ตัวแบบความเสี่ยงอนุกรมเวลาค่าจำนวนเด็มที่มีารรอนตัวและการลงทุน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2562
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Applied Mathematics and

Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019
Copyright of Chulalongkorn University

INTEGER-VALUED TIME SERIES RISK MODEL WITH SURRENDER AND INVESTMENT

By
Field of Study
Thesis Advisor

Miss Nuntanut Foosarmpok
Applied Mathematics and Computational Science
Assistant Professor Jiraphan Suntornchost, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree
\qquad Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

นันทนัช ฟูสามป๊อก : ตัวแบบความเสี่ยงอนุกรมเวลาค่าจำนวนเต็มที่มีการถอนตัวและ การลงทุน. (INTEGER-VALUED TIME SERIES RISK MODEL WITH SURRENDER AND INVESTMENT) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จิราพรรณ สุนทรโชติ, 84 หน้า.

ในการศึกษานี้ เราได้สร้างแบบจำลองความเสี่ยงเวลาไม่ต่อเนื่องโดยใช้แบบจำลองอนุกรม เวลาค่าจำนวนเต็มโดยรวมแนวคิดของการถอนตัวและการลงทุน การถอนตัวที่ถูกพิจารณาใน การศึกษาครั้งนี้คือผู้ถือกรมธรรม์จะออกจากกรมธรรม์ก่อนวันครบกำหนดสัญญา เรายังให้ คุณสมบัติความน่าจะเป็นของแบบจำลอง นอกจากนี้เราได้สร้างการประมาณความน่าจะเป็น ของการล้มละลายของแบบจำลองความเสี่ยงที่สร้างขึ้น สุดท้ายนี้เราอภิปรายแนวโน้มของความ น่าจะเป็นของการล้มละลาย และมูลค่าความเสี่ยงของแบบจำลองโดยการจำลองตัวเลขตัวเลข

ภาควิชา คณิตศาสตร์และ ลายมือชื่อนิสิต . .วิทยากาารคอมพพิวเตอร์...... ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา ...คณิตศาสตตรประยกกต์ และวิทยาการคณนา \qquad
ปีการศึกษา 2562
\#\# 6071956323 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE KEYWORDS : RISK MODEL / RUIN PROBABILITY / INTEGER-VALUED TIME SERIES / SURRENDER / INVESTMENT / VALUE AT RISK

NUNTANUT FOOSARMPOK : INTEGER-VALUED TIME SERIES RISK MODEL WITH SURRENDER AND INVESTMENT. ADVISOR : ASST. PROF. JIRAPHAN SUNTORNCHOST, Ph.D., 84 pp.

In this study, we construct the discrete-time risk models based on integer-valued time series models by incorporating the concepts of surrender and investment. The surrender considered in this study is the situation that the policyholder decides to exit the policy before maturity date. In our study, we provide the probabilistic properties of the model. Moreover, we derive approximation of ruin probabilities of the constructed risk model. Finally, we discuss the trends of the ruin probability and the value at risk of the model by numerical simulations.

[^0]
ACKNOWLEDGEMENTS

First of all, I would like to acknowledge to my thesis advisor, Assistant Profressor Jiraphan Suntornchost, for excellent suggestion and support for all step of my work in master degree with her immense knowledge, patience and motivation.

Also, I would like to express my thankfulness to my thesis committee, Assistant Profressor Boonyarit Intiyot, Associate Profressor Khamron Mekchay and Assistant Profressor Dawud Thongtha, for insightful comment that made this thesis more complete.

Finally, I would like to thank my family and friends for their support throughout my study in Chulalongkorn University.

CONTENTS

Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
CHAPTER
1 Introduction 1
2 Preliminaries 4
2.1 Random variable and moments of random variable 4
2.2 Compound random variable 8
2.3 Distribution function 10
2.4 Binomial thinning operator and integer-valued time series 11
2.5 Risk model and ruin probability 16
3 Integer-valued Moving Average Risk Model subject to Investment and Surrender 19
3.1 The discrete-time risk model 19
3.2 Definition and properties of INMA(1) risk model 23
3.3 Adjustment coefficient 32
3.4 Numerical example 37
3.4.1 Numerical example for the ruin probability 38
3.4.1.1 Effects from premiums size, claim size and surrender value 39
3.4.1.2 Effects from the probabilities of claims and surrenders 43
3.4.2 Numerical example for the value at risk 46
3.4.2.1 Effects from claim size and surrender values 47
4 Integer-valued Autoregressive Risk Model with Investment and Surrender 50
4.1 The discrete-time risk model 50
CHAPTER Page
4.2 Definition and properties of INAR(1) risk model 51
4.3 Adjustment coefficient 61
4.4 Numerical example 68
4.4.1 Numerical example for the ruin probability 69
4.4.1.1 Effects from premiums size, claim size and surrender value 70
4.4.1.2 Effects from the probabilities of claims and surrenders 74
4.4.2 Numerical Example for the value at risk 77
4.4.2.1 Effects from claim size and surrender values 79
5 Conclusion and Future Work 81
REFERENCES 82
BIOGRAPHY 84

LIST OF TABLES

Table Page
3.1 Parameter $\beta_{X} \in[0.5,2]$ and their upper bound of ruin probability 40
3.2 Parameter $\beta_{Y} \in[0.5,2]$ and their upper bound of ruin probability 41
3.3 Parameter $\beta_{Z} \in[0.5,10]$ and their upper bound of ruin probability 42
3.4 Parameter $I \in[1,10]$ and their upper bound of ruin probability 42
3.5 Parameter $p \in(0,1)$ and their upper bound of ruin probability 44
3.6 Parameter $q \in(0,1)$ and their upper bound of ruin probability 45
3.7 Parameter $\beta_{Y} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$ 48
3.8 Parameter $\beta_{Z} \in[0.5,2]$ and $\mathrm{VaR}_{0.95}\left(S_{12}\right)$ 48
4.1 Parameter $\beta_{X} \in[0.5,2]$ and their upper bound of ruin probability 70
4.2 Parameter $\beta_{Y} \in[0.5,2]$ and their upper bound of ruin probability 71
4.3 Parameter $\beta_{Z} \in[0.5,2]$ and their upper bound of ruin probability 72
4.4 Parameter $I \in[1,10]$ and their upper bound of ruin probability 73
4.5 Parameter $p \in(0,0.9]$ and their upper bound of ruin probability 75
4.6 Parameter $q \in(0,0.9]$ and their upper bound of ruin probability 76
4.7 Parameter $\beta_{Y} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$ 79
4.8 Parameter $\beta_{Z} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$ 80

LIST OF FIGURES

Figure Page
3.1 Trend of the ruin probability when β_{X} increases 40
3.2 Trend of the ruin probability when β_{Y} increases 41
3.3 Trend of the ruin probability when β_{Z} increases 42
3.4 Trend of the ruin probability when I increases 43
3.5 Trend of the ruin probability when p increases 44
3.6 Trend of the ruin probability when q increases 45
4.1 Trend of the ruin probability when β_{X} increases for $\operatorname{INAR}(1)$ risk model 71
4.2 Trend of the ruin probability when β_{Y} increases for $\operatorname{INAR}(1)$ risk model 72
4.3 Trend of the ruin probability when β_{Z} increases for INAR(1) risk model 73
4.4 Trend of the ruin probability when I increases for INAR(1) risk model 74
4.5 Trend of the ruin probability when p increases for $\operatorname{INAR}(1)$ risk model 75
4.6 Trend of the ruin probability when q increases for $\operatorname{INAR}(1)$ risk model 76

CHAPTER I

INTRODUCTION

In actuarial science, the risk model or surplus process describes a measurement of the aggregate amount of premiums and claims corresponding to the insurance company's portfolio. The classical risk model perform as a constant premium rate over time and the aggregate claims process. In recent years, many models have been introduced in the two different ways: (1) the stochastic risk model, and (2) the discrete-time risk model.

The stochastic risk model usually assumes that the number of claims follows a counting process. For example, Huang and Yu (2013) applied a generalized double Poisson-Geometric into insurance risk model. For more precisely, many studies, such as Temnov (2014) and Bao (2006), extended the model by considering the stochastic premiums. Lebbe and Sendova (2009) studied risk models when both premium and claim aggregate processes follow compound Poisson processes. Yu and Huang (2015) introduced the concepts of surrender, where surrender is the situation that the policyholder will get some money from the insurance company if he decides to terminate before maturity date. They introduced surrender and investment into risk models where the processes of claim and surrender follow the thinning process of the premium process.

Beside the family of stochastic risk models, many studies focused on the discrete time risk models where the number of claims follows an integer-valued time series model. The concept of the integer-valued time series models was independently introduced in Al-Osh and Alzaid (1987), McKenzie (1988), and Joe (1997).

Later, the integer-valued time series models were applied in insurance risk models. For example, Cossette (2010) suggested the discrete-time risk model based on Poisson MA(1) and Poisson AR(1) for the number of claim process. Moreover, Hu, Zhang and Sun (2018), Shi and Wang (2014) and Zhang et al. (2011) also considered the discrete-time risk model with different settings.

In this thesis, we will apply the concepts of investment and surrender into the discrete time risk models. The number of premiums, the number of claims and the number of surrenders in the model follow (1) integer-valued moving average model (2) integer-valued autoregressive model. We then derive probabilistic properties of the model. In addition, we study the two risk measures of the model which are ruin probability and value at Risk. We also derive the adjustment coefficient to approximating ruin probability. Finally, we provide numerical examples to discuss the trend of ruin probability and value at Risk comparing with the parameters of premiums, claims and surrenders.

The organization of this thesis is as follows. Chapter 2 gives basic knowledge of probability, definition and properties of integer-valued time series and the concept of ruin probability.

In Chapter 3, we introduce a new risk model based on the first order integervalued moving average model with surrender and investment. In this model, the numbers of premiums, claims and surrenders follow the first order integer-valued moving average model. In our study, we give its probabilistic properties, derive the adjustment coefficient function to obtain the approximation of ruin probability of the model. Finally, we discuss the trend of ruin probability and value at risk comparing with various parameters, such as premium sizes, claim sizes and surrender values via numerical simulations.

In Chapter 4, we introduce a risk model based on the first order integervalued autoregressive model. We derive probabilistic properties, derive the adjustment coefficient function. Moreover, numerical studies are also provided to study the trend of ruin probability and value at risk comparing with parameters of the model. Finally, conclusion of this thesis is provided.

CHAPTER II

PRELIMINARIES

In this chapter, we review some basic knowledge of probability theory that will be used in this thesis. Moreover, we give the definition and properties of integer-valued time series and a review of the ruin probability.

2.1 Random variable and moments of random variable

In this section, we first give some definitions of random variable and some concept of its properties.

Definition 2.1.1. The sample space S is the set of all possible outcomes from a random experiment, and the set $\{s \in S \mid X(s) \in \mathbb{R}\}$ is an event in S.

Definition 2.1.2. If S is a sample space and X is a real-valued function defined over the elements of S, then X is called a random variable.

Definition 2.1.3. Let X be a random variable from the sample space S. The set $\{x \in \mathbb{R} \mid x=X(s), s \in S\}$ is the space of the random variable X, denoted by R_{X}.

Definition 2.1.4. A random variable X is said to be discrete if the space of X is countable.

Definition 2.1.5. Let R_{X} be the space of a discrete random variable X. The function $f: R_{X} \rightarrow[0,1]$ which is defined by

$$
f(x)=P(X=x)
$$

is called the probability mass function of X.

Definition 2.1.6. Let $f(\cdot)$ be the probability mass function of X. Then the cumulative distribution of X, denoted by $F_{X}(\cdot)$, is defined as

$$
F_{X}(x)=\sum_{t \leq x} f(t) \quad \text { for } x \in \mathbb{R}
$$

Definition 2.1.7. Let R_{X} be the space of the discrete random variable X and $f(\cdot)$ be the probability mass function of X. Then
(a) $f(x) \geq 0$ for all $x \in R_{X}$,
(b) $\sum_{x \in R_{X}} f(x)=1$.

Definition 2.1.8. Let X be a discrete random variable with space R_{X}, and probability mass function $f(\cdot)$. The expectation or mean of X, denoted by $E(X)$, is defined as

$$
E(X)=\sum_{x \in R_{X}} x f(x) .
$$

Definition 2.1.9. The $n^{\text {th }}$ moment of the discrete random variable X about the origin, denoted by $E\left(X^{n}\right)$, is defined as

$$
E\left(X^{n}\right)=\sum_{x \in R_{X}} x^{n} f(x) .
$$

Definition 2.1.10. Let X be a discrete random variable with space R_{X}. The moment generating function of X, denoted by $m_{X}(\cdot)$, is defined by

$$
m_{X}(t)=E\left(e^{t X}\right)=\sum_{x \in R_{X}} e^{t x} f(x),
$$

for $t \in \mathbb{R}$ such that $m_{X}(t)$ exists.

Definition 2.1.11. Let X be a discrete random variable with mean μ_{X}. The variance of X, denoted by $\operatorname{Var}(X)$, is defined as

$$
\operatorname{Var}(X)=E\left(\left[X-\mu_{X}\right]^{2}\right)=E\left(X^{2}\right)-\mu_{X}^{2} .
$$

Definition 2.1.12. Let X and Y be discrete random variables with means μ_{X} and μ_{Y}, respectively. The covariance of X and Y, denoted by $\operatorname{Cov}(X, Y)$, is defined as

$$
\operatorname{Cov}(X, Y)=E\left(\left[X-\mu_{X}\right]\left[Y-\mu_{Y}\right]\right)=E(X Y)-\mu_{X} \mu_{Y} .
$$

The correlation of X and Y, denoted by $\operatorname{Corr}(X, Y)$, is defined as

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

Definition 2.1.13. Let X be a discrete random variable with space R_{X}. The probability generating function of X, denoted by $G_{X}(\cdot)$, is defined as

$$
G_{X}(t)=E\left(t^{X}\right)=\sum_{x \in R_{X}} t^{x} f(x)
$$

for $t \in \mathbb{R}$ such that $G_{X}(t)$ exists.

Lemma 2.1.1. Let $G_{X}(\cdot)$ be the probability generating function of a random variable X, then the probabilistic properties of X are as follows:
(a) $E(X)=G_{X}^{\prime}(1)$,
(b) $E(X(X-1)(X-2) \cdots(X-k+1))=G_{X}^{(k)}(1)$, for $k \in \mathbb{N}$ and $G_{X}^{(k)}$ is k th derivative of function $G_{X}(\cdot)$.

Definition 2.1.14. Let X and Y be discrete random variables with the joint density $f(\cdot, \cdot)$ and $f_{Y}(\cdot)$ is the marginal probability mass of Y. Then the function is given by

$$
f_{X}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)},
$$

for each $x \in R_{X}$ is called the conditional distribution of X given $Y=y$.

Definition 2.1.15. Let X be discrete random variable and $f_{X}(x \mid y)$ be the value of the conditional probability distribution of X given $Y=y$. Then the conditional mean of X given $Y=y$ is defined as

$$
E(X \mid Y=y)=\sum_{x \in R_{X}} x f_{X}(x \mid y)
$$

Lemma 2.1.2. Let X and Y be discrete random variables. Then
(a) $E(X)=E(E(X \mid Y))$
(b) $\operatorname{Var}(X)=E(\operatorname{Var}(X \mid Y))+\operatorname{Var}(E(X \mid Y))$.

Definition 2.1.16. Let $X_{1}, X_{2}, \ldots, X_{n}$ be any n random variables with probability mass functions $f_{X_{1}}, \ldots, f_{X_{n}}$. They are identically distributed random variables if and only if

$$
f_{X_{1}}(x)=f_{X_{2}}(x)=\ldots=f_{X_{n}}(x) \text { ลลัย for } \quad x \in \mathbb{R} .
$$

Definition 2.1.17. The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent random variables if and only if, $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$

$$
f_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{n}}\left(x_{n}\right)
$$

Remark 2.1.1. The random variables are independent and identically distributed, denoted as i.i.d, if each random variable has the same probability distribution as the others and all are mutually independent.

2.2 Compound random variable

Next, we give the definition and properties of compound random variable.

Definition 2.2.1. Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables which are independent of a non-negative integer-valued random variable N. Then the random variable S defined as

$$
S=\sum_{i=1}^{N} X_{i}
$$

is called a compound random variable.

Lemma 2.2.1. The probability properties of the compound random variable S defined in Definition 2.2.1 are as follows
(a) $E(S)=E(N) E(X)$,
(b) $\operatorname{Var}(S)=E(N) \operatorname{Var}(X)+\operatorname{Var}(N) E(X)$,
(c) $\operatorname{Cov}(S, N)=\operatorname{Var}(N) E(X)$.

Proof. (a) Since $\left\{X_{1}, \ldots, X_{n}\right\}$ are i.i.d. random variables,

$$
\begin{align*}
E(S) & =E\left(\sum_{i=1}^{N} X_{i}\right) \\
& =E\left(E\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right) \\
& =E\left(\sum_{i=1}^{N}\left(E X_{i} \mid N\right)\right) \\
& =E(N E(X)) \tag{2.1}\\
& =E(N) E(X)
\end{align*}
$$

where we use the independence of X and N to obtain (2.1)
(b) From Lemma 2.1.2 (b) and the independent of X and N, we have

$$
\begin{aligned}
\operatorname{Var}(S) & =E\left(\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right)+\operatorname{Var}\left(E\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right) \\
& =E\left(\sum_{i=1}^{N} \operatorname{Var}\left(X_{i} \mid N\right)\right)+\operatorname{Var}\left(\sum_{i=1}^{N} E\left(X_{i} \mid N\right)\right) \\
& =E(N \operatorname{Var}(X))+\operatorname{Var}(N E(X)) \\
& =E(N) \operatorname{Var}(X)+\operatorname{Var}(N) E^{2}(X) .
\end{aligned}
$$

(c) From (a), we have

$$
\begin{aligned}
\operatorname{Cov}(S, N) & =E(S N)-E(S) E(N) \\
& =E(E(S N \mid N))-E(N) E(X) E(N) \\
& =E\left(E\left(N \sum_{i=1}^{N} X_{i} \mid N\right)\right)-E^{2}(N) E(X) \\
& =E\left(N \sum_{j=1}^{N} E\left(X_{i} \mid N\right)\right)-E^{2}(N) E(X) \\
& =E\left(N^{2} E(X)\right)-E^{2}(N) E(X) \\
& =\left(E\left(N^{2}\right)-E^{2}(N)\right) E(X) \\
& =\operatorname{Var}(N) E(X) .
\end{aligned}
$$

Lemma 2.2.2. Let $S_{1}=\sum_{j=1}^{N_{1}} X_{1, j}$ and $S_{2}=\sum_{j=1}^{N_{2}} X_{2, j}$ be compound random variables where $X_{1}=\left\{X_{1, j}\right\}_{j=1,2, \ldots}$ and $X_{2}=\left\{X_{2, j}\right\}_{j=1,2, \ldots}$ are sequences of i.i.d. random variables and are independent from N_{1} and N_{2}, respectively. Then we have

$$
\operatorname{Cov}\left(S_{1}, S_{2}\right)=\operatorname{Cov}\left(N_{1}, N_{2}\right) E\left(X_{1}\right) E\left(X_{2}\right)
$$

Proof. Since X_{1} and X_{2} are mutually independent. Note that

$$
\begin{aligned}
E\left(S_{1} S_{2}\right) & =E\left(\sum_{j=1}^{N_{1}} X_{1, j} \sum_{j=1}^{N_{2}} X_{2, j}\right) \\
& =E\left(E\left(\sum_{j=1}^{N_{1}} X_{1, j} \sum_{j=1}^{N_{2}} X_{2, j} \mid N_{1}, N_{2}\right)\right) \\
& =E\left(N_{1} E\left(X_{1}\right) N_{2} E\left(X_{2}\right)\right) \\
& =E\left(N_{1} N_{2}\right) E\left(X_{1}\right) E\left(X_{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Cov}\left(S_{1}, S_{2}\right) & =E\left(S_{1} S_{2}\right)-E\left(S_{1}\right) E\left(S_{2}\right) \\
& =E\left(N_{1} N_{2}\right) E\left(X_{1}\right) E\left(X_{2}\right)-E\left(N_{1}\right) E\left(X_{1}\right) E\left(N_{2}\right) E\left(X_{2}\right) \\
& =\left(E\left(N_{1} N_{2}\right)-E\left(N_{1}\right) E\left(N_{2}\right)\right) E\left(X_{1}\right) E\left(X_{2}\right) \\
& =\operatorname{Cov}\left(N_{1}, N_{2}\right) E\left(X_{1}\right) E\left(X_{2}\right) .
\end{aligned}
$$

2.3 Distribution function

Definition 2.3.1. A random variable X is said to be the Bernoulli random variable with parameter p, denoted by $X \sim \operatorname{Ber}(p)$. If its probability mass function of X is in the form of

$$
f(x)=p^{x}(1-p)^{(1-x)} \text { for } x=0,1 .
$$

Theorem 2.3.1. If X is a Bernoulli random variable with parameter p. Then its properties are given as follows:
(a) $G_{X}(t)=(1-p)+p e^{t}$ for $t \in \mathbb{R}$,
(b) $E(X)=p$,
(c) $\operatorname{Var}(X)=p(1-p)$.

Definition 2.3.2. A random variable X is said to be the Poisson random variable with parameter λ, denoted by $X \sim \operatorname{Poi}(\lambda)$. If its probability mass function of X is in the form of

$$
f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \text { for } x=1,2, \ldots \text { and } \lambda>0
$$

Theorem 2.3.2. If X is a Poisson random variable with parameter λ. Then its properties are given as follows:
(a) $G_{X}(t)=\lambda\left(e^{t}-1\right)$ for $t \in \mathbb{R}$,
(b) $E(X)=\lambda$,
(c) $\operatorname{Var}(X)=\lambda$.

2.4 Binomial thinning operator and integer-valued time series

In this section, we provide the definitions and properties of the binomial thinning operator and integer-valued time series.

Definition 2.4.1. Let X be a non-negative integer-valued random variable and $\alpha \in[0,1]$. The binomial thinning operator, denoted by ' $\alpha 0$ ', is defined by

$$
\alpha \circ X=\sum_{i=1}^{X} \delta_{i}
$$

where $\delta_{1}, \delta_{2}, \ldots$ is a sequence of i.i.d. random variables having the Bernoulli distribution with parameter α and is independent of X.

Lemma 2.4.1. Let X and Y be non-negative integer-valued random variables. Then the following properties hold:
(a) $E(\alpha \circ X)=\alpha E(X)$,
(b) $E((\alpha \circ X) Y)=\alpha E(X Y)$,
(c) $G_{\alpha \circ X}(t)=G_{X}(1-\alpha+\alpha t)$,
(d) $\operatorname{Var}(\alpha \circ X)=\alpha(1-\alpha) E(X)+\alpha^{2} \operatorname{Var}(X)$,
(e) $\operatorname{Cov}(\alpha \circ X, Y)=\alpha \operatorname{Cov}(X, Y)$,
(f) $\operatorname{Cov}(\alpha \circ X, \beta \circ Y)=\alpha \beta \operatorname{Cov}(X, Y)$.

Proof. (a) Note that $\alpha \circ X=\sum_{i=1}^{X} \delta_{i}$ where $\left\{\delta_{i}\right\}_{i=1,2, \ldots}$ is a sequence of i.i.d. Bernoulli random variables with means α and are independent of X and Y.

From Lemma 2.2.1 (a),

$$
\begin{aligned}
E(\alpha \circ X) & =E\left(\sum_{i=1}^{X} \delta_{i}\right) \\
& =E\left(E\left(\sum_{i=1}^{X} \delta_{i} \mid X\right)\right) \\
& =E\left(\sum_{i=1}^{X} E\left(\delta_{i} \mid X\right)\right) \\
& =E\left(X E\left(\delta_{i}\right)\right) \\
& =E(X) E\left(\delta_{i}\right) \\
\underbrace{+} & =\alpha E(X) .
\end{aligned}
$$

(b) Consider

$$
\begin{aligned}
E((\alpha \circ X) Y) & =E\left(Y \sum_{j=1}^{X} \delta_{j}\right) \\
& =E\left(E\left(Y \sum_{j=1}^{X} \delta_{j} \mid X\right)\right) \\
& =E\left(\sum_{j=1}^{X} E\left(Y \delta_{j} \mid X\right)\right) \\
& =E(X Y) E\left(\delta_{j}\right) \\
& =\alpha E(X Y) .
\end{aligned}
$$

(c) From Definition 2.4.1,

$$
\begin{aligned}
G_{\alpha \circ X}(t) & =E\left(t^{\alpha \circ X}\right) \\
& =E\left(t^{\sum_{i=1}^{X} \delta_{i}}\right) \\
& =E\left(E\left(t^{\sum_{i=1}^{X} \delta_{i}} \mid X\right)\right) \\
& =E\left(\prod_{i=1}^{X} E\left(t^{\delta_{i}} \mid X\right)\right) \\
& =E\left(\left(E\left(t^{\delta_{i}}\right)\right)^{X}\right) \\
& =G_{X}(1-\alpha+\alpha t) .
\end{aligned}
$$

(d) From Lemma 2.2.1 (b), we have

$$
\begin{aligned}
\operatorname{Var}(\alpha \circ X) & =\operatorname{Var}\left(\sum_{i=1}^{X} \delta_{i}\right) \\
& =E(X) \operatorname{Var}(\delta)+\operatorname{Var}(X) E^{2}(\delta) \\
& =\alpha(1-\alpha) E(X)+\alpha^{2} \operatorname{Var}(X)
\end{aligned}
$$

(e) From (a) and (b), we have

$$
\begin{aligned}
\operatorname{Cov}(\alpha \circ X, Y) & =\operatorname{Cov}\left(\sum_{i=1}^{X} \delta_{i}, Y\right) \text { RSITY } \\
& =E\left(Y \sum_{i=1}^{X} \delta_{i}\right)-E\left(\sum_{i=1}^{X} \delta_{i}\right) E(Y) \\
& =\alpha E(X Y)-E(X) E(\delta) E(Y) \\
& =\alpha E(X Y)-\alpha E(X) E(Y) \\
& =\alpha(E(X Y)-E(X) E(Y)) \\
& =\alpha \operatorname{Cov}(X, Y)
\end{aligned}
$$

(f) Note that $\beta \circ Y=\sum_{i=1}^{Y} \gamma_{i}$ where $\left\{\gamma_{i}\right\}_{i=1,2, \ldots}$ is a sequence of i.i.d. Bernoulli random variables with mean β and are independent of Y.

Since $\left\{\delta_{i}\right\}_{i=1,2, \ldots}$ and $\left\{\gamma_{i}\right\}_{i=1,2, \ldots}$ are two mutually independent sequences of Bernoulli random variables with parameters α and β, respectively. Then

$$
\begin{aligned}
\operatorname{Cov}(\alpha \circ X, \beta \circ Y) & =\operatorname{Cov}\left(\sum_{i=1}^{X} \delta_{i}, \sum_{i=1}^{Y} \gamma_{i}\right) \\
& =E\left(\sum_{i=1}^{X} \delta_{i} \sum_{i=1}^{Y} \gamma_{i}\right)-E\left(\sum_{i=1}^{X} \delta_{i}\right) E\left(\sum_{i=1}^{Y} \gamma_{i}\right) \\
& =E\left(E\left(\sum_{i=1}^{X} \delta_{i} \sum_{i=1}^{Y} \gamma_{i} X, Y\right)\right)-E(X) E(\delta) E(Y) E(\gamma) \\
& =E(X E(\delta) Y E(\gamma))-E(X) E(Y) E(\delta) E(\gamma) \\
& =E(X Y) E(\delta) E(\gamma)-E(X) E(Y) E(\delta) E(\gamma) \\
& =(E(X Y)-E(X) E(Y)) E(\delta) E(\gamma) \\
& =\alpha \beta \operatorname{Cov}(X, Y) .
\end{aligned}
$$

Next, we will describe the integer-valued time series that will be used in this thesis. The two integer-valued time series considered in this thesis are the first order integer-valued moving average (INMA(1)) model and the first order integer-valued autoregressive (INAR(1)).

Integer-valued time series, such as integer-valued moving average (INMA) and integer-valued autoregressive (INAR), are independently introduced by AlOsh \& Alzaid(1987), Mckenzie(1988) and Joe(1997).

Definition 2.4.2. Time series $\left\{X_{t}\right\}_{t=1,2, \ldots}$ is a series of data points indexed in $\{t=1,2, \ldots\}$. If X_{t} has integer valued, the time series is called the integer-valued time series.

Definition 2.4.3. A process $\left\{X_{t}\right\}_{t=1,2, \ldots, n}$ is said to be n th-order weakly stationary if all its joint moments up to order n exist and are time variant.

Definition 2.4.4. The first order integer-valued moving average (INMA(1)) model for $\left\{X_{t}\right\}_{t>0}$ can be defined as

$$
X_{t}=\alpha \circ \varepsilon_{t-1}+\varepsilon_{t}
$$

where ' o ' is binomial thinning operator. The sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots$ is a sequence of independent and identically distributed (i.i.d.) random variables.

Definition 2.4.5. The process $\left\{X_{t}\right\}_{t=1,2, \ldots}$ is said to be the first order integervalued autoregressive (INAR(1)) model if it defined as

$$
X_{t}=\alpha \circ X_{t-1}+\varepsilon_{t}
$$

where ' o ' is binomial thinning operator defined in Definition 2.4.1 and $\varepsilon_{1}, \varepsilon_{2}, \ldots$ is a sequence of i.i.d. random variables.

2.5 Risk model and ruin probability

In this section, we will provide the basic of discrete time risk model and review the ruin probability.

Let $\left\{U_{n} ; n \in \mathbb{N}\right\}$ be the surplus process of insurance company in period n. The discrete time risk model can be defined as

$$
U_{n}=u+\pi n-S_{n}=u+\pi n-\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} X_{i, j}
$$

where u is the initial capital and π is the constant premium rate. The process $\left\{S_{n} ; n \in \mathbb{N}\right\}$ is the aggregate claims amount in period n and can be written as
$S_{n}=\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} X_{i, j}$ where $X_{i, j}$ is the j th claim size in period i and N_{i} is the number of claim in period i.

The ruin probability is the one of risk measure for insurance company. To find this measure, this section provides a brief discussion of ruin time, the ruin probability and the adjustment coefficient function.

The first time that the surplus process $\left\{U_{n} ; n \in \mathbb{N}\right\}$ changes to be negative which called that the ruin time, denoted by T. It can be written as

The probability that ruin time exists, we call that the ruin probability, denoted by $\Psi(u)$ and can be written as

$$
\Psi(u)=\operatorname{Pr}\left(T<\infty \mid U_{0}=u\right)
$$

In general, it is difficult to directly obtain the ruin probability. However, there is approximation of ruin probability by Lundberg, proposed in [4], as follows

$$
\begin{equation*}
\Psi(u) \simeq e^{-R u} \tag{2.2}
\end{equation*}
$$

The main result based on the asymptotic Lundberg type result

$$
\lim _{u \rightarrow \infty} \frac{-\ln (\Psi(u))}{u}=R
$$

where R is Lundberg adjustment coefficient or adjustment coefficient.

The adjustment coefficient R, introduced by Cossette et al.(2010), is the unique positive solution to equation $g(r)=0$. The function $g(r)$ is called the adjustment coefficient function and is defined as

$$
g(r)=\lim _{n \rightarrow \infty} \frac{1}{n} g_{n}(r),
$$

where $g_{n}(r)$ is the cumulative generating function of aggregate loss-profit process S_{n} defined by

CHAPTER III

INTEGER-VALUED MOVING AVERAGE RISK MODEL SUBJECT TO INVESTMENT AND SURRENDER

In this chapter, we construct the risk model by incorporating investment and surrender based on the first order integer-valued moving average (INMA(1)) process. Firstly, Section 3.1 introduces the discrete-time risk model and notations used in this chapter. Section 3.2 gives the definition and properties of the INMA(1) risk model. In Section 3.3, we derive the adjustment coefficient function and obtain the adjustment coefficient to calculate ruin probability. Finally, Section 3.4 shows numerical examples of ruin probability and value at risk considering the trend of ruin probability in terms of parameters in the model.

3.1 The discrete-time risk model

Let $\left\{U_{n} ; n \in \mathbb{N}\right\}$ be the surplus process of insurance company with incorporating investment and surrender at time n. For initial capital u, the discrete-time risk model can be written as

$$
\begin{equation*}
U_{n}=u+I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}, \tag{3.1}
\end{equation*}
$$

where I is the investment capital for $I<u, d$ represents the investment income per unit of time. The sequence $\left\{A_{i} ; i \in \mathbb{N}\right\}$ is the sequence of aggregates of premium
amounts in period i defined as

$$
\begin{equation*}
A_{i}=\sum_{k=1}^{N_{i}} X_{i, k} \tag{3.2}
\end{equation*}
$$

where $\left\{X_{i, k} ; k \in \mathbb{N}\right\}$ is the sequence of premium sizes in period i assuming to be i.i.d. random variables, and N_{i} is the number of premiums in period i.

The sequence $\left\{B_{i} ; i \in \mathbb{N}\right\}$ is the sequence of total of claim sizes in period i and is defined as

$$
\begin{equation*}
B_{i}=\sum_{k=1}^{N_{i}(p)} Y_{i, k} \tag{3.3}
\end{equation*}
$$

where the sequence of i.i.d. random variables $\left\{Y_{i, k} ; k \in \mathbb{N}\right\}$ denotes claim sizes in period i, and $N_{i}(p)$ denotes the number of claims in period i. And we say that $N_{i}(p)$ is the p-thinning operator of N_{i} because the thinning operator of $N_{i}(p)$ is αp where $0<p<1$ which is smaller than the thinning operator α of N_{i}.

The sequence $\left\{C_{i} ; i \in \mathbb{N}\right\}$ is the sequence of aggregate of surrender values in period i and is written as

$$
\begin{equation*}
C_{i}=\sum_{k=1}^{N_{i}(q)} Z_{i, k} \tag{3.4}
\end{equation*}
$$

where the sequence of i.i.d. random variables $\left\{Z_{i, k} ; k \in \mathbb{N}\right\}$ represents surrender values in period i, and $N_{i}(q)$ denotes the number of surrenders in period i and is the q-thinning operator of N_{i} for $0<q<1$ such that $0<p+q<1$.

From (3.1), we will write the model in the form of

$$
U_{n}=u+S_{n}
$$

where S_{n} is the loss-profit process defined as

$$
\begin{equation*}
S_{n}=I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i} . \tag{3.5}
\end{equation*}
$$

Next, we will give the expectations of aggregate of premium sizes, aggregate of claim sizes and aggregate of surrender values as follows.

Proposition 3.1.1. The aggregate of premium amounts $\left\{A_{i} ; i \in \mathbb{N}\right\}$, defined in (3.2), is the compound random variable having the expectation as follows.

$$
E A_{i}=E N_{i} E X
$$

Proof. Assume that the sequence of premium sizes $\left\{X_{i, k} ; k \in \mathbb{N}\right\}$ is a sequence of i.i.d. random variables and is independent of the process $\left\{N_{i} ; i \in \mathbb{N}\right\}$, we have

$$
\begin{aligned}
E A_{i} & =E\left[\sum_{k=1}^{N_{i}} X_{i, k}\right] \\
& =E\left[E\left[\sum_{k=1}^{N_{i}} X_{i, k} \mid N_{i}\right]\right] \\
& =E\left[\sum_{k=1}^{N_{i}} E\left[X_{i, k} \mid N_{i}\right]\right] \\
& =E\left[N_{i} E X\right] \\
& =E N_{i} E X .
\end{aligned}
$$

Similar to the Proposition 3.1.1, we can derive the formulas of the expectations of aggregate of claim sizes and aggregate of surrender values as follows.

Proposition 3.1.2. The aggregate of claim sizes $\left\{B_{i} ; i \in \mathbb{N}\right\}$ defined in (3.3) is the compound random variable having the expectation

$$
E B_{i}=E N_{i}(q) E Y .
$$

Proposition 3.1.3. The aggregate of surrender valued $\left\{C_{i} ; i \in \mathbb{N}\right\}$ defined in (3.4) is the compound random variable having the expectation

$$
E C_{i}=E N_{i}(q) E Z .
$$

In order to perform a clear profit of insurance company, it is common to assume that the net profit condition that is the expectation of the loss-profit process S_{n} is greater than 0 , written as $E\left[S_{n}\right]>0$. In the following proposition, we will introduce the factor that satisfies the condition. The factor is called the positive relative safety loading.

Proposition 3.1.4. Under the net profit condition, the positive relative safety loading, denoted by θ, can be defined as

$$
\theta=\frac{I d+E N_{i} E X}{E N_{i}(p) E Y+E N_{i}(q) E Z}-1>0
$$

where

- the processes $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ are stationary processes,
- $E X \neq 0$ and $E Y \neq 0$.

Proof. Under the net profit condition, we have

$$
\begin{aligned}
0 & <E\left[S_{n}\right] \\
& =E\left[I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}\right] \\
& =I d n+E\left[\sum_{i=1}^{n} A_{i}\right]-E\left[\sum_{i=1}^{n} B_{i}\right]-E\left[\sum_{i=1}^{n} C_{i}\right] \\
& =I d n+\sum_{i=1}^{n} E\left[A_{i}\right]-\sum_{i=1}^{n} E\left[B_{i}\right]-\sum_{i=1}^{n} E\left[C_{i}\right] \\
& =I d n+\sum_{i=1}^{n} E N_{i} E X-\sum_{i=1}^{n} E N_{i}(p) E Y-\sum_{i=1}^{n} E N_{i}(q) E Z,
\end{aligned}
$$

where we use Proposition 3.1.1-3.1.3 to obtain the last inequality.
Since $N_{i}, N_{i}(p)$ and $N_{i}(q)$ are stationary processes for $i \in \mathbb{N}$, then we get,

$$
0<I d n+n E N_{i} E X-n E N_{i}(p) E Y-n E N_{i}(q) E Z .
$$

For $E X \neq 0$ and $E Y \neq 0$, we have

$$
\frac{I d+E N_{i} E X}{E N_{i}(p) E Y+E N_{i}(q) E Z}-1>0
$$

3.2 Definition and properties of INMA(1) risk model

In this section, we give definition and properties for the risk model based on the INMA(1) process.

In the INMA(1) risk model considered in this chapter, we assume that each of the processes $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ follows an INMA(1) process described as follows.

The process of the number of premiums $\left\{N_{i} ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}=\alpha \circ \varepsilon_{i-1}+\varepsilon_{i}, \tag{3.6}
\end{equation*}
$$

where $\alpha \in[0,1]$, where $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is the sequence of i.i.d. random variables following the Possion distribution with mean λ and $\alpha \circ \varepsilon_{i-1}$ is the binomial thinning operator defined as

$$
\alpha \circ \varepsilon_{i-1}=\sum_{j=1}^{\varepsilon_{i-1}} d_{i-1, j},
$$

where $\left\{d_{i, j}\right\}_{j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter α for all i and is independent of ε_{i}.

The process of the number of claims $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}(p)=(\alpha p) \circ \gamma_{i-1}+\gamma_{i}, \tag{3.7}
\end{equation*}
$$

where $\left\{\gamma_{i}\right\}_{i=1,2, \ldots}$ is the sequence of i.i.d. random variables following the Possion distribution with mean λ and $(\alpha p) \circ \gamma_{i-1}$ is the binomial thinning operator defined as

$$
(\alpha p) \circ \gamma_{i-1}=\sum_{j=1}^{\gamma_{i-1}} e_{i-1, j},
$$

where $\left\{e_{i, j}\right\}_{j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter αp for all i and is independent of γ_{i}.

The process of the number of surrenders $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}(q)=(\alpha q) \circ \mu_{i-1}+\mu_{i}, \tag{3.8}
\end{equation*}
$$

where $\left\{\mu_{i}\right\}_{i=1,2, \ldots}$ is the sequence of i.i.d. random variables following the Possion distribution with mean λ and $(\alpha q) \circ \mu_{i-1}$ is the binomial thinning operator defined as

$$
(\alpha q) \circ \mu_{i-1}=\sum_{j=1}^{\mu_{i-1}} f_{i-1, j},
$$

where $\left\{f_{i, j}\right\}_{j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter αq for all i and is independent of μ_{i}.

Next, we will derive the properties of the number of premiums $\left(N_{i}\right)$, the number of claims $\left(N_{i}(p)\right)$ and the number of surrender $\left(N_{i}(q)\right)$.

Proposition 3.2.1. Let $\left\{N_{i} ; i \in \mathbb{N}\right\}$ be defined in (3.6). Then $\left\{N_{i} ; i \in \mathbb{N}\right\}$ has the following properties, for $i \in \mathbb{N}$
(1) $G_{N_{i}}(z)=e^{\lambda(z-1)(\alpha+1)}$ for $z \in \mathbb{R}$,
(2) N_{i} is stationary process,
(3) $E\left(N_{i}\right)=(1+\alpha) \lambda$,
(4) $\operatorname{Var}\left(N_{i}\right)=(1+\alpha) \lambda$,
(5) $\operatorname{Cov}\left(N_{i}, N_{i-k}\right)= \begin{cases}\alpha \lambda, & \text { if } k=1 \\ 0, & \text { if } k>1,\end{cases}$
(6) $\operatorname{Corr}\left(N_{i}, N_{i-k}\right)= \begin{cases}\frac{\alpha}{1+\alpha}, & \text { if } k=1 \\ 0, & \text { if } k>1 .\end{cases}$

Proof. To prove (1), we will consider the probability generating function of $\left\{N_{i} ; i \in \mathbb{N}\right\}$. From Lemma 2.4.1 (c), we note that, for $z \in \mathbb{R}$

$$
\begin{align*}
G_{N_{i}}(z) & =E\left[z^{N_{i}}\right] \\
& =E\left[z^{\alpha \circ \varepsilon_{i-1}+\varepsilon_{i}}\right] \\
& =E\left[z^{\alpha \circ \varepsilon_{i-1}}\right] E\left[z^{\varepsilon_{i}}\right] \\
& =E\left[((1-\alpha)+\alpha z)^{\varepsilon_{i-1}}\right] E\left[z^{\varepsilon_{i}}\right] \\
& =e^{\lambda((1-\alpha)+\alpha z-1)} e^{\lambda(z-1)} \\
& =e^{\lambda(z-1)(\alpha+1)}, \tag{3.9}
\end{align*}
$$

where we use the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is the sequence of Poisson i.i.d. random variables with mean λ.

To prove (2), from (3.9), we can see that $G_{N_{i}}(z)$ does not depended on i. Therefore, $G_{N_{1}}(z)=\ldots=G_{N_{n}}(z)$. Hence, $\left\{N_{i} ; i \in \mathbb{N}\right\}$ is a stationary process.

To prove (3), we note from (3.6) that

$$
\begin{aligned}
E\left(N_{i}\right) & =E\left(\alpha \circ \hat{\varepsilon}_{i-1}+\varepsilon_{i}\right) \\
& =E\left(\alpha \circ \varepsilon_{i-1}\right)+E\left(\varepsilon_{i}\right) \\
& =\alpha E\left(\varepsilon_{i-1}\right)+\lambda \\
& =\alpha \lambda+\lambda \\
& =(1+\alpha) \lambda .
\end{aligned}
$$

For (4), from (3.6)

$$
\begin{align*}
\operatorname{Var}\left(N_{i}\right) & =\operatorname{Var}\left(\alpha \circ \varepsilon_{i-1}+\varepsilon_{i}\right) \\
& =\operatorname{Var}\left(\alpha \circ \varepsilon_{i-1}\right)+\operatorname{Var}\left(\varepsilon_{i}\right) \\
& =\alpha(1-\alpha) E\left(\varepsilon_{i-1}\right)+\alpha^{2} \operatorname{Var}\left(\varepsilon_{i-1}\right)+\operatorname{Var}\left(\varepsilon_{i}\right) \tag{3.10}\\
& =\alpha(1-\alpha) \lambda+\alpha^{2} \lambda+\lambda \\
& =\left(\alpha(1-\alpha)+\alpha^{2}+1\right) \lambda \\
& =(1+\alpha) \lambda, \tag{3.11}
\end{align*}
$$

where we use Lemma 2.4.1 (d) to obtain (3.10) and use the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is a sequence of Poisson i.i.d. random variables with mean λ to obtain (3.11), respectively.

To prove (5), we will consider into two cases which are $k=1$ and $k>1$.
For $k=1$, we have

$$
\begin{align*}
\operatorname{Cov}\left(N_{i}, N_{i-1}\right)= & \operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}+\varepsilon_{i}, \alpha \circ \varepsilon_{i-2}+\varepsilon_{i-1}\right) \\
& =\operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}, \alpha \circ \varepsilon_{i-2}\right)+\operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}, \varepsilon_{i-1}\right) \\
& +\operatorname{Cov}\left(\varepsilon_{i}, \alpha \circ \varepsilon_{i-2}\right)+\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{i-1}\right) \\
= & \alpha \operatorname{Cov}\left(\varepsilon_{i-1}, \varepsilon_{i-1}\right) \tag{3.12}\\
= & \alpha \operatorname{Var}\left(\varepsilon_{i-1}\right) \\
= & \alpha \lambda, \tag{3.13}
\end{align*}
$$

where we use Lemma 2.4.1 (e) to obtain (3.12) and the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is a sequence of independent random variables to obtain (3.13).

For $k>1$. Since $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is the sequence of independent random variables, we have

$$
\begin{aligned}
\operatorname{Cov}\left(N_{i}, N_{i-k}\right)= & \operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}+\varepsilon_{i}, \alpha \circ \varepsilon_{i-k-1}+\varepsilon_{i-k}\right) \\
= & \operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}, \alpha \circ \varepsilon_{i-k-1}\right)+\operatorname{Cov}\left(\alpha \circ \varepsilon_{i-1}, \varepsilon_{i-k}\right) \\
& +\operatorname{Cov}\left(\varepsilon_{i}, \alpha \circ \varepsilon_{i-k-1}\right)+\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{i-k}\right) \\
= & 0 .
\end{aligned}
$$

To prove (6), from Proposition 3.2.1 (4) and (5), we have

$$
\begin{aligned}
\operatorname{Corr}\left(N_{i}, N_{i-k}\right) & =\frac{\operatorname{Cov}\left(N_{i}, N_{i-k}\right)}{\sqrt{\operatorname{Var}\left(N_{i}\right)} \sqrt{\operatorname{Var}\left(N_{i-k}\right)}} \\
& = \begin{cases}\frac{\alpha \lambda}{(1+\alpha) \lambda}, & \text { if } k=1 \\
0, & \text { if } k>1,\end{cases} \\
& = \begin{cases}\frac{\alpha}{1+\alpha}, & \text { if } k=1 \\
0, & \text { if } k>1 .\end{cases}
\end{aligned}
$$

จุฬาลงกรณ์มหาวิทยาลัย

Similar to Proposition 3.2.1, we can obtain properties of the processes $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ presented in Proposition 3.2.2 and Proposition 3.2.3, respectively.

Proposition 3.2.2. The number of claim process $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$, defined in (3.7), has properties as follows.
(1) $G_{N_{i}(p)}(z)=e^{\lambda(z-1)(\alpha p+1)}$ for $z \in \mathbb{R}$,
(2) $N_{i}(p)$ is stationary process,
(3) $E\left(N_{i}(p)\right)=(1+\alpha p) \lambda$,
(4) $\operatorname{Var}\left(N_{i}(p)\right)=(1+\alpha p) \lambda$,
(5) $\operatorname{Cov}\left(N_{i}(p), N_{i-k}(p)\right)= \begin{cases}\alpha p \lambda, & \text { if } k=1 \\ 0, & \text { if } k>1,\end{cases}$
(6) $\operatorname{Corr}\left(N_{i}(p), N_{i-k}(p)\right)= \begin{cases}\frac{\alpha p}{1+\alpha p}, & \text { if } k=1 \\ 0, & \text { if } k>1 .\end{cases}$

Proposition 3.2.3. The number of surrenders process $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$, defined in (3.8), has properties as follows.
(1) $G_{N_{i}(q)}(z)=e^{\lambda(z-1)(\alpha q+1)}$ for $z \in \mathbb{R}$,
(2) $N_{i}(q)$ is stationary process
(3) $E\left(N_{i}(q)\right)=(1+\alpha q) \lambda$,
(4) $\operatorname{Var}\left(N_{i}(q)\right)=(1+\alpha q) \lambda$,
(5) $\operatorname{Cov}\left(N_{i}(q), N_{i-k}(q)\right)= \begin{cases}\alpha q \lambda, & \text { if } k=1 \\ 0, & \text { if } k>1, \text {, } k \text { ลRSITY }\end{cases}$
(6) $\operatorname{Corr}\left(N_{i}(q), N_{i-k}(q)\right)= \begin{cases}\frac{\alpha q}{1+\alpha q}, & \text { if } k=1 \\ 0, & \text { if } k>1 .\end{cases}$

The following theorem shows the joint generating function of INMA(1) process.

Theorem 3.2.1. Let INMA(1) process $\left\{N_{i} ; i \in \mathbb{N}\right\}$ be defined in (3.6). The joint generating function of $\left\{N_{i} ; i=1,2, \ldots, n\right\}$ can be written as follows. For $n \in \mathbb{N}$,

$$
\begin{aligned}
G_{N_{1}, \ldots, N_{n}}\left(t_{1}, \ldots, t_{n}\right)= & e^{\lambda \alpha\left(t_{1}-1\right)} e^{\lambda\left[(1-\alpha) t_{1}+\alpha t_{1} t_{2}-1\right]} e^{\lambda\left[(1-\alpha) t_{2}+\alpha t_{2} t_{3}-1\right]} \cdots e^{\lambda\left[(1-\alpha) t_{n-1}+\alpha t_{n-1} t_{n}-1\right]} \\
& \times e^{\lambda\left(t_{n}-1\right)}
\end{aligned}
$$

where $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$.

Proof. Consider the joint generating function of $\left\{N_{i} ; i=1,2, \ldots, n\right\}$ as follows.

$$
\begin{align*}
G_{N_{1}, \ldots, N_{n}}\left(t_{1}, \ldots, t_{n}\right) & =E\left[t_{1}^{N_{1}} \cdots t_{n}^{N_{n}}\right] \\
& \left.=E\left[t_{1}^{\sum_{j=1}^{\varepsilon_{0}} d_{0 j}}\right] \varepsilon_{1} t_{2}^{\sum_{j=1}^{\varepsilon_{1}} d_{1 j}+\varepsilon_{2}} \cdots t_{n}^{\sum_{j=1}^{\varepsilon_{n-1}} d_{n-1, j}+\varepsilon_{n}}\right] \\
& =E\left[t_{1}^{\sum_{j=}^{\varepsilon_{0}} d_{0 j}} t_{1}^{\varepsilon_{1}} t_{2}^{\sum_{j=1}^{\varepsilon_{1}} d_{1 j}} t_{2}^{\varepsilon_{2}} \cdots t_{n}^{\sum_{j=1}^{\varepsilon_{n-1}} d_{n-1, j}} t_{n}^{\varepsilon_{n}}\right] \\
& =E\left[t_{1}^{\sum_{j=1}^{\varepsilon_{0}} d_{0 j}}\right] E\left[t_{1}^{\varepsilon_{1}} t_{2}^{\sum_{j=1}^{\varepsilon_{1}} d_{1 j}}\right] \cdots E\left[t_{n-1}^{\varepsilon_{n-1}} t_{n}^{\sum_{j=1}^{\varepsilon_{n-1}} d_{n-1, j}}\right] E\left[t_{n}^{\varepsilon_{n}}\right] \tag{3.14}
\end{align*}
$$

where we use the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ are independent to obtain the last equation. For the first term of (3.14), we have

$$
\begin{align*}
E\left[t_{1}^{\left.\sum_{j=1}^{\varepsilon_{0} d_{1 j}}\right]}\right. & =G_{\varepsilon_{0}}\left(1-\alpha+\alpha t_{1}\right) \\
& =e^{\lambda\left(1-\alpha+\alpha t_{1}-1\right)} \\
& =e^{\lambda \alpha\left(t_{1}-1\right)} \tag{3.15}
\end{align*}
$$

For the last term, from (3.14),

$$
\begin{equation*}
E\left[t_{n}^{\varepsilon_{n}}\right]=e^{\lambda\left(t_{n}-1\right)} \tag{3.16}
\end{equation*}
$$

For the other terms in (3.14), we note that, for $k=1,2, \ldots, n-1$,

$$
\begin{align*}
E\left[t_{k-1}^{\varepsilon_{k-1}} t_{k}^{\sum_{j=1}^{\varepsilon_{k-1}} d_{k-1, j}}\right] & =E\left[E\left[t_{k-1}^{\varepsilon_{k-1}} t_{k}^{\sum_{j=1}^{\varepsilon_{k-1}} d_{k-1, j}} \mid \varepsilon_{k-1}\right]\right] \\
& =E\left[t_{k-1}^{\varepsilon_{k-1}} E\left[t_{k}^{\sum_{j=1}^{\varepsilon_{k-1}} d_{k j}} \mid \varepsilon_{k-1}\right]\right] \\
& =E\left[t_{k-1}^{\varepsilon_{k-1}}\left(G_{d}\left(t_{k}\right)\right)^{\varepsilon_{k-1}}\right] \\
& =E\left[\left(t_{k-1} G_{d}\left(t_{k}\right)\right)^{\varepsilon_{k-1}}\right] \\
& =E\left[e^{\left.\left(\ln \left(t_{k-1} G_{d}\left(t_{k}\right)\right)\right) \cdot \varepsilon_{k-1}\right]}\right. \\
& =M_{\varepsilon_{k} L_{1}}\left(\ln \left(t_{k-1} G_{d}\left(t_{k}\right)\right)\right) \\
& =e^{\lambda\left(t_{k-1} G_{d}\left(t_{k}\right)-1\right)} \tag{3.17}\\
& =e^{\lambda\left(t_{k-1}\left(1-\alpha+\alpha t_{k}\right)-1\right)} \tag{3.18}\\
& =e^{\lambda\left[(1-\alpha) t_{k-1}+\alpha t_{k-1} t_{k}-1\right]} \tag{3.19}
\end{align*}
$$

where we use the fact that $\left\{\varepsilon_{k}\right\}_{k=1,2, \ldots}$ is a sequence of i.i.d. Poisson random variables with mean λ to derive (3.17) and $\left\{d_{i, j}\right\}_{i, j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter α to derive (3.18), respectively.

Substituting (3.15), (3.16) and (3.19) into (3.14), we get

$$
\begin{aligned}
G_{N_{1}, \ldots, N_{n}}\left(t_{1}, \ldots, t_{n}\right)= & e^{\lambda \alpha\left(t_{1}-1\right)} e^{\lambda\left[(1-\alpha) t_{1}+\alpha t_{1} t_{2}-1\right]} e^{\lambda\left[(1-\alpha) t_{2}+\alpha t_{2} t_{3}-1\right]} \cdots e^{\lambda\left[(1-\alpha) t_{n-1}+\alpha t_{n-1} t_{n}-1\right]} \\
& \times e^{\lambda\left(t_{n}-1\right)} .
\end{aligned}
$$

3.3 Adjustment coefficient

In this section, we first derive the adjustment coefficient function for the INMA(1) risk model. We then obtain the adjustment coefficient to approximate the ruin probability.

Theorem 3.3.1. The adjustment coefficient function of the risk model defined in (3.1) is given by

$$
\begin{gathered}
g(r)=-r I d+\lambda\left((1-\alpha) M_{X}(-r)+\alpha M_{X}^{2}(-r)+(1-\alpha p) M_{Y}(r)+\alpha p M_{Y}^{2}(r)\right. \\
\left.+(1-\alpha q) M_{Z}(r)+\alpha q M_{Z}^{2}(r)-3\right) .
\end{gathered}
$$

Proof. From(2.3) the adjustment coefficient function is defined as

$$
\begin{equation*}
g(r)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln E\left(e^{-r S_{n}}\right) \tag{3.20}
\end{equation*}
$$

Therefore, we will first derive $E\left[e^{-r S_{n}}\right]$.
From (3.5) and the fact that $\left\{A_{i} ; i \in \mathbb{N}\right\},\left\{B_{i} ; i \in \mathbb{N}\right\}$ and $\left\{C_{i} ; i \in \mathbb{N}\right\}$ are independent, we have

$$
\begin{align*}
E\left[e^{-r S_{n}}\right] & =E\left[e^{-r\left(\operatorname{Idn}+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}\right)}\right] \\
& =E\left[e^{-r I d n}\right] \cdot E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} B_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} C_{i}}\right] . \tag{3.21}
\end{align*}
$$

For the second term of (3.21), note that the aggregate of premium amounts $\left\{A_{i} ; i \in \mathbb{N}\right\}$ defined in (3.2). Then

$$
\begin{aligned}
E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] & =E\left[e^{-r A_{1}} \cdots e^{-r A_{n}}\right] \\
& =E\left[e^{-r \sum_{k=1}^{N_{1}} X_{1, k}} \cdots e^{-r \sum_{k=1}^{N_{n}} X_{n, k}}\right] \\
& =E\left[E\left[e^{-r \sum_{k=1}^{N_{1}} X_{1, k}} \cdots e^{-r \sum_{k=1}^{N_{n}} X_{n, k}} \mid N_{1}, \ldots, N_{n}\right]\right] \\
& =E\left[\left(E r^{-r X}\right)^{N_{1}} \cdots\left(E r^{-r X}\right)^{N_{n}} \mid N_{1}, \ldots, N_{n}\right] \\
& =G_{N_{1}, \ldots, N_{n}}\left(M_{X}(-r), \ldots, M_{X}(-r)\right)
\end{aligned}
$$

From Theorem 3.2.1, we obtain

$$
\begin{align*}
& E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right]=e^{\lambda \alpha\left(M_{X}(-r)-1\right)} \underbrace{e^{\lambda(n-1)\left[(1-\alpha) M_{X}(-r)+\alpha M_{X}^{2}(-r)-1\right]} e^{\lambda\left(M_{X}(-r)-1\right)}} \\
& =\exp \left\{\lambda\left(\alpha M_{X}(-r)-\alpha+(n-1) M_{X}(-r)-\alpha(n-1) M_{X}(-r)\right)\right. \\
& \left.+\lambda\left(\alpha(n-1) M_{X}^{2}(-r)-(n-1)+M_{X}(-r)-1\right)\right\} \\
& =\exp \left\{\lambda\left[(2 \alpha+n-\alpha n) M_{X}(-r)-(n+\alpha)+\alpha(n-1) M_{X}^{2}(-r)\right]\right\} \\
& =\exp \left\{\lambda(n+\alpha)\left[\frac{(n(1-\alpha)+2 \alpha) M_{X}(-r)+\alpha(n-1) M_{X}^{2}(-r)}{n+\alpha}-1\right]\right\} . \tag{3.22}
\end{align*}
$$

By the same technique, the last two terms of (3.21) can be obtained as follows

$$
\begin{align*}
E\left[e^{r \sum_{i=1}^{n} B_{i}}\right] & =G_{N_{1}(p), \ldots, N_{n}(p)}\left(M_{Y}(r), \ldots, M_{Y}(r)\right) \text { าลัย } \\
& =\exp \left\{\lambda(n+\alpha p)\left[\frac{(n(1-\alpha p)+2 \alpha p) M_{Y}(r)+\alpha p(n-1) M_{Y}^{2}(r)}{n+\alpha p}-1\right]\right\}, \tag{3.23}
\end{align*}
$$

and

$$
\begin{align*}
E\left[e^{r \sum_{i=1}^{n} C_{i}}\right] & =G_{N_{1}(q), \ldots, N_{n}(q)}\left(M_{Z}(r), \ldots, M_{Z}(r)\right) \\
& =\exp \left\{\lambda(n+\alpha q)\left[\frac{(n(1-\alpha q)+2 \alpha q) M_{Z}(r)+\alpha q(n-1) M_{Z}^{2}(r)}{n+\alpha q}-1\right]\right\} . \tag{3.24}
\end{align*}
$$

Substitute (3.22) - (3.24) into (3.21), we have

$$
\begin{align*}
& E\left[e^{-r S_{n}}\right]=E\left[e^{-r I d n}\right] \cdot E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} B_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} C_{i}}\right] \\
&=\exp \{-r I d n \\
&+\lambda(n+\alpha)\left[\frac{(n(1-\alpha)+2 \alpha) M_{X}(-r)+\alpha(n-1) M_{X}^{2}(-r)}{n+\alpha}-1\right] \\
&+\lambda(n+\alpha p)\left[\frac{(n(1-\alpha p)+2 \alpha p) M_{Y}(r)+\alpha p(n-1) M_{Y}^{2}(r)}{n+\alpha p}-1\right] \\
&\left.+\lambda(n+\alpha q)\left[\frac{(n(1-\alpha q)+2 \alpha q) M_{Z}(r)+\alpha q(n-1) M_{Z}^{2}(r)}{n+\alpha q}-1\right]\right\} . \tag{3.25}
\end{align*}
$$

Then, we consider the logarithm of the equation (3.25) as follows.

$$
\begin{aligned}
\frac{1}{n} \ln E\left[e^{-r S_{n}}\right]= & \frac{1}{n} \ln E\left[\exp \left\{-r\left(I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}\right)\right\}\right] \\
= & \frac{1}{n}\{-r I d n \\
& +\lambda(n+\alpha)\left[\frac{(n(1-\alpha)+2 \alpha) M_{X}(-r)+\alpha(n-1) M_{X}^{2}(-r)}{n+\alpha}-1\right] \\
& +\lambda(n+\alpha p)\left[\frac{(n(1-\alpha p)+2 \alpha p) M_{Y}(r)+\alpha p(n-1) M_{Y}^{2}(r)}{n+\alpha p}-1\right] \\
& \left.+\lambda(n+\alpha q)\left[\frac{(n(1-\alpha q)+2 \alpha q) M_{Z}(r)+\alpha q(n-1) M_{Z}^{2}(r)}{n+\alpha q}-1\right]\right\} \\
= & -r I d \\
& +\lambda(1-\alpha) M_{X}(-r)+\frac{2 \lambda \alpha M_{X}(-r)}{n}+\frac{\lambda \alpha(n-1) M_{X}^{2}(-r)}{n}-\frac{\lambda(n+\alpha)}{n} \\
& +\lambda(1-\alpha p) M_{Y}(r)+\frac{2 \lambda \alpha p M_{Y}(r)}{n}+\frac{\lambda \alpha p(n-1) M_{Y}^{2}(r)}{n}-\frac{\lambda(n+\alpha p)}{n} \\
& +\lambda(1-\alpha q) M_{Z}(r)+\frac{2 \lambda \alpha q M_{Z}(r)}{n}+\frac{\lambda \alpha q(n-1) M_{Z}^{2}(r)}{n}-\frac{\lambda(n+\alpha q)}{n} .
\end{aligned}
$$

Therefore, we can obtain the equation (3.20) as follows.

$$
\begin{aligned}
g(r)= & \lim _{n \rightarrow \infty} \frac{1}{n} \ln E\left[e^{-r S_{n}}\right] \\
= & -r I d+\lambda(1-\alpha) M_{X}(-r)+\lambda \alpha M_{X}^{2}(-r)-\lambda+\lambda(1-\alpha p) M_{Y}(r) \\
& +\lambda \alpha p M_{Y}^{2}(r)-\lambda+\lambda(1-\alpha q) M_{Z}(r)+\lambda \alpha q M_{Z}^{2}(r)-\lambda \\
= & -r I d+\lambda\left((1-\alpha) M_{X}(-r)+\alpha M_{X}^{2}(-r)+(1-\alpha p) M_{Y}(r)+\alpha p M_{Y}^{2}(r)\right. \\
& \left.+(1-\alpha q) M_{Z}(r)+\alpha q M_{Z}^{2}(r)-3\right) .
\end{aligned}
$$

Next, we will show the uniqueness of positive solution of adjustment coeffcient equation.

Proposition 3.3.1. The adjustment equation $g(r)=0$ has the unique positive solution R which is called the adjustment coefficent.

Proof. To show that $g(r)=0$ has the unique positive solution, we will show the function $g(\cdot)$ has following properties
(1) $g(0)=0$,
(2) $g^{\prime}(0)<0$,
(3) $g^{\prime \prime}(r)>0$ for all $r \in(0, \infty)$,
(4) $\lim _{r \rightarrow \infty} g(r)=\infty$.

To prove (1), we can see that

$$
g(0)=\lambda(1+1+1)+\lambda \alpha(1-1+p-p+q-q)-3 \lambda=0 .
$$

To prove (2), we note that

$$
\begin{align*}
g^{\prime}(r)= & -I d+\lambda\left(-M_{X}^{\prime}(-r)+M_{Y}^{\prime}(r)+M_{Z}^{\prime}(r)\right) \\
& +\lambda \alpha\left[-2 M_{X}(-r) M_{X}^{\prime}(-r)+M_{X}^{\prime}(-r)+2 p M_{Y}(r) M_{Y}^{\prime}(r)-p M_{Y}^{\prime}(r)\right] \\
& +\lambda \alpha\left[2 q M_{Z}(r) M_{Z}^{\prime}(r)-q M_{Z}^{\prime}(r)\right] . \tag{3.26}
\end{align*}
$$

Substituting $r=0$ into (3.26), we get

$$
\begin{aligned}
g^{\prime}(0)= & -I d+\lambda(-E X+E Y+E Z) \\
& +\lambda \alpha(-2 E X+E X+2 p E Y-p E Y+2 q E Z-E Z) \\
= & -I d+\lambda(-E X+E Y+E Z)+\lambda \alpha(-E X+p E Y+q E Z) \\
= & -I d-\lambda(1+\alpha) E X+\lambda(1+\alpha p) E Y+\lambda(1+\alpha q) E Z \\
< & 0,
\end{aligned}
$$

where we use Propositions 3.1.4 and 3.2.1-3.2.3 (2) to obtain the last inequality. Hence, $g^{\prime}(0)<0$.

To prove (3), we note that

$$
\begin{align*}
g^{\prime \prime}(r)= & \lambda\left[M_{X}^{\prime \prime}(-r)+M_{Y}^{\prime \prime}(r)+M_{Z}^{\prime \prime}(r)\right] \\
& +\lambda \alpha\left[2\left(M_{X}(-r) M_{X}^{\prime \prime}(-r)+\left(M_{X}^{\prime}(-r)\right)^{2}\right)-M_{X}^{\prime \prime}(-r)\right] \\
& +\lambda \alpha\left[2 p\left(M_{Y}(r) M_{Y}^{\prime \prime}(r)+\left(M_{Y}^{\prime}(r)\right)^{2}\right)-p M_{Y}^{\prime \prime}(r)\right] \\
& +\lambda \alpha\left[2 q\left(M_{Z}(r) M_{Z}^{\prime \prime}(r)+\left(M_{Z}^{\prime}(r)\right)^{2}\right)-q M_{Z}^{\prime \prime}(r)\right] \\
= & \lambda\left[\left(2 \alpha M_{X}(-r)-\alpha+1\right) M_{X}^{\prime \prime}(-r)+\alpha\left(M_{X}^{\prime}(-r)\right)^{2}\right] \\
& +\lambda\left[\left(2 \alpha p M_{Y}(r)-\alpha p+1\right) M_{Y}^{\prime \prime}(r)+\alpha p\left(M_{Y}^{\prime}(r)\right)^{2}\right] \\
& +\lambda\left[\left(2 \alpha q M_{Z}(r)-\alpha q+1\right) M_{Z}^{\prime \prime}(r)+\alpha q\left(M_{Z}^{\prime}(r)\right)^{2}\right] . \tag{3.27}
\end{align*}
$$

Since the moment generating function is always positive and $0<\alpha<1$. So, the term of $2 \alpha M_{X}(-r)-\alpha+1$ is greater than 0 . For $0<p, q<1$ and $0<p+q<1$, we get that the terms of $2 \alpha p M_{Y}(r)-\alpha p+1$ and $2 \alpha q M_{Z}(r)-\alpha q+1$ are greater than 0 . So, we can conclude that the right hand side of (3.27) is greater than 0 . Therefore $g^{\prime \prime}(r)>0$.

To prove (4), from Theorem 3.3.1, the adjustment coefficient function is

$$
\begin{align*}
g(r)= & -r I d+\lambda\left((1-\alpha) M_{X}(-r)+\alpha M_{X}^{2}(-r)+(1-\alpha p) M_{Y}(r)+\alpha p M_{Y}^{2}(r)\right. \\
& \left.+(1-\alpha q) M_{Z}(r)+\alpha q M_{Z}^{2}(r)-3\right) \\
= & -r I d+\lambda\left(\left(1-\alpha+\alpha M_{X}(-r)\right) M_{X}(-r)+\left(1-\alpha p+\alpha p M_{Y}(r)\right) M_{Y}(r)\right. \\
& \left.+\left(1-\alpha q+\alpha q M_{Z}(r)\right) M_{Z}(r)-3\right) . \tag{3.28}
\end{align*}
$$

From the right hand side of (3.28), we can see that the term of $1-\alpha+$ $\alpha M_{X}(-r), 1-\alpha p+\alpha p M_{Y}(r)$ and $1-\alpha q+\alpha q M_{Z}(r)$ are always greater than 0 for $0<\alpha<1$. Then, we use the fact that the moment generating function of the right hand side of (3.28), determined by the term of $M_{Y}(r)$ and $M_{Z}(r)$, perform as exponential terms and the exponential growth is faster than polynomial growth. Hence, $\lim _{r \rightarrow \infty} g(r)=\infty$.

3.4 Numerical example

In this section, we will apply numerical example to study the effect of the ruin probability and the value at risk comparing with the parameters of premiums, claims and surrenders by using Python and R programming.

In section, we will study the behavior of the ruin probability and the value at risk of the risk model by assuming that the premiums sizes (X), the claim sizes (Y) and the surrender values (Z) follow exponential distributions. The sequence of premium sizes $X=\left\{X_{i, k}\right\}_{i, k=1,2, \ldots}$ is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{X}}$. The sequence of claim sizes $Y=\left\{Y_{i, k}\right\}_{i, k=1,2, \ldots .}$ is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{Y}}$. The sequence of surrender values $Z=\left\{Z_{i, k}\right\}_{i, k=1,2, \ldots}$ is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{Z}}$, respectively.

Therefore the moment generating functions of X, Y and Z are defined as $M_{X}(-r)=\frac{\beta_{X}}{\beta_{X}+r}, M_{Y}(r)=\frac{\beta_{Y}}{\beta_{Y}-r}$ and $M_{Z}(r)=\frac{\beta_{Z}}{\beta_{Z}-r}$, respectively, for $\beta_{Y}, \beta_{Z}>r$.

3.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability against the terms of premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as

$$
\Psi(u) \simeq e^{-R u}
$$

where R is the adjustment coefficient.

To approximate ruin probability, we will first calculate the adjustment coefficient from finding the unique positive solution of the adjustment coefficient equation $g(r)=0$ as follows.

From Theorem 3.3.1, we will consider the function $g(r)$ in the case of the premium size, claim size and surrender values follow the exponential distribution.

$$
\begin{aligned}
0= & g(r) \\
= & -r I d+\lambda\left((1-\alpha) M_{X}(-r)+\alpha M_{X}^{2}(-r)+(1-\alpha p) M_{Y}(r)+\alpha p M_{Y}^{2}(r)\right. \\
& \left.+(1-\alpha q) M_{Z}(r)+\alpha q M_{Z}^{2}(r)-3\right) \\
= & -r I d+\lambda\left((1-\alpha)\left(\frac{\beta_{X}}{\beta_{X}+r}\right)+\alpha\left(\frac{\beta_{X}}{\beta_{X}+r}\right)^{2}\right. \\
& +(1-\alpha p)\left(\frac{\beta_{Y}}{\beta_{Y}-r}\right)+\alpha p\left(\frac{\beta_{Y}}{\beta_{Y}-r}\right)^{2} \\
& \left.+(1-\alpha q)\left(\frac{\beta_{Z}}{\beta_{Z}-r}\right)+\alpha q\left(\frac{\beta_{Z}}{\beta_{Z}-r}\right)^{2}-3\right),
\end{aligned}
$$

where $0<p, q<1$ and $0<p+q<1$, where $r<\min \left\{\beta_{Y}, \beta_{Z}\right\}$.

Next, we will study the trend of ruin probability by varying various parameters of premium size, claim size, surrender values and investment in Section 3.4.1.1. In Section 3.4.1.2, we will study the trend of ruin probability by varying various parameters of probabilities of claims and surrenders.

3.4.1.1 Effects from premiums size, claim size and surrender value

In insurance company, income and expenses are quite important to the company financial stability. In our risk model, the income are determined by the premium size and investment and the expenses are determined by the claim size and surrender value. So, this section will study the trends of ruin probability in terms of means of premium size $\left(\frac{1}{\beta_{X}}\right)$, claim size $\left(\frac{1}{\beta_{Y}}\right)$ and surrender values $\left(\frac{1}{\beta_{Z}}\right)$ by varying the parameter β_{X}, β_{Y} and β_{Z}, respectively. Moreover, we will also study the ruin probability in term of investment by varying parameter I.

For this section, we consider the following values of parameters $I=10, d=$ $0.2, \lambda=2, \alpha=0.25, p=0.4, q=0.07$ and the initial surplus $u=12$.

Scenario 3.1: The trend of ruin probability in terms of the parameter β_{X} where the parameters β_{Y} and β_{Z} are fixed ($\beta_{Y}=\beta_{Z}=1.5$). In this scenario, we consider different values of β_{X} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The values of the upper bound of the ruin probability are given in Table 3.1. The corresponding plot is presented in Figure 3.1.

Table 3.1: Parameter $\beta_{X} \in[0.5,2]$ and their upper bound of ruin probability

β_{X}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.002942	0.006777	0.014604	0.056045	0.171677

Figure 3.1: Trend of the ruin probability when β_{X} increases

From Table 3.1 and Figure 3.1, we can see that the ruin probability increases when β_{X} increases. That is the ruin probability increases when the mean of premium size decreases.

Scenario 3.2 : The trend of ruin probability in terms of the parameter β_{Y} where the parameters β_{X} and β_{Z} are fixed ($\beta_{X}=0.5$ and $\beta_{Z}=1.5$). In this scenario, we consider different values of β_{Y} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The values of the upper bound of the ruin probability are given in Table 3.2. The corresponding plot is presented in Figure 3.2.

Table 3.2: Parameter $\beta_{Y} \in[0.5,2]$ and their upper bound of ruin probability

β_{Y}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.515049	0.118524	0.029798	0.002830	0.000605

Figure 3.2: Trend of the ruin probability when β_{Y} increases

Table 3.2 and Figure 3.2 show that the ruin probability decreases as parameter β_{Y} increases. It means that the ruin probability decreases when the mean of claim size decreases.

Scenario 3.3: The trend of ruin probability in terms of the parameter β_{Z} where the parameters β_{X} and β_{Y} are fixed ($\beta_{X}=0.5$ and $\left.\beta_{Y}=1.5\right)$. In this scenario, we consider different values of β_{Z} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The values of the upper bound of the ruin probability are given in Table 3.3. The corresponding plot is presented in Figure 3.3.

Table 3.3: Parameter $\beta_{Z} \in[0.5,10]$ and their upper bound of ruin probability

β_{Z}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.478468	0.110136	0.028787	0.003438	0.000897

Figure 3.3: Trend of the ruin probability when β_{Z} increases

From Table 3.3 and Figure 3.3, we can conclude that the ruin probability decreases when parameter β_{Z} increases. It means that the ruin probability decreases when the mean of surrender value decreases.

Scenario 3.4: The trend of ruin probability in terms of the investment I where the parameters β_{X}, β_{Y} and β_{Z} are fixed ($\beta_{X}=0.5$ and $\beta_{Y}=\beta_{Z}=1.5$). In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0, 8.0 and 10.0 , respectively. The values of the upper bound of the ruin probability are given in Table 3.4. The corresponding plot is presented in Figure 3.4.

Table 3.4: Parameter $I \in[1,10]$ and their upper bound of ruin probability

β_{Z}	1.0	3.0	5.0	8.0	10.0
Upper bound	0.059467	0.031536	0.016207	0.005807	0.002942

Figure 3.4: Trend of the ruin probability when I increases

Table 3.4 and Figure 3.4 show that the ruin probability decreases as the investment increases. It means that the more the insurance company invests in financial markets, the smaller value of ruin probability.

As we know that the closer the ruin probability to 1 , the greater the possibility that the insurance company will go bankrupt. From the result in Scenario 3.1-3.4, we can see that the ruin probability decreases as the mean of premiums and investment, which are income of the model, increase and the means of claims and surrender, which are expenses of the model, decrease. Therefore, in order to control the risk of the bankrupt, the company should increase the premium values or reduce the payments from claims and surrender.

3.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the trend of ruin probability in terms of the probability of claims, denoted by parameter p and the probability of surrenders, denoted by parameter q.

For this section, we set the value $I=10, d=0.2, \lambda=2, \alpha=0.25, \beta_{X}=$ $1, \beta_{Y}=2, \beta_{Z}=1.5$ and the initial surplus $u=12$.

Scenario 3.5 : The trend of ruin probability in terms of probability of claims p when q is fixed $(q=0.04)$. In this scenario, we consider different values of p which are $0.001,0.01,0.01,0.5$ and 0.9 , respectively. The values of the upper bound of the ruin probability are given in Table 3.5. The corresponding plot is presented in Figure 3.5.

Table 3.5: Parameter $p \in(0,1)$ and their upper bound of ruin probability

p	0.001	0.01	0.1	0.5	0.9
Upper bound	0.001437	0.001454	0.001635	0.002689	0.004278

Figure 3.5: Trend of the ruin probability when p increases

From Table 3.5 and Figure 3.5, we can see that the ruin probability increases as the probability p increases. It means that the more claims occur, the higher value of ruin probability.

Scenario 3.6: We consider the trend ruin probability in terms of probability of surrenders q when p is fixed ($p=0.04$). In this scenario, we consider different values of q which are $0.001,0.01,0.01,0.5$ and 0.9 , respectively. The values of the upper bound of the ruin probability are given in Table 3.6. The corresponding plot is presented in Figure 3.6.

Table 3.6: Parameter $q \in(0,1)$ and their upper bound of ruin probability

q	0.001	0.01	0.1	0.5	0.9
Upper bound	0.001383	0.001412	0.001729	0.003813	0.007421

Figure 3.6: Trend of the ruin probability when q increases

Table 3.6 and Figure 3.6 show that the ruin probability increases when parameter q increases. It means that the more surrenders occur, the higher value of ruin probability.

From the result of Scenario 3.5 and 3.6, we can see that when either parameters p or q increases, the upper bound of ruin probability also increases. This suggests that the insurance company will be in the high risk when either the probability of claims or surrenders increases.

3.4.2 Numerical example for the value at risk

In this section, we will study value at risk (VaR) which is a risk measure measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level ω for the INMA(1) risk model, denoted by $\operatorname{VaR}_{\omega}\left(S_{n}\right)$, is the ω-quantile of the distribution of the loss-profit S_{n} of the risk model. The $\operatorname{VaR}_{\omega}\left(S_{n}\right)$ can be written as

$$
\begin{equation*}
\operatorname{VaR}_{\omega}\left(S_{n}\right)=\inf \left\{k \in \mathbb{R} \mid F_{S_{n}}(k)>\omega\right\}, \tag{3.29}
\end{equation*}
$$

where $F_{S_{n}}(k)$ be the cumulative distribution function of S_{n}. For our model, the loss-profit process S_{n}, define in (3.5), can be express as

$$
\begin{aligned}
S_{n} & =I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i} \\
& =I d n+\sum_{i=1}^{n} \sum_{k=1}^{N_{i}} X_{i, k}-\sum_{i=1}^{n} \sum_{k=1}^{N_{i}(p)} Y_{i, k}-\sum_{i=1}^{n} \sum_{k=1}^{N_{i}(q)} Z_{i, k},
\end{aligned}
$$

where $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ follow INMA(1) model, defined in (3.6) - (3.8), respectively.

From (3.29), we can see that we need to know the distribution of S_{n} in order to obtain the value at risk. However, it is difficult to obtain the distribution of S_{n}. Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed by Gray and Pitts (2012), to approximate the distribution of S_{n}.

The characteristic function of S_{n}, denoted by $\phi_{S_{n}}(r)$, can be written as follow, Similar to provide $E\left[e^{-r S_{n}}\right]$ in the proof of Theorem 3.3.1, we have

$$
\begin{aligned}
\phi_{S_{n}}(r)= & E\left[e^{i r S_{n}}\right] \\
= & E\left[e^{i r I d n}\right] \cdot G_{N_{1}, \ldots, N_{n}}\left(\phi_{X}(r), \ldots, \phi_{X}(r)\right) \cdot G_{N_{1}(p), \ldots, N_{n}(p)}\left(\phi_{Y}(-r), \ldots, \phi_{X}(-r)\right) \\
& \cdot G_{N_{1}(q), \ldots, N_{n}(q)}\left(\phi_{Z}(-r), \ldots, \phi_{Z}(-r)\right),
\end{aligned}
$$

where
(1) $G_{N_{1}, \ldots, N_{n}}\left(\phi_{X}(r), \ldots, \phi_{X}(r)\right)$

$$
=\exp \left\{\lambda\left[(n(1-\alpha)+2 \alpha) \phi_{X}(r)+\alpha(n-1) \phi_{X}^{2}(r)-n-\alpha\right]\right\}
$$

(2) $G_{N_{1}(p), \ldots, N_{n}(p)}\left(\phi_{Y}(-r), \ldots, \phi_{X}(-r)\right)$

$$
=\exp \left\{\lambda\left[(n(1-\alpha p)+2 \alpha p) \phi_{Y}(-r)+\alpha p(n-1) \phi_{Y}^{2}(-r)-n-\alpha p\right]\right\}
$$

and
(3) $G_{N_{1}(q), \ldots, N_{n}(q)}\left(\phi_{Z}(-r), \ldots, \phi_{Z}(-r)\right)$

$$
=\exp \left\{\lambda\left[(n(1-\alpha q)+2 \alpha q) \phi_{Z}(-r)+\alpha q(n-1) \phi_{Z}^{2}(-r)-n-\alpha q\right]\right\} .
$$

Next, we will study the trend of the value at risk by varying various parameters of claim sizes and surrender values.

3.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the behavior of the value at risk against the loss parameters, which are the claim size and surrender value. In this section, we study the trends of the value at risk comparing with means of claims $\left(\frac{1}{\beta_{Y}}\right)$ and surrenders $\left(\frac{1}{\beta_{Z}}\right)$ by varying the parameters β_{Y} and β_{Z}, respectively.

For this section, we set the values of parameters $I=10, d=0.2, \lambda=2, \alpha=$ $0.25, \beta_{X}=0.5, p=0.4, q=0.07$ and $n=12$.

Scenario 3.7: The trend of value at risk in the terms of parameter β_{Y} where the parameter β_{Z} is fixed $\left(\beta_{Z}=1.5\right)$. The confidence level considered in this scenario is $\omega=0.95$. In this scenario, we consider different values of β_{Y} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The Values at Risk are given in Table 3.7.

Table 3.7: Parameter $\beta_{Y} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$

β_{Y}	0.5	0.75	1.0	1.5	2.0
$\operatorname{VaR}_{0.95}\left(S_{12}\right)$	118.56	118.41	117.24	113.43	110.13

Table 3.7 show that the value at risk decreases as parameter β_{Y} increases. That is the value at risk decrease when the mean of claim size decreases.

Scenario 3.8: The trend of value at risk in terms of parameter β_{Z} where the parameter β_{Y} is fixed $\left(\beta_{Y}=1.5\right)$. The confidence level considered in this scenario is $\omega=0.95$. In this scenario, we consider different values of β_{Z} which are $0.5,0.75$, $1.0,1.5$ and 2.0, respectively. The Values at Risk are given in Table 3.8.

Table 3.8: Parameter $\beta_{Z} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$

β_{Z}	0.5	0.75	1.0	1.5	2.0
$\operatorname{VaR}_{0.95}\left(S_{12}\right)$	118.56	118.32	117.09	113.43	110.37

Table 3.8 show that the value at risk decreases as parameter β_{Z} increases. That is the value at risk decrease when the mean of surrender value decreases.

The result from Scenario 3.7 and Scenario 3.8 show that the value at risk decrease when either the mean of claim sizes or the mean of surrender values, perform as the loss of the model, decreases. Therefore, it is reasonable that if the claim sizes and surrender values decrease, the maximum loss of the company also decrease.

CHAPTER IV

INTEGER-VALUED AUTOREGRESSIVE
 RISK MODEL WITH INVESTMENT AND SURRENDER

In Chapter 3, we constructed INMA(1) risk model. For this chapter, we consider the first order integer-valued autoregressive (INAR(1)) process into the risk model. Because the forecasted data in $\operatorname{INAR}(1)$ process have correlation with all other previous data. Section 4.1 introduces the model and describes notations used in this chapter. In Section 4.2 , we provide definition and some properties of $\operatorname{INAR}(1)$ risk model. We then obtain the adjustment coefficient function to approximate the ruin probability in Section 4.3. Moreover, we also give numerical examples to study the trend of ruin probability and value at risk in terms of model parameters in Section 4.4.

4.1 The discrete-time risk model

Let $\left\{U_{n} ; n \in \mathbb{N}\right\}$ be the surplus process of insurance company with incorporating investment and surrender at time n. For initial capital u, the discrete-time risk model can be written as

$$
\begin{equation*}
U_{n}=u+I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}, \tag{4.1}
\end{equation*}
$$

where I is the investment capital for $I<u, d$ represents the investment income per unit of time. The sequence of aggregates of premium amounts in period i,
denoted by $\left\{A_{i} ; i \in \mathbb{N}\right\}$, is defined as

$$
\begin{equation*}
A_{i}=\sum_{k=1}^{N_{i}} X_{i, k} \tag{4.2}
\end{equation*}
$$

where $\left\{X_{i, k} ; k \in \mathbb{N}\right\}$ is the sequence of premium sizes in period i assuming to be i.i.d. random variables and N_{i} is the number of premiums in period i.

The sequence of aggregate of claim sizes in period i, denoted by $\left\{B_{i} ; i \in \mathbb{N}\right\}$, is defined as, for $0<p<1$,

$$
B_{i}=\sum_{k=1}^{N_{i}(p)} Y_{i, k},
$$

where the sequence of i.i.d. random variables $\left\{Y_{i, k} ; k \in \mathbb{N}\right\}$ denotes claim sizes in period i, and $N_{i}(p)$ is the p-thinning process of N_{i} denoting the number of claims in period i.

The sequence of aggregate of surrender values in period i, denoted by $\left\{C_{i} ; i \in \mathbb{N}\right\}$, is defined as

$$
C_{i}=\sum_{k=1}^{N_{i}(q)} Z_{i, k},
$$

where the sequence of i.i.d. random variables $\left\{Z_{i, k} ; k \in \mathbb{N}\right\}$ represents surrender values in period i, and $N_{i}(q)$ is the q-thinning process of N_{i} denotes the number of surrenders in period i for $0<q<1$ such that $0<p+q<1$.

4.2 Definition and properties of INAR(1) risk model

In this section, we provide definition and some properties of the $\operatorname{INAR}(1)$ risk model.

For the $\operatorname{INAR}(1)$ risk model considered in this chapter, we suppose that the processes $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ follow $\operatorname{INAR}(1)$ processes. The processes are defined under the condition that $N_{1}, N_{1}(p)$ and $N_{1}(q)$ follow Poisson distribution with means $\frac{\lambda}{1-\alpha}, \frac{\lambda}{1-\alpha p}$ and $\frac{\lambda}{1-\alpha q}$, respectively. The structures of $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ are described as follows.

The process of the number of premiums $\left\{N_{i} ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}=\alpha \circ / N_{i-1}+\varepsilon_{i}, \tag{4.3}
\end{equation*}
$$

where $\alpha \in[0,1],\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is a sequence of i.i.d. random variables following the Poisson distribution with mean λ and $\alpha \circ N_{i-1}$ is the binomial thinning operator defined as

$$
\alpha \circ N_{i-1}=\sum_{j=1}^{N_{i-1}} d_{i-1, j}
$$

where $\left\{d_{i, j}\right\}_{j=1,2, \ldots .}$ is the sequence of i.i.d. Bernoulli random variables with parameter α for all i.

The process of the number of claims $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}(p)=(\alpha p) \circ N_{i-1}(p)+\gamma_{i}, \tag{4.4}
\end{equation*}
$$

where $\left\{\gamma_{i}\right\}_{i=1,2, \ldots}$ is the sequence of i.i.d. random variables following the Poisson distribution with mean λ and $(\alpha p) \circ N_{i-1}(p)$ is the binomial thinning operator defined as

$$
(\alpha p) \circ N_{i-1}(p)=\sum_{j=1}^{N_{i-1}(p)} e_{i-1, j}
$$

where $\left\{e_{i, j}\right\}_{j=1,2, \ldots}$. is the sequence of i.i.d. Bernoulli random variables with parameter αp.

The process of the number of surrenders $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ can be defined as

$$
\begin{equation*}
N_{i}(q)=(\alpha q) \circ N_{i-1}(q)+\mu_{i}, \tag{4.5}
\end{equation*}
$$

where $\left\{\mu_{i}\right\}_{i=1,2, \ldots}$ is the sequence of i.i.d. random variables following the Poisson distribution with mean λ and $(\alpha q) \circ N_{i-1}$ is the binomial thinning operator defined as

$$
(\alpha q) \circ N_{i-1}(q)=\sum_{j=1}^{N_{i-1}(q)} f_{i-1, j}
$$

where $\left\{f_{i, j}\right\}_{j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter αq.

Next, we give the properties of the number of premiums, the number of claims and the number of surrenders, denoted by $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$, respectively.

Proposition 4.2.1. Let $\left\{N_{i} ; i \in \mathbb{N}\right\}$ be defined in (4.3). Then $\left\{N_{i} ; i \in \mathbb{N}\right\}$ has the following properties, for all $i \in \mathbb{N}$
(1) $G_{N_{i}}(z)=e^{\frac{\lambda}{1-\alpha}(z-1)}$ for $z \in \mathbb{R}$,
(2) N_{i} is stationary process,
(3) $E\left(N_{i}\right)=\frac{\lambda}{1-\alpha}$,
(4) $\operatorname{Var}\left(N_{i}\right)=\frac{\lambda}{1-\alpha}$,
(5) $\operatorname{Cov}\left(N_{i}, N_{i-k}\right)=\frac{\lambda \alpha^{k}}{1-\alpha}$ for $k \geq 1$,
(6) $\operatorname{Corr}\left(N_{i}, N_{i-k}\right)=\alpha^{k}$ for $k \geq 1$.

Proof. To prove (1) and (2), we will show that N_{i} follow the Poisson distribution with mean $\frac{\lambda}{1-\alpha}$ for all i.
Note from the assumption that N_{1} has Poisson distribution with mean $\frac{\lambda}{1-\alpha}$. Next, we will prove that $\left\{N_{i} ; i \in \mathbb{N}\right\}$ is stationary process with mean $\frac{\lambda}{1-\alpha}$ by the mathematical induction as follows.

For the inductive step of the mathematical induction, we assume that $G_{N_{i}}(z)=$ $e^{\frac{\lambda}{1-\alpha}(z-1)}$. Then we have,

$$
\begin{align*}
G_{N_{i+1}}(z) & =E\left[z^{N_{i+1}}\right] \\
& =E\left[z^{\left.\alpha \circ N_{i}+\varepsilon_{i+1}\right]}\right. \\
& =E\left[z^{\alpha \circ N_{i}}\right] E\left[z^{\varepsilon_{i+1}}\right] \tag{4.6}\\
& =E\left[((1-\alpha)+\alpha z)^{N_{i}}\right] E\left[z^{\varepsilon_{i+1}}\right] \\
& =e^{\frac{\lambda}{1-\alpha}((1-\alpha)+\alpha z-1)} \tag{4.7}\\
& =e^{\frac{\lambda}{1-\alpha}(z-1)},
\end{align*}
$$

where we use the fact that the process $\left\{N_{i} ; i \in \mathbb{N}\right\}$ is independent of $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ to obtain (4.6) and use the assumption that $G_{N_{i}}(z)=e^{\frac{\lambda}{1-\alpha}(z-1)}$ and the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ is a sequence of i.i.d. random variables following the Poisson distribution with mean λ to obtain (4.7).
Therefore, we can conclude that $G_{N_{i}}(z)=e^{\frac{\lambda}{1-\alpha}(z-1)}$ for all $i \in \mathbb{N}$ and $\left\{N_{i} ; i \in \mathbb{N}\right\}$ is a stationary process.

To prove (3), note that

$$
\begin{aligned}
E\left(N_{i}\right) & =E\left(\alpha \circ N_{i-1}+\varepsilon_{i}\right) \\
& =E\left(\alpha \circ N_{i-1}\right)+E\left(\varepsilon_{i}\right) \\
& =\alpha E\left(N_{i-1}\right)+E\left(\varepsilon_{i}\right)
\end{aligned}
$$

From Proposition 4.2.1 (2), $E\left(N_{i}\right)=E\left(N_{i-1}\right)$. Therefore,

$$
\begin{align*}
E\left(N_{i}\right) & =\frac{E\left(\varepsilon_{i}\right)}{1-\alpha} \\
& =\frac{\lambda}{1-\alpha}, \tag{4.8}
\end{align*}
$$

where we use the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$... has the Poisson distribution mean λ to obtain (4.8).

To prove (4), from Lemma 2.1.1 (b), note that

$$
G_{N_{i}}^{(2)}(1)=E\left(N_{i}\left(N_{i}-1\right)\right)=E\left(N_{i}^{2}\right)-E\left(N_{i}\right)
$$

Then, from Proposition 4.2.1 (1),

$$
\begin{aligned}
E\left(N_{i}^{2}\right) & =G_{N_{i}}^{(2)}(1)+E\left(N_{i}\right) \\
& =\left.\left(\frac{\lambda}{1-\alpha}\right)^{2} e^{\frac{\lambda}{1-\alpha}(z-1)}\right|_{z=1}+\frac{\lambda}{1-\alpha} \\
& =\left(\frac{\lambda}{1-\alpha}\right)^{2}+\frac{\lambda}{1-\alpha}
\end{aligned}
$$

Therefore, we can obtain the variance of $\left\{N_{i} ; i \in \mathbb{N}\right\}$ as follows.

$$
\begin{aligned}
\operatorname{Var}\left(N_{i}\right) & =E\left(N_{i}^{2}\right)-E^{2}\left(N_{i}\right) \\
& =\left(\frac{\lambda}{1-\alpha}\right)^{2}+\frac{\lambda}{1-\alpha}-\left(\frac{\lambda}{1-\alpha}\right)^{2} \\
& =\frac{\lambda}{1-\alpha} .
\end{aligned}
$$

To prove (5), for $k \geq 1$, we consider

$$
\begin{align*}
\operatorname{Cov}\left(N_{i}, N_{i-k}\right) & =\operatorname{Cov}\left(\alpha \circ N_{i-1}+\varepsilon_{i}, N_{i-k}\right) \\
& =\operatorname{Cov}\left(\alpha \circ N_{i-1}, N_{i-k}\right)+\operatorname{Cov}\left(\varepsilon_{i}, N_{i-k}\right) \\
& =\alpha \operatorname{Cov}\left(N_{i-1}, N_{i-k}\right) \tag{4.9}\\
& =\alpha \operatorname{Cov}\left(\alpha \circ N_{i-2}+\varepsilon_{i-1}, N_{i-k}\right) \\
& =\alpha^{2} \operatorname{Cov}\left(N_{i-2}, N_{i-k}\right) \tag{4.10}\\
& =\alpha^{2} \operatorname{Cov}\left(\alpha \circ N_{i-k}+\varepsilon_{i-2}, N_{i-3}\right) \\
& =\alpha^{3} \operatorname{Cov}\left(N_{i-3}, N_{i-k}\right), \tag{4.11}
\end{align*}
$$

where we use the fact that the process $\left\{N_{i} ; i \in \mathbb{N}\right\}$ be independent of $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ to obtain (4.9) - (4.11).

By recursively, we have

$$
\begin{aligned}
\operatorname{Cov}\left(N_{i}, N_{i-k}\right) & =\alpha^{k} \operatorname{Cov}\left(N_{i-k}, N_{i-k}\right) \\
& =\alpha^{k} \operatorname{Var}\left(N_{i-k}\right) \\
& =\frac{\alpha^{k} \lambda}{1-\alpha} .
\end{aligned}
$$

To prove (6), from Proposition 4.2.1 (4) and (5), we have

$$
\begin{aligned}
\operatorname{Corr}\left(N_{i}, N_{i-k}\right) & =\frac{\operatorname{Cov}\left(N_{i}, N_{i-k}\right)}{\sqrt{\operatorname{Var}\left(N_{i}\right)} \sqrt{\operatorname{Var}\left(N_{i-k}\right)}} \\
& =\left(\frac{\alpha^{k} \lambda}{1-\alpha}\right)\left(\frac{1-\alpha}{\lambda}\right) \\
& =\alpha^{k} .
\end{aligned}
$$

Similar to Proposition 4.2.1, we can provide the properties of the processes $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ presented in Proposition 4.2.2 and Proposition 4.2.3, respectively.

Proposition 4.2.2. Let $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ be defined in (4.4). Then $\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ has the following properties, for all $i \in \mathbb{N}$.
(1) $G_{N_{i}(p)}(z)=e^{\frac{\lambda}{1-\alpha \bar{p}}(z-1)}$ for $z \in \mathbb{R}$,
(2) $N_{i}(p)$ is stationary process,
(3) $E\left(N_{i}(p)\right)=\frac{\lambda}{1-\alpha p}$,
(4) $\operatorname{Var}\left(N_{i}(p)\right)=\frac{\lambda}{1-\alpha p}$,
(5) $\operatorname{Cov}\left(N_{i}(p), N_{i-k}(p)\right)=\frac{\lambda(\alpha p)^{k}}{1-\alpha p}$ for $k \geq 1$,
(6) $\operatorname{Corr}\left(N_{i}(p), N_{i-k}(p)\right)=(\alpha p)^{k}$ for $k \geq 1$.

Proposition 4.2.3. Let $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ be defined in (4.5). Then $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ has the following properties, for all $i \in \mathbb{N}$.
(1) $G_{N_{i}(q)}(z)=e^{\frac{\lambda}{1-\alpha q}(z-1)}$ for $z \in \mathbb{R}$,
(2) $N_{i}(q)$ is stationary process,
(3) $E\left(N_{i}(q)\right)=\frac{\lambda}{1-\alpha q}$,
(4) $\operatorname{Var}\left(N_{i}(q)\right)=\frac{\lambda}{1-\alpha q}$,
(5) $\operatorname{Cov}\left(N_{i}(q), N_{i-k}(q)\right)=\frac{\lambda(\alpha q)^{k}}{1-\alpha q}$ for $k \geq 1$,
(6) $\operatorname{Corr}\left(N_{i}(q), N_{i-k}(q)\right)=(\alpha q)^{k}$ for $k \geq 1$.

Next, following Joe (1997), we will give the dependence structure of the process $\left\{N_{i} ; i \in \mathbb{N}\right\}$ by writting N_{i+1} in the terms of N_{1} for $i \in \mathbb{N}$.

Theorem 4.2.1 ([8], p. 263). The dependence structure of the Poisson $\operatorname{INAR}(1)$ process can be defined by,

$$
N_{i+1}=\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j} \ldots d_{i+1,1 j}+\sum_{k=2}^{i} \sum_{j=1}^{\varepsilon_{k}} d_{k+1, k j} \ldots d_{i+1, k j}+\varepsilon_{i+1}
$$

where $\left\{d_{i, j}\right\}_{j=1,2, \ldots .}$ is the sequence of i.i.d. Bernoulli random variables for all i.

The following theorem obtains the generating function of the sum of $\operatorname{INAR}(1)$ process.

Theorem 4.2.2. Let INAR(1) process $\left\{N_{i} ; i=1,2, \ldots\right\}$ be defined in (4.3). The generating function of the sum of $\left\{N_{i} ; i=1,2, . ., n\right\}$ process can be written as follows.

$$
\begin{aligned}
G_{P_{n}}(t)=\exp \{ & \lambda\left(2 t \sum_{k=0}^{n-2}(\alpha t)^{k}+(1-\alpha) t \sum_{k=0}^{n-2}(n-k-2)(\alpha t)^{k}-(n-1)\right) \\
& \left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} t^{n}-1\right)\right\}, \text { ยยลัย }
\end{aligned}
$$

where $P_{n}=N_{1}+\cdots+N_{n}$ for $n=2,3, \ldots$

Proof. From Theorem 4.2.1, we have

$$
\begin{align*}
G_{P_{n}}(t) & =E\left[t^{N_{1}+\cdots+N_{n}}\right] \\
& =E\left[t^{N_{1}} t^{\sum_{i=1}^{n-1} N_{i+1}}\right] \\
& =E\left[t^{N_{1}} t^{\sum_{i=1}^{n-1} \sum_{j=1}^{N_{1}} d_{21 j} d_{31} \cdots d_{i+1,1 j}+\sum_{i=1}^{n-1} \sum_{k=2}^{i} \sum_{j=1}^{\varepsilon_{k}} d_{k+1, k j} \cdots d_{i, k j}+\sum_{i=1}^{n-1} \varepsilon_{i+1}}\right] . \tag{4.12}
\end{align*}
$$

From Theorem 4.2.1 and the fact that N_{1} follows the Poisson distribution with mean $\frac{\lambda}{1-\alpha}$, we will provide the generating function $G_{P_{n}}(t)$ in the case of $n=2,3$. For $n=2$, from (4.12), we have

$$
\begin{align*}
G_{P_{2}}(t) & =E\left[t^{N_{1}+N_{2}}\right] \\
& =E\left[t^{N_{1}} t^{\sum_{j=1}^{N_{1}} d_{21 j}} t^{\varepsilon_{2}}\right] \\
& =E\left[t^{N_{1}+\sum_{j=1}^{N_{1}} d_{21 j}}\right] E\left(t^{\varepsilon_{2}}\right) \\
& =E\left[t^{N_{1}} E\left[t^{\sum_{j=1}^{N_{1}} d_{21 j}} \mid N_{1}\right]\right] E\left(t^{\varepsilon_{2}}\right) \tag{4.13}\\
& =E\left[t^{N_{1}} E\left[\prod_{j=1}^{N_{1}} t^{d_{21 j}} \mid N_{1}\right]\right] E\left(t^{\varepsilon_{2}}\right) \\
& =E\left[t^{N_{1}} \prod_{j=1}^{N_{1}}(1-\alpha+\alpha t)\right] E\left(t^{\varepsilon_{2}}\right) \tag{4.14}\\
& =E\left[t^{N_{1}}(1-\alpha+\alpha t)^{N_{1}}\right] E\left(t^{\varepsilon_{2}}\right) \\
& =E\left[\left((1-\alpha) t+\alpha t^{2}\right)^{N_{1}}\right] E\left(t^{\varepsilon_{2}}\right) \\
& =e^{\frac{\lambda}{1-\alpha}\left[(1-\alpha) t+\alpha t^{2}-1\right]} e^{\lambda(t-1)}, \tag{4.15}
\end{align*}
$$

where we use the fact that the random variable N_{1} is independent of ε_{2} to obtain (4.13), use the fact that $\left\{d_{i, j}\right\}_{j=1,2, \ldots}$ be the sequence of i.i.d. Bernoulli random variables with parameter α to obtain (4.14) and we use the fact that the random variables N_{1} and ε_{2} be the Poisson distribution with means $\frac{\lambda}{1-\alpha}$ and λ to obtain (4.15).

For $n=3$, from (4.12), we get

$$
\begin{align*}
G_{P_{3}}(t) & =E\left[t^{N_{1}+N_{2}+N_{3}}\right] \\
& =E\left[t^{N_{1}+\sum_{j=1}^{N_{1}} d_{21 j}+\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j}} \sum_{j=1}^{\varepsilon_{2} d_{32 j}} t^{\varepsilon_{2}+\varepsilon_{3}}\right] \\
& =E\left[t^{N_{1}+\sum_{j=1}^{N_{1}} d_{21 j}+\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j}}\right] E\left[t^{\varepsilon_{2}+\sum_{j=1}^{\varepsilon_{2}} d_{32 j}}\right] E\left(t^{\varepsilon_{3}}\right) \tag{4.16}\\
& =E\left[t^{\left.N_{1}+\sum_{j=1}^{N_{1} d_{21 j}+\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j}}\right] e^{\lambda\left[(1-\alpha) t+\alpha t^{2}-1\right]} e^{\lambda(t-1)},}\right. \tag{4.17}
\end{align*}
$$

where we use the fact that the random variable N_{1} is independent of $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$ to obtain (4.16) and the fact that $\left\{\varepsilon_{i}\right\}_{i=1,2, \ldots}$... be the Poisson distribution with means λ to obtain (4.17).

Next, we will separately consider the first term of (4.17). Then

$$
\begin{align*}
& E\left[t^{N_{1}+\sum_{j=1}^{N_{1}} d_{21 j}+\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j}}\right] \\
& =E\left[t^{N_{1}} E\left[t^{\sum_{j=1}^{N_{1}} d_{21 j}} E\left[t^{\sum_{j=1}^{N_{1}} d_{21 j} d_{31 j}} \mid N_{1}, d_{21 j}\right] \mid N_{1}\right]\right] \\
& =E\left[t^{N_{1}} E\left[t^{\sum_{j=1}^{N_{1}} d_{21 j}} E\left[\prod_{j=1}^{N_{1}} t^{d_{21 j} d_{31 j}} \mid N_{1}, d_{21 j}\right] \mid N_{1}\right]\right] \\
& =E\left[t^{N_{1}} E\left[\prod_{j=1}^{N_{1}} t^{d_{21 j}} \prod_{j=1}^{N_{1}}\left(1-\alpha+\alpha t^{d_{21 j}}\right) \mid N_{1}\right]\right] \tag{4.18}\\
& =E\left[t^{N_{1}} E\left[\prod_{j=1}^{N_{1}}(1-\alpha) t^{d_{21 j}}+\alpha t^{2 d_{21 j}} \mid N_{1}\right]\right] \\
& =E\left[t^{N_{1}} \prod_{j=1}^{N_{1}}(1-\alpha)(1-\alpha+\alpha t)+\alpha\left(1-\alpha+\alpha t^{2}\right)\right] \tag{4.19}\\
& =E\left[t^{N_{1}}\left((1-\alpha)^{2}+\alpha(1-\alpha) t+\alpha(1-\alpha)+\alpha^{2} t^{2}\right)^{N_{1}}\right] \\
& =E\left[\left((1-\alpha)^{2} t+\alpha(1-\alpha) t^{2}+\alpha(1-\alpha) t+\alpha^{2} t^{3}\right)^{N_{1}}\right] \\
& =e^{\frac{\lambda}{1-\alpha}\left[(1-\alpha) t+\alpha(1-\alpha) t^{2}+\alpha^{2} t^{3}-1\right]}, \tag{4.20}
\end{align*}
$$

where we use the fact that $\left\{d_{i, j}\right\}_{j=1,2, \ldots}$ is the sequence of i.i.d. Bernoulli random variables with parameter α to obtain (4.18) and (4.19) and we use the fact that N_{1} be the Poisson distribution with mean $\frac{\lambda}{1-\alpha}$ to obtain (4.20).
Substitute (4.20) into (4.17), we obtain

$$
\begin{equation*}
G_{P_{3}}(t)=e^{\frac{\lambda}{1-\alpha}\left[(1-\alpha) t+\alpha(1-\alpha) t^{2}+\alpha^{2} t^{3}-1\right]} e^{\lambda\left[(1-\alpha) t+\alpha t^{2}-1\right]} e^{\lambda(t-1)} . \tag{4.21}
\end{equation*}
$$

By the same technique in obtaining (4.15) and (4.21), we can write in the general form of $G_{P_{n}}(t)$. For $n=2,3, \ldots$, we have

$$
\begin{aligned}
G_{P_{n}}(t)= & E\left[t^{N_{1}+\sum_{i=1}^{n-1} \sum_{j=1}^{N_{1}} d_{21 j} d_{31 j} \cdots d_{i+1,1 j}} t^{\varepsilon_{2}+\sum_{j=1}^{\varepsilon_{2}} \prod_{i=3}^{n} d_{i, 2 j}} t^{\varepsilon_{3}+\sum_{j=1}^{\varepsilon_{3}} \prod_{i=4}^{n} d_{i, 3 j}}\right. \\
& \left.\cdots t^{\varepsilon_{n-2}+\sum_{j=1}^{\varepsilon_{n-2}} \prod_{i=n-1}^{n} d_{i, n-2 j}} t^{\varepsilon_{n-1}+\sum_{j=1}^{\varepsilon_{n-1}} d_{n, n-1 j}} t^{\varepsilon_{n}}\right] \\
= & E\left[t^{\left.N_{1}+\sum_{i=1}^{n-1} \sum_{j=1}^{N_{1} d_{21 j} d_{31} \cdots d_{i+1,1 j}}\right] E\left[t^{\varepsilon_{2}+\sum_{j=1}^{\varepsilon_{2}} \prod_{i=3}^{n} d_{i, 2 j}}\right] E\left[t^{\varepsilon_{3}+\sum_{j=1}^{\varepsilon_{3}} \prod_{i=4}^{n} d_{i, 3 j}}\right]}\right. \\
& \cdots E\left[t^{\varepsilon_{n-2}+\sum_{j=1}^{\varepsilon_{n-2}} \prod_{i=n-1}^{n} d_{i, n-2 j}}\right] E\left[t^{\varepsilon_{n-1}+\sum_{j=1}^{\varepsilon_{n-1}} d_{n, n-1 j}}\right] E\left(t^{\varepsilon_{n}}\right) \\
= & e^{\frac{\lambda}{1-\alpha}\left[(1-\alpha) t+\alpha(1-\alpha) t^{2}+\alpha^{2}(1-\alpha) t^{3}+\cdots+\alpha^{n-2}(1-\alpha) t^{n-1}+\alpha^{n-1} t^{n}-1\right]} \\
& \cdot e^{\lambda\left[(1-\alpha) t+\alpha(1-\alpha) t^{2}+\alpha^{2} t^{3}+\cdots+\alpha^{n-3}(1-\alpha) t^{n-2}+\alpha^{n-2} t^{n-1}-1\right]} \cdots e^{\lambda\left[(1-\alpha) t+\alpha t^{2}-1\right]} e^{\lambda(t-1)} \\
= & e^{\lambda\left[t+\alpha t^{2}+\alpha^{2} t^{3}+\cdots+\alpha^{n-2} t^{n-1}\right]} \frac{\lambda}{1-\alpha}\left[\alpha^{n-1} t^{n-1]}\right. \\
& \cdot e^{\lambda\left[(1-\alpha) t+\alpha(1-\alpha) t^{2}+\alpha^{2} t^{3}+\cdots+\alpha^{n-3}(1-\alpha) t^{n-2}+\alpha^{n-2} t^{n-1}-1\right] \cdots e^{\left.\lambda(1-\alpha) t+\alpha t^{2}-1\right]} e^{\lambda(t-1)}} \\
& \exp \left\{\lambda\left(2 t \sum_{k=0}^{n-2}(\alpha t)^{k}+(1) \alpha\right) t \sum_{k=0}^{n-2}(n-k-2)(\alpha t)^{k}-(n-1)\right) \\
& \left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} t^{n}-1\right)\right\} .
\end{aligned}
$$

4.3 Adjustment coefficient

In this section, we derive the adjustment coefficient function for the $\operatorname{INAR}(1)$ risk model and adjustment coefficient to obtain the approximation of ruin probability.

Theorem 4.3.1. The adjustment coefficient function of the risk model defined in (4.1) is given by

$$
\begin{aligned}
c(r)= & -r I d+\lambda(1-\alpha) M_{X}(-r)\left(\frac{1}{1-\alpha M_{X}(-r)}\right)+\lambda(1-\alpha p) M_{Y}(r)\left(\frac{1}{1-\alpha p M_{Y}(r)}\right) \\
& +\lambda(1-\alpha q) M_{Z}(r)\left(\frac{1}{1-\alpha q M_{Z}(r)}\right)-3 \lambda,
\end{aligned}
$$

for all r such that $M_{Y}(r)<\frac{1}{\alpha p}$ and $M_{Z}(r)<\frac{1}{\alpha q}$.

Proof. From (2.3), the adjustment coefficient function is defined as,

$$
\begin{equation*}
c(r)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln E\left(e^{-r S_{n}}\right) . \tag{4.22}
\end{equation*}
$$

Therefore, We will first derive $E\left[e^{-r S_{n}}\right]$.
From (3.5) and the fact that $\left\{A_{i} ; i \in \mathbb{N}\right\},\left\{B_{i} ; i \in \mathbb{N}\right\}$ and $\left\{C_{i} ; i \in \mathbb{N}\right\}$ are independent, we have

$$
\begin{align*}
E\left[e^{-r S_{n}}\right] & =E\left[e^{-r\left(I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}\right)}\right] \\
& =E\left[e^{-r I d n}\right] \cdot E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} B_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} C_{i}}\right] . \tag{4.23}
\end{align*}
$$

For the second term of (4.23), note that the aggregate of premium amounts $\left\{A_{i} ; i \in \mathbb{N}\right\}$ defined in (4.2). Then

$$
\begin{aligned}
E & {\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] } \\
& =E\left[e^{-r A_{1}} \cdots e^{-r A_{n}}\right] \\
& =E\left[e^{\left.-r \sum_{k=1}^{N_{1} X_{1, k}} \cdots e^{-r \sum_{k=1}^{N_{n}} X_{n, k}}\right]}\right. \\
& =E\left[E\left[e^{-r \sum_{k=1}^{N_{1}} X_{1, k}} \cdots e^{-r \sum_{k=1}^{N_{n}} X_{n, k}} \mid N_{1}, \ldots, N_{n}\right]\right] \\
& =E\left[\left(M_{X}(-r)\right)^{N_{1}} \cdots\left(M_{X}(-r)\right)^{N_{n}}\right] \\
& =G_{P_{n}}\left(M_{X}(-r)\right),
\end{aligned}
$$

where $P_{n}=N_{1}+\cdots+N_{n}$.

From Theorem 4.2.2, we obtain

$$
\begin{align*}
& E\left[e^{-r \sum_{i=1}^{n} A_{i}}\right] \\
&=\exp \{ \lambda\left(2 M_{X}(-r) \sum_{k=0}^{n-2}\left(\alpha M_{X}(-r)\right)^{k}+(1-\alpha) M_{X}(-r) \sum_{k=0}^{n-2}(n-k-2)\left(\alpha M_{X}(-r)\right)^{k}\right) \\
&\left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} M_{X}^{n}(-r)-1\right)-\lambda(n-1)\right\} \\
&=\exp \{ 2 \lambda M_{X}(-r) \sum_{k=0}^{n-2}\left(\alpha M_{X}(-r)\right)^{k}+\lambda(1-\alpha) M_{X}(-r)(n-2) \sum_{k=0}^{n-2}\left(\alpha M_{X}(-r)\right)^{k} \\
&-\lambda(1-\alpha) M_{X}(-r) \sum_{k=0}^{n-2} k\left(\alpha M_{X}(-r)\right)^{k} \\
&= \quad \exp \left\{\begin{aligned}
& 1-\alpha \\
& 2 \lambda M_{X}(-r)\left(\frac{1-\left(\alpha M_{X}(-r)\right)^{n-1}}{1-\alpha M_{X}(-r)}\right) \\
&+\lambda(1-\alpha) M_{X}(-r)(n-2)\left(\frac{1-\left(\alpha M_{X}(-r)\right)^{n-1}}{1-\alpha M_{X}(-r)}\right) \\
&-\lambda(1-\alpha) M_{X}(-r)\left(\frac{(n-2)\left(\alpha M_{X}(-r)\right)^{n-1}}{1-\alpha M_{X}(-r)}+\frac{\alpha M_{X}(-r)-\left(\alpha M_{X}(-r)\right)^{n-1}}{\left(1-\alpha M_{X}(-r)\right)^{2}}\right) \\
&\left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} M_{X}^{n}(-r)-1\right)-\lambda(n-1)\right\} \\
&=\exp \{ 2 \lambda M_{X}(-r)\left(\frac{1-\left(\alpha M_{X}(-r)\right)^{n-1}}{1-\alpha M_{X}(-r)}\right) \\
&+\lambda(1-\alpha) M_{X}(-r)\left(\frac{n-2}{1-\alpha M_{X}(-r)}-\frac{\alpha M_{X}(-r)-\left(\alpha M_{X}(-r)\right)^{n-1}}{\left(1-\alpha M_{X}(-r)\right)^{2}}\right) \\
&\left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} M_{X}^{n}(-r)-1\right)-\lambda(n-1)\right\} .
\end{aligned}\right.
\end{align*}
$$

By the same technique, we can obtain the last two terms of (4.23) as the following,

$$
\begin{align*}
& E\left[e^{r \sum_{i=1}^{n} B_{i}}\right]= G_{P_{n}(p)}\left(M_{Y}(r)\right) \\
&= \exp \{ \\
&\left\{2 \lambda M_{Y}(r)\left(\frac{1-\left(\alpha p M_{Y}(r)\right)^{n-1}}{1-\alpha p M_{Y}(r)}\right)\right. \\
&+\lambda(1-\alpha p) M_{Y}(r)\left(\frac{n-2}{1-\alpha p M_{Y}(r)}-\frac{\alpha p M_{Y}(r)-\left(\alpha p M_{Y}(r)\right)^{n-1}}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right) \tag{4.25}\\
&\left.+\frac{\lambda}{1-\alpha p}\left((\alpha p)^{n-1} M_{Y}^{n}(r)-1\right)-\lambda(n-1)\right\},
\end{align*}
$$

and

$$
\begin{align*}
E\left[e^{r \sum_{i=1}^{n} C_{i}}\right]= & G_{P_{n}(q)}\left(M_{Z}(r)\right) \\
= & \exp \{
\end{aligned} \begin{aligned}
& 2 \lambda M_{Z}(r)\left(\frac{1-\left(\alpha q M_{Z}(r)\right)^{n-1}}{1-\alpha q M_{Z}(r)}\right) \\
& +\lambda(1-\alpha q) M_{Z}(r)\left(\frac{n-2}{1-\alpha q M_{Z}(r)}-\frac{\alpha q M_{Z}(r)-\left(\alpha q M_{Z}(r)\right)^{n-1}}{\left(1-\alpha q M_{Z}(r)\right)^{2}}\right) \\
& \left.+\frac{\lambda}{1-\alpha q}\left((\alpha q)^{n-1} M_{Z}^{n}(r)-1\right)-\lambda(n-1)\right\}, \tag{4.26}
\end{align*}
$$

where $P_{n}(p)=N_{1}(p)+\cdots+N_{n}(p)$ and $P_{n}(q)=N_{1}(q)+\cdots+N_{n}(q)$.
Substitute (4.24) - (4.26) into (4.23), we have

$$
\begin{aligned}
& E\left[e^{-r S_{n}}\right]=E\left[e^{-r I d n}\right] \cdot E\left[e^{-r \sum_{i=1}^{n}} A_{i}\right] \cdot E\left[e^{r \sum_{i=1}^{n} B_{i}}\right] \cdot E\left[e^{r \sum_{i=1}^{n} C_{i}}\right] \\
&=\exp \{ -r I d n+2 \lambda M_{X}(-r)\left(\frac{1-\left(\alpha M_{X}(-r)\right)^{n-1}}{1-\alpha M_{X}(-r)}\right) \\
&+\lambda(1-\alpha) M_{X}(-r)\left(\frac{n-2}{1-\alpha M_{X}(-r)}-\frac{\alpha M_{X}(-r)-\left(\alpha M_{X}(-r)\right)^{n}}{\left(1-\alpha M_{X}(-r)\right)^{2}}\right) \\
&+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} M_{X}^{n}(-r)-1\right)-\lambda(n-1) \\
&+2 \lambda M_{Y}(r)\left(\frac{1-\left(\alpha p M_{Y}(r)\right)^{n-1}}{1-\alpha p M_{Y}(r)}\right) \\
&+\lambda(1-\alpha p) M_{Y}(r)\left(\frac{n-2}{1-\alpha p M_{Y}(r)}-\frac{\alpha p M_{Y}(r)-\left(\alpha p M_{Y}(r)\right)^{n}}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right) \\
&+\frac{\lambda}{1-\alpha p}\left((\alpha p)^{n-1} M_{Y}^{n}(r)-1\right)-\lambda(n-1) \\
&+2 \lambda M_{Z}(r)\left(\frac{1-\left(\alpha q M_{Z}(r)\right)^{n-1}}{1-\alpha q M_{Z}(r)}\right) \\
&+\lambda(1-\alpha q) M_{Z}(r)\left(\frac{n-2}{1-\alpha q M_{Z}(r)}-\frac{\alpha q M_{Z}(r)-\left(\alpha q M_{Z}(r)\right)^{n}}{\left(1-\alpha q M_{Z}(r)\right)^{2}}\right) \\
&\left.+\frac{\lambda}{1-\alpha q}\left((\alpha q)^{n-1} M_{Z}^{n}(r)-1\right)-\lambda(n-1)\right\} .
\end{aligned}
$$

Then, we consider the logarithm of the last equation as follows.

$$
\begin{align*}
\frac{1}{n} \ln E\left(e^{-r S_{n}}\right)= & \frac{1}{n} \ln E\left[\exp \left\{-r\left(I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i}\right)\right\}\right] \\
= & \frac{1}{n}\{ \\
& -r I d n+\frac{(n-2) \lambda(1-\alpha) M_{X}(-r)}{1-\alpha M_{X}(-r)} \\
& +\left(\frac{\lambda M_{X}(-r)\left(-2+\alpha(3-\alpha) M_{X}(-r)\right)}{\left(1-\alpha p M_{X}(-r)\right)^{2}}\right)\left(\left(\alpha M_{X}(-r)\right)^{n-1}-1\right) \\
& +\frac{\lambda \alpha}{1-\alpha}\left(\left(\alpha M_{X}(-r)\right)^{n}-1\right)+\frac{(n-2) \lambda(1-\alpha p) M_{Y}(r)}{1-\alpha p M_{Y}(-r)} \\
& +\left(\frac{\lambda M_{Y}(r)\left(-2+\alpha p(3-\alpha p) M_{Y}(r)\right)}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right)\left(\left(\alpha p M_{Y}(r)\right)^{n-1}-1\right) \\
& +\frac{\lambda \alpha p}{1-\alpha p}\left(\left(\alpha p M_{Y}(r)\right)^{n}-1\right)+\frac{(n-2) \lambda(1-\alpha q) M_{Z}(r)}{1-\alpha q M_{Z}(r)} \\
& +\left(\frac{\lambda M_{Z}(r)\left(-2+\alpha q(3-\alpha q) M_{Y}(r)\right)}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right)\left(\left(\alpha q M_{Z}(r)\right)^{n-1}-1\right) \tag{4.27}\\
& \left.+\frac{\lambda \alpha q}{1-\alpha q}\left(\left(\alpha q M_{Z}(r)\right)^{n}-1\right)-3 \lambda(n-1)\right\}
\end{align*}
$$

Since $0<\alpha M_{X}(-r)<1$, then the limit of the term $\frac{\left(\alpha M_{X}(-r)\right)^{n}}{n}$ as n approaches infinity is equal to zero. From the assumption that $\alpha p M_{Y}(r)<1$ and $\alpha q M_{Z}(r)<$ 1, then the terms of $\frac{\left(\alpha p M_{Y}(r)\right)^{n}}{n}$ and $\frac{\left(\alpha q M_{Z}(r)\right)^{n}}{n}$ go to zero as n go to infinity. Then we will take the limit into (4.27) as n approaches infinity, we have

$$
\begin{aligned}
c(r)= & \lim _{n \rightarrow \infty} \frac{1}{n} \ln E\left(e^{-r S_{n}}\right) \text { UNIVERSITY } \\
= & -r I d+\lambda(1-\alpha) M_{X}(-r)\left(\frac{1}{1-\alpha M_{X}(-r)}\right) \\
& +\lambda(1-\alpha p) M_{Y}(r)\left(\frac{1}{1-\alpha p M_{Y}(r)}\right) \\
& +\lambda(1-\alpha q) M_{Z}(r)\left(\frac{1}{1-\alpha q M_{Z}(r)}\right)-3 \lambda .
\end{aligned}
$$

Next, we will show that the solution of adjustment equation is the unique positive solution.

Proposition 4.3.1. The adjustment equation $c(r)=0$ has the unique positive solution R which is called the adjustment coefficient.

Proof. To show that $c(r)=0$ has the unique positive solution, we will show the function $c(\cdot)$ has following properties
(1) $c(0)=0$,
(2) $c^{\prime}(0)<0$,
(3) $c^{\prime \prime}(r)>0 \forall r \in(0, \infty)$,
(4) $\lim _{r \rightarrow \infty} c(r)=\infty$.

To prove (1), we will substitute $r=0$ into the adjustment coefficient $c(r)$ defined in Theorem 4.3.1, then we have

$$
\begin{aligned}
c(0) & =\lambda(1-\alpha)\left(\frac{1}{1-\alpha}\right)+\lambda(1-\alpha p)\left(\frac{1}{1-\alpha p}\right)+\lambda(1-\alpha q)\left(\frac{1}{1-\alpha q}\right)-3 \lambda \\
& =0 .
\end{aligned}
$$

To prove (2), note that

$$
\begin{align*}
c^{\prime}(r)= & -I d+\lambda(1-\alpha)\left(\frac{-\left(1-\alpha M_{X}(-r)\right) M_{X}^{\prime}(-r)-\alpha M_{X}(-r) M_{X}^{\prime}(-r)}{\left(1-\alpha M_{X}(-r)\right)^{2}}\right) \\
& +\lambda(1-\alpha p)\left(\frac{\left(1-\alpha p M_{Y}(r)\right) M_{Y}^{\prime}(r)+\alpha p M_{Y}(r) M_{Y}^{\prime}(r)}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right) \\
& +\lambda(1-\alpha q)\left(\frac{\left(1-\alpha q M_{Z}(r)\right) M_{Z}^{\prime}(r)+\alpha q M_{Z}(r) M_{Z}^{\prime}(r)}{\left(1-\alpha q M_{Z}(r)\right)^{2}}\right) \\
= & -I d+\lambda(1-\alpha)\left(\frac{-M_{X}^{\prime}(-r)}{\left(1-\alpha M_{X}(-r)\right)^{2}}\right)+\lambda(1-\alpha p)\left(\frac{M_{Y}^{\prime}(-r)}{\left(1-\alpha p M_{Y}(r)\right)^{2}}\right) \\
& +\lambda(1-\alpha q)\left(\frac{M_{Z}^{\prime}(-r)}{\left(1-\alpha q M_{Z}(r)\right)^{2}}\right) . \tag{4.28}
\end{align*}
$$

Then we substitute $r=0$ into (4.28) and get,

$$
\begin{aligned}
c^{\prime}(0)= & -I d+\lambda(1-\alpha) \frac{-E X}{(1-\alpha)^{2}}+\lambda(1-\alpha p) \frac{E Y}{(1-\alpha p)^{2}} \\
& +\lambda(1-\alpha q) \frac{E Z}{(1-\alpha q)^{2}} \\
= & -I d-\frac{\lambda}{1-\alpha} E X+\frac{\lambda}{1-\alpha p} E Y+\frac{\lambda}{1-\alpha q} E Z \\
< & 0
\end{aligned}
$$

where we use Proposition 3.1.4 and Propositions 4.2.1-4.2.3 (2) to obtain the last inequality.
Hence, $c^{\prime}(0)<0$.
To prove (3), consider

$$
\begin{aligned}
c^{\prime \prime}(r)= & \lambda(1-\alpha)\left(\frac{\left(M_{X}^{\prime \prime}(-r)\left(1-\alpha M_{X}(-r)\right)^{2}+2 \alpha\left(M_{X}^{\prime}(-r)\right)^{2}\left(1-\alpha M_{X}(-r)\right)\right.}{\left(1-\alpha M_{X}(-r)\right)^{4}}\right) \\
& +\lambda(1-\alpha p)\left(\frac{M_{Y}^{\prime \prime}(r)\left(1-\alpha p M_{Y}(r)\right)^{2}+2 \alpha p\left(M_{Y}^{\prime}(r)\right)^{2}\left(1-\alpha p M_{Y}(r)\right)}{\left(1-\alpha p M_{Y}(r)\right)^{4}}\right) \\
& +\lambda(1-\alpha q)\left(\frac{M_{Z}^{\prime \prime}(r)\left(1-\alpha q M_{Z}(r)\right)^{2}+2 \alpha q\left(M_{Z}^{\prime}(r)\right)^{2}\left(1-\alpha q M_{Z}(r)\right)}{\left(1-\alpha q M_{Z}(r)\right)^{4}}\right) \\
= & \lambda(1-\alpha)\left(\frac{M_{X}^{\prime \prime}(-r)}{\left(1-\alpha M_{X}(-r)\right)^{2}}+\frac{2 \alpha\left(M_{X}^{\prime}(-r)\right)^{2}}{\left(1-\alpha M_{X}(-r)\right)^{3}}\right) \\
& +\lambda(1-\alpha p)\left(\frac{M_{Y}^{\prime \prime}(r)}{\left(1-\alpha p M_{Y}(r)\right)^{2}}+\frac{2 \alpha p\left(M_{Y}^{\prime}(r)\right)^{2}}{\left(1-\alpha p M_{Y}(r)\right)^{3}}\right) \\
& +\lambda(1-\alpha q)\left(\frac{M_{Z}^{\prime \prime}(r)}{\left(1-\alpha q M_{Z}(r)\right)^{2}}+\frac{2 \alpha q\left(M_{Z}^{\prime}(r)\right)^{2}}{\left(1-\alpha q M_{Z}(r)\right)^{3}}\right) .
\end{aligned}
$$

As we know that moment generating function is always positive. From the fact that $0<M_{X}(-r)<1$ and $0<\alpha<1$. So, the term of $1-\alpha M_{X}(-r)$ is greater than 0 . Since $M_{Y}(r)<\frac{1}{\alpha p}$ and $M_{Z}(r)<\frac{1}{\alpha q}$, we can get that the terms of $1-\alpha p M_{Y}(r)$ and $1-\alpha q M_{Z}(r)$ are greater than 0 for $0<p, q<1$ and $0<p+q<1$. Hence, we can conclude that the right hand side of the last equation is positive. Therefore, $c^{\prime \prime}(r)>0$.

To prove (4), From Theorem 4.3.1, the adjustment coefficient can be express as

$$
\begin{aligned}
c(r)= & -r I d+\lambda(1-\alpha) M_{X}(-r)\left(\frac{1}{1-\alpha M_{X}(-r)}\right)+\lambda(1-\alpha p) M_{Y}(r)\left(\frac{1}{1-\alpha p M_{Y}(r)}\right) \\
& +\lambda(1-\alpha q) M_{Z}(r)\left(\frac{1}{1-\alpha q M_{Z}(r)}\right)-3 \lambda .
\end{aligned}
$$

From the right hand side of the equation, we can see that the terms of moment generating functions $M_{Y}(r)$ and $M_{Z}(r)$ grow faster than the polynomial term, determined by the term of -rId. Moreover, from Proposition 4.3.1 (3), we have $1-\alpha M_{X}(-r), 1-\alpha p M_{Y}(r)$ and $1-\alpha q M_{Z}(r)$ are positive for $0<p, q<1$ and $0<p+q<1$. Hence, $\lim _{r \rightarrow \infty} c(r) \equiv \infty$.

4.4 Numerical example

In this section, we study the effect of ruin probability and value at risk comparing with the parameters of premiums, claims and surrenders via numerical example by using Python and R programming.

Our examples are performed for a special case where we assume that the sequence of premium sizes $X=\left\{X_{i, k}\right\}_{i, k=1,2, \ldots}$ is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{X}}$, the sequence of claim sizes $Y=\left\{Y_{i, k}\right\}_{i, k=1,2, \ldots}$. is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{Y}}$ and the sequence of surrender values $Z=\left\{Z_{i, k}\right\}_{i, k=1,2, \ldots}$ is a sequence of i.i.d. random variables which are exponentially distributed with mean $\frac{1}{\beta_{Z}}$, respectively.

Therefore, the moment generating functions of X, Y and Z are defined by $M_{X}(-r)=\frac{\beta_{X}}{\beta_{X}+r}, M_{Y}(r)=\frac{\beta_{Y}}{\beta_{Y}-r}$ and $M_{Z}(r)=\frac{\beta_{Z}}{\beta_{Z}-r}$, respectively, for $r<\min \left\{\beta_{Y}, \beta_{Z}\right\}$.

4.4.1 Numerical example for the ruin probability

In this section, we study the effect of the ruin probability in the term of premiums, claims and surrenders.

The approximation ruin probability, defined in (2.2), be written as

$$
\Psi(u) \simeq e^{-R u}
$$

where R is the adjustment coefficient.

Firstly, we will calculate the unique positive solution of the adjustment coefficient equation as follows.

From theorem 4.3.1, we have,

$$
\begin{aligned}
0= & c(r) \\
= & -r I d+\lambda(1-\alpha) M_{X}(-r)\left(\frac{1}{1-\alpha M_{X}(-r)}\right)+\lambda(1-\alpha p) M_{Y}(r)\left(\frac{1}{1-\alpha p M_{Y}(r)}\right) \\
& +\lambda(1-\alpha q) M_{Z}(r)\left(\frac{1}{1-\alpha q M_{Z}(r)}\right)-3 \lambda \\
= & -r I d+\lambda(1-\alpha)\left(\frac{\beta_{X}}{(1-\alpha) \beta_{X}+r}\right)+\lambda(1-\alpha p)\left(\frac{\beta_{Y}}{(1-\alpha p) \beta_{Y}-r}\right) \\
& +\lambda(1-\alpha q)\left(\frac{\beta_{Z}}{(1-\alpha q) \beta_{Z}-r}\right),
\end{aligned}
$$

where $0<p, q<1,0<p+q<1$ and $r<\min \left\{(1-\alpha p) \beta_{Y},(1-\alpha q) \beta_{Z}\right\}$.

Next, we will study the effect of ruin probability by changing the parameters of premium size, claim size, surrender values and investment in Section 4.4.1.1. In Section 4.4.1.2, we will consider the effect of ruin probability in terms of probabilities of claims and surrenders.

4.4.1.1 Effects from premiums size, claim size and surrender value

In this section, we will discuss the trend of ruin probability comparing with income and expenses of insurance company where the income are determined by the premium sizes and investments and the expenses are determined by the claim sizes and surrender values, respectively. The parameters of the model considered in this section are the mean of premiums $\left(\frac{1}{\beta_{X}}\right)$, the mean of claims $\left(\frac{1}{\beta_{Y}}\right)$ and the mean of surrenders $\left(\frac{1}{\beta_{Z}}\right)$ and investment (I).

For this section, we set the values of $I=10, d=0.2, \lambda=2, \alpha=0.25, p=$ $0.4, q=0.07$ and the initial surplus $u=12$.

Scenario 4.1: The trend of ruin probability in terms of the parameter β_{X} where the parameters β_{Y} and β_{Z} are fixed ($\beta_{Y}=\beta_{Z}=1.5$). In this scenario, we consider different values of β_{X} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The values of the upper bound of the ruin probability are given in Table 4.1. The corresponding plot is presented in Figure 4.1.

Table 4.1: Parameter $\beta_{X} \in[0.5,2]$ and their upper bound of ruin probability

β_{X}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.003013	0.006638	0.013735	0.049486	0.145657

Figure 4.1: Trend of the ruin probability when β_{X} increases for INAR(1) risk model

From Table 4.1 and Figure 4,1, we can see that the ruin probability increases when β_{X} increases. That is the ruin probability increases when the mean of premium size decreases.

Scenario 4.2 : The trend of ruin probability in terms of the parameter β_{Y} where the parameters β_{X} and β_{Z} are fixed $\left(\beta_{X}=0.5\right.$ and $\left.\beta_{Z}=1.5\right)$. In this scenario, we consider different values of β_{Y} which are $0.5,0.75,1.0,1.5$ and 2.0, respectively. The values of the upper bound of the ruin probability are given in Table 4.2. The corresponding plot is presented in Figure 4.2.

Table 4.2: Parameter $\beta_{Y} \in[0.5,2]$ and their upper bound of ruin probability

β_{Y}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.656398	0.189402	0.060250	0.008994	0.002348

Figure 4.2: Trend of the ruin probability when β_{Y} increases for $\operatorname{INAR}(1)$ risk model

Table 4.2 and Figure 4.2 show that the ruin probability decreases and reaches to 0 as parameter β_{Y} increases. It means that the ruin probability decreases when the mean of claim size decreases.

Scenario 4.3: The trend of ruin probability in terms of the parameter β_{Z} where the parameters β_{X} and β_{Y} are fixed $\left(\beta_{X}=0.5\right.$ and $\left.\beta_{Y}=1.5\right)$. In this scenario, we consider different values of β_{Z} which are $0.5,0.75,1.0,1.5$ and 2.0, respectively. The values of the upper bound of the ruin probability are given in

Table 4.3. The corresponding plot is presented in Figure 4.3.
Table 4.3: Parameter $\beta_{Z} \in[0.5,2]$ and their upper bound of ruin probability

β_{Z}	0.5	0.75	1.0	1.5	2.0
Upper bound	0.558193	0.156177	0.050661	0.008994	0.002994

Figure 4.3: Trend of the ruin probability when β_{Z} increases for $\operatorname{INAR}(1)$ risk model

From Table 4.3 and Figure 4.3, we can see that the ruin probability decreases and reaches to 0 when parameter β_{Z} increases. It means that the ruin probability decreases when the mean of surrender value decreases.

Scenario 4.4: The trend of ruin probability in terms of the investment I where the parameters β_{X}, β_{Y} and β_{Z} are fixed ($\beta_{X}=0.5$ and $\beta_{Y}=\beta_{Z}=1.5$). In this scenario, we consider different values of investment which are 1.0, 3.0, 5.0, 8.0 and 10.0 , respectively. The values of the upper bound of the ruin probability are given in Table 4.4. The corresponding plot is presented in Figure 4.4.

Table 4.4: Parameter $I \in[1,10]$ and their upper bound of ruin probability

Investment	1.0	3.0	5.0	8.0	10.0
Upper bound	0.053791	0.029349	0.015519	0.005795	0.003013

Figure 4.4: Trend of the ruin probability when I increases for $\operatorname{INAR}(1)$ risk model

Table 4.4 and Figure 4.4 show that the ruin probability decreases when the investment increase. It means that the more amount the insurance company invests in financial markets, the smaller value of ruin probability.

From the result in Scenario 4.1-4.4, we can see that the ruin probability increases as the income of the model, determined by the mean of premiums and investment, decrease. Whereas the ruin probability decreases as the expenses of the model, determined by means of claims and surrender, decrease.

4.4.1.2 Effects from the probabilities of claims and surrenders

In this section, we will study the change of the ruin probability in terms of the probability of claims (p) and the probability of surrenders (q).

For this section, we set the values of $I=10, d=0.2, \lambda=2, \alpha=0.25, \beta_{X}=$ $1, \beta_{Y}=2, \beta_{Z}=1.5$ and the initial surplus $u=12$.

Scenario 4.5 : The trend of ruin probability in terms of probability of claims p when q is fixed ($q=0.04$). In this scenario, we consider different values of p which are $0.001,0.01,0.01,0.5$ and 0.9 , respectively. The values of the upper bound of the ruin probability are given in Table 4.5. The corresponding plot is presented in Figure 4.5.

Table 4.5: Parameter $p \in(0,0.9]$ and their upper bound of ruin probability

p	0.001	0.01	0.1	0.5	0.9
Upper bound	0.00129	0.00127	0.001471	0.002683	0.005553

Figure 4.5: Trend of the ruin probability when p increases for $\operatorname{INAR}(1)$ risk model

From Table 4.5 and Figure 4.5, we can see that the ruin probability increases as the probability p increases. It means that the more claims occur, the higher value of ruin probability.

Scenario 4.6 : The trend of ruin probability in terms of probability of claims q when p is fixed $(p=0.04)$. In this scenario, we consider different values of q which are $0.001,0.01,0.01,0.5$ and 0.9 , respectively. The values of the upper
bound of the ruin probability are given in Table 4.6. The corresponding plot is presented in Figure 4.6.

Table 4.6: Parameter $q \in(0,0.9]$ and their upper bound of ruin probability

q	0.001	0.01	0.1	0.5	0.9
Upper bound	0.001241	0.001267	0.001561	0.004093	0.011302

Figure 4.6: Trend of the ruin probability when q increases for $\operatorname{INAR}(1)$ risk model

Table 4.6 and Figure 4.6 show that the ruin probability increases when parameter q increases. It means that the more surrenders occur, the higher value of ruin probability.

The result of Scenario 4.5 and 4.6 show that the increased in the probability of claims (p) and the probability of surrenders (q) make more the value of ruin probability.

4.4.2 Numerical Example for the value at risk

In this section, we will study the value at risk (VaR) which is a risk measure measuring the risk of loss-profit process in our risk model.

The value at risk at the confidence level ω for the $\operatorname{INAR}(1)$ risk model, denoted by $\operatorname{VaR}_{\omega}\left(S_{n}\right)$, is the ω-quantile of the distribution of the loss-profit S_{n} of the risk model. The $\operatorname{VaR}_{\omega}\left(S_{n}\right)$ can be written as

$$
\begin{equation*}
\operatorname{VaR}_{\omega}\left(S_{n}\right)=\inf \left\{k \in \mathbb{R} \mid F_{S_{n}}(k)>\omega\right\} \tag{4.29}
\end{equation*}
$$

where $F_{S_{n}}(k)$ be the cumulative distribution function of S_{n}.
For our model, the loss-profit process S_{n}, define in (3.5), can be expressed as

$$
\begin{aligned}
S_{n} & =I d n+\sum_{i=1}^{n} A_{i}-\sum_{i=1}^{n} B_{i}-\sum_{i=1}^{n} C_{i} \\
& =I d n+\sum_{i=1}^{n} \sum_{k=1}^{N_{i}} X_{i, k}-\sum_{i=1}^{n} \sum_{k=1}^{N_{i}(p)} Y_{i, k}-\sum_{i=1}^{n} \sum_{k=1}^{N_{i}(q)} Z_{i, k},
\end{aligned}
$$

where $\left\{N_{i} ; i \in \mathbb{N}\right\},\left\{N_{i}(p) ; i \in \mathbb{N}\right\}$ and $\left\{N_{i}(q) ; i \in \mathbb{N}\right\}$ follow $\operatorname{INAR}(1)$ model, defined in (4.3) - (4.5), respectively.

From (4.29), we can see that we need to have the distribution of S_{n} in order to obtain the value at risk. However, it is difficult to obtain the distribution of S_{n}. Therefore, we will apply the Fast Fourier Transform (FFT) algorithm, proposed in [5], to approximate the distribution of S_{n}.

The characteristic function of S_{n}, denoted by $\phi_{S_{n}}(r)$, can be written as follows. Similar to provide $E\left[e^{-r S_{n}}\right]$ in the proof of Theorem 4.3.1, we have

$$
\begin{aligned}
\phi_{S_{n}}(r) & =E\left[e^{i r S_{n}}\right] \\
& =E\left[e^{i r I d n}\right] \cdot G_{P_{n}}\left(\phi_{X}(r)\right) \cdot G_{P_{n}(p)}\left(\phi_{Y}(-r)\right) \cdot G_{P_{n}(q)}\left(\phi_{Z}(-r)\right),
\end{aligned}
$$

where $P_{n}=N_{1}+\cdots+N_{n}, P_{n}(p)=N_{1}(p)+\cdots+N_{n}(p)$ and $P_{n}(q)=N_{1}(q)+\cdots+$ $N_{n}(q)$, where
(1) $G_{P_{n}}\left(\phi_{X}(r)\right)$

$$
\begin{aligned}
=\exp \{ & 2 \lambda \phi_{X}(r)\left(\frac{1-\left(\alpha \phi_{X}(r)\right)^{n-1}}{1-\alpha \phi_{X}(r)}\right) \\
& +\lambda(1-\alpha) \phi_{X}(r)\left(\frac{n-2}{1-\alpha \phi_{X}(r)}-\frac{\alpha \phi_{X}(r)-\left(\alpha \phi_{X}(r)\right)^{n}}{\left(1-\alpha \phi_{X}(r)\right)^{2}}\right) \\
& \left.+\frac{\lambda}{1-\alpha}\left(\alpha^{n-1} \phi_{X}^{n}(r)-1\right)-\lambda(n-1)\right\},
\end{aligned}
$$

(2) $G_{P_{n}(p)}\left(\phi_{Y}(-r)\right)$

$$
\begin{aligned}
=\exp \{ & 2 \lambda \phi_{Y}(-r)\left(\frac{1-\left(\alpha p \phi_{Y}(-r)\right)^{n-1}}{1-\alpha p \phi_{Y}(-r)}\right) \\
& +\lambda(1-\alpha p) \phi_{Y}(-r)\left(\frac{n-2}{1-\alpha p \phi_{Y}(-r)}-\frac{\alpha p \phi_{Y}(-r)-\left(\alpha p \phi_{Y}(-r)\right)^{n}}{\left(1-\alpha p \phi_{Y}(-r)\right)^{2}}\right) \\
& \left.+\frac{\lambda}{1-\alpha p}\left((\alpha p)^{n-1} \phi_{Y}^{n}(-r)-1\right)-\lambda(n-1)\right\},
\end{aligned}
$$

and
(3) $G_{P_{n}(q)}\left(\phi_{Z}(-r)\right)$

$$
\begin{aligned}
=\exp \{ & 2 \lambda \phi_{Z}(-r)\left(\frac{1-\left(\alpha q \phi_{Z}(-r)\right)^{n-1}}{1-\alpha q \phi_{Z}(-r)}\right) \\
& +\lambda(1-\alpha q) \phi_{Z}(-r)\left(\frac{n-2}{1-\alpha q \phi_{Z}(-r)}-\frac{\alpha q \phi_{Z}(-r)-\left(\alpha q \phi_{Z}(-r)\right)^{n}}{\left(1-\alpha q \phi_{Z}(-r)\right)^{2}}\right) \\
& \left.+\frac{\lambda}{1-\alpha q}\left((\alpha q)^{n-1} \phi_{Z}^{n}(-r)-1\right)-\lambda(n-1)\right\} .
\end{aligned}
$$

Next, we will study the trend of the value at risk by varying various parameter of claim size and surrender values.

4.4.2.1 Effects from claim size and surrender values

Since the value at risk focuses on the financial losses. Then we see the behavior of the value at risk against the loss parameters, which are the claim size and surrender value. In this section, we study the trend of the value at risk in terms of mean of claims $\left(\frac{1}{\beta_{Y}}\right)$ and the mean of surrenders $\left(\frac{1}{\beta_{Z}}\right)$ by varying the parameters β_{Y} and β_{Z}, respectively.

For this section, we set the values of parameters $I=10, d=0.2, \lambda=2, \alpha=$ $0.25, \beta_{X}=0.5, p=0.4, q=0.07$ and $n=12$.

Scenario 4.7: The trend of value at risk in the terms of parameter β_{Y} where the parameter β_{Z} is fixed $\left(\beta_{Z}=1.5\right)$. The confidence level considered in this scenario is $\omega=0.95$. In this scenario, we consider different values of β_{Y} which are $0.5,0.75,1.0,1.5$ and 2.0 , respectively. The Values at Risk are given in Table 4.7.

Table 4.7: Parameter $\beta_{Y} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$

β_{Y}	0.5	0.75	1.0	1.5	2.0
$\operatorname{VaR}_{0.95}\left(S_{12}\right)$	118.47	117.96	116.40	112.44	110.22

Table 4.7 shows that the value at risk decreases when parameter β_{Y} increases. That is the value at risk decreases when the mean of claim size decreases.

Scenario 4.8: The trend of value at risk in terms of parameter β_{Z} where the parameter β_{Y} is fixed ($\beta_{Y}=1.5$). The confidence level considered in this scenario is $\omega=0.95$. In this scenario, we consider different values of β_{Z} which are $0.5,0.75$, 1.0, 1.5 and 2.0, respectively. The Values at Risk are given in Table 4.8.

Table 4.8: Parameter $\beta_{Z} \in[0.5,2]$ and $\operatorname{VaR}_{0.95}\left(S_{12}\right)$

β_{Z}	0.5	0.75	1.0	1.5	2.0
$\operatorname{VaR}_{0.95}\left(S_{12}\right)$	118.50	117.81	116.19	112.44	110.37

Table 4.8 shows that the value at risk decreases as parameter β_{Z} increases. That is the value at risk decreases when the mean of surrender value decreases.

From Scenario 4.7 and Scenario 4.8, we can conclude that the value at risk, described as the maximum loss of the company, decreases when the either claim sizes or surrender values decreases.

CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis, we introduce two discrete-time risk models by incorporating the concepts of investment and surrender where the number of premiums, claims and surrenders follow integer-valued time series.

In chapter 3, we construct the first order integer-valued moving average risk model with investment and surrender. We also provide some properties of the model. Moreover, we study the risk measures for this model which are the approximation of ruin probability and the value at risk. Finally, we discuss the risk measures of the model by numerical simulations.

In chapter 4, we construct the first order integer-valued autoregressive risk model with investment and surrender and derive some of its properties. Then, we provide the approximation of ruin probability of the model. We derive the adjustment coefficient of this model and prove that it has a unique positive solution. We discuss the trend of ruin probability and value at risk against the model parameters by numerical simulations in the last section of this chapter.

The research can be extended in many direction. For example, we can consider the concepts of investment and surrender to the higher orders of integervalued moving average and integer-valued autoregressive processes of our data. We can also consider other general time series models such as autoregressive moving average process.

REFERENCES

[1] M. A. Al-Osh and A. A. Alzaid. First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis, 8:261-275, 1987.
[2] Z. Bao. The expected discounted penalty at ruin in the risk process with random income. Applied Mathematics and Computation, 179:559-566, 2006.
[3] H. Cossette, E. Marceau, and V. Maume-Deschamps. Discrete-time risk models based on time series for count random variables. ASTIN Bulletin, 40: 123-150, 2010.
[4] P. Emberchts, C. Kluppelberg, and T. Mikosch. Risk Theory. Applications of Mathematics (Stochastic Modelling and Applied Probability), Springer, Berlin, Heidelberg, 1997.
[5] R. J. Gray and S. M. Patt. Risk Modelling in General Insurance : From Principles to Practice. International Series on Actuarial Science, Cambridge University Press, 2012.
[6] X. Hu, L. Zhang, and W. Sun. Risk model based on the first-order integervalued moving average process with compound Poisson distributed innovations. Scandinavian Actuarial Journal, 5:412-425, 2018.
[7] Y. J. Huang and W. G. Yu. Studies on a double Poisson geometric insurance risk model with interference. Discrete Dynamics in Nature and Society, Article ID 128796, 2013.
[8] H. Joe. Multivariate Models and Dependence Concepts. Chapman and Hall, London, 1997.
[9] C. Labbe and K. Sendova. The expected discounted penalty function under a risk model with stochastic income. Applied Mathematics and Computation, 215:1852-1867, 2009.
[10] E. McKenzie. Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability, 20:822-835, 1988.
[11] H. Shi and D. Wang. An approximation model of the collective risk model with $\operatorname{INAR}(1)$ claim process. Communications in Statistics - Theory and Methods, 43:5305-5317, 2014.
[12] G. Temnov. Risk models with stochastic premium and ruin probability estimation. Journal of Mathematical Sciences, 196(1):84-96, 2014.
[13] W. G. Yu and Y. J. Huang. A dependent insurance risk model with surrender and investment under the thinning process. Mathematical Problems in Engineering, Article ID 134246, 2015.
[14] L. Zhang, X. Hu, and B. Duan. Optimal reinsurance under adjustment coefficient measure in a discrete risk model based on Poisson MA(1) process. Scandinavian Actuarial Journal, 5:455-467, 2011.

BIOGRAPHY

[^0]: Department : . Mathematics and Student's Signature Computer Science Advisor's Signature \qquad
 Field of Study : . Applied Mathematics and
 . . Computational Science....
 Academic Year : . 2019

