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Breast and gynaecological cancers are the main causes of global cancer death in females.
So far, several compounds have been identified from traditional medicine components and natural
products that exhibited anticancer activity. Previously, a-mangostin (a-MG) and apigenin (APG) had
been extracted and purified from cerumen of Tetragonula laeviceps and bee pollen of Apis mellifera
respectively. Preliminary studies reported that these compounds express antiproliferative activity in
several cancer cell lines. In this study, a-MG and APG were investigated for antiproliferation effect
in breast cancer cell line BT-474 and ovarian adenocarcinoma cell line SKOV-3 using MTT assay,
fluorescent staining coupled with flow cytometry analysis, caspase activity assay, and quantitative
real-time PCR of interest genes. From BT-474 cell line result, both compounds caused necrotic
death by induction of inflammation, as observation of COX2 gene upregulation. In SKOV-3 cell
line, APG induced apoptosis via an intrinsic pathway while a-MG led to necrosis that was associated
with upregulation of COX2 gene expression. Both compounds arrested cell progression at Go/M
phase. In addition, the half proximal inhibition concentration (ICso) of both compounds in normal
cell lines was higher than cancer cell lines representing less cytotoxicity on normal cells. Regarding
the antiproliferation effect of APG in SKOV-3, it is interesting how APG regulated cellular
mechanisms to suppress cell proliferation. To clarify this question, 11-plex TMT labelling
phosphoproteomics was performed at an early response time to observe the global changes of
phosphoproteins after APG exposure. Gene set enrichment analysis appeared that APG treatment
altered regulation of transcription via epigenetics, histone modification, and organisation associated
with demethylation, and activated various signalling pathways especially signalling through
mitogen-activated protein kinase (MAPK). APG inhibited cyclin-dependent kinase 1, 2, and 4
(CDK1, CDKZ2, and CDKA4) activities, and activated stress response and cell survival signalling from
NetworKIN and Kinase set enrichment analysis (KSEA). Notably, inhibition of pyruvate
dehydrogenase complex activity by enhancing activities of pyruvate dehydrogenase kinase (PDK1
and PDK2) presumed that conversion of energy metabolism and aerobic glycolysis occurred in
SKOV-3 cells after exposure with APG. Taken together, a-MG and APG exhibit antiproliferative
activity on a different mechanism and knowledge from this study provide a better understanding of
cellular response to the compounds that could become useful as a therapeutic or co-treatment agent
for cancer medication.
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CHAPTER 1
INTRODUCTION

1.1 A brief review on traditional medicine

The usage of natural resources as an herbal medicine has started a long time ago
almost at the start of mankind. The evidence and documentation of herbal usage for treating
illness has been estimated to occur in Sumerian civilization around 5000 BCE (1). Since then,
the record of medicinal plants and other natural resources usage emerged across the globe
from Egypt, Greek, Roman, the Arabs, India, China, and Africa (2-4). At first, the treatment
of the ailments by utilising herbal plants and native sources appeared to be intuitive, like
animals, and this confined knowledge generated through experiences was passed on to the
next generation. A famous script of observation of medicinal plants is “De Materia Medica”
written during Nero’s Empire by Dioscorides, who has been recognised as one of the fathers
of pharmacognosy along with Theophrastus (2). He described 944 drugs from 657 origin
plants that were used to treat a broad spectrum of diseases for example relieve pain, fever,
headache, and stomach ache, and cure wounds, burns, and stings. This document offered a
foundation for “Materia Medica” or the history of pharmacy for the medieval and renaissance
age that led to the establishment of pharmaceutical sciences during the early industrial
revolution. During the Dioscorides period, in China, “Shen Nong Ben Cao Jing”, a Chinese
historic document in agriculture and medicinal plants, has been established and described
three lists of herbs that can be divided into three groups, upper herbs that have stimulating
properties with lower toxicity, middle herbs that have potential treatment activity but with
toxicity, and lower herbs that contained most likely only poison (5). Not only herbs were
described in these documents but also other natural resources for example minerals, animal
parts, and extracts including bee products. The trend of herbal and traditional medicine as
alternative and complementary treatments has become more attractive, especially for elders

with health concerns or mild symptom illnesses, because several reasons for example anxiety



of using conventional medicine in long-term, good aspects on herbal medicine, and
experience in the family (6). This is reflected through an increase in demand for medicinal
plants and their derivatives, i.e., dried parts, crude and purified extracts, essential oils, and
even gums that are used in nutraceuticals and dietary supplements, and for manufacturing in
pharmaceuticals and cosmetics (7). The average growth is around 2.4% in volume and 9.2%
in value with an estimated global trade of approximately USD 33 billion. In Thailand, a trade
report from the Thai Ministry of Commerce from 2017-2020 (Fig. 1.1) showed an average
value of Spices and medicinal plants exports at about USD 200 million with a sharp growth
rate during 2016-2017 (8). The different geographical areas, biodiversity, and ecosystem of
each civilisation have caused high diversity of plants and natural resources used in folk
medicine. One of the traditional medicinal substances that have been reported of usage for
treatment in different parts of the world is bee products. Bee products have been recorded
both as sole substance or as mixtures with other herbs for wound healing, relief of fever and
inflammation, and oral healthcare (9, 10). Apitherapy is a term describing the treatment or
cure of illness using bee products. Humans started collecting honey from wild bees for
consumption and ritualistic activity since 7,000 BCE in North Africa and cultivation of
honeybees was observed in Egypt, Greek, China, and Mayan civilisation (11). Apiculture has
started in Thailand since 1940s when the European honey bee (Apis mellifera) was introduced
for cultivation and research in Chulalongkorn and Kasetsart University (12). In 2020,
Thailand ranked 36" globally and 2" in Southeast Asia with around 0.29% share of the honey
market worldwide, representing approximately USD 19 million according to a report from the
Department of Agricultural Extension, Ministry of Agriculture Cooperatives, Thailand.
Moreover, besides honey, there are plenty of high-value by-products from honeybees for
example royal jelly (approximately USD 75-200/kg), beeswax, propolis (bee glue), bee
pollen, and even bee venom. The monetary worth and health benefits of these products have

gained more attention and enhanced research activities in bee products properties, impact on



well-being, and illness prevention that will probably increase the value in favour of products
from a certain area. Apart from its products, honeybees help the fruit farmers and
horticulturist by acting as the main pollinators in several fruit gardens and farms. Taken

together, apiculture in Thailand is growing and will be important in Thai agriculture and

economy.
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Figure 1.1 Value and growth rate of spices and medicinal plants export of Thailand during
2011-2020

1.1.1 Bee products properties and usage

Bee products, as described earlier, have been found to exhibit various activities and
characteristics that are influenced by four main reasons: species of bees, geographical area,
diversity of botanical sources, and collecting season, which will affect the constituents and
their proportion in the products (13). The activities of these products have been studied in the
form of crude extracts, purified partition, or even isolated compounds using various
approaches (14). In this circumstance, we will describe only the isolated purified compounds
to avoid the complexity that might arise from purity, absolute concentration, synergistic and

antagonist effect, and unknown factors.



1.1.1.1 Honey

The first and most famous bee product is honey, which is produced from the digestion
of floral nectar and is kept in honeycombs in the beehive primarily as a food supply. The
sweetness of honey is related to the major composition by approximately 70-80 % of sugars,
mainly glucose and fructose, with a lesser fraction of maltose and sucrose, and other complex
sugars (15). Honey also contains amino acids with low amounts of protein, which serve as
nitrogen sources, antibiotics mechanisms, and enzymes from bee salivary secretions (16).
Other small amounts of constituents include organic acids, resulting in the pH of honey being
in the range of 3.4 — 4.2, vitamins, and minerals (17). These components possibly originate
from bees themselves, flowers, or even the soils of that area, creating a unique molecular
fingerprint as well as characteristics and properties. As previously mentioned, a strong
activity that could be observed from honey is antimicrobial activity owing to the
supersaturated sugar content, low pH, HO, that is a by-product of glucose oxidation by a
bee’s enzyme glucosidase to generate gluconic acid, and non-peroxide compounds in specific
types of honey. These contents are methylglyoxal (MGO) in manuka honey and defensin-1 in
Revamil source (RS) honey (18). MGO is a breakdown product from 1,2-dicarbonyl, which
forms from a non-enzymatic reaction between glucose and amino acids from heat treatment or
prolonged storage (19). The antimicrobial activity is involved with disrupting the bacterial
fimbriae and flagella structure and also damaging bacterial cell membrane (20). Another
antimicrobial agent is defensin-l, which is an antimicrobial peptide (AMP) produced in
hypopharyngeal glands and could be found in haemolymph where it acts as an innate immune
response molecule against bacteria, fungi, and protozoa (21). The amount of defensin-I is
varied in each of the bees and among their species that reflect the concentration of this AMP
in honey. The mode of action of this AMP is likely to be involved with permeabilization of
both gram-positive and negative bacterial cell membrane and antibiofilm formation but has

less effect against multi-drug resistance strains of bacteria. Phenolic compounds are also



expressed and involved in this activity. Honey also expresses wound healing ability by
preventing infection. Moreover, it has been reported that honey has immunomodulatory
effects by major royal jelly proteins (MRJP) isoform 1 inducing tumour necrosis factor-alpha
(TNFa) and matrix metalloproteinase (MMP) 9 expression in human keratinocytes that
possibly stimulate the healing process (22). Anticancer activity in honey has also been
discovered in isolated compounds that are various flavonoids and polyphenols for example
chrysin, luteolin, apigenin, quercetin, and kaempferol. A report from thyme honey had found
that a trihydroxyketone, which is a monoterpene, could induce apoptosis in human prostate
cancer cell line PC-3 by inhibiting nuclear factor kappa B (NF-xB) activation via

phosphorylation and IL-6 secretion (23).

1.1.1.2 Royal Jelly

Next, Royal jelly (RJ) is a nutrient-rich white to yellow acidic gelatinous product that
contained a high amount of sugar (~10-16%), proteins and amino acids (~12-15%), and fat
(~3-6%) with minor components of enzymes, vitamins, minerals, flavonoids, and phenolics
(24). Due to the high density of nutrients, it serves as the main food during the development
of larvae for worker bees and through the whole life of the queen (25). The proteins and
amino acids are the major content of dry matter of RJ with approximately 80% of
glycoproteins called MRJPs and minor fractions of apolipoprotein, enzymes, and defensin-1
(26). Jellein-1 and -1, a product of MRJP-1 cleavage, has been shown to exhibit antibacterial
activity on both grams of bacteria while royalisin, a homolog of defensin-1, appears to be
effective against gram-positive bacteria only (27). Interestingly from lipid contents, 10-
hydroxy-2decanoic acid, a unique fatty acid only found in RJ, has been reported to express
anti-inflammatory and immunomodulator activities by inhibiting the histone deacetylase
(HDAC) resulting in enhancing of expression of superoxide dismutase and reduction of LPS-

stimulating inflammation in human monocytic leukaemia THP-1 cell line (28). Furthermore,



RJ protein and lipid constituents have been reported to benefit hyperlipidaemic and anti-

ageing properties (29-31). However, there is no relevant report of anticancer activity in RJ.

1.1.1.3 Bee venom

Bee venom is a complex mixture containing peptides, proteins, enzymes, amines,
volatile agents, phospholipids, and pheromones and has been used in apitherapy to treat
chronic pain and inflammation, arthritis, and Parkinson’s disease (32). The major components
in the dry matter of bee venom are melittin, apamin, and phospholipid A2 (33). Melittin is an
amphipathic peptide composed of 26-amino acids (AAs) with hydrophobic side chain AAs at
N-terminal while positive side chain AAs at C-terminal. It is thought to interact with the
anion lipid layer of the cell membrane and through accumulation creating pores, which cause
the release of cell contents. However, anti-inflammatory effects have been observed with
melittin (34). Its anticancer activity is involved with cell cycle arrest and induction of
apoptosis via both the intrinsic and extrinsic pathways (35). Apamin is an a-helical peptide
formed by 18 AAs cross-linked with two disulphide bonds. It penetrates the blood-brain
barrier and appears to cause blocking of Ca?*-dependent K* channel and has been used for the
treatment of central nervous system diseases (36). Phospholipase A2 is a Ca?*-dependent bee
enzyme that hydrolyses complex lipids on the cell surface, which causes inflammation and
immune stimulation. While phospholipase A2 has allergic induction activity, its been shown
to be effective for immunomodulation and ameliorate neurodegenerative and allergic disease

(37, 38).

1.1.1.4 Propolis
Propolis or bee glue is a resinous yellow to black compound that was collected from
plant resins by worker bees and mixed with wax and enzymes. It serves many roles in the
beehive such as filler to seal cracks and holes of the hive, smoothing inner wall, preventing
invasion, covering the corpse of an intruder inside the hive, and protecting the colony from

diseases. The constituents of propolis in Thailand majorly consists of terpenes, flavonoids,



and phenolic esters, which possibly originated from the gum of the styrax tree (39). Caffeic
acid phenethyl ester (CAPE) has been discovered as a main active compound. It exhibits
antiviral, antibacterial, antifungal, anti-inflammatory, and anticancer activities. For antiviral
activity, CAPE was found to inhibit viral integrase of HIV-1 (40), to repress hepatitis C virus
replication (41), and recently been predicted in silico to inhibit SARS-CoV-2 main protease
activity through binding into substrate pocket of the enzymes (42). It also increases in
permeability of bacterial membranes and suppresses RNA polymerase activity (43). CAPE
expresses anti-inflammation property via regulating NF-«kB, a transcription factor that plays
roles in various cell activity for example immune response, inflammation, and cell
proliferation (44). Anticancer activity of CAPE was reported in breast carcinoma cell lines by
induction of cell cycle arrest and apoptosis, and inhibiting angiogenesis through suppression
of vascular endothelial growth factor (VEGF) (45). One of the phenolic esters, artepillin C,
which originated from Baccharis (Asteraceae) (46) is found in high concentrations in
Brazilian green propolis. Its effects include antibacterial, anti-inflammatory, and antitumour
activity. The anticancer activity of artepillin C is mediated through the induction of cell cycle
arrest at G; phase by repressing cyclin D/cyclin-dependent kinase (CDK) 4 activity in human
colon cancer cell lines (47) and apoptosis through suppressing survivin, an anti-apoptotic

protein, in oral squamous cell carcinoma cell line HSC-3 (48).

1.1.1.5 Bee pollen
Bee pollen, also known as ambrosia and when fermented is called bee bread, is a
mixture of granules of plant pollen that are collected by worker bees and combined with
nectar and bee secretions, which are stored in a specific place of the hive. It serves as a
reserve food source for the hive colony. Its composition is highly varied based on geographic
origin and the plants in the foraging area of worker bees so it could appear as a mono-floral or

multifloral bee pollen. Compositions of bee pollen cover carbohydrates (~50%), AA and



proteins (~21%), lipids and fatty acids (5%), fibre (~8%), ash (~3%), vitamins, minerals, and

other phenolic contents (49).

1.1.2 Programmed cell death and cell cycle arrest mechanisms
1.1.2.1 Cell cycle progression and regulation
Resistance to apoptosis or other programmed cell deaths has been a hallmark of
cancer cells. Natural compounds exhibit various anticancer properties through cell cycle
arrest and programmed cell death mechanisms including apoptosis, necroptosis, and
autophagic cell death. Programmed cell death consists of several mechanisms and to simplify

the order of these, cell cycle arrest will be described first.

Cell cycle progression (Fig. 1.2) is characterised by the growth and increase of its
components including duplication of the genomic DNA during interphase. Subsequently
mitosis, which consists of prophase, metaphase, anaphase, and telophase, takes place by
segregation of replicated chromosomes into two separate cells during cell division. The
interphase consumes most of the time in the cell cycle where cell growth and DNA replication
occur with stringent regulation by multiple checkpoints. Interphase can be identified through
the DNA content of the cells and classified into three phases including G,, S, and G phases.
The transition of cell cycle is regulated by various groups of proteins, but the key regulators
are the cyclin family proteins and CDKs. While CDKs protein levels appear to be stable
throughout the cell cycle, cyclin proteins are in turn expressed and degraded during each
phase. Only cyclin D, which contains three members cyclin D1, D2, and D3, are expressed all
through the progression from G; to M phase, whereas the expressions of other cyclins are in
order as follows: cyclin E from late G; during S and entry of G, cyclin A from S to G2 before
entry of M, and cyclin B from early G, to M. CDKs are also organised into phase-related
functions: with CDK4, CDK6 and CDK?2 involved in G;, CDK2 solely involved in S, and
CDK1 in G2. This shows the association between cyclins and CDKs in each phase. Starting

from Gi, cyclin D interacts with CDK4 or CDK6 and forms a CDK-cyclin complex after



being stimulated by growth factors. These complexes then phosphorylate retinoblastoma
protein (Rb), which inactivates Rb and causes the release of E2F transcription factors to
activate the expression of downstream target genes required for G transition to S for example
cyclin E, Cdc25A, CDK2, cyclin A, CDK1, etc. Then, cyclin E binds to CDK2 causing
activation by CDK7-cyclin H complex (CDK-activating kinase, CAK) of CDK2 and
transition from G; to S phase. During S phase, cyclin A associates with CDK2, which is
activated by CAK, and this complex helps facilitate DNA replication by activation of DNA
polymerase and primase. After the DNA is duplicated, cyclin A binds to CDK1 and initiates
entry to G, phase. Finally, cyclin B interacts with Cdc25-activated CDK1 and triggers M
phase transition by activating cytoskeleton remodelling and organisation. If DNA damage has
occurred in these transitions, ATM/ATR signalling cascade is activated and results in the
activation of p53 tumour suppressor protein to upregulate the cyclin-dependent kinase
inhibitors p21, which binds to CDK4/6-cyclin D and CDK1-cyclin B complexes and inhibits
their activities together with other cell cycle arrest mechanisms (50). CDK1 is also regulated
via phosphorylation at Thr14/Tyrl5 by the Weel protein and to a lesser extent at Thrl4 by
the Mytl protein (51). These phosphosites are removed by Cdc25A and Cdc25C
phosphatases. However, the phosphatases are inactivated through phosphorylation of Cdc25A
at Serl23 and Cdc25C at Ser216 by CHEK1 and CHEK2, downstream targets of DNA
damage response by ATM/ATR signalling. The hyperphosphorylated Cdc25A and C are
sequestered in the cytoplasm by 14-3-3 proteins (52). Prevention of CDK-cyclin complexes
activation along the cell cycle progression arrests the cells at the stage where inhibition
occurred. Cell cycle arrest is required for DNA repair and if the damage is irreparable the cell
will be led to cell death. A longer period of cell cycle arrest has been linked to induction of
apoptosis via dysregulation of the balance of proapoptotic and anti-apoptotic proteins which
lead to mitochondrial membrane disruption then chromatin condensation, DNA

fragmentation, and finally apoptosis (53). One explanation for this cell death is modulation of
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JNK signalling cascade, deactivation of Rb, and activation of p53 involved with the apoptosis
activation via regulation of apoptotic associated genes, upregulating of Bax while

downregulating Bcl2, thereby triggering mitochondrial apoptosis (54).
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Figure 1.2 The stages of the cell cycle including associated cyclin-CDK complexes at each
stage
1.1.2.2 Apoptosis

Apoptosis is a programmed cell death occurred through a series of cell structure
changes at fine details that resulted in small pieces of the cells, called apoptotic bodies, which
are later removed by macrophages without inflammation activation (55). In brief, the sequel
of apoptotic cell death starts from the activation of apoptotic regulators through extrinsic or
intrinsic signalling. Next, the effector machinery is stimulated by activated regulators and
executed apoptosis mechanism. Then, the effector molecules were exported into the nucleus

and cleaved their nuclear substrate resulting in changes in nuclei, like chromatin condensation

CbC25
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and DNA fragmentation (56). In the meantime, reorganisation of actin, loss of adhesiveness,
and cell rounding can be observed. The convoluted cells appear to start contracting and
blebbing resulting in shrinkage of the nuclear membrane, cell membrane, and organelles into
apoptotic bodies. These apoptotic bodies are quickly phagocytosed by surrounding cells such
as macrophages and parenchymal cells. The activation of apoptosis can be categorised into

caspase-dependent and caspase-independent pathways.

Caspases are a group of cysteine proteases that recognised different substrate motifs
and cleaved a protein where cysteine resides after an aspartic acid residue (57). They are
involved in cell fate, differentiation, development. Regarding the caspase-dependent pathway,
there are two mechanisms, extrinsic and intrinsic pathways, to activate the signalling cascade.
First, the extrinsic pathway starts when death ligands trigger and activate death receptors
(DRs), a group of plasma membrane receptors in the tumour necrosis factor (TNF)
superfamily. DR contains a death domain (DD), which is a cytoplasmic tail with an
approximate size of 80 AAs that is required for internalisation and activation (58). Interaction
between DRs and death ligands for example Fas/FasL, TRAIL-R1/TRAIL, DR1/TNF,
DR3/Apo3L, caused recruitment of protein complexes called death-inducing signalling
complex (DISC). DISC consists of adaptor proteins (Fas-associated protein with death
domain, FADD, and TNF receptor-associated Fas-associated protein with death domain,
TRADD), initiator caspases (caspase-8/-10), and MAPK in some cases. After recruitment to
DISC, initiator caspases were activated by dimerization and autocleavage. The activated
initiators were responsible for the activation of effector caspase (caspase-3/-7) through
cleavage of procaspase-3/-7. Then, these effector caspases cleave several important cellular
structures and molecules led to formation of apoptotic bodies. An alternative pathway of this
mechanism occurred through the cleavage of Bid that causes truncated Bid fragment involved
in dysregulating of the mitochondria membrane. According to the latter event, mitochondria

membrane was permeabilised and contributed to the leakage of cytochrome C and AIF that
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also induce cell death. Moreover, recruitment of activated JNK to DISC has shown to be
involved with facilitating caspase-8 activity by activation of E3 ubiquitin ligase ltch to
ubiquitinate cFLIP., a caspase-8 inhibitor, led to degradation of cFLIP. (59). Second, the
intrinsic pathway or mitochondrial pathway is activated by numerous molecules and events
for example ER stress, hypoxia, DNA damage, and dysregulation of survival factors and
apoptotic proteins balance. These events caused mitochondria outer membrane
permeabilization (MOMP) (60). A famous signalling pathway of this mechanism is the p53-
mediated intrinsic apoptosis pathway (61). Under cell stress events, p53 is stabilised and
prevented from proteasomal degradation through inhibition of E3 ubiquitin ligase MDMZ2 that
regulates p53 expression by ubiquitination. The increase in p53 protein level or activation of
p53 by ATM/ATR pathway resulted in upregulation of p53-targeted genes, mainly pro-
apoptotic BH3-only members of Bcl-2 protein family e.g., Bim, Bid, PUMA, Bad, Bik, Noxa,
and Harariki proteins. These proteins interacted with Bcl-2 causing dissociation of Bax and
Bak proteins from Bcl2 while they also activated Bax and Bak proteins (62). Activated Bax
and Bak facilitate the MOMP events by permeabilization of the mitochondrial outer
membrane. The permeabilised mitochondria membrane releases two groups of proteins. The
first group is the caspase activation group including cytochrome C that interacts with Apaf-1
and procaspase-9 to assemble apoptosome, Smac/DIABLO, and HrfA2/Omi serine protease.
The last two proteins are associated with cell death by interrupting the function of inhibitors
of apoptosis proteins (IAP), which normally prevents the activation of the apoptosome. Then,
the activated caspase-9 in the apoptosome cleaved procaspase-3 to fully function caspase-3.
Apart from caspase-associated apoptosis, the caspase-independent cell death mechanisms are
associated with releasing of AIF and endonuclease G from mitochondria membrane through
other mechanisms causing permeabilization for example high influx of calcium or
neurotransmitter glutamate (63). Then, these proteins are localised into the nucleus causing

DNA fragmentation and nuclear condensation that is named stage | condensation. This
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process continues until chromatin condensation, which is the stage 11 condensation leading to

nuclear collapse/disassembly (64).

1.1.2.3 Necroptosis

As mentioned above, besides apoptosis by caspase-dependent and caspase-
independent pathways, several cell death mechanisms have been observed including
necroptosis, autophagic cell death, and necrosis. Necrosis is an unorganised cell death
resulting in cell membrane distortion and burst of intracellular components into the
surrounding area, which will induce an inflammatory response. Necrosis occurs via several
factors, including infection, toxic substance exposure, oxygen deprivation, and extreme
environmental conditions. A recent study found that necrosis-like morphology can be
regulated and has been termed necroptosis (65). Among all the necroptotic signalling
pathways, TNF-induced necroptosis is extensively reported and investigated. Initiation of
necroptosis by the TNF receptor family appears to be similar to the extrinsic apoptosis
pathway but there are different groups of molecule complexes involved to guide the cells to
necrotic death (66). In brief, trimerization of the cytoplasmic domain of TNFR occurred
through the binding of TNF to TNFR. This structure involves in recruitment and assembly of
protein complexes containing TRADD, cellular inhibitor of apoptosis protein 1 (ClAP1),
clAP2, receptor-interacting protein kinase 1 (RIPK1), TNFR-associated factor 2 (TRAF2),
and TRAF5. In normal circumstances, RIPK1 is ubiquitinated with the E3 ubiquitin ligase
clAP1 and clAP2 that lead to RIPK1 degradation and later activates NF-kB for cell
proliferation (67). In necroptosis, cylindromatosis (CYLD), a deubiquitinate protein, prevents
RIPK1 from degradation and allows the assembling of complex Il by recruitment of caspase-8
and FADD (68). Under this circumstance, if caspase-8 inhibitors are presented, the cell will
be directed to necroptosis. Then, RIPK1 is activated by autophosphorylation at serine 161.
The activated RIPK1 assembles a complex named necrosome through recruitment of RIPK3

that is activated by autophosphorylation. Finally, the necrosome activates its substrate, mixed
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lineage kinase domain-like pseudokinase (MLKL), causing oligomerisation and embedding

into the cell membrane causing intracellular leakage and loss of cell stability.

1.1.2.4 Autophagic cell death

Autophagy is a eukaryote-specific cell survival and homeostasis process that catalyse
undesired proteins in a double membrane organelle named autophagosome (69). It serves
various roles in cells, including balancing energy sources, removal of misfolded or aggregated
proteins, eliminating impaired organelles, exterminating pathogens, and introducing to cell
death. Autophagy has been found in triggering cell death associated with necrosis, apoptosis,
and autophagic cell death (70). Autophagic cell death occurs through the accumulation of
autophagosomes and autolysosomes that continuously lyses the intracellular compartments
and organelles resulting in cell blebbing with large vacuoles inside. Basically, autophagy is
stimulated extracellularly or intracellularly in absence of growth factor/insulin signalling,
hypoxia, and nutrient deprivation (69). Upon lack of growth factor or insulin stimuli,
phosphatidylinositol 3-kinase (PI3K), a plasma membrane-associated lipid kinase, cannot
activate Akt that prevents tuberous sclerosis complex (TSC1/2) complex from inhibition of
Rheb GTPase activity. Then, deactivated Rheb cannot inhibit FK506-binding protein 38
(FKBP38) binding to mTORC. The mTORC protein inhibits autophagy by phosphorylating
autophagy-related protein 13 (Atgl3) when a nutrient is available, and a growth factor or
insulin is presented. In addition to external stimuli, an energy-sensing kinase, target of
rapamycin (TOR), is deactivated by nutrient deprivation, discharge of ATP, and hypoxic
stress. This event allows Atg13 to interact with Unc-51 like autophagy activating kinase 1 and
2 (ULK1/2). Later, ULK1/2 activate autophagy-specific PI3KC3 complex 1, a complex of
pl50 protein, Beclin-1, vacuolar protein sorting 34 (Vps34), Autophagy and Beclin-1
regulator 1 (AMBRAL), and other organelle membranes (71). The activated PI3KC3 complex
1 phosphorylates phosphatidylinositol into phosphatidylinositol 3-phosphate to recruit DCFP1

and WIP1 proteins for phagophore formation. Then, conjugation of Atg5-Atgl2 occurs in
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parallel with LC3-Il formation by conjugation of phosphatidylethanolamine with LC3-I
protein. Both proteins/complexes are recruited to the phagophore and involved in the
curvature of phagophores due to asymmetric recruitment. The curving of the phagophore
allows it to engulf protein aggregates or damaged organelles and start to close the structure
into autophagosomes and autolysosomes that is maturated by fusion with endosomes and

lysosomes for proteolytic event.

1.1.3 a-mangostin and apigenin from bee products in Thailand and its
anticancer activity

Recently, cancers have been reported for acquiring drug resistance that increases the
complexity in treatment, recurrence, and relapse of the disease (72). Precision medicine and
drug screening for novel multi-target anticancer compounds from natural resources and newly
synthesized compounds for chemoprevention, treatment, and sensitizing in combination have
been progressed vastly in the past few years (73-75). For decades, over 100 chemical
compounds belonging to flavonoids, terpenes, leukotrienes, catechins, and phenolic
substances have been extracted and isolated from bee products. Key compounds include a-
mangostin (0-MG) and apigenin (APG). These two compounds have been reported for
extraction and isolation from Thai bee products. a-MG was extracted from cerumen of Thai
stingless bee (Tetragonula laeviceps) from mangosteen (Garcinia mangostana L.) and
rambutan (Nephelium lappaceum) orchard in Chantaburi province (76). Cerumen is a
propolis-like mixture of plant resins and stingless bee secretions that serves quite similar
purposes to honeybee propolis. Whereas APG was isolated from bee pollen harvested from
Pua district, Nan province, where corn (Zea mays L.) was the dominant plant species in the

area.

1.1.3.1 a-Mangostin
Mangosteen, which is recognised as the queen of tropical fruit due to its unique taste,

has been mass cultivated in South and Southeast Asia, which Thailand being the leader of
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mangosteen export globally. It has been used in Thai traditional medicine for wound healing
and to treat skin inflammation, diarrhoea, abdominal pain, and a chronic ulcer (77). The
active compounds found highly in the mangosteen hull are majorly xanthones (a-, -, and -
mangostin, mangostanol, mangostenol, mangostanin. gartanine, garnicone derivatives, etc.),
tannin, flavonoids, and other phenolic contents (78). o-MG, a bright yellow xanthone
derivative found highly in the pericarps of mangosteen, has been firstly extracted and reported
in 1855 by Schmid from mangosteen hull as reported by Yates and Stout in 1958 (79).
Additionally, a-MG could be extracted from the root bark and stems of mangosteen and the
Allanblakia family (80, 81). It has been shown to contain wound healing, antimicrobial, anti-
malaria, anti-oxidation, anti-inflammation, and anticancer activities (82). According to its
structure (Fig. 1.3), it expresses a high hydrophobic profile that reflects low solubility in
water and high cell permeability, which results in less drug bioavailability from rapid
absorption and metabolism at early time-point of administration but lower availability in body
fluids and might be unreachable at the target site (83). Thus, multiple drug delivery strategies

have been evolved to reduce these limitations (84).

Figure 1.3 a-mangostin chemical structure

The antitumor effect of a-MG was first reported in human leukaemia cell lines HL-
60, K562, NB4, and U937, by apoptosis induction in 2003 (85). The results showed that
cleaved-caspase-3 expression and DNA fragmentation increases especially at 12 hours. They
further observed in HL-60 cells that a-MG activated intrinsic apoptosis pathway as observed

by reduction of caspase-9 and -3 and loss of mitochondria membrane potential causing
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leakage of cytochrome C and apoptosis-inducing factor (AlIF) into the cytosol (86). Moreover,
in DLD-1, a human colon cancer cell line, a-MG repressed the expression of cyclin A, B1,
D1, E1, CDK1, and phosphorylated-CDK1 (pCDK1) while promoting the expression of p27
that inhibits cyclin E/CDK2 activation, which resulted in cell cycle arrest at G, phase and
induction of apoptosis (87). a-MG was also reported to induce apoptosis via caspase-
independent pathway and sensitizing the cells in co-treatment with 5-FU (88). In human head
and neck squamous cell lines HN-22, HN-30, and HN-31, a-MG caused apoptosis by
interfering with the balance of apoptosis regulators via downregulating anti-apoptotic protein,
Bcl-2, and upregulating pro-apoptotic protein, Bax, and cell cycle checkpoint regulator, p53
(89). They further found anti-invasiveness by downregulation of MMP-2 and MMP-9 in these
cells when treated with o-MG (90). Antiproliferative activity of o-MG in human
chondrosarcoma cell line SW1353 was observed by induction of apoptosis via both intrinsic
and extrinsic pathways from increasing the expression of Bax, cleaved-caspase-3, -8, -9, and
cytochrome C in cytosol and reducing the expression of Bcl2 and Bid (91). Activation of
extracellular signal-regulated kinase 1 and 2 (ERK1/2), while inhibition of c-Jun N-terminal
kinase 1 and 2 (JNK1/2) phosphorylation, Akt, and PDK1 was observed and suggested that a-
MG alters the cell proliferation signalling. Similar to the effect observed in human colon
cancer cell lines COLO205, MIP-101, and SW620 (92). Mitogen-activated protein kinase
(MAPK), and specifically p38 MAPK, appears to be inhibited by a-MG in human
hepatocarcinoma cell line SK-Hep-1 (93). Further work showed that a-MG reduced Akt
signalling and tumour growth, arrested the cell cycle at G; phase, and induced mitochondria-
associated apoptosis in xenografts of p53 mutation human breast cancer cell BJIMC3879luc2
(94). Cell free kinase assay has shown that a-MG significantly inhibited CDK4 activity,
possibly through binding to ATP pocket from molecular modelling, which illustrated cell
cycle arrest at G; phase in prostate cancer cell line 22Rv1l and PC3 (95). Further study

reported that a-MG suppressed cell progression from G; to S phase by upregulating the
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expression of CHEK2 and p21, whereas downregulating the expression of cyclin D and
proliferating cell nuclear antigen (PCNA), a protein involved in DNA replication and DNA
repair process (96). Enzyme activity assays showed that a-MG could inhibit AKR1B10
activity to a lesser extent in comparison to y-MG (97). AKR1B10 is an NADPH-dependent
reductase, was upregulated in various cancers and inhibition of this protein expression and
activity ameliorated the cancer progression (98). a-MG also appears to selectively bind to
human DNA polymerase, DNA topoisomerase | and Il that resulted in cell cycle arrest at
G2/M phase in human colon cancer HCT-166 (99). In breast cancer cell line MCF7, the
expression level of oestrogen receptor alpha (ERa) and pS2, an oestrogen-responsive gene,
was reduced after a-MG treatment (100). ERa appeared to correlate with the antiproliferation
effect of a-MG because the cells gain more resistance to a-MG when ERa expression was
knockdown. Shan et al reported that a-MG could inhibit activation of the STAT3 signalling
pathway, which altered the expression of anti-apoptotic protein, Bcl-xL, and Mcl-1, causing
permeabilization of the mitochondrial membrane that resulted in leakage of AIF and
cytochrome C into cytosol inducing apoptosis (101). The inhibition of STAT3 by a-MG was
discovered to be involved with upregulation and stabilisation of Src homology region 2
domain-containing phosphatase-1 (SHP1), a regulator of STAT3 (102). Later, a-MG was
shown to inhibit the expression and activity of Fatty acid synthase (FAS), which are generally
upregulated in breast cancer cells (103). Additionally, a-MG was identified to inhibit other
proteins and enzymes that are associated with carcinogenesis and drug resistance for example
isocitrate dehydrogenase 1 (IDH1) and ATP-binding cassette drug transporter (ABCG2) (104,
105). Though studies are showing that a-MG at high concentrations dysregulates the
mitochondrial membrane and leads to apoptosis activation, a-MG also exhibits protective and
anti-oxidative effects at lower doses by preventing peroxidative stress (106). Apart from the
cytotoxicity effect in cancer cell lines, a study in F344 rats found that pre-treatment injection

of crude a-MG extract from mangosteen pericarps has potential as a chemoprevention agent
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in 1,2-dimethylhydrazine-induced colon carcinogenesis (107). This chemoprotection effect is
also observed in oral administration with a-MG in Balb/c nude mice subcutaneously

xenografted with human colon cancer cell line HT-29 (108).

Apart from the antiproliferative activity a-MG also exhibits anti-invasiveness and
metastasis inhibition. In 2009, Hung et al discovered the antimetastatic effect of a-MG in
human prostate carcinoma cell line PC-3 (109). The results showed that a-MG downregulated
the expression level of MMP-2, MMP-9, and urokinase plasminogen activator (u-PA) by
preventing the activation of JNK1/2, c-Fos, c-Jun, and NF-kB, including DNA binding
activity of NF-xB and AP-1. Further studies in xenograft nude mice found that a-MG
inhibited phosphorylation and activation of NF-xB and STATS3 that caused a reduction of NF-
kB and STAT3 DNA binding activity (110). This deactivation led to downregulation of
MMP-9, cyclin D1, and gp130, a cytokine receptor, but upregulation of tissue inhibitor of
metalloproteinase 1 (TIMP1) This scenario also appeared in migration induction by 12-O-
tetradecanoylphorbol-13-acetate (TPA) in human breast carcinoma cell line MCF-7 except
that the researchers observed inhibition of phosphorylation on ERK1/2, instead of JNK1/2
and upregulation of IkBa expression (111). They extended this study in human lung
adenocarcinoma cell line A549 by observing the effect of a-MG treatment on phorbol 12-
myristate 13-acetate (PMA) inducing cell transition (112). The results showed that o-MG
suppresses the activation of avf3 integrins, focal adhesion kinase (FAK), and ERK1/2.
Whereas preventing PMA downregulating IkBa expression resulted in downregulation of
MMP-2 and MMP-9. In addition, a-MG upregulates E-cadherin expression and
downregulates N-cadherin, Snail, and Slug expression in human pancreatic cancer cell lines
BXPC-3 suggesting that a-MG has the potential of suppressing epithelial-mesenchymal

transition (EMT) therefore reducing the aggressiveness of the cancers (113-115).

Lastly, a-MG has been found to induce autophagic cell death in human glioblastoma

cell lines GBM8401 and DBTRG-05MG by activation of AMP-activated protein kinase
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(AMPK) resulting in phosphorylation of regulatory-associated protein of mTOR (raptor). This
interacts with 14-3-3y in the cytosol and prevents the activation of mTORCI1, which under
stress conditions will activate autophagy through ULK1 recruiting of the autophagic
machinery (116). Orally administered a-MG in transgenic GFP-LC3 mice showed that
autophagy was activated by increasing the expression of LC3, an autophagosome marker,
without causing ER stress (117). However, ER stress from a-MG treatment has been shown in

human prostate cancer but not prostate epithelial cells (118).

1.1.3.2 Apigenin

Apigenin is a flavonoid found in the genus Apiaceae, commonly known as
umbellifers, including celery, parsley, chamomile, or carrot. It has also been detected in a
broad variety of other plants including herbs, vegetables, citrus fruits, onion, wheat sprouts,
and tea (119). Because of ubiquitously synthesis in most plants, APG became one of the most
common active ingredients found in many traditional medicines. It presented various health
benefits for example anti-inflammation, anti-oxidant, anti-ageing, anti-bacterial, and anti-
tumour activities (120). In addition, it demonstrated low toxicity against non-cancerous cells
in comparison to cancerous ones. The common structure of APG is 4°,5,7-trihydroxyflavone
as shown in Fig. 1.4. Water solubility is another concern of a compound in consideration for
in vivo applications and potential drugs and can be observed through a logP value. The logP
value expresses logi of partition coefficient that is a solubility ratio of organic to aqueous
phases of a compound, in general practice is the partitioning of the compound in octanol and
water. The higher logP value is the higher affinity of a compound in organic solvents, which
represented the hydrophobicity of the compound. The logP value of APG is 3.02 representing
a hydrophobicity at the ratio of approximately 1000:1 of octanol to water. Therefore, APG
appeared to have low solubility in water and bioavailability, which led to studies to enhance

these properties in APG by encapsulation techniques (121, 122).
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Figure 1.4 Apigenin chemical structure

Apigenin was found to trigger diverse mechanisms in several cancer cell lines. It has
been shown to exhibit anticancer activity through for example induction of apoptosis, cell
cycle arrest, metastasis inhibition, and anti-angiogenesis (123). APG anticancer activity had
been firstly described in 1986 by Birt et al (124) where they observed anti-mutagenic effects
in Salmonella typhimurium and anti-promotion of carcinogenesis by protecting the mouse
skin epidermis from TPA-induced mutagenesis. The first report of APG-related cell death was
published by Hirano et al (125) where APG caused cell death in human breast carcinoma cell
line ZR-75-1. This led to the discovery of cell cycle arrest at Go/M phase in APG-treated rat
neuronal cell line B104 in 1994 by Sato et al (126). This arrest has then been linked to
apparent DNA damage and upregulation of p53 in mouse embryo cell line C3H/10T1/2CL8
(127). APG also inhibits DNA topoisomerase | and Il (Topo-I and -Il) by interfering with
Topol/lI-DNA binding (128, 129). This suggested that APG can perturb DNA damage
mechanisms. Lepley et al reported cell cycle arrest at Go/M phase in APG-treated mouse
keratinocyte cell lines C50 and 308 by inhibiting CDKZ1 activity but not the expression level
and downregulation of cyclin B1 (130). Moreover, they also found that the treatment of APG
in human diploid foreskin fibroblast cell line CRL-2097 caused cell arrest at G: phase by
upregulation of p21 expression, downregulation of cyclin D1 and A expression, inhibition of
CDK?2 activity, and prevention of Rb activation (131). Interestingly, Gupta et al found that
APG treatment of unsynchronised human prostate cancer cell line CA-HPV-10 arrested the

main population at Go/M phase whereas synchronised cells by serum starvation were arrested
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at G, phase (132). This result displayed that APG could suppress cell progression at different
phases possibly by broad inhibition of various cyclins and CDKs. Further inspection in PC-3,
LNCaP, 22Rvl, and DU145 suggested that APG caused cell suppression at G; phase by
downregulating expression level of cyclin D1, D2, and E, and CDK2, 4, and 6, and
upregulating expression level of cyclin-CDK complexes inhibitors, including p16, p18, p21,
p27, and p53 including activation of p53 via DNA damage response pathway (132-134).
Studies of associated signalling cascade revealed that APG dephosphorylated Rb at Ser780,
807, and 811 and inhibited several MAPK signalling pathways involved with cell
proliferation except for ERK1/2 that was hyperphosphorylated (134, 135). However,
activation of ERK1/2 does not activate ELK1, a downstream target for cell growth signalling
(136). Moreover, the expression of p21 proved to be upregulated by the p53-independent
mechanism through inhibition of histone deacetylase 1 and 3 (HDAC1 and HDAC3) that
allows the transcriptional machinery to access p21 promoter for facilitating the expression
and caused cell cycle arrest at Gi phase (137). As described earlier, APG expressed
antiproliferative activity by arresting cell progression not only at Gi, but also G2/M phase.
Regarding the cell transition from S to M phase, cyclin A, cyclin B, and CDK1 are necessary.
They appeared to be suppressed both expression and activation by APG on several cell lines
(138-141). yH2AX, a hallmark of DNA damage response, was expressed in APG-treated cells
through activating of p53 by ATM/ATR pathway that consequently inhibited the activation of
cdc25c, a phosphatase involved in activating cyclin B/CDK1 complex (142). Furthermore,
activated p53 induced the transcription of various CDK inhibitors. In general, the signalling
pathway related to cell growth, survival, and proliferation, for example, PI3K p85, Akt,
JAK/STAT, p38, and GSK3p are inhibited (140). This series of actions that mainly targeted
G2 machinery in particular cell lines caused cell cycle arrest at G»/M phase after APG

exposure.
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For induction of cell death mechanisms, APG also exhibits apoptotic activity by
disrupting the balance of pro-apoptotic (Bax and truncated Bid) and anti-apoptotic (Bcl2 and
survivin) proteins and reducing mitochondrial membrane potential thereby causing an efflux
of cytochrome C and AIF into the cytosol resulting in activation of intrinsic apoptosis
pathway (135, 143, 144). APG also stimulated the extrinsic apoptosis pathway by increasing
death receptor protein 5 (DR5), TNFa TRAIL-R2, TNFR1/2, and cleaved-caspase-8
expression (145, 146). On autophagic cell death, in thyroid carcinoma cell line BCPAP,
colorectal cancer cell line HCT116, and multiple myeloma cell line NCI-H929, autophagy
markers were observed that are induction of Beclin-1 accumulation, suppression of p62,
conversion of LC3-1 to LC3-Il, and accumulation of reactive oxygen species together with
DNA damage (147, 148). In addition, APG also exhibits anti-invasiveness and anti-
angiogenesis activities. Inhibition of metastasis by APG is associated with downregulation of
uPA, MMP-2, and MMP-9, including secretion to extracellular matrix (149, 150) while anti-
angiogenic activity has been described through downregulation of VEGF and HIF-1a

expression resulting in inhibition of microvascular formation (151).

1.1.4 Phosphoproteins detection

The cell cycle is a highly dynamic and precise process. Each activation of a protein is
due to a specific required function at the time and thus is heavily influenced by the
phosphorylation of proteins to control their activity. The alteration of protein phosphorylation
in each step of cell progression is governed by kinases and phosphatases. These kinases and
phosphatases are strictly controlled and can be influenced by physical and chemical
stimulants, which activated both intercellular and extracellular signalling pathways.
Understanding phosphorylation changes during each process of the cycle offers an insight
into the cellular framework of cell division. Studies of phosphoproteins after exposure to a
compound were performed to elucidate how the compound interrupts cell progression. In

past, the methods to observe a change in signalling pathway required large protein amounts of
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the interest phosphorylation sites and a specific set of antibodies that are quite limited to
detect several phosphorylation sites. Moreover, due to the dynamic nature of phosphorylation,
a specific time for each phosphorylation site is needed to optimise for observation. Also, the
experiment can be a tedious task due to the low-throughput technique. Recent mass
spectrometry technology combined with the expansion of protein databases and development
in phosphorylation prediction and detection allows the application of high-throughput
techniques to study multiple phosphorylation sites in an experiment to occur, which is named

phosphoproteomics.

The term phosphoproteome had been first mentioned in a 2D-gel electrophoresis
study of the yeast proteome by Alms et al in 1999 (152). The limitations of previous
techniques were difficulty in detection and quantification of transient, weak, or reversible
phosphorylation, amounts of proteins/phosphoproteins needed for observation, time per
course of an experiment, and complication of protein identification. The introduction of
isotope-labelling tandem mass spectrometry in proteomics has addressed many of these
limitations (153). Especially, the invention of electron transfer dissociation (ETD) for
fragmentation step in tandem mass spectrometry has improved the confidence in the
identification and quantification of labile phosphoryl groups on peptides (154). In parallel,
label-free techniques have been improved through more advanced bioinformatics and
statistics knowledge but technological challenges surrounding the amount of variation and
detection limits remained. Isotope labelling, for example stable isotope labelling using amino
acids in cell culture (SILAC), tandem mass tag (TMT), and isobaric tag for relative and
absolute quantitation (iTRAQ), have been developed to cope with the quantitation issue by
observing labelled isotope at MS? level thus improving detection sensitivity. Recently, a
benchmarking study of quantification strategy for phosphoproteomics had reported that
quantification of multiplex TMT-labelled at MS? level offers the most precise quantification

method for complex biological samples, however, its accuracy for stoichiometry analysis is
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still lower than the MS®-based level (155). Moreover, a comparison study of pipelines for
identification and posttranslational modification (PTM) site localisation from several famous
peptide search engines had shown that PTM-score approach in MaxQuant-integrated engine
Andromeda exhibited a high-reliability phosphosite identification and localisation, and

allowed the users to easily adjust for specificity and sensitivity (156).

Furthermore, the technological improvements also brought about an increased
number of potential phosphosites and highlights the lack of knowledge surrounding their
functional meaning. Several phosphosite databases have been established using datasets of
known sites from manually curated and/or computational predicted data, and generally
contained information of sites and upstream regulators (157, 158). The two famous
phosphosite databases that have been used by various kinase substrate prediction tools are
PhosphoSitePlus (159) and Phospho.ELM (160) as a result of the validity of sites that were
gathered only from literature and phosphoproteomics data. Downstream processing
approaches for phosphoproteomics were performed to elucidate different aspects involving
biological function and kinase activity. To determine a kinase activity on interesting sites,
protein kinase substrate prediction tools for example NetworKIN (161), Musite (162), iGPS
(163), were applied and can be extended for analysis of kinase activity. Next, Kinase set
enrichment analysis (KSEA) (164) and Kinase Enrichment Analysis 2 (KEA2) (165) were
tools for the prediction of kinase activity and were performed by over-representation analysis
of known substrates set of kinases. The output of this prediction provided information on the
activation and deactivation of kinases that can be further applied to infer the signalling
pathway influenced by the treatment or condition of interest. Moreover, gene set enrichment
analysis (GSEA) can be applied in discovering biological explanations of phosphorylation
changes. However, GSEA was designed to determine the changes at transcription and
translation level so phosphorylation might not suit well for this analysis because different

phosphosites could have a contrasting impact on the function of the proteins.
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In summary, phosphoproteins carried valuable biological information and it would be
important to investigate how the treatment would affect the cellular function by regulating the
signalling pathways through alteration of kinase and phosphatase activities. Thus, utilisation
of GSEA and KSEA along with mapping phosphosites to kinase network by bioinformatics
tools would provide insight into details of biological events that allow us to understand the

mechanisms underlying the effect of treatment.
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CHAPTER 2
EFFECT OF APIGENIN AND o-MANGOSTIN ON BT-474
BREAST AND SKOV-3 OVARIAN CANCER CELL
LINES

2.1 Introduction

Breast and ovarian cancers have long been a severe illness and a major cause of death
in females globally. Breast cancer is on the top of the female cancer list in both incident rate
and mortality rate whereas ovarian cancer is ranked 8" in the list on both incident rate and
mortality rate (166). However, considering the death ratio of gynaecology-associated female
cancer, ovarian cancer is in the 2" place after cervical cancer. While breast cancer has been
raised in attention and various methods for diagnosis this cancer has been invented, ovarian
cancer remains high in fatality due to its undefined signs and symptoms, making it essentially
asymptomatic until at an advanced stage preventing its early diagnosis and treatment. For
decades, surgery and chemotherapy, especially platinum- or taxol-based chemotherapy, plus
more recently cancer immunotherapy for example trastuzumab or bevacizumab have been
introduced and developed for cancer treatment, but they are not fully effective because of
their adverse effects and the advent of resistance (167, 168). Hence, novel, or alternative
treatments are necessary for the treatment of breast and ovarian cancer patients.

Natural products, especially herbs, have increased attention for use in cancer therapy
in order to inhibit cell proliferation and induce apoptosis, with the hope of reducing adverse
events as well as avoiding specific resistance that occurred in some cancers. Thus, many
natural compounds or phytochemicals had been isolated, mainly from plants, such as lignans
were shown to have potential application against breast cancer due to their phytoestrogen
activity (169) and cryptotanshinone found in the traditional Chinese herbal medicine Salvia
miltiorrhiza Bge. (170) The molecular mechanisms of action of some of these compounds

have been reported. In breast cancer, ent-11a-hydroxy-15-oxo-kaur-16-en-19-oic-acid can
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induce apoptosis of MCF-7 and MDA-MB-231 cancer cells differently (171). Sayeed et al.
also reported that allyl isothiocyanate, found in many cruciferous vegetables, inhibited the
proliferation of MCF7 depending on time and concentration (172). Also, it was highly
cytotoxic to MCF-10A, which is a non-tumorigenic breast epithelial cell line. However, allyl
isothiocyanate did not have an inhibitory effect against MDA MB-231 cells at all. Next, in
ovarian cancer, proanthocyanidins from the leaves of Chinese bayberry (Myrica rubra Sieb.
Et Zucc.) showed strong inhibition of cell growth (with cell cycle arrest at the G; phase),
angiogenesis, cell migration, and invasion of A2780/CP70 cisplatin-resistant ovarian cancer
cells (173). In addition to natural compounds, synthetic compounds had been reported to be
challenging sources. For example, synthesized (1E,4E)-6-(1-(isopentyloxy)nonyl)-5-
methoxynaphthalene-1,4-dione dioxime, which is a derivative from 1,4-naphthoquinone
oxime, was reported to be strongly cytotoxic to the A2780 ovarian cancer cell line with half-
maximal inhibitory concentration (ICs) value of 8.26 + 0.22 uM (174). Furthermore, O?-
(acetoxymethyl)-1-(iso-butylamino)diazen-1-ium-1,2-diolate  and  O?-(acetoxymethyl)-1-
(isopropyl amino) diazen-1-ium-1,2-diolate, synthesized from primary amine-based
diazeniumdiolates, reduced the proliferation of SKOV-3 and ES2 ovarian cancer cells at
0.033-1.0 mg/mL after 24 h exposure (175).

The aim of this work was to evaluate the in vitro cytotoxicity of a-MG and APG on
breast and ovarian cancers. a-MG is mainly isolated from Garcinia mangostana pericarp
(176) and the cerumen of the stingless bee Tetragonula laeviceps (76), while APG is the main
compound extracted from Roman chamomile Chamaemelum nobile (L.) (177) and Apis
mellifera bee pollen (178). Both compounds have been reported to have various bioactivities,
including anti-biofilm (179), anti-aging (180), anti-inflammation (181), and anti-gout (182)
activities. Furthermore, only a few works have reported that both compounds can contribute
to cancer prevention. Especially when considering only gynaecological cancer, a-MG can

inhibit the growth of HeLa human cervical cancer cells [19] but there are no reports on the
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SKOV-3 ovarian cancer cell line, while only a few studies showed antiproliferative activity of
APG on this cancer cell line (183, 184). Thus, more data regarding antiproliferation
mechanisms is necessary. Human breast cancer BT-474 cell line, which was derived from a
ductal carcinoma, and human ovarian adenocarcinoma SKOV-3 cell lines were used as a
model breast cancer cell line [10]. Normal mammary epithelial fibroblast MCF-10A cell line
was used as a non-transformed control. Whereas, due to limitations of normal ovary cells
availability, CCD-986Sk skin fibroblast, and WI-38 lung fibroblast cell lines were used as
model normal human cells instead of a normal ovarian epithelial cell line. Next, doxorubicin
(Dox), a currently used chemotherapeutic drug, was used as a positive control. The
cytotoxicity was observed by using the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium
bromide (MTT) assay. Change in morphology of the treated cells was observed under light
microscopy. Programmed cell death was investigated through flow cytometry following
annexin V-Alexa flour 488 and propidium iodide (PI) staining, while cell cycle arrest was
performed likewise except after Pl staining only. The activity of caspase-3, -8, and -9 were
also evaluated for apoptosis activity validation. Furthermore, changes in transcript expression
levels of selected representative inflammation-associated genes, proto-oncogenes, autophagy-
associated genes, and apoptosis-associated genes were investigated by quantitative real-time
reverse transcription polymerase chain reaction (grt-RT-PCR). Overall, the obtained data give
a broader insight into how a-MG and APG inhibit the growth of BT-474 breast and SKOV-3
ovarian cancer cell lines.
2.2 Materials and methods

2.2.1 Cell culture

The human BT-474 ductal carcinoma cell line (BT-474, ATCC no. HTB20) was
cultured in Roswell Park Memorial Institute (RPMI) 1640 medium containing 10 % (v/v)
foetal calf serum (FCS) while human ovarian adenocarcinoma derived cell line SKOV-3

(ATCC no. HTB77 were cultured in McCoy’s 5A (modified) medium supplemented with
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10% (v/v) foetal calf serum (FCS). As for comparison in breast cancer experiment, normal
mammary epithelial fibroblast (MCF-10A, ATCC no. CRL-10317) was used and cultured in
Dulbecco's modified Eagle medium and Ham's F-12 medium (DMEM/F12) supplemented
with 5% horse serum, 20 ng/mL recombinant epidermal growth factor (rEGF), 0.5 mg/mL
hydrocortisone, 10 pug/mL insulin and 100 ng/mL cholera toxin. The untransformed (normal)
human skin fibroblast CCD-986Sk (ATCC no. CRL-1947) and lung fibroblast WI-38 (ATCC
no. CCL-75) cell lines were used in comparing to SKOV-3 cells. Both CCD-986Sk and WI-
38 cells were cultured in MEM (Eagle’s Minimum Essential Medium) supplemented with
10% (v/v) FCS and all cell lines were cultured and tested at 37 °C with 5% (v/v) CO: in a
humidified environment.

2.2.2 Cell viability and proliferation by the surrogate MTT assay

BT-474, MCF-10A, CCD-986Sk, and WI-38 cells were cultured in 96-well plates
seeded at 1 x 10* cells/well containing 200 uL of media overnight, while SKOV-3 cells were
cultured in the same manner but seeded at 5 x 10° cells/well. Then, the cells were treated with
various concentrations of APG, a-MG, Dox or the dimethyl sulfoxide (DMSO) solvent only
(control). BT-474, MCF-10A, and SKOV-3 cells were treated for 24, 48, and 72 h while
CCD-986Sk and WI-38 cells were treated for 72 h only. After the indicated incubation
(exposure) time was reached, 10 puL of 5 mg/mL of MTT solution was added into each well
and cultured as before for 3 h to allow the formazan formation. The culture medium was then
removed, and the formazan was solubilized by the addition of 150 uL of DMSO and the
absorbance was measured by microplate reader at 560 nm (Asgo). The cell viability (%) was

calculated as equation below

(Asgp treated cells- Asgg blank)

%100
(Asgo untreated cells - Aggq blank)

% cell viability =

The ICsp value of each compound was calculated from the graphical plot of the relative

number of viable cells (%) vs. the test compound concentration.
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2.2.3 Cell imaging

BT-474 cells at 1x10° and SKOV-3 cells at 5 x 10° cells in 5 mL of medium in a 25-
cm2 flask were cultured overnight and treated the next day with 0.1% (v/v) DMSO alone
(control) or DMSO containing a-MG (9.75 (BT-474) and 7.309 (SKOV-3) uM), apigenin
(37.01 (BT-474) and 18.502 (SKOV-3) uM) or doxorubicin (0.46 (BT-474) and 0.431
(SKOV-3) uM) for 24, 48, and 72 hr. Live-cell images were captured using a Nikon Eclipse
TS100 microscope coupled with a DS-L3 imaging system at 40x, 100x, and 200x

magnifications

2.2.4 Apoptosis and cell cycle analysis

Test cells were cultured as in cell images above and harvested at the indicated time by
trypsinization with 0.05% (w/v) trypsin in 0.5 mM EDTA buffer, washed twice with cold
phosphate-buffered saline (PBS) using centrifugation at 3,000 x g for 5 min at 4 °C to harvest
the cells each time. For apoptosis detection, the cell pellets were resuspended in 50 pL of
binding buffer (10 mM HEPES pH 7.4, 140 mM NacCl, and 2.5 mM CacCl,) and stained by 5
pL of annexin V-Alexa flour 488 and 5 pL of Pl for 30 min at room temperature in the dark.
For the cell cycle study, the cell pellets were fixed in 200 pL of cold 70% (v/v) ethanol at -20
°C overnight, harvested and washed as above. The washed cell pellet was then suspended in
250 pL PBS with 0.1 mg/mL RNase A and incubated at 37 °C for 30 min, washed as above
and resuspended in staining buffer (12.5 pL of 1 mg/mL PI in PBS) and incubated at room
temperature in dark for 30 min. The samples were then analysed by flow cytometry on a FC
500 MPL cytometer (Beckman Coulter, Brea, CA) recording 10,000 events per sample. The
experiment was performed in triplicate.

2.2.5 Caspase activity assay

Test cells were plated and treated as stated above under apoptosis and cell cycle studies.

The treated cells were harvested by trypsinization at 12 and 24 h and then subjected to the

caspase-3, -8 and -9 colorimetric assay kits (catalog no. ab39401, ab39700, and ab65608,
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Abcam, UK) as per the manufacturer’s instructions. Briefly, after harvesting, the cells were
washed with cold PBS and centrifuged at 800 x g. The cell pellets were then lysed with 50 uL
of chilled cell lysis buffer, incubated on ice for 10 min, clarified by centrifugation at 10,000
xg for 1 min and the supernatants were harvested into a new microcentrifuge tube. The
protein concentration of each sample was measured by the Bradford assay and then adjusted
to 100 pg of protein/ 50 pL of cell lysis buffer and applied to each well of a 96-well plate.
Next, 50 pL of 2x reaction buffer was added with a final concentration of 10 mM
dithiothreitol into each sample well. After mixing, the respective substrate of each caspase
was added to each well and incubated at 37 °C for 1-2 h. Finally, the absorbance of each
reaction was measured at 400-405 nm on a microplate reader. Each experiment was

performed in triplicate.

2.2.6 Analysis of transcript expression levels by RT-qPCR

Cell lines were treated and processed as previously described in the apoptosis
detection assay until the cell pellet was collected. After cell harvesting, total RNA from each
sample was extracted using a RNeasy mini kit (catalog no. 74104, Qiagen, CA, USA). The
RNA concentration and purity were evaluated by spectrophotometer at an absorbance of 260
and 280 nm. The qrtRT-PCR was performed using the One-Step SYBR® PrimeScript™ RT-
PCR kit Il (Perfect Real-time; catalog no. RO86A, Takara, Japan). The PCR mixture
contained 20 ng of total RNA, 0.4 uM of both forward and reverse primers, 1 uL of
PrimeScript™ Enzyme Mix II, and 1x one step SYBR® RT-PCR buffer IV. The nucleotide
sequences of the primers used in this study are listed in Table 2.1.

Amplification and quantification of each gene of interest were carried out using the
Minicon® system (Bio-rad, CA). The thermocycling was performed as follows. First, the total
RNA was reverse transcribed into cDNA at 42 °C for 5 min. Then, real-time qPCR was
performed by an initial 95 °C for 10 s followed by 40 cycles of 95 °C for 10 s and 60 °C for 30 s.

Dissociation analysis was performed to validate the specific product for each primer pair. All



33

target genes were normalized to that for GADPH expression in each sample and compared as
the relative expression level between the control and treated samples. The normalized relative
expression level was calculated due to a quantification cycle (Cq) value as formula below.

A normalized relative gene expression level = 244C,

Table 2.1 Targeted genes and oligonucleotides for amplification in RT-qPCR assay.

Gene Forward primer (5°—3°) Reverse primer (5°—3)
Reference gene
GAPDH GGGCATCCTGGGCTACTCTG GAGGTCCACCACCCTGTTGC
Inflammation-associated genes
Cox2 TCTGCAGAGTTGGAAGCACTCTA GCCGAGGCTTTTCTACCAGAA
NExB ATGGCTTCTATGAGGCTGAG GTTGTTGTTGGTCTGGATGC
Proto-oncogene
CTNNB1 CTTGTGCGTACTGTCCTTCG AGTGGGATGGTGGGTGTAAG
Autophagy-associated gene
CathepsinB CAGCGTCTCCAATAGCGA AGCCCAGGATGCGGAT
Apoptosis-associated genes
BCL?2 ATGTGTGTGGAGACCGTCAA GCCGTACAGTTCCACAAAGG
Caspase3 TGTTTGTGTGCTTCTGAGCC CACGCCATGTCATCATCAAC
Caspase? CCAATAAAGGATTTGACAGCC GCATCTGTGTCATTGATGGG
Caspase8 GATCAAGCCCCACGATGAC CCTGTCCATCAGTGCCATAG

Caspased ~ CATTTCATGGTGGAGGTGAAG GGGAACTGCAGGTGGCTG

2.2.7 Statistical analysis.

Data are presented as the mean + one standard deviation (1SD), derived from three
independent repeats in each experiment. The data were analysed by one-way analysis of
variance (ANOVA) followed by Tukey’s multiple-comparisons test for the significance of
differences between the means. Significance was accepted at the p < 0.01 and p < 0.05 levels.
All analyses were performed using the SPSS version 19.0 program (IBM corporation,

Chicago, IL, USA)
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2.3 Results

2.3.1 Cytotoxicity effect of a-MG and APG on BT-474 and MCF-10A cell lines

BT-474 cells treated with o-MG inhibited their proliferation depending on
concentration. All three incubation times revealed the marked antiproliferation activity of a-
MG, although a-MG at 48 h was slightly most effective for the same level of inhibition (Fig.
2.1A). APG was inhibitory after 48 and 72 h, but not at 24 h (Fig. 2.1B), while Dox was
cytotoxic at all three time points but only weakly at 24 h (Fig. 2.1C). Therefore, all three
compounds were cytotoxic to cells depending on time and concentration. Derived ICso of a-
MG, APG and Dox were summarized in Table 2.2. At all assayed time points, o-MG was
more cytotoxic to BT-474 cells than APG. At 24 h, BT-474 cells were only sensitive to a-
MG, whereas proliferation of BT-474 cells inhibited by APG and Dox occurred after longer

exposures.

Since all three compounds were cytotoxic to BT-474 cells, it was necessary to find
out if these compounds were also cytotoxic to normal cells. In this study, the MCF-10A
normal breast cells were used as a representative control. From Figure 2.1D-F, it was of note
that the inhibition manner of these three compounds on MCF-10A and BT-474 cells was
similar. In addition, APG was the least cytotoxic compound against MCF-10A cells,
especially at the early time point (24 h exposure). The derived 1Cs of these three compounds
against MCF-10A cells was summarized in Table 2.2. Comparing the 1Cso between BT-474
and MCF-10A cells at each time point, both a-MG and APG were slightly more cytotoxic to
BT-474 than MCF-10A cells. Of note was that Dox was more cytotoxic to MCF-10A cells,
especially at the early (24 h) exposure. At a concentration as low as 1.72 uM, Dox-induced

100% MCF-10A cell mortality at 48 and 72 h (Fig. 2.1F).
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Figure 2.1 Cytotoxicity effect of the compounds on BT474 and MCF-10A cell lines.
(A, D) a-MG, (B, E) APG, and (C, F) Dox on BT-474 cells and MCF-10A. The cell survival
(%) was estimated by the MTT assay after 24, 48 and 72 h exposure (blue, orange and grey

line, respectively). Data are shown as the mean +SD, derived from three independent repeats.
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Table 2.2 1Cs of a-MG, APG and Dox against BT-474 and MCF-10A cells

BT-474 MCF-10A
Compound 48h 72h 24 h 48h 72h
o—MG 291064 228%0.11 3.15+£080 4.17+x1.17 3.97+£0.10 5.09+£0.73
APG ND 4724 +8.84 28.15+3.36 ND 6091 £9.81 4437+241
Dox ND 1.05+0.18 028 +0.04 0572006 0.20£0.02 0.06 £ 0.004

ND = not determined

2.3.2 Cell morphology of BT-474 and MCF-10A cell lines after a-MG and APG
treatment

In order to observe the morphological changes in BT-474 cells, a-MG, APG, and Dox
at 9.75 uM, 37.01 uM, and 0.46 pM, respectively, were chosen along with 0.1% DMSO. At
100x magnification, at all three time points (24, 48, and 72 h), strange morphologies of the
cells treated by each compound were evident, but not in the DMSO control. The longer the
treatment (exposure) time was, the more floating cells and lower density of attached cells
were noted (Fig. 2.2A). At 200x magnification and 48 h time point, clear colony formation
was evident in the control (DMSO-treated) cells, whereas the smallest colonies were observed
in the Dox-treated cells. Thus, Dox may inhibit the proliferation of BT-474 cells by inhibiting
their migration/invasion (Fig. 2.2B). Although colonies were formed in the a-MG and APG-
treated BT-474 cells, more vacuoles were evident within the cells. Overall, some indicators of
potential apoptosis-like cell blebbing and shrinkage were also observed in treated cells by the
three compounds, but not the control cells.

Considering Table 2.2, although a-MG was cytotoxic to MCF-10A normal cells, the
shape and density of the a-MG treated MCF-10A cells were similar to the control (DMSO
only treated) cells at all three assayed time points (Figure 2.3A and B). After 72 h, a-MG-
treated MCF-10A cells were still attached to the substratum. After 24 h, at any time no 1Csp
value was determined (> 92.51 (APG) and 17.24 (Dox) uM) for APG- and Dox-treated cells
(Table 2.2), similar shaped cells to the control were seen, and were still noticed in samples

with longer exposure times, except that a lower cell density was prevalent in the Dox-treated
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cells. Thus, BT-474 breast cancer cells may have a greater sensitivity to these compounds
than MCF-10A normal breast cells, potentially indicating that these three compounds may be

practical chemotherapeutic agents.

A

DMSO o-MG APG Doxorubicin

24 h

48 h

72h

Apigenin Doxorubicin

Figure 2.2 Morphology of BT-474 cells after a-MG and APG treatment.

The cells were treated with 0.1% (v/v) DMSO only (control), a-MG (9.75 uM), APG (37.01
pHM) and Dox (0.46 pM) after 24, 48, and 72 h at (A) 100x magnification and (B) the same
treatment after 48 h at 200x magnification. Images are representatives of those seen from at

least three such fields of view per sample from three independent repeats.
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Apigenin Doxorubicin

Figure 2.3 Morphology of MCF-10A after a-MG and APG treatment.

The cells were treated with 0.1% (v/v) DMSO only (control), a-MG (9.75 uM), APG (37.01
M) and Dox (0.46 uM) after 24, 48 and 72 h at (A) 100x magnification and (B) the same
treatment after 48 h at 200x magnification. Images are representatives of those seen from at

least three such fields of view per sample from three independent repeats.
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2.3.3 Not apoptosis but necrosis was observed in BT-474 cell line after a-MG and
APG treatment

From the observed changes in the BT-474 cell morphology (Fig. 2.2), especially the
increasing number of vacuoles in the treated cells, programmed cell death was possibly
presented. Treated BT-474 cells were stained using annexin V and PI, and flow cytometric
analysis revealed that both a-MG (9.75 puM) and APG (37.01 pM) induced a significant level
of necrosis to BT-474 cells since early exposure time (24 h; p <0.01) onwards. However,
APG induced a significant level of early (p <0.05) and late (p <0.01) apoptosis at 24 h
exposure, while Dox (0.46 uM) caused early apoptosis of BT-474 cells at an early exposure
time (24 h). Longer exposure times caused an increased number of necrotic cells, although
early apoptotic cells were still detected in the 48 and 72 h time points (Fig. 2.4C and E).
From this flow cytometric analysis (Fig. 2.4), APG and a-MG appeared to mainly induce
necrosis in BT-474 cells at 24 h, although some apoptotic cells could still be observed. To
further evaluate the possibility of apoptosis, caspase-3, -8, and -9 activities were assayed from
BT-474 cells after exposure to these compounds for 12, 24, and 48 h. However, the
significant increase in the relative caspase activity, compared to that in the control cells, was
only detected at 48 h (p <0.01). The activity of caspase-3 was clearly increased by all three

compounds, while the activity of caspase-8 and -9 was upregulated by Dox (Fig. 2.5).
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Figure 2.4 Flow cytometric analysis of BT-474 cells.
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The cells were stained with annexin-V and PI after treatment in 0.1% (v/v) DMSO only

(control), a-MG (9.75 uM), APG (37.01 pM) or Dox (0.46 uM) for 24, 48 and 72 h. (A)

FACS profiles described the intensities of annexin-V at X-axis and Pl at Y-axis. The results

are representative of those seen from three replications. The derived % positive cells in each

status were shown in bar chart (B). * and ** represent a significant difference between the

control and treatment cells in each group at p-value < 0.05 and <0.01, respectively.
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Figure 2.5 Relative caspase activity in Dox-, a-MG- and APG-treated BT-474 cells.

Cells were treated with 0.1% (v/v) DMSO alone (control) or containing a-MG (9.75 pM),
APG (37.01 pM) or Dox (0.46 pM) for 12, 24 and 48 h and then assayed for caspase-3,
caspase-8, and caspase-9 activities. Data are shown as the mean +SD, derived from three
replications, where ** represents a significant difference between the control and treated cells

at p-value <0.01.

2.3.4 Cell cycle arrest of BT-474 after a-MG and APG treatment

The possibility of cell-cycle arrest was analysed using flow cytometry of Pl-stained
BT-474 cells after each treatment. Both a-MG (9.75 uM) and APG (37.01 uM) induced
detectable levels of cell cycle arrest at the Gi-phase from 24 h exposure onwards, whilst Dox
(0.46 uM) arrested the cell-cycle at the S-phase in an early exposure (24 h), but at the G2/M-

phase at 72 h (Fig. 2.6).
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Figure 2.6 Cell cycle arrest of BT-474 cells after the treatment.
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The cells were treated with 0.1% (v/v) DMSO only (control), a-MG (9.75 uM), APG (37.01

UM) or Dox (0.46 uM) for 24, 48 and 72 h. (A) Flow cytometric histograms (5 000 events),

representative of those seen from three replications, and (B) the derived mean % (x SD) of

cells in the G4, S, and G2/M phase of the cell cycle. * and ** represent a significant difference

between the control and treated cells at p-value <0.05 and <0.01, respectively.
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2.3.5 Gene expression alteration by a-MG and APG treatment in BT-474 cell
line

a-MG and APG might affect the proliferation or death of BT-474 cells were
summarized in Figure 2.7, where Cox2 was significantly up-regulated by both a-MG and
APG (p <0.01), but not by Dox, while CathepsinB was significantly up-regulated by a-MG
only, and BCL2 was not significantly altered by all three compounds. Here, a-MG and APG
significantly up-regulated only CASP8 transcript levels (P<0.01), and not CASP3, CASP7 or
CASP9. Overall, it seems that in addition to necrosis, a-MG induced cell death by apoptosis
with potential association with inflammation and autophagy, while APG likewise had the

same role except without autophagy
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Figure 2.7 Real-time quantitative PCR analysis of selected genes in BT-474 cells.

BT-474 cells were cultured with 0.1% (v/v) DMSO alone (control) or containing a-MG (9.75
pMM), APG (37.01 uM) or Dox (0.46 uM) for 24 h. Data are shown as the mean * SD, derived
from three independent repeats. Significant differences between the control and treated cells

in each group are shown at the “**”, which represents p-value <0.01 level.
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2.3.6 Cytotoxicity effect of a-MG and APG on SKOV-3 cell line

In order to determine the cytotoxic ICso values of a-MG, apigenin, and doxorubicin
for direct comparison (Table 2.3, 2.4, Fig. 2.8, and 2.9), SKOV-3 ovarian cancer cells were
cultured on a small scale (5 x 103 cells in 200 pL of the medium in each well of a 96-well
plate). Regarding the viability of the treated SKOV-3 cells, a-MG, APG, and Dox all clearly
inhibited cell growth in a dose-dependent manner (Fig. 2.8). Both APG and Dox also showed
a time-dependent inhibition, but not a-MG. However, at any given time point, a-MG was
more toxic to the SKOV-3 cells than APG was, with the cytotoxicity being 10.8-fold at 24 h
to 5.9-fold higher at 24 and 72 h, respectively (Table 2.3). All three compounds affected the
number of viable cells and growth of SKOV-3 cells from an early exposure time (24 h). The
longer the exposure to APG, the significantly lower was the ICs value, but the compound
remained less inhibitory than a-MG and, especially, doxorubicin.

After 24 h of exposure, apigenin was nontoxic to CCD-986Sk and WI-38 cells, in
contrast to a-MG. The IC50 value of apigenin for CCD-986Sk cells was not obtained since it
resulted in 70% cell survival even at a high concentration of the compound (92.510 uM) (Fig.
2.9, Table 2.4); furthermore, the relative cell survival of 100% detected at 1.156-55.506 uM
indicated that apigenin did not affect cell proliferation/survival (Fig. 2.9B). Likewise for WI-
38 cells, apigenin at 1.156-2.313 uM did not affect the cell growth, and a concentration of up
to 27.753 uM was nontoxic to the cells. Although a-MG was toxic to CCD-986Sk cells, the
cytotoxicity was about 4-fold less than that in SKOV-3 cells. As with apigenin, the 1Cs, value
of Dox for CCD-986Sk cells was not obtained since the compound did not affect the growth

of this cell line. However, for WI-38 cells, Dox was more cytotoxic than a-MG (Table 2.3).
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Table 2.3 ICs value of a-MG, APG and Dox on SKOV-3 cells.

Compound ICsp value (pg/mL) at an incubation time of:

24 h 48 h 72h
o-MG 2.466 £ 0.338 2.977 £ 0.054 3.062 +0.349
APG 26.538 + 6.204 21.175 £ 5.249** 18.197 + 3.095**
Dox 0.534 + 0.084 0.343 £ 0.023 0.117 £ 0.008

** indicates a significant difference to the 1Cso value of 24 h when treated with the same

compound.

120
110 X
100 —Emmg

>
=]

= 90 = 90
280 £ 80
Z 70 5 70
72 60 2
= =
=z 50 5 0
o 40 Q 0
X 30 £ 30
10 - 10
0 — e P — L e e B
. 7 7 N 17 Z 2. N ¥ I 2 o
> © ? g ’ , JRS 4 =
e %y %, (Yb ‘g v_’?? Yo e Y 2 05 B Y D T, e Y,
Concentration (uM) Concentration (uM)
——24 h 48 h 72 h — 024 h 48 h 72h

%Cell survival

Concentration (M)

=24 h 48 h 72h

Figure 2.8 Cytotoxicity effect of the compounds on SKOV-3 cell line.
(A) a-MG, (B) APG, and (C) Dox in SKOV-3 cells. Cell survival (%) was estimated after
treatment for 24, 48, and 72 h (blue, orange, and grey lines, respectively). Data are shown as

the mean = 1SD, derived from three independent repeats.
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Table 2.4 1Cs value of a-MG and APG on CCD-968Sk and WI-28 cells after 72 h treatment.

I1Cs0 value (ug/mL)
Compound o oggskcells  WI-28 cells
MG 9.805 £ 3.169 1502 £ 0.464
APG ND 36.873 + 0.971
Dox ND 0.604 + 0.156

ND = not determined
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Figure 2.9 Cytotoxicity effect of the compounds on CCD-986Sk and WI-38 cell lines.
(A) 0-MG, (B) APG, and (C) Dox in CCD-986Sk skin fibroblasts (blue line) and WI-38 lung
fibroblasts (orange line). Cell survival (%) was estimated after 72 h of treatment. Data are

shown as the mean + 1SD, derived from three independent repeats.
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2.3.7 Cell morphology of SKOV-3 cell line after a-MG and APG treatment

For all the other experiments, the SKOV-3 cells were cultured on a larger scale at 5 x
10° cells in 5 mL of medium in T25 flasks. Since a-MG treatment of the SKOV-3 cells at the
ICso value obtained from the small scale (200 uL) culture (Table 2.3) was not effective at all
in the larger-scale cultures, the concentration of a-MG was increased to 3x the ICsy value.
The most obvious changes observed are summarized in Fig. 2.10. Hence, the potency of a-
MG at any given concentration depended directly on the density and number of cells as well
as its dose. This phenomenon has been reported before in other studies (185-187).
Morphological changes in the treated SKOV-3 cells were evident at the later exposure times
compared with the control (DMSO-treated cells). After 24 h of exposure, the SKOV-3 cells
treated with each test compound looked somewhat similar to the control cells; however, after
48 and 72 h, the treated cells had a lower cell density and a higher proportion of unadhered
and round cells (Fig. 2.10A). At the higher magnification of 200x, it was evident that after 48
h of exposure, the a-MG-treated SKOV-3 cells were mostly damaged, with very few spindle-
shaped cells present. Cell shrinkage was observed in the a-MG- and apigenin-treated SKOV-
3 cells, whereas some cell blebbing was seen in the doxorubicin-treated cells. In addition, the

apigenin- and doxorubicin-treated SKOV-3 cells had more vacuoles (Fig. 2.10B)
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Figure 2.10 Morphology of treated SKOV-3 cells.

The cells were treated with 0.1% (v/v) DMSO alone or DMSO containing a-MG (7.309 uM),
APG (18.502 uM), or Dox (0.431 uM) for (A) 24, 48, and 72 hh (100x magnification) and
(B) after 48 h (200x magnification). Images shown are representative of those seen from at

least three such fields of view per sample and three independent repeats.
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Figure 2.11 Flow cytometric analysis of SKOV-3 cells.

The cells were stained for annexin-V and propidium iodide (PI) after incubation of cells in
0.1% (v/v) DMSO alone or DMSO containing a-MG (7.309 uM), APG (18.502 uM), or Dox
(0.431 uM) for 24, 48, and 72 hr. (A) FACS profiles represented intensities of annexin V on
X-axis and Pl on Y-axis, and (B) derived histogram analyses are shown for 10,000 events and
are representative of those seen from three replications. * and ** represent a significant

difference between the control and treated cells at p < 0.05 and p < 0.01, respectively.
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2.3.8 Apoptosis was observed in SKOV-3 cell line after APG treatment

Since a lower density of cells was observed after a longer exposure to a-MG, APG,
and Dox, suggesting cell death, as well as inhibition of proliferation, the possibility of the
induction of programmed cell death, was further investigated. The SKOV-3 cells were treated
with the same concentration of each reagent as used for evaluating the change in morphology.
Programmed cell death can be analysed by staining target cells with annexin V and PI,
whereas cell cycle arrest can be investigated by staining target cells with PI alone. In both
cases, the staining level for each cell can be quantitatively determined using flow cytometry.

Due to apoptosis causes a loss of membrane phospholipid asymmetry (188), the
phosphatidylserine that is normally located in the cytosol is flipped outside, allowing annexin
V (conjugated with Alexa fluor 488) to bind to it. Thus, the annexin V-Alexa fluor 488
conjugate can bind to apoptotic but not to viable cells. At a longer time beyond death,
necrotic cells have an even more damaged and leaky membrane that allows Pl to pass into the
nucleus and bind to the DNA. Thus, viable cells are negative for both annexin V-Alexa fluor

488 and PI staining, showing only autofluorescence. Apoptotic cells will be positive for

annexin V-Alexa fluor 488 (green fluorescence) but negative for Pl staining, whereas

necrotic cells will be positive for both annexin V-Alexa fluor 488 and PI staining (red and
green fluorescence, respectively) (26). Flow cytometry can also be used to quantitatively
analyse cell cycle arrest, where the amount of bound PI (and thus red fluorescence) equates to
the amount of DNA,; thus, the cell cycle position (subphases G, S, and G./M) is identified by
the DNA content through PI staining.

After staining with annexin V-Alexa fluor 488 and PlI, it was evident that APG had
caused a significant level of early and late apoptosis from 24 h onwards, but with less early
apoptosis at the later time points, and subsequently caused significant necrosis, especially at
72 h (Fig. 2.11A and B). On the other hand, Dox caused a significant level of both late

apoptosis and necrosis, but only after a longer exposure of 72 hr. Although a-MG gave a
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similar result to doxorubicin, the level of necrosis was significantly increased and detected
slightly earlier (from 48 h) than the 72 h time span for the other compounds (Fig.2.11).

From Fig. 2.11, it was evident that the programmed cell death of the SKOV-3 cells
was induced by each of the three compounds and that it involved apoptosis (early and/ or
late). Hence, apoptosis was further investigated by evaluating the cellular caspase activity. As
is known, both caspase-8 and caspase-9 are involved respectively in the initiation of extrinsic
and intrinsic pathway, whereas the apoptosis-mediating caspase-3 is executioner of apoptosis
and triggered through both extrinsic and intrinsic pathways. Herein, the very early exposure
time (12 and 24 h) to each compound was evaluated. The activity of caspase-3 was
significantly (p < 0.05) increased in the a-MG-treated SKOV-3 cells after 12 h of exposure,
while its activity was also significantly (p < 0.01) increased in both the a-MG- and APG-
treated cells after 24 h of exposure, but the numerical increase observed in the Dox-treated
cells was not significant (Fig.2.12). Caspase-8 activity was not significantly changed by all
three treatments at both time points. Although the caspase-9 level was numerically increased
in all treatments at 24 h, it was only statistically significant (p < 0.01) for the apigenin-treated
SKOV-3 cells. Thus, it may be possible that the early apoptosis induced by apigenin in

SKOV-3 cells at 24 h was influenced by the intrinsic pathway.
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Figure 2.12 Relative caspase activity in Dox-, a-MG-, and APG-treated SKOV-3 cells.

Cells were treated with 0.1% (v/v) dimethyl sulfoxide (DMSO) alone (control) or DMSO
containing o-MG (7.309 uM), APG (18.502 uM), or Dox (0.431 uM) for 12 and 24 h and
then assayed for caspase-8, caspase-9, and caspase-3 activity. Data are shown as the mean +
1SD, derived from three replications, where * and ** represent a significant difference

between the control and treated cells at p < 0.05 and p < 0.01, respectively.

2.3.9 SKOV-3 cell was arrested at G,/M phase after a-MG and APG treatment

Next, we evaluated if cell cycle arrest was induced in the SKOV-3 cells by these
compounds. After 24 h exposure, a-MG had induced arrest at the G2/M phase (p < 0.01),
whereas APG likewise arrested the cells only after 48 h exposure (Fig. 2.13). Thus, o-MG
caused the cell cycle arrest faster than APG, which concurs with o-MG being more cytotoxic

to SKOV-3 cells (Table 2.3).
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Figure 2.13 Cell cycle arrest of SKOV-3 cells after the treatment.

The cells were treated with 0.1% (v/v) dimethyl sulfoxide (DMSQ) alone (control) or DMSO
containing o-MG (7.309 uM) or APG (18.502 uM) for 24, 48, and 72 hr. (A) Flow cytometric
histograms (5,000 events) representative of those seen from three replications, and (B) the
derived mean % (x 1SD) of cells in each phase of the cell cycle after 24, 48, and 72 h
treatment. * and ** represent a significant difference between the control and treated cells at p

< 0.05 and p < 0.01, respectively.
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2.3.10 Gene expression alteration by a-MG and APG treatment in SKOV-3 cell
line

To determine in deeper detail how a-MG and APG affect the proliferation or death of
SKOV-3 cells, changes in the transcript expression levels of selected genes from four groups
were investigated. The first group was inflammation-associated genes, of which
cyclooxygenase 2 (COX2) and nuclear factor kappa B (NFxB) were representatives. The
second group was proto-oncogenes, from which catenin beta 1 (CTNNB1) was selected. The
third group was autophagy-associated genes, with cathepsin B (CTSB) being a representative.
The last group was apoptosis-associated genes, from which B-cell lymphoma 2 (BCL2), and
the caspase genes CASP3, CASP7, CASP8, and CASP9 were selected. The data are
summarized in Fig. 2.14. Although a trend of mostly an increase in the gene expression level
relative to that in the control cells was numerically observed for all tested genes (except for
NF«B) among the different treatments, the upregulation was significant only for BCL2 (p <

0.01) and COX2 (p < 0.05) in the APG- and a-MG-treated SKOV-3 cells, respectively.
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Figure 2.14 Real-time quantitative PCR analysis of selected genes in SKOV-3 cells.

SKOV-3 cells were cultured with 0.1% (v/v) dimethyl sulfoxide (DMSO) alone (control) or
DMSO containing a-MG (7.309 uM), APG (18.502 uM), or Dox (0.431 uM) for 24 hr. Data
are shown as the mean = 1SD, derived from three independent repeats. * and ** represent a
significant difference between the control and treated cells in each group at p < 0.05 or p <

0.01, respectively.
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2.4 Discussion

Here, we report the in vitro potential of a-MG and APG on the growth inhibition in
BT-474 and SKOV-3 cell lines in direct comparison with the effect of Dox, a currently used
chemotherapeutic agent. These two compounds (a-MG and APG) were selected since
flavonoid phenolic compounds have increasingly been reported to have potential beneficial
roles against cancers (189). With some congruence, breast and gynaecological cancers,
especially ovarian cancer, have been reported to be related to each other owing to their similar
genetic basis (190), while a patient with breast cancer was later found to have primary ovarian
small cell carcinoma and endometrioid adenocarcinoma of the uterus (191). Indeed, an
increased risk of breast and ovarian cancers has been reported to be associated with germline
mutations in BRCALl and BRCA2 (192). This led us to investigate the role of both
compounds in breast cancer BT-474 and ovarian adenocarcinoma SKOV-3 cells.

There have been diverse reports that oxidative stress, chronic inflammation, and
cancer are closely linked (193-195). Not only do reactive oxygen species (which cause
oxidative stress in cells) damage biological molecules, but they can also lead to chronic
inflammation and eventually mediate chronic diseases such as cancer. In addition, the
oxidative stress caused by the abnormal activation of nuclear factor E2-related factor 2 due to
epigenetic alterations can increase chemo-resistance in cancer cells (196). Thus, compounds
with antioxidant or free-radical-scavenging activities are likely to be beneficial for preventing
cancer. Both compounds in this study have been reported to express these protective activities
(178, 197).

Apoptosis is a caspase-dependent process that is important in preventing metastasis
and cancer progression (198). CASP3, CASP8, and CASP9 are typically assayed in apoptosis
studies since they are situated at pivotal junctions in the apoptosis pathways. As initiator
caspases, caspase-8 and 9 subsequently activate caspase-3, which goes on to induce apoptosis

in the cell. Furthermore, caspase-7 and -8 can cause inflammation in the host (199-201).
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Although necrosis was the main cause of BT-474 cell death after treatment with o-
MG or APG, the expression of CASP8 transcripts was significantly upregulated by both
compounds in these cells, which implies that apoptosis was still directly involved with
caspase expression via the extrinsic pathway. The expression of BCL2 tended to be
numerically decreased by both a-MG and APG, but this was not significant. Nevertheless, the
numerical reduction in the BCL2 expression level is consistent with cell death by apoptosis
(202, 203). Sano et al. reported a correlation between COX2 transcript levels as an
inflammatory marker and the survival of locally advanced oral squamous cell carcinoma
(204). Furthermore, butyrate induced the expression of RUNX2 and COLIAI genes, which
play important roles in the differentiation and anti-inflammatory mediators in SaOS-2
osteosarcoma cells (205). Increased expressions of COX2 and NF-kB, which can lead the
cells to apoptosis by downregulating the anti-apoptotic genes, were screened as
representatives, where NF-«xB is linked between cancer and inflammation. Increased COX2
and NF-«B transcript levels induced by Dox were not found in BT-474 cells, and so Dox
induced an antiproliferative activity without any anti-inflammation activity, and the
cytotoxicity was likely mediated by apoptosis from caspase activity observation. In contrast to
Dox, both a-MG and APG increased the transcriptional level of COX2 significantly, which
indicates their potential for inflammation in a-MG-treated and APG-treated BT-474 cells. The
data was supported by programmed cell death analysis, where the treated cells mainly died by
necrosis, which is typically linked with inflammation (206). The morphology of Dox-treated
BT-474 cells was not changed much compared to the control cells, which also coincided with
the numerically decreased expression level of BCL2 (albeit not significant), an apoptosis-
associated gene. Though the transcript expression levels of CASP3, CASP7, CASPS8, and
CASP9 were all not significantly changed, the apoptosis induced by Dox in BT-474 cells was
possibly involved with the activation of these caspases. Hence, the cell stress or the condition

of mitochondria should be further investigated. The proto-oncogene (CTNNB1) tended to be
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downregulated by all three compounds in BT-474 cells, which may lead to the cell growth
inhibition and apoptosis induction, although this decrease was not significant.

Considering the morphology of treated BT-474 cells, a lot of vacuoles were observed
following a-MG and APG treatment, which may show that the cell death occurred through
alternative ways in addition to necrosis and apoptosis. Autophagic cell death is associated
with multiple large vacuoles observation and could be one of the possible explanations
regarding the morphology of the treated cells. This type of cell death occurs through the
mechanism that disassembles dysfunctional components to recover nutrients from aged or
damaged cytoplasm and organelles for survival, however, the prolonged period of this event
led to cell death by other means. This recycling method results in the formation of
phagocytosis vacuoles (207) similar to what has been observed in this study. Moreover a-MG
significantly upregulated CathepsinB transcript levels in BT-474 cells, and so a-MG-induced
cytotoxicity may involve autophagy as well. However, a more specific experiment on
autophagy is needed to take place for this conclusion.

In the context of SKOV-3, APG was toxic to the cells but not to normal cells. a-MG
showed almost similar toxicity as that of Dox to SKOV-3 cells, but it was unfortunately also
toxic to the WI-38 normal lung fibroblasts even though, at less than 6.091 uM, it was deemed
safe for CCD-986Sk skin fibroblasts. Cell-type specificity with a-MG is of concern and has
been reported before (208-210). Moreover, after exposure to a-MG for 24 hr, the transcript
expression level of COX2 (inflammation-associated gene) was significantly upregulated,
whereas that of NF-kB remained the same as in the control cells. Thus, by 24 hr, the
promotion of apoptosis in o-MG-treated SKOV-3 cancer cells had not reduced the
inflammatory response. However, the changes in gene expression should be observed after
longer exposures to a-MG, since NF-«kB plays a role in activating many inflammatory factors,
such as TNF-qa, interleukin (IL)-6, IL-8, matrix metalloproteinase, COX2, and nitric oxide

synthase (211). It remains plausible that a-MG may affect the expression of NF-xB earlier
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(faster) than COX2. Therefore, the application of a-MG in a broad systemic application for
cancer prevention and treatment is not suitable.

For APG-treated SKOV-3 cancer cells, significantly increased caspase-9 activity was
detected after 24 h of exposure, which is the same timing as the onset of early apoptosis.
Hence, the death of APG-treated SKOV-3 cells was likely to have been induced by the
intrinsic pathway. The intrinsic apoptosis induction by APG is related to DNA damage, ROS
accumulation, and dysfunction of mitochondria membrane potential in other cell lines (142,
212). In gene expression analysis, the expression of BCL2 (an anti-apoptotic gene) transcripts,
but not those of CTNNB1 (a proto-oncogene), was significantly upregulated by APG,
implying that other biomolecules or pathways are involved in this apoptotic process. This
notion is potentially supported by Otake et al. (213), who reported that the overexpression of
BCL2 in lymphocytes alone did not cause cancer, whereas the simultaneous overexpression of
BCL2 and MYC (a proto-oncogene) could induce aggressive B-cell malignancies, including
lymphoma.

In the future, in order to enhance the efficacy of a-MG and APG as chemotherapeutic
agents for ovarian cancer, other application approaches could be applied, such as with fatty
acid-conjugated compounds (214), or the synergistic inhibition induced by co-administration
with other promising compounds (215). Moreover, the toxicity of these compounds in an in

vivo model system, such as the rat, should be determined (216, 217).
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CHAPTER 3
PHOSPHOPROTEINS ALTERATION AFTER APIGENIN
TREATMENT IN SKOV-3 OVARIAN CANCER CELL
LINE

3.1 Introduction

Ovarian cancers are particularly important, as it is one the cancers that are generally
caught too late due to their symptoms often attributed to other conditions affecting women.
This led to the disease being called the “silent killer” amongst the population. It has been
ranked in the global cancer report for the 8" common causes and mortality rate with 3.4% and
4.7% of all cancers in females in 2020 (166). Further observation on gynaecological cancer
statistics has found that ovarian cancer has the highest fatality ratio at approximately 66.01%
(207,252 death from 313,959 cases) when compared to other cancers in this group as ordered
by incidences, cervix uteri (56.58%), corpus uteri (23.33%), vulva (38.52%), and vagina
(44.64%). So far only a little information is known on the origin and underlying mechanisms
in this cancer subtype (218, 219). Moreover, ovarian cancer has been reported to gain
chemoresistance, especially when relapsing and recurrence occurred, preventing it from
treatment with the previous drugs and deterioration the progress of the diseases, which have
brought challenges in chemo-therapy notably taxol- and platinum-based drugs (220, 221). Not
only ineffective in the treatment of recurrence malignancies, but chemotherapy also caused
adverse events that led to reduced quality of life (222, 223). Hence, novel or alternative

medications are necessary for ovarian cancer treatment.

Natural compounds from folk medicine have been immensely in focus for the past
decades for their beneficial health functions, such as anti-ageing, anti-diabetes, antioxidation,
anti-inflammation, and anticancer activities (224-226). Apigenin (APG), a flavone found

highly in various plants, especially chamomile, parsley, celery, citrus fruits, parsley, basil, and
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onions, has been reported for exhibiting ameliorative effects, including anti-oxidation, anti-
inflammation, and anticancer activities (120, 227, 228). APG anticancer activity had been
firstly described by Birt et al (124) where they observed anti-mutagenic and anti-promotion of
carcinogenesis activity on mutagenesis inducing in Salmonella typhimurium and mouse skin
epidermis. This had led to APG being tested on several cancer cell lines including colorectal,
breast, lung, prostate, cervical, ovarian, glioblastoma, leukaemia, melanoma, pancreatic, and
osteosarcoma cancer cell lines establishing its potency surrounding anti-cancer and cancer-
preventing functions (123, 229, 230). APG was found to trigger diverse mechanisms in
different cancer cell lines to exhibit anticancer activity including induction of apoptosis, cell
cycle arrest, metastasis inhibition, and anti-angiogenesis (123, 231, 232). In addition, it
demonstrated low cytotoxicity against non-cancerous cells in comparison with cancerous
alternatives, which is one of the requirements for becoming a clinical candidate (233). Despite
these advances, only limited information is known about the mechanisms underlying APG
exposure on ovarian cancer. In the A2780 ovarian cancer cell line, APG was reported to
inhibit cell progression at G,/M phase and reduce metastasis through inhibition of focal
adhesion kinase (FAK) expression (234, 235). It also suppressed self-renewal capacity in
SKOV-3-derived sphere-forming cells, a subpopulation group of SKOV-3 ovarian
adenocarcinoma cell lines (183). In addition, our recent study has found that APG appeared to
induce apoptosis via intrinsic pathway and cell cycle arrest at G2/M phase in ovarian

adenocarcinoma cell line SKOV-3 (236).

Central to establishing adequate treatment regimens is the underlying knowledge of
the mechanism of action of a compound. As described earlier, much is known about the
phenotypic impact of APG on several cancers, but mechanistic information is lacking. In this
study, we want to address this lack by identifying pathways and mechanisms likely impacted
by APG resulting in antiproliferative activity in cancer cell lines. The cell cycle is largely

driven by phosphorylation activity through several kinases (237). Notably, the prominent
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cyclin-dependent kinases (CDK) family plays an important role in this progression. For CDKs
to function properly, a regulatory subunit called cyclin binds to its CDKs counterpart and
formed a complex of heterodimer proteins that will later be activated or deactivated upon
phosphorylation on different phosphosites of CDKs (238). These processes are strictly
regulated in signal level, time, and space to achieve the goal of each step in the cell cycle.
Moreover, other cellular mechanisms for example MAPK, PI3K/Akt, JAK/STAT, and Wnt
signalling pathways are actively controlled through multiple phosphorylation steps and have
been reported to be involved with cell cycle regulation (239, 240). Before the advanced
technology in mass spectrometry was introduced, the study of these signalling pathways
appeared to be laborious and time consuming due to a low-throughput technique and
limitations in detection availabilities. In order to study the changes of these phosphosites,
advancing in tag labelling systems for proteomics allows researchers to perform a relative
quantitative experiment in observing alterations of protein expression and phosphorylation in a
high-throughput manner (241). We therefore opted to use phosphoproteomics to study the
impact of APG on phosphorylated proteins and identify several key functions likely involved

in the demonstrated cell cycle arrest.

3.2 Materials and methods

3.2.1 Chemicals and cell line

SKOV-3 cell line, McCoy’s 5A (modified) medium, trypsin-EDTA (0.25%),
Apigenin, and DMSO were purchased from Sigma-Aldrich® (Merck, UK). Foetal calf serum
and PBS (pH 7.4) were purchased from Gibco (Thermo Fischer Scientific, UK). APG was
dissolved in 185 pL DMSO to make approximately 100 uM APG in DMSO stock and stored
in -20 °C refrigerator. Antibodies were purchased as follows, anti-GAPDH (ab181602), anti-
mouse 1gG-HRP (ab6789) and anti-rabbit IgG-HRP (ab6721) from Abcam, and anti-phospho-
stathmin 1 Ser25 (PA5-37628), anti-phospho-Rb Thr373 (PA5-64767), anti-stathmin 1

(MA5-33064), anti-Rb (MA5-11387) from Thermo Scientific.
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3.2.2 Cell culture and treatment

The human cancer-derived cell line used in this study was ovarian adenocarcinoma
(SKOV-3, ATCC no. HTB77). The cell line was cultured in McCoy’s 5A (modified) medium
supplemented with 10 % (v/v) foetal calf serum at 37 °C with 5 % (v/v) CO2 in a humidified
environment. The cell was passaged at 90% cell confluency in T-75 flask or approximately

twice a week.

3.2.3 Survival curve recreation and effective doses calculation

The cell viability percentage from the previous study MTT assay was used as input for
generating cell survival curve by a log-logistic model with 4 parameters using drm() function in
‘drc’ package (version 3.0-1) in R. The effective doses were generated by ED()function from

the same package.

3.2.4 Early antiproliferative activity of APG

Cells were seeded and the experiment was performed as described in the cell viability
observation section above. On the next day, the cells were treated with concentrations
represented 1Cio, 1C2, IC30, 1Ca0, ICs0, and ICep with the medium as baseline control and
DMSO as solvent control. MTT was added at 0.5, 1, 1.5, 3, 6, 12, 18, and 24 h for observing
the cell activity representing viable cells and incubated in culture condition for 3h. The
experiment was done from three biological replicates and summarised to generate this plot.
The antiproliferation activity of APG was assessed by observation of formazan solution
dissolved in DMSO using plate reader machine at an absorbance of 560 nm and further

processed for cell viability percentage by calculating:

Cell viability (%) = 100 X (A560 treated cells — Asgg blank)
A Asgo control cells — Aggo blank
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3.2.5 Sample collection and preparation for MS/MS analysis

For phosphoproteomics the cells were plated at 2x10° cells/10-cm dish the day and
incubated for 16h before the experiment. Then, the cells were treated with APG at 1C1o, 1Cx,
and 1Cs for 30, 60, and 90 minutes with no treatment at 0 minute and DMSO treatment for 90
minutes as controls. The treated cells were collected by washing with ice cold 1X PBS pH 7.4
for three times, adding 400 pL of lysis buffer (100 mM TEAB, 0.05% (W/V) Rapigest, 1X
protease inhibitor (cOmplete Mini EDTA-free, Roche), 1X phosphatase inhibitors (phoStop,
Roche) and 25 U of benzonase per 1/mL lysis buffer) and scraping thoroughly. The lysates
were left to sit for 45 minutes on ice for complete lysis and heated to 80 °C for 10 minutes
with 800 rpm rotation to eliminate cellular activity. The lysates underwent protein
guantification by Coomassie Plus (Bradford) assay. 100 g of each sample was taken for in-
solution digestion by trypsin. In-solution digestion started from reducing disulphide bond and
alkylating to prevent rebinding of thiol group by 4 mM DTT at 60 °C for 10 minutes followed
by 14 mM iodoacetamide at room temperature for 30 minutes in dark. Then, 2 pg of trypsin
was added to make 50:1 (protein:trypsin) ratio and incubated at 37 °C with agitation at 500
rpm overnight. Each of the digested samples was randomly labelled with TMT by mixing 800
pg of TMT in LC-MS grade ACN (acetonitrile) and incubating at room temperature for an
hour with a gentle vortex every 10 minutes. Next, hydroxylamine in 100 mM TEAB buffer
(0.3% (v/v) final) was added to quench excess TMT and incubated at room temperature for 15
minutes. The samples were pooled together into a 2 mL low bind tube then dried to
completion in a vacuum centrifuge at 4 °C by removing ACN. The dried sample was re-
suspended in 500 pL 1% TFA (trifluoroacetic acid) in 100 uM TEAB buffer, sonicated for 10
minutes and incubated at 37 °C for 50 minutes with 500 rpm for hydrolysis using Rapidgest.
The sample was centrifuged at 13,000xg at 4 °C for 15 minutes. Next, the sample was
desalted in a C-18 column by following the manufacturing instructions. The column was

calibrated with 100% (v/v) methanol and washed with 1% (v/v) TFA in H,O. The maximum



64

loading volume of C-18 column is 300 pL, so samples were repeat loaded in the same column
twice or more. The desalted peptide sample was eluted from the column by 300 puL 0.1% TFA
in 50% ACN then centrifuged at 3000xg for 1 minute and repeated for complete elution. The
eluted sample was dried by vacuum centrifugation at 4 °C until completely dried. The sample
was further fractionated into 5 fractions by high pH reverse phase system with a gradually
increasing hydrophobicity ratio at pH 10. Each fraction was dried with vacuum centrifugation

until completion.

3.2.6 Enrichment of phosphopeptides with TiO- beads

For phosphopeptide enrichment, each sample fraction was resuspended with loading
buffer (5% TFA, 1M glycolic acid in 80% (v/v) ACN) and sonicated for 10 minutes or until
completely dissolved. The TiO, beads were weighed and around 10 mg resuspended in 200
pL loading buffer. Then, 20 uL TiO, beads were added into each fraction and the mixture
solution was kept agitated at 1600 rpm for 20 minutes at room temperature. The mixture was
centrifuged at 2000xg for 1 minute to pellet the bead and remove the supernatant into a new
low-bind tube. This supernatant part contained an unbound mixture that can be used for
further experiments if required. The beads were washed with 150 pL loading buffer with
agitation at room temperature for 10 minutes. Then, the beads were centrifuged at 2000xg for
1 minute and the supernatant discarded. The beads were washed for a second time with 150
puL 1%TFA in 80% (v/v) ACN with the same agitation and centrifugation steps as the first
wash. For the last washing step, the beads were washed with 150 pL 0.2% TFA in 10% (v/v)
ACN repeating the agitation and centrifugation steps. The beads were dried in a vacuum
centrifuge for 30 minutes. For elution, 100 pL of the first elution buffer (1% ammonium
hydroxide in H.O) was added into the beads and the mixture was agitated at 1600 rpm for 10
minutes at room temperature. The beads were centrifuged at 2000xg for 1 minute and the
supernatant was collected into a new low bind tube. Then, 100 pL of the second elution buffer

(5% ammonium hydroxide in H»O) was added into the beads and performed the same steps as
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the first elution. The supernatants from the first and second elution were pooled together and

dried by vacuum centrifugation until completion.

3.2.7 MS/MS analysis

The phospho-enriched fractionated samples were injected and analysed using an
Ultimate 3000 RSLC™ nanosystem (Thermo Scientific, Hemel Hempstead) coupled to
QExactive™ mass spectrometry (Thermo Scientific). The sample was loaded onto the trapping
column (Thermo Scientific, PepMap100, C18, 300 um X 5 mm), using partial loop injection,
for 7 minutes at a flow rate of 4 uL/min with 0.1% (v/v) Formic acid (FA). The sample was
resolved on the analytical column (Easy-Spray C18 75 um x 500 mm 2 pum column) using a
gradient of 97% A (0.1% FA) 3% B (99.9% ACN 0.1% FA) to 60% A 40% B over 120
minutes at a flow rate of 300 nL/min. The data-dependent program used for data acquisition
consisted of a 120,000 resolution full-scan MS scan (AGC set to 3E6 ions with a maximum
fill time of 100 ms) the 12 most abundant peaks were selected for MS/MS using a 60,000
resolution scan (AGC set to 1E5 ions with a maximum fill time of 110 ms) with an ion
selection window of 1.2 m/z and a normalised collision energy of 32 and a first mass set to a
fixed value of 100.0 m/z. a 90-second dynamic exclusion window was used to avoid repeated

selection of peptides for MS/MS.

3.2.8 Data handling and analysis

The raw data from QEx-Hfx mass spectrometer were analysed by MaxQuant software
(version 1.6.5). Most of the settings of MaxQuant were left as default except for: set fractions
from 1 to 5, set PTM to true, in Group-specific parameters: Type to reporter ion on MS2 and
select 11-plex TMT, cysteine carbamidomethylating in fix modifications, for variable
modifications, are N-terminal acetylation, methionine oxidation and phosphorylation at
serine/threonine/tyrosine (S/T/Y), digestion is set to Trypsin/P which allows searching for
cleavage of carboxyl side of the Lys and Arg even if a Pro follows and allowed up to 2 missed

cleavages. The mass spectra were searched against Homo sapiens UniProtKB one protein per
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gene database (UP000005640_9606.fasta, https://www.uniprot.org/proteomes/ UP000005640),

decoy and reverse database with 1% false discovery rate (FDR) filtration at three levels,
which are site decoy fraction, peptide-spectrum matching (PSM) and protein. Both
unmodified and modified (oxidation of Met, N-terminal acetylation, and phosphorylation of
Ser/Thr/Tyr (STY)) of unique and razor (peptides which match to multiple proteins) peptides

were used for protein quantification.

3.2.9 Identification of differentially phosphorylated proteins

To determine the effect of APG on SKOV-3 phosphorylation, the phosphosites output
from MaxQuant were used to observe the difference of phosphorylation in proteins among
various treatments and times. Before pre-processing of reporter intensities, the phosphosites
were filtered by using strict criteria for confident phosphosites, which is phosphorylation
occurred on STY with a localization probability of > 0.75 and PEP (Posterior error
probability) < 0.01. The intensities from each reporter of all replicates were log-transformed
and plotted into a figure of boxplots to observe the data distribution. The data were grouped
into multiple categories by UniProt accession number, phosphorylated amino acid,
phosphorylated position within proteins, and phosphorylation level using group_by() and
summarize() function in ‘dplyr’ package. Then, Loess normalisation was applied against
DMSO at 90 minutes (IC, 90min) within each biological replicate. The batch effect was
removed by using ‘ComBat’ package with the following setting, batches as biological
replicates and covariates as treatments. The data in each step of data processing, original,
Loess-transformed, and batch correction, were analysed by principal component analysis
using the prcomp() function in base R. The visualization of normalization data and PCA were
executed by ‘ggplot2’ and ‘ggbiplot’ package. ANOVA was used to analyse the phosphosites
related to time, concentration, and covariation between these factors. Later, p-values were
corrected using the standard Benjamini-Hochberg correction methodology. The significant

phosphosites were identified with a restriction of adjusted p-value < 0.10.


https://www.uniprot.org/proteomes/%20UP000005640
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3.2.10 Gene set enrichment analysis (GSEA) on a Pre-ranked gene list test

The coefficient values of each factor from the ANOVA test were extracted and their
associated Uniprot accession was converted to Gene symbol. In the case of proteins with
multiple phosphosites, the mean values were calculated. This ranked file was used as input to
a GSEA (version 4.0.3) and analysed using the Pre-ranked gene list analysis (242). The tests
were performed on KEGG and Gene Ontology database with the numbers of permutations
allowed at 10000. The terms with p-value < 0.05 and FDR < 0.25 were considered

statistically significant.

Next, given that the data for analysis had been transformed by Loess normalisation
against solvent control at 90 minutes and batch correction we also performed the equivalent
of a one-sample t-test using the ‘limma’ package. This analysis tests for deviations from 0,
which would indicate a significant effect of APG on the cells as compared to DMSO. Similar
to the ANOVA results above, the t statistics were extracted and used as an input to a GSEA
Pre-ranked list analysis. The enriched terms were filtered at FDR < 0.25 and plotted into a

scatter plot with lines to show the direction of changes in each function.

3.2.11 NetworKIN analysis

The significant phosphosites were collected by factors in the ANOVA tests,
concentration, time, and interaction between concentration and time. The UniProt accession
numbers  from each  significance list were inputted into  NetworKIN

(http://www.NetworKIN.info/) workflow block (243). Then, phosphosites, phosphorylated

positions within protein, were manually selected and the kinase predictions were performed as
pre-setting preference. The results were filtered with a minimum score of 2.0 with a maximal
distance to the best prediction of each site (max. difference) of 4.0. The negative and positive
effects of each factor from each site were grouped by sorting the AVOVA coefficient of each

factor and given to NetworKIN for analysis as described above.


http://www.networkin.info/
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3.2.12 SDS-PAGE and Western blot

The assay was performed to observe the expression level of interesting phosphosites
captured from the statistical analysis. SKOV-3 cells were seeded at approximately 1x10° cells
per 60 mm dish in McCoy’s SA medium and cultured overnight (16-18 h) before treatment
and harvest. The cells were treated with APG at 1C3, and DMSO. The cells were harvested at
15-minute, 30-minute, 1, 1.5, 3, 6, and 9-h timepoints. At each timepoint, the cell culture dish
was placed on ice and washed twice with cold 1x PBS, carefully removing the PBS residue.
Next, 300 puL of RIPA buffer (25 mM Tris pH7.5, 150 mM NaCl, 1% (v/v) Triton X-100,
0.5% (w/v) sodium deoxycholate and 0.1% (w/v) SDS) containing phosphatase (1x
PhosSTOP Easy pack, Roche) and protease inhibitor cocktails (1x Protease Inhibitor cocktail,
Himedia) was added and incubated on ice until completely lysed, approximately 10-15 min.
The lysate was then moved into a clean microcentrifuge tube. The lysates were centrifuged at
14000 xg at 4°C for 10 min and the supernatant was collected into a new tube. Then the
lysates were flash-frozen by liquid N2 and stored at -80°C until use. The lysates were
measured for protein concentration by BCA assay before electrophoresis. For SDS-PAGE, the
samples were mixed with 5x reducing sample buffer (250 mM Tris-HCI (pH 6.8), 10% (w/v)
Sodium dodecyl sulphate (SDS), 40% (v/v) glycerol and 5% (v/v) 2-mercaptoethanol) and
heated to 95 "C for 5 minutes. The treated sample was loaded at 10 pg per well and separated
by SDS-PAGE. The gel electrophoresis was performed at 100V, 400mA for 120 minutes. For
Western-blot, the proteins in the gel were transferred to PVDF membrane (Immuno-Blot®
PVDF membrane for protein blotting, Bio-rad USA) in transfer buffer (25 mM Tris, 192 mM
glycine, 20% (v/v) methanol, and 0.2% (w/v) SDS) with Trans-Blot® SD semi-dry transfer
cell (Bio-rad, USA) at 220mA, 15V for 42 minutes. The membrane was blocked with 5%
(w/v) BSA in 1x TBS (20 mM Tris pH 7.5, 150 mM NaCl) containing 0.1% Tween® 20
(TBST) on a rocker at room temperature for an hour. The blot was washed three times in

TBST at RT for 5min and probed with rabbit anti-phospho-STMNZ1-S25 or rabbit anti-
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phospho-Rb-T373 polyclonal antibody in 5% (w/v) BSA in TBST at 4 ‘C overnight. The
membrane was washed as in the previous step and incubated with goat anti-rabbit 1gG
conjugated with HRP (diluted 1:10000) in 5% BSA in TBST at room temperature for an hour.
Then, the membrane was washed again. For detection, Amersham® ECL western blotting
detection reagents (GE Healthcare, UK) were mixed at manufacturer suggestion ratio and
overlayed on the membrane then incubated for 1 minute to generate signals. The signals on
blots were captured by Amersham® imager 600 (GE Healthcare, UK). After signal detection,
the membrane was subjected to removal of antibodies for reprobing by incubating the
membrane at RT with mild stripping buffer (200mM glycine pH 2.2, 0.1% (w/v) SDS, 1%
(v/v) Tween20) for 10 min, twice. The membrane was washed with TBST for 4 times
followed by blocking with 5% (w/v) BSA in TBST and probed with total protein antibody
followed by anti-GAPDH antibody. The phosphosite signals were normalised against

GAPDH and total protein expression level and visualised by a bar chart.

3.3 Results

3.3.1 Early effect of APG on SKOV-3 cell line

The data at 24h from the MTT assays in chapter 2 were used to create a general four-
parameter log-logistic model analysis by the “drc” package in R. The model was described by
the equation below,

N D-C
1+ exp{b(log(x) — log(E))}

y=C

where C is response at the lower limit, D is response at the upper limit, b is the slope and E is
the dose giving 50% of the upper response (ICsp). The plot of this model was illustrated in
figure 3.1. The output of log-logistics model from ‘drc’ package was displayed as a curve
with parameters described in Table 3.1. Based on the model, several ICs were calculated and
are shown in Table 3.2. These concentrations were used in the further experiment of APG

effect in SKOV-3 cell line in this study.
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Apigenin effect on SKOV-3 survival rate
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Figure 3.1 Cell survival plot generated from the “drc” package with all data points presented.

Table 3.1 The summary output of four parameters log-logistic model

Model fitted: Log-logistic (ICso as parameter) (4 parameters)

Parameter estimates:

Estimate Std. Error t-value p-value
Slope:(Intercept) 2.16270 0.44053 4.9093 4.269e-05 ***
Lower Limit:(Intercept) 14.15984 6.12952 2.3101 0.02908 *
Upper Limit:(Intercept) 101.26482 2.80752 36.0691 < 2.2e-16 ***
1Cso:(Intercept) 20.45820 2.06195 9.9218 2.496e-10 ***

Significant codes: 0 ‘**** 0.001 ‘*** 0.01 *** 0.05 *.> 0.1 ‘> 1

Residual standard error: 7.394571 (26 degrees of freedom)

Table 3.2 Estimation of various ICs level of APG effect against SKOV-3

Estimated effective doses

Estimate (UM) Std. Error
IC10 7.407 1.488
1C20 10.777 1.495
1Ca0 13.827 1.493
I1C40 16.961 1.635
I1Cso 20.458 2.062
1Cs0 24.677 2.914

To better understand how quickly APG acts on the SKOV-3 cell line we looked at the
MTT derived cell numbers over time in the context of exposure. While the MTT assay might
not be the best method to represent cell proliferation, it offered an approach to detect viable

cells through detection of NAD(P)H-dependent oxidoreductase activity, a mitochondria
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enzyme, that plays a vital role in the central metabolic pathways of the cells (244). The results
show that APG impacts the cells in a two-stage process: 1) within the first 2h a concentration-
dependent effect on SKOV-3 can be observed 2) which is then propagated onwards from 5h
up to 24h resulting in the significantly reduced either cell proliferation rate or numbers of the

viable cells (Fig. 3.2).

The immediate early effect on cell proliferation suggests that APG disrupts early
cellular processes restricting cell numbers. The impact of this restriction defines how
significant the final proliferation rate is. For example, while 1Cyoand ICy are affected within
the first 2h the suppression of cell proliferation is relatively similar when compared to the

medium control. 1C3 and onwards show a clear drop in cell survival.

Effect of apigenin on SKOV-3 cell survival rate
110

100 l‘
R/
Treatment
DMSO
110
-+ c20
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3
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70
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Figure 3.2 Cell survival plot from early timepoint experiment.
The cells were seeded at 5x10° cells/well and treated with the inhibition concentration of APG

shown in the plot on the next day.
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3.3.2 Establishing molecular responses to APG exposure

To study the alteration of cellular signalling by APG we performed an 11-plex TMT-
labelling phosphoproteomics for quantification and traceability of these changes in a dose and
time-dependent manner. The consideration of time points in our experimental design is related
to early antiproliferative activity of APG and previous studies in prostate cancer cell lines,

which showed that APG could reduce the phosphorylation of ERK1/2, Akt in retinoblastoma at

1, 3, and 4 hours, respectively (135, 245).
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Figure 3.3 Boxplot of log-transformed reporter ion intensity from phosphosites in all

replicates.

The number in the front of the treatment indicated biological replicate.



73

Boxplots of the log-transformed reporter ion intensities (Fig. 3.3) show that the 10"
reporter (ICs at 30 minutes of the first replicate) had a much lower intensity compared to
others in the same replicate. Within each replicate, distributions looked similar suggesting
that at least within a replicate data was comparable (Fig. 3.4). A principal component analysis
of the data showed that a batch effect related to replicate was present (Fig. 3.5A).
Specifically, the plot shows that the lower intensity channel from the boxplot (the 10™
reporter, in yellow circle) was highly dispersed from other reporter ions. Three normalisation
methods, median sweeping, quantile normalisation, and variance stabilizing normalisation
(VSN), had been performed in an attempt to handle this channel. The results showed that
though the boxplots of normalisation data (Fig. Appx.Al) could bring this channel back to a
similar level as compared to others from the PCA plots (Fig. Appx.A2), it remained to be
scattered away from other channels. This evidence suggests that none of the normalization
approaches could rescue the difference in signal intensity. Further checking of the raw data
confirmed that this event is unlikely a biological phenomenon and following tests are required
to identify the technical source of this issue. Thus, the 10" reporter intensity from the first
biological replicate was removed from the analysis. After loess normalisation and batch
correction, the PCA plot appeared that batch effect has been reduced and the association of
treatment and time across different replicates could be observed (Fig. 3.4B). Initially, the
early 30-minute timepoint (green oval) shifts significantly to the right, followed by another
shift back at 60 minutes (blue oval). There is no additional shifting observed at the 90-minute
timepoint (purple oval). This suggested that there was a high alteration of phosphorylated

proteins within 30 minutes of APG treatment.
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(A) Log intensities of all reporters. (B) Data after Loess normalisation and batch correction.

Number indicated biological replicate of that channel. Ellipse shape indicated the group of

samples by time, orange for 0 min, green for 30 min, blue for 60 min, and purple for 90 min.
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3.3.3 Identification of differentially phosphorylated proteins

To identify proteins whose phosphosites were altered as a result of APG exposure an
ANOVA model was applied to the data. Here 3 parameters were evaluated, change over time,
change over concentration, and the interaction between these two. The latter parameter
identifies proteins whose phosphorylation patterns are changing together over concentration
and time. This allows us to identify even small steady changes over concentration and time
which may be insufficient for each single parameter separately to return a significant result.
Significant phosphosites from the ANOVA were captured at FDR < 10% and the unique
proteins were extracted. We found 27 unique proteins associated with concentration, 48 with
time, and 73 with the interaction component. To better understand what might be happening
functionally we further performed functional enrichment analysis on these lists using DAVID.
This showed that only two terms from annotation term lists in the interaction component,
acetylation, and citrullination, were significantly enriched (Fig. Appx.B1). Functional
clustering within DAVID then revealed that chromatin and nucleosome-related terms were

aggregated in the highest rank with an enrichment score of 1.828 (Table Appx.B1).

To develop a better understanding of the functional changes occurring within this
experiment and to address the lacking functional enrichment observed using DAVID, a gene-
set enrichment analysis (GSEA) was performed. The coefficient values from ANOVA test of
each phosphosite were extracted with its phosphosites. For proteins with multiple

phosphosites, we calculated the mean change and used this as input to the approach.

The GSEA results were filtered at FDR < 0.25. This identified 18 terms associated
with the concentration of which only 1 was associated with a positive enrichment, no
significantly associated terms for time, and 41 terms associated with the interaction
component (Fig. 3.5). A closer inspection of the pathways associated with concentration
showed that the only positive normalised enriched term (NES) was ‘negative regulation of

transmembrane transport’ while the other 14 significant enriched terms showed negative
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correlation, 8 of which are involved with epigenetics and chromatin regulation of gene
expression whereas the others correlated to cellular transport and cytoskeleton activity.
Interestingly, 4 out of 8 epigenetics significant terms specifically related to chromatin
organisation. Terms such as chromatin assembly and chromatin organisation are involved in
the regulation of transcription, chromatin assembly or disassembly, and nucleosome
organisation. In addition, other terms related to epigenetics such as regulation of
posttranscriptional gene silencing, negative regulation of gene expression epigenetic,
regulation of gene silencing, and gene silencing by RNA were identified. Within the
interaction list (Fig. 3.5C) all terms were shown to have positive NES scores including the
most significant terms including negative regulation of gene expression epigenetic, chromatin
organisation involved in regulation of transcription, chromatin assembly, chromatin assembly
or disassembly, nucleosome organization, DNA packaging complex, nucleosomal-DNA
binding, regulation of gene expression epigenetic, regulation of gene silencing and
nucleosome binding. Moreover, the dot plot (Fig. Appx.C) showed that terms related to
epigenetics and chromatin/nucleosome regulation acquired a high hits ratio on both
concentration (~30% on 3 terms) and interaction (>30% on 9 terms). Venn diagram (Fig.
3.5A) illustrated 9 terms that were found in both sets and they were mostly related to
regulation of gene expression and chromatin organisation including terms such as regulation
of gene silencing, negative regulation of gene expression epigenetic, regulation of
posttranscriptional gene silencing, nucleosome organization, chromatin organization involved

in regulation of transcription, chromatin assembly or disassembly and cell differentiation.
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Figure 3.5 Bar chart of enriched term from significant phosphosites.
(A) Venn diagram of significant terms from interaction (Red) and concentration (Blue) list.
Number indicated terms in each set. (B) Concentration factor list and (C) interaction between

concentration and time list were computed in Broad’s GSEA Pre-ranked list test.
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Due to the significant differences observed in the PCA plot at 30 minutes we then
also performed an in-depth analysis of the early effect of APG exposure. First, we performed
an ANOVA comparing each concentration at the 30-minute timepoint against the 0-minute
control. After p-value adjustment, significant phosphosites were captured using a 5% FDR
cut-off. This approach identified 140 and 177 phosphosites from concentration and time
factors respectively that resulted in 118 and 136 unique proteins from both lists. Unique
proteins from both lists underwent DAVID functional annotation enrichment. The resulting
terms were filtered at FDR < 0.25 and visualised using bar charts (Fig. 3.6) and dot plots (Fig.
3.7). 10 terms were found to be associated with concentration, 4 of which related to DNA and
chromatin activity. The clustering chart (Table 3.3) has shown that two clusters of enriched
terms were found to obtain quite a high enrichment score that were chromatin-related and
cell-cell adhesion terms with approximately enrichment score (ES) 2.2 on both clusters. In
parallel, 12 terms were associated with time (Fig. 3.6B and 3.7B) representing the same
functional chromatin-related and cell-cell adhesion-related clusters. The clustering results
appeared to be the same clusters (Table 3.4) found associated with concentration, cell-cell
adhesion (ES 2.42), and chromatin-related (ES 1.72) terms. Venn diagram of protein and
phosphosites for DAVID input (Fig. 3.8A and B) showed 84 proteins with 93 phosphosites
that are in common between the time and concentration lists. From these results, we could
imply that the core phosphosites, which are affected by dose and time factors, influenced the
regulation of gene expression by chromatin remodelling and cell-cell adhesion activity. This

further raises an interesting effect of APG on SKOV-3 epigenetic arrangement and adhesion.

To further explore the functional changes within our exposure we made use of the
loess normalisation applied within our pre-processing pipeline. As the data we are analysing
already represents a ratio between treatment and 90 min control (including the 0-minute
control) we asked the question whether there are super-pathway based trajectories governed

by the phosphoproteomics data. To address this challenge, we performed a limma analysis
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that compares the derived ratio to the null distribution. The t-statistics were extracted and
used as an input to the GSEA analysis used earlier. The results (Fig. 3.9) illustrated 102 terms
with two major patterns: 1) an A-shaped pattern group that indicates increasing activity at 30
minutes and 2) a V-shaped pattern group that associated-terms were repressed early. Within
the A-shaped group terms related to various signalling pathways, including MAPK, ERBB,
and a few immune response signalling, and other several biological processes such as amide
and peptide biosynthetic and metabolic process, transport vesicle, demethylation, and stress
response were identified. On the other hand, within the V-shaped group terms related to
transcription control by epigenetics and histone-nucleosome-chromatin modifications and
organisation were highlighted. Interestingly, the demethylation term was found to increase in
activity at 30 minutes, which appeared to behave conversely to histone and peptidyl lysine
methylation and trimethylation. Venn diagram of GSEA result comparing t-test results (Fig.
3.8C in red circle) and the ANOVA results (Fig. 3.8C in green and blue circles) found similar
29 terms that were associated with gene expression regulation, which are epigenetics
regulation and histone-chromatin activities, organisation, modifications, and assembly or
disassembly. Taken together, these results reflect an interesting consequence of actions after
treatment with APG, which increases in activity of signalling cascades while decreasing

activity on epigenetics and chromatin organisation at 30 minutes.
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Figure 3.6 Bar charts of DAVID annotation terms of 30 minutes significant phosphosites.
Using (A) concentration or (B) time lists at 5% cut-off. The plots showed significant terms
filtered by FDR <0.25. The red line indicated Term with Benjamini-Hochberg adjusted p-

value < 0.05.
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Figure 3.8 Venn diagram of output from ANOVA test on 30-minute data.

(A) The significant phosphosites were captured at BH adjusted p-value < 0.05 and grabbed
(B) only UniProt accession for DAVID analysis. (C) Venn diagram of GSEA output
illustrated data input from results of ANOVA of full dataset separated by concentration
(Green) and interaction (Blue) list and data input from one-sample t-test at 30-minute (Red)

of each treatment.
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3.3.4 Identification of upstream kinase activity affecting identified phosphosites

To understand the possible underlying mechanisms that lead to the observed changes
in phosphosites we analysed the sites using NetworKIN. This analysis identifies upstream
kinase interactions by calculating a score combining likelihood ratios between the likelihood
ratio of a network proximity score calculated from the STRING network and the likelihood
ratio of the NetPhorest probability that is computed by associating given sequence sites to
phosphorylation-binding domain preferential motif sequences on kinases (243). The score
displays the possibility that a kinase would have an influence on that site, both through direct
and indirect interactions. In this study, we set a cut-off score at 2.0, which is considered to be
a significant interaction (246).

The significant phosphosites from concentration, time, and interaction lists were
inputted to NetworKIN for analysis. In general, kinases can be organized into several groups
by domain similarity, catalytic site and outer area, and known functions (247). The results
from whole phosphosite analysis reported several kinases, involved with cell cycle
progression, proliferation, survival, and apoptosis. Especially the AGC (PKB/AKT, PKC,
GRK, and RSK families), CMGC (CDK, MAPK, GSK3, and CLK families), and CAMK
(DAPK) kinase groups were identified. To get a better overview of the results we used a
network representation of kinase and phosphosite interactions using Cytoscape (Fig. 3.10).
Three networks with five individual interactions could be observed. The largest network
included CDK1 kinase, a highlight important cell cycle progression kinase especially in G2/M
phase (238), with a set of high interaction score phosphosites. From this network, CK2a was
connected to CDK1 via several MAPK kinases and had been shown to interact with a group
of genes involved with DNA catalytic activity, particularly P49959 (Double-strand break
repair protein MRE11, MRE11A), P25205 (DNA replication licensing factor, MCM3),
P26358 (DNA methyltransferase 1, DNMT1), Q02880 (DNA topoisomerase-2 beta, TOP2B)

and P18858 (DNA ligase 1, LIG1). In the second network, TGFbR2 interacted with 043294
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(transforming growth factor beta 1-induced transcript 1 protein, TGFB1I1), P29590
(promyelocytic leukaemia protein, PML) and Q01082 (spectrin beta chain, non-erythrocytic
1, SPTBN1). Noticeably, S21 of P49840 (glycogen synthase kinase-3 alpha, GSK3A)
acquired a high score at 60.254 in association with PDHK1 (pyruvate dehydrogenase kinase
isoform1, PDK1). Phosphorylation of this site inhibits primary substrate binding with GSK3A
thus effect its activity (248). We further mapped proteins associated with methylation (green
bordered sites in Fig. 3.14) and found that they were enriched around CDK1 that highlights a
regulatory component to control methylation and acetylation by the kinase after APG

exposure.

We further wanted to compare the full dataset with the focused 30 min analysis
performed earlier. This resulted in a larger network with 95 unique phosphosites and 46
possible upstream kinases reported in this map (Fig. 3.11). The map portrayed a larger single
network that contained multiple kinases shown in the previous analysis, especially CDK1 and
MAPK1 nodes that were connected with a large number of phosphosites. Both networks
highlighted that CDK1 is a likely key kinase in mediation of APG exposure. Mapping of the
coefficients associated to CDK1-associated phosphosites (Table Appx.D1 and D2) suggested
that APG might decrease the catalytic activity of CDK1 and resulting in the observed cell
cycle arrest. Interestingly, many of the CKD1 associated phosphosites are known to be
involved with acetylation or methylation highlighting the importance of epigenetic alteration
associated with APG exposure. In contrast, MAPK1 associated phosphosites appeared to have
positive coefficient values and were mostly involved with various signalling pathway such as
EGFR, ERBB2 (Her2), raptor, STAT1 and TGFBI1I. Notably, while phosphosites from CK2a
node in the whole data analysis were found to be involved with DNA catalytic activity, the
results from 30 minutes analysis did not show a similar effect of APG at this timepoint

suggesting a more dynamical interaction with APG.
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3.3.5 Significant phosphosites in phosphoproteomics analysis observed by
western blotting

To verify the phosphoproteomics study, phosphorylation changes on two significant
phosphosites were observed through western blotting. As reported in NetworKIN network
map, CDK1-associated methylation-related phosphosites were our first group of targets
(Table Appx.D1 and D2). Among the phosphosites from both whole data and 30 minutes
network, only phospho-STMN1-Ser25 (pSTMN1-S25) and phospho-Rb1-Thr373 (pRb1-
T373) were available for purchase. Heatmaps of pSTMN1-S25 and pRb1-T373 from
phosphoproteomics study illustrated the increase of phosphorylation at 30 minutes and
subsequently decreasing along the time course (Fig. 3.12). Western blots were performed with
three biological replicates and detection of the protein, the specific phosphosite, and GAPDH
were performed on the same membrane. The expression level of the pPSTMNL1 (Fig. 3.13B)
shows that phosphorylation on this site was increased within the first 30 minutes and
decreased afterwards similar to what has been observed in the phosphoproteomics. The
expression level of pRb1-T373 (Fig. 3.14B) also indicated an early upregulation after

treatment, decreasing at 60 and 90 minutes and then returning close to the level of control.
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Figure 3.12 Heatmap of phospho-Rb1-T373 and phospho-STMN1-S25 from
phosphoproteomics analysis.

X-axis indicated time while Y-axis indicated inhibition concentration used in the experiment.
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Figure 3.13 APG effect on phosphorylation of serine 25 on STMNZ1 protein.

(A) The membrane was probed with primary antibodies in this order, anti-pSTMN1-S25
antibody (upper) then, after stripping, anti-STMN1 (middle) and anti-GAPDH (lower)
antibodies. The signals were detected by chemiluminescence assay. Expression level of (B)
pPSTMN1-S25 and (C) STMN1 were shown in relative fold change by bar chart (upper) and

boxplots (middle) and percentage change in bar chart (lower)
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Figure 3.14 APG effect on phosphorylation of threonine 373 on Rb1 protein.

(A) The membrane was probed with primary antibodies in this order, anti-pRb11-T373
(upper) antibody then, after stripping, anti-Rb1 (middle) and anti-GAPDH (lower) antibodies.
The signals were detected by chemiluminescence assay. Expression level of (B) pRb1-T373
and (C) Rb1 were shown in relative fold change by bar chart (upper) and boxplots (middle)

and percentage change in bar chart (lower)
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3.4 Discussion

Apigenin had been previously found to exhibit antiproliferative activity against
ovarian cancer cell lines but the information regarding the mechanisms is limited. It had been
reported that APG affects cell cycle arrest at Go/M phase in the A2780 ovarian cancer cell line
via reduction of gene expression of inhibitor of DNA binding 1 (ID1) which leads to an
increase of gene expression of activating transcription factor 3 (ATF-3) (235). ATF-3 is a
transcription factor involved in cell growth, apoptosis, and carcinogenesis. However, its
function in cancer progression is highly debated in the public domain (249-251). ID1
functions in a broad range of cellular processes and is involved as an oncogene in
carcinogenesis. Additionally, overexpression of ID1 is correlated with a poor cancer
prognosis in patients (252). APG also reduced invasiveness and metastasis of this cell line via
decreasing focal adhesion kinase (FAK) protein stability through ubiquitinating FAK
resulting in proteolysis (234). For SKOV-3 ovarian adenocarcinoma, which is the cell line
used in this study, APG had been shown to reduce self-renewal capacity in SKOV-3-derived
sphere-forming cell and antiproliferative activity against taxol-resistant SKOV-3 by reduction
of Axl and Tyro2 receptor tyrosine kinase expression on both mRNA and protein level (183,

184).

APG had been reported that its antiproliferative activity was associated with
epigenetic manipulation by inhibition of DNMT, HDAC, and EZH2, which control the
epigenetics on both DNA and histone modifications level (137, 253, 254). The compound was
reported to interact directly with ribosomal protein S9 that resulted in the suppression of
CDK1 expression by an unknown mechanism (255). Furthermore, the expression of p21%aft
was upregulated through increasing nucleosome accessibility of the p21“3" promoter region
through inhibition of HDAC1 and HDAC3 expression and activity by APG. Overexpression
of p21 could result in inhibition of CDK1-cyclin B1 complex formation and activation by

binding to this complex (256). Moreover, p21 interacts with PCNA that results in blockage of
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PCNA from facilitating DNA replication (141, 257). According to the analysis of the 30-min
dataset, differential phosphorylated DNMT sites were found on Serl43 and Serl54.
Hyperphosphorylation of DNMT1 on Ser143 and Ser154 is associated with the stability of
DMNT1 and its activity, a decrease in phosphorylation especially at Ser154 resulted in a loss
of catalytic activity and protein level (258, 259). In addition, phosphorylation of Ser143 was
found to increase while Ser154 was decreased. This evidence suggests that APG disrupts
DNMT1 stability and activity in SKOV-3 cells. Furthermore, significant histone H1b
phosphosites appeared at Thrll, Serl8, and Thr138 and they were hypophosphorylated. Since
histone H1b is directly involved with the maintenance of chromatin structure and
hyperphosphorylated H1b markedly at the N-terminal facilitates the chromatin
decondensation (260), missing phosphorylation on these sites suggests that APG condenses
the chromatin structure. Altogether, our results are in line with many associated functions of
APG exposure and highlight the importance of epigenetic perturbation as a result of APG

exposure.

Furthermore, cell-cell adhesion-associated functions likely represent the APG-
associated anti-invasiveness. APG had been reported to inhibit metastasis and invasiveness of
multiple cancer cell lines by regulating the expression of adhesion molecules. In A2780 cells,
APG reduces FAK stability and its signalling pathway. Moreover, Franzen et al reported that
APG inhibited phosphorylation of FAK and Src and attenuated the motility of PC3-M human
prostate cancer cells by disrupting the formation of invasion mechanism (261). Activation of
FAK/Src signalling involves actin cytoskeleton remodelling and regulation of invadopodium,
an extracellular matrix invasion process driven by actin polymerization, associated with
tumour invasion (262). A component of invadopodium structure is cortactin (CTTN), which
stabilizes the actin filament branch in lamellipodia, a part of cell-matrix protrusion structures,
through recruitment of Arp2/3 complexes (263). According to the PC3-M cell study, cortactin

appears to be suppressed on the protein level but the downregulation mechanism had not been
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characterised further. In our study, significant hyperphosphorylation was found on CTTN,
possibly, regulated by MAPK1 (ERK2) and 3 (ERK1) at Ser405 (Fig. 3.11). Phosphorylation
on this site facilitates the binding of E3 ubiquitin ligase and thus resulting in degradation of
CTTN via the proteasome (264). Additionally, APG was reported to downregulate the
expression of NEDD9, a scaffold protein involved in the formation and recruitment of
components in invadopodia complexes (265). These results highlight that APG not only
expresses antiproliferative activity, but also anti-tumour invasion and metastasis ability

confirmed by the results obtained in this study.

NetworKIN analysis on full and 30 minutes dataset had identified a set of kinases,
which likely interacted with the significant phosphosites. Interestingly, both network maps
illustrated that CDK1 was a main kinase that was influenced by APG in SKOV-3 cells. CDK1
had been reported to be upregulated in ovarian cancer cells compared to normal cells (266).
The disruption of CDK1 activity and expression resulted in apoptosis and cell cycle arrest at
G2/M phase. APG inhibits the activation and expression of cyclin B and Cdc25c, both
working consequently as a regulator of CDK1 (147, 267). This could explain how APG
exhibits more antiproliferative activity against CDK1-overexpressing cancer cells than normal
cells. Moreover, CDK1 associates with multiple proteins involved with methylation,
acetylation, and demethylation, and these CDK1-phosphorylated proteins were found to be
increased after APG treatment. MAPK1 also showed an enhanced interaction with
phosphosites observed in our study, which reflected the rapidness of phosphoproteins
alteration occurred by APG treatment. This was further confirmed through the GSEA results
that at 30 minutes where various signalling pathways governed by receptor tyrosine kinase

(RTKSs) pathway were increased in their activity.

A broader analysis of APG treatment within the literature highlighted the association
with DNA damage responses in cooperation with alteration of genes involved with cell cycle

progression thereby halting cell progression followed by apoptosis in various cell lines. The
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different outcomes of arrest phases are possibly related to cell lineage, genotype and
phenotype including mutations of each cell line, and environmental cues. APG can activate
the DNA damage response pathway, which acts as a checkpoint in cell progression
throughout interphase, resulting in either cell cycle arrest at Gi or G2/M phase. In Gi/S
checkpoint, APG has been reported to activate Ataxia-telangiectasia mutated (ATM) through
phosphorylation by protein kinase C-delta (PKC3) (268). Activation of ATM signalling
cascade then causes activation of CHK2 by phosphorylation of Thr68 and results in
degradation of Cdc25A by phosphorylation at Serl23 (269) and activation of p53 by
phosphorylation at Serl5. This activates the expression of p21, a cyclin-dependent kinase
inhibitor (270). Both events halt cell progression through the S phase by inhibiting the
assembly, nuclear import, and activity of CDK4-cyclin D and CDK2-cyclin E complexes
allowing the DNA repair process to take place. DNA damage irreparable cells are led to
apoptosis (271). An increase in phospho-p53-Ser15 was found in G; arrest prostate cancer cell
lines after treatment with APG (134). DNA damage checkpoint in G, phase also occurs by
ATR/ATM signalling cascade. After CHK1 and CHK2 are activated by ATR/ATM, they
deactivate Cdc25A and Cdc25C phosphatase via phosphorylation at Ser216 preventing them
to activate CDK1 by dephosphorylation of Thr14/Tyr15 usually regulated by Weel and Mytl
(272, 273). The cells are stalled to enter the mitotic phase by CDK1-cyclin B complex for
DNA repair mechanisms. Moreover, APG was found to downregulate DNA repair genes and
inhibit topoisomerase activity (274, 275). According to our findings, phospho-CDK1-
T14/Y15 (Fig. Appx.E1l and 2) are hyperphosphorylated at different timepoints and
phosphorylation at T14 sites are associated with the hyperphosphorylated status of Cdc25C at
S216 (Fig. Appx.E7). Our dataset did not contain the remaining phosphosites associated with
this pathway such as CHK1-Ser317/345, CHK2-T68, Cdc25A-Ser123/T506 and Weel-S549.
However we can show that ERKZ1/2 is activated through hyperphosphorylation of

Thr202/Tyr204 on ERK1 and Thr185/Tyrl87 on ERK2 at 30 minutes (Fig. Appx.E3-6)
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which is an important DNA damage response activation (276). ERK1/2 is not only involved
in regulating the cell cycle but also regulates cell proliferation, survival, and death (277).
Therefore, more evidence and proteins related to this pathway are needed for clarification.
Furthermore, p21 is upregulated by a p53-independent mechanism after APG treatment (137).
Zhang et al reported that in KYSE-510 cells, which is an inactivated p53 mutant, APG
triggers an increase in expression of p63 and p73 that contain a similar DNA binding region
(>60% amino acid identity). These could possibly activate the p21 promoter (278). Pandey et
al found that APG inhibits HDAC1 and HDAC3 expression and activity resulting in an
increase of acetylated-histone H3 that appeared to interact with the p21 promoter (137). There
are also other regulators of p53-independent p21 expression, which are associated with
antiproliferative activity, cell cycle arrest, and apoptosis induction of p21, for example, TGF-
B, EGF, c-Myc, and others (279). From the findings above, due to APG treatment causing
alteration in the regulation of gene expression through changes in epigenetics and histone
modifications, it is interesting how this affects the modulation of transcription in cells. There
are accessible public domain gene expression datasets related to APG treatment that can be
explored and analysed for upstream regulation and biological functions. This analysis would
possibly extend the knowledge from the cellular signalling network to biological activity after
APG exposure. Furthermore, analysis of changes in kinase activity describes the activation
and inhibition of target kinases and signalling cascades that influence by the treatment. This
analysis can be done through the calculation of phosphoproteomics data using available tools
like KSEA, KEA2, and IKAP. The kinase activity and gene expression analysis results will be
valuable information for interpreting the link between the upstream regulator of signalling

pathways through possible biological effects from these changes after APG treatment.
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CHAPTER 4
KINASE ACTIVITY AND LITERATURE ANALYSES

4.1 Introduction

From previous analyses, the predominant activities of APG associated with
phosphorylation alteration observed at an early stage of exposure were related to enhancing
the activation of MAPK signalling while suppressing the regulation of epigenetics, histone
modifications, and chromatin organisation. There are a few experiments that need to be done
to validate the analyses and findings following the western blot studies however the lab
access restriction due to the pandemic situation has prevented this to happen. Therefore, we
opted to perform further computational analyses to clarify further detail of the effect of
apigenin on cancer cell lines. In this part, Kinase Set Enrichment Analysis (KSEA) and
analyses of public domain transcriptomics data of apigenin treatment in cancer cell lines will

be further used to extend the knowledge.

Understanding of signalling cascades has been a central establishment of treatment in
several diseases, especially anti-cancer mechanisms. Phosphoproteomics allows for high-
throughput quantification of differentially expressed phosphoproteins in a single experiment
(280). The changes of phosphorylation on sites are governed by kinases or phosphatases
whose effects can be traced to establish the downstream pathway of each kinase using the
obtained phosphoproteomics data (281). However, several kinases can regulate a single
phosphorylation site, which makes the interpretation of its effect challenging. Several
computational tools have been developed to better understand this complexity (165, 282,
283). One such tool, KSEA, is used to study the activation and inhibition of the global kinase
pathway through the quantification of kinase-substrate activities (164). KSEA utilises kinase-
substrate databases, like PhosphositePlus (284), Phospho.ELM (160), PhosphoPOINT (285),
and NetworKIN (161), to calculate relative kinase scores from the phosphoproteomics dataset

based on kinase’s substrate sets. The method itself is closely related to GSEA but employs a
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different statistical computation. The scores represent the activation or inhibition of the given
kinase, which could further be used for pathway annotation inference to describe biological

events after treatment with APG in this cell line.

APG alters the regulation of epigenetics and histone modifications that should result
in changes in gene expression patterns. Because the effect from our experiment was observed
at an early timepoint, the consequences of phosphoproteins alteration might become visible in
later hours. Exploring the transcriptomics data related to APG treatment in cancer cells might
help to link the influence of APG on phosphorylation regulation and gene expression shift. So
far only breast cancer cell line based transcriptomics datasets are available in the public
domain. These studied cell lines MCF-7, MDA-MB-231, and MDA-MB-468 breast
adenocarcinoma cell lines, where the two latter cell lines are triple-negative breast cancer
cells associated with high mortality rate and poor prognosis due to lack in response of
oestrogen, progesterone, and ERBB2/Her2 targeting treatment (286). Interestingly, treatment
with APG in all of the cell lines had been reported to cause cell cycle arrest at Go/M phase
similar to the SKOV-3 cell line (139, 141, 287) thus there might be similarity in the
regulation of gene expression pattern and central signalling pathway regarding cell growth,
proliferation, and division that led to this outcome. From the differential analysis of
phosphoproteomics data, phosphorylation sites on transcription factors (TFs) appeared either
significantly phosphorylated or dephosphorylated especially at 30 minutes, which could result

in activation or inactivation of these TFs causing alteration on the target gene expressions.

We therefore aim to investigate the effect of APG on kinase activities and their
biological function and to validate the phosphoproteomics analysis by linking the activation
or inactivation of TFs via phosphosites alteration to gene expression profiles of associated

TFs in public domain datasets.
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4.2 Materials and methods

4.2.1 KSEA

To perform KSEA, the dataset is reorganised for matching the analysis requirements.
The batch-corrected and loess-transformed phosphoproteomics data from the previous analysis
were extracted and calculated for inverse logarithmic value. These values together with protein
ID, the amino acid of the phosphosite, and position within proteins were used for analysis with
the ‘KSEAapp’ package (version 0.99.0) in R. The KSEA was performed by KSEA.Scores()
that predicts kinase-substrate associations through analysis of each input dataset with the
publicly available database (KSData) including PhosphoSitePlus (284) and NetworKIN
database (243) with the cut-off setting at the score equal to or higher than 2. The results were
summarised into a table by filtering any row containing Benjamini-Hochberg adjusted p-value
< 0.05. A heatmap containing only significant kinases with a minimum substrate of 3 using
KSEA.Heatmap() function is then generated. In order to understand how these significant
kinases are associated with biological function, they were used as input to STRING for

enrichment analysis. The significant terms were captured at strength > 2 with FDR < 0.05.

4.2.2 Literature review summarising

A total of 76 publications reported the effects of apigenin on cancer cells illustrating
cell cycle arrest. These publications were categorised based on the arrest phase of the cell
cycle in the G; and G2/M checkpoints. From these, changes of proteins, phosphoproteins, and
enzymatic activity together with the cell line name and organ origin were recorded and used
to generate tables of cell and associated changes of expression and activity. To simplify the
analysis, these changes were reduced to increase, decrease, and no meaningful change though
not considering the degree of changes and other involved factors for example concentration,
time, and detection methods. The tables were used as input to the heatmap.2() function from
‘gplots’ package to generate a clustered representation of the results. Rows and columns with

more than 90% missing data were removed.
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4.2.3 Analysis of public domain transcriptomics data

Transcriptomics datasets related to APG treatment were obtained from Gene
Expression Omnibus (GEO). Three APG exposure datasets were obtained representing breast
adenocarcinoma cell lines MCF-7 — GSE119552 (288), MDA-MB-231 — GSE120550 (289),
and MDA-MB-468 — GSE133968 (290). The datasets were obtained using R through the
GEOquery. The data were logz-transformed and quantile-normalised then assessed by
boxplots and PCA. Next, differential expression analyses were executed through comparison
of apigenin treatment versus control using fit linear model followed by empirical Bayes
statistics for differential expression within the ‘limma’ package. P-values were adjusted with
Benjamini-Hochberg. Functional enrichment analyses were performed using two approaches
DAVID and GSEA. For DAVID, the significances were filtered by log, fold change less than
-1 or more than 1 and FDR at cut-off 0.05 and separated into upregulated and downregulated
sets. DAVID annotation clusters that contained enrichment scores > 1.8 were considered to be
significant. For GSEA, t-statistics were extracted and used as input to GSEA for the Pre-
ranked gene list analysis. In the case of redundant genes in the differential expression results,
mean values of t-statistics were computed and used as an input value for GSEA. The tests
were performed on the KEGG and Gene Ontology databases with the numbers of
permutations set to 10000. The terms with FDR < 0.05 were considered statistically

significant. The results were visualised by ‘ggplot2’ package.

4.2.4 Transcription factors and public domain gene expression analysis

Possible transcription regulators were identified from the significant phosphosite list
using the list of human transcription factors from Lambert et al (291). Then, available DNA
binding domain motifs of the identified TFs were captured as .meme files from JASPAR?02
database (292) that were computed in Find Individual Motif Occurrences (FIMO) (293) of the
MEME suite (294) for possible motif-matched locations on human genome. The locations

were used for identifying the downstream genes of given location by mapping to TxDb
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objects from UCSC build hg19 genome database of ‘Homo.sapiens’ package. The heatmaps
displaying the expression profile of plausible target genes of the TFs were generated
according to the given sets of the previously identified targets. Overlapping analysis was
performed by upset() function from ‘UpSetR’ package. Finally, the target genes were
classified into upregulated and downregulated sets and were computed for over-representing
analysis by DAVID functional annotation analysis in similar approach to previous analysis.
Furthermore, the significant TF targets from CHIP-Seq or curated datasets from literature

(295-299) or ENCODE Portal database (300) have been analysed.

4.3 Results

4.3.1 APG inhibits CDKs activities and enhances kinases in MAPK signalling
pathway and pyruvate dehydrogenase kinase (PDK) activities

KSEA analysis on our phosphoproteomics data identified 22 kinases that can be
categorised into three groups of kinase activity changes (Fig. 4.1). The first group are kinases
that were enhanced at 30 minutes and reduced in activity afterwards including MAPKS,
MAPK9, PRKD1, VRK1, CDKS3, and RPS6KB1. The second group of kinases were
increased at 30 minutes and then returned to the time 0 activity including PDK1, PDK2,
PDPK1, ERBB2, PRKCA, PRKCB, MAPK14, MAP2K1, MAP2K2, and RET. The last
group of kinases was inhibited at 30 minutes then either activated or continued to have less

activity later comprising CDK1, CDK2, CDK4, PLK1, STK38, and LATSL.

This suggested that APG had a significant effect on kinase activity at 30 minutes.
Except for CDK3, it is obvious that CDK1, CDK2, and CDK4, which are the main cell cycle
regulators across the interphase, were associated with the suppression of cell progression by
APG. Enrichment analysis found 20 GO Biological process terms including regulation of
Golgi inheritance, mitotic nuclear envelope disassembly, Golgi disassembly, negative
regulation of pyruvate dehydrogenase activity, regulation of biosynthetic process from

pyruvate, positive regulation of deacetylase activity, positive regulation of production of
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miRNAs involved in gene silencing by mRNA, histone phosphorylation, and positive
regulation of cell size as well as 10 terms from Molecular Function, i.e., histone Kkinase
activity, cyclin-dependent protein serine/threonine kinase activity, histone threonine kinase
activity, calcium-dependent protein kinase C activity, MAPK kinase activity, MAP kinase
activity, histone kinase activity (H3-T6 specific), JUN kinase activity, pyruvate
dehydrogenase (acetyl-transferring) kinase activity, MAP-kinase scaffold activity; and only
one from Cellular Component, i.e., mitochondrial pyruvate dehydrogenase complex (Fig.
4.2). The regulation of epigenetics and histone modifications is also highlighted here. CDK1
and CDK2, which were suppressed, were governed by two terms (histone phosphorylation
and kinase activity) from the total of six terms associated with the modifications.
Interestingly, four energy metabolism-related terms were identified mainly targeting pyruvate

dehydrogenase activity in this analysis through PDK1 and PDK2.
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Figure 4.1 Heatmap of Kinase set enrichment analysis.
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Red and blue represented increasing and decreasing in Kinase activity, respectively. *

indicated the significant change (FDR < 0.05) in kinase activity.
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The significant terms are filtered at FDR < 0.05 and strength > 2.0
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4.3.2 Literature analysis
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Figure 4.3 Heatmap of cluster result of protein and activities associated with cell lines that
are arrested at G; phase when treated with APG.
X-axis indicated cell lines while Y-axis indicated proteins or activities. Colour illustrated

status as follows, increase in red, decrease in blue, and unchanged in orange.

To better understand the known interactions between APG and its antiproliferative
effects, including the various genes and protein complexes that have been studied, a
compilation of 76 publications mentioning APG exposure was performed. From the 76
publications, the results showed 16 articles that describe APG to arrest cell cycle at G; phase,
and 60 articles suggesting a G»/M phase arrest. Within the reported G; arrests, data from 13

cell lines representing 8 origins including skin (CCD-1079Sk), prostate (LNCaP, DU145,



111

22Rv1, and PC-3), colon (HCT-15, HCT-116, and HT-29), liver (HepG2), tongue (SCC-25),
cervix (HeLa), myeloid cell (TF1) and monocyte (THP-1) were extracted. Hierarchical
clustering of the most studied genes in these publications showed that there are 43 consensus
terms from a total of 88 terms (Fig. 4.3). Terms that appeared to be increased (red) were
associated with cyclin-dependent kinase inhibitors (CDKi - pl16, pl8, p2l, and p27),
apoptosis indicators (Bax, PARP cleavage, cytochrome C, cleaved caspase-3 and -9),
chromatin modifications (acetylated-histone H3-Lys3/14 and acetylated-histone H4-
Lys5/8/12/16), DNA damage response (p53 and phospho-53-Ser15) and other components in
signalling pathway (phospho-ERK1-Thr202/Tyr204 and FoxO3a). The increase in
modifications of ERK1/2, histone H3, and H4 (as observed in row 9, phosphorylation in
ERK1/2, and row 4&86, acetylation in histone H3 and H4, respectively) was not caused by
changes in the expression level as observed in the orange cluster of the heatmap (Fig. 4.3, row
3 (ERK1/2), 4 (histone H4), and 5 (histone H3)) (135, 137). Activation of p38 MAPK that is
associated with stress response was observed to increasing phospho-p38-Thr180/Tyr182 of
TF1 human erythroid leukaemia and HepG2 hepatocarcinoma cell lines whilst deactivation of
these sites was observed in the PC3 cell line. Importantly, APG did not alter the expression
level of p38 on these cell lines (135, 140, 301). On the contrary, within the decreasing group
of cell cycle components (blue) major components of cell cycle kinases during Gi1 progression
and transition towards S phase (CDK4/6, cyclin D1/D2, CDK2, and cyclin E), expression
level and phosphorylation of Rb a key regulator of cell progression from G; to S phase
(phospho-Rb, phospho-Rb-Ser780, and phospho-Rb-Ser807/811), DNA synthesis (PCNA),
anti-apoptotic protein (Bcl2), histone deacetylase (HDAC1 and HDAC3), and signalling
cascade involved with cell survival, proliferation, and tumour invasion (phospho-Akt-Ser473,
phospho-FoxO3a-Ser253, 14-3-3, NF-kB p65, IKKa, phospho-IKKa-Serl76, and phospho-
IKKB-Serl77) were found. From this set of Gi arrest-related literature, APG exhibits anti-

proliferative activity by increasing chromatin accessibility by inhibiting HDAC expression
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and activity, upregulating CDK inhibitors expression while downregulating cell cycle
regulators and components associated with G; phase, triggering DNA damage response via
p53-dependent pathway and induction of apoptosis. Additionally, upregulation of p27 via
FoxO3a activation through deactivating Akt and suppressing of IKKo/f activation that is
critical for NF-kB activation results in cell cycle arrest and reduction of tumour migration in,

at least, the prostate cancer cell lines (302, 303).

Within the literature associated with G; arrest, 48 cell lines from 19 tissues containing
breast (SK-BR-3, BT-474, MCF7, MDA-MB-231, MDA-MB-468, and Hs578T), colon
(SW480, HCT-116, HT-29, and Caco-2), skin (OCM-1, 518A2, A375, and C8161), liver
(HepG2 and Huh7), pancreas (AsPC-1, HPAF-II, MIA PaCa2, and S2-013), oesophagus
(JROECL33 and KYSE-510), myeloid cell (HL-60, K562, and KG-1a), monocyte (U937 and
THP-1), T cell (Jurkat and CCRF-CEM), B cell (NCI-H929, U2932, and OCI-LY10), brain
(A172, U1242-MG, and U87-MG), tongue (SCC-25), nasopharynx (HONE1 and CNE2),
bladder (T24), kidney (ACHN), thyroid gland (BCPAP), salivary gland (ACC2), embryo
(NT2-D1), and lung (A549, NCI-H460, and NCI-H1299) were identified. The clustering of
terms in G2/M phase arrest group (Fig. 4.4) displayed two groups, a set of increased and
decreased components (red and blue respectively). The terms associated with an increase in
G2/M arrest contained apoptotic markers (Bax, cytochrome C, PARP cleavage, cleaved
caspase-3, -8, and -9) and DNA damage response pathway (yYH2AX, p53, phospho-53-Ser15,
and p21). Interestingly, phospho-CDK1-Tyr15, an inactivation site of CDK1, expression was
decreased in the human pancreatic cancer cell line and in only this publication while other cell
lines including human myeloid leukaemia and renal cancer cell lines occur to be
hyperphosphorylated (140, 142, 267). Dephosphorylation of this phosphosite is linked to the

activation of CDK1 activity in pancreatic cancer cell lines.

On the other hand, within the downregulated group (blue), cell cycle facilitators and

components for progression from S to G, then to M phase (Cdc25A, Cdc25C, CDK2, CDK1,
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cyclin A, and B1) together with two regulators from G; phase (CDK4 and cyclin D1), anti-
apoptotic genes (Bcl2 and Bcl-xl), and activation of cell survival and growth signalling (p38,
phospho-Akt-Ser473, phospho-STAT3-Tyr705, phospho-mTOR-Ser2448 and phospho-
ERK2-Thr183/Tyr185) were characterised. Moreover, APG not only suppresses CDK1
expression level but also reduces CDK1 activity in human colon cancer cell line SW280
(304). It is therefore apparent that APG exhibits antiproliferative activity by downregulating
cell progression machinery of transition from S entering to G2 until M phase through
triggering of DNA damage response, reducing cell survival and growth signalling, and

increasing apoptotic activity within the G group.
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Remarkably, p21, a member of CIP/KIP (CDK interacting protein/Kinase inhibitory
protein) is reported to be upregulated consistently in both the Gi group, 9 from 13 cell lines,
and in G»/M group, 16 from 48 cell lines. This evidence suggested p21 plays a vital role in the
antiproliferative activity of APG. In addition, there are 5 cell lines that were reported for cell
cycle arrest on both G: and G,/M phases including HepG2, HT-29. HCT-116, SCC-25 and

THP-1. It has been reported by Lepley and Pelling that, in CCD-1079Sk human skin

Gene
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fibroblast cell line, treatment of unsynchronised cells results in cell arrest at G./M phase,
while in synchronised cells by FBS starvation before treatment, cells were arrested at G;
phase (131). This phenomenon was similarly observed in SCC-25 human oral squamous
carcinoma cell line (305). Moreover, the effect from different culture medium components
was reported for example, in THP-1 (myeloid leukaemia) culturing in RPMI-1640 medium
supplemented with 5% FBS cells arrested at G1 phase after treatment (268) whereas
supplementing the medium with 10% FBS resulted in an arrest at Go/M phase (306), in HT-29
(colon) when cultured in RPMI-1640 medium, the cells arrested at G; phase (307), whilst the
culture in DMEM medium led to arrest in G2/M phase (255, 304), and in HCT-116 (colon) G
phase arrest was observed when cultured in McCoy’s 5A medium (145), whereas culture in
RPMI-1640 resulted in G/M cell cycle arrest (148). Moreover, APG concentration used for
treatment appears to arrest HepG2 human hepatocarcinoma cell line at different phases.
Although the authors claimed to use half-maximal inhibition concentration (ICso) for both
experiments, 20 pg/ml resulted in the arrest in Gy phase (301), while at 8 pug/ml caused G/M
cell arrest (308). This evidence therefore highlights the complex interactions that result from

exposure to APG.

4.3.3 Public domain data analysis

To better understand the impact of APG on the underlying molecular responses we
analysed cancer cell lines exposed to AGP gene expression datasets. The MDA-MB-468
dataset contained fewer APG exposed biological replicated and yielded no results. The
remaining results presented here therefore focus on the MCF7 and MDA-MB-231 data. After
differential analysis, a total of 1504 significant genes that consisted of 638 upregulated and
866 downregulated genes were obtained from MCF7 dataset while the MDA-MB-231 dataset
yielded 420 significant genes of which 181 genes were upregulated and 239 genes were

downregulated.
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Enrichment analyses in the MCF7 dataset yielded one significant cluster representing
upregulation of the intrinsic apoptotic pathway via p53 signalling through DNA damage
(Table 4.1) and four significant clusters representing downregulated genes including
carcinogenesis associated Wnt and Hippo signalling pathway, sialylation, extracellular matrix
structural constituent, and cellular water homeostasis (Table 4.3). Similarly, enrichment
analyses of the MDA-MB-231 dataset resulted in the identification of an upregulation of
“transcription by zinc finger proteins” (Table 4.2) and downregulation of mitotic nuclear
division and segregation of sister chromatids through the attachment of microtubules to the

kinetochore (Table 4.4).

To use a more sensitive method, a GSEA based approach was applied. Here 131
terms were overlapping between the treatment of APG in MCF7 (total of 453 terms) and
MDA-MB-231 (total of 1,112 terms) cell lines (Fig. 4.5A). The overlap terms were organised
by trends into two groups, same direction and opposite direction between both cell lines
focusing on only GO Biological process terms. Within the first groups (Fig. 4.5B and C), the
positive terms were majorly involved with RNA processing both mRNA and non-coding
RNA, regulation of translation machinery, and ribosome metabolism. Examples of these
terms were DNA-templated transcription elongation and termination, 3’-mRNA processing,
RNA splicing, spliceosome, the establishment of RNA localisation, mMRNA export from the
nucleus, ribonucleoprotein complex biogenesis, ribosome biogenesis, maturation of small-
subunit rRNA, ncRNA processing, and protein folding. Whereas the negative terms were
involved with protein localisation, actin polymerisation, and cell migration activity such as
negative regulation of actin filament depolymerisation, protein localisation to periphery and

plasma membrane, filopodium assembly, and regulation of notch signalling pathway.

Within the opposite direction group, upregulated in MCF7 but downregulated in

MDA-MB-231 (Fig. 4.6A and B respectively) terms related to cell cycle activity,
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chromosome organisation, and cell division were identified. This highlights how different cell

lines with similar backgrounds respond with different dynamics to APG exposure.

314 upregulated terms that were not overlapping but part of the MCF7 line included
terms similarly related to DNA replication, mMRNA metabolism, tRNA metabolic process,
telomere organisation, regulation of mitochondrial gene expression, regulation of cell cycle
checkpoint, and chaperone-mediated protein folding (Fig. 4.7A). In addition, 40
downregulated terms were identified and represented autophagosome organisation, vacuole
transportation, and regulation of macrophage-derived foam cell differentiation (Fig. 4.7B).
Repeating this selection for the MDA-MB-231 dataset, 43 upregulated terms were found with
similar terms surround mRNA catabolic process, protein translation and protein transportation
(Fig. 4.8A) and terms corresponding to regulation of cell-matrix adhesion, chromosome
segregation, acetyl-CoA biosynthetic process, phosphate catabolic process, vesicle
transportation, and tissue remodelling were found generally from 970 downregulated terms

(Fig. 4.8B).
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Figure 4.5 Overlap terms with the same direction in both cell lines from GSEA results.
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(A) Venn diagram of GSEA results from MCF7 and MDA-MB-231 datasets. (B) Bar chart of

significant terms of GSEA result from (A) MCF7 dataset and (B) MDA-MB-231 dataset.

Significant terms were filtered at FDR < 0.05. X-axis represented normalised enrichment

score while Y-axis described terms, and colour shading indicated FDR score.
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Figure 4.6 Bar chart of overlap terms with opposite direction between the cell lines from
GSEA results.

Bar chart of significant terms of GSEA result from (A) MCF7 dataset and (B) MDA-MB-231
dataset. Significant terms were filtered at FDR < 0.05. X-axis represented normalised

enrichment score while Y-axis described terms, and colour shading indicated FDR score.



=

MDA-MB-231

GOCC_U5_SNRNP

GOBF_VIRAL_GENE_EXFRESSION

GOBF_MRNA_SPLICE_SITE_SELECTION

GOCC_POLYSOMAL_RIBOSOME

GOCC_PRESPLICEOSOME

GOBP_STRESS_RESPONSE_TO_METAL_ION
GOBP_CYTOPLASMIC_TRANSLATION
GOBP_SPLICEOSOMAL_COMPLEX_ASSEMBLY

GOMF_SNRNA_BINDING

GOMF_MISFOLDED_PROTEIN_BINDING
GOBP_DETOXIFICATICN_OF_INORGANIC_COMPCUND
GOCC_U2_TYPE_CATALYTIC_STEP_2_SPLICEOSOME
GOBP_PROTEIN_REFOLDING

GOEF_TRNA_5_END_PROCESSING
GOBP_ENDONUCLEOLYTIC_CLEAVAGE_INVOLVED_IN_RRNA_PROCESSING
GOBF_VITAMIN_EIOSYNTHETIC_PROCESS
GOBP_NEGATIVE_REGULATION_OF_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS
GOBP_EXPLORATION_BEHAVIOR

ERANE

GOBP_PROTEIN_TARGETING_TO_
GOCC_PROTON_TRANSPORTING_TWO_SECTOR_ATPASE_COMPLEX
GOCC_PRERIEOSOME_SMALL_SUBUNIT_PRECURSOR
GOMF_USIQUITIN_SPECIFIC_PROTEASE_EINDING
GOBP_RIBOSOMAL_SMALL_SUBUNIT_ASSEMBLY
GOBF_MRNA_CIS_SFLICING_VIA_SPLICEOSOME
GOBP_TRANSCRIFTION_ELONGATION_FROM_RNA_POLYMERASE_|_PROMOTER
GOCC_U12_TYPE_SPLICEOSOMAL_COMPLEX
GOBP_MRNA_5_SPLICE_SITE_RECOGNITION

NUCLEAR_SPECK
GOBF_NEGATIVE_REGULATION_OF_RNA_SFLICING

KEGG_OXIDATIVE_PHOSFHORYLATION

3

0
Normalized Enrichment Score

"

126

FOR

0.04
0.03
0.02

0.01



127

MCF7

B

GOMF_PROTEOGLYCAN_BINDING
GOBP_NEGATIVE_REGULATION_OF_SMOOTH_MUSCLE_CELL_MIGRATION
GOCC_INTRINSIC_COMPONENT_OF_POSTSYNAPTIC_SPECIALIZATION_MEMBRANE
GOBP_NEGATIVE_REGULATION_OF_VIRAL_ENTRY_INTO_HOST_CELL
GOBP_HETEROTYFIC_CELL_CELL_ADHESION

GOMF_ALCOHOL_BINDING

GOBP_AUTOPHAGY_OF_MITOCHONDRION

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYORATHY_ARVC
GOBF_NEUROMUSCULAR_PROCESS

GOBP_VACUOLAR_TRANSFORT
GOBF_NEGATIVE_REGULATION_OF_NEURAL_PRECURSOR_CELL_PROLIFERATION

GOBP_AMYLOID_PRECURSOR_PROTEIN_METABOLIC_PROCESS

GOCC_AUTOPHAGOSOME_MEMERANE FOR
GOBP_NEGATIVE_REGULATION_OF_VIRAL_LIFE_CYCLE e
E GOBP_REGULATION_OF_OSTEOBLAST_DIFFERENTIATION 0.03
= GOBF_AMYLOID_PRECURSOR_PROTEIN_CATABOLIC_PROCESS o2
GOCC_T_TUBULE
0.01

GOCC_INTRINSIC_COMPONENT_OF_FOSTSYNAFTIC_DENSITY_MEMERANE
GOCC_COMPLEX_OF_COLLAGEN_TRIMERS
GOBF_LYSOSOMAL_TRANSFORT

GOCC_VACUOLAR_MEMBRANE

GOBF_AUTOPHAGOSOME_ORGANIZATION
GOBP_NEGATIVE_REGULATION_OF_OSTEOBLAST_DIFFERENTIATION
GOCC_PHAGOPHORE_ASSEMBLY_SITE

GOCC_AUTOPHAGOSOME

/ACUOLE_ORGANIZATION

GOBP_NEGATIVE_REGULATION_OF_LIFID_STORAGE
GOCC_AZUROPHIL_GRANULE_MEMERANE

GOBP_FOAM_CELL_DIFFERENTIATION

GOBP_REGULATION_OF_MACROPHAGE_DERIVED_FOAM_CELL_DIFFERENTIATION

o
~

K] 0
Normalized Enrichment Score

Figure 4.7 Bar chart of top 30 significant no overlapping terms of GSEA result from MCF7

dataset.

(A) Upregulated and (B) downregulated terms. Significant terms were filtered at FDR < 0.05.

X-axis represented normalised enrichment score while Y-axis described terms, and colour

shading indicated FDR score.
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Figure 4.8 Bar chart of top 30 significant no overlapping terms of GSEA result from MDA-
MB-231 dataset.

(A) Upregulated and (B) downregulated terms. Significant terms were filtered at FDR < 0.05.
X-axis represented normalised enrichment score while Y-axis described terms, and colour

shading indicated FDR score.
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4.3.4 Transcription factors determination on significant phosphosites and
expression profiles of their target genes

Gene expression regulation is governed by several processes. So far we have
identified likely epigenetic modification and the ability to modify the activity of transcription
factors (TFs). To test which likely TFs could be involved in APG exposure we performed an
upstream analysis based on the significant phosphosites identified. Within the whole dataset
nine possible TF sites were found (Fig. 4.9A) representing a hyperphosphorylated group
containing DNMT1 Ser143, ERF Ser21, YBX1 Serl65, and FOSL2 Ser200, and a
hypophosphorylated group including ZNF609 Ser433, MECP2 Ser216, FOXK2 Ser398,
SAFB2 Ser598, and CIC Thr1318. Within the 30 minutes list (Fig. 4.9B), the
hyperphosphorylated group is composed of JUN Ser63, ARHGAP35 Ser589, NFIX Ser265,
STAT3 Ser727, DNMT1 Serl43, HOXB6 Ser214, and STATL1 Ser727 while the
hypophosphorylated group is comprised of ZNF609 Ser433, KAT7 Ser57, HIVEP1 Ser779,
DNMT1 Serl54, GLYR1 Ser122, HMGA1 Thr53, HMGA1 Thr39, and HMGAL Thr78.
Noticeably, the hyperphosphorylated DNMT Serl43 and hypophosphorylated ZNF609

Ser433 appeared in both lists.

To link between these TFs and their effect on the regulation of gene expression, the
TFs were queried in the Jaspar?®® database for their motif sequences and were mapped to
detect possible target genes in the human genome by FIMO. Genes with the motif in the
sequence were then extracted and visualised using the gene expression data. Only seven out
of the fifteen possible TF motifs were found in Jaspar?®® comprising the motifs of ERF,
FOSL2, FOXK2, JUN, NFIX, STATL1, and STAT3. Possible target genes were identified and
used for generating heatmaps of gene expression profiles regulated by each TF. From the
MCF7 dataset, the heatmaps were generated from a significant gene list filtered by possible
target genes of ERF (540), FOSL2 (534), FOXK2 (503), JUN (512), NFIX (610), STAT1

(562), and STAT3 (559) where numbers in each bracket referred to the number of genes (Fig.
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Appx.F1-7). Within the MDA-MB-231 dataset, the heatmaps were created similarly for ERF
(153), FOSL2 (148), FOXK2 (147), JUN (137), NFIX (159), STAT1 (166), and STAT3 (165)
(Fig. Appx.G1-7). Observing the heatmaps, the results revealed comparability among the
expression profiles across all TFs, which had led us to investigate the overlapped genes from
all TFs. Set intersections of all TFs were applied in significantly upregulated or
downregulated gene sets and visualised by UpSet. From the MCF7 dataset, the plots showed
that 41 of 436 genes appeared in all TFs in the upregulated set (Fig. 4.10A) and 131 of 598
genes presented in the downregulated set (Fig. 4.10B). While the MDA-MB-231 dataset was
responsible for 52 overlapped genes from 198 genes in the downregulated set (Fig. 4.11B)
and no overlapped genes across all TFs were found in the upregulated set (Fig. 4.11A).
Likewise, this phenomenon occurred in public domain ChIP-Seq datasets from the ENCODE
portal database. The Venn diagram of target genes of FOSL2, JUN, STATL, and STAT3 from
ENCODE datasets (Fig. 4.12) displayed a high number of overlapping genes across all TFs.
Further inspection of these plots led us to a conclusion that the target genes were vastly
shared across the TFs in this analysis thus over-representation analysis for every TF would
lead to similar terms. Therefore, all possible target genes from all TFs were separated into
upregulation and downregulation sets in both cell lines and were used as input to the DAVID

functional annotation tool.
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significant phosphosites that are

(A) whole data analysis and (B) 30-minute data analysis. X-axis indicated the treatment of

that column. Y-axis represented phosphosites where HNGC gene symbol resided before first

dot followed by phosphorylated amino acid and position within proteins. Colour indicated

phosphorylation level where red is hyperphosphorylated and blue is hypophosphorylated.
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Figure 4.10 Bar chart of overlapping analysis of possible TF-target significant genes from

MCF7 dataset.
(A) Upregulated genes and (B) Downregulated genes. Significant genes were filtered at FDR

< 0.05 and matched to all possible TF targets. X-axis represented associated TF, while Y-axis

indicated overlapping gene number.
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Figure 4.11 Bar chart of overlapping analysis of possible TF-target significant genes from
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MDA-MB-231 dataset.

(A) Upregulated genes and (B) Downregulated genes. Significant genes were filtered at FDR

< 0.05 and matched to all possible TF targets. X-axis represented associated TF, while Y-axis

indicated overlapping gene number.
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Figure 4.12 Venn diagram of target genes of FOSL2, JUN, STAT1, and STAT3 from
ENCODE portal database.

The DAVID functional cluster analyses showed that, in MCF7 data, there was an
increase in DNA damage response by p53 involved in with intrinsic apoptotic signalling
pathway, folic acid metabolic process, and nitrogen metabolism (Table 4.6) while the
decreases in sialylation, cardiomyopathy activity, and extracellular matrix-cell interaction can
be observed (Table 4.7). In MDA-MB-231 results, there were two closely correlating clusters
in the downregulation set that are mitotic nuclear division and attachment of mitotic spindle
microtubules to kinetochore involved with sister chromatid segregation (Table 4.8), although
there was no significant cluster in the upregulated set. This result is quite similar to the

DAVID output of the significantly downregulated genes from the full MDA-MB-231 dataset.

Our analysis shows an increase in RNA metabolism and cell phase transition while a
decrease in cell migration, posttranslational modifications, and protein localisation in both
cell lines. Despite the different reports in cell cycle arrest both cell lines were affected by
APG. DNA damage response via p53 signalling pathway was found in MCF7 cells while
inhibition of sister chromatid segregation was observed in MDA-MB-231 cells. In summary,
the treatment of APG exhibited antiproliferative activity at different cellular processes

between the two cell lines.
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4.4 Discussion

The results from KSEA analysis highlighted that the activation of MAPK and HER2
(ERBB2) signalling pathway, which under normal circumstances are associated with cell
survival and proliferation, occurred rapidly after treatment of APG. This result was observed
previously in our phosphoproteomics GSEA result that upregulation of activation of MAPKK
activity, regulation of ErbB2 signalling pathway, and epithelial cell proliferation was shown
at 30 minutes (Fig. 3.13B the first, third, and fifth row of the first column). A previous study
reported that APG treatment for 24 h in HER2-overexpressing breast cancer cell lines led to
degradation of HER2 by competing with GRP94 to form complexes that protected Her2 from
polyubiquitination and thus disrupting the HER2 signalling through PI3K/Akt pathway
involved in cell proliferation and differentiation (309). SKOV-3 is reported to be a HER2-
overexpressing cell line (310) and might react to APG treatment in a similar fashion as in
these breast cancer studies. The activation of HER2 signalling might appear to be associated
with an early cell survival mechanism against the stress from APG treatment. This event
might reduce along the course of the treatment by the APG-induced degradation of HER2

protein.

Suppression of cyclin-dependent kinases, CDK1, CDK2, and CDK4, suggests a direct
role of APG on cell progression arrest activity that results in G2/M arrest in SKOV-3 cell line.
This finding is correlated to the literature analysis (Fig. 4.4) that the inhibition of CDK
expression level and activity occurred in several cell lines from different origins and is
associated with the antiproliferative activity of APG that causes cell cycle arrest on either G
or G2/M phase. Moreover, as SKOV-3 was arrested at Go/M phase that is regulated by the

activity of CDK1 and 2, it is interesting that CDK4 activity is also suppressed by APG.

An interesting set of kinases that are enhanced in their activity was pyruvate
dehydrogenase kinases (PDK1 and PDK2), which inhibit pyruvate dehydrogenase activity by

phosphorylation of pyruvate dehydrogenase complex (PDC) subunit Ela at Ser232, Ser293,
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and Ser300 that interfere with the complex formation and catalytic activity of the enzyme
(311). The hyperphosphorylation of these phosphosites at 30 minutes was illustrated in Figure
4.14. The consequences of this event affected the energy metabolism inside the cells by
preventing acetyl-CoA biosynthesis from pyruvate and the TCA cycle afterwards meanwhile
increasing aerobic glycolysis, which benefits the proliferation of cancer cells through
providing precursors for several biosynthesis and electron carriers for redox reaction that
reduce reactive oxygen species occurrences. This phenomenon was firstly discovered by Otto
Warburg in 1924 (312) and has been named the Warburg effect. Interestingly, pyruvate kinase
M2, which converts phosphoenolpyruvate to pyruvate, was inhibited in activity and
expression level in colon cancer cells by APG at 24 hours (313). Observation in public
domain data appeared that reduction of PDKs expression was found at 24 hours on both cell
lines and GSEA results from MDA-MB-231 revealed a significant decrease in acetyl-CoA
biosynthesis. According to the TF results, we found that FOXK2, which has been reported for
involvement with aerobic glycolysis through upregulation of enzymatic machinery (314), was
significantly hypophosphorylated at Ser398 at 30 minutes and upregulated in the MCF7 cell
line. FOXK2 is Forkhead box protein K2 that was recently discovered a role in insulin
signalling response and mitochondria biogenesis and knockdown of this TF resulted in
induction of apoptosis, suppression of the cell cycle progression, and reduction of lipid
metabolism via deregulating of its target gene expressions (315). Nonetheless, information
regarding phosphosites of FOXK2 at Ser398 is still limited but a previous phosphoproteomics
study has reported hypophosphorylation of this site associated with ErbB-dependent
signalling in early breast cancer development (316). Therefore, the enhancement of ErbB2
signalling at 30 minutes was likely associated with perturbation of glucose metabolism in

response to APG. Further experimentation is required to validate this.

JUN is activated by c-Jun N-terminal kinase (JNK) at Ser63 and Ser73 via a stress

signalling pathway (317). Our KSEA result displayed enhancement of MAPK8 and MAPK®9,
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also known as JNK1 and JNK2, at 30 minutes that associated with hyperphosphorylation of
JUN Ser63 at the same time point. Notably, previous studies had reported that APG had less
effect on JNK signalling, possibly due to its protective effect, and specifically activated p38
MAPK and ERK1/2 signalling pathway (318-320). Moreover, phosphorylation of STAT at
Ser727 that was observed to be enhanced at 30 minutes, was required for the activities of
STAT1 and was associated with stress response by p38 MAPK signalling (321). According to
KSEA result, MAPK 14, known as MAP kinase p38a, increased in its activity at 30 minutes as
well as JNKs and this kinase is one of the four p38 MAP kinases that governed STAT1
Ser727 sites. In parallel to STATL Ser727, hyperphosphorylation of STAT3 Ser727, which
was regulated by protein kinase C-delta and JNKs (322, 323), was observed in the same
manner. Surprisingly, other studies reported that APG suppressed STAT1 and STATS3 activity
through inhibition of related signalling and kinases (324-326) although the detection of the
phosphosites expression was taken at a later stage of treatment. In summary, APG treatment
inhibits the cell cycle regulator kinases activity and suppresses energy metabolism,
meanwhile it activates the stress response pathway at an early exposure time point in SKOV-3
cell line through JNK and p38 MAPK signalling pathway which results in the activation of

ERBB?2 signalling to improve survival.

Antiproliferative activity of APG in MCF7 and MDA-MB-231 appears to be
mediated through different mechanisms although both cells were arrested at G./M phase.
While direct downregulation of genes involved with cell cycle transition can be observed in
the MDA-MB-231 dataset, in the MCF7 dataset these genes appear to be upregulated. In
contrast, SKOV-3 cells showed downregulation of these genes at the protein level (139, 141,
287). There are several limitations in a direct comparison of MCF7/MDA-MB-231 and the
SKOV-3 cell lines. First, gene expression was evaluated at 24h after exposure; second,
MRNA levels are known to be impacted by APG through interference with mRNA maturation

and splicing (327); and third, posttranslational modifications that could lead to inactivation or
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degradation, and directly inhibit the enzymatic activity of these proteins by competing with

substrates, coenzymes, and cofactors.

Interestingly, from the GSEA results of phosphoproteomics data, a decrease in the
regulation of epigenetics and chromatin organisation was observed at the early time point in
the SKOV-3 cell line. This might be associated with the upregulation of genes relating to
transcription, ribosome biogenesis, and translation in APG-treated MCF-7 and MDA-MB-231
breast cancer cell lines at 24 hours from the public domain data. Especially, demethylation
that related to DNA and histone methylation was increased at 30 minutes according to the
GSEA result in this study. A main methyl donor source for one carbon metabolic process
associated with DNA methylation is folate (328). Regarding the clustering result of
upregulated genes in MCF-7 (Table 4.6), one-carbon metabolism involved with folate was
reported and might relate to methyl group scavenging and metabolism after APG exposure.
Future studies can be focused on methylation associated with the antiproliferative activity of
APG by depleting methyl donors from the media in exposure with APG, which can be further
extended to observe the global changes of DNA methylation by high-throughput bisulfite
genomic sequencing and histone maodifications through Chromatin immunoprecipitation
sequencing (ChlIP-Seq). Within the KSEA result, aerobic glycolysis was likely increased from
the observation of inhibition of PDC activity via phosphorylation of PDHAL at Ser232,
Ser293, and Ser300 by PDK1 and PDK2. As mentioned above, studies had discovered that
APG prevented pyruvate biosynthesis by inhibiting PKM2 (313), inhibited lactate
dehydrogenase activity (329, 330) that have a critical role in glycolysis associated with cancer
survivability and progression. At high concentrations this even leads to mitochondrial
dysfunction in several cell lines (331-333). These events captured an interesting question on
how APG impacts energy metabolism in SKOV-3 cell line and further experiments following
the metabolite changes in energy-related scope would offer a better understanding of the

disruption of the energy metabolic process after APG exposure.
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Taken together, APG expressed its antiproliferative activity through distinctive
signalling upon cancer cell types leading to similar outcomes by suppression of cell

progression, induction of apoptosis, and preventing metastatic activity.
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Figure 4.14 Heatmap of significant phosphosites on mitochondrial pyruvate dehydrogenase
E1 component subunit alpha.

(A) phospho-PDHA Ser232, (B) phospho-PDHA Ser293, and (C) phospho-PDHA Ser300. X-
axis indicated concentration while Y-axis indicated time. Colour represented phosphorylation

status where red is hyperphosphorylated and blue is hypophosphorylated.



151

CHAPTER 5
DISCUSSION

Natural products have been applied into our daily life as crude extracts and purified
compounds in the forms of dietary supplements, cosmetics, and other consumables. The
increasing demand for natural or organic products including bee products has grown
immensely due to a proportion of individuals who desires a better life quality and believes
that these products are environmentally safer and nontoxic (334). Nevertheless, their
effectiveness and safety remain to be questioned. An example of a well-known natural
product that had been reported for no effective outcome is Gingko biloba. It has been found in
Eastern Asian traditional medicine as a herbal treatment for preventing memory loss. Several
in vitro and in vivo studies showed that the leaves extracts from G. biloba expressed
neuroprotective effect and enhanced neurogenesis (335-337). However, in a randomised
controlled trial, the participant group that received the treatment of 120-mg G. biloba extract
appeared to have no difference in comparison to the placebo group (338). Bioavailability and
pharmacokinetics of the extracts are a concerning issue and possibly explain this observation
thus a better drug delivery and controlled release system could address this issue. Moreover,
awareness regarding the toxicity of natural products has been recently raised on either natural
compounds alone or synergistic with other agents (339) though there were limited numbers of

adverse effect reports with mainly no lethal or severe symptoms (340).

APG and o-MG were found as constituent compounds of food and extracts for
example wheat, vegetable, mangosteen drinks, and alcoholic beverages (341-343).
Nonetheless, the amount and concentration of the compounds in those products were much
lower than the effective dose for the treatment of ailments. Studies in mice models found that
both compounds exhibit various activities such as protection against renal perfusion and
neuroinflammation, antioxidation, antiviral, and anti-tumour activity with oral administration

or intraperitoneal injection (344-349). However, a systematic review in human studies has
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shown that oral uptake of APG was reported to reach only 30% bioavailability and 1-5 pM of
circulating concentration with oral administration, which at this amount is not effective for
the treatment of human gastrointestinal diseases and cancers (350). While there were no
clinical or randomised controlled trial studies in humans, pharmacokinetics studies of a-MG
administration in mice appeared that a-MG had poor adsorption activity by oral
administration, the absorption of a-MG in mangosteen extract was higher than purified a-
MG, and the tissue distribution of a-MG was associated with constituents of the extract and
administration routes (83, 351). Regarding the safety of APG and a-MG, APG is considered
to have low cytotoxicity although an overdose of APG could lead to muscle relaxation and
sedation (352) whereas a-MG exposure at a high amount leads to cytotoxicity and lethal dose
in animal models. A study in Wistar rats showed that oral administration of a-MG with more
than 500mg/kg/day caused chronic liver degenerative and kidney disease (353). In addition, a
lethal dose of intraperitoneal administration of pure a-MG was observed at more than
50mg/kg of mice (351). Moreover, a-MG exposure in zebrafish embryos affected the
development of the embryo and liver, which might reflect the consideration of usage of a-MG
during pregnancy (354). Furthermore, APG and a-MG had proved to express synergistic
effects in treatment with several drugs and chemical agents by sensitizing the targets thus
allowing possibilities of using available drugs to treat drug-resistant cancers cells (123, 355,
356). In addition to the synergistic effect, both compounds also exhibited a protective effect
that could prevent and alleviate the adverse effects from the ailment treatments at an
appropriate concentration and exposure length of time (357, 358). APG had been proven to
protect against kidney injury caused by doxorubicin treatment (359) and oxidative stress by
nickel oxide nanoparticles that could apply for multiple purposes (360) in rodent models.
Taken together, the usage of APG and o-MG as medicinal agents for treatment or

combination effects for a better outcome or protection for adverse effects should be
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considered about the bioavailability and pharmacokinetics of the compounds that can be

improved through advanced drug delivery system.

Drug discovery from natural products has re-emerged due to the availability of high
throughput technology (361). Drug delivery systems had been developed to enhance the
effectiveness of the drugs while preventing undesired consequences during or after the
medication promoting a succession of the treatment and well-being of the patients. Since
there are advances in the establishment of nanoparticle drug delivery systems, several systems
including combinatorial therapeutic regiments have been applied in both compounds to
enhance solubility, control the releasing sites and time, increase the compound bioavailability,
extend the circulation time, and decrease the adverse effect (362, 363). This concept in
combining with precision medicine knowledge to target specific cells has been shown
recently to be successful with APG and a-MG treatments in in vivo studies enhancing anti-
cancer activity (364, 365) and preventing amyloid-beta aggregation that leads to Alzheimer's
disease (366) by mixing nanocarrier molecules with specific counterpart molecules or ligands
of targeted receptors and the compounds. These approaches opened up opportunities and
solved the prolonged controversy of a compound which reported to contain interesting
bioactivities in vitro but had been limited in its application due to low water solubilities like

a-MG, low permeability, and high conversion and excretion rate.

Personalised or precision medicine has been coming of the age in the treatment of
several diseases, especially oncology. This medication technique is associated with
specialised diagnostics and analysis of omics data of a person's biological status in
determining disease subpopulation or subgroups in order to directly treat the main cause or
target of the disease (367). In 1998, this concept was turned into the first drug named
trastuzumab that was introduced for the treatment of HERZ2-overexpressing breast cancer
(368). As mentioned earlier, several cancers have gained resistance to pharmacological

treatment through known and unknown mechanisms that lead to more sophistication in
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medication of the recurrence cancer (369). However, the limitations of this healthcare
approach are patient accessibility due to the high cost and availability of specific drugs for the
treatment. Hence, herbal medicine alone or in cotreatment with conventional anticancer
agents could be an option to solve these limitations (370). As described above, APG and a-
MG express synergistic effects with anticancer agents through sensitizing the resistant
population of the cancer cells to be susceptible to the drug treatment. Recent advances in next
generation sequencing, bioinformatics tools, and cell culture technology allow this hypothesis
to happen by reducing the time and cost to spend on diagnostics for drug targets and
providing an experimental platform for testing the drug response efficiency of cotreatment
using patient-derived cancer organoids that are more closely related to the illness than cancer
cell lines (371). Nonetheless, this idea remains to be proved in clinical trials for effectiveness

and safety.

Altogether, the study of bioactivities from the extracts of bee products to purified
compounds studies had led us to this study in discovering antiproliferation effect of APG and
a-MG in breast and ovarian cancer cell lines. Then, further investigation of APG effect on
cellular signalling pathway provided an interesting concept of how APG reshaped the
phosphoprotein network in SKOV-3 at the early phase to achieve the anticancer scheme.
Many interesting compounds from natural products are still in discovery for their bioactivities
and could benefit human well-being. However, there is still a lot of experiments to be done
before these compounds could be used and with a help of recent technology the age of using
them in the treatment or co-treatment of cancers and other diseases could be happening not so

long in the future.



151

APPENDICES



152

Appendix A: Boxplots and PCA plots of various normalization approaches on reporter ion

intensity from the first replicate
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Boxplot of quantile normalisation reporter intensity
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normalisation, and variance stabilising normalisation.
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PCA Plot of Quantile normalisation ProteinGroups
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Appendix B: DAVID functional annotation analysis of the significances from whole data
analysis
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Appendix C: Figure C Dot plots of enriched term from significant phosphosites.
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Appendix E: Heatmap of interesting phosphosites from phosphoproteomics analysis. X-axis
indicated time while Y-axis indicated inhibition concentration used in the experiment. The
phosphorylation changes were indicated in spectrum from hypophosphorylation in blue to
hyperphosphorylation in red.
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Appendix F: Heatmaps of expression profiles of possible TF-targeted significant genes from
MCF7 dataset.

X-axis indicated treatments. The first four columns were control while the last four were
APG. Y-axis is genes. Colour indicated expression level where red was upregulated genes and

blue was downregulated genes.
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Appendix G: Heatmaps of expression profiles of possible TF-targeted significant genes from
MDA-MB-231 dataset.

X-axis indicated treatments. The first four columns were control while the last four were
APG. Y-axis is genes. Colour indicated expression level where red was upregulated genes and

blue was downregulated genes.
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