nsnszlamudnludigednd miuisTumwand

W9A123351 TamETaundl

v
s @ !)

YN US T UAIUNL

a d

WWBINSANINMENGN TUT Y INEFNan I Uoudin
avnvIRARAIERsUTEYNARALINEIN TR
AAIVIANRAEATHALINGINTAOUNINDT
AEINGANENT PWIAINTAIUNINGAE
UnsAinw 2562

AUAVSURIPIaINTAlNMINe Y

ITERATIVE JUMP TO BINDING POINT FOR SIMPLEX METHOD

Miss Rujira Visuthirattanamanee

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Applied Mathematics and
Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University

Dissertation Title ITERATIVE JUMP TO BINDING POINT FOR SIMPLEX

METHOD
By Miss Rujira Visuthirattanamanee
Field of Study Applied Mathematics and Computational Science
Dissertation Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

Dissertation Co-advisor Assistant Professor Aua-aree Boonperm, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

... Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

DISSERTATION COMMITTEE

... Chairman

(Associate Professor Phantipa Thipwiwatpotjana, Ph.D)

... Dissertation Advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

... Dissertation Co-advisor

(Assistant Professor Aua-aree Boonperm, Ph.D.)

... Examiner

... Examiner

... External Examiner

(Assistant Professor Wutiphol Sintunavarat, Ph.D.)

v

a a a v = 9 o =] v ada [s

1957 JanSSeuud : MInselanud lUEnEad mIUTEBUMWAND. (ITERATIVE
JUMP TO BINDING POINT FOR SIMPLEX METHOD) 8.71USnw1inendnusvan ;
HPLAS. N9 AuafAsudasiy, 8.NUSn¥INeINUSIIN : HA.AT. 1DBBNT ULy,

176 V.

a ‘ﬂy ad Qo} I sﬂl A A & a
LIRRugIuYesIanIElnnwuUIuTIAeMsAdeunINgedulUlalua AN
nusuUgAinguszasdniasanudulule 38anangnihanvssendlddumsmne

wagvot T mvuanis@adulifudsienlne nsdssynd i nsslan wuuugi iu

] U a

Ty vuanis @edusuunauaane 1 Usenaull me Reuly g wwau ey fu fiamig

YaaTngUszasduazunsnReuluyuliuaudiludemnawas vz ian lnunste

Jueaeied agdlsinuisdinanetaviliannselananvinglnaainan iz ign

1% '
A] o =

saudsaudmiunsmanBuRumiizaudgniaues Wivdngniaue wiaead

[

TaltmadatiunissumuaaIunvesteulyTirui liaanndadiiie lAds Uuaunse

AQI 2/ ¥

A & 1 66 Yao 5 &
Buduseamdululaneunisussgnaldisnselaniuuiug) V9L0aLoLaLoalaZLDLILe

a A

N a a I ada < s & ada =3 s Y
ANNUTEEANTNINWLIAUD NI IDTULNG NTUINTZTIULASVUADUITYULNG NGUIIAINGILUT

Wiguueg iunisweunats Reulu iy lduvanvugmivuanis Waduignaseay

& a
wazdymannidingy
a a s A A an
M3 AdleAERsuar AeleTRUAN ...
CAngamseeuiimes aedlede B.MUSNWIMEN ...
avdv1 edeAansussend A1eilate 0. MUTNWITW ...
WALINYINTAULN

Uns@nen 2562

5772884323 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS : ARTIFICIAL-FREE LINEAR PROGRAMMING METHOD / NON-ACUTE
CONSTRAINT RELAXATION / SIMPLEX METHOD / JUMP TECHNIQUE
RUJIRA VISUTHIRATTANAMANEE : ITERATIVE JUMP TO BINDING POINT FOR
SIMPLEX METHOD. ADVISOR : ASST. PROF. KRUNG SINAPIROMSARAN;, Ph.D.,

CO-ADVISOR : ASST. PROF. AUA-AREE BOONPERM, Ph.D., 176 pp.

The basic idea of an iterative jump method is moving a feasible point along the
direction that improves the objective value maintaining the feasibility. It is applied for
solving a linear programming (LP) model without artificial variables by applying the
iterative jump on the LP relaxation having only acute constraints with respect to the
objective direction and reinsert all non-acute constraints to find the optimal solution
which is named SAJS. However, it may cause the last jump point to locate far away
from the optimal solution so another approach for initially finding a suitable starting
point is proposed. The new proposed method, AJSP use this technique together with
the perturbation of the right-hand side values of violated constraints to be able to start
at the feasible point before applying the iterative jump method. Both SAJS and AJSP
outperform the standard simplex method and the artificial-free simplex algorithm based
on the non-acute constraint relaxation on synthetic linear programming problems and

Netlib problems.

Department : Mathematics and Student’s Signature

Computer Science Advisor’s Signature

Field of Study : Applied Mathematics and Co-advisor’s Signature

Academic Year : 2019

vi

ACKNOWLEDGEMENTS

First of all, T would like to thank my advisor, Assistant Professor Dr. Krung
Sinarpiromsaran, and my co-advisor, Assistant Professor Dr. Aua-aree Boonperm for
their valuable guidance, support, motivation, and enormous cognizance throughout my

doctorate degree. They are excellent consultants who invented me to achieve my goals.

Besides my advisor and my co-advisor, I would like to thank my thesis committees,
Associate Professor Dr. Phantipa Thipwiwatpotjana, Assistant Professor Dr. Boonyarit
Intiyot, Assistant Professor Dr. Kitiporn Plaimas, and my dissertation external examiner,
Assistant Professor Dr. Wutiphol Sintunavarat, for their knowledgeable comments and

valuable suggestions.

In addition, I would like to thank my friends, Mr. Teeradech Laisupannawong,
Mr. Ampol Duangpan, Miss Chittima Chiamanusorn, Mr. Panote Songwattanasiri, Mr.
Phiraphat Sutthimat, Mr. Chaiyod Kamthorncharoen, and Mr. Senee Kitimoon for their

help, support, advice, and encouragement throughout my graduate studies.

Moreover, I would like to gratefully thank the Science Achievement Scholarship
of Thailand (SAST) for financial support throughout my Ph.D. study and the Applied
Mathematics and Computational Science Program in the Department of Mathematics and
Computer Science, Faculty of Science, Chulalongkorn University for the resource support

in running my research.

Finally, I would like to thank my family and my friends for always supporting and

encouraging me throughout the period of studying my Ph.D.

CONTENTS

Page

ABSTRACT IN THATI e iv

ABSTRACT IN ENGLISH e v

ACKNOWLEDGEMENTS e vi

CONTENTS s vii

LIST OF TABLES e ix

LIST OF FIGURES s X
CHAPTER

1 INTRODUCTION e 1

1.1 Literature reviews oo e 1

1.2 Motivation)

1.3 Dissertation overview 6

2 BACKGROUND AND KNOWLEDGE 8

2.1 Notation 0 0 8

2.2 Basic linear algebra 9

2.3 Linear programmingo 11

2.4 Dual linear programming model o Lo 13

2.5 Artificial-free variable methods oL 16

2.5.1 The graphical method 17

2.5.2 The simplex method 18

2.5.3 The dual simplex method 23

2.6 Artificial variable methods L L 27

2.6.1 The two-phase simplex method 28

2.6.2 The big-M simplex method 32

2.6.3 The interior-point method L. 36

2.6.3.1 The primal affine scaling method 36

2.6.3.2 The gravitational method 41

2.6.4 The jump method. 48

2.6.4.1 Simplex method with objective jump 49

2.6.4.2 Preceding-jump simplex method 53

2.7 Artificial-free simplex algorithm based on the non-acute constraint relaxation 58
3 THE NEW TECHNIQUE FOR SOLVING THE UNRESTRICTED
VARIABLE MODEL e 67

CHAPTER

3.1 Results and experiments
3.1.1 The randomly generated problem
3.1.2 Computational result

3.2 Conclusion

4 SELF-REGULATING ARTIFICIAL-FREE LINEAR PROGRAM-

MING SOLVER USING A JUMP AND SIMPLEX METHOD . . .
4.1 The iterative jump method

4.2 Self-regulating artificial-free linear programming solver using a jump

and simplex method L
4.3 Results and experiments L Lo
4.3.1 The randomly generated problem
4.3.2 The Netlib problem
4.3.3 Computational result

4.4 Conclusion

5 ARTIFICIAL-FREE LINEAR PROGRAMMING USING A JUMP
AND THE SIMPLEX METHOD BY STARTING WITH PER-
TURBED CONSTRAINTS

5.1 Artificial-free linear programming using a jump and the simplex method

by starting with perturbed constraints

5.2 Results and experiments Lo oL
5.3 Conclusion

6 CONCLUSION s
REFERENCES

APPENDICES

BIOGRAPHY

viil

ix

LIST OF TABLES

Table Page
2.1 The relationships of the primal LP model and the dual LP model. 14
2.2 The initial simplex tableau. o 19

3.1 The comparison of IDPUR and DPUR using the average wall-clock time-

randomly generated linear programming problems. 74
4.1 Description of the header in the MPS file. 104
4.2 SAJS performances varying €. 110

4.3 The comparison of the average wall-clock time of SAJS with £=0.40, TP,

and SNAR on randomly generated linear programming problems. 112
4.4 The comparison of the average wall-clock time of SAJS with € = 0.40, TP,

and SNAR on Netlib problems. 118
5.1 AJSP performances varying €. 142
5.2 The average wall-clock time of SAJS with ¢ = 0.30, SAJS with ¢ = 0.40,

AJSP with ¢ = 0.30, AJSP with ¢ = 0.40, TP, and SNAR on randomly

generated linear programming problems., 145
5.3 The average wall-clock time of SAJS with ¢ = 0.30, SAJS with € = 0.40,

AJSP with £ = 0.30, AJSP with ¢ = 0.40, TP, and SNAR on Netlib problems. 153
5.4 The difference of the average wall-clock time for SAJS with ¢ = 0.40, AJSP

with € = 0.40, TP and SNAR on Netlib problems. 157
1 SAJS performances varying 7. 171
2 AJSP performances varying 7. 174

LIST OF FIGURES

Figure Page
1.1 Motivation of the simplex method,)
1.2 Motivation of the iterative jump method 6
2.1 The graphical method. 18
2.2 Example of the interior-point method. 41
2.3 Example of the gravitational method. 48
4.1 The flowchart of SAJS. 91
4.2 The flowchart of SAJS (Con.). 92
4.3 The flowchart of SAJS (Con.). 93
4.4 Geometric views of SAJS performing on Example 4.1. 102
4.5 The comparison of SAJS, TP, and SNAR using the average wall-clock

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2

9.3

5.4
9.5

time-randomly generated linear programming problems with 100 constraints. . 114
The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 200 constraints. . 114
The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 300 constraints. . 115
The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 400 constraints. . 115
The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 500 constraints. . 116
The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 1000 constraints. 116
The comparison of SAJS, TP, and SNAR using the average wall-clock

time-randomly generated linear programming problems with 2000 constraints. 117

The flowchart of AJSP. o 130
The flowchart of AJSP (Con.). 131
The flowchart of AJSP (Con.). 132
Geometric views of AJSP performing on Example 5.1 140

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-
clock time-randomly generated linear programming problems with 100 con-

straints. . . . 148

5.6

9.7

5.8

5.9

5.10

5.11

6.1
6.2
6.3

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 200 con-

straints. s

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 300 con-

straints. L

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 400 con-

straints.

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 500 con-

straints. S ML I e

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 1000

constraints. L L

The comparison of SAJS, AJSP, TP, and SNAR using the average wall-

clock time-randomly generated linear programming problems with 2000

constraints. L

Separation of the groups of constraints.

Creation of the LP relaxation and performing the iterative jump method

Reinsertation of the non-acute constraints and performing the dual simplex

method.

X1

CHAPTER 1

INTRODUCTION

1.1 Literature reviews

The simplex method proposed by Dantzig [1] in 1947 is a popular method for
solving the small-sized or medium-sized LP model. It starts at the feasible origin point
and moves along the edge of the polytope to an adjacent extreme point until it reaches the
new optimal one. However, if the origin point is infeasible, artificial variables are added
into the LP model that will make the origin point feasible in the extended LP model.
Therefore, the size of the extended LP model will increase due to the number of artificial

variables and the number of constraints.

There are many researchers attempt to improve the method for solving the LP
model using the simplex method without artificial variables [2, 3, 4, 5]. Some researchers
require finding an initial point closer to the optimal point that will reduce the total
running time [6, 7, 8, 9, 10, 5, 11, 12, 13, 14]. Besides, the relation of angles between the
gradient vector of the objective function and the gradient vector of each constraint has

an important role to improve the simplex method [6, 3, 15, 4, 11, 12].

In 2000, the method for solving an LP model without artificial variables was pro-
posed by Pan [2]. Generally, an LP model might not be feasible, then the simplex method
could not be applied. Therefore, the perturbation technique was applied to generate the
feasible initial starting point before performing the standard simplex method or the dual
simplex method [1]. After the solution of the perturbation LP model was found, the
perturbed values were restored to the original value of the LP model in order to find the

solution of the original LP model.

In 2005, Junior and Lins [6] presented the algorithm for finding the initial basis
near the optimal point, claiming that the gradient vector of the first constraint that made

the most acute angle with the gradient vector of the objective function should be one of

the constraints created basis near the optimal point. Their algorithm used the primal and
dual LP problem relationships [1] to find the initial basis since the variables in the dual
LP problem were related to the constraints in the primal LP problem. The basic variables
in the dual LP problem were selected based on the angle between the gradient vector of
constraints and the gradient vector of the objective function that gave the largest acute
angle to the obtuse angle according to the number of the bases of the dual LP problem.
Although this method could improve the number of iterations by 33% from the simplex
method. However, their test problems were small. Consequently, Hu [7] proposed the
counterexample of the algorithm of Junior and Lins in 2007. Since creating the basis of
the dual LP problem using the Junior and Lins algorithm might make its matrix singular.
Therefore, Hu proposed the process to improve the Junior and Lins algorithm using the
LU decomposition. Furthermore, most Netlib problems applied with the Junior and Lins

algorithm exhibit initial singular bases.

The algorithm for solving the LP model without using artificial variables and dealing
with redundant constraints was proposed by Corley et al. [3] in 2006. Their algorithm
began by creating the relaxation model with a single bounded constraint. After that, the
next constraint was reinserted into the LP model one by one until the optimal solution
was found. For each sequence of the relaxation model, the single constraint that did
not satisfy to the previous relaxation model was added based on the angle between the
gradient vector of the rest of constraints and the gradient vector of the objective function
with the cosine rule. Moreover, in 2009, Yeh and Corley [15] proposed the algorithm
for selecting the entering variables of the simplex method by considering the relation of

angles in dual problems with the cosine rule.

In 2009, Nabli [8] introduced the new algorithm for finding the initial basic feasible
without using the nonfeasible basis method (NFB). After the initial basic feasible was
found, the revised simplex method was performed to find the solution. In addition, the
concept of the formal tableau was applied to the NFB, called the formal nonfeasible basis
method (FNFB). The formal tableau was the dual tableau that was created from the
primal tableau. The two-phase simplex method and the big-M simplex method were used
to compare with NFB. The result was shown that NFB used the number of iterations
less than both methods. However, the number of iterations of both NFB and FNFB was

slightly different. Afterward, in 2009, Stojkovic, Stanimirovic, and Petkovic [9] proposed

the algorithm for finding the initial basic feasible solution similar to the Nabli’s algorithm
by improving the phase-1 of the two-phase method. It created the new pivot rule to
select entering and leaving variables, called M1. Moreover, they also proposed the M2
algorithm, which was based on the improvements to M1. Subsequently, in 2012, Stojkovic,
Stanimirovic, and Petkovic [10] showed the comparison of the number of iterations and
CPU time of M1, M2, and NFB. As a result from the Netlib problems, in the phase of
finding the initial basic feasible solution, M1 used the least number of iterations. While
M2 used the least number of total iterations including the phase of finding the initial basic
feasible solution and the phase of finding the optimal solution. Therefore, the position of
the initial basic feasible solution had affected the number of iterations for solving the LP

model.

In 2014, Boonperm and Sinapiromsaran [4] proposed the algorithm for solving the
LP problem without artificial variables. Their algorithm began with the relaxation model,
it consisted of the constraints having acute angle between the gradient vector of constraints
and the gradient vector of the objective function. After the solution of the relaxation
model was found by performing the simplex method, the rest of the constraints were
reinserted to the model one by one in order to find the solution of the original model.
However, the solution of the relaxation model might be far from the optimal solution,

which slowed the processing time significantly.

In 2015, Nabli and Chahdoura [5] proposed the algorithm for finding the initialized
simplex algorithm without artificial variables. It was able to detect redundant constraints
and verified the infeasibility of the LP problem. This algorithm proposed the new pivot
rule based on the NFB and FNFB methods, called NFB and FNFB, respectively, to

increase the efficiency of finding the LP solutions.

In 2016, the idea of the jump was proposed by Yawila, Intiyot, and Sinapiromsaran
[11]. They had been developed the method for solving an LP model using the jump
technique. The concept of their method was an improvement of the initial extreme point
for the simplex method. The first process of this method moved the origin point along
the direction of the gradient vector of the objective function until it hit some constraints.
However, if it was not an extreme point, then artificial constraints were added into the

LP model to generate the extreme point of this extended LP model. After that the

simplex method would be performed to seek the extreme point of the original LP model.
Nevertheless, their method only worked on the positive vector of the objective function

together with the less than or equal to constraint and the positive right-hand side.

In 2019, Kafakthong and Sinapiromsaran [12] had been improved the Yawila’s
method without adding artificial constraints. Their algorithm started with the same
initial jump point as the Yawila’s method. Then the binding constraints at the next
jump point were solved to find the direction toward the extreme point of the original
problem by the least square method. The process was repeated until the extreme point
of the LP model was obtained. However, if the origin point was infeasible, the two-phase
simplex method was performed to find a feasible point. Additionally, if the direction of
the gradient vector of the objective function points was away from the feasible region,

this method could not be used.

For the large-sized LP model, in 1984, Karmarkar [16] proposed an effective method
that was the classical interior-point method. The concept of an interior-point method
began with finding an initial interior point. After that, the LP model would be re-scaled
to find the suitable direction to improve the objective value of the initial point. After
the direction was found, the initial point was moved by the step size that maintained the
interiority. The process would iterate until the last interior point was near the optimal
point, based on the duality gap. However, the transformation of the LP problem into the
initial Karmarkar’s form required excessive computational time. Thus, the gravitational
method was developed for solving the LP model using the interior point concept in 1986
by Chang [17], avoiding the complexity of the Karmarkar’s method. The initialization
of the gravitational method was the creation of a small ball, covering the initial interior
point as the center of the ball. Whereupon, it dropped along the gravitational force
with the steepest descent direction until it hit the boundary of the feasible region. After
that, it moved on the surfaces of the feasible region until it achieved the optimal point.
Moreover, many variations have been developed including the affine scaling problem [18,

19]. However, the solution of the interior-point method was not exact.

From the efficiency of the interior-point method, researchers had applied the interior-
point method together with the simplex method. In 2002, Luh and Tsaih [13] proposed
the auxiliary algorithm for finding the good initial feasible solution before applying the

Optimal point

Figure 1.1: Motivation of the simplex method

simplex method. It started with a feasible point and moved it to the corner point that im-
proved the objective value with the direction using the idea of the interior point method.
As a result, it could reduce the number of iterations of the simplex method after the initial
feasible point was found. However, this algorithm could be applied when it had an initial
feasible point. So their algorithm suggested using the two-phase simplex method to find
an initial feasible point. Moreover, the problems that were used to test their algorithm

were small having the number of variables equals to the number of constraints.

In 2011, Al-Najjar and Malakooti [14] applied an idea of the interior-point method
to propose the algorithm of finding an initial basic feasible solution. It started with a
basic solution and moved to the improved initial basic feasible solution within the feasible
region, which it could dodge some extreme points. After the initial basic feasible solution
was found, the simplex method was performed to find the optimal solution. However, for
the phase of finding an initial basic feasible solution, the parameter was set up to find the

direction which affected the position of the derived initial basic feasible solution.

1.2 Motivation

For the simplex method, both the number of variables and the number of constraints
affect computational time. If the origin point of the LP model is infeasible, the artificial

variables are added to make it feasible. As a result, the size of the original LP model

Optimal point

Figure 1.2: Motivation of the iterative jump method

is expanded since the number of artificial variables impact on the number of variables.
Moreover, if it has a large number of constraints, it leads to a larger number of extreme
points presented in Figure 1.1. Therefore, this dissertation proposes two new methods
for solving the LP model without artificial variables using the jump technique called the
self-regulating artificial-free linear programming solver using a jump and simplex method
(SAJS) and the artificial-free linear programming using a jump and the simplex method
by starting with perturbed constraints (AJSP). The iterative jump method is applied to
both SAJS and AJSP to improve the current feasible point having better objective values,
or in other words, to move the current feasible point near an optimal point. The iterative
jump method attempts to seek a suitable initial extreme point of the simplex method by

avoiding unnecessary visited extreme points shown in Figure 1.2.

1.3 Dissertation overview

This dissertation is organized into 6 chapters as follows: Chapter 1 (Introduction)
explains the literature reviews related to this dissertation and the motivation of this
dissertation. Chapter 2 (Background and knowledge) presents background and knowledge
for this dissertation. It covers linear algebra, a linear programming model, a dual in
linear programming, artificial-free variable methods, artificial variable methods, and an
artificial-free simplex algorithm based on the non-acute constraint relaxation (SNAR).

Chapter 3 (The new technique for solving the unrestricted variable model) proposes the

new method for solving the unrestricted variable model without introducing two newly
non-negative variables for each unrestricted one. Chapter 4 (Self-regulating artificial-free
linear programming solver using a jump and simplex method) presents the new method for
solving the LP model without artificial variables by performing the iterative jump method
based on the relaxation LP model. Chapter 5 (Artificial-free linear programming using a
jump and the simplex method by starting with perturbed constraints) introduces the new
method for solving the LP model without artificial variables by performing the iterative
jump method based on the perturbation LP model. In the last chapter (Conclusion), the

analyses of all methods are explained and concluded.

CHAPTER II

BACKGROUND AND KNOWLEDGE

In this chapter, the basic knowledge related to this dissertation is described. First,
the notations used in this dissertation are explained. Next, basic linear algebra is de-
scribed. Then, a linear programming model and a dual linear programming model are

proposed, respectively. After that, some methods for solving the LP model are presented.

2.1 Notation

Let A be a matrix and b be a right-hand side vector from the LP model.

A, is the row vector of i*" constraint from A.
A, is the column vector of i* constraint from A.
b; is the i*" element of b.

I - | is the Euclidean norm.

Index is the set of constraint indices.

B is the basis.

N is the non-basic matrix.

Is is the index set of the basic variables.

In is the index set of the non-basic variables.
Ir is a set of restricted variables.

Iy is a set of unrestricted variables.

L acute is the set of all acute constraints.

Inonacute 1S the set of all non-acute constraints.

Taouse is the submatrix of A that row indices from I 4.,.

Ary. sowse 1 the submatrix of A that row indices from Inonacute-

b1, is the column vector of b that corresponding to Icye-
b1y, aen. 18 the column vector of b that corresponding to Inonacute-
x(0) is the initial feasible point.

x (k) is the iterative feasible point for each iteration.

Q@ is the step length.

d® is the direction for each iteration.

(k) is the index of constraint which x* is binding.

€ is the stopping criterion.

2.2 Basic linear algebra

Some basic linear algebra and notations related to this dissertation are introduced.
Principally, elements of the vector and the matrix in this dissertation are real numbers. A
column vector v is a vector having n elements, that is, v € R™. The v; is the i** element

of v. A is a matrix having m rows and n columns, that is, A € R™*". The a;; is the ith

row and j* column of A. Moreover, A;. represents a row vector of it constraint from

A and A.; represents the column vector of it constraint from A.

ai a2 -+ Qlp U1

a1 G2 - Q2p V2

Let A be . | _ | and v be

aml Am2 - OGmn Un,

Definition 2.1. The transpose matrix of A denoted by AT where

ail a1 o Aml
AT _ aijg a2 -+ Qm2
Ain AaA2n " Omn

Definition 2.2. The zero vector denoted by 0 is the vector which all elements are zeros.

Definition 2.3. e; is the vector which the i** position is 1 while other positions are 0s.

10

Definition 2.4. Let a = [a1, a2, ...,a,]" and b = [by,ba, ..., b,] " be column vectors of

size n. The addition of two vectors is denoted as a + b which is the following vector:

a+ b= [al,aQa "'aan]T + [bhb?a '-'7bn}T = [al + b17a2 + b27 ceey G + bn]T

Definition 2.5. Let a = [a1,a2,...,a,]" € R"™ and the scalar & € R. The operation
of multiplying scalar k£ with vector a, it is denoted as ka which can be written as ka =

kla1, a2, ...,a,)" = [ka1, kag, ..., kan) "

Definition 2.6. Let a = [ay,as,...,a,] € R" and b = [by, b, ...,b,] T € R"™. The inner

product or dot product is determined by

a'b= [al, a, ..., (ln] [bl, ba, ..., bn]T = a1by + agbs + ... + a,by,.

Definition 2.7. Let a = [ay, as, ...,a,] | € R™ The Euclidean norm of a is denoted as

|a|| which can be written as ||a]| = VaTa = y/a? + a3 + ... + a2.

Definition 2.8. Let a and b € R™. The angle 0 between two vectors can be computed

-
a'b

by the inner product and the norm of two vectors as follows: 8 = arccos <”HHbH> .
a

Since ||al| and ||b|| are always positive. Therefore, the categories of the angle be-

tween two vectors are divided by the sign of the inner product of two vectors.

If a'b > 0, then the angle between a and b is an acute angle.
If a'b = 0, then the angle between a and b is a right angle.

If a'b < 0, then the angle between a and b is an obtuse angle.

Definition 2.9. b € R" is a linear combination of ay, as, ...,a; € R™ if

b = Aa; + Xsas + ... + \ja;, where A, \g,..., \; € R.
Definition 2.10. X C R" is called a convex set if 21,22 € X implies Az; + (1 — \) zg €
X,VA € [0,1].
Definition 2.11. Let = be in a convex set X. It is an extreme point of X C R" if and
only if x = Az + (1 — A) 22 for A € (0,1) and z1, 22 € X implies x = 21 = x2.
Definition 2.12. A collection of A.1, A2, A3, ..., A.; of dimension n is called linearly
independent if A\jA.1 + AA. + A3A3 + ... + A\ A = 0 implies that A\; = 0 for j =
1,2,3,.... k.

11
2.3 Linear programming

A linear programming (LP) model is a mathematical model formulated from a real-
world problem to find the best solution among other feasible solutions such as airline
problems, transportation problems, medical problems, agricultural problems [1]. Three
mathematical components of the LP model consist of decision variables, an objective
function, and the constraints. Normally, the objective function is linear which can be
maximized or minimized and the constraints can be written either linear equality or linear
inequality while the decision variables are created in order to store optimal quantities after

the optimization algorithm terminates. Consider the following LP model.

Maximize/Minimize 2z = c121 + caza + c3x3 + ... + ey

subject to a1121 + a12x9 + ... + a1nxn < by,
a21x1 + a92x2 + ... + a2n Ty < b,

(2.1)
Am1T1 + Q22 + ... + ApmnTn < b,

T1, X2,y Ly > 0.

For LP (2.1), z = ¢1z1 + cox2 + ... + ¢uxy, i a linear combination of the decision

variables and the objective coefficients called the linear objective function while

a1y + a12r2 + ... + a1y < by,

2121 + a2 + ... + a2pTy < by,

Am1T1 + amax2 + ... + GpnTn < by,

T1, T2, ..., Ty > 0,

are called linear constraints. x1 > 0,290 > 0,...,z, > 0 are called the non-negative

constraints.

12

For LP (2.1), it can be written in the following vector/matrix form

Maximize/Minimize c¢'x
subject to Ax < b, (2.2)
x > 0,

where ¢ is a vector of coefficients of the objective function, ¢ € R",

A is a coefficient matrix of the constraints, A € R™*",
b is a right-hand side vector, b € R™,
X is a vector of decision variables, x € R".

For the maximization of LP (2.2), it is called the canonical form of the maximization

of the LP model that it can be written as follows:

Maximize c¢'x
subject to Ax < b, (2.3)
x > 0.

For the minimization of the LP model in the canonical form, it can be written as

follows:
Minimize c¢'x
subject to Ax > b, (2.4)
x > 0.

Meanwhile, the LP model in the standard form having equality constraints is used
for the simplex method. It can be either the maximization of the LP model or the mini-
mization of the LP model. In this dissertation, the standard form will be the maximization

of the LP model which is written as follows:

Maximize c¢'x
subject to Ax = b, (2.5)
x >0,

where b is the non-negative vector.

13

For the minimization of the LP model, it can be converted to the standard form by

T

multiplying —1 in the objective function. To minimize ¢ ' x is equivalent to — maximize

—cx. Moreover, all LP models can always be converted to the standard form using the

following processes.

1. If the constraint is in the form A;x < b;, the slack variable (s;7) is added to the

constraint as follows: A;.x + sj = b; where SZTF > 0.

2. If the constraint is in the form A;x > b;, the surplus variable (s;) is subtracted

from the constraint as follows: A;.x —s; = b; where s;” > 0.

3. If a decision variable (z;) is an unrestricted variable, it must be replaced by sub-

tracting two newly defined variables az;" and x; where xj > 0and z; >0.

2.4 Dual linear programming model

Modeling the LP model is to transform data from a problem into a mathematical model.
The LP model created directly from the problem data is called the primal LP model while
there exists a corresponding pair of the primal LP model called the dual LP model which
the objective value of the optimal solution of both LP models will always be equal. Let

the primal LP model be

Maximize cix1 + coxo + ... + cpTy
subject to a1171 + aexe + ... + a1y < by,
a1 + a0y + ... +agpry, < b,
(2.6)
Am1T1 + Am2T2 + oo + ATy < bma

T1, X2, ..y Ty >0

Associated with the primal LP model, there is the corresponding dual LP model

14

written as
Minimize biy1 + bays + ... + biym

subject to a11y1 +a2y2 + ... + Gmiym > ca,
a12y1 + a22y2 + ... + amay > 2,

e (2.7)
a1ny1 + a2nY2 + oo + AmnYm = Cn,

Y1,Y25 -, Ym Z 0.

Observe that the number of constraints in LP (2.6) is equal to the number of variables
in LP (2.7) and vice versa. In addition, for each i in {1,2,...,m}, i" constraint of LP
(2.6) will correspond to i variable of LP (2.7). Similarly, for each j in {1,2,...,n}, j
variable of LP (2.6) will correspond to j** constraint of LP (2.7).

Therefore, it exhibits that a constraint in the primal LP model is related to the
variable in the dual LP model likewise a variable in the primal LP model is related to
the constraint in the dual LP model. If the primal LP model has a large number of
constraints, then the dual LP model will have a large number of variables. Similarly, if
the primal LP model has a large number of variables, then the dual LP model will have
a large number of constraints too. In addition, for every primal LP model, the dual LP
model which related to the primal LP model can always be constructed. The relationships

of the primal LP model and the dual LP model are shown in Table 2.1.

Table 2.1: The relationships of the primal LP model and the dual LP model.

Primal LP model Dual LP model
(Maximize) (Minimize)
Constraint is in the form of “ < 7. The corresponding variable is > 0.

Constraint is in the form of “ > The corresponding variable is < 0.

Constraint is in the form of “ = 7. The corresponding variable is unrestricted.

The corresponding variable is > 0. Constraint is in the form of “ > 7.

The corresponding variable is < 0. Constraint is in the form of « < 7.
The corresponding variable is unrestricted. Constraint is in the form of “ ="

The solution of the LP model can be summarized as follows:

15

1. optimal solution: the LP model can find the best feasible solution,
2. infeasible solution: the LP model has no solution,

3. unbounded solution: For the maximization of the LP model, the value of the ob-
jective function can be increased infinitely. Vice versa, for the minimization of the

LP model, the value of the objective function can be decreased infinitely.

Note the LP model which has an unbounded feasible region may not have an un-
bounded solution. Next, the relationship of the solution between the primal LP model

and the dual LP model is explained as follows:

e The primal LP model has an optimal solution if and only if the dual LP model has

an optimal solution which their optimal objective values are the same.

o If the primal (dual) LP model is infeasible, then the dual (primal) LP model can

be either infeasible or unbounded.

o If primal (dual) LP model is unbounded, then the dual (primal) LP model is in-

feasible.

Example 2.1. Consider the following primal LP model:

Maximize x1 + 2x9 — x3

subject to 2z — w9 > 2,
—x1 + 319 + 223 < 3, (2.8)
=311 +x2+ 23 = =5,

x1 > 0,29 <0,x3 unrestricted.

The dual LP model which corresponds with the primal LP (2.8) can be written as below:

Minimize 2y; + 3y2 — bys

subject to 2y; — y2 — 3y3 > 1,
1 +3y2+ys <2 (2.9)
2y2 +y3 = -1,
y1 <0,y2 > 0,y3 unrestricted.

16

Theorems and corollaries which are related to the primal and dual models of the

LP model are stated without proof below:

Theorem 2.1. If x is a feasible solution in LP (2.6) and if y is a feasible solution in LP
(2.7), then c'x < b'y.

Corollary 2.1. If LP (2.6) and its dual (2.7) are both feasible then both are bounded

feasible.

Corollary 2.2. If there exists feasible x* and y* for LP (2.6) and its dual (2.7) such that
c'x* = by*, then both x* and y* are the optimal solution for LP (2.6) and LP (2.7),

respectively.

The methods for solving the LP model proposed in the next section are separated
into two groups: artificial-free variable methods and artificial variable methods. For
the artificial variable method, artificial variables are added into the LP model to make it
easier to provide a starting point for finding the solution. While the artificial-free variable
method does not use any artificial variables. However, adding variables to the LP model

will cause the size of the LP model to be expanded.

2.5 Artificial-free variable methods

The popular methods for solving the LP model without artificial variables are the
graphical method, the simplex method with a feasible origin point, and the dual simplex
method. For the graphical method, it is a popular method for the LP model having the
number of decision variables no more than three. For the small-sized or medium-sized
LP model, the simplex method is the popular method for solving it. It can solve the LP
model without artificial variables when the initial basic feasible solution is found. Another
method for solving the LP model without artificial variables is the dual simplex method.
It is applied to solve the dual LP model by considering the primal simplex tableau. First,

the mathematical terms discussed in this section are explained.

17

Consider an LP model as follows:

Maximize c¢'x
subject to Ax = b, (2.10)
x>0,

where c € R", x € R”, A € R™*" and b € R™.
The technical terms used in this section are explained as follows:

o Feasible region is the area that covers all possible solutions.

 Iso-profit line (for maximization model) is a linear equation resulting from the
objective function that is assigned for a fixed constant. It will drag through all
solution points in the graph that give the largest objective value function via the
graphical method. Note that for the minimization model, the iso-profit line is called

the iso-cost line.

« Feasible solution is any solution that is in accordance with the constraint func-
tion. Thus, the set of feasible solutions of LP (2.10) can be written as F =
{x | Ax = b and x > 0}. Infeasible solution is any solution that is not in accor-

dance with at least one constraint.

2.5.1 The graphical method

The graphical method is a method for solving the LP model by expressing in the graph
form. Therefore, it is applied to the LP model with no more than three decision variables.
Two popular graphical methods are a corner point method and the iso-profit method. The
corner point method starts by creating the graph from relationships of constraints of the
LP model, then it computes the objective value for all corner points in the feasible region.
The optimal solution for the maximization LP model is the feasible corner point that
gives the highest objective value shown in Figure 2.1(a). On the other hand, the optimal
solution for the minimization LP model is the feasible corner point that gives the lowest
objective value. The iso-profit method starts by moving the iso-profit line in the direction
of the objective function until it reaches the top edge or top corner of the feasible region

for the maximization LP model presented in Figure 2.1(b). Likewise, for the minimization

18
LP model, the iso-cost line will move in the opposite direction of the objective function.

point.png point.bb profit.png profit.bb

Optimal point

7z, =cTx,

(a) The corner point method. (b) The iso-profit method.

Figure 2.1: The graphical method.

2.5.2 The simplex method

The simplex method starts with the LP model in the standard form as follows:

Maximize c¢'x
subject to Ax = b, (2.11)
x >0,

where ¢ € R", x € R™, b is a non-negative vector in R™, and A is a matrix in R™*" with

rank(A)=m. Let m > n and Index = {1,2,...,m}.

The simplex method is easy to calculate when the LP model in the standard form
is transformed to the simplex tableau. Let A = [B N} where B is an m x m invertible
matrix and N is an m x (n—m) matrix. Thus, x can be decomposed into xp and xN where
xp is a basic variable and xn is a nonbasic variable. Moreover, ¢ can be decomposed as

cg and ¢, and letting Is be the current set of the indices of the basic variables and In

19

be the current set of the indices of the non-basic variables. Therefore,

Ax=D
XB
TN

BXB -I-NXN =b

xg = B™'b — B"'Nxn

and

T T

XB
= =]

XN
z = CEXB + CIIXN
z=cg (B7'b— B 'Nxn) + clxn
z=cgpB b - (CEBAN — cL) XN
z+ <ch*1N — cL) xn = cgB7 b

z— (e —cgB™IN = cgB 7 'b.
(N B) B

Consequently, the initial simplex tableau is created in Table 2.2.

XB XN RHS

z | 0| —(cf—cgB!N) | cgB™'b

xg | I BN B~'b

Table 2.2: The initial simplex tableau.

XB
For each iteration of the simplex tableau, xg = B~ 'b and xx = 0, is the

XN
basic solution of LP (2.11). If xg = B~'b > 0, then x is called the basic feasible solution.

20

Let zg = chflb. Thus, z = CEB*1b+ (c; — chle) XN = 20+ (clIT — chle) XN
and (:]—Er;B_lN—cl—\rI is called the reduced cost. Let cEB‘lA:j—cj =zj—cj,forj=1,2,...,n
B'b=bandy, =B 'A, forr=1,2,...,m. If c; - chle < 0, the current basic
feasible solution is optimal. Otherwise, the simplex method is performed to improve the

objective value.

The basic steps of the standard simplex method by Dantzig’s pivot rule are sum-

marized (Maximization problem) as follows:

Step 0: (Initialization) Choose the initial basic feasible solution and construct the

simplex tableau as follows:

XB XN RHS

z | 0| —(cf—cgBN) | cgB™'b

xg | I BN B~'b

Step 1: (Choice of the entering variable) Choose z,—¢, = minimize {z; —¢; | j € In}.
T
If z. — ¢, > 0, then [XB XN:| is an optimal solution and the algorithm stops.

Otherwise, go to Step 2.

Step 2: (Choice of the leaving variable) Let y, = B~1A.,. If y, < 0, the LP model
has an unbounded optimal solution. Otherwise, the index of leaving variable xp,

is calculated by the minimum ratio test as
b |
n=argmin< — | b; > 0 and y,, > 0 »,
Yr;

where y,.. is the i'! element of y,.

Step 3: (Pivoting) Perform the pivot operation using the entering variable and the
leaving variable and repeat from step 1 until the optimal solution is found or the

LP model has the unbounded optimal solution.

21

Example 2.2. Consider the following linear programming model.

Maximize x1 + 2x9 — x3
subject to —3x1 +x2 —x3 <5,

T1 — 229 — 4y < 4,

(2.12)
—4x1 + 3z3 <35,
2x9 + 215 <6,
T1,T2,T3 2 0.
The standard form of the linear programming model can be written as:
Maximize x1 + 2x9 — x3
subject to —3z; + a9 —x3+s1 =05,
T, — 2x9 — 4x3 + So =4,
(2.13)
—4xq1 + 33 + Ss3 =5,
2x9 + 213 + S4 =0,

Z1,X2,T3,S51,52,53,54 20

The identity matrix is an initial basis where the basic variables are defined as
s1, S2, 83, and s4 and the non-basic variables are x1, x9, and x3. Since [x1, 2, T3, S1, S2, S3, 54]T
=1[0,0,0,5,4,5,6] " > 0, thus, it is an initial basic feasible solution. The first step, the

initial simplex tableau is created as follows:

22

1 To T3 S1 Sy Sz sS4 RHS

s3] 1(-1]1/0[0]0]| 5

se | 1 |-2{-4(0]1[0|0] 4

s3|-410[3]010[1T]0] 5

s4| 012]12]0]0]0]1]| 6

From this tableau, 2z, — ¢, = minimize {z; — ¢; | j € Iz} = minimize {—1,-2,1} =
—2 with r = 2. Since 22 — cp = —2 which is a negative value. Thus, z2 is the entering
variable. Next, the leaving variable is calculated by the minimum ratio test. Since

y2 = B_1A;2 = [1,-2,0,2]", so, the index of the leaving variable is calculated as n =

; 5 6
argmin {l b; > 0 and yo, > 0} = argmin { } = 4 that it corresponds to s4.

Yo, 172

ry Xy XT3 Sy S9 Sz Sy RHS

s1|-3/0-2[1]0]0]-1/2| 2

ss 1102010 1 | 10

s3|-410(3]0]0]1] 0 | 5

x| O] 1|1 0[0|0]1/2] 3

The second tableau has the entering variable as x1 since it has the smallest reduced
cost. The leaving variable is so since it obtains the minimum ratio test from the Dantzig’s

pivot rule.

23

Ty T2 T3 ST Sy Sz sS4 RHS

s 00 |-8/1]3]0]5/2] 32

x| 1,0 -2/0 1,0} 1 | 10

s31 010|504 1] 4 | 45

w01 1l0]0]0]1/2] 3

After the second simplex tableau is updated, the result tableau is the optimal
tableau since the reduced costs of this tableau are non-negative. Thus, the solution of

this model is [z1, z2, z3] " = [10,3,0]" with the objective value = 16.

From Example 2.2, since the origin point is feasible, the simplex method can start
immediately. However, if the origin point is infeasible, the artificial variables are added
into the LP model. Then either the two-phase simplex method or the big-M simplex
method is applied to find the solution of the LP model which both methods are shown in
Section 2.6.

2.5.3 The dual simplex method

The dual simplex method is another method for solving the dual linear programming
model directly on the primal simplex tableau when the dual solution is feasible and the
primal solution is infeasible. The process is operated until the primal solution is feasible

while maintaining the feasibility of the dual solution.

Consider a linear programming model in the standard form as follows:

Maximize c¢'x

subject to Ax = Db, (2.14)

x > 0.

24

The primal simplex tableau is created as follows:

XB XN RHS

z | 0| —(cf—cgB!N) | cgB™'b

xg | I BN B~'b

If B~'b > 0, then the primal solution of the tableau is feasible. Moreover, if
cg - chle < 0, then the current primal simplex tableau is optimal. Let w' =
ch_l. Multiply B from the right and transpose both sides to get cg = BTw. At
the optimal tableau, c; — CEB_lN = c; — w' N < 0 implies that cg < w'N or
cn < NTw. Therefore, ¢ < ATw. Consequently, w' = ch_l keeps a dual feasible

solution. Likewise, if there are some elements of the vector c; — ch_lN positive, then

this dual solution is infeasible.

The basic steps of the dual simplex method are summarized (Maximization prob-

lem) as follows:

Step 0: (Initialization)

Create a simplex tableau by choosing a basis B which z; —¢; = CEB_lA:j -c; >0

for all j.

XB XN RHS

z | 0| —(ck—cgB'N) | cgB™'b

xg | I BN B~'b

Step 1: (Choice of the leaving variable)

_ _ _ _ T
Let b = B~!'b. Choose b, = minimize {bi KES IB}. If by, > 0, then |:XB XN} is

an optimal solution and the algorithm stops. Otherwise, go to Step 2.

Step 2: (Choice of the entering variable)

25

Let ¥ be the vector of the " row of the current tableau. If y; > 0, the LP model
has an unbounded optimal solution. Otherwise, the index of the entering variable

is calculated as follows:
X, = argmin {(Z]_CJ) ‘ Uk, <0 and z; —¢; > 0},
Uk,

where g, is the j™ element of yy.

Step 3: (Pivoting)

Perform the pivot operation using the entering variable and the leaving variable
and repeat from step 1 until the optimized solution is found or the LP model has

an unbounded optimal solution.

Example 2.3. Consider a linear programming model as follows:

Maximize —2x1 — xo — bx3

subject to —2x1 + b9 + 51 = -3,
T1 — 8x3 + S = —12,
(2.15)
3x9 — 4x3 + S3 = -5,
—bx1 — 229 + 223+ 54 = —6,

T1,T2,T3,51,52,83,54 > 0.

For LP (2.15), the initial basic variables are defined as si, s, s3 and s4 and the
non-basic variables are x1,x2. Therefore, the initial primal simplex tableau is created as

follows:

1 Tg T3 S1 S9 S3 S4 RHS
z| 2|1 |50[0]0]0 0
s1/-215(0[1]0[0|0]| -3
s 110 ([-8]0|1]01] 0] -12
ss3| 03]-4[0[0[1 0| -5
S |-5|-2]2]0[0[0|1]| -6

26

For the current simplex tableau the primal solution is infeasible and the dual solu-

tion is feasible. Thus, the dual simplex method can be used. Since by, = minimize {Ei KXS IB}

= {-3,-12,—5,—6} = —12. Then s, is the leaving variable and 2 is the index of the

leaving variable. Next, the entering variable is calculated. Since yo = [1,0,-8,0,1,0,0].

Therefore, z, is calculated as follows: 2, = argmin { _(Z; 2__ %)
= {:Z }:2 Thus, the entering variable is xs. J
1 Ty T3 Si S2 S3 sS4 RHS

z [21/8 1 1|10 |0 |5/8[0]|0]|-15/2
S1 -2 5101 0 010 -3
xg | -1/8 | 0|1 [0 [-1/8] 0] 0] 3/2
ss| -1/2 | 3]0[0][-1/2]1]0 1
Sq |-19/4 -2 00| 1/4]0 |1 -9

The leaving variable is s4 and the entering variable is xo.

y2j<0andzj—cj20}

1 Ty T3 81 S S3 S4 RHS
2| 14 0|0 0|34]0]|1/2] -12
sy |-111/8 | 0 | 0 | 1| 5/8 | 0| 5/2 |-51/2
x| -1/8 O|1]0|-1/8]0 0 3/2
s3 | 61/8 | 0| O |O0]|-1/8]11]3/2|-25/2
xy | 19/8 | 1|0 |0]-1/8]0 |-1/2| 9/2

27

For the current simplex tableau, the leaving variable is s; and the entering variable

is xI1.

1 To X3 S sy s3 s4 RHS
2z 0]01]0 0 [3/4]0] 1/2]-25/2
w1 l0]0] 0] 0 [0|-1/6]11/6
zz3 | 0| 0 | 1 0 -1/8 1 0 0 7/4
s3] 00| 0|5/9]-1/21]1/8] 3/2
w0 1l0|16] 0 0] 0 | 17

Since both the primal solution and the dual solution are feasible. Thus, this simplex

—25

tableau is optimal with the optimal value = -

2.6 Artificial variable methods

Artificial variables are added to guarantee the solution of the extended LP model

when the initial point is infeasible. For the standard simplex method, it starts with a

feasible origin point. Thus, if the origin point is infeasible, the artificial variables are added

28

to the LP model. After that, either the two-phase simplex method or the big-M simplex
method is applied. Similarly, with the interior point method, if an initial interior feasible
point is not available, the artificial variables are added to the LP model to guarantee the

existence of the interior feasible point.

2.6.1 The two-phase simplex method

The two-phase simplex method is a method for solving the LP model when the
origin point is infeasible. It is divided into two phases that are phase 1 applied to find an
initial basic feasible solution and phase 2 performed the simplex method using the basic

feasible solution from phase 1.

Consider the LP model as following:

Maximize c¢'x
subject to Ax = b, (2.16)
x > 0,

where b is a non-negative vector.

If the origin point of LP (2.16) is feasible, the simplex method can start immediately.
Otherwise, artificial variable x, is added to the constraints of LP (2.16) as Ax + x, =

b,x,x, > 0. After that, the artificial variable LP model is created as follows:

Minimize x,
subject to Ax+x, =Db, (2.17)

X, X, > 0.

The initial basic feasible solution is given by x, = b > 0 and x = 0. Then the
simplex method is applied to find the solution of LP (2.17). This process is called phase
1 of the two-phase simplex method. At optimality, if x, # 0, the solution of LP (2.16)
is infeasible. Otherwise, the current basic feasible solutions are set as an initial basic

feasible solution of phase 2. Then all artificial variables are removed from the LP model

29

along with the original objective function is restored. Assume that all artificial variables

left the basis. After that, phase 2 of the two-phase simplex method is performed by the

simplex method with the current initial basic feasible solution.

Example 2.4. Consider the following linear programming model.

Maximize x1 — 29 + 2x3
subject to —xz1 — 2x3 <8,
2r1 4+ 20 + x3 <10,
(2.18)
—229 + bxs > 9,
3zq +4a0 — 223 > 6,
T1,T2,T3 >0

LP (2.18) will be transformed to the standard form by adding the slack variables

(s1 and s2) and the surplus variables (s3 and s4) into LP (2.18) as follows:

Maximize

subject to

T1 — T2 + 2x3

—x1 — 213 + 51 =g,
2x1 + x2 + x3 + S9 = 10,
(2.19)
—2x9 + dx3y — S3 =5,
3x1 +4x0 — 223 — 54 =06,
xy1,T2,X3,51,52,53,54 207

Since the origin point is infeasible. Thus, artificial variables (a1, as) are added to

make the origin point feasible for the extended LP model.

Minimize

subject to

ai +ao

—x1 — 213+ 51

2x1 + a9 + 3 + S

—2x9 + 5x3 — s3+ aq
3x1 +4xo — 223 — sS4+ a9

x1,T2,T3,51,52,53,54

=0,

30

(2.20)

After that, phase 1 of the two-phase simplex method is performed to find the initial

basic feasible solution by pushing all artificial variables out of the basis. For LP (2.20), the

initial basic variables are si, so, a1 and as while the nonbasic variables are x1, xo, 3, S3

and xz4. Therefore, the initial simplex tableau of phase 1 is constructed as follows:

r1 Ty X3 S S9 S3 S4 a; as RHS
z|-3{-2|-3,0[0]1]1}0]0] -11
sp[-110]-2{1]0f0|0]0]O 8
s 2|11 ,0[1T]0]0[0]O0] 10
a |0]-2[50]0|-1]0|1]0O0 5
a | 314 (-2,00[0]-1]0]1 6

The minimum of the negative reduced cost of the non-basic variables is —3 which

corresponding with 1 and x3. Thus, both z; and x3 can be the entering variable. For this

example, x1 is chosen to enter the basis. For the leaving variable which corresponding

with the minimum ratio test is ag. After the simplex tableau is updated, the second

tableau is shown as follows:

T1 T Tz 81 S2 S3 S4 aq as RHS
z |0 2 -5 0011 0 0 1 -5
s 0 4/31-83|1]0]0/|-1/3]0/| 1/3 10
So | 0 |-5/317/3 10|10 2/3|]01]-2/3| 6
ap | 0| -2 5 0]0]-1 0 1 0 5
x| 11 4/31-2/3/0]0/|0]-1/3]0] 1/3 2

31

For the second tableau, the entering variable is x3 and the leaving variable is ag.

1 T9 T3 S1 S S3 Sy ay as RHS
z |0 0 01010 0 0 1 1 0
si| 0] 1/4 0| 1]ol-1/2|-1/3]| 1/2 | 1/3 |38/3
s2| 0 [-3/41 001 | 1/2]2/3|-1/2|-2/3|11/3
z3 | 0 |-2/5/1[0]0]-1/5 0 1/5 0 1
x| 1 1 0|00 |-1/7|-1/3| 1/7 | 1/3 | 8/3

After the second tableau is updated, the basis of the simplex tableau does not have

any artificial variables. Therefore, phase 1 terminates and the current basic variable is

set as the initial basic feasible solution of LP (2.20). Next, the simplex tableau with the

initial basic feasible variables s1, s, x3 and x1 is created in order to start phase 2 of the

two-phase simplex method as follows:

T Ta Tz S1 Sy S3 s, RHS
z |0 |5/4101]0/|0]-1/2]-1/3|14/3
sy |0 1/410|1]0]-1/2]-1/3|38/3
ss | 0 -3/4] 0|01 |1/2]2/3]|11/3
3| 0]-2/5/1/10/[0([-1/5] 0 1
x| 1 1 0O|01|0|-1/7|-1/3] 8/3

32

For this tableau, the entering variable is s3 and the leaving variable is s5. After

pivoting, the simplex tableau is updated as follows:

1 T T3 81 Sy S3 Su RHS
z | 0| 3/7 100|887]|0]|3/7T]| 62/7
s |0 -4/7T10 1] 8/7T 0] 3/7 |118/7
ss | O [-11/7 10 | O |15/7 | 1 |10/7 | 55/7
zg | O | -5/7 | 1| 0| 3/7T|0]2/7]| 187
x| 1| 6/7 | 0|0 |2/T|0]|-1/7| 26/7

Since the reduced costs of the current tableau are non-negative, meaning no variable

can enter and improve the objective value. Hence, this simplex tableau is the optimal

tableau with the objective value is 62/7 and [z, x2, 23] " = [26/7,0,18/7]T.

2.6.2 The big-M simplex method

The big-M simplex method is another method for solving the LP model which the

origin point is infeasible.

33

LP (2.16) is assumed that the origin point is infeasible. Therefore, the artificial
variable is added to the LP model with penalty M where M is a very large positive

number as follows:

Maximize ¢'x— M1'x,
subject to Ax+ x, = b, (2.21)
X,Xq > 0.

After that, the simplex method is performed to find the solution of LP (2.21). If the
solution of LP (2.21) is an optimal solution with x, = 0, the solution of the original
LP (2.16) is feasible and the optimal solution is found. If the solution of LP (2.21) is
an optimal solution with x, # 0, then the original LP (2.16) is infeasible. While if the
solution of LP (2.21) is unbounded with x, = 0, the solution of the original LP (2.16) is
unbounded. And if the solution of LP (2.21) is unbounded with x, # 0, the solution of
the original LP (2.16) is infeasible.

Example 2.5. The standard form of the LP model can be represented as follows:

Maximize x1 — 9 + 223

subject to —x1 — 2x3 + 51 =8,
2x1 + x2 + x3 + S9 = 10,
(2.22)
—2x9 + dx3 — S3 =5,

3rx1 +4x9 — 223 — 54 =06,

r1,x2,T3,S1,592,83,54 > 0.

The big-M simplex method starts by adding artificial variables to the model shown

below.

Maximize x1 — x9 + 2x3 — Maqy — Maso

34

subject to —z1 — 2x3 + s1 =38,

2x1 + x2 + x3 + S9 =10,
(2.23)
—2x9 + 523 — S3 + a1 =3,
3x1 + 4xo — 223 — sS4+ as =06,
T1,x2, X3, S1, 52, 53, 54 >0,
where M is a very large positive number.
The initial simplex tableau can be created as follows:

1 To X3 Si So S3 S4 a; as RHS
z|-111}-2{0/0]|0|0|M| M 0
s1/-170(1-2{110]0[0]0]O0 8
s 21111101 170[010]0 10
a; | 01]-2{5]0]0|-1]011/0 5
a | 314 1-2,0]010]-1]0]1 6

The minimum of the negative reduced cost is —2 and its column index is 3. There-

fore, the entering variable is 3. The row index of the minimum ratio is 3. Thus, the

leaving variable is aj.

Ty To Ty ST Sy S3 S84 ay as RHS
z -1 1/5 1000]-2/5]0]|M+2/5|M| 2
s |-11-4/510|110(-2/5]0 2/5 0 10
So | 21 7/5 1010 1[1/5]0 -1/5 0 9
3| 0]-2/5]1[0]0|-1/5]0 1/5 0 1
ay | 3 |16/5] 0 |0 |0]|-2/5]-1 2/5 1 8

For this tableau, the entering variable is x; and the leaving variable is as.

i To X3 S; Sy S3 Sy ay as RHS
z |0 |5/410]01]0]|-1/2|-1/3| M+19/35 | M+1/3 | 14/3
si| 0] 1/40 10 1/2]1/3] 1/2 1/3 | 38/3
s2| 0|-3/4| 001]1/2]2/3] -1/2 2/3 | 11/3
3| 0 [-2/5|1]0|0]-1/5| 0 1/5 0 1
x| 1 1 0100 |-1/7]-1/3 1/7 1/3 8/3

The entering variable is s3 and the leaving variable is so.

35

36

T Ta T3 81 Sa S3 S84 aq a9 RHS
z 0] 3/T 10]|0]| 87 |0 3/7|M+3/70| M-8/21 | 62/7
sy | 0] -4/7T 0| 1|87 |0]3/7 0 -3/7 | 1187
s3 | 0 |-11/7 | 0| O |15/7| 1 |10/7 -1 -10/7 | 55/7
xzg | O | -B/7T | 1] 0| 3/7T|0] 2/7 0 -2/7 18/7
x| 1| 6/7T |0 |0|2/7T|0]|-1/7 0 1/7 26/7

Since the reduced cost of the simplex tableau is positive. Hence, the optimal solution

has been reached with the value of variables as 1 = 26/7, 22 = 0 and x3 = 18/7 and the

objective value as 62/7.

2.6.3 The interior-point method

The idea of the interior-point method is proposed which differs to the simplex

method. It starts from moving an interior feasible point along with the direction which

improved the objective value without crossing the boundary of the feasible region. The

process is repeated until the interior point method converges to the optimal point. Tradi-

tionally, the Karmarkar’s method has been proposed and later on the primal affine scaling

method and the gravitational method are proposed.

2.6.3.1 The primal affine scaling method

Consider the standard form LP model as follows:

Minimize

CTX

subject to Ax = b,

x > 0,

where ¢ and x € R™", b € R™, and A € R™*",

(2.24)

37

If x* is feasible for LP (2.24) and x* > 0, then x* is called the interior feasible
point. The direction applied to improve the current point is —c since it can reduce the

objective value.

The detail of the primal affine scaling algorithm with four steps are explicated as

the following.

Step 1: Define the parameters and an initial feasible point.
Set k=0,e>0and 0 < a < 1.

Determine x° which x° > 0 and Ax? = b.

Step 2: Check the optimality.

Compute g = (AXZAT)"1AX?2c

7 0 0
0/ ak
where X;, = diag(x*) = and h* =c - ATgk.
0
Q= =gt

If h* > 0 and e" X3h* < ¢ where e’ = [1,1,...,1]T, then the algorithm stops.
Otherwise, go to Step 3.

Step 3: Find the direction.

Compute d’; = 2 Xuh¥

If d’yc > 0, then the algorithm stops with the unbounded solution.

If d’; = 0, then the algorithm stops.

Otherwise, go to step 4.

Step 4: Find the step length and update the current point.
) Q

Compute aj = min {

kY .
: _(d,;)i (dy)i < 0}.

Compute xF+1 = x¥ + oszkd’y“.

Set kK =k + 1 and go to Step 2.

38

The first step of the implementation of the affine scaling method is the finding of
the initial feasible point. If the starting interior feasible point is found, the process of the
affine scaling can start immediately. Otherwise, the two-phase affine scaling method is
performed. The two-phase affine scaling method is separated as phase 1 and phase 2. In
phase 1, it finds an initial strictly interior feasible point. For phase 2, it uses the result
from phase 1 to initialize the affine scaling method to find the optimal solution. Phase 1

of the two-phase affine scaling method is explained next.

Let u be any positive vector and let t = b — Au. If t = 0, then u is a strictly
interior feasible point. Thus, the initial interior feasible point (x°) is set as u and then
the phase 2 of the affine scaling method is performed. For case of t # 0, the artificial

method is constructed as follows:

Minimize Zp41
subject to Ax 4+ tz,41 = b, (2.25)

X, Tn+1 > 07

Artificial LP (2.25) has an obvious strictly interior feasible point as

Tn+1 1

Thus, it has the optimal solution, However, if the optimal value of artificial LP (2.25) is

strictly positive, then the original model is infeasible.

39

Example 2.6. Consider a linear programming as follows:

Minimize —18x1 + 2x9
subject to 2xq < 15,
2x1 — 3xo <6, (2.26)
—211 — T2 <12,
T1, X2 >0
The LP model is transformed into the standard form as follows:
Minimize —18x1 + 2x9
subject to 2xo + x3 =15,
2x1 — 3x0+ 14 =06, (2.27)
—2x1 —x9 + x5 =12,
T1,%2,T3,%4,25 > 0.
O 2 10 0
Thus, A= |2 _3 ¢ 1 of|,b=115,6,12]" and c = [-18,2,0,0,0] .
2 -1 0 0 1]

Let 2° = [1,1,13,7,11] " where it is feasible.

_1 0 0 0 O _
01 0 0 O
Hence, Xo=1{0 0 13 0 0
00 0 7 0
0 0 0 O 11

and « is defined as 0.99.

40

Iteration 1:

g’ = (AX2AT)"1AX2c = [-0.0024, —0.6477, —0.2656] " and

h? =c— ATg" = [-16.1733, —0.2038,0.0024, 0.6476, 0.2656] " .
Since, elements in h? are not non-negative and e’ Xoh? = —8.8901.
Thus, the current solution is not the optimal solution.

The direction is calculated as follows:

d) = —Xoh = [16.1734,0.2038, —0.0314, —4.5336, —2.9221] T.
Since « is defined as 0.99, thus the step-length

ag = _(395%))?@ = 0.2184.

Hence, the new solution is

xt = x0 + apXod)) = [4.5318,1.0445,12.9110, 0.0700, 3.9810] .

Iteration 2:

gl = (AX2AT)1AX3c = [-0.2302, —5.8754, —2.4235] T and

h! =c— ATg! = [-1.4023, —17.5891,0.2302, 5.8754, 2.435] .

Since, elements in h' are not non-negative and e’ X;h' = —11.6951.
Thus, the current solution is not the optimal solution.

The direction is calculated as follows:

d} = —X;h! =[6.3549,18.3719, —2.9726, —0.4113, —9.6478] .

Since « is defined as 0.99, thus the step-length

ay = _(_09“96%17& = 0.1026.

Hence, the new solution is

x? = x! + anX1d}, = [7.4869, 3.0136, 8.9728, 0.0670, 0.0398] .

The algorithm will be continued until it converges to optimal solution x* = [9.75,7.5] "

with the optimal value = -160.5 which it can be shown in Figure 2.2.

41

Optimal point

-

C

S

N\

Figure 2.2: Example of the interior-point method.

2.6.3.2 The gravitational method

Consider a standard form of the LP model as follows:

Maximize b'y
subject to ATy =c, (2.28)

y >0,

where b € R™, y € R™, AT is an matrix of n x m and ¢ € R™.

The dual model of LP (2.28) can be written as

Maximize c¢'x

(2.29)
subject to Ax > b.

where c € R", x € R", A € R™*™ and b € R™.

The gravitational method is applied to the dual LP model of LP (2.28) which is
LP (2.29). A strict interior feasible point x° is defined in the first corresponding to x°
corresponds to Ax? > b. The process of the gravitational method is an iterative method

which consists of two principle stages, i.e. the initialize stage and the iterative stage.

42

The initialize stage:

The ball of radius r, which has x° as a center is created. Radius r is selected to

1=1,2, ...,m},

correspond with

ATx0 —b;

O<r< min{ :
[Al

where || - || is the Euclidean norm.

Note: If the chosen radius is sufficiently small, then the solution from the gravita-

tional method will be an optimal solution of LP (2.29).

The iterative stage:

For the process in this stage, it is separated in three stages, i.e. the first stage is the
direction finding, the second stage is finding the step length and the last stage is updating
the center of the ball.

The first stage of finding the direction

—c
The initial gravitational direction d° is defined as W
c

Let I;(x+) be the index set of touching constraints for the ball centered at xF.
AlxF —b; }
— =
[Al

The gravitational direction is determined by

Thus, IJ(xk) = {Z

Minimize ¢'d

subject to Ay .. d>0, (2.30)

J(xk)

1-d'd>o.
However, model (2.30) is equivalent to the quadratic model.

Minimize (¢! — nTAIJ(xk))(CT —nTAy)T

J(xk)

(2.31)
subject to n > 0,

43

where 7 is the column vector (1; | i € Ly(xr)).

If * is an optimal solution of the quadratic model (2.31), then £ = cT—n*TAI

J(xk)*
For case of & # 0, the direction of the gravitational method is defined as d =
‘_;|L|. In another case, the ball can not move by the gravitational descent and the

algorithm stops.

The second stage of finding the step length

After the direction of the gravitational method is found, the step length applied to
move the ball is calculated. Since the ball needs to be inside the feasible region of
LP (2.29) always. Thus, for all iterations, the ball with center z*, it has to certify
that

AlxE b,
mll >rforalli =1,2,...,m.

Let I;p(ax) be the index set of blocking constraints in direction d”* which is defined

as IJB(dk) = {Z | A;rdk < O}
If I;p@r) = (), then the step length for the gravitational direction is co.

Thus, the solution of LP (2.29) is unbounded which can conclude that the primal

LP model is infeasible.

If I;par) # 0 and T ey N I1ypgry = 0, then the step length is calculated as

Alxk —b; —r||A;
gzmin{ rl| Al

AT 1€ IJB(dk)}.

The last stage of updating the center of the ball

The ball is moved along the direction of gravitational method d* with step length

6 which the center of the new ball is updated as follows:

xF+l = xF 4 9d*.

To apply the gravitational method on LP (2.29), a strictly interior feasible point
must be identified in the first stage. If it is available, the gravitational method can start
immediately. Otherwise, the artificial gravitational LP model is constructed by adding

artificial variable x,41 as follows:

44

Maximize c¢'x+ Mz,
subject to Ax 4+ ex,4+1 > b, (2.32)
Tn+41 Z O)
where e = [1,1,...,1]T € R™ and M is a large positive number.
Let 20, > max {0,b1,ba, ..., by }. Then [0,0,...,2% ,]" is a strictly interior feasible
point of artificial gravitational LP (2.32). Thus, LP (2.32) always has a solution. If ¢ # 0,
the gravitational method is performed to find the solution of LP (2.32). Otherwise, every

feasible solution of LP (2.29) is the optimal solution including the initial interior feasible

solution which it makes the solution of LP (2.28) y = 0 as the optimal solution.

Example 2.7. Consider a linear programming as follows:

Maximize y1 + y2

subject to y; + 4y <12,

y1 —2y2 <6, (2.33)
Y1 Z 07
Y2 > 0.

LP (2.33) is transformed to the standard form by adding the slack variables.

Maximize 1y + yo
subject to y1 +4ys +s1 =12,
(2.34)
Y1 —2y2 +s2 =6,

Y1,Y2, 51, 52 20

45

The dual LP model of LP (2.34) can be written as

Minimize 12z + 6x9

subject to x1 + x2 >1,
4oy — 2z > 1, (2.35)
T >0,
o Z 0.
1 Sk 1
4 =2 1 12
From LP (2.35), A = , b= and ¢ =
10 0 6
0 1 0
1
Let x0 = be the strict interior point.
1

The initialize stage:

(A X0 — by
min{ —&—
{|MN

1=1,2, ...,m}

o (L, 1" =1 [4,-2][1,1]" =1 [1,0][1,1]T —0 [0,1][1,1]T —0
- V12412 7 a2 (=22 T V12402 T V02412

=0.2236.
Thus, for this example, the radius of the ball is defined as 0.01.

The iterative stage:

Iteration 1:

The initial direction of the gravitational method is

46

12
. —c 6 | 08944
el VIR
Constraint No (7) A, Ald°
1 [1,1)7 | 1.3416
2 [4,-2]T | —2.6832
3 1,07 | —0.8944
4 0,17 | —0.4472

Let Iypao) = {i | A;ld® <0} ={2,3,4}.
Alx’ —b; —r[|A]]
—A[qd°

= min {0.3560, 1.1068, 2.2137}=0.3560.

Compute # = min {

1€ IJB(dO)}~

1 —0.8944 0.6815
Thus, x' =x° +0d° = + 0.3560 =

1 —0.4472 0.8407

Iteration 2:

ATXI—bi }
Ly = 4 | 28X =P U oy
=i 25 @

Thus, the direction of the gravitational method is calculated as follows:

Minimize —([12,6] — n2[4, —2])([12,6] — 2[4, —2]) "
(2.36)

subject to 1m2 >0

72
For (2.36), solution 72 is 10

2
Since £T =c' — [me]Ax, ., = [12,6] — [IO] [4,—2] = [4.8,9.6] is not zero vector,

47

4.8-
the direction for this iteration d' is B s .
48 ~103.0377
9.6
Constraint No (7) A, Ald!

1 1,17 | —154.5565

2 (4, — 2] 0

3 1,07 | —51.5188

4 [0,1]7 | —103.0377

Let Iyp@ay ={i | Ald' <0} ={1,3,4}.
Ajx" —b; —r||A
—Ald?

= min {0.0032, 0.0130, 0.0080}=0.0032.

Compute # = min {

1€ IJB(dl)}~

0.6815 —51.5188 0.5166
Thus, x? = x! +60d! = +0.0032 =

0.8407 —103.0377 0.5109

Iteration 3:
Alx%—b;
T o) = {z ‘ “’:r} —{1,2).
o) 1A

Thus, the direction of the gravitational method is calculated as follows:

T

1 1 1 1
Minimize [12,6] — [11, n2] [12,6] — [1n1, n2]

4 -2 4 -2

subject to n1,m2 >0
(2.37)

48

m 8
For (2.37), solution is .
n2 1
1 1
Since £T =c' — (1, m2] A1, ., = [12,6] — [8,1] = [0, 0], this means that
4 -2

the ball cannot move further in the gravitational direction and hence it stops.
As a result, the solution of LP (2.34) by the gravitational method is [z1,22]" =
[0.5166,0.5109] T. However, the radius of the ball which is defined in this example
is not sufficiently small. Therefore, the solution from the gravitational method is

the optimal that is [x1,29] " = [0.5,0.5]T which it can be shown in Figure 2.3.

r

N

Optimal point —

c// j

Figure 2.3: Example of the gravitational method.

2.6.4 The jump method

The idea of the jump method is inspired by the interior point method which uses
the jump technique to improve the objective value of the existing extreme point. The
jump method was first proposed by Yawila et al. [11] in 2016 called the simplex method
with the objective jump which attempts to find the initial extreme point for the simplex
method by using the objective jump. After the jump point is found then the artificial
constraints are added to the LP model in order to create the artificial extreme point to

perform the simplex method. However, adding the artificial constraints will expand the

49

size of the LP model. Therefore, the new jump method called the Preceding-jump simplex
method is proposed by Kafakthong et al. [12] in 2019 which their method does not need
to add artificial constraints into the LP model. Kafakthong’s method attempts to find
the direction for moving the jump point to the original extreme point by solving the right

inverse. These two jump methods are explained in details as the following subsections.

2.6.4.1 Simplex method with objective jump

Consider a linear programming LP model as follows:

Maximize c1x1 + caxa + ... + cpxn
subject to ai11x1 + ai9xs + ... + a1y < by,
a2121 + a9 + ... + aonTy, < by,
(2.38)
Am1T1 + Gm22 + ... + GpnTn < by,

L1, Ty ey Ty > 0.

where ¢y, 2, ...,cn, > 0 and by, ba, ..., by, > 0. Let Index = {1,2,...,m}.

Step 1: Find the jump point.

’ Q4 . .
Let a;; = —Z‘J, fori=1,2,....,mand j=1,2,...,m.

’ b ’
n = min {an,>0 ‘ Z?Zlaw>0} and

i€Index =1 4jj

b' ’
q:argmin{znz, >0 ‘ Z?:la‘ij >0}

The jump point is defined as x’ which it can be calculated as follows:

x‘Z] Sy where x;] is the element of it" of x.

Cj
After that, ¢*" constraint is moved to the last constraint of the LP model, then

indices of all constraints will be reordering from 1 to m.

Step 2: Generate the objective jump tableau as follows:

50

Sm Sm+1 Sm4n—1 €Ty Xy v S1 Sm—1 RHS
[n n , n
z . Zj:l Gy 21:1 (I Z]:l (I jn 0 0 0 0 Z;:l CJIJJ
o
T b—l (I M I 1 1 0 0 0 z]
3 —1 —1 J
Ty . (I 122 (G 0 1 0 0 xy
x)
T, . (I Y2 (I Y 0 0 0 0 x)
I n _ n _ n
51 . S aya) =S a2 1ok e 00 1 0 b= Y0, anw]
1 n n — n — n
S Y tmorr =t k(T e o =i k(T 00 0 L by = X5 @)
Gml Am2 Am3 " Amn
C1 —C9 0 0
where J = | ¢, ¢ —2¢3 - 0
c1 cy cg o —(n—1)cy,

nxn

Step 3: Perform the simplex method by choosing the entering variable as $p,41,

Sm+2, -y Sm+n—1, respectively. Note that the leaving variable is chosen by the

minimum ratio test.

Step 4: Eliminate the rows and columns of the set of sp41, Sm+2, -+ Sman—1-

Step 5: Perform the standard simplex method to find the solution of the LP model.

Example 2.8. Consider a linear programming as follows:

Maximize

subject to

T+ X2

3r1 + x2 < 18,

—3x1 4+ 229 <6
32?1 - 2$2 S 8

—5x1+xT2 <2

)

)

i

X1, T2 > 0.

(2.39)

51

Step 1: Find the jump point.
Let Index = {1,2,3,4}. Since ¢; = ¢ = 1, then a;j = q;; for i € {1,2,3,4} and

je{1,2}.

b

/ , 18 8
Let = i —n 0 771_ j 0 = i DY =45 d
ot m{z> iy > } min{ 5] = 45 e
q=1.

Thus, the jump point is [z, 29] " = [4.5,4.5]T.

Rearrange the index of the constraints as follows:

Maximize 1 + @9

subject to —3x1 + 229 <6, (1)
3.%1 N 2%2 S 8, (2)
(2.40)
—5x1 + T2 <2, (3)
3x1 + x2 <18, (4)
T1, X2 > 0.

Step 2: Generate the objective jump tableau.

3 1 0.25 0.25
Since J = Mhen-J= =

1 -1 0.25 —0.75

Thus, the objective jump tableau is created as follows:

S4 Ss xT1 To2 81 Sy Sz RHS

Z[1/2 -1/2 0 0 0 0 0] 9

21| 1/4 14 1 0 0 0 0] 9/2
2y | 1/4 3/4 0 1 0 0 0] 9/2
ss|1/4 9/4 0 0 1 0 0|21/2
S5 |-1/4 -9/4 0 0 0 1 0/ 7/2

s 12 0 0 0 0 1] 20

Step 3: Perform the simplex method by choosing the entering variable as ss.

S4 S5 T1 X2 S1 S9 S3 RHS

z|5/9 0 0 0 2/9 0 0]34/3

21(2/9 0 1 0 -1/9 0 0 |10/3
2 |1/3 00 1 1/3°0 0| 8

ss|1/9 1 0 0 4/9 0 0 |14/3

ss|7/9 0 0 0 -8/9 0 1 |32/3

Step 4: Eliminate the rows and columns of s5.

53

sS4 T1 T2 81 Sy s3 RHS

z[5/9 0 0 2/9 0 0 |34/3

z112/9 1 0 -1/9 0 0 |10/3
2 1/3 0 1 1/3 0 0| 8
ss| 0 0 0 1 1 0] 14

ss|7/9 0 0 -89 0 1]32/3

Since this tableau is the optimal tableau. Therefore, the optimal solution is found

with [z1,22] T = [10/3,8] .

2.6.4.2 Preceding-jump simplex method

Consider a linear programming LP model as follows:

Maximize c¢'x
subject to Ax < b, (2.41)
x >0,

where ¢ € R™ with a positive vector, x € R", A € R™*™ and b € R™ is a non-positive

vector.

The initial jump phase

Step 1: Define the initial feasible point and the set of binding constraints.
Let x¢ be a feasible point for LP (2.41).

Note xg = 0 € R" is defined as an initial feasible point for LP (2.41).

Let F'B be the set of the first binding constraints.

Since xg binds non-negative constraints of x. Therefore, the first element of F'B

is {m+1,m+2,...,m+n}. Moreover, if there is some constraints which x¢ is

o4

binding Ag:xo = b; then the index of that constraint is added to F'B.

Step 2: Find the initial jump point.

The gradient vector of the objective function c is defined as direction dg for moving
Xg to the initial jump point. Let x; be the initial jump point and -y be the index

of the constraint which x; is binding.

Thus, x1 = xg+agdg where ag =) b; > 0 and ATdo > 0}

min
ie{1,2,...m+n}\FB { Ang

and vy = argmin ‘ bi >0and A/ dy > 0}

i€{1,2,...m+n)\FB { ATdo

The jump-to-vertex phase

Step 3: Let xi be the current feasible jump point and V' be the set of all visited

constraints.
Step 4: Solve x;§ = A;Lbi for i € V where Aj is the right inverse of A;..

Step 5: Create direction d.
If CT(X}C —x) >0, dg = X;C — Xg. Otherwise, dy = x — X;C.

T
1 Az Xk

b
Step 6: C t = i —
P OMIPHEE Ak ie{l,z,{l.l,iﬁn}\v { Aldg

(bi — Alx, > 0 and AT dy, > 0}.

Step 7: Find xx11 = xx + Apdy and
i A;rxk

b,
Vi = argmin {T ‘ bi— Alxp >0and Aldy > 0}.
ie{1,2,.,min\v L Ay dg
Step 8: Repeat Step 3 - Step 7 until the number of elements of V is equal to the

number of variables.

After the jump-to-vertex phase terminates then the standard simplex method is
performed to find the solution of the LP model by starting with the last point

obtained from the jump-to-vertex phase.

Example 2.9. Consider a linear programming as follows:

Maximize x1 + 29

subject to 3x1 + 9
—3x1 + 229
3r1 — 2z
—5T1 + X2

T1,T2

<18,
<6,

<38

)

<2

9

> 0.

Transform LP (2.42) in the following form.

Maximize 1 + 29

subject to 3x1 + 9
—3x1 + 229
3x1 — 219
—5T1 + X2
—

—T9

The initial jump phase

<18

1
<6,

<8

)

<2

kX

55

(2.42)

(2.43)

Step 1: Define the starting point, the starting direction and the set of the binding

constraints.

Let xg = 0 and dg = ¢ = [1,1]T. Hence, FB = {5,6}.

Step 2: Find the initial jump point.

56

Constraint No (7) A, Al dg
1 3,17 | 4
2 [-3,2]T | -1
3 3,-2]7 | 1
4 (5,17 | —4
5 ~1,07 | -1
6 0,-1]" | -1

Thus, «q is computed as follows:

b;

18 8
o = min N ‘ b; > 0 and A;-.rdo > O}_mz’n —, } =4.5.
i€{1,2,...,m+n\FB [A, dg ‘ a3y 471
0 1 4.5
Therefore, x1 = xg + apdg= +4.5 = and 9 = 1.
0 1 4.5

The jump-to-vertex phase

Step 3: Let x; be the current feasible jump point and V' be the set of all visited
constraints. Therefore, V' = {1}.

Step 4: Solve x; = Alby = [3,1]7[18] = [5.4,1.8]".

) 5.4 4.5 0.9
Step 5: Compute x; —x1 = — =
1.8 4.5 —2.7
/ 0.9 —0.9
Since ¢ (x; —x31) = [1,1]7 =—-1.8<0. Thus, d; =
—2.7 2.7

bi - AZXl

T T
AIdl ‘ b —A,.x1 >0and A, d; >O}.

Step 6: Compute oy = min {
ie{1,2,....6 \V

Constraint No (7) A, by | Aldy | b — Alx;
1 3,117 [18| 0 0
2 [-3,2]T | 6 | 8.1 10.5
3 3,-2]7 | 8 | =8.1 3.5
4 5,17 | 2| 7.2 20
5 [~1,0]" | 0 | 0.9 4.5
6 [0,-1]T] 0 | —2.7 4.5
Thus, o = {gli%} {1%5, %, %} = 1.2962.
4.5 —0.9
Step 7: Therefore, x5 = x; + a;d;= + 1.2962 =
45 2.7

v1 = 2. Thus, V = {1,2}.

57

3.3334
and

7.9997

Step 8: Since the number of the elements of V' are equal to the number of variables.

Thus, the extreme point of LP (2.42) is found with x3 =

4.8888

3.3336

Next, the simplex tableau with the basic variables x1, x2, s3, s4 and the non-basic

variables s1, s9 is created as follows:

T1 Xy S sy s3 s4 RHS
z |0 0 5/9 2/9 0 034/3
z [1 0 2/9 -1/9 0 0]10/3
2| 0 1 1/3 1/3 0 0 8
ss3[0 0 0 1 1 0| 14
s4. | 0 0 7/9 -8/9 0 1|32/3

58

Since this tableau is the optimal tableau. Therefore, the optimal solution is found

with [z1,22] T = [10/3,8]".

2.7 Artificial-free simplex algorithm based on the non-acute constraint

relaxation

The new method for solving an LP model without artificial variable is proposed by

Boonperm and Sinapiromsaran called the artificial-free simplex algorithm based on the

non-acute constraint relaxation (SNAR) [4]. The relation of the angle between the gradi-

ent vector of the objective function and the gradient vector of each constraint is applied

to create the LP relaxation in order to reduce the number of constraints in calculating.

Consider a linear programming model as follows:

Minimize

subject to Ax < b,

CTX

(2.44)

where ¢ € R is a nonzero vector, x is the vector of n, A is the matrix of size m x n and

b is the vector of m. Let Index = {1,2,...,m}.

Step 1: Split constraints into two groups.

Ipos = {i € Index | Alc > 0}, and Ine, = {i € Index | A c <0},

59

which Ip,s is the set of all acute constraints and Iy, is the set of all non-acute

constraints.

Step 2: Construct the LP relaxation.

Minimize ¢'x

(2.45)
subject to Ay, x <byg,,_,
where Ag, _ is the submatrix of A that the row indices from Ip,s and by, . is the

column vector of b that corresponding to Ip,s.
Step 3: Find the solution of the LP relaxation.

If by,,. > 0, the simplex method is applied to find the solution of the LP relaxation.
Since, LP (2.45) is the unrestricted variable LP model. Therefore, the unrestricted
variable (x) is defined as the subtraction of two new restricted variables: x =

xT —x~ where x*,x~ > 0. Thus, LP model (2.45) is transformed to

Minimize ¢'xT —c¢'x™
subject to Aj, x"— Az, x <biy, , (2.46)
xt, x~ > 0.

After that, LP (2.46) is transformed to the standard form by adding the slack

variable (s).

Minimize ¢'xT —c¢'x™

subject to Ay, x" — A5, x +s=by,,, (2.47)

xT,x7,s > 0.

If br,,, # 0, the starting point (x) is calculated from x = —Ac where \ =
max : and Ip,s- = {i € Ipys | b; < 0}. After that, the starting point
icl,,,- | —Alc

R
X is defined as the origin point of the transformed LP model as follows:

Minimize ¢'x+c¢'x
(2.48)

’

subject to Ap,, x <big,,. — A1, X,

60

where X = x — x . Since LP (2.48) is the unrestricted variable LP model. Thus, %

is defined as x = x* — x~ where x*,x~ > 0. Therefore, LP (2.48) is written as

Minimize c¢'xt —c¢'x™ +¢'x
subject to Ay, xt — Ay, x~ <by, — A, X, (2.49)
xt, x~ > 0.

Then the slack variable (s) is added to LP (2.49) to change it to the standard form.

After that, the simplex method is performed.

Step 4: Reinsert the non-acute constraints.

If the solution of LP (2.45) is optimal, then all non-acute constraints from I, will
be added. Otherwise, a single non-acute constraint is added to the LP relaxation
one by one. If the primal of the LP relaxation is feasible, SNAR applies the simplex
method to find the solution. On the other hand, if the primal LP relaxation is
infeasible, the technique from Pan [2] is applied to change dual infeasible to dual

feasible. After that, the dual simplex method is performed.

Example 2.10. Consider a linear programming in the following form.

Maximize x1 + Z2
subject to 3x1 4+ xo < 18,
—3x1 + 222 <6,
3wp —2z9 <8, (2.50)
—bx1 +x9 <2,
T >0,

T2 > 0.

Whereupon, LP (2.50) is transformed as follows:

Maximize 1 + x9

subject to 3x1 + x9 < 18, (1)
—3x1 + 222 <6, (2)
3xy —2xy <8, (3)
—5x1+xo <2, (4)
- <0, (5)
—T9 < 0. (6)

Step 1: Separate the constraints into two groups:

Constraint No (i) A Alc
1 3,17 | 4
2 3,27 | -1
3 3,=2]" | 1
4 =517 | 4
5 L1007 | 1
6 0,17 | -1

Thus, Ipys = {1,3} and Ine, = {2,4,5,6}.

Step 2: Create the LP relaxation with only acute constraints.

61

(2.51)

62

The relaxation LP model is

Maximize 1 + x9
subject to 3z1 +z2 <18, (1) (2.52)

3x] —2x9 < 8. (3)

Step 3: Find the solution of the LP relaxation.

Since by,,. = [18,8]"T > 0. Therefore, x(¥) = 0 is a feasible point. Since LP (2.52)
is an unrestricted variable model, 1 is denoted by =] — x] where 17, 2] > 0 and
29 is denoted by x; —x5 where .CC;_, 25 > 0. Thus, the LP relaxation is transformed

as follows:

Maximize z{ —] + 24 — 25
subject to 3z} —3x] + a5 — x5 < 18, (1)
(2.53)
3] — 3z —2zf + 2z, <8, (3)
xf,xl_,x;,xg > 0.

After that, s; and s are added to LP (2.53) in order to make it to the standard

form.

Maximize zf —x] + 24 — x5
subject to 3z — 3z + 24 — x5 + 51 =18, (1)
3r7 —3x] — 225 +225, + 52 =8, (3)

+ o gt
Ty, Ty, Ty, Ty, 81,82 > 0.

The simplex method is performed with the initial tableau.

wf |27 | xf | xy | s1 | s | RHS
z |-111]-1]1/10]0 0
ss| 3|31]-1]1]0]| 18
so [3 |-3|-2]2 0|1 8

63

By Dantzig’s pivot rule, xf enters the basis and so leaves the basis. After pivoting,

the second tableau is updated as follows:

xf x| xf | x5 | s | sz | RHS
2| o f-2|5/353]0]1/3] 83
s1 | 0 0 3 3 1] -1 10
11| -2/3]2/3] 0 1/3] 8/3

The entering variable is #3 and the leaving variable is s;.

oy | xy |23 |25 | s1 | se | RHS
2001200 |59 -2/9]|74/9
oo 1|1 1/3]-1/3]10/3
sl 1100 |29 1/9]44/9

The entering variable is s and the leaving variable is z7".

+

64

+ | = | ot | e
x] |y | x5 | x4 | 51| S2 | RHS

so | 91910 01]2]|1 44

After pivoting, the solution of this tableau is an unbounded solution. Thus, a
single non-acute constraint is reinserted one by one to the tableau until the optimal
solution is found.

Step 4: Reinsert the non-acute constraints.

The first constraint from Iy is added into the tableau as follows:

Sl IDNC N
xf | xy | @3 | x5 | s1 | s2 | s3 | RHS

z |22]10]01]-1]0)]0] -18

i3]3]1]-1]1]0|0] 18

so 919100]2]1]|0]| 44

s3-9719]101]01]-2{0]1] -30

For this tableau, x; enters the basis and s3 leaves the basis. After pivoting, the

tableau is shown as

ol |2 |2 |2y | s | se| s3 | RHS
z | 0] 0| 0| 0/|-5/9]|01]-2/9]-34/3
3 | 0| 0|1 |-1]1/3]0]|1/3 8
so | 0 0] 0|0 0 1 1 14
z |-1 |1 {00 |-2/9]0|1/9|-10/3

65

Since the solution to this tableau is the optimal solution. Thus, the rest non-acute

constraints are reinserted to the tableau.

ol @] | xf |2y | s | s2| s3 | sa|ss|se | RHS
z | 0] 0|00 }-5/9]0/|-2/9/0]0]0]-34/3
z3 | 0| 0| 1 |-1]1/3]0|1/3[0]0]0 8
s 1 0] 000 0 1 1 01010 14
z |-1]1}0/[0|-2/9/0]|1/9|0]|0]O0]|-10/3
s4 | 00|00 7/90|-89|1|0]|0]32/3
ss | 0] 0]0]02/9]0[-1/9/0]1]|0] 10/3
se | 00|00 1/3[0]1/3[0]0]1 8

For this tableau, the primal model is infeasible and the dual model is feasible. Thus,

the dual simplex is performed. The leaving variable is z; and the entering variable

is S1.

of o] | o) |2y | si | sa| s3 | s4]|ss|se| RHS
z 0] 0] 0| 0/|-5/9]0[-2/9/0]|0]0]-34/3
3| 00| 1 |-1]1/3]01/3[0]0]0 8
s | 0L O] 0]0 0 1 1 01010 14
zf 11010 2/90[-1/9/0[0] 0] 10/3
s4] 00| 0|0 /]7/9]0/]-89]1]0|0]32/3
ss| 000} 0[2/9]0]-1/9/0|1|0]10/3
s | 0] 0|00 }1/3]0|1/3[]0]0]1 8

66

Since this simplex tableau is the optimal tableau, the solution of this LP model is

-34/3 with [z1,22] " = [10/3,8] .

CHAPTER III

THE NEW TECHNIQUE FOR SOLVING THE

UNRESTRICTED VARIABLE MODEL

An unrestricted variable LP model is a linear programming model that has unre-
stricted decision variables. The traditional method usually solves the unrestricted variable
LP model by transforming into the standard form. However, for converting the unre-
stricted variable LP model to the standard form, the unrestricted variable (z) must be
written as the subtraction of two new restricted variables as x = 2t — 2~ where zT > 0
and = > 0. Therefore, the number of variables is increased twice for each unrestricted

variable.

Let Ir be a set of the indices of restricted decision variables and Iy be a set of the

indices of unrestricted decision variables.
Consider an unrestricted variable LP model in the form

o

Maximize Crp,

Xig + CirUXIU
subject to ArpX1p + A1yX1, = b, (3.1)

X1y 2> 0, Xy, unrestricted variable.

Unrestricted variable LP (3.1) is transformed into the standard form as follows: Let

- -
X1y —XIU — Xj

where x7 . x> 0.
U Iv’ 'y

+ T =
v ~ C1v¥1y

Maximize cITRxIR + CITUX
subject to Agg Xy + AIUXfU — Aryxg, = b, (32)

+ —
XIg, X1y X1, = 0.

After that, LP (3.2) in the simplex tableau must have each column of the unre-

68

stricted variable represented by two restricted variables where their signs are negative of
each other. Consider x;, the column of the coefficient matrix is divided into two columns

as positive Xj_ and negative x .

J
+ p—
X, X,

Cj Y

A, | —A,

Thus, the reduced cost of X;_ and x; are cgB7 A ;—c; = zj—cjand c B~ (—A)+
c; = —z; + ¢j, respectively. If z; —¢; is a negative value, x;r can be the entering vari-
able. While if z; — ¢; is a positive value, X, can be the entering variable. Therefore, the
entering variable of the new technique for solving the LP model can be chosen from the
maximum of the absolute value of the reduced cost of the unrestricted variable and the

negative value of the reduced cost of the restricted variable.
Let f(x;) = |ch_1A:i —¢i| for x; € Iy U I/R7

where Iy = {i € In | ¢fB™'A;; —¢; <0}. If max {f(z;)} > 0, the entering
2, EIyUly

variable is x, where r = argmax {f(x;)}. Otherwise, the new technique of unrestricted
2, €IyULy
variable LP model stops with the optimal solution.

After the entering variable is found, the leaving variable is calculated depending
on the type of variables that it is an unrestricted variable or a restricted variable. Let

Yr = B_lA:r-
If 2, € IR, the leaving variable is g, where

7 = argmin {Z

T

b; >0 and y, > 0}7

where y,., is the i** element of y,.

If z,, € Iy with the positive reduced cost, the leaving variable is xg, where

69

b;

‘y%’

b; > 0 and y,, > ()},

7 = argmin {

where y,, is the i** element of y,.

If 2, € Iy with the negative reduced cost, the leaving variable is xg, where

b

b; > 0 and y,, < O},
‘y’/’z’

7 = argmin {

where y,. is the i*" element of y,..

After the entering variable and the leaving variable are found, the simplex tableau
is updated which is slightly different from the traditionally simplex tableau update. The

simplex tableau before the update can be displayed as follows:

xBl .. xBT, DR me ... x] e x’l‘ DR RHS
> 0o ... 0o .- 0 oo —(ej—z) o —(ep—2) e C;E
B, 1 0 0 Yy Yry l_)l
TB, 0o .. 1 ... 0 Yin Y, Bn
rg, | 0 - 0o - 1 Yim Yr,, b,

Let x, be the entering variable and zp, be the leaving variable. Therefore, the
unrestricted simplex tableau is updated by the new technique which it can proceed as

follows:

70

rB, - B, TB,, x; cee Ly e RHS
¢ — 2 Cr — 20)Y; (e, —2z)b
z 0 () 0 —(c;—z) + (e = 20, 0o - cngri(r =)by
Yry Yry, Yr,
) Y . b
em | 1 i . by Ut o | g tnb
Yr,, Yr, Yr,,
1 Y b,
v, | 0 0 Yin 1 !
yrn yr,7 yrn
—y YrnYi b b
TB,, 0 ZYrm 1 y],m_M N | bm_u
Yry, Yr, Yry,

Example 3.1. Consider an unrestricted variable linear programming model:

Maximize

subject to

—x1 + 219 + 323
x1 + 3x9 + 223 < 18,
—2:61 - 3%2 < 6,
(3.3)
1 — dxo + 3 <15,

—x1 + 3x2 <6,

x3 > 0.

LP (3.3) is transformed to the standard form by adding the slack variables as follows:

Maximize

subject to

—x1 + 2x9 + 313

1+ 3x2 + 223+ 51 =18,
—2x1 — 329 + S9 =06,
1 —5xo+x3+s3 =19,
—x1 + 3T2 + 54 =0,

x3,S51,582,53,584 20

For this LP model, z1,x2 are unrestricted variables and xg3, s1, s2, S3, S4 are re-

71

stricted variables. The initial simplex tableau can be constructed as follows:

ry X9 X3 S1 S9 S3 54 RHS

S92 |-3{0 (0|1 [0|0] 6

ss 1|5 10,01 0] 15

The maximum value between the absolute value of the reduced cost’s unrestricted
variable and positive value of the reduced cost’s restricted variable is 3. Thus, the entering

variable is 3. Since x3 is the restricted variable. The index of the leaving variables can be

8 12 6

lculated f in< =, —, -
calculated from argmin 4 3, =, 7
the updated tableau can be presented as follows:

= 1. Thus, the leaving variable is s1. After pivoting,

I i) I3 S1 SS9 S3 54 RHS

z [5/2] 5/2 032|000/ 27

zs | 1/20 3/2 |1 |1/2]0[0|0]| 9

S | -2 -3 0 0 1170710 6

ss | 1/2-13/21 0 |-1/2] 01|00 6

sa | -1 | 3 |0 O |OJO]1| 6

For this tableau, unrestricted variable x; is the entering variable, and the reduced

cost is the negative value. Therefore, the index of leaving variables can be calculated as

6 6
argmin {|2|, 1‘} = 2. Therefore, the leaving variable is ss.

1 To T3 81 sy Sz s4 RHS
z | 0| -5/4101]3/2]5/4]0|0/69/8
xg | 0| 3/4 | 1 |1/2|1/4]0|0]21/2
x1 | -1]-3/2 | 0 0 /21010 3
s3| 0 -20/4|0|-1/2]1/4 |10 |15/2
sg | 01 9/2 |0 0 |-1/2]0 |1 3

72

The entering variable is xo which is unrestricted variable with the positive reduced

cost. Thus, the leaving variable is s4.

T1 Ty T3 S s3 s4 RHS
z | 0|0}|0|3/2]10/9|0|2/7|106/3
zg3 | 00| 1 1/2|1/3|0|-1/6| 10
x| -1 0[]0 0 1/3 [0 1/3 4
s3| 0] 00 |-1/2{-5/9 |11 8/5 | 37/3
o | 0| 1]0 0 |-1/9]0|2/9]| 2/3

This tableau is the optimal tableau with the optimal value as 106/3 and the optimal

solution [x1, 29, z3]" as [—4,2/3,10]".

3.1 Results and experiments

In this section, the computational results of the new technique for solving the unre-

stricted variables LP problem are performed on the randomly generated linear program-

ming problems of various sizes. The computational time between the new technique and

73

the Dantzig’s rule of the simplex algorithm for the unrestricted variables problem are com-
pared. The experiments were operated using the Intel(R) Core(TM) i7-3770 CPU@Q 3.40
GHz processor with 8 GB RAM on Windows 10. All methods were written by NumPy
library from Python.

3.1.1 The randomly generated problem

The randomly generated unrestricted variable linear programming test problems
are maximization problems. Since the randomly generated problems are created to test
the effectiveness of the new technique for solving the unrestricted variable. Therefore,
to make it easier to have a starting point for performing the standard simplex method
and the new technique, all variables from dual problems associated with the primal of

unrestricted variable problems are generated according to the following criteria:

The cost vector (c) of a dual problem is the right-hand side of the primal problem
generated by ¢; € [—9,9]. The matrix (A) of the dual problem is created with a;; €
[—9,9]. To guarantee a feasible region of the primal, right-hand side vector (b) is created
by generating feasible solution (x) with z; € [0,9]. After that, b is created as b =
Ax + |min(Ax)| + 1.

The different size of m and n with the randomly generated problems are defined as

2m 3m 4m 5
following. Let m € {100,200, 300, 400, 500, 600} and n € {”51 ?m ?m ?m ;”} For
each size of the randomly generated LP problem, the wall-clock times are averaged from

5 LP problems.

3.1.2 Computational result

The average wall-clock time (in seconds) of the new technique for solving the unre-
stricted variables and the simplex method with Dantzig’s pivot rule are demonstrated in
Table 3.1. Row represents the number of constraints in the LP model, Col represents the
number of variables in the LP model, IDPUR represents the new technique of solving the
unrestricted variables, that is, the simplex method with improvement Dantzig’s pivot rule
for the unrestricted variable model, DPUR represents the simplex method with Dantzig’s
pivot rule for the unrestricted variable model, the boldface numbers identify the smallest

average wall-clock time, and the number in parenthesis represents the standard deviations

of each size of the LP model.

Table 3.1: The comparison of IDPUR and DPUR using the average wall-clock
time-randomly generated linear programming problems.

Row | Col IDPUR DPUR
20 | 0.0295 (+0.0060) | 0.0329 (+£0.0106)
40 | 0.1526 (+0.0266) | 0.1630 (£0.0475)
100 | 60 | 0.1956 (+0.0812) | 0.2191 (+0.0718)
80 | 0.1526 (+0.0534) | 0.1819 (£0.0571)
100 | 0.0924 (£0.0203) | 0.0948 (+0.0159)
40 | 0.3658 (0.1360) | 0.3427 (£0.1177)
80 | 0.8216 (+0.1995) | 0.9295 (+£0.1572)
200 | 120 | 0.6104 (£0.1910) | 0.7979 (+0.2450)
160 | 0.5396 (£0.2442) | 0.7418 (+0.1375)
200 | 0.6315 (+0.1248) | 0.8941 (£0.1243)
60 | 0.9805 (40.2120) | 0.9333 (£0.1112)
120 | 2.6352 (£1.1191) | 2.8538 (+1.0607)
300 | 180 | 1.4727 (£0.5200) | 1.9063 (40.5959)
240 | 1.1579 (+0.1807) | 1.7900 (£0.2273)
300 | 1.1642 (+0.1527) | 2.2123 (£0.0620)
80 | 2.6532 (+0.5038) | 2.9222 (£0.4435)
160 | 3.5726 (+£0.9648) | 4.3390 (+1.3599)
400 | 240 | 2.0851 (+£0.4609) | 3.0290 (+0.5350)
320 | 2.3294 (+0.3196) | 3.8877 (£0.3421)
400 | 1.9059 (+0.2849) | 4.3740 (£0.3238)
500 | 100 | 4.7147 (+£0.5056) | 5.4435 (40.5705)

Continued on the next page

Table 3.1 — Continued from the previous page

Row | Col

IDPUR

DPUR

200

6.9613 (£2.4625)

8.2117 (4+2.4581)

300

3.4911 (£1.2604)

5.3059 (£1.4587)

500
400

3.3537 (£0.7215)

6.5730 (£0.8840)

500

3.5461 (£0.3594)

8.3984 (£0.4744)

120

8.7293 (£0.4279)

9.8658 (£0.5491)

240

8.6296 (£3.2525)

10.6071 (£3.6216)

600 | 360

4.3597 (£0.7495)

7.3947 (£0.7521)

480

5.3092 (£1.0826)

10.6954 (+1.3462)

600

5.1970 (+0.6545)

13.7854 (£0.8306)

Average

2.5947

3.9642

75

Table 3.1 shows that most average time of the new technique is less than the simplex

method with the Dantzig’s pivot rule. For solving the unrestricted variables LP model

by the standard simplex method with the Dantzig’s pivot rule, it is necessary to change

the unrestricted variable into two new distinct restricted variables. Therefore, the size

of the LP model is extended with the number of unrestricted variables. While the new

technique for solving the unrestricted variable does not need to replace it by two non-

negative variables. Thus, the size of the LP model is smaller than the standard simplex

method with the Dantzig’s pivot rule which affects the time to find the solution. It clearly

shows that the new technique for solving the unrestricted variable is more effective than

the simplex method with the Dantzig’s pivot rule.

3.2 Conclusion

Generally, most LP models assume that all variables are non-negative. However,

there are some situations where some variables can be either negative value, zero value,

or positive value. For example, the profit or loss variable in the assignment problem, the

76

scheduling problem, or the product-mix problem. It can hold any value if it is positive
then it represents a profit and if it is negative then it indicates a loss. Another example,
the temperature variable in the modeling of the chemical process can be the unrestricted

variable.

Traditionally to solve the unrestricted variable LP model, all unrestricted variables
are replaced by the difference of two new restricted variables. As a result, the size of
the LP model is extended. Note these two new restricted variables will always have the
opposite signs of the coefficients. Therefore, the new technique for solving the unrestricted
variable model is proposed to find the solution of the unrestricted variable LP model

without increasing the size of the LP problem.

The standard simplex method with the Dantzig’s pivot rule is applied to test the
effectiveness of the new technique by using the randomly generated LP problems. Since
the solution and the number of iterations of both methods are equal for all LP models,
the time complexity of both methods are the same. Thus, only the wall-clock time is
shown in the experimental results. The new technique outperforms the standard simplex

method for most LP model sizes except the LP model size of 200 x 40 and 300 x 60.

The average wall-clock time of both methods is rarely different. Although the
new technique is calculated on the smaller simplex tableau than the standard simplex
method, the process of finding the entering variable and the leaving variable, and updating
the simplex tableau of the new technique is quite complicated. Moreover, the space
requirement of both methods are the same. For the unrestricted variables LP model
where m is the number of constraints, and n is the number of unrestricted variables, the
simplex tableau for the standard simplex method has (m +1)(m+2n+1) = m? +2mn +
2m + 2n + 1 = O(mn) space requirement. Likewise, the simplex method for the new

technique has a (m+1)(m+n+1) = m2+mn+2m-+n+1 = O(mn) space requirement.

7

Consider the small unrestricted variable LP model as follows:

Maximize 3x1 — X2

subject to x1 —x2+x3 =05

(3.5)
—x1 —4x9+ x4 =8
x1,xo unrestricted, xs, x4 > 0,
and
Maximize 3x1 — X2
subject to x1 —x2 + 23 =05
(3.6)

—x1 —4xo + x4 =8

1,73, T4 > 0, xo unrestricted.

For unrestricted variable LP (3.5), the simplex tableau for the standard simplex
method is created by 3 rows and 7 columns with 21 elements. While the simplex tableau
for the new technique is created by 3 rows and 5 columns with 15 elements. It shows that
the new technique can reduce the number of columns from the standard simplex method
up to n columns where n is the number of unrestricted variables and it can reduce the
number of elements of the simplex tableau up to (m + 1)n where m is the number of

constraints.

For unrestricted variable LP (3.6), the size of the simplex tableau of the standard
simplex method consists of 3 rows and 6 columns with 18 elements and the size of the
simplex tableau for the new technique consists of 3 rows and 5 columns with 15 elements.
Although the new technique can reduce one column from the standard simplex method.
However, the complexity of calculations for each iteration of the new technique can be
time-consuming. Therefore, the new technique is suitable for the LP model with a lot of

unrestricted variables.

From the advantages of the new technique, it is applied in AJSP which is proposed
in Chapter 5. The new technique is used to solve the transformed LP model that all

variables are unrestricted variables to reduce the total computational time.

CHAPTER IV

SELF-REGULATING ARTIFICIAL-FREE
LINEAR PROGRAMMING SOLVER USING A

JUMP AND SIMPLEX METHOD

The iterative jump method is proposed in the first section of this chapter. For
each iteration of the iterative jump method, it moves an interior feasible point to a
new feasible point along the direction of improvement of the objective value whereas
it still maintains the feasibility of a new point. The process of the jump method can
dodge some unnecessary extreme points. Therefore, the self-regulating artificial-free linear
programming solver using a jump and simplex method (SAJS) is presented. It starts by
creating the LP relaxation having the constraints that their gradient vector makes an
acute angle with the gradient vector of the objective function. After that, the initial
starting point of the iterative jump method is searched. Next, the iterative jump method
is performed on the LP relaxation. After it terminates, the last jump point obtained from
the iterative jump method is relocated to the origin point of the new LP model called
the transformed LP model and feasible non-acute constraints of the last jump point are
reinserted. If there are no non-acute constraints remaining, then the simplex method can
start to find the solution, immediately. Otherwise, the rest of the non-acute constraints
are reinserted. After that, the dual simplex is performed when the dual solution is feasible.
But if the dual solution is infeasible, the technique of Pan [2] is applied before performing

the dual simplex.

4.1 The iterative jump method

The process of the iterative jump method is moving an initial feasible point along
a feasible direction that improves the objective values. For each iteration, the new point
derived from the move is called the improved feasible point. It will be continuously
updated until it meets the stopping criteria. The iterative jump method is divided into

two phases, namely the initial jump phase and the iterative jump phase. Consider an LP

79

model in the following form:

Maximize c¢'x

(4.1)
subject to Ax < b.

where c € R", x € R", b € R™, and A € R™*". Let Index = {1,2,...,m}.

For the initial jump phase, the initial feasible point (x(?)) is moved along the feasible
direction of the gradient vector of the objective function (c) with the step size (). The

process of the initial jump phase is explained as follows:

Let x(© be a feasible point that b — Ax(®) > 0 and v = —

el Thus, the new jump
c

point x(M) is calculated as follows:

bi B A:X(O)

x(1) = x) 4 \v where A\ = min { AIV

‘ Alv> 0}, and v(1) is the index
i€lndex ’
bi — A x©)

-
AIV ‘ A v> O}.

of the constraint which x(*) is binding by v(!) = argmin {
i€lndex

After x; is obtained, then x; is binding on the constraint 4(!) which it can be easily

proven as the following.

by

_ AI“)_X(O)
T
A,Ym:v

by — Al x©

2 M
A=Al xO + — AV =by.
Av(“ v

Since A\ = , then Aj(l):xl = AI(I):(X(O) + Av) = AIO):X(O) +

For the process of the initial jump phase, it has been proven in Theorem 4.1 that
this direction will make the better objective value of the improved feasible point, and the

step size will maintain the feasibility of the improved feasible point.

Theorem 4.1. Given LP (4.1) with ¢ # 0. Let x(9 be a feasible point and v = ﬁ

bi - ATX(O)
Then x) = x4 \v is feasible which A = min {ATZ i € Index and A v > 0}
T
and ¢"x(@ < ¢Tx(),
Proof. Let x(©) be a feasible point for LP (4.1) and v = H—ZH where ¢ # 0.

b — A x©)

Let A = mi
e mln{ A;':—v

1 € Index and AIV > 0} and x! = x0 4+ \v.

80

Since x(© is the feasible point, b, — AI:X(O) > 0 for all u € Index.

For u € Index with Al v >0,

)\ < by — A x)
- Alv

u:

MAV) < b, — Alx©

AT (x(“) + Av) <b,

Al xM <p,.

For u € Index with A v <0,

by — A x©)
Alv

u:

MATvV) < b, — Al x©

<A

Al <x(0) K)\V) < by

u:

A;—.x(l) < by.
For u € Indexr with A].v =0,
ATx® = AT (x<0> =)\v) —ATxO L AATv = AT X <b,.

Therefore, Ax(!) < b. Hence, xV) is the feasible point.
Next, it can be shown that ¢ 'x(©) < ¢Tx(®),

Since v = i,
lell

c'xW = "% 4+ Av)

=c x4+ v

=c'x® 4 e’ <
I

= c¢"x@ 4 \c|.

Since A > 0 and ||c[| > 0, ¢"x(D) > ¢Tx(0), O

81

After the initial jump phase terminates, the iterative jump phase will start by the
improved feasible point (x(!)) in the initial jump phase. The direction of the iterative jump
phase is calculated from the gradient vector of the objective function and the gradient
vector of the constraint that the current improved feasible point is binding. Therefore,

the process in the iterative jump phase for each iteration can be calculated as follows:

Ao,
™ + —— where v() is the index of the constraint that x(*) is

c
Let v—=——-""—
Ayl el

binding.

Thus, x*+1 = x*) { \v where A = min
i€Index

b — Al x®
{ AZV

Alv> 0} and 41 =

b — Al x®)

Alv ‘ Alv> 0} for k='1,2,3,....

argmin {
i€lndex

Likewise, the new improved feasible point is moved by the direction of the iterative
jump phase will have better objective values. Moreover, the iterative jump phase will
still maintain the feasibility of the new improved feasible point which will be proven in

Theorem 4.2.

Theorem 4.2. Given LP (4.1) with ¢ # 0. Let x(®) be a feasible point which lies on

A" constraint of A and v = H_TA7|| + ﬁ Then x*+1) = x(*) 4 \v is feasible which
=Y
— ATx(F)
A = min {bZATZX i € Index and A v > 0} and ¢ xF) < ¢Tx(k+1),
iV

Proof. Let x(®) be a feasible point for LP (4.1) which lies on 4** constraint and v =

—A.,. C
- 4+ —— where ¢ # 0.
[A~:l el

Let A = min{

b — A x(¥)
AIV
Since x(*) is the feasible point, b, — A;—:x(k) > 0 for all u € Index.

i € Index and A;—V > O} and xF+1) = x(k) 4 \y.

For u € Index with Al v >0,

\ < bum Al x®)
- Alv
MAV) < b, — Al x®)
Al (x(k) + Av) < b,

Al xk+D < p

82
For u € Index with A v <0,

by — A xF)
Alv

u:

MALv) <b, — Al x®)

<A

Al (x(’“) +)\v> < by,

AI.X(]H—I) < by.
For u € Index with Al v =0,

AT x(+D) = AT (X(k) + Av) = Alx® 1)ATv = Alx®) < b,

Therefore, Ax(*+t1) < b. Hence, x**1) is the feasible point.
Next, it can be shown that ¢'x®) < ¢Tx(k+1),

Consider,

¢ xF) = ¢T(x® 4 \v)
=c'x® 4 XV

— ch(k) +)\CT < _A’y: + C)

A el
—cTx® 1 _)‘CTAT Allel?
[A <]l
—Al|A,. 0
:CTX(k)—I- H ’Y-”HCHCOS()+)‘”CH
A
[A

=c'x® + Allc||(1 = cos(6)).

where ¢ is the angle between the gradient vector of A. and the gradient vector of c.

Since A > 0, ||c|| > 0 and 1 — cos(8) > 0, thus, ¢"x*+1) > ¢Tx*), O

The algorithm of the iterative jump method are summarized in Algorithm 1. Af-
ter Algorithm 1 terminates, the last jump point (Xx) from the iterative jump method is

discovered.

In the next step, the simplex method is applied to find the exact solution. Since

X is not an extreme point, the transformed LP model is created by relocating X to the

83

Algorithm 1 The iterative jump method.

Input: A, b, c,x© ~O Index, Tol
Output: x

1: Compute v = ﬁ where ¢ # 0.
c

2: Set « = M, where M be a large constant.
3: for i € Index do
4: if Alv>0and b — Alx® > 0 then

bz‘ — A;FX(O)
5: Compute Dist = T
6: if Dist < a then
7: Define o« = Dist.
8: Define 4 = 4.
9: if o # M then
10 Compute xV = xO) 4 av.
11: else
12: break

13: Set k=1, Az® = Az = 1 where Az® and Az() are the initial values of
consecutive difference.

14: while W > Tol do
—A),

15: Compute v = + , where ¢ # 0.
1AL]l el

16: Construct Index’ = Index \ {y*)}.
17: Set « = M, where M be a large constant.
18: for i € Indez’ do

19: if AJlv>0andb — A/x*® >0 then
20: Compute Dist = Alv
21: if Dist < o then

22: Define oo = Dist.

23: Define ~*+1) = 4.

24: if o # M then

25: Compute x#*+D = x*) 4 v,

26: Compute Az = ex+D — cx(®),
27: Compute k =k + 1.

28: else

29: break

30: Set x = x(k+1)

84

origin point. Let X = x — x for x in LP (4.1). Consequently, the transformed LP model
is created as follows:

Maximize c¢'X+c'x

(4.2)
subject to Ax < b — Ax.
Whereupon the slack variable is added to LP (4.2).
Maximize c¢'%x+c'x
subject to Ax+s=Db — AX, (4.3)

s> 0.

However, LP (4.3) is an unrestricted variable LP model, x is defined as the sub-
traction of two restricted variables as X = xT — x~ where x*,x~ > 0. Therefore, the

standard form of LP (4.3) is constructed as follows:

Maximize c¢'xT —c'x +c¢c'x
subject to AxT — Ax~ +s=b — AX, (4.4)

xt,x7,s>0.

Then the simplex method can start to find the solution, immediately. Lastly, the

solution is restored to the solution of original LP (4.1).

The iterative jump method requires an initial feasible point before start, in which
finding that point is quite complicated. Therefore, SAJS is proposed in the next section.
It applies the iterative jump on the relaxation model since the LP relaxation can guarantee

the existence of the feasible points.

4.2 Self-regulating artificial-free linear programming solver using a

jump and simplex method

From previous work (Section 2.7), it can solve the LP model without artificial

85

variables by creating the LP relaxation. Therefore, SAJS is proposed in this section.
Firstly, SAJS starts by creating the LP relaxation with only acute constraints. The
acute constraints are the constraints that their gradient vector makes an acute angle
with the gradient vector of the objective function. The rest of the constraints are the
non-acute constraints. Secondly, the initial jump point of the iterative jump method
is calculated from the LP relaxation. The iterative jump method is performed on the
LP relaxation until it satisfies the stopping criterion. Thirdly, after the iterative jump
method terminates, the last jump point is relocated to the origin point of the new LP
model called the transformed LP model. Fourthly, the non-acute constraints that the
last jump point satisfies are reinserted into the transformed LP model called the full
transformed LP model. As a result, the current origin point is still a feasible point for
this LP model. However, if the remaining non-acute constraints do not exist, then the
simplex method is performed to find the solution, immediately. Otherwise, the remaining
non-acute constraints are reinserted to the full transformed LP model. Since the current
origin point is infeasible for this LP model, the perturbation technique by Pan [2] is
applied to change the infeasible dual solution to a feasible one before performing the dual

simplex.

Consider a linear program in the following form:

Maximize c¢'x

subject to Ax < b.

where c € R", x € R”, b € R™, and A € R"™*". Let Index = {1,2,...,m}.
The steps of SAJS are summarized as follows:

Step 1: All constraints are separated into two groups: the group of acute constraints
Tacute = {z € Index | Alc> 0} ,
and the group of non-acute constraints

InonAcute = {l € Index | A;FC < 0} .

86

Step 2: The LP relaxation is constructed with acute constraints as follows:

Maximize c¢'x

subject to Ajx,..,.x<br, ...

Step 3: The initial jump point of the iterative jump method is found.

Let Ilecute = {] € Lacute | bj < 0}

If bIAcutc 2 07 then X(O) e)\C Where)\ — Hlln { b’L } and

i€licure | A€

b

(O) _ . (2
YW = argmin .
ieIAcute { ;rc }

b;
Otherwise, x(©) = —\c where A\ = max { - } and
ieI:lcute 7A’L c

From both cases, x(?) is feasible. For case of by, ., > 0, it is proven in [4]. Another

b.
) = argmax { ZTC
IS

7‘EIAcu,te

case is proven in Theorem 4.3.

Theorem 4.3. Given LP (4.5) and Licyie = {i € Indexz|Ac > 0}. If by,,,,. >0
and A = min {b—jl_}, then x(©) = Xc is feasible.
i: €

iEIAcute

Proof. Suppose bg,.,,. > 0 and A = ierﬂiﬁtc {Ab;rc} Since b; > 0 and Alc > 0
for all i € Iacute, A > 0. Therefore, X < AbZh,c7 for all h € Icute- Hence,
A (A;c) < by. Choose x(9) = Xc, it gets A;:X(O) < by for all h € Tgcute- Thus,
A X < b, u

Step 4: The iterative jump method is performed to find the improved feasible point
by Algorithm 2. The inputs of the algorithm are A, b, ¢, x(©, 4 T, and €.
The stopping parameter () is defined as the acceptable ratio improvement of two

consecutive differences of the objective values. This is discussed in section 4.3.3.

87

Algorithm 2 The algorithm of the iterative jump method for SAJS.

Input: A, b,c,xO 7O T, .,
Output: x
Set k =0, Az = Az =1 where Az and Az are the initial values of

the consecutive difference.

. Az(k+1)
while W > ¢ jio
Compute v = ——2% 4 £ where ¢ # 0.
ALl el

Construct Ty.... = Licure \ {7*™}.
Set o« = M, where M be a large constant.

foriel, . do

if Alv>0and b —A]x*® >0 then

Compute Dist =
P Alv

if Dist < o then
Define o = Dist.
Define y*+1) = g,
if « # M then
Compute x*+D = x®) 4 qv.
Compute Az = ex®+D — cx(®).
Compute k =k + 1.
else
break

Set x = x(k+1)

After Algorithm 2 terminates, the last improved feasible point (x) is found.

Step 5: The last improved feasible point (x) is relocated to the origin point of the

transformed LP model.

88

Let x = x — x. Therefore, the transformed LP model is created as

Maximize ¢'X+c'x
(4.7)

SUbjeCt to A'IAcutei < bIAcutE - AIAcute}A('

Step 6: The transformed LP model will be converted into the standard form.

First, the slack variable (s) is added to the transformed LP model.

Maximize ¢'X+c'x
SUbjeCt to AIAcutc)N(+s = bIAc'u.tE - A'IAcutc)A(’

s > 0.

After that, the unrestricted variable (X) is changed as the subtraction of two re-
stricted variables. Let X = xT —x~ where xT , x~ > 0.

Maximize ¢'xT —¢'x +c¢'x

SUbjeCt to AIAcuteX+ o/ AIAcm,exi +s5= bIAcute - AIAcma)A(? (49)

x,x,s>0.

Step 7: The initial simplex tableau is constructed by assigning the initial basic

feasible solution as the slack variable.

xt X~ S RHS
z| —c" | =(=c") |0 c'x

S A'IAcute _AIAcute I bIAcute - AIAcuteX

Step 8: The non-acute constraints that are satisfied by x are reinserted to the initial

simplex tableau.

Let I;VonAcute = {71 € INonAcute | b; — A;rfi < O} and

I-‘r

NonAcute

= {Z € INonAcute ‘ b; — A;rf(> 0}

89

Thus, if the set of Ij(hm Acute 18 DOt empty, the constraints in this set are added into

the simplex tableau as follows:

xT X~ S RHS

2 —c' —(—=c") 0 c'x

S A'IAcute _A'IAcute 0 bIAcute - AIAcute}/\(

S1 AI* —AI+ I bI* — AI* X
NonAcute NonAcute NonAcute NonAcute

Step 9: The rest of the non-acute constraints are reinserted to the simplex tableau.

However, if Iy 4.1 15 empty, the simplex method is performed to find the solu-

tion of the transformed LP model, immediately. After that, the solution will be

converted to the solution of the original LP model. Otherwise, the constraints in

I-

are reinserted to the simplex tableau and then it goes to Step 10.

NonAcute

xT X S1 So RHS

2 —c' —(=c™) 0|0 c'x

S Tacute - Tacute 0 O bIAcute - A'IAcuteX

S]_ AI+ _A.I+ I 0 bI+ - A.I+)A(
NonAcute NonAcute NonAcute NonAcute

sy | Ay —A, 0[1I|b.- AL %
NonAcute NonAcute NonAcute NonAcute

Step 10: For the current simplex tableau, the primal solution and the dual solution

are always infeasible since the value of the reduced cost in column x* and x~ are

always opposite. Thus, the perturbation technique of Pan [2] is applied to make

the dual solution feasible.

90

be the variable from x* with the positive reduced cost,
be the variable from x* with the negative reduced cost,
be the variable from x~ with the positive reduced cost,
be the variable from x~ with the negative reduced cost,
be the column vector from A which corresponds to x
with the positive reduced cost,

be the column vector from A which corresponds to x*
with the negative reduced cost,

be the column vector from A which corresponds to x~
with the positive reduced cost,

be the column vector from A which corresponds to x~

with the negative reduced cost.

The values of the negative reduced cost in the simplex tableau are changed to

positive which make the dual solution feasible.

The positive value used in this

dissertation is set to 1. Therefore, the perturbation simplex tableau is changed as

follows:

(xt)* (xT)~ (x7)* CY T S S So RHS
z —c’ —(1) c’ —(1) 0/0]|0 c'x
s | (AN, | A9, | A, | A, |[T/0/0) b, —Ay,X
S S T S L T LIRS L L
% | A e | A e L A0 | A [0 O T Pl ~ A

Next, the dual simplex is performed to determine the feasible solution of the simplex

tableau. After that, the original reduced costs of the transformed LP model are

restored. If the dual solution is feasible, then the current solution is converted to

the solution of the original LP model. Otherwise, the simplex method is performed

to find the solution and that solution is converted to the solution of the original

91

LP model similarly. However, if the solution of the transformed LP relaxation is

unbounded, then the solution of the original LP model is infeasible.

Next, the flowchart of SAJS, comprised of ten steps, is shown in Figure 4.1 - 4.3.

e

|

/ Input: A b,c, and € /

}

Separate the groups of all constraints
| PP {z € Index|Alc > O},

Iy onsdtiZ {z € Index |A]c < O}.

I

Create the LP relaxation

T

Maximize ¢'x

SubjeCt tO AIAcuteX S bIAcute'

yes

Find the initial feasible point
x(© = Xc, where
. b;
ier]{l:cr:te { A;rc } and

0 = {Ab;'l—c}

A:

argmin
Z'e:[Acute

FO =

|

bIAcute Z 0

lHO

Find the initial feasible point

x(© = —)\c, where
A = max {_b%c} and
i€l &

Acute

b

3

7O = argmax{

ZeIAcute

iT
i: ©

)
N

Figure 4.1: The flowchart of SAJS.

Perform the iterative jump method

Obtained the last feasible point (x).

|

Relocate x to the origin point of the transformed LP model

~

Let x =x — x.
Maximize c¢'x+c¢'x

SubJeCt tO A'IAcutEs(S bIAcute - A'IAcute)A('

Convert the LP model to the standard form

Let x = x" — x~ + X, where xT,x™ > 0.
Maximize c¢'xt—c¢'x +c¢'x

. + EL Y _ ~
SUbJeCt to A'IAcuteX - A'IAcuteX + 5= bIAcute - A'IAcuteX’

s, xT,x~ >0.

!

Check feasibility of x with all non-acute constraints

Let I?VonAcute it {Z € INonAcute ‘ bz - A;rf(< O} and

It =1 — I
NonAcute — +NonAcute NonAcute*

Add the non-acute constraints in the set of I, ...

Maximize c¢'x" —c'x +¢'x

. + _ o A
SubJeCt to AIAcuteX - AIAcuteX + 8= bIAcute - AIAcuteX’
AI* xt — AI* X +8 = bI* — AI*
NonAcute NonAcute NonAcute NonAcute

s,s1,xT,x™ > 0.

A

X,

l

O

Figure 4.2: The flowchart of SAJS (Con.).

92

yes INonAcute =0

no

93

Add the non-acute constraints in the set of Iy, 4wt

Maximize c¢'xt —c¢'x 4+c¢'x

. + — _ A
SUbJeCt tO A'IAcuteX 7 7 A'IAcuteX —I— S = bIAcute - AIAcuteX7

A.I+ X+ — A.I+

S, 81,80, X7, x~ > 0.

X~ 48, =bp —An %
NonAcute NonAcute NonAcute NonAcute
A;- xt —Ar- X~ + 8y = by- —A;- X,

NonAcute NonAcute NonAcute

NonAcute

l

Apply the perturbation technique of Pan

Perform the

simplex method

[2] and perform the dual simplex method

|

Restore the original reduced costs

)

Dual solution
no
yes is feasible?

Perform the

simplex method

Output [

—
s

Figure 4.3: The flowchart of SAJS (Con.).

Example 4.1. Consider a linear programming model as follows:

Maximize 1 + x9

subject to x1 + bxa < 36,
—2x1 + 429 <3,
2x1 — 3x2 < 18,
—x1+ 512 <10,
911 — 219 > 15,

) 2 1.

Transform the LP model in the following form.

Maximize x1 + 29

subject to x1 + bao < 36,
-2z +4x9 < 3,
2x1 — 319 < 18,
—x1 + 5z <10,

-9z + 229 < —15,

IA
2

Step 1: Separate constraints into two groups:

94

(4.10)

(4.11)

95

Constraint No. (7) A, Alc
1 1,57 | 6
2 2,47 | 2
3 2,-3]T | -1
4 [~1,5]7 | 4
5 -9,2]T | -7
6 [0,—-1]" | —1

Thus, Lscute = {17 274} and InonAcute = {37 9, 6}

Step 2: Create the LP relaxation with the acute constraints.

The LP relaxation is created as follows:

Maximize x1 + x9

subject to a1 + o < 36, (1)
(4.12)

—2x1 +4x9 <3, (2)

—x1+ 522 < 10. (4)

Step 3: Find the initial jump point of the iterative jump method.

Since by,.,,. = [36,3,10]T > 0. Thus, A is computed as follows:

: bi . 36 3 10
A= min - = min <{—,=-,— = 1.5.
i€lacure | A} C ie{1,24y | 6 "2 4
0)

Therefore, x(*) = Ac = [1.5,1.5] T and ~(©) = 2.

Step 4: Perform the iterative jump method by Algorithm 2.

Tteration 1:

_A2: C _[_2a4]T [17 1]T
Compute v = +— = + = [1.1543,—0.1873]".
[A2] el =24 1,17

96

Constraint No. (7) A, bi. | Alv | b —Alx©

1 [1,5]7 | 36 | 0.2178 27

4 [—1,5]" | 10 | —2.0908 4

te \ = i == A/ = mi =123.
Compute ieIACTeI€{7<°>} { AZTV ‘ LV > 0} ZIéﬁ{l{l} {0.2178} 3.9669

b — Alx©
and v = argmin {ZTZX ’ Alv > 0} = 1.
i€Lacu\ 1O} AV
1.5 1.1543 144.5949
Thus, xM = xO) + \v = + 123.9669 = .
1.5 —0.1873 —21.7190

Iteration 2:
_Alz c _[17 5]T

T £ L1 = [0.5109, —0.2734]
ALl el L, 517 T '

12T

+

Compute v =

Constraint No. (i) A, b;. Alv | b —AlxW

2 [—2,4]T | 3 | —2.1154 | 379.0658

4 [—1,5]7 | 10 | —2.0908 | 263.1899

Since AIV < 0 for all ¢ € {2,4}. So, the iterative jump method terminates with

the last jump point [&1,%9] " = [144.5949, —21.7190] " and the solution of the LP

relaxation is unbounded.

Step 5: Relocate the last jump point (X) to the origin point of the new transformed

LP model.

T 1 gl
Let = — . Therefore, the transformed LP model is created as

~ A~

T2 €2 €2

follows:

Maximize 1+ xo + 122.8759

subject to %1 + 5T9 <0,
—2%1 + 4% < 379.0658,
—Z1 + 522 < 263.1899,

Step 6: Add the slack variables into the transformed LP model.

Maximize 21 + Z2 + 122.8759

subject to Z1 + 5%T2 + 51 =:();
—2Z1 + 4% + so = 379.0658,
—Z1 + 5%2 + s3 = 263.1899,

s1, 82,83 > 0.

97

The current transformed LP model is an unrestricted variable LP model.

- + — +

X1 x] T] Ty
Let = — where : > 0.
Maximize :Ul+ -z, + m2+ — xy + 122.8759
subject to @ —zy + 5x3 — bxy + 51 =0,
—2zf + 227 +4ad —4ay + sy = 379.0658,
—xf + 2] +525 —5xy +s3 = 263.1899,
.'131"_, ml_a CU;_, .’132_, 51,852,583 > 0.
Step 7: Create the initial simplex tableau as follows:

@ (4.13)
(2)
(4)
(1)
(2) (4.14)
(4)
(1)
(2) (4.15)
(4)

rf xy w5 wx, s sy s3 RHS
z|—1] 1 |—-1 00| 0] 122.8759
s;| 1 | =1} 5 |=5[1]0]0 0
So | —2| 2 4 | =410] 1|0 |379.0658
s3 | —11] 1 5 | =51 01012631899

98

Step 8: Reinsert the non-acute constraints satisfy the current solution.

Constraint No. (i) A, bi. | b — A x©
3 [2,-3]T | 18 | —336.3468
5 [-9,2]" | =15 | 1329.7921
6 [0,—1]" | —1 | —22.7190

Let T

and TT,

NonAcute

NonAcute

— {'L € INonAcute | bz -

= {i € INonacute | bi — A% <0} = {3,6}

Alx>0} = {5}.

The constraints in the set of InonAucte+ are reinserted into the

initial simplex

tableau.
i x] w wmy, s sy s3 sy RHS
z| =11 |—=1] 10,0100/ 122.8759
s;| 1 | —=1] 5 |-=5]1]0]0]0 0
So | =2 2 4 | =410] 1|0 /0] 379.0658
sg | —11 1 5 | =5 0] 0|1 |0 263.1899
sS4 | =91 9 2 | —=2]0/107]0|1]|1329.7921

Step 9: Reinsert the constraints in the set of I

NonAcute

99

into the simplex tableau.

vl a2y xf oz, s1 Sy S3 sS4 S5 Sg RHS
z|—1] 1 |-=1]11]0,0]0]0]01|0 122.8759
st 1 | =15 |—=5]1,0]0]0]01|0 0
So | =2 | 2 4 | =410 110[0]0] 0] 379.0658
ss| —11] 1 5 | =51 0101 ,0]|0] 0] 263.1899
sS4 1 —91 9 2 1 =2,010]0 171010/ 1329.7921
s 2 | —2(-=3] 3 [0|,0]|0]0] 1|0/ —336.3468
s¢ | O O |—-1] 1]0]0]010]|0]1 —22.719

Step 10: Perturb the reduced costs of the simplex tableau to make the dual solution

feasible and perform the dual simplex method.

vy oz w3y x, S1 Sy S3 S4 S5 Se RHS

z|-1|-1|-1|-1]0]0]0|0]0]O0 122.8759
s;| 1 | =1 5 | =51]0[0]0]0]O0 0

So | —2 | 2 4 | =470 110]0]0]0] 379.0658
s | —1] 1 5 | =51 010|100 0]| 263.1899
sS4 1 —91 9 2 | =210[0]0] 1|00/ 1329.7921
ss | 2 | —21-=3| 3 |0]0]0]0| 1] 0] —336.3468
s¢ | O O |—-1}1]0[0]0]0]0]|1 —22.719

the dual simplex method, x; is the entering variable and s; is the leaving

100

variable. After pivoting, the updated simplex tableau can be written as follows:

xf] 5 T, S Sy 83 84 S Sg RHS
z | —1.6667 | —0.3333 —2(0]0[0|0|—-03333]0 235
s1 | 4.3333 | —4.3333 O [1]0]0|0]| 16667 | 0| —560.5714
s9 | 0.6667 | —0.6667 0O]0]1 00| 13333 | O —69.4
s3 | 2.3333 | —2.3333 0O]0]0| 1|0 16667 | O —297.4
S4 | —7.6667 | 7.6667 0]0]0]0|1]| 06667 | 0| 1105.5556
x4 | —0.6667 | 0.6667 —-1(0]0]0]0|—-03333]|0 | 112.1111
s¢ | —0.6667 | 0.6667 0]0]0]0|0|—-03333]1 89.4
The entering variable is z; and the leaving variable is si. After pivoting, the
simplex tableau is represented as follows:
o7 Ty T S 51 Sa 83 84 S5 56 RHS
z | =2 8 Y2 0 010]0]| —05 | 02781111
xy | —1 010 —025 [0]0|0|—-0375] 0| 129.375
ss | O 0| 0] 0 |—-01429|1 00 1 0 | 16.8571
s3 | 00| 0710 —0.5 010107778 | 0 4.5
s | 000710 1.7778 | 0] 0|1 3.6 0| 113.75
3| 0 | O | 1 |—=1| 01667 [0|00 0 0| 25875
s¢ | O] 0|07 0] 01667 [O |00 0 1] 3.1429

For the current simplex tableau, it is the optimal tableau.

Thus, the original

reduced cost is reinserted to the simplex tableau.

R P R 51 Sa 83 Sy S5 s¢ RHS

z | 0000 0.375 00| 01]03333 | 0| 19.375
xz; =1 1] 0] 0 —025 | 0[O0 | 0] —=0375] 0| 129.375
so | 01 0] 0] 0]—-01429| 1|00 1 0 | 16.8571
ss | 01000 —0.5 0| 1]0]07778 | 0 4.5

s4 | 0001070 17778 1 0 | 0|1 3.6 0 | 113.75
3 | 0 | 0| 1 |[—=1} 01667 | 0| 0|0 0 0 | 25.875
s¢ | O 0] 0] 0] 01667 [0] O0]O 0 1] 3.1429

101

Since this simplex tableau is the optimal tableau, the solution is restored to the

solution of the original LP model as follows:

Thus, the solution is

1, 22) 7

= [#1,79] "

By Zo)' = [zf, 2]

Jom oy g)T

= [0,207/8]" — [1035/8,0] T

= [-129.3750,25.8750] .

+ [#1, #2] T

= [~129.3750,25.8750] T + [144.5949, —21.7190]

= [15.2308,4.1538] .

with the objective value is 19.3846.

The geometric views of Example 4.10 are shown in Figure 4.4(a)-4.4(f).

(c) Perform the iterative jump.

X,

Ay 4z Ar.

Az

T o

(e) Reinsert the non-acute constraints.

102

X1

(b) Create the LP relaxation.

X,

X

(d) Create the transformed LP model.

Ay Aa: A

Optimal point

Az

T o

(f) Perform the dual simplex method.

Figure 4.4: Geometric views of SAJS performing on Example 4.1.

4.3 Results and experiments

In this section, the problems used to test the effectiveness of the self-regulating

artificial-free linear programming solver using a jump and simplex method (SAJS) are

explained. The tested problems are divided into two collections: the randomly generated

problems and the Netlib problems. After that, the computational results of the wall-

clock time of SAJS, SNAR, and the two-phase simplex method (TP) are shown and

summarized. The experiments were operated by an Intel(R) Core(TM) i7-3770 CPUQ
3.40 GHz processor with 8 GB RAM on Windows 10. All methods were written by

103

NumPy library in Python.

4.3.1 The randomly generated problem
The maximized LP model is constructed as follows:

« the number of constraints (m) is higher than the number of variables (n),
« the objective vector (c) is generated as the vector of ones,
o the generated rows of A are divided into two groups:

3
1. for i = 1,2,...,t, where t = [Zn-‘, all coefficients in this group of A are

uniformly random from [—3, 9],

2. for i = t+ 1,t + 2,...,m, all coefficients in this group of A are uniformly

random from [—9, 3],

Note: For rows in the first group of A, it has a high probability that the created
constraint makes an acute angle with the objective vector. Meanwhile, the second
group has a high probability that the created constraint makes an obtuse angle

with the objective vector.

o the right-hand side vector is created as follows:

first, x where z; € [-9,9], j = 1,2,...,n is generated to guarantee a nonempty
feasible region. After that, the right-hand side vector is established as b; = A x

where i = 1,2,...,n and b; = A;I:X-}- 1 wherei=n+1,n+2,..,m.

The different sizes of m and n with the randomly generated problems are defined as
. m 2m 3m 4m
following. Let m > n, m € {100,200, 300,400, 500, 1000, 2000} and n € 10°10° 10° 10 [

For each size of the randomly generated, the wall-clock times are averaged from 10 LP

problems.

4.3.2 The Netlib problem

The Netlib LP test sets used to test the effectiveness of all methods are in the Math-
ematical Programming System (MPS) format. Each section of the MPS file is separated

into a header which consists of a single word. Types of the headers are defined as follows:

Table 4.1: Description of the header in the MPS file.

Header Description of each header

NAME The name of the LP problem.

ROWS The type and name of each constraint.

COLUMNS | The name of each variable including the coefficient
of the constraints and the objective function.

RHS The name of the right-hand side vector including
the values of each constraint.

ENDDATA | The end of reading of the MPS file.

104

In the section of ROWS; the type of constraints are defined by a single letter as

e N : the objective function

G : the greater than or equal to constraint

e L : the less than or equal to constraint

o E : the equality constraint.

In the header of COLUMNS and ROWS, the non-zero value of coefficients of the

objective function and constraints are represented in the MPS file.

The next demonstrated example will show how the LP model in the MPS format

is translated to the traditional LP model.

NAME Example4.1

ROWS

N 0BJ

G R1

E R2

L R3

L R4

L R5

G R6

COLUMNS
x1 R2
x1 R3
x1 R4
x1 0BJ
x2 R1
x2 R2
x2 R3
x2 0BJ
x3 Rl

x3 R2

105

x3

x3

x3

x4

x4

x4

x4

x4

RHS

RHS1

RHS1

RHS1

RHS1

RHS1

RHS1

ENDDATA

The equivalent LP model of the MPS file is shown in the following.

R4

R5

0BJ

R2

R3

R4

R5

0BJ

R1

R2

R3

R4

R5

R6

20

18

10

106

Example 4.2.

OBJ :

R1:

R2:

R3:

R4 :

R5:

R6 :

Minimize

subject to

—3x1 4+ 49 — dx3 + 314
2x9 + 33

3.7,'1 — 3.7,'2 + 6.1‘3 — T4

—3x1 + 2x9 — 41y
201 —x3 + 4xy
3

T4

T1,22,T3,T4

107

(4.16)

Since the format LP model used in this dissertation corresponds with LP (4.5).

Thus, the equality constraint

is transformed as

After that, for all constraints of LP (4.16), x1 is represented by

3x1 — 3xo + 623 — x4 = 20

_20+3x2—6x3+x4

r1 =

3

Thus, the LP model is written as follows:

(4.17)

(4.18)

20 + 3z9 — 623 + 24
3 .

108

Minimize —3xzo + 6x3 — x4 — 20
subject to 29 + 3x3 > 8,
—x9 + 6x3 — b1y < 14,
14 14
2x9 — 513+ —x4 < —,
3 3 (4.19)
z3 < 107
T4 > 2,
3rg — 613 + x4 > —20,
X2, X3, T4 > 0.

Next, the greater than or equal to constraints will be multiplied by -1 to convert

them into the less than or equal to constraints.

Minimize —3x9 + 6x3 — x4 — 20

subject to —2x9 — 3x3 < =8,
—Tg + 623 — Sy < 14,

9 T < 14
X9 — I —Z -
2 3 3 4 =3)
I3 § 10,

(4.20)

—T4 S _27
—3x2 + 6@3 — X4 S 207

—x2 S 07

—x3 S O)

—xy < 0.

4.3.3 Computational result

The iterative jump method will terminate when it satisfied the stopping criterion.

The stopping criterion introduced in this dissertation is the stopping criterion involved the

109

improvement of the objective values having the stopping parameter, €, which is defined as

the least ratio improvement of two consecutive differences of the objective values. Thus,
CTXH—Q - CTXz‘+1
c'xiy1 —clx;

will continue. The best € will be the one that gives the fastest average wall-clock times

for each i** jump, if is greater than ¢ then the iterative jump method

of SAJS which are tested and are shown in Table 4.2.

110

abod Jxau Y] U0 PINULIUO))

00€

00¢

00T

(€602°0F) €20L°T | (€SLT°0F) $TLO'T | (8STE'0F) 80LT | (€852°0F) 0889'T | (00£2°0F) 8L T | 01
(8GST°0F) €€€0°T | (PLST'0F) 2850°T | (ETET'0F) €460°T | (9SST°0F) 6680°T | (L8ET'0F) C8IT'T | 06
(S0TT'0F) 1€£L°0 | (GTI80°0F) ¢1€8°0 | (0SFT'0F) &1¥L 0 | (£860°0F) 60680 | (IGIT°0F) 615L°0 | 09
(2690°0F) 0620 | (1560°0F) 0,00 | (3860°0F) L6520 | (6L80°0F) LF920 | (SF80°0F) T¥¥2°0 | 0¢
(L020°0F) L0L5°0 | (FIGTOF) LEOS0 | (LITT'0F) 0950 | (G8IT°0F) ¥£95°0 | (1960°0F) #8650 | 08
(€280°0F) 62170 | (6760°0F) 626£°0 | (0220 0F) SS¥€°0 | (680T°0F) L06£°0 | (6160°0F) 19TF°0 | 09
(FE70°0F) 92520 | (1090°0F) €280 | (L890°0F) 6€52°0 | (8090°0F) LGz 0 | (09¢0°0F) 8€LT°0 | OF
(9210°0F) 82L0°0 | (8920°0F) G280°0 | (88T0°0F) €990°0 | (¥F50°0F) 91200 | (L5€0°0F) 24800 | 0%
(9620°0F) 68L0°0 | (€020°0F) 91L0°0 | (L6T0°0F) ¥I80°0 | (L&g0'0F) 162070 | (26¢0°0F) €010 | OF
(820°0F) 50200 | (eF€0°0F) #€L0°0 | (0920°0F) 126900 | (2910°0F) 97900 | (L9T0°0F) LTS0°0 | 0€
(6610°0F) ©260°0 | (1LT0°0F) 6S€0°0 | (€020°0F) €6€0°0 | (ZET0°0F) €620°0 | (FI200F) €560°0 | 0
(07€0°0F) 76200 | (SP20°0F) L620°0 | (8200°0F) £800°0 | (¢800°0F) 21100 | (6200°0F) 9STO0 | OT
09°0=2 06°0=>2 07’ 0=>2 06°0=2 06'0=>2
100

(*098) QIS Jo awI) YoOo[O-[[eM dFRIaAR B,

MOY

‘3 Sutdrea seourwiojed QrVS g% 9[qel,

111

G819°'1

98191

6609°T

LETO'T

€9€9°1

o8RIoAY

(€S67'TF) 9676°L

(928¢°1F) LF00°S

(€€CT1F) 6SF8 L

(€L9T'TF) ZFOT'S

(98€0°TF) 8¢80°8

00¢

(CT1L7'0F) CaTv's

(17C€°0F) 186E°C

(12LE0F) CHFI'G

(26.G°0F) 8912

(190¢°0F) €€7¥°G

0sT

(0z€€0F) 8TET'E

(F9C€°0F) L63T '€

(79ST°0F) 6882

(7£62°0F) €20€°E

(¢TzT 0F) 768e'e

009
00T

(0L81°0F) 6212°T

(FELT'0F) €L02'T

(PLST'0F) 062T°T

(189T°0F) 7L¥T'T

(G8VT'0F) TeeT'T

0¢

(69LG°0F) CI8T¥

(9LLG°0F) L1TE¥

(9L79°0F) 027E¥

(9265°0F) 2GETF

(€eL9°0F) T9LE¥

09T

(C0G°0F) €6€6°C

(£22€0F) €98L°C

(072€0F) €0€8°C

(8T2€'0F) LTIR'C

(009€°0F) €€76°C

0cI

(660z°0F) L009'T

(0€12°0F) €L19°T

(87€2°0F) L¥ES'T

(0672 0F) ¥46S°1

(06£2°0F) 0209'T

00¥
08

(0SET°0F) ¥£9S°0

(£650°0F) T8ES0

(LFP1°0F) 0SS 0

(£660°0F) 9SS0

(2€01°0F) 8009°0

%

09°0=3

06'0==

0¥7'0==

0¢'0==

0¢'0==

(*098) QY JO o) YOO[D-[[em OFRIoAR O[T,

[0D | M0y

abod snowoud 2Yy) woLf ponuguo;y) — 7'y R,

112

In Table 4.2, it demonstrates the average wall-clock time (in seconds) varying
e = 0.20,0.30,0.40,0.50,0.60 of SAJS. For Table 4.2, Row represents the number of
constraints in the LP model, Col represents the number of variables in the LP model,
the boldface numbers identify the smallest average wall-clock time and the number in
parenthesis represents the standard deviations of each size of the LP model. Both meth-

ods are tested with the different sizes of the LP models as m = {100, 200, 300, 400, 500}
and n — {m 2m 3m 4m

107107107 10
each size problem are not significantly different in each €. However, SAJS with ¢ = 0.40

}. The results of the average wall-clock times in SAJS for

takes the least total average wall-clock time. Therefore, for this dissertation, SAJS uses
€ = 0.40 to compare with TP and SNAR with 280 randomly generated problems presented
in Table 4.3.

Table 4.3: The comparison of the average wall-clock time of SAJS with £=0.40, TP,
and SNAR on randomly generated linear programming problems.

Row | Col | SAJS with e=0.40 TP SNAR
10 | 0.0087 (£0.0078) 0.0545 (+0.0391) 0.0328 (£0.0295)
o 20 | 0.0393 (+0.0203) 0.0754 (£0.0254) 0.0811 (40.0350)
30 | 0.0621 (+0.0260) 0.0859 (£0.0339) 0.1769 (40.0778)
40 | 0.0814 (40.0197) 0.1232 (40.0413) 0.3361 (40.1292)
20 | 0.0653 (+0.0188) 0.2587 (£0.1502) 0.1060 (£0.0382)
- 40 | 0.2539 (+0.0627) 0.4503 (£0.1196) 0.4667 (£0.1568)
60 | 0.3455 (+0.0720) 0.4563 (£0.0778) 1.4911 (+0.4156)
80 | 0.5604 (+0.1117) 0.5722 (£0.1070) 2.9059 (+0.5067)
30 | 0.2937 (4+0.0982) 1.0987 (£0.2552) 0.4030 (£0.2304)
- 60 | 0.7412 (+0.1450) 1.5624 (+0.2246) 1.5629 (+0.4752)
90 1.0973 (+0.1313) 1.8698 (0.4564) 6.4747 (42.3881)
120 | 1.7038 (£0.2158) 2.5036 (+0.3773) 16.8580 (£5.4162)
400 | 40 | 0.5505 (£0.1447) 1.8357 (£0.7608) 0.8795 (40.2560)

Continued on the next page

Table 4.3 — Continued from the previous page

113

Row | Col SAJS with €=0.40 TP SNAR
80 1.5347 (+£0.2348) 3.9229 (£1.0108) 4.5473 (£1.0408)
400 | 120 2.8303 (£0.3240) 4.2499 (£0.6664) 31.1020 (£16.5569)
160 4.3220 (£0.6476) 6.3061 (£1.0764) 96.1301 (£14.6135)
50 1.1290 (+0.1874) 4.2233 (£1.6131) 1.7442 (£0.2062)
00 100 3.2889 (£0.2554) 6.0040 (£1.4478) 10.1424 (£+4.4312)
150 5.4445 (+0.3721) 8.4096 (£1.2648) 88.5504 (£43.5178)
200 7.8459 (£1.1333) 11.9502 (£1.3608) 248.8169 (£35.2017)
100 9.6681 (£1.0846) 41.8906 (£16.9485) 13.5965 (+2.3317)
1000 200 | 30.5525 (+£4.3661) 67.8041 (£19.6872) 345.9712 (£76.8162)
300 | 58.5633 (£4.5964) 100.1301 (£18.2994) 1,325.4713 (£355.2482)
400 | 86.3726 (£14.0708) 119.9710 (£12.2241) 4,005.7372 (£510.1724)
200 | 98.4510 (+£10.9009) 490.0733 (£129.8028) 255.0905 (£60.6867)
2000 400 | 356.8204 (+40.8287) 628.8453 (£171.6103) | 4,675.7620 (+£1419.6281)
600 | 732.6358 (+83.2131) | 1,020.2260 (£161.6943) | 24,843.2105 (£12659.5754)
800 | 983.3027 (£72.5009) | 1,322.7826 (+140.8523) | 54,348.7565 (£9224.8811)
Average | 85.3059 137.4191 3225.9430

In Table 4.3, Row represents the number of constraints in the LP model, Col repre-

sents the number of variables in the LP model, the boldface numbers identify the smallest

average wall-clock time and the number in parenthesis represents the standard deviations

of each size of the LP model.

Table 4.3 shows that the wall-clock time of SAJS with

€ = 0.40 outperforms TP and SNAR for all randomly generated LP models. Since artifi-

cial variables are added to the LP model for the TP method. Thus, its size is expanded

which affects the solution time. While SNAR reinserts the non-acute constraint one by

one into the LP relaxation when the solution of the LP relaxation is unbounded. As a

114

result, it requires longer computational time to find a solution. Furthermore, Figure 4.5 to
Figure 4.11 present the comparison of the wall-clock time of SAJS with ¢ = 0.40, TP and
SNAR for each size of the number of constraints from {100, 200, 300, 400, 500, 1000, 2000}.

= I0SAJS (e = 0.40)
g 0.3 |0 TP il
s Bo SNAR
= 0.25 |
g
3
! 0.2 :
[} —
L %
= B 2]
g 015 7
o 7
o0 7
£ 0.1 Z .
g 7
© il 7
[} -2 L si|1es 2 N
= 510 Hl 7
& % H_H | _
0 ;- |7 7 i
S & »
* ¥ +
D N N
S N S

Figure 4.5: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 100 constraints.

77
77
- 0SAJS 0.40 %
X g =\u. 77
) v
77
2 95 (o r'p %
. Z |
1971 . 77
N 77
77
NAR '
D] vz
27
77
77
o= 7z
77
+ 2 7 .
77
R 77
77
[} A
77
] A
77
— 77
O -7
S 15F 7 % .
— 77 77
72 77
< 77 77
72 77
= 77 77
70 77
77 77
o 70 77
27 77
o0 1+ 77 77 -
27 77
< A 77
Y 77
— 77 27
q') ’7 /7.
77 77
> 77 77
77 77
< 77 27
27 77
0.5+ z % .
O . 77 7
R 77 77
70 77
70 77
H 77 77
72 77
70 77
72 77
0 70 77

Figure 4.6: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 200 constraints.

115

— 16 |10SAJS (¢ = 0.40) 1
%1mﬂm TP |
: fla SNAR
= 12 |
3
S 101 §
e
= 8 |
=
o 6 |
Z %
& 7
= 20 7 4
0 emfiilem m] Iﬂ]ﬂ [
N S S $
Q’\’ Q% Q’\/ *N
$ S S $

Figure 4.7: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 300 constraints.

~ I0SAJS (e = 0.40) ’
2 807lﬂm TP |
o (L SNAR
E
< 60 :
2
¢
=
B 40| 8
)
=Y0)
&)
5
= 20| |
5}
=
=
0 R L

> S

X X

S S

Figure 4.8: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 400 constraints.

116

250 [o7]
= lUSAJS (e = 0.40)
g lo TP
SN~— 77
o 200 | Ha SNAR %)
g ~
= 77
Ny 7
4 ~
s 150 | Z 8
— 77
[} 27
L Z
= %
g -
- 100} .
o0 7
< %
=~ 2
g %
= 50 g -
@ 7
< Z
= .
0 = =
3
=
QD
S

Figure 4.9: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 500 constraints.

| il

4,000 F]
o l0SAJS (e = 0.40)
S ia TP
= i} SNAR
= 3,000 i
=
(&)
__Q
(&)
< 2,000 | i
<
=
)]
[=Y0]
S 1,000 / y
[av] 7
o f
= ;
H 77 é

0 = e T :

S
Q)(Q)(
s $

Figure 4.10: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 1000 constraints.

117

-10%
| |

© v

8 i TP 2

N vz

[l SNAR 47

@ v
g 4} |

or— /77

= v

-4 vz

[} v

o v
— 3 [77 |

o v

R vz

— vz

o) 7 v

B 2
| 7’7 777 1

<Y} % vz

g % vz

I % vz

= 7 .
© 1} 7 o2 8

@ % vz

'Q 77 777

[%

0 . fnnn A2 fimm] S| 224 [nmm | MM 22

T - I T
S Q: Q: S
Qv » S o)
:Qb S S S
v Vv v Vv

Figure 4.11: The comparison of SAJS, TP, and SNAR using the average wall-clock
time-randomly generated linear programming problems with 2000 constraints.

From Figure 4.5 - Figure 4.11, it shows that SNAR has poor performance more
than other methods especially the LP model with a large number of variables. While

other methods provide similar performance.

118

abod jxou 9Y) U0 PINUUO))

THLIT 8CET"0 12L7°0 zel | S6C 09T GeT AANVYL
1729°C PP19°0 87970 erT | L1g 868 61 | AINODVHLI
€88¢'T 12F8'T 6T26°0 9eT | €47 69T 78 €02DS
T1€5T'E L96G°T 8LTL'T a1 | 91¢ 1LT P dIAMVHS
L6ET0 €861°0 6CTE0 9¢ | G8T LTT 89 A1LLITIAV
88L€°0 92510 8280°0 sy | ot 06 Gl deAMVHS
FG8E0 7600 6£70°0 8¢ | go1 €aT 0T LYDVOS
0622°0 €TET0 92zE0 99 | 291 66 €9 c01DS
LE60°0 68TT°0 $290°0 o | w1 d) a4 THOID0LS
$290°0 1Eez 0 L00T°0 78 | ser 1. L9 andid
zIE0'0 95T0°0 9¢T0°0 8¢ | 8L €l G V0S0S
6920°0 LETO0 0600°0 8¢ | 8L 89 0T q0SDS
09100 0600°0 0.00°0 ve | 16 8¢ el OUIV
HVNS dL 0F'0=3 UMM VS | [0D | MOY | OMOYUONFH | MOy 7

‘suo[qoad qIp3eN uo YYNS Pue ‘dI ‘070 = 3 UM SLYS JO o) YDO-[[em d3eioae o1} Jo uostredwon oy, :H°§ o[qel,

119

abod jxou 9y} U0 PINUUO))

LTLG9T6 | 1990°0T 9966°¢ 00 | 1.9 98¢ G8% 1dsDS
08SFP8'€Ee | 999G°TE 795€°ST gTe | 69L 607 0G¢e CNADAA
1976°6 €eTL9 €6LE'E Tre | saL cre GF 1dVIOS
169%°L87 | 0G8S°C VTrL'T The | sqL 54 €1g £ODV
STL6FFY | 99.9'8 €G8T'¥ 1. | 109 16¢€ 01¢ ZODV
78eT0TE | Tere’s VEET'9 09¢ | 099 L61 €9y TINXADS
FE0E'06C | G396'9 6991°C 19T | TL¥ €0 612 STUDVDS
€CTGLET | 6LVTT 80970 80T | 967 022 9.2 9gzd
T6FGG0T | FSEST 7286°0 LT | GT9 7eT 19¢ ANV
98€6°G9T | 099L'S 7909°G 6VC | olv zee 0¥a DOV
0019°6F Pr0g LS 6060°ET €89 | 094 90¢ s 111071
TGLT T 76ETC 95€9'T 0TT | ogg €z L NOIdHODS
9900°8 702S'T 1269°'T €1z | 99¢ Tre el TAVYUSI
HVNS dL 0F'0=3 UMM VS | [0D | MOY | OMOYUONFH | MOy 7

obod snowoud ayy wolf panuruoy) — 'y 9[qrl,

120

abod jxou 9y} U0 PINUUO))

888L°SPCT | LZ10°CT09 €918'L5TT 169€ | 6CHY 1€1¢ 862 edV.IOS
VN 886€'LLS 9L18°07C LTST | 868 €897 66T SZ1dIHS
VN G6V1'€55T 6772 189 €0TT | 9097 9zHT 08TT SS0JIHS
TLS0°08€8C | TEH0'LIL S0%0'EFF OTFT | 0052 LTl €LLT THOJIHS
T€6L°€0E | 950L'90L STFH 991 GCLT | €85T LzET 9021 ¢dVIOS
VN 9218 L9T G9LT'TL €18 | €08T €LTT 0€9 eNADAA
6080°6268 | 92€6'TE6T £€7S°895 9G0T | 8LST eIl 7oL | 24OIDOLS
VN LLGST6ET £887°90% €CET | 06LT 8C0T zTLT LYACT
9zG8 0679T | LEIT TIC LTEL6ST 908T | 8022 L60T 111 SPOJIHS
VN 09L6'G6 ST62Z°0€ are | 2ozt 208 00¥ 9aSOS
VN 8ET9'LGT L099°TS OFTT | SFCT 6. 29 CINXADS
0GTS'6L6T | LG09°60T £e7E 98 8L | GLTT 116 9L 8SHUDS
€6VT°66TY | 0FGS'80E L90E°9L €0CT | 0GET Tre 808 CINXADS
HVNS dL 0F'0=3 UMM VS | [0D | MOY | OMOYUONFH | MOy 7

obod snowoud ayy wolf panuruoy) — 'y 9[qrl,

121

9¥6¢°908 8€9€°6C1 oBeIoAy

VN 6¢179°LL6 780G SST 888 | G10¢ ¢Lal €LLT T80dIHS

VN 8¥60°6L1¢ 6SLET6L 098T | O7€€E 186 65€C 8dSOS
HVNS dL 0F'0=2 YA SLYS | 10D | MOY | SIMOVUONH | 9Oy #

obod snowoud ayy wolf panuruoy) — 'y 9[qrl,

122

Table 4.4 shows the comparison of SAJS with e = 0.40, TP and SNAR with 41
standard problems from Netlib. In Table 4.4, #Acute represents the number of acute
constraints, #NonAcute represents the number of non-acute constraints, Row represents
the number of constraints in the LP model, Col represents the number of variables in the
LP model, the boldface numbers identify the smallest wall-clock time. In this dissertation,
the maximum time limit of computation is defined as one day (86,400 seconds). If the wall-
clock time of computation of the Netlib problem exceeds the time limit, it is represented
by NA. The Netlib problems which SNAR exceeds the time limit in Table 4.4 are SCSD6,
SCSD8, 25FV47, SCFXM3, SHIP08S, DEGEN3, SHIP12S and SHIPOSL.

The results from Table 4.4 are indicated that SAJS with e = 0.40 gives the minimum
average all-clock time for the Netlib problems. Most Netlib problems, SAJS is more
effective than TP and SNAR except SC50A, BLEND, SC105, ADLITTLE, BRANDY
and SCTAP3. For SC50A, ADLITTLE and BRANDY, TP takes the least wall-clock
time. However, the wall-clock times of SAJS are slightly different from TP for these
problems. Similarly, BLEND, SC105, and SCTAP3, SNAR takes the least wall-clock
time which is only slightly different from SAJS. In addition, Table 4.4 shows that the size
of the LP problem influences the wall-clock solution time. For the small-size LP model
(the number of variables x the number of constraints less than 30,000), from AFIRO to
ADLITTLE, the performance of SAJS, TP, and SNAR are similar. When the size of the
LP model is medium (the number of variables x the number of constraints is greater than
30,000 but less than 200,000), from SHARE1B to AGG3, the efficiency of SNAR is poor
except BRANDY, SCTAP1, SCTAP2, and SCTAP3 which is similar in performance to
SAJS. For a large-size LP model (the number of variables x the number of constraints
is greater than 200,000), from SCTAP1 to SHIPO8L, SAJS outperforms TP and SNAR
except for SCTAP3.

4.4 Conclusion

The self-regulating artificial-free method for solving a linear program, namely SAJS
is proposed in this chapter. It consists of three phases: phase 1 is the creation of the LP
relaxation having only the acute constraints, phase 2 is the iterative jump performing
on the LP relaxation, and phase 3 is the reinsertion the non-acute constraints. The LP

relaxation constructed in phase 1 can guarantee the existence of the feasible point. For

123

the iterative jump method performed in phase 2, it is applied to improve the current
feasible point. In phase 3, the non-acute constraints are reinserted to the LP relaxation

in order to find the feasible solution of the original LP model.

The improvement of solving the LP model is still an ongoing research. Usually, the
simplex method begins with a basic feasible solution and continuously updates the basic
feasible solution until the optimal solution is found. In other words, it starts at the initial
extreme point and moves that extreme point to adjacent one until the optimal point is
found. Therefore, if the LP model consists of enormous constraints, it may visit many
extreme points that may affect the time to find the solution. Therefore, the iterative jump
method applied in SAJS is introduced to improve the feasible solution by avoiding some
extreme points which can reduce the computational time significantly. For the LP model,
if the origin point is feasible, the simplex method can start immediately. Otherwise, the
artificial variables are added to the LP model then the two-phase simplex method or the
big-M simplex method is performed which it increases the size of the LP model. For all
above reason, SAJS is presented to improve solving the LP model by using the iterative
jump without artificial variables. SAJS does not use artificial variables so it will not
increase the problem size. Moreover, SAJS applies the iterative jump method on the LP
relaxation having smaller number of extreme points. Likewise, the number of constraints
performed by the iterative jump method are smaller than the original LP model that it

can reduce the computational time for each iteration.

The two-phase simplex method and SNAR are used to test the effectiveness of
SAJS by randomly generated problems and Netlib problems. For all randomly generated
problems, SAJS outperforms the two-phase simplex method and SNAR. Since the two-
phase simplex method needs to add artificial variables which enlarges the size of the LP
model. Thus, it takes a long time to solve the LP model while both SAJS and SNAR do
not need artificial variables. However, for most randomly generated problem, SNAR is
inferior to those from both SAJS and the two-phase simplex method. Since if the solution
of the LP relaxation is unbounded, a single non-acute constraint is reinserted to the LP
relaxation one by one which takes a long time. Except for the LP model with few variables

m

where n = 107 SNAR is more effectively than the two-phase simplex method.

To verify the effectiveness of SAJS, Netlib problems are used. The results show

124

that the average wall-clock time of SAJS is less than both the two-phase method and
SNAR significantly. Moreover, the nonparametric Wilcoxon test verified the effectiveness
of SAJS. For the Wilcoxon signed-rank test, the p-value of the difference between SAJS
and TP is equal to 1.4758x10~7 and the p-value of the difference between SAJS and
SNAR is equal to 5.9125x107%. Thus, SAJS statistically significantly outperforms both
TP and SNAR.

SAJS is the method for solving the LP model by relaxing all non-acute constraints
in order to reduce the number of constraints in performing the iterative jump method.
However, applying the iterative jump on the LP relaxation may make the last jump point
obtained from the iterative jump method infeasible for the original LP model. As a result,
the primal solution of the transformed LP model, which is created by setting the last jump
point to the origin point, is infeasible. Moreover, the dual solution of the transformed
LP model is infeasible too. Thus, the technique of Pan [2] is applied to change the
dual solution is feasible before performing the dual simplex method. From the reasons
mentioned above, It makes SAJS complicated and time-consuming to manage. Therefore,
AJSP is introduced in order to find the solution of the LP model without artificial variables
and without removing constraints by applying the jump technique proposed in Chapter

o.

CHAPTER V

ARTIFICIAL-FREE LINEAR
PROGRAMMING USING A JUMP AND THE
SIMPLEX METHOD BY STARTING WITH

PERTURBED CONSTRAINTS

The artificial-free linear programming using a jump and the simplex method by
starting with perturbed constraints called AJSP starts by creating the perturbation LP
model that will be suitable to perform the iterative jump method. The perturbation LP
model initially keeps all acute constraints which guarantees to have a feasible point. Af-
ter the initial feasible point is identified, it checked the consistency with all constraints.
If that point is feasible for all constraints, then the original LP model is defined as the
perturbation LP model. Otherwise, each constraint in which the initial feasible point
does not satisfy is disturbed and the original constraints are replaced by the perturbed
constraints. This LP model is called the perturbation LP model. After the perturbation
LP model is created, the iterative jump method is performed at this initial feasible point.
For each iteration of the iterative jump method, the new jump point is checked for con-
sistency with all original constraints. If there is a constraint which the new jump point
satisfies that constraint is restored to the original constraint. The process of the iterative
jump method is executed until it reaches the stopping criterion. Then, the perturbation
LP model will be converted to the transformed LP model. After that, the new technique
of solving unrestricted variable problems proposed by Visuthirattanamanee et al. [20] is
applied to find the solution of the transformed LP model. After the solution is found, the
rest of original constraints are restored. The current solution is the optimal solution of
the original LP model when the primal solution is feasible. Otherwise, the dual simplex

method is performed to find the solution of the original LP model.

5.1

126

Artificial-free linear programming using a jump and the simplex

method by starting with perturbed constraints

Consider a linear program in the following form:

Maximize c¢'x

subject to Ax < b.

where c € R", x € R", b € R™, and A € R™*". Let Index = {1,2,...,m}.

The process of AJSP can be summarized in six steps as follows:

Step 1: Let I4eue be a set of the acute constraints which can be calculated as

follows:

TAcute = {z € Index | A;-';c > 0} .

Step 2: The initial feasible point is defined by considering only the acute constraints.

Let Ty ope = {i € Lacute | bi <0}

If by,.,,. > 0, the initial feasible point (x(?)) is defined as

x(0) — \¢ where A = min {b_ll_} and 7(0) = argmin {b_zr}
i€lacue | Aj C i€l acute i: €

Otherwise, the initial feasible point (x(?)) is defined as

x(0) = —\c where A = max { bi_r } and (0 = argmax{ bi.l_ }
_A ¢ ieI;cute _AZC

1€ e i

Step 3: All constraints are checked consistency with x(©). Let t = b—Ax® . If t >
0, then the current LP model is defined as the perturbation LP model immediately
and x(© is set as the initial feasible point of the iterative jump method. Otherwise,
the constraints, which x(©) does not satisfy, are perturbed before performing the

iterative jump method as follows:

i 0 ift; >0,
For i € Index, b; = b; — 3 where 8 =

t;, —1 ift; <O.

127

Then, the perturbation LP model is constructed as

Maximize c¢'x

subject to Ax < b.

Step 4: The iterative jump method is performed by Algorithm 3. The inputs of
the algorithm are A, b, b, c, x(0), ,y(o)? Index and €. The stopping parameter
(€) is defined as the least ratio improvement of two consecutive differences of the
objective values which the user can accept. This is discussed in section 5.2.1. For
each iteration of the iterative jump method, the new jump point needs to check the
consistency of all constraints. If there is a constraint which the new jump point

satisfies, that constraint is restored to the original constraint.

128

Algorithm 3 The algorithm of the iterative jump method for AJSP

Input: A.b,b,c,x© +O Index, Tol

Output: x

1:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

Set k =0, Az = Az =1 where Az and Az are the initial values of
the consecutive difference.

Set temp = {i € Index | b; — A;. - x© < 0}
(k+1)

. z
while W > Tol do
—A_ .
Compute v = 7 + ¢ , where ¢ # 0.
[A .l el

Construct Index’ = Index \ {®}.
Set « = M, where M be a large constant.
for i € Indez’ do

if A/v>0and b —Alx® >0 then
b — Al x(®

Compute Dist =
P Alv

if Dist < o then
Define o = Dist.
Define v+ = .
if « # M then
Compute x**+D = x*) 4 v,
Compute AzF+D = ex+D — ex(®),
Compute k =k + 1.
else
break
if temp # () then
for i € Index do
if b; — A;. - x® >0 then
Set b; = b;
Set temp = temp \ {i}

Set x = x(k+1)

129

Step 5: After Algorithm 3 terminates, the last jump point (X) is relocated to the

origin point of the transformed LP model. Let x = x — X.

Thus, the transformed LP model can be written as.

Maximize c¢'x+c¢'x

(5.3)
subject to AX < b — AX.
After that, the slack variable is added to the transformed LP model.
Maximize c¢'%+c'%x
subject to AX +s=b — AX, (5.4)

s> 0.

Since the current transformed LP model is an unrestricted variable problem, the
new technique of solving the unrestricted variable by Visuthirattanamanee et al.

[20] is applied to find the solution without adding the artificial variables.

Step 6: After the solution is found, the original constraints are reinserted to the
transformed LP model. However, if the primal solution of the current LP model is
feasible, then the current solution of the transformed LP model will be the solution
of the original model as well. Otherwise, the current simplex tableau is restored to
the standard tableau of the simplex method and then the dual simplex method is

performed. After that, the solution is restored to the original LP model.

Next, the flowchart of AJSP, comprised of six steps, is shown in Figure 5.1 - 5.3.

e

!

130

Input: A b, c, and €

/

/

|

Define the set of the acute constraints constraints

Licwie = {z € Index |Alc > O}.

!

Find the initial jump point of the iterative jump method

-

{] - IAcute | bj > 0}

Acute
¥
Find the initial feasible point Find the initial feasible point
x(® = Xc, where x(© = —)\c, where
= i b A = max by } and
A ierﬁlilte {AZ C} “0g 1S pE e
) — i b 0 b,
v argiin {A, c}' 7O = argmax{ i }
ieIAcute v P —A.C
7’e]:Acute

L

Check the consistency x(©) with all constraints

Let t

b — Ax©),

|

|

yes

t>0

Set b=>b

¢DO

For i € Index,b; = b; — f3,
0 if t; >0,
where =

Maximize ¢'x

subject to Ax < b.

Create the perturbation LP model

i

O

Figure 5.1: The flowchart of AJSP.

Perform the iterative jump

—A
Let v = " Ghere ~*) is the
Al e
index of the constraint that x*) is binding.
Thus, x*t) = x® 4+ A\v where
b — Alx®
A= min {4‘A;V>O}, and
i€Index\y(k) Az v '
b; — Al x®)
v+ = argmin {4’A:V > 0}.
i€Index\~*) Ai:V

Check the consistency of all constraints
Let temp = {i € Index | b — Alx® < 0}.

Set bk = Lk + 1.

l

yes temp = &

Perform the iterative jump method.

Obtained the last feasible point (x).

O

Figure 5.2: The flowchart of AJSP (Con.).

131

no

no

Is it consistent
yes with the stop-

ping criterion?

Relocated x to the origin point of the transformed LP model

Let x =x —x.
Maximize ¢'X + ¢'x

subject to Ax < b — Ax.

Let x =x — x.

Maximize ¢'X + c¢'x

s> 0.

Convert the LP model to the standard form

subject to Ax +s =b — Ax,

Perform the new technique for solv-

ing the unrestricted variable model

yes —

Is the primal
solution

feasible?

l

no

132

Restore the original right-hand side

/ Output /

O

Figure 5.3: The flowchart of AJSP (Con.).

133

Example 5.1. Consider a linear programming model as follows:

Maximize x1 + 29

subject to 1 + Hxo < 36, (1)
—2x1 + 4z <3, (2)
2w —3zy < 18, (3) (5.5)
—x1+5bxy <10, (4)
=91 4 229 < —15, (5)
—Z9 < —1. (6)

Step 1: Separate the constraints into two groups:

Constraint No. (i) A, Alc
| 57 | 6
2 2,47 | 2
3 2,37 | -1
4 1,57 | 4
5 [—9,9/T | _7
6 0,17 | —1

ThU.S7 IAcute = {17 274} and INonAcute = {37 57 6}

Step 2: Find the initial feasible point.

Since by, ,,. = [36,3,10]" > 0. Thus, A is computed as follows:

Constraint No. (7) A, Alc
1 [1,5]" 6
2 [—2,4]T 2
4 [—1,5]" 4
A= min bi = in %73& = 1.5.
i€licue | Al C {124y | 672 4
Therefore, x(9) = ¢ = [1.5,1.5] T and v = 2.
Step 3: Create the perturbation LP model.
36 AN
3 -2 4
18 2 —=3| |15
Let t =b — Ax(0) = —
10 =1 5 1.5
—15 =92
-1 0 -1
=[27,0,19.5,4, —4.5,0.5]".
Let temp = {i € Index | b; — A]x(® < 0} = {5}.
_ _ 0
Compute b, for 7 € Index, b; = b; — 3 where 8 =
t;i—1

36 0
3 0
_ 18 0
Thus, b = — =
10 0
—15 —5.5
-1 0

36

18

10

-9.5

ift; >0,

if t; <O.

134

Thus, the perturbation LP model is constructed as

Maximize x1 + x9

subject to 1 4 5z9 < 36,
—2x1 +4x2 <3,
2x1 — 3x9 < 18,
—x1 4+ bxry <10,
—9z1 + 2290 < —9.5,
—T9 < -—1.

Step 4: Perform the iterative jump method by Algorithm 3.

Iteration 1:

—As, c o [1,1]7 -
Compute v = L = + = [1.1543, —0.1873] .
Mol el = T2 |
Constraint No. (i) | A;. bi Alv | b —A[x©
1 (1,57 | 36 | 02178 27
3 2,-37 | 18 | 2.8705 19.5
4 1,57 | 10 | —2.0008 4
5 —9,2]T | —9.5 | —10.7633 1
6 0,~17 | —1 | 0.1873 0.5
. EZ - A:X(O) T
Compute A = ielncglx}il{'y(m} {JXITV Ajv> 0}
27 19.5 0.5
ie{L3.6} {0.2178’ 2.8705’ 0.1873} 6695
b — ATx0)
and ’y(l) = argmin {bZA.l_ZX ’ A;I.—V > 0} = 6.
; 0 A'v ’
1€ acute \ {7} i

135

(5.6)

136

1.5 1.1543 4.5814
Thus, xM =xO) + \v = + 2.6695 =

1.5 —0.1873 1.0000

Check the consistency of x(!) with the perturbed constraints. Compute temp =
{i € temp | b; — A/ xM} = {24.2326}. Thus, by is restored as —15 and the set of
temp = temp\ {b} =0 .

Iteration 2:

_ _ 1T T
Compute v = ”;26” ﬁ = ||[(g(,)7—1]1lr\ + HE:HT” = [0.7071,1.7071] T.
Constraint No. (i) A, b; Alv | b —AlxW

1 [1,5]7 | 36 | 9.2426 26.4188
2 [£2,4]7 | 3 | 5.4142 8.1622
3 [2,-3]" | 18 | —3.7071 | 11.8377
4 [~1,5]T | 10 | 7.8284 9.5811
5 [=9,2]T | =15 | —2.9497 | 24.2302

b — Al x™M
Compute A = min {% A;.rv > 0}
i€Index\{v} Az v ’
26.4188 8.1622 9.5811
— mi \ = 1.2238
ie?11,1§4}{ 0.2426 * 5.4142 7.8284}
b — A x(M)
and v = argmin {ZTZX ’ Alv> 0} = 4.
ieIAcute\{’YU)} AZ v
4.5814 0.7071 5.4465
Thus, x® =xM) 4 A\v = + 1.2238 = .
1.0000 1.7071 3.0893

The algorithm will be continued until it satisfies the stopping criterion. Conse-
quently, the last jump point (%) of Algorithm 3 with 7 iterations is [14.9534, 3.9689] T

which it is binding on 3" constraint.

Step 5: Relocate x to the origin point of the transformed LP model and apply the

new technique of solving the unrestricted variable problem for finding the solution.

137

Let x = x — x. Therefore, the transformed LP model is created as follows:

Maximize Z1 + Zo

subject to 21 + 5Z9 < 1.2015, (1)
—2F, + 48, < 17.0310, (2)
2F1 — 3%, <0, (3) (5.7)
—#1+5iy < 5.1085, (4)
—9F, +2F, < 111.6434, (5)
—iy < 2.9690. (6)

After that, the slack variables are reinserted to the transformed LP model.

Maximize x1+ Z9

subject to %1 + 5T + 51 = 1.2015, (1)
— 2y + 435 + 59 = 17.0310, 2)
221 — 3ZTa + 83 =0, (3)
(5.8)
—F1 + 533 + 84 — 5.1085, (4)
—921 + 2Z2 + s5 = 111.6434, (5)
—Fy + 86 = 2.9690, (6)

81,82, 83, 84, S5, 5S¢ > 0.

Then, the new technique of solving the unrestricted variable by Visuthirattanama-
nee et al. [20] is applied. For the transformed LP model, 21,z are unrestricted
variables and x3, s1, o, S3, S4, S5, S¢ are restricted variables. So, the initial simplex

tableau is constructed as follows:

Ti1 To S1 Sy S3 S4 Sy Sg RHS
z|—=1|-=110,0]0[0]0]0/| 189223
s1| 1 5 /1 10]0[0]0]0]| 1.2015
So| =24 0] 1]0]0]0|0]| 17.0310
ss3| 2 1-3]/0]0]1]0,0/|0
S| =11 5 10]0]0]1|0|0]| 51085
ss | =91 2 |0 0]0]0|1|0]111.6434
s¢ | 0 |—=1]0]0]0]0]0| 1] 29690

138

The maximum value between the absolute value of the reduced cost of the unre-

stricted variables and the positive value of the reduced cost of the restricted variable

is 1. Thus, the entering variable is Z;. Since 1 is the unrestricted variable and the

reduced cost is positive. Thus, the index of the leaving variables can be calculated

as argmin {

1.2015 0

L2

} = 3. Therefore, the leaving variable is ss.

1 T S1 Sy S3 S4 S5 Sg RHS
z | 0] —25000 | 0] 0] 05000 | 0]O0]O0]| 189223
51|10 6.5000 1107 —-05000]0(01|0 1.2015
se | 0 1 0|1 1 0| 0] 0] 17.0310
Zy | 1| —=1.5000 { 0| O | 05000 [0] O0]O 0
sS4 | 0 3.5000 0] 0] 05000 | 1]0]O0] 51085
ss | 0 | —=11.5000 | O | O | 4.5000 | O | 1 | O |111.6434
s¢ | 0 | —1.0000 | 0 | O 0 01071 1] 29690

139

The entering variable is £o which it is the unrestricted variable with the positive

reduced cost. Thus, the leaving variable is s;.

T1 T $1 Sy S3 Sy S5 Sg RHS
z | 00| 03846 | 0| 03077 | 0|0 |0 19.3844
Zo| 0] 1| 01538 | 0 | —0.0769 | O | O | O | 0.1848
ss | 0] 0| —01538] 1] 1.0769 [0| O | O | 16.8462
2y 1] 0| 02308 [0] 03846 [0| 0|0 | 02773
sg4 | 0] 0 |—-05381]0] 07692 | 1|0 | 0| 44615
ss | 0| 0| 17692 | 0 | 36154 | O | 1 |0 |113.7691
s¢ | 0 0| 01538 | 0 | =0.0769 | O | O | 1 | 3.1538

Since the current simplex tableau is the optimal tableau, so the method of solving

the unrestricted variable problem by Visuthirattanamanee et al. terminates with

the solution as X = [#1,22] ' = [0.2773,0.1848] "

Step 6: Restored the original constraints instead of perturbed constraints.

Since temp = {i € Index | b; — A;.-x <0} = (), all original constraints have
been restored. Therefore, the solution of the transformed LP model is restored to

the solution of the original LP model as follows:

[21,20] T = [Z1,32] " + [£1, 8]
= [0.2773,0.1848] " + [14.9534,3.9689] "

= [15.2308,4.1538] .

The objective value is 19.3846.

The geometric views of Example 5.1 are shown in Figure 5.4(a)-5.4(g) as follows:

140

(d) Perform the iterative jump and
restore original constraints

/- Optimal point

X1

As;

(g) Perform the new technique of
solving an unrestricted variable
problem

Figure 5.4: Geometric views of AJSP performing on Example 5.1

141
5.2 Results and experiments

In this section, the LP problems used to test the effectiveness of AJSP are explained.
The tested LP problems are divided into two collections similar to SAJS: the randomly
generated problems and the Netlib problems. Both data sets of the randomly generated
problems and data sets of the Netlib problems will be the same set of data used to test the
effectiveness of SAJS. After that, the computational results of the wall-clock time of SAJS,
AJSP, SNAR, and the two-phase simplex method (TP) are shown and summarized. The
experiments were operated using an Intel(R) Core(TM) i7-3770 CPUQ 3.40 GHz processor
with 8 GB RAM on Windows 10. All methods were written by NumPy.

Similarly to SAJS, the stopping criterion uses the stopping parameter defined as
the least ratio improvement of two consecutive differences of the objective values. The

average wall-clock times of AJSP with varying e are tested and are shown in Table 5.1.

142

abod Jxau Y] U0 PINULIUO))

00€

00¢

00T

(3180°0F) 80S0°T | (€8LT°0F) 90LT'T | (FOOT'0F) TTET'T | (99¥T°0F) 2LL0°T | (2921°0F) TFOT'T | 031
(8€L0°0F) 1269°0 | (2860°0F) T169°0 | (¢FE10F) €622°0 | (0060°0F) F00L'0 | (8261°0F) 92690 | 06
(0880°0F) LEFF0 | (€F60°0F) €0SF'0 | (ISOT°0F) 64670 | (0660°0F) 870%°0 | (F1L0°0F) €¥8F7°0 | 09
(020T°0F) L1120 | (GLV0°0F) F0O6T°0 | (8180°0F) 25020 | (S840°0F) €805°0 | (61L0°0F) 10550 | 0¢
(200T°0F) L89€°0 | (LLLO'OF) 206£°0 | (0680°0F) 26480 | (FLLO'0F) €8%€°0 | (FSHO0F) €680 | 08
(LLLO0F) eLLz0 | (L160°0F) 680€°0 | (€680°0F) €682°0 | (80L0°0F) 2¥ST0 | (96¥0°0F) £S5¢°0 | 09
(1680°0F) #1610 | (€550°0F) 69L1°0 | (6610°0F) 8SET'0 | (£220°0F) 16ST°0 | (L090°0F) 6621°0 | 0OF
(FOF0°0F) 0980°0 | (9260°0F) 6,20°0 | (9860°0F) 89L0°0 | (G6€0°0F) 81600 | (67£0°0F) L690°0 | 0T
(TT60°0F) 19800 | (67€0°0F) €0L0°0 | (0LT0°0F) 0990°0 | (8ST0°0F) T€90°0 | (£€20°0F) 8€L0°0 | OF
(L¥10°0F) 6L¥00 | (0270°0F) ©290°0 | (06€0°0F) 88G0°0 | (85200F) c090°0 | (8STO'0F) €€¥0°0 | 0€
(¢610°0F) €260°0 | (€900°0F) 0420°0 | (8220°0F) ¥9¢0°0 | (0L10°0F) G€€0°0 | (8TT0°0F) 19600 | 0
(10€0°0F) 2200 | (€810°0F) 8¥10°0 | (9TT10°0F) 6610°0 | (6500°0F) 62T0°0 | (S900°0F) 6£10°0 | 0T
09°0=2 06°0=>2 07" 0=2 08°0=2 06'0=>2
10D

("098) JS[V JO oulry Yoo-[[em dFeIoAr oY J,

MOY

'3 Surdrea seoueuniojed JSIV :1°G 9[qel,

143

€8¢8°0

LLY80

cry80

TLERO

PIG8°0

o8RIoAY

(L16T°0F) 66¥9°€

(12€2°0F) 0619°€

(¥652°0F) £€699°€

(LE0Z°0F) SCTL'E

(0L2T°0F) PLFLE

00¢

(G62T°0F) CTLV T

(G6LT°0F) 1687°C

(0622°0F) 099%°C

(6TLT°0F) €8€¥°C

(LT0€°0F) GC8¥'C

0sT

(8€T1Z°0F) 9099'T

(G612°0F) €579'T

(G0ZT0F) T9LS'T

(899T°0F) €86G'T

(FZ8T'0F) 08€L'T

009
00T

(0VT°0F) TLTL'O

(£2L0°0F) ¥G9L°0

(ZIET0F) 82ELO

(820T°0F) L8T8'0

(G82ZT'0F) GL9L°0

0¢

(9502°0F) <8L6'T

(L202°0F) 9270°C

(GLLT0F) TOFTC

(0991°0F) 1866'T

(0012°0F) 1L20°C

09T

(C98T°0F) €0S¥'T

(67LT°0F) 2€SF'T

(S801°0F) 67071

(LECT°0F) €POV'T

(EFPIT'0F) €28V'T

0cI

(¥860°0F) SS16°0

(1S0T°0F) 2268°0

(S621°0F) S626°0

(L860°0F) 7.£6°0

(9201°0F) €706°0

00¥
08

(8660°0F) 6¥6€°0

(¥L60°0F) SFIT0

(E760°0F) £F6€°0

(9F1T°0F) 92170

(L2L00F) 26LE'O

%

09°0=3

06'0==

07'0=2

0¢°0=23

0¢'0==

(*098) JS[V JO oury YoOo[-[[em oFeIoA® oY,

[0D | M0y

abod snowaud 2Yy) woLf ponuguo;y) — 1°G R,

144

Table 5.1 shows the average wall-clock time (in seconds) varying ¢ = 0.20, 0.30,
0.40, 0.50, 0.60 of AJSP. For Table 5.1, Row represents the number of constraints in the
LP model, Col represents the number of variables in the LP model, the boldface numbers
identify the smallest average wall-clock time and the number in parenthesis represents
the standard deviations LP model size. AJSP is tested the stopping criterion with the
vary size LP model as m € {100,200, 300,400,500} and n € {ZL), 21%, 31—%1, 4175} The
results show that the average wall-clock times of AJSP for each problem size, they give
the results that are not significantly different in each stopping parameter. However, AJSP
with € = 0.30 takes the least total average wall-clock time, but SAJS with ¢ = 0.40 is used
previously. Therefore, in this section, SAJS and AJSP use both settings ¢ = 0.30 and
0.40 to compare with TP and SNAR with 280 randomly generated problems presented in

Table 5.2.

145

abnd 1TaU YY) U0 PINULIUO))

00€

00¢

00T

(70£2°0F) 0£07°0 (2952°0F) L860'T (8T80°0F) 25020 |(98L0°0F) €€02°0 | (2860°0F) L£6T0 | (6280°0F) L¥92'0 | O
(L90¢°0F) 6506°C (0L0T°0F) ©2LS0 (0980°0F) 26260 |(FLLO'OF) €8%€°0 | (LITT'0F) 70950 | (E8TT0F) #€95°0 | 08
(9GT7°0F) T167'T (8LL0°0F) €957°0 (€980°0F) €68¢°0 |(80L0°0F) g¥92'0 | (0cL0°0F) ¢G7€0 | (680T°0F) L06E0 | 09
(89ST°0F) L9970 (96TT°0F) €0S7°0 (6610°0F) 8G€T'0 |(€£20°0F) 16510 (L290°0F) 6520 | (8090°0F) L5220 | OF
(28€0°0F) 0901°0 (G0ST"0F) L8ST'0 (98€0°0F) 89200 [(G6£0°0F) 8T60°0 (8810°0F) €990°0 | (¥¥20°0F) 91L0°0 | 0T
(¢62T0F) 19€€°0 (€T70°0F) 2€TT°0 (0LT0°0F) 09900 [(8GT00F) 1€90°0 | (L6T0°0F) ¥180°0 | (L&g00F) 16200 | OF
(8L20°0F) 6921°0 (6€€0°0F) 6980°0 (0€€0°0F) 8890°0 |(5520°0F) €090°0 (0920°0F) 12900 | (2910°0F) 97900 | O€
(0G€0°0F) T180°0 ($520°0F) ¥5L0°0 (8220°0F) 7900 [{(0LTO0F) G€£0°0 (€020°0F) €600 | (C€10°0F) €620°0 | 0T
(9620°0F) 82€0°0 (16€0°0F) G7<0°0 (9TT0°0F) 66100 |(6500°0F) 6510°0 (8200°0F) 2800°0 | (9800°0F) ZIT00 | OT
07" 0=2 0€°0=2 07 0=2 0£°0=2
HVNS dL 19D

dSrv

SLVS

MOy

‘swojqoad Surmrurersord IgoUI] PojRIoUSs AJWOPURI U0 YYNS
pue ‘dL ‘0F'0 = 2 UHM dSIV ‘0€°0 = 2 YN dSIV ‘07'0 = 2 Y34 SEVS ‘0€°0 = 2 Y34 SIS JO oul) Hoop-[[ea ddeiosr o], ¢ SIqeL

Ne}
<t

—obvd jTou Y] U0 PINULIU0,)

(SLIG E€FF) 0SS S8

(8792 TF) 96078

(0622°0F) 059%°C

(6TLT'0F) €8€V°'C

(122€°0F) ePit g

(26LG°0F) 8912°G

06T

(CIEVFF) TV1°0T

(8LF7'TF) 07009

(G0TT0F) T9LG'T

(899T°0F) €86G'T

(¥552°0F) 688C°€

(¥£62°0F) €20€°€

00T

(2902°0F) ThPL'T

(TET9°TF) €€2C¥

(TIET'0F) 8TEL'0

(820T°0F) L8280

(FL8T'0F) 06211

(189T°0F) FLVT T

0¢

00¢

(GET9FITF) TOET 96

($9L0°TF) 190€°9

(GLLZOF) T9VT°C

(099T°0F) 1866°T

(9L79°0F) 022€¥

(926G°0F) TGETT

091

(69¢G°9TF) 0201 1€

(¥999°0F) 66VC¥

(G80T°0F) 6707’1

(L£21°0F) €OV T

(072€0F) €068°C

(812€°0F) L318°C

0cI

(S0F0'TF) €LVST

(S0TO'TF) 6226°€

(G62T°0F) 6260

(L860°0F) FL£6°0

(SFV€T0F) L¥ES'T

(06¥20F) ¥56¢°T

08

(0992°0F) €6.8°0

(809L°0F) LG€8'T

(€760°0F) €¥6€°0

(9FTT°0F) 9210

(L¥PT°0F) €0SS°0

(£960°0F) 9GEC°0

U

00v

(T9TP'SF) 086891

(€LLE°0F) 980G°C

(POOT'0F) TTET'T

(997T°0F) TLLO'T

(8GTZ'0F) 8€0L'T

(€822°0F) 0889°'T

0cI

(188€°CF) LVLF9

(F9S7°0F) 8698°T

(GPeT'0F) €62L°0

(0060°0F) ¥00L°0

(ETET0F) €260°T

(96ST°0F) $680°T

06

(2GL¥'0F) 629S'1

(9722 '0F) #29¢°1

(1G0T°0F) 6LEF°0

(0660°0F) 8¥0%°0

(0SFT°0F) ¢I¥L°0

(€860°0F) 60S8°0

09

00€

HVNS

dL

0¥'0=3

0€°0=3

0¥'0=3

0€'0==3

dSrv

SIVS

19D

MOy

abod snowoud 2y) wouf panuguoy) — g'G d[qe],

147

0£76°STae T6T LET 12791 eyLE 9T 620€°G8 P8GE GR| oBeIoAy
(TI88'7GE6F) C9CL SVE TS | (€288 0FTTF) 9282 TaE T|(6S80°0TF) TLF0'LIT |(T€6€9F) TL2H"G9T| (600 GLTF) L20€ €86 | (F6VT 99F) TF6S 8L6|008
(FGLE°6S92TF) GOTT PSP | (€769 T9TT) 0922°020°T| (L6STLT) THISOTT|(1F1S'ST) ¥FP9LTT |(1€12°€8TF) 85€9°2€L|(92ST L9T) FEOF'SGEL| 009
(1829°6TFIF) 059L°GLY'T |(E0T9'TLIF) €578'8c9 | (EPFI'GF) 8¥e€al [(1969°CF) TI8L TL |(L8TR OFF) 7028 95¢|(0€0S 6FF) GT9¢'85E| 007 e
(L989°09F) G060°65C |(8208'62TF) €6L0°067 | (SPoLaF) 1818°€¢E [(LTI0G°CF) 06TL €€ |(6006°0TF) 01GH'86 |(869S T1F) LIEF86 00T
(FCL1°01SF) 28476007 | (1¥¢ooIF) 016611 | (1¥2e 1F) 090T°€T | (6365 TF) 926665 |(S0L0FIF) 922£°98 |(00€6F1F) 9750°68 |00¥
(c87T GSeF) €LV Goe' T | (P665'STF) T0ST'00T | (892L°0F) 9829°ST |(S5eL 0F) PLIL'CT | (P96 TF) €699°8S | (7965 7F) 6G59°8¢ |00€
(€918°9LF) C1L6°GFE | (TL8Y6TF) TFOS'L9 | (PESROF) PGP 0T |(6898°0F) 0960°0T | (199¢7F) Gese'0€ | (VO19°€F) 66€6'6T |00T .
(L1€€°CF) 9964°€T (9876°9TF) 9068°'TF | (0TSP'0F) TT€0T |(8¥FF'0F) T200°% | (9780 TF) 1899°'6 | (0TT6°0F) 90576 |00T
(L10E°GEF) 6918°SFC (809¢°1F) c0S6° 1T | (¥695°0F) €699°¢ | (L£0T 0F) 8GT1L°€ (eeeT'TF) 6978, | (€L9T'TF) THOT'S |00Z| 00S
07" 0=2 0£°0=2 07" 0=2 08°0=2
HVNS dL [0D [moy
dSrv SI'VS

abod snowoud 2y) wouf panuguoy) — g'G d[qe],

148

The comparison of SAJS with ¢ = 0.30 and ¢ = 0.40, AJSP with ¢ = 0.30 and
€ = 0.40, TP and SNAR performances on the randomly generated problems are shown in
Table 5.2. In Table 5.2, Row represents the number of constraints in the LP model, Col
represents the number of variables in the LP model, the boldface numbers identify the
smallest average wall-clock time and the number in parenthesis represents the standard

deviations of each size of the LP model.

In Table 5.2, the average wall-clock time for each size of the LP problems of SAJS
with € = 0.30 and SAJS with ¢ = 0.40 does not give different results. Similarly, the
average wall-clock time of both AJSP with € = 0.30 and AJSP with € = 0.40 are similar.
However, the wall-clock time of AJSP both with ¢ = 0.30 and € = 0.40 outperforms SAJS
with € = 0.30 and SAJS with e = 0.40 respectively for the LP model which the number
of constraints are greater than 200. Moreover, both SAJS with € = 0.30 and AJSP with
€ = 0.40 outperform TP and SNAR for all randomly generated LP models. Furthermore,
Figure 5.5 to Figure 5.11 present the comparison of the average wall-clock time of SAJS
with € = 0.30, SAJS with ¢ = 0.40, AJSP with ¢ = 0.30, AJSP with ¢ = 0.40, TP and
SNAR for each size of the number of constraints m € {100, 200, 300, 400, 500, 1000, 2000}.

BESAJS (¢ = 0.30)

03| |DISAJS (¢ = 0.40)
: (e = 0.30)
)

loAaJsp
BEAJSP (¢ = 0.40
1] TP
0251 |@g SNAR

0.15

0.1

The average wall-clock time (sec.)

5-1072

100 x 10 100 x 20 100 x 30 100 x 40

Figure 5.5: The comparison of SAJS, AJSP, TP, and SNAR using the average
wall-clock time-randomly generated linear programming problems with 100 constraints.

2.8
2.6 |-
24

The average wall-clock time (sec.)

Figure 5.6: The comparison of SAJS, AJSP, TP, and SNAR using the average

2.2

BBSAJS (e = 0.30)
lDSAJS (¢ = 0.40)
B8 AJSP (¢ = 0.30)
IEAJSP (e = 0.40)
o TP
fe SNAR

200 x 20

200 x 40 200 x 60 200 x 80

149

wall-clock time-randomly generated linear programming problems with 200 constraints.

14+

The average wall-clock time (sec.)

Figure 5.7: The comparison of SAJS, AJSP, TP, and SNAR using the average

ABSAJS (¢ = 0.30)
loSAJS (e = 0.40)
BEATSP (¢ = 0.30)
BEAJSP (¢ = 0.40)
45 TP
fe SNAR

300 x 30

300 x 60 300 x 90 300 x 120

wall-clock time-randomly generated linear programming problems with 300 constraints.

90

80 |-

The average wall-clock time (sec.)

20

10 -

Figure 5.8: The comparison of SAJS, AJSP, TP, and SNAR using the average

70 |-

BESAJS (e = 0.30)
loSAJS (e = 0.40)
BEAJISP (e = 0.30)
BB AJSP (e = 0.40)

60 -

50 -

40 |

30 -

fio TP

Bn SNAR
— F
400 x 40

400 x 80

=1
400 x 120

400 x 160

150

wall-clock time-randomly generated linear programming problems with 400 constraints.

240

220

200

180

160

140

120

100

80

The average wall-clock time (sec.)

60
40

20

Figure 5.9: The comparison of SAJS, AJSP, TP, and SNAR using the average

BESAJTS (e = 0.30
D0SAJS (¢ = 0.40
BOAJSP (¢ =0.30
BOAJSP (e = 0.40
o TP

Be SNAR

== ==

500 x 50

— m
500 x 100

] P]
500 x 150

500 x 200

wall-clock time-randomly generated linear programming problems with 500 constraints.

151

4,000 F]
BBSAJS (¢ = 0.30)
I0SAJS (¢ = 0.40)
3,500 - |BBAJSP (¢ = 0.30) :
IBAJSP (¢ = 0.40)
— g TP
g 30001 gy gNAR 1
Fi
32,500 - i
4
E
[}
= 2,000 .
<
=
&
T 1,500 - y
[}
=
&
E 1,000 }
500 |- a
0 (== —rrm]

1000 x 100 1000 x 200 1000 x 300 1000 x 400

Figure 5.10: The comparison of SAJS, AJSP, TP, and SNAR using the average
wall-clock time-randomly generated linear programming problems with 1000
constraints.

10
55F .
BBSAJS (¢ = 0.30)
5 |l0SAJS (¢ = 0.40) .
BB AJSP (e = 0.30)
4.5 |IBAJSP (e = 0.40) 1
m fo TP
2 4 |le SNAR b
[
£ 35/ |
4
o
2 3 :
5
£ 25| 1
%3
5 2r]
z
& 15} .
=
1h i
0.5+ i
0 — —rrm -

T T
2000 x 200 2000 x 400 2000 x 600 2000 x 800

Figure 5.11: The comparison of SAJS, AJSP, TP, and SNAR using the average
wall-clock time-randomly generated linear programming problems with 2000
constraints.

152

From Figure 5.5 - Figure 5.11, they show that the efficiency of SAJS and AJSP are
similar. While TP gives more differences to both methods when the size of the LP model
is larger. However, the performance of TP still better than SNAR. When the LP model

has a larger size, SNAR tends to spend significantly more time.

153

abod 1xauU 2y} UO PINULIUO))

£88C'T 128’1 z199°0 €1L9°0 61260 1800'T 9¢T | €62 69T 78 €0z0S
1€6T'E L95GT 1055 7G86°0 | 8LTLT WLV ehl | 91€ 1T 1 dTauVHS
L6ET0 £86T°0 G6ST0 €9.Z°0 GGTe0 7260°0 9¢ | 68T LTT 89 ATLLITAY
88LE°0 92ST0 9ZrT0 9GPT'0 8280°0 | 89800 v | o1 06) ACAMVHS
FS8E0 F560°0 89900 88600 6£70°0 | 61700 8¢ | €91 £q1 01 LADVOS
06220 £2€2°0 50020 ILPT'0 | 9G2€0 8620 99 | 29T 66 €9 €010S
LEGO'0 6STT'0 100T°0 26800 52900 8L£0°0 oF | PIT) A THOIDOLS
$290°0 F£2T 0 F6£C0 C8LT'0 L00T°0 L3TT0 8 | seT 1L L9 ANHTE
Z1£0°0 95100 95100 00000 | 9ST0°0 17000 8¢ | 8L) G V0SOS
69200 LETO0 €800°0 26000 06000 65200 8¢ | 8L 89 0t q0¢DS
09100 06000 76000 76000 0.00°0 | £800°0 ¥ | 19 8¢ el OMIAY
07'0=2 0£0=2 | ov0=2 | 0g0=2
UVNS dL 10D | MOy | OMOYUONH | oImoy#
dsrv SIvs

‘su[qoxd qIIdN U0 YYNS
pue ‘dL ‘0F'0 = 2 YN dSIV ‘0€°0 = 2 Y34 SV ‘070 = 2 UM SIS ‘0€°0 = 2 UM SLVS JO ouly Spop-[[em odeioae o], 1¢'G d[qRL,

154

abd JTau 91y U0 PINULIUOY)

1697V°LEV 0284°¢ L88CY Geov'v Vevl'e ¥689°C ¢ve | 84L ié €1s €DV
STLETTT 99.9°8 VIEY'9 6679 €a8T¥y 6GS56°¢ 12¢ | 109 16€ 0T¢ GOV
¢8€V 0ce cEVE'8 ¢¥9¢9 S0ve9 VeeET'9 8186°G 09€ | 099 261 e9v TINXADS
7€0€°06¢ G896°9 S 0T€E g 6991°¢C 0¢6¢°¢ L9T | CLV €4¢ 61¢ GCadOVOS
€GeaqLET 6LVTT 89080 8¥66°0 8097°0 06090 80T | 967 0¢c 9.¢ 9¢cH
16¥4°G0T ¥4eS'T 8E6L'T ¥606°T ¥¢86°0 9IvT'1 Lol | S19 2514 19¢ INANVI
98€6°G91 099L°8 89LL°9 000¢'6 ¥7909°¢ 080v°G 6V¢ | CL¥ [4%4 0v¢ DOV
0019°6% ¥r0€ LG 98¢S 1T 0TL6°0T | 6060°€T GROGET €89 | 09. 90¢ vav [4LOT
TGLTGT ¥6EV'C CLES'T 9LEGT 9¢€9'1 EVEL'T 0TT | 0€¢ €Ce 2 NOIdJHODS
99008 ¥025°¢ 1T€0°C ¢9c6'T 1¢69°1 17P81 €lc | 99¢ 414 14! TAVHSI
evLTC 8GET°0 LIVL0 25490 1eLv0 L26¢°0 ¢cl | G6¢ 091 Gel AANVYHI
1v¢9c Y190 1,¢¢0 €8LC°0 87970 Gv07°0 ¢l | LI€ 86¢ 6T dINOOVHI
0¥'0== 0¢°0=2 07'0=2 0€'0==
HVNS dL [0D | MOy | OMOYUONFH# | 9Oy #
dSIv SIVS

abod snotnoud 2Yy3 wWoLf panuUo;y) — ¢'G IR,

155

abd JTau 91y U0 PINULIUOY)

1€6.L°€0€ ¥096G0L°90L | GGLGTLT TI9T VLT | 8VPF 99T | COCT'L9T | GGLT | €€9¢C L2€1 90¢T ¢dVILOS
VN L9GGCTI8LIC | T9C6'16 99.L€°68 G9L.C°TL SOV T €18 | €081 ELTT 0€9 ENHOHA
6080°6668 | 86GCEG'TE6C | €08L'LEY | VIVO'TVP | €€C9'89G | LG06°89S | 9G0T | 88T Va1t Vel ¢d0dD0LS
VN GTLLGRTGES | €L0C 609 09€v°GTS | €887°90G | GLL0°90S | €G€C | 09.C 8¢0T GCLT LY AASE
9¢S8°0679T | L€9CCI4 98¢€0°991 0€T9°€9T | LTEL'6ST | SPET'6ST | 908T | 80CC L60T ITTT SYOdIHS
VN 09.6°G6 1619°6¢ 66€L°T€ g16¢°0¢ Ly80°0¢€ ¢vs | ¢0cl ¢08 007 9dsSOS
VN 8€19°LGT 9148€q ¥40€ 74 2099°¢S G8L0°cS | 9VIT | 8PCI 462 €42 ENXIDS
0GI8°6L6T | LS09°60T 0C8eCE GLV0°GE | €EVE9E 0L69°G¢€ G8L | GLcl 116 79. 8SHOS
€677 6611 | 0VS8'80€ T08C'6S 7¥8¢ 09 290€°9L 0LEV LL €0cT | 0G€T ora 808 CINXAIDS
L8LG 916 1990°01 0996V CLLYY 9966°¢ TLE0Y 00c | T.9 98¢ G8¢ 1dSOS
08¥8°€€E 9964°'1¢€ Vive'6 0L02°0T 79G€°G1 6TE6TT Gre | 692 60% 0g€ SNHDOHA
19146 €E1L9 9¢S1°¢ L1C8Y €6LE°€ gc61°¢ ove | 8GL €re Sy IdVLOS
0¥'0== 0¢°0=2 07'0=2 0€'0==
HVNS dL [0D | MOy | OMOYUONFH# | 9Oy #
dSIv SIVS

abod snotnoud 2Yy3 wWoLf panuUo;y) — ¢'G IR,

156

9¥6¢°90¢ L€09°86 ¥0€0°66 8€9€°6CL | G9TL°6CT odrIoAy

VN 6¢c6¢V9LL6 | LOOE 66T E€VI9°€0C | P80G'GST | TLCT VST | 888 | G70€ CLCl €LLT T80dIHS
VN €6LV60°6LTC | 89€G'CLE | TLERCLE | 6GLE'16L | 6VL6'7C8 | 098T | OVEE 186 6S€C 8ASOS
888L°GPCT | TVLCIO'ET09 | 8I8L'OETT | G690°TETT | €9L8°LGCT | €V86°¥SCT | 199€ | 6P 1€T¢e 86GC €dVLOS
VN €6L.86€°LL8 | 6I6T¥¥C GE6E9VC | 9LIROVC | EVVI'OVC | LCST | 8L6T €891 g6cl SCIdIHS
VN 89V6V1°€4¢C | ¥9€ELCIE T99€°C¢1€ | 67PC 189 | 9¢9¢°089 | €0TT | 909¢ 9er1 08TT S80dIHS
TLG0°08€8G | T6ETCY0'LIL | L96C 99T €0€8°GST | GOVO'EYY | 0169°0EV | OI¥T | 009C Lcl €LLT TrOdIHS

0¥'0== 0¢°0=2 07'0=2 0€'0==
HVNS dL [0D | MOy | OMOYUONFH# | 9Oy #
dSIv SIVS

abod snotnoud 2Yy3 wWoLf panuUo;y) — ¢'G IR,

157

Table 5.3 shows the comparison of SAJS with ¢ = 0.30, SAJS with ¢ = 0.40, AJSP
with ¢ = 0.30, AJSP with € = 0.40, TP and SNAR on 41 standard problems from Netlib.
#Acute represents the number of acute constraints, #NonAcute represents the number
of non-acute constraints, Row represents the number of constraints in the LP model, Col
represents the number of variables in the LP model, the boldface numbers identify the

smallest wall-clock time.

The minimum average wall-clock time of all Netlib problems matches with AJSP
with e = 0.40. Moreover, for each Netlib problem, SAJS with ¢ = 0.30 and SAJS with
e = 0.40 take quite similar computational time, likewise AJSP with ¢ = 0.30 and AJSP
with € = 0.40 which take a slightly different time. Furthermore, both the average wall-
clock time of SAJS with ¢ = 0.40 and the average wall-clock time of AJSP with ¢ = 0.40
outperform SAJS with € = 0.30 and AJSP with € = 0.30, respectively. Accordingly, SAJS
with ¢ = 0.40 and AJSP with € = 0.40 are used to compare the computational time with
TP and SNAR. shown in Table 5.4.

Table 5.4: The difference of the average wall-clock time for SAJS with ¢ = 0.40,
AJSP with € = 0.40, TP and SNAR on Netlib problems.

SAJS - AJSP | SAJS-TP AJSP-TP | SAJS-SNAR | AJSP-SNAR
AFIRO —0.0024 —0.0020 0.0004 —0.0090 —0.0066
SC50B 0.0005 —0.0047 —0.0052 —0.0179 —0.0184
SC50A 0.0000 0.0000 0.0000 —0.0156 —0.0156
BLEND —0.1386 —0.1227 0.0160 0.0382 0.1769
STOCFOR1 —0.0376 —0.0565 —0.0188 —0.0312 0.0064
SC105 0.1221 0.0903 —0.0318 0.0936 —0.0285
SCAGR7 —0.0229 —0.0515 —0.0286 —0.3415 —0.3186
SHARE2B —0.0598 —0.0698 —0.0100 —0.2960 —0.2362
ADLITTLE 0.1360 0.1272 —0.0088 —0.1142 —0.2502
SHARE1B 0.5071 —0.8289 —1.3359 —1.4253 —1.9324

Continued on the next page

Table 5.4 — Continued from the previous page

158

SAJS - AJSP | SAJS-TP AJSP-TP | SAJS-SNAR | AJSP-SNAR
SC205 0.2606 —0.9202 —1.1808 —0.6664 —0.9271
BEACONFD 0.1376 —0.1496 —0.2872 —2.1593 —2.2970
BRANDY —0.2696 0.0363 0.3059 —1.7021 —1.4325
ISRAEL —0.3390 —0.8282 —0.4893 —6.3145 —5.9755
SCORPION 0.0983 —0.8038 —0.9022 —13.5395 —13.6379
LOTFI 1.5623 —44.2135 —45.7758 —36.5191 —38.0814
AGG —1.1704 —3.1595 —1.9892 —160.3322 —159.1618
BANDM —0.8114 —0.5431 0.2684 —104.5667 —103.7553
E226 —0.3460 —0.6871 —0.3411 —137.0645 —136.7185
SCAGR25 —2.9776 —4.8016 —1.8240 —288.1365 —285.1589
SCFXM1 —0.1308 —2.2099 —2.0791 —314.3048 —314.1740
AGG2 —2.2460 —4.4913 —2.2453 —440.7865 —438.5404
AGG3 —1.5462 —2.8396 —1.2933 —434.7267 —433.1804
SCTAP1 —1.7733 —3.3340 —1.5607 —6.1368 —4.3635
DEGEN2 5.4150 —16.2002 —21.6152 —318.4916 —323.9066
SCSD1 —0.5694 —6.0696 —5.5002 —912.5761 —912.0067
SCFXM2 17.0266 | —232.5474 | —249.5740 | —4123.1426 | —4140.1692
SCRS8 0.9612 —73.2624 —74.2237 | —1943.4717 | —1944.4330
SCFXM3 —1.1908 | —104.9531 | —103.7623 None None
SCSD6 0.6124 —65.6845 —66.2969 None None
SHIP04S —5.3070 | —402.5320 | —397.2250 | —16331.1209 | —16325.8140
25FV4T7 —2.7190 | —1885.3694 | —1882.6504 None None

Continued on the next page

Table 5.4 — Continued from the previous page

159

SAJS - AJSP | SAJS-TP AJSP-TP | SAJS-SNAR | AJSP-SNAR
STOCFOR2 130.7429 | —2363.4093 | —2494.1523 | —8360.5576 | —8491.3006
DEGEN3 —20.6496 | —196.5361 —175.8864 None None
SCTAP2 —8.1307 | —540.2607 | —532.1300 —137.3483 —129.2176
SHIPO4L 286.7438 | —324.0017 | —610.7455 | —57937.0166 | —58223.7604
SHIPO8S 368.5085 | —1571.9045 | —1940.4130 None None
SHIP12S —3.3743 | —636.5812 | —633.2069 None None
SCTAP3 127.0945 | —4755.1364 | —4882.2310 12.0875 —115.0070
SCSD8 418.8391 | —1387.7189 | —1806.5580 None None
SHIPOSL —43.7923 —822.1345 —778.3422 None None

Table 5.4 demonstrates subtraction of the wall-clock time of SAJS with ¢ = 0.40
against AJSP with € = 0.40, TP and SNAR. SAJS-AJSP represents the wall-clock time
of SAJS with € = 0.40 minus the wall-clock time of AJSP with € = 0.40 for each Netlib
problem. SAJS-TP represents the wall-clock time of SAJS with € = 0.40 minus the wall-
clock time of TP for each Netlib problem. AJSP-TP represents the wall-clock time of
AJSP with € = 0.40 minus the wall-clock time of TP for each Netlib problem. SAJS-
SNAR represents the wall-clock time of SAJS with ¢ = 0.40 minus the wall-clock time of
SNAR for each Netlib problem. AJSP-SNAR represents the wall-clock time of AJSP with
€ = 0.40 minus the wall-clock time of SNAR for each Netlib problem. None represents
the Netlib problems that the difference is not applicable.

From Table 5.4, it shows that the wall-clock time of SAJS with ¢ = 0.40 and AJSP
with € = 0.40 are slightly different except for STOFOR2, SHIP04L, SHIP08S, SCTAP3
and SCSD8 where SAJS with ¢ = 0.40 takes time more than AJSP with ¢ = 0.40
exceeding 100 seconds. Moreover, the performance of SAJS with ¢ = 0.40 and AJSP
with ¢ = 0.40 are superior to that of TP since the wall-clock time performed by both
methods are less than TP for most Netlib problems except AFIRO, BLEND, SC105,
ADLITTLE, BRANDY and BANDM. Nevertheless, the difference of the wall-clock time

160

of TP and SAJS with € = 0.40 for these problems are less than 0.13 seconds. Similarly,
the difference of the wall-clock time of TP and AJSP with ¢ = 0.40 for these problems
are less than 0.31 seconds. Likewise, the wall-clock time of SNAR is greater than both
the wall-clock time of SAJS with ¢ = 0.40 and the wall-clock time of AJSP with ¢ = 0.40
except for BLEND, STOCFOR1, SC105, and SCTAP3. For BLEND, STOCFORI1 and
SC105, the difference of the wall-clock time between SNAR and SAJS with € = 0.40, and
the difference of the wall-clock time between SNAR and AJSP with € = 0.40 are less than
0.18. While the difference of the wall-clock time of SNAR and SAJS with ¢ = 0.40 for
SCTAP3 is less than 12.10. Although SAJS with £ = 0.40 takes more time than SNAR
to 12.10 seconds for computation on SCTAP3, the percentage of the difference of the
wall-clock time and the wall-clock time of SAJS with € = 0.40 is only 0.9703%.

5.3 Conclusion

The artificial-free linear programming using a jump and the simplex method by
starting with perturbed constraints, namely AJSP is presented in this chapter. It is a
method for solving the LP model by applying the iterative jump method without artificial
variables. AJSP starts by finding the initial feasible point from the iterative jump method
based on all acute constraints which can guarantee the existence of the feasible point.
Next, all constraints are checked for consistency with the initial feasible point. If there is
a constraint that makes an initial feasible point infeasible, then that constraint is disturbed
and replaced. The new LP model with perturbed constraints is called the perturbation LP
model. After that, the iterative jump method is performed on the perturbation LP model
by starting with the initial feasible point. For each iteration of the iterative jump method,
the original constraints must be checked for consistency with each new jump point. If
there is a constraint which the new jump point satisfies, then that constraint is restored.
The iterative jump method will continue until it reaches the stopping criterion. After
that, the last jump point obtained from the iterative jump method is defined as the origin
point of the new LP model, called the transformed LP model. Since the transformed LP
model is the unrestricted variable LP model. Therefore, the new technique for solving
the unrestricted variables LP model proposed by Visuthirattanamanee et al. in chapter
3 is applied to find the solution of the transformed LP model. After the solution of the
transformed LP model is found, the original constraints are restored to the LP model.

If the current solution satisfies all constraints, then the current solution is the solution

161

of the original LP model. Otherwise, the current tableau is expanded to the standard

simplex tableau and the dual simplex method is performed to find the solution.

AJSP uses the same iterative jump method as SAJS in order to avoid visiting
unnecessary extreme points. SAJS starts by creating the LP relaxation while AJSP starts
by creating the perturbation LP model. The technique of disturbing the constraints is
applied to expand the feasible region in order to easily find the initial point for the iterative
jump method. Furthermore, AJSP applies the new technique of solving the unrestricted
variables LP model to find the solution of the transformed LP model. As a result, it does
not increase the size of the LP model. Moreover, artificial variables are not used in AJSP.

So it can reduce the computational time from the standard simplex method.

The two-phase simplex method and SNAR are used to test the effectiveness of
AJSP from randomly generated problems and Netlib problems similar to SAJS. For all
randomly generated problems, AJSP outperforms SAJS, the two-phase simplex method,
and SNAR. Since the artificial variables are added to the LP model for the two-phase
simplex method while other methods do not use them. For SAJS, the iterative jump
method is performed on the LP relaxation. Although the size of the relaxation LP is
smaller than AJSP, the last jump point obtained from the iterative jump method may be
far from the optimal point. As a result, it takes a long time to find the solution of the
original LP model. While SNAR needs to reinsert a single non-acute constraint one by

one to the LP relaxation when the solution of the LP relaxation is unbounded.

To verify the effectiveness of AJSP, Netlib problems are used. The results show that
the average wall-clock time of AJSP is less than SAJS, the two-phase simplex method, and
SNAR, significantly. Moreover, the nonparametric Wilcoxon test verified the effectiveness
of AJSP. For the Wilcoxon signed-rank, the p-value of the difference between AJSP with
€ = 0.30 and SAJS with € = 0.30 is equal to 0.4484, the p-value of the difference between
AJSP with ¢ = 0.40 and SAJS with ¢ = 0.40 is equal to 0.6573, the p-value of the
difference between AJSP with ¢ = 0.30 and TP is equal to 6.7115x10~", and the p-
value of the difference between AJSP with € = 0.30, and SNAR is equal to 9.3561x1077.
Therefore, AJSP statistically significantly outperforms other methods.

Although AJSP is effective for solving the LP model, the steps to implement the

162

iterative jump method for each iteration are more complicated than SAJS. AJSP has to
check the consistency of the new jump point obtained in each iteration with the constraints
of the perturbation LP model. Moreover, if the solution acquired from the new technique
of solving the unrestricted variables LP model does not satisfy with all original constraints,
then the current tableau needs to restore the standard simplex tableau before performing

the dual simplex method.

CHAPTER VI

CONCLUSION

In this dissertation, both SAJS and AJSP are proposed which are applied to
solve a linear programming model without artificial variables using the iterative jump
method. The iterative jump method is applied to locate the feasible point for the better
objective value while it can avoid visiting unnecessary extreme points of the LP model.
The directions of the iterative jump method can improve the objective value of the new
jump point and the step size of the iterative jump method will still maintain the feasibility
of a new jump point which they are proven in this dissertation. However, finding an initial

feasible point is quite complicated. Therefore, SAJS and AJSP are presented.

First, SAJS is introduced. It starts by creating the LP relaxation with acute con-
straints before it finds the better feasible solution by the iterative jump method. The
last jump point obtained from the iterative jump method is set as the origin point of
the new LP model called the transformed LP model. Then, all non-acute constraints are

reinserted to the transformed LP model to find the solution of the original LP model.

Consider the LP model as follows:

Maximize =2
subject to —x1+xz2 <1,
—x1 + 2xy < 4,
—x1+3x2 <8, (6.1)
T1— T2 <4,
2x1 — x9 < 10,

211 < 11.

The initial graphical view for LP (6.1) is created in Figure 6.1 which the blue

constraints represent the acute constraints and the green constraints represent the non-

164

X2

The optimal point

—
]

/ "

Figure 6.1: Separation of the groups of constraints.

Figure 6.2: Creation of the LP relaxation and performing the iterative jump method

acute constraints.

SAJS begins by establishing the LP relaxation and performing the iterative jump
method on the LP relaxation terminating at the last jump point (X(l)) presented in Figure

6.2.

Although the LP relaxation of SAJS can guarantee the available feasible point and
can reduce the number of constraints in the computation for each iteration, it may not be
the good initial jump point. As a result, x(!) obtained from the iterative jump method
may be infeasible for the original LP model. Therefore, the perturbation technique by
Pan [2] is used to guarantee the feasibility of the dual solution before applying the dual
simplex method which affects the computational time. For this example, after the non-
acute constraints are reinserted to the LP relaxation. The dual simplex method uses 2

iterations to find the optimal solution shown in Figure 6.3.

The improved SAJS called AJSP is introduced. It starts with the same LP relax-

ation of SAJS. Note the initial feasible point obtained from the first step is not necessarily

165

X2

The optimal point

—
]

7 %

Figure 6.3: Reinsertation of the non-acute constraints and performing the dual
simplex method.

a feasible point for the original LP model. It validates all constraints of the LP model
with the initial feasible point to construct the perturbation LP model. Next, the iterative
jump method is performed on the perturbation LP model while it checks the consistency
of constraints with respect to the jump point. After the iterative jump method terminates,
the last jump point obtained from the iterative jump method is set as the origin point
of the new LP model called the transformed LP model. Since the transformed LP model
is an unrestricted variable model. Thus, the new technique for solving the unrestricted
variables model is applied. After that, the original constraints are substituted back to the
constraints of the transformed LP model in order to find the solution of the original LP

model.

The two-phase simplex method (TP) and SNAR are used to test the effectiveness
of SAJS and AJSP with the randomly generated LLP problems and Netlib problems. For
the randomly generated LP problems, the experimental results are shown that both SAJS
and AJSP upwardly more effective than TP and SNAR, especially for large LP problems.
For solving the LP model by TP, the artificial variables are added when the origin point
is infeasible. So, the size of the LP model is expanded which affects the computational

time.

In addition, the results of the randomly generated LP problems show that AJSP
outperforms SAJS. Although SAJS performs the iterative jump method on the LP re-
laxation which the number of constraints is less than the number of constraints of the
original LP model, it may find the last jump point far from the optimal point. As a

result, it takes a long time to move back to the optimal solution of the original LP model.

166

Moreover, AJSP applies the new technique for solving the unrestricted variables model

to find the solution of the transformed LP model avoid the expansion of the LP model.

In order to verify the effectiveness of SAJS and AJSP, Netlib problems are tested
with the TP and SNAR. The wall-clock time of both methods is shown that they are
rarely different except some of Netlib problems. However, the efficiency of both SAJS and
AJSP is significantly better than TP and SNAR. Moreover, the nonparametric Wilcoxon
test verified the effectiveness of both SAJS and AJSP. It is shown that SAJP and AJSP
statistically significantly outperform TP and SNAR.

Both SAJS and AJSP are proposed to improve solving the linear programming
model. The iterative jump is used as an important part of both methods, since it can avoid
visiting unnecessary extreme points. SAJS attempts to reduce the number of constraints
in the calculation of the iterative jump method. However, the last jump point obtained
from the iterative jump method may be an infeasible point for the original LP model which
is quite complicated to move the last jump point back to the feasible point of the original
LP model. While AJSP tires to disturb the constraints in order to make the suitable point
which is defined by considering only the acute constraints as the feasible point. Although
the last jump point obtained from the iterative jump method does not locate far from the
optimal point of the original LP model, the number of constraints used to implement the
iterative jump method is equal to the number of the original constraints. Moreover, the
advantage of AJSP has applied the new technique of solving the unrestricted variables
LP model which does not necessary increase variables. However, the LP model with a
small number of constraints may reduce the efficiency of both methods, since it may cause
the LP model having small number of extreme points. As a result, the standard simplex
method uses a small number of iterations for solving that LP model while the iterative

jump method may cause zigzag (see in Figure 5.4(e)).

In future work, the direction of the iterative jump method can be improved. More-
over, other pivot rules for moving the last jump point to the solution point of the LP

model will be applied to improve the performance of SAJS and AJSP.

[1]

REFERENCES

G. Dantzig, Linear programming and extensions. Princeton, NJ: Princeton Univ. Press,

1963.

P.-Q. Pan, “Primal perturbation simplex algorithms for linear programming,” Journal of

Computational Mathematics, vol. 18, pp. 587-596, 2000.

H. W. Corley, J. Rosenberger, W. chang Yeh, and T. K. Sung, “The cosine simplex algo-
rithm,” The International Journal of Advanced Manufacturing Technology, vol. 27, no. 9,
pp. 3397-3401, 2006.

A. Boonperm and K. Sinapiromsaran, “Artificial-free simplex algorithm based on the non-
acute constraint relaxation,” Applied Mathematics and Computation, vol. 234, pp. 385401,
2014.

H. Nabli and S. Chahdoura, “Algebraic simplex initialization combined with the nonfeasible

basis method,” Furopean Journal of Operational Research, vol. 245, 2015.

H. V. Junior and M. P. E. Lins, “An improved initial basis for the simplex algorithm,”

Computers & Operations Research, vol. 32, no. 8, pp. 1983 — 1993, 2005.

J.-F. Hu, “A note on “an improved initial basis for the simplex algorithm”,” Computers &

Operations Research, vol. 34, no. 11, pp. 3397 — 3401, 2007.

H. Nabli, “An overview on the simplex algorithm,” Applied Mathematics and Computation,

vol. 210, pp. 479489, 2009.

N. Stojkovic, P. Stanimirovic, and M. Petkovic, “Modification and implementation of
two-phase simplex method,” International Journal of Computer Mathematics, vol. IJCM,

pp. 1231-1242, 2009.

N. Stojkovic, P. Stanimirovic, M. Petkovic, and D. Milojkovié¢, “On the simplex algorithm
initializing,” Abstract and Applied Analysis, vol. 2012, 2012.

N. Yawila, B. Intiyot, and K. Sinapiromsaran, “Simplex method with objective jump,”

Proceedings of International Conference on Applied Statistics (ICAS), 2016.

N. Kafakthong and K. Sinapiromsaran, “Preceding-jump simplex method,” Proceedings of

International conference on Optimaization and Learning (OLA’2019), 2019.

[13]

[14]

[15]

[16]

[17]

[18]

168

H. Luh and R. Tsaih, “An efficient search direction for linear programming problems,”

Computers & Operations Research, vol. 29, no. 2, pp. 195-203, 2002.

C. Al-Najjar and B. Malakooti, “Hybrid-Ip: Finding advanced starting points for simplex,
and pivoting lp methods,” Computers €& OR, vol. 38, pp. 427-434, 2011.

W.-C. Yeh and H. Corley, “A simple direct cosine simplex algorithm,” Applied Mathematics

and Computation, vol. 214, pp. 178-186, 2009.

N. Karmarkar, “A new polynomial-time algorithm for linear programming-ii,” Combina-

torica, vol. 4, pp. 373-395, 1984.

b2

K. G. Murty, “The gravitational method for linear programming,” Opsearch, vol. 23,

pp. 206-214, 1986.

P.-Q. Pan, “An affine-scaling pivot algorithm for linear programming,” Optimization,

vol. 62, no. 4, pp. 431-445, 2013.

E. R. Barnes, “A variation on karmarkar’s algorithm for solving linear programming prob-

lems,” Math. Program., vol. 36, pp. 174—182, June 1986.

R. Visuthirattanamanee, K. Sinapiromsaran, and A. Booperm, “the simplex algorithm im-
provement for unrestricted variable problem,” proceedings of the 5th KMITL-TKU inter-

national joint symposium on mathematics and applied mathematics, pp. 51-60, 2016.

APPENDIX

170

The stopping criterion introduced in this section is the stopping criterion involved
the number of jumps having the stopping parameter, 7. The average wall-clock time of

SAJS varying 7 = 2,3,4,5,6 are shown in Table 1.

Table 1 demonstrates the average wall-clock time (in seconds) of SAJS with the
different number of jumps. Row represents the number of constraints in the LP model,
Col represents the number of variables in the LP model, the boldface numbers identify the
smallest average wall-clock time and the number in parenthesis represents the standard
deviations of each size of the LP model. For each size of the LP model, the results of
the average wall-clock times in SAJS are not significantly different in each 7. Moreover,
the average wall-clock times of SAJS with the stopping criterion which involved the im-
provement of the objective values and the stopping criterion which involved the number

of jumps are not different.

171

abod Jxau Y] U0 PINULIUO))

00€

00¢

00T

(L66T°0F) €92LT | (6005°0F) #S89'T | (LFEZ0F) 8799 T | (8F61°0F) 80¥9°T | (0552 0F) L998'T | 01
(¢egT°0F) 2266°0 | (SZET'0F) 6970 T | (968T°0F) ¢660°T | (SPET0F) €T0T°T | (ST6T°0F) €€6T°T | 06
(TOTT°0F) #029°0 | (0980°0F) ¢699°0 | (S560°0F) 65890 | (CLIT'0F) 90,0 | (@861°0F) ¢€cL'0 | 09
(€650°0F) 6€62°0 | (3090°0F) 0S0£°0 | (6L80°0F) 0882°0 | (2L0°0F) £00€0 | (FOLO0F) G992°0 | 0€
(980T°0F) €605°0 | (¥¥80°0F) 898%°0 | (S690°0F) 82eG0 | (9ETT°0F) 0F5S0 | (ITOT0F) 12860 | 08
(€0L0°0F) 89L€°0 | (0££0°0F) 696£°0 | (£820°0F) LFOF'0 | (2560°0F) ¢L8€0 | (9080°0F) 128€'0 | 09
(£920°0F) 96120 | (¥8€0°0F) 810270 | (3190°0F) 76720 | (3€90°0F) 9€€20 | (LFGO0F) L1150 | OF
(8220°0F) 1€80°0 | (1920°0F) L6L£0°0 | (1530°0F) 6480°0 | (1¥50°0F) ¥¥80°0 | (L0 0F) €F01°0 | 0
(£1€0°0F) L580°0 | (6520°0F) 944070 | (0£20°0F) €680°0 | (6£€0°0F) €600 | (£520°0F) €¥80°0 | OF
($9€0°0F) 83900 | (6610°0F) 28900 | (P120°0F) 1290°0 | (28T0°0F) 80400 | (L¥10°0F) L0L00 | 0€
(€210°0F) T0F0°0 | (89T0°0F) 62F0°0 | (0210°0F) 29€0°0 | (FPETO'0F) €9€0°0 | (LET0°0F) 00700 | 0
(6200°0F) 6000 | (2010°0F) 9610°0 | (2010°0F) 8510°0 | (00T0°0F) 85100 | (6500°0F) 0L10°0 | 0T
9=1 G=1 p=1 e=1 g=1
100

(*098) QIS Jo awI) YoOo[O-[[eM dFRIaAR B,

MOY

"1 Surhrea seouruniojod SryS T o[qRT,

172

09641

GLYGT

(4474 W)

694G°T

9€09°'T

o8RIoAY

(960€ TF) GR0G"L

(GS0T'TF) 86892

(PELLOTF) CLIV L

(LSP8°0F) T00E L

(9968°0F) 10TV L

00¢

(L£T8°0F) 99€9°G

(66L7°0F) 9682°C

(€88¢°0F) ¥912°S

(£809°0F) 1£9¥°G

(£€18°0F) 9869°G

0sT

(980€°0F) 798¢°¢

(269%°0F) Gree'e

(L9VF'0F) 1L8€°¢

(F2CT'0F) L91C°E

(2162°0F) ¥8ST°€

009
00T

(9TLT'0F) 9286°0

(16£T°0F) 00€0'T

(2€91°0F) 6820°T

(LOFT'0F) L6GT'T

(200Z°0F) 02ST'T

0¢

(6T1C°0F) 6728°€E

(T1¢€°0F) L6TL'E

(6687°0F) 91€L°E

(1T67°0F) 0616°€

(¥8¥€°0F) 0066°€

09T

(GTCT'0F) STFLC

(80S2°0F) 8¥L9°T

(L9€E°0F) 606L°C

(£692°0F) €81L°C

(0Z8€°0F) L806'C

0cI

(€eCT1°0F) 89€¥°T

(¥802°0F) LTse'1

(L8TT1°0F) ecec'1

(SFTT0F) 867G T

(9€1€°0F) 6599°T

00¥
08

(€87T°0F) 18LE°0

(GLTIT'0F) L96S°0

(€92L0°0F) L06S 0

(Z8€T°0F) 66850

(0211°0F) €2¥S°0

%

9=1L

G=1

p=1

g=1L

g=14

(*098) QY JO o) YOO[D-[[em OFRIoAR O[T,

[0D | M0y

abod snooud 2yy woLf panuuo;y) — 1 dqR],

173

Likewise, the average wall-clock times of AJSP with the stopping parameter which
is defined as the number of jumps of the iterative jump method are tested and are shown

in Table 2.

Table 2 demonstrates the average wall-clock time (in seconds) of AJSP varying
T =2,3,4,5,6. Row represents the number of constraints in the LP model, Col represents
the number of variables in the LP model, the boldface numbers identify the smallest
average wall-clock time and the number in parenthesis represents the standard deviations
of each size of the LP model. The result in Table 2 shows that the average wall-clock time
for each 7 is rarely different. Moreover, it gives similar results to the stopping criterion
which the stopping parameter is defined as least ratio improvement of two consecutive

differences of the objective values.

174

abod Jxau Y] U0 PINULIUO))

(6L80°0F) 9€€0°T

(6T80°0F) LECO'T

(08L0°0F) GST0'T

(6,80°0F) LETO'T

(61L0°0F) #620°T

0cT

(2LL0°0F) 0299°0

(LLOT'0F) GL89°0

(00S0°0F) ¥¥29°0

(1690°0F) 9299°0

(220T°0F) 9689°0

06

(18S0°0F) L6070

(0970°0F) S20¥°0

(L6€0°0F) 1€6€°0

(L8V0°0F) GC0¥°0

(1670°0F) 2L6E°0

09

(ZTP0°0F) GL6T0

(6£70°0F) LIST 0

(2e70°0F) ¥102°0

(09€0°0F) €S9T°0

(F€€0°0F) 6861°0

0€

00€

(LGS0°0F) #19€°0

(17£0°0F) 697€°0

(1€20°0F) ¥I¥E0

(8GT0°0F) STEE 0

(L9V0°0F) T£5E°0

08

(09€0°0F) ¥652°0

(6T€0°0F) 6L¥5°0

(LZV0°0F) 9552°0

(F7£0°0F) 685270

(9220°0F) GGLZ'0

09

(92£0°0F) THST'0

(8620°0F) T9LT 0

(6670°0F) LLST0

(10G0°0F) 91810

(0€70°0F) PSFT'0

0¥

(¥020°0F) 2690°0

(GL20°0F) 98L0°0

(€£20°0F) 02L0°0

(L020'0F) 29L0°0

(1920°0F) 2€80°0

0¢

00¢

(G8T0°0F) ¥6L0°0

(10€0°0F) 62600

(8220°0F) 8180°0

(GST0°0F) L920°0

(6920°0F) G890°0

0¥

(06T0°0F) 68G0°0

(0%20°0F) L8G0°0

(L¥T0°0F) 10S0°0

(2120°0F) 6£50°0

(9€10°0F) 9%¥0°0

0¢

(1600°0F) €L20°0

(£010°0F) G920°0

(GGTO'0F) 6£€0°0

(GFTO'0F) 0S€0°0

(62T0°0F) L6€0°0

0¢

(¥900°0F) 2L10°0

(£010°0F) 6£20°0

(6600°0F) 66T0°0

(2€£00°0F) 6910°0

(6¥700°0F) LET0°0

0T

00T

09°0=+

06°0=+

0V 0=+

0€'0=4+

0¢'0=+

("098) JS[V JO oulry Yoo-[[em dFeIoAr oY J,

(9]

MOY

‘1L Suthrea seouruniojed JSIV T 9lqeL

175

LLBLO

806.°0

8L6L°0

€€6L°0

00080

o8RIoAY

(€LTT0F) 68S7°€

(L6€T°0F) veoce

(9LT2°0F) 0657°€

(LSTT'0F) ogev'e

(8282°0F) 680%°€

00¢

(€992°0F) C16C°C

(1212°0F) T082°C

(8661°0F) 981¥°C

(€6LT°0F) 2T6EC

(2002°0F) 106€°C

0sT

(L96T'0F) GFIG'T

(LVL1°0F) 6€6%'T

(8L12°0F) 8609'T

(PSET'0F) THIGT

(LE0T'0F) €€19°T

009
00T

(L0L0°0F) 8929°0

(2990°0F) 6259°0

(SITT0F) S0¥9°0

(6,60°0F) 88290

(TTIT°0F) 09120

0¢

(€2€1°0F) 2I8S'T

(8680°0F) €916'T

(60ST°0F) L¥26'T

(97LT'0F) 88G6°'T

(0660°0F) Lz68'T

09T

(€21T°0F) 692€'T

(£860°0F) 265€'T

(18L0°0F) 00SE'T

(T080°0F) czee'T

(LE60°0F) L96€'T

0cI

(L0S0°0F) 96€8°0

(67L0°0F) GEFR'0

(¥L01°0F) 9588°0

(L680°0F) 8L98°0

(60€T°0F) 0678°0

00¥
08

(¥GL00F) 61ET°0

(96¢0°0F) T00¥ 0

(2060°0F) 20T¥ 0

(GT90°0F) 6F1F°0

(2£90°0F) £00%°0

%

09'0=+

06'0=+

0y 0=+

0¢'0=+

0¢' 0=+

(*098) JS[V JO oury YoOo[-[[em oFeIoA® oY,

[0D | M0y

abod snooud 2Yyy woLf panuuo;) — g d1qel,

176

BIOGRAPHY

Name Miss Rujira Visuthirattanamanee

Date of Birth April 8, 1990

Place of Birth Ratchaburi, Thailand

Educations B.S. (Mathematics), Kasetsart University, 2011

M.Sc. (Applied Mathematics and Computational Science),
Chulalongkorn University, 2013

Scholarships Science Achievement Scholarship of Thailand (SAST)

Publications

¢ R. Visuthirattanamanee, K. Sinapiromsaran and A. Boonperm, The simplex algorithm
improvement for unrestricted variable problem, Proceeding of the 5th KMITL-TKU Inter-
national Joint Symposium On Mathematics and Applied Mathematics Conference (2016),
51-60.

¢ R. Visuthirattanamanee, K. Sinapiromsaran and A. Boonperm, Self-regulating artificial-
free linear programming solver using a jump and simplex method, Mathematics, vol. 8,

pp. 356, 2020.

