation of dental composites. J Biomed Mater Res B Appl Biomater 2006;78:27-34.

87. Lee HH, Lee CJ, Asaoka K. Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J 2012;31:157-64.

88. Chung SM, Yap AU, Tsai KT, Yap FL. Elastic modulus of resin-based dental restorative materials: a microindentation approach. J Biomed Mater Res B Appl Biomater 2005;72:246-53.

89. El-Safty S, Akhtar R, Silikas N, Watts D. Nanomechanical properties of dental resincomposites. Dent mater 2012;28:1292-300.

90. Urban VM, Machado AL, Vergani CE, Jorge ÉG, Santos LPSd, Leite ER, et al. Degree of conversion and molecular weight of one denture base and three reline resins submitted to post-polymerization treatments. Mat Res 2007;10:191-7.

91. Al-Omari A. Evaluation of the effect of some denture cleansers on hardness of acrylic denture base and teeth materials2009.

92. Machado AL, Breeding LC, Vergani CE, da Cruz Perez LE. Hardness and surface roughness of reline and denture base acrylic resins after repeated disinfection procedures. J Prosthet Dent 2009;102:115-22.

93. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005;26:6449-59.

94. Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: evaluation after exposure to acidic drink. Biomed Res Int 2019;2019:5109481.

95. Kerby RE, Knobloch LA, Schricker S, Gregg B. Synthesis and evaluation of modified urethane dimethacrylate resins with reduced water sorption and solubility. Dent Mater 2009;25:302-13.

96. Oliveira R, Nogueira F, Mattos B. Porosity, residual monomer and water sorption of conventional heat-cured, microwave-cured and cross-linked acrylic resins. Clin Lab Res Dent 2014;20:137.

97. Ayman AD. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron Physician 2017;9:4766-72.

98. Caul HJ, Sweeney WT, Paffenbarger GC. Relationship between residual monomer and some properties of self-curing dental resins. The Journal of the American Dental Association 1956;53:60-3.

99. El-Damanhoury H, Platt J. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent 2014;39:374-82.

Chulalongkorn University

VITA

NAME	ศวิตา โล่ศุภกาญจน์
DATE OF BIRTH	12 กันยายน 2535
PLACE OF BIRTH	จังหวัดตาก
INSTITUTIONS ATTENDED	ทันตแพทยศาสตรบัณฑิต
HOME ADDRESS	6/310 อาคารรอยัลเพลส 2 ซอยมหาคเล็กหลวง 2 ถนนราชคำริ
	ลุมพินี ปทุมวัน กทม. 10330
PUBLICATION	
AWARD RECEIVED	
	Contraction of the second seco

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University