EPIPHYTIC MICROBIOTA OF KAI *Cladophora* sp. FROM NAN RIVER, NAN PROVINCE, THAILAND

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Botany Department of Botany FACULTY OF SCIENCE Chulalongkorn University Academic Year 2021 Copyright of Chulalongkorn University ้จุลชีวภาพอิงอาศัยของไก *Cladophora* sp. จากแม่น้ำน่าน จังหวัดน่าน ประเทศไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาพฤกษศาสตร์ ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	EPIPHYTIC MICROBIOTA OF KAI Cladophora sp.
	FROM NAN RIVER, NAN PROVINCE, THAILAND
By	Miss Karnjana Ruen-pham
Field of Study	Botany
Thesis Advisor	Assistant Professor ANCHITTHA SATJARAK, Ph.D.
Thesis Co Advisor	Professor Linda E. Graham, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF SCIENCE (Professor POLKIT SANGVANICH, Ph.D.) THESIS COMMITTEE (Associate Professor SEHANAT PRASONGSUK, Ph.D.) (Assistant Professor ANCHITTHA SATJARAK, Ph.D.) (Assistant Professor ANCHITTHA SATJARAK, Ph.D.) Thesis Co-Advisor

(Professor Linda E. Graham, Ph.D.) Examiner

(Assistant Professor TOSAK SEELANAN, Ph.D.)

Examiner (Assistant Professor ROSSARIN POLLAWATN, Ph.D.) External Examiner (Sophon Sirisattha, Ph.D.)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University กาญจนา เรือนผาม : จุลชีวภาพอิงอาศัยของไก *Cladophora* sp. จากแม่น้ำน่าน จังหวัดน่าน ประเทศไทย. (EPIPHYTIC MICROBIOTA OF KAI *Cladophora* sp. FROM NAN RIVER, NAN PROVINCE, THAILAND) อ.ที่ปรึกษาหลัก : ผศ. ดร.อัญชิษฐา สัจจารักษ์, อ.ที่ปรึกษาร่วม : ศ. ดร.ลินดา อี. แกรม

ใก หรือ สาหร่ายใก คือ สาหร่ายสีเขียวสกุล *Cladophora* ที่กระจายพันธุ์จำนวนมากในภากเหนือของ ประเทศไทย นิยมใช้เป็นอาหารและยา ในธรรมชาตินั้นสาหร่าย *Cladophora* ทำหน้าที่เสมือนนิเวศวิศวกร (ecological engineer) โดยปรับแต่งและรักษาสภาพของแหล่งที่อยู่อาศัยด้วยการผลิตออกซิเจนและให้ที่อยู่อาศัยแก่ สิ่งมีชีวิตทั้งโพรแคริโอตและยูแคริโอตที่อาศัยอยู่บนพื้นผิวของสาหร่ายซึ่งเรียกว่าจุลชีวภาพอิงอาศัย (epiphytic microbiota) และอาจมีบทบาทสำคัญต่อระบบนิเวศเช่นกัน การศึกษาจุลชีวภาพอิงอาศัยในสาหร่าย Cladophora ใน ้อดีตมีเพียงการศึกษาในสหรัฐอเมริกาเท่านั้น เพื่อเพิ่มองก์กวามรู้จุลชีวภาพอิงอาศัยในสาหร่าย Cladophora นั้นการศึกษา นี้จึงมีวัตถุประสงค์ในการศึกษาจุลชีวภาพอิงอาศัยในสาหร่าย *Cladophora* จากแม่น้ำน่าน จังหวัดน่าน ประเทศไทย โดย ใช้ amplicon-based metagenomic analysis จากการศึกษาพบยูแกริโอตจำนวน 575 สกุลและแบกทีเรีย ้ จำนวน 698 สกุล โดยมีแบกทีเรีย 227 สกุลปรากฏในทุกพื้นที่ที่เกี่บตัวอย่างในการศึกษา แบคทีเรียที่มีความหลากหลาย เหล่านี้มีหน้าที่เกี่ยวข้องในกระบวนการต่าง ๆ เช่น การย่อยสลายเซลลูโลส การสังเคราะห์วิตามินบี 12 และการตรึงไนโตรเจน ทั้งนี้จากการเปรียบเทียบข้อมูลจากการศึกษานี้และการศึกษาก่อนหน้าพบแบคทีเรียร่วม 17 สกุลที่ปรากฏในทั้งการศึกษานี้และ การศึกษาในสหรัฐอเมริกา จากการอนุมานบทบาทของแบคทีเรียจากชื่อสกุลพบว่าแบคทีเรียที่พบร่วมกันเหล่านี้อาจมีบทบาท สำคัญต่อในกระบวนการต่าง ๆ เช่น การสังเคราะห์วิตามินบี 12 (Flavobacterium และ Pseudomonas) การ หลั่ง extracellular polymeric substance (Terrimonas) และ ดีในตริฟิเคชัน (Acidovorax และ Methylotenera) ผลการศึกษานี้ช่วยสร้างความเข้าใจต่อองค์ประกอบทางอนุกรมวิธาน (taxonomic composition) และการอนุมานหน้าที่ทางนิเวศ (putative ecological function) ของจุลชีวภาพอิงอาศัยใน สาหร่าย Cladophora sp.

Chulalongkorn University

สาขาวิชา ปีการศึกษา พฤกษศาสตร์ 2564

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
ลายมือชื่อ อ.ที่ปรึกษาร่วม

6270004023 : MAJOR BOTANY

KEYWOR Cladophora, Kai, Metagenomic analysis, Epiphytic microbiota D:

Karnjana Ruen-pham : EPIPHYTIC MICROBIOTA OF KAI *Cladophora* sp. FROM NAN RIVER, NAN PROVINCE, THAILAND. Advisor: Asst. Prof. ANCHITTHA SATJARAK, Ph.D. Coadvisor: Prof. Linda E. Graham, Ph.D.

Cladophora is a cosmopolitan green algal genus in northern Thailand, commonly known as Kai or Sa Rai Kai, which the local people use for culinary and medicinal purposes. In nature, Cladophora acts as an ecological engineer in the ecosystem by creating, modifying, and maintaining the habitat by providing oxygen and microhabitats for several organisms, including prokaryotes and eukaryotes, namely epiphytic microbiota. These epiphytic microbiota living on the algal host's surface might exhibit crucial roles in the ecosystem. However, most understandings of the Cladophora microbiota were from the USA. Therefore, this study aims to investigate the Cladophora microbiota collected from Nan River, Nan Province, Thailand, by using amplicon-based metagenomic analysis. Results revealed a total of 575 eukaryotic genera and 698 bacterial genera, which were present variedly in the study sites. Among the identified bacterial taxa, 227 genera were shared taxa, taxa commonly present in all sites. Some were highly abundant taxa, which might be involved in various processes, e.g., cellulose degradation, vitamin B_{12} biosynthesis, and nitrogen fixation. Among the shared taxa, 17 genera were core taxa, taxa present in *Cladophora* microbiota of this and other previous studies. Some were bioinformatically inferred to play crucial roles in freshwater Cladophora microbiome, e.g., vitamin B₁₂ biosynthesis (Flavobacterium and Pseudomonas), extracellular polymeric substance secretion (Terrimonas), and denitrification (Acidovorax and Methylotenera). These findings allow us to understand more of the taxonomic composition and the putative ecological functions of Cladophora sp. microbiome.

Chulalongkorn University

Field of Study: Botany

Academic 2021 Year: Student's Signature

Advisor's Signature

Co-advisor's Signature

ACKNOWLEDGEMENTS

First and foremost, I would like to express my most profound appreciation to my beloved advisor, Assistant Professor Dr. Anchittha Satjarak, and my co-advisor, Professor Dr. Linda E. Graham, for directing me during my master's study. I could not have accomplished my thesis without their constant support, brilliant perspective, thoughtful guidance, encouragement, and excellent motivation. I am very thankful to have had them during my pleasant journey.

Besides, I am grateful to my thesis committees: Associate Professor Dr. Sehanat Prasongsuk, Assistant Professor Dr. Tosak Seelanan, Assistant Professor Dr. Rossarin Pollawatn, and Dr. Sophon Sirisattha for their valuable time, comments, advice, and questions which strengthened my knowledge and thesis writing.

My sincere thanks go to the Plant Biomass Utilization Research Unit and Center of Excellence in Environment and Plant Physiology, Department of Botany, for allowing me to borrow the equipment.

I am also grateful to members of the Plants of Thailand Research Unit, Department of Botany, for their kindly help during my master's study, especially Wikrom Chantapatchot and Adisak Lakhom, for their assistance in fieldwork.

This master's thesis would have been achievable without the financial sponsorship from the National Science and Technology Development Agency: A research funding project for young scientist researchers, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University, and Development and Promotion of Science and Technology Talents Project (DPST).

Last but not least, thanks to my precious friends, who could not be stated individually, for always supporting, accompanying, and cheering me up throughout my master's study. Finally, this endeavour would not have been possible without my family and good old dog for their forthcoming encouragement and support.

Karnjana Ruen-pham

TABLE OF CONTENTS

Page

iii
ABSTRACT (THAI) iii
iv
ABSTRACT (ENGLISH)iv
ACKNOWLEDGEMENTSv
TABLE OF CONTENTS
LISTS OF TABLES viii
LISTS OF FIGURESix
CHAPTER I INTRODUCTION
1.1 Background and rationales1
1.2 Objective
CHAPTER II LITERATURE REVIEW
2.1 Genus Cladophora Kützing
2.2 <i>Cladophora</i> sp. from Nan River
2.3 Metagenomic analysis
2.4 Previous studies of <i>Cladophora</i> metagenomic analysis7
CHAPTER III MATERIALS AND METHODS10
3.1 Materials10
3.2 Methods
3.2.1 Literature review11
3.2.3 Sample collection12
3.2.3 Identification of the <i>Cladophora</i> host14
3.2.4 Study of the diversity of epiphytic microbiota of Kai Cladophora sp 17
3.2.4.1 Morphological identification17
3.2.4.2 Taxonomic identification using amplicon-based metagenomic analysis17

3.2.4.3 Ecological functional inference
3.2.4.4 Diversity of <i>Cladophora</i> sp. microbiota20
3.2.5 Comparative analysis of <i>Cladophora</i> microbiota
CHAPTER IV RESULTS
4.1 Identification of the <i>Cladophora</i> host22
4.2 Study of the diversity of epiphytic microbiota of Kai Cladophora sp40
4.2.1 Morphological identification
4.2.2 Taxonomic identification using amplicon-based metagenomic analysis.42
4.2.3 Ecological functional inference
4.2.4 Diversity of <i>Cladophora</i> sp. microbiota62
4.3 Comparative analysis of <i>Cladophora</i> microbiota
CHAPTER V DISCUSSION
5.1 Identification of the <i>Cladophora</i> host
5.2 Study of the diversity of epiphytic microbiota of Kai Cladophora sp
5.3 Comparative analysis of <i>Cladophora</i> microbiota72
CHAPTER VI CONCLUSION
6.1 Conclusions
6.2 Perspectives
APPENDIX Aานาลงกรณ์มหาวิทยาลัย
APPENDIX B
APPENDIX C
REFERENCES
VITA

LISTS OF TABLES

Page

Table 3.1 Primer sets for <i>Cladophora</i> marker genes amplification used in this study.
Table 3.2 Primer sets for 16S rRNA, 18S rRNA, and ITS amplicon analyses
Table 3.3 Sequence read archives of previous Cladophora studies
Table 4.1 Raw reads of 18S, 23S, 28S rDNAs and ITS amplicons obtained from
Sanger sequencing technology
Table 4.2 The raw reads of 18S rDNA amplified by the universal 18S rDNA primersand sequenced by Illumina Miseq technology from site CKD, representing theidentical of Cladophora reads obtained from the Cladophora host of this study40
Table 4.3 Putative ecological functions involving in nitrogen cycling
Table 4.4 Putative ecological functions involving in other nutrient cyclings
Table 4.5 Putative ecological functions of fungal genera present in the <i>Cladophora</i> microbiota. 60

LISTS OF FIGURES

Pag	e
	-

Figure 2.1 Rivers and tributaries in Thailand
Figure 3.1 Algal sampling sites and locations of reported water quality along the Nan
River, Nan Province, Thailand
Figure 3.2 Four replicates of fresh algal samples collected from a sampling site stored in sterile Whirl-Pak [®] sampling bags
Figure 4.1 Views of collecting sites of Nan River, Nan Province, Thailand22
Figure 4.2 Habitats of algal samples collected from Nan River, Nan province23
Figure 4.3 Total water level and rainfall of Nan River during 2019–202024
Figure 4.4 Physical parameters of Nan River collected at seven-time points from February 2019 to December 2020
Figure 4.5 Micrographs of algal samples collected from Nan River, Nan Province27
Figure 4.6 Agarose gel electrophoresis of PCR amplified products from primers listed in table 3.1
Figure 4.7 Maximum likelihood trees inferred from 18S rDNA of <i>Cladophora</i> and other members of Cladophoraceae
Figure 4.8 Maximum likelihood trees inferred from 23S rDNA of <i>Cladophora</i> and other members of Cladophoraceae
Figure 4.9 Maximum likelihood trees inferred from 28S rRNA of <i>Cladophora</i> and other members of Cladophoraceae
Figure 4.10 Maximum likelihood trees inferred from ITS rRNA of <i>Cladophora</i> and other members of Cladophoraceae
Figure 4.11 Micrographs of cyanobacterial members of <i>Cladophora</i> microbiota41
Figure 4.12 Micrograph of protozoal member of <i>Cladophora</i> microbiota41
Figure 4.13 Micrographs of stramenopile-members of <i>Cladophora</i> microbiota42
Figure 4.14 Agarose gel electrophoresis of amplicons
Figure 4.15 Stacked bar chart of relative abundance of bacterial phyla based on 16S amplicon analysis
Figure 4.16 Stacked bar chart of relative abundance of the five most abundant genera and others based on 16S amplicon analysis

Figure 4.17 Venn diagram of 509 bacterial genera obtained from 16S rDNA amplicon analysis
Figure 4.18 Stacked bar chart of relative abundance of eukaryotic supergroups based on 18S rDNA amplicon analysis
Figure 4.19 Stacked bar chart of relative abundance of the five most abundant genera and others based on 18S rDNA amplicon analysis
Figure 4.20 Venn diagram of 179 eukaryotic genera obtained from 18S rDNA amplicon analysis. 50
Figure 4.21 Stacked bar chart of relative abundance of fungal taxa based on the ITS amplicon analysis. 51
Figure 4.22 Venn diagram of 236 fungal genera obtained from 18S rDNA and ITS amplicons analyses. 52
Figure 4.23 Box plots of bacterial phyla alpha diversity indices
Figure 4.24 Box plots of bacterial genera alpha diversity indices
Figure 4.25 Box plots of eukaryotic genera alpha diversity indices
Figure 4.26 Principal coordinate analysis based on Bray-Curtis dissimilarity of Cladophora microbiota. 66

CHULALONGKORN UNIVERSITY

CHAPTER I INTRODUCTION

1.1 Background and rationales

Cladophora is a cosmopolitan green algal genus widely distributed in diverse environments across arctic and tropical regions. The algal genus was established in 1843 by Friedrich Traugott Kützing (Munir et al., 2019). The unique characteristics are dichotomous branching filaments and reticulate plastid. In the filament, the apical or intercalary cells divide the lateral branches below the septums between cells, resulting in a high-surface-area of *Cladophora*. The attachment organ that holds the algal body to the substrate is called rhizoid or holdfast. This organ includes branched filaments that grow from basal cells or other cells in the basal region. If not attached to the substrate, *Cladophora* freely floats on the water surface like a mat or tuft (Dodds & Gudder, 1992; Michalak & Messyasz, 2021; Setchell & Gardner, 1920; van den Hoek, 1963; Zulkifly et al., 2013).

In Thailand, *Cladophora* is widely present in most of the regions of the country, if not all (e.g., Laungsuwon & Chulalaksananukul, 2014; Peerapornpisal et al., 2005; 2006; Satjarak et al., 2021; Surayot et al., 2016; Thiamdao et al., 2012; Tsutsui et al., 2015; Yarnpakdee et al., 2021). However, the study of *Cladophora* has long been focused on the alga present in the Nan River, where it abundantly appears as turfs attached to substrate underwater or freely floated on the water surface in the dry season during November and March (e.g., Buntha et al., 2020; Peerapornpisal et al., 2005; 2006; Thiamdao et al., 2012). This green alga is known as Kai or Sa Rai Kai and is traditionally used for medicine and food as side dishes, e.g., seasoned ground paste known as Kai Yee and seasoned crisps known as Kai Phan (Peerapornpisal et al., 2005).

In terms of ecology, *Cladophora* acts as an ecological engineer, an organism that creates, modifies, and maintains the habitat by providing oxygen and microhabitats for several organisms, including prokaryotes and eukaryotes, namely epiphytic microbiota (Michalak & Messyasz, 2021; Zulkifly et al., 2012). To

investigate the taxonomic diversity of these epiphytic microbiota, classical approaches, such as morphological observation under light microscope and cultureddependent methods, have been employed. However it has been estimated that only approximately 1% of the diversity can be cultivated in the laboratory, and thus the majority of the taxa were not known (Hugenholtz & Tyson, 2008; Riesenfeld et al., 2004). The advancement of sequencing technology, e.g., next-generation sequencing technology, thus plays an important role in overcoming these limitations. By means of metagenomic sequencing, the techniques capture the DNA of the microbiota, which allows us to infer the taxonomic diversity by comparing the sequenced DNA data to the appropriate taxonomic references.

Currently, there are two main approaches for metagenomic studies – shotgun and amplicon methods. Shotgun method captures all the DNA present in the sample and thus is usually high-priced. Another method is the amplicon method, which selectively captures the regions of interest, typically hypervariable regions of marker genes that can be used for taxonomic classification. Therefore, this amplicon method is more economical and is suitable for studies focusing on the taxonomic diversity of the microbiota (Levy et al., 2018; Ranjan et al., 2016).

At the current time, the epiphytic microbiota of *Cladophora* has been studied in only a few places, i.e., Lake Michigan and Lake Mendota, USA (Braus et al., 2017; Chun et al., 2017; Graham et al., 2015; Zulkifly et al., 2012) and the epiphytic microbiota of *Cladophora* in Thailand has not been explored. Therefore, this work aims to study the taxonomic diversity of epiphytic microbiota of Kai *Cladophora* sp. from Nan River, Nan Province, Thailand, using amplicon-based metagenomic analysis. The results from this study will help us to understand the taxonomic composition and putative ecological functions of Kai *Cladophora* sp. microbiota.

1.2 Objective

This study aims to study the taxonomic diversity of epiphytic microbiota of Kai *Cladophora* sp. from Nan River, Nan Province, Thailand.

CHAPTER II LITERATURE REVIEW

2.1 Genus Cladophora Kützing

Genus Cladophora Kützing (1843) is a cosmopolitan green alga widely distributed in freshwater, marine, and brackish shoreline habitats across arctic and tropical regions (Cambridge et al., 1990; Hayakawa et al., 2012; van den Hoek, 1979; Whitton, 1970). The unique morphological characteristics of genus *Cladophora* are filamentous, monosiphonous, branched, and multinucleated. Each cell contains parietal or reticulate chloroplast with numerous pyrenoids. Either or both apical and intercalary cells usually divide the lateral branch just below the septum between cells by forming an oblique cross wall, resulting in dichotomous branching. Asexual reproduction occurs via fragmentation, production of the four-flagellated zoospores from zoosporangia, and production of akinete (thick-wall resting cells) when subjected to unfavorable conditions. For sexual reproduction, fertilization of the twoflagellated isogametes forms the zygote. The attachment organ that holds the algal body to the substrate is called rhizoid or holdfast, which grows from basal cells or other cells in the basal region. Various substrates have been recorded, e.g., rock, bedrock, boulder, cobble, gravel, wood dock, plants, and shells of Dreissena species. When not attached to those substrates, this alga freely floats on the water surface as a mat, packed patch, or tuft (Dodds & Gudder, 1992; Michalak & Messyasz, 2021; Setchell & Gardner, 1920; van den Hoek, 1963; Zulkifly et al., 2013). Over the past 200 years, 600 species have been classified as genus Cladophora, whereas 400 species were re-classified as synonyms. Nowadays, 198 species are taxonomically accepted (Guiry & Guiry, 2022; van den Hoek, 1963, 1979).

2.2 *Cladophora* sp. from Nan River

In northern Thailand, the Nan River is one of the main tributaries of the Chao Phraya River that flows from the northern part of the country toward the central plain, where it joins with the three other main tributaries, Ping River, Wang River, and Yom River, in Nakhon Sawan Province (Figure 2.1). The Nan River flows through Nan, Uttaradit, Phitsanulok, Phichit, and Nakhon Sawan Provinces, where Nan Province accounts for one-third of the course of the river (Nusit et al., 2019; Trisurat et al., 2019).

Figure 2.1 Rivers and tributaries in Thailand.

Map created by Mic Greenberg and taken from Olson and Kreznor (2021).

Cladophora bloom present as green turfs attached to substrates underwater or freely floated on the water surface in Nan River, Nan Province, in the dry season during November and March (Buntha et al., 2020; Peerapornpisal et al., 2005; Thiamdao et al., 2012). The alga is locally known as Kai or Sa Rai Kai, which the local people use for culinary purposes in various cuisines, e.g., Kai with curry paste, ground and seasoned Kai known as Kai Yee, crispy and seasoned Kai known as Kai Phan, Kai noodles, Kai cracker biscuits, and Kai butter cakes.

The toxicological evaluation showed that *Cladophora* growing in clean water is safe to consume. Analysis showed that the alga is highly nutritious. It is a good source for carbohydrates, pigments, fatty acids, phenolic compounds, and vitamins (Prazukin et al., 2020). Local people also use Kai for medicinal purposes, e.g., rejuvenation, induction of appetite, soothing stomach ulcers, and expediting recovery from several common disorders (Fahprathanchai et al., 2006; Peerapornpisal et al., 2005). However, the practice is area-specific and is much less popular in the newer generations.

The presence of the algal bloom and its usage by local people initiated various scientific research questions. Studies reported that extraction from *C. glomerata* exhibited anti-gastric ulcer, anti-inflammatory, analgesic, hypotensive, anticancer, antidiabetic, and antioxidant activities. *C. glomerata*, thus, could be a potential source of 4.16 materials used as therapeutic agents (Khuantrairong & Traichaiyaporn, 2009; Laungsuwon & Chulalaksananukul, 2013; Peerapornpisal et al., 2006; Srimaroeng et al., 2015; Suanmali et al., 2017). The high cellulose content in the *Cladophora* cell wall could be a material for bioethanol production (Boonprab et al., 2018). Also, these turfs of *C. glomerata* aided in wastewater treatment by removing nutrients, such as phosphorus (Khuantrairong & Traichaiyaporn, 2011, 2012).

In contrast to the presence of various applications of the alga, these studies based the algal taxonomy on only one taxonomic study done by Thiamdao et al. (2012). In the study, they explored the diversity of the *Cladophora* species present in the Nan River and suggested that only one species of *Cladophora*, which was *C*. *glomerata*, was present in the Nan river basin. However, their maximum likelihood estimation suggested that the amplified DNA region used in their analysis exhibited

high variability in the DNA sequences of the resolved clades. In this study, the *C*. *glomerata* samples collected from Nan were not resolved as a single clade but were separately placed within clades consisting of *C*. *glomerata* collected from other river basins. They also suggested that the algal sequences showed a high variability when compared among samples. However, the sequences were not deposited in the public repository, and thus further tests could not be performed. For this reason, sampling and annotating the algal host by performing phylogenetic analysis of marker genes employed in this study would provide crucial information for the study of genus *Cladophora* in Thailand.

2.3 Metagenomic analysis

To study the composition of the microbiota, the classical approach, i.e., culturing technique, has mainly been used in the laboratory. Although the technique is beneficial as researchers obtain all the surviving isolated microbial taxa, it has been estimated that only approximately 1% of the microbial diversity can be cultivated in the laboratory when using standard culturing techniques (Amann et al., 1995). Thus, most of the microorganisms in the environmental samples were not discovered, and a more advanced technique was needed to investigate the unknown species. Consequently, metagenomic sequencing was introduced. This technique captures DNA of microbiota in the environmental samples, which allows us to infer the diversity by comparing the sequenced DNA data to the appropriate taxonomic references.

Formerly, the traditional metagenomic approach was cultivation-dependent and used to identify genes of interest or novel microorganisms. The first step of this method is to extract all microbial DNA from the environmental samples, representing the collection of DNA of all environmental microbes. Then, the DNA libraries are constructed using restriction enzymes or mechanical shearing. The DNA fragments are then inserted into an appropriate vector system depending on library size. The DNA vectors will later be transformed into suitable hosts as recombinant vectors. Then, this set of hosts will be further screened using functional and sequence-based approaches with different random vectors. Therefore, this traditional metagenomic approach requires culture-dependent techniques and cannot capture the entire

7

microbial community, namely, microbiota residing in the environmental samples (Daniel, 2005; Hugenholtz & Tyson, 2008; Mande et al., 2012; Riesenfeld et al., 2004).

The advancement of sequencing technology, especially next-generation sequencing technology, thus plays an essential role in overcoming the limitations of culture-dependent techniques. This next-generation sequencing technology helps to obtain the information of the uncultured epiphytic microbiota by two main approaches - shotgun and amplicon methods. The shotgun method captures all the DNA present in the sample by sequencing all the extracted metagenomic DNA and thus provides us both the taxonomic diversity and functional diversity of the microbiota. However, it requires a laborious analysis of extensive, complex, and complicated information and is comparatively high-priced. Another method is the amplicon method, which selectively captures the regions of interest, typically the hypervariable regions of marker genes, by utilizing the universal primers and polymerase chain reactions. The amplicons of the marker genes are then sequenced and used for taxonomic classification by comparing against the appropriate databases. Examples of the widely used universal gene markers are regions of small subunit ribosomal ribonucleic acid (SSU; 16S rRNA and 18S rRNA genes), large subunit ribosomal ribonucleic acid (LSU; 23S rRNA and 23S rRNA genes), and the internal transcribed spacer (ITS) region. By sequencing only the selected regions, i.e., the amplicon product, this amplicon method thus is more economical and is suitable for studies focusing on the taxonomic diversity of the microbiota (De Filippis et al., 2017; Levy et al., 2018; Ranjan et al., 2016; Sharpton, 2014).

2.4 Previous studies of *Cladophora* metagenomic analysis

Previously, the epiphytic microbiota of *Cladophora* has been studied in only a few places, i.e., studies from Lake Michigan and Lake Mendota, USA. The study of taxonomic diversity of the epiphytic microbiota of *Cladophora* using metagenomic approach was firstly done in 2011, which was reported by Zulkifly et al. (2012). In the study, they used 16S amplicon analysis to investigate the microbiota of *Cladophora* present in Lake Mendota. In the study, they found 99 unique bacterial genera

belonging to classes Betaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria. Then, in the following year, additional information of the *Cladophora* microbiota from Lake Mendota was obtained by using the shotgun method and was published by Graham et al. (2015). All together, the amplicon and the shotgun metagenomic studies bioinformatically suggested the presence of various bacteria, protists, fungi, and metazoans that might provide key biogeochemical and ecological functions, including cobalamin (vitamin B_{12}) biosynthesis, methane oxidation, cellulose degradation, and nitrogen fixation.

Naturally, *Cladophora* requires vitamin B_{12} for survival (Hoflmann, 1990), but this alga cannot produce the vitamin itself. The source of this vitamin for *Cladophora* was not known until Zulkifly et al. (2012) revealed the presence of vitamin B_{12} -producing bacterial genera *Flavobacterium*, *Cetobacterum*, and *Plesiomonas shigelloides* in the *Cladophora* microbiome. Later, this finding was supported by the presence of enzymes in aerobic and anaerobic vitamin B_{12} synthesis pathways in the shotgun analysis by Graham et al. (2015). The presence of these vitamin B_{12} -producers within the microbiome fosters not only the *Cladophora* host but also other epiphytic vitamin B_{12} -requiring microbes, e.g., methanotrophs (Graham et al., 2015).

The algal habitat for these two studies was Lake Mendota, a freshwater habitat known to house methanogens, bacteria that produce methane, one of the strongest greenhouse gases. To reduce the amount of methane, a bacterial group namely methanotroph is of interest because these methanotrophs can oxidize methane, resulting in carbon dioxide and oxygen. Results from Zulkifly et al. (2012) showed that the aerobic methanotrophs – *Methylotenera*, *Methylibium*, and *Methylobacter* were present in the *Cladophora* microbiome. The presence of these methanotrophs contributed to two main functions in the microbiome. Firstly, they reduce the amount of methane in the habitats by oxidizing methane using oxygen gas released as the by-product from photosynthesis of the *Cladophora* host. In the meantime, by using the oxygen gas released by the alga, the methanotrophs also reduce the risks of photorespiration in the alga.

Another biochemical function of the epiphytic microbes is cellulose degradation. One good source of cellulose is the algal cell wall, which contains a high

cellulose content. Results from Zulkifly et al. (2012) suggested the presence of cellulose-degrading bacteria, e.g., *Byssoorax* and *Sorangium*. In congruence, Graham et al. (2015) revealed additional cellulose-degrading bacteria, fungi, and protists, and their 25 putative cellulose-degrading enzymes (cellulases). Overall, the massive growth of *Cladophora* (representing the carbon source of the habitat) and the presence of cellulase sequences suggested that the alga-microbe interaction plays an essential role in the carbon cycling process within the microbiome. Lastly, nitrogen fixation was recognized by the presence of nitrogenase (*nif*H) genes and nitrogen-fixing bacteria – *Dechloramonas*, *Blastobacter*, and *Devosia* (Zulkifly et al., 2012).

The work published by Zulkifly et al. (2012) and Graham et al. (2015) initiated Braus et al. (2017) to investigate the spatiotemporal dynamics of the bacterial microbiota of *Cladophora* present in Lake Mendota. In the study of Braus et al. (2017), they used the universal primers to target the hypervariable region of 16S rRNA gene to capture the bacterial taxonomic diversity of the algal microbiome in three different sites of the lake during six different times in 2014. Results showed that the taxa present within the *Cladophora* microbiota were similar to that of Zulkifly et al. (2012) and Graham et al. (2015). However, the diversity and the abundance of bacteria were different when compared among collecting sites and times of the year.

In addition to Lake Mendota, another place where *Cladophora* abundantly grows is Lake Michigan. Studies show that the alga collected from Lake Michigan also harboured various kinds of microbes that also displayed dynamics of diversity and abundance (Byappanahalli et al., 2019; Chun et al., 2017). These microbes were hypothesized to be involved in many biochemical activities. Among these, nitrogen fixation was their main interest as one of the studies performed shotgun method to capture the taxonomic diversity and additionally performed amplicon method to capture the region of nitrogenase (*nifH*) gene. Results showed that not only the non-photosynthetic bacteria living in the algal microbiota that can fix nitrogen molecules but also organisms belonging to other lineages, such as cyanobacteria and archaea (Byappanahalli et al., 2019).

CHAPTER III MATERIALS AND METHODS

This work was divided into two parts, including fieldwork and laboratory work. For the fieldwork, fresh algal samples were collected from Nan River, Nan Province, Thailand. Then the preserved algal samples were later processed in the laboratory at the Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University.

3.1 Materials

- 3.1.1 Sample collection
 - Whirl-Pak[®] (Nasco, USA)
 - DNA/RNA Shield™
 - Nitrile disposable gloves
 - Cooler box

3.1.2 Identification of the *Cladophora* host

- Compound microscope: ECLIPSE E100 microscope (Nikon Corporation, Japan)
- PCR machine: PTC-100[™] Programmable Thermal Controller (MJ Research Inc, USA)
- Green PCR Master Mix Direct-Load (biotechrabbit, Germany)
- Micropipette: Pipette One Touch[™] Single-channel (Biosigma, Italy)
- Primers (Macrogen, Inc., South Korea)

SB1F (5'-GATTAAGCCATGCATGTSTARG-3')

SB1R (5'-CGTYCGTTACCGGAATCAACCTGAC-3')

p23SrV_f1 (5'-GGACAGAAAGACCCTATGA- '3)

p23SrV_r1 (5'-TCAGCCTGTTATCCCTAGAG- '3)

C1 (5'-ACCCGCTGAATTTAAGCATAT- '3)

D2 (5'-TCCGTGTTTCAAGACGG- '3)

CladoITS-9F (5'-CCGCCCGTCGCTCCTACCGATTGGGTGTG- '3)

CladoITS-7R (5'-TCCCTTTTCGCTCGCCGTTACTA- '3)

- 3.1.3 Study of the diversity of epiphytic microbiota of Kai *Cladophora* sp.
 - Compound microscope: ECLIPSE E100 microscope (Nikon Corporation, Japan)
 - DNA/RNA ShieldTM
 - Quick-DNATM Fecal/Soil Microbe Kits (Zymo Research, USA)
 - Nanodrop Spectrophotometers (Nanodrop Technologies, USA)

3.2 Methods

3.2.1 Literature review

The related literature was searched through an online database. In addition, the four physical parameters of Nan River, including Water Quality Index (WQI), Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), and ammonia nitrogen content, were obtained from the Regional Environmental Office 2 (Lampang) (http://www.reo02.mnre.go.th/th/index; accessed on 27 August 2021). These physical parameters were collected from four collecting sites as follows (Figure 3.1).

- 1) Site NR1 located at Thung Chang district (19°25'37.1"N 100°52'50.7"E)
- 2) Site NR2 located at Tha Wang Pha district (19°07'31.2"N 100°48'38.5"E)
- 3) Site NR4 located at Mueang Nan district (18°46'32.0"N 100°46'44.8"E)
- 4) Site NR6 located at Wiang Sa district (18°34'13.2"N 100°45'17.5"E)

Moreover, the total water level and rainfall of Nan River were obtained from the telemetering system of the Electricity Generating Authority of Thailand (EGAT) (https://watertele.egat.co.th). These parameters were collected from three collecting sites as follows (Figure 3.1).

- 1) Site NR3 located at Tha Wang Pha district (19°00'54.3"N 100°46'51.1"E)
- 2) Site NR5 located at Mueang Nan district (18°46'27.8"N 100°46'39.1"E)
- 3) Site NR7 located at Wiang Sa district (18°31'24.2"N 100°46'33.8"E)

3.2.3 Sample collection

Sample collections were done during the late growing season in March 2020. Five collecting sites were selected along Nan River, Nan Province, Thailand as follows (Figure 3.1).

- 1) Site CKD located at Chiang Klang district (19°13'34.0"E 100°49'22.8"N)
- 2) Site PUA located at Pua district (19°09'37.4"E 100°48'39.0"N)
- 3) Site TD1 located at Tha Wang Pha district (19°07'00.8"E 100°48'11.9"N)
- 4) Site TD2 located at Tha Wang Pha district (19°02'18.8"E 100°46'56.2"N)
- 5) Site MND located at Mueang Nan district (18°58'52.1"E 100°46'36.3"N)

Four replicates of the algal samples were collected from each site. To prevent contamination in the fieldwork, disposable nitrile gloves were worn during the sample collection. The fresh algal samples were collected and submerged in their environmental water in the sterile Whirl-Pak[®] sampling bags (Figure 3.2). Additionally, some of the algal filaments from each replicate were carefully separately stored in microcentrifuge tubes by submerging in DNA/RNA Shield[™] for later DNA extractions. Then, all samples were kept in the cooler box during transportation.

CHULALONGKORN UNIVERSITY

Figure 3.1 Algal sampling sites and locations of reported water quality along the Nan River, Nan Province, Thailand.

The river network was derived from HydroSHEDS (Lehner et al., 2008). The thick blue line represents the Nan River of Nan Province, where the water flows from the northern to the southern part of Nan Province. Thinner blue lines represent other smaller rivers. Yellow circles represent algal sampling sites. Triangles represent sites with reported water physical quality, where pink triangles were locales reported by the Regional Environmental Office 2 (Lampang), and green triangles were locales reported by the telemetering system of the Electricity Generating Authority of Thailand.

Figure 3.2 Four replicates of fresh algal samples collected from a sampling site stored in sterile Whirl-Pak[®] sampling bags.

3.2.3 Identification of the *Cladophora* host

Morphological identification of the Cladophora host

To identify the *Cladophora* host, the algal samples were transferred to sterile Petri dishes. Some of the algal filaments were picked using sterile forceps and washed three times to remove loosely attached materials. The washed samples were then observed under an ECLIPSE E100 compound light microscope and identified based on their morphology to the genus level using "How to know the freshwater algae" (Prescott, 1964). Only the samples identified as *Cladophora* were further studied, and the non-*Cladophora* samples were discarded.

Chulalongkorn University

DNA extraction and amplification of marker genes

Samples morphologically identified as genus *Cladophora* were chosen for the downstream analysis. The corresponding samples stored in DNA/RNA ShieldTM were washed three times using DNA/RNA ShieldTM to remove loosely attached materials. The algal filaments were then morphologically identified for reassurance. Then, the total genomic DNA was extracted using Quick-DNATM Fecal/Soil Microbe Kits.

This study used four conserved regions as marker genes, including 18S rRNA gene, 23S rRNA gene, 28S rRNA gene, and ITS1–5.8S–ITS2 (ITS) region. Each conserved region was amplified using Green PCR Master Mix Direct-Load and

primer pair (Table 3.1) in a PTC-100TM PCR machine with suitable thermal cycles as follows.

18S rRNA gene was amplified using primers SB1F and SB1R (Thiamdao et al., 2012) with an initial denaturation step at 94°C for 4 min, followed by 35 cycles of 30 sec at 95°C, 30 sec at 56°C, and 1 min at 72°C, with a final extension at 72°C for 6 min.

23S rRNA gene was amplified using primers p23SrV_f1 and p23SrV_r1 (Sherwood & Presting, 2007) with an initial denaturation step at 94°C for 4 min, followed by 35 cycles of 20 sec at 94°C, 30 sec at 55°C, and 30 sec at 72°C, with a final extension at 72°C for 10 min.

28S rRNA gene was amplified using primers C1 and D2 (Zhu et al., 2018) with an initial denaturation step at 94°C for 5 min, followed by 31 cycles of 30 sec at 94°C, 30 sec at 57°C, and 30 sec at 72°C, with a final extension at 72°C for 5 min.

ITS region was amplified using primers CladoITS-9F and CladoITS-7R (Zhu et al., 2018) with an initial denaturation step at 94°C for 1 min, followed by 30 cycles of 10 sec at 98°C, 30 sec at 65°C, and 2 min at 68°C, with a final extension at 72°C for 10 min.

Marker gene	Iarker gene Primer name Primer sequence		Referenc	
18S	SB1F	F: 5'-GATTAAGCCATGCATGTSTARG-3'	Thiamdao	
rRNA	SB1R	R: 5'-CGTYCGTTACCGGAATCAACCTGAC-3'	et al., 2012	
23S	p23SrV_f1	F: 5'-GGACAGAAAGACCCTATGA-3'	Sherwood - & Presting, 2007)	
rRNA	p23SrV_r1	R: 5'-TCAGCCTGTTATCCCTAGAG-3'		
28S	C1	F: 5'-ACCCGCTGAATTTAAGCATAT-3'	Zhu et al.,	
rRNA	D2	R: 5'-TCCGTGTTTCAAGACGG-3'	2018	
ITS	CladoITS-9F	F:5'-CCGCCCGTCGCTCCTACCGATTGGGTGTG-3'	Zhu et al.,	
region	CladoITS-7R	R: 5'-TCCCTTTTCGCTCGCCGTTACTA-3'	2018	

Table 3.1 Primer sets for *Cladophora* marker genes amplification used in this study.

The amplified PCR products were then sequenced using Sanger sequencing technology done by Macrogen, Inc. (Seoul, South Korea). To check the quality of amplified sequences, the raw reads were trimmed using 4Peaks v 1.8 software (http://nucleobytes.com/index.php/4peaks) to remove the nucleotide positions whose Phred quality scores were less than 25. Then, the trimmed sequences were compared to the NCBI non-redundant nucleotide database (accessed on 20 April 2021) using BLASTN (Altschul et al., 1990). Only sequences that returned the BLASTN search results as *Cladophora* were used for downstream phylogenetic analysis.

Phylogenetic estimation of Cladophora host using 18S, 23S, and 28S rDNAs, and ITS reads sequenced by Sanger sequencing

To estimate the relationship of the *Cladophora* host collected in this study, *Cladophora* 18S rDNA, 23SrDNA, 28S rDNA, and ITS region sequences were acquired from NCBI GenBank (accessed and retrieved on 20 April 2021 [Table B.1–4]). The nomenclatures of the downloaded sequences were re-evaluated by searching in AlgaeBase (http://www.algaebase.org/; accessed on 30 April 2021) to make sure that the sequence names were updated to the current taxonomic classification.

Sequences belonging to each corresponding conserved DNA region were aligned using MAFFT alignment v 7.490 (Katoh et al., 2009). Then, the substitutional model of each alignment matrix was assessed using jModelTest2 v 2.1.6 (Darriba et al., 2012) before performing maximum likelihood analysis using RAxML-NG (Kozlov et al., 2019) via the web-server available at https://raxml-ng.vital-it.ch. The substitution models used in this study included TIM2+G for 18S rDNA, TPM1uf+G for 23S rDNA, HKY+G for 28S rDNA, and TIM3+G for ITS. Additional Bayesian framework for all marker genes was performed using MrBayes v 3.2.7a (Ronquist et al., 2012) available on the CIPRES XSEDE Portal (Miller et al., 2012). Four independent chains were run for 1,000,000 cycles, and consensus topologies were calculated after 25,000 burn-in cycles. Then, the trees were visualized using FigTree v. 1.4.4 (Rambaut, 2018).

Additional phylogenetic estimation of Cladophora sp. using amplicons from the universal 18S rDNA primers and Illumina Miseq sequencing

The presence of ambiguity in the sequenced amplicons and the limited number of reference sequences made it impossible to compare the taxonomy of the *Cladophora* host across the sampling sites. Therefore, to investigate whether the collected *Cladophora* samples were from the same algal population, the sequences of the 18S rDNA regions amplified by the universal 18S rDNA primers in the metagenomic analysis were compared and used for phylogenetic estimation, as described in the previous step.

3.2.4 Study of the diversity of epiphytic microbiota of Kai Cladophora sp.

3.2.4.1 Morphological identification

Similarly, only samples from *Cladophora*-dominant sites were observed for the microscopic organisms under the compound light microscope. At this step, the observed microbes were identified to genus level using suitable identification keys based on the lineages of the organisms. The keys included "Key to some common freshwater protozoa" (Johnson, 1956), "An annotated key to the identification of commonly occurring and dominant genera of algae observed in the phytoplankton of the United States" (Greeson, 1982), "Freshwater algae in Northwest Washington" (Matthews, 2016), and "Diatom taxonomy and identification keys" (Blanco, 2020).

Ghulalongkorn University

3.2.4.2 Taxonomic identification using amplicon-based metagenomic analysis

DNA extraction, marker gene amplification, and sequencing

The metagenomic DNA was extracted using Quick-DNA[™] Fecal/Soil Microbe Kits. The quality and quantity of the extracted DNA were assessed using Nanodrop Spectrophotometers. Then, the taxonomic identification of the microbiota was assessed using the amplicon metagenomic approach. In this study, the amplicons of 16S rRNA, 18S rRNA, and ITS marker genes were amplified by the universal primer sets (Table 3.2) and thermal cycles as follows.

16S rRNA region V3–V4 was amplified using primers 341F and 805R (Klindworth et al., 2013) with an initial denaturation step at 94°C for 3 min, followed

by 25 cycles of 20 sec at 98°C, 30 sec at 55°C, and 30 sec at 72°C, with a final extension at 72°C for 5 min.

18S rRNA region V4 was amplified using primers Reuk454FWD1 and V4r (Bradley et al., 2016) with an initial denaturation step at 98°C for 2 min, followed by 28 cycles of 20 sec at 98°C, 30 sec at 50°C, and 30 sec at 72°C, with a final extension at 72°C for 1 min.

ITS region was amplified using primers ITS-1F and ITS-2R (White et al., 1990) with an initial denaturation step at 94°C for 3 min, followed by 25 cycles of 20 sec at 98°C, 30 sec at 60°C, and 30 sec at 72°C, with a final extension at 72°C for 5 min.

Marker gene	Primer name	Primer sequence	Reference
16S rRNA	341F	F: 5'-CCTACGGGNGGCWGCAG-3'	Klindworth
region V3–V4	805R	R: 5'-GACTACHVGGGTATCTAATCC-3'	et al., 2013
18S rRNA	Reuk454FWD1	F: 5'-CCAGCASCYGCGGTAATTCC-3'	Bradley et
region V4	V4r	R: 5'-CCTTCYGCAGGTTCACCTA-3'	al., 2016
ITS	ITS-1F	F: 5'-CTTGGTCATTTAGAGGAAGTAA-3'	White et al.,
region	ITS-2R จุฬาส	R: 5'-GCTGCGTTCTTCATCGATGC-3'	1990

Table 3.2 Primer sets for 16S rRNA, 18S rRNA, and ITS amplicon analyses.

GHULALONGKORN UNIVERSITY

The 16S, 18S, and ITS amplicons were amplified, purified, indexed, and 250 bp paired-end sequenced using an Illumina MiSeq at Omics Sciences and Bioinformatics Center (Chulalongkorn University, Bangkok, Thailand). The raw reads are available under NCBI BioProject PRJNA761577 and BioSamples SAMN21356006 (CKD), SAMN21356007 (PUA), and SAMN21356008 (TD1).

Read propressing

The 250 paired-end raw reads were accessed for quality using FastQC (Andrews, 2010), as shown in figure C.1A. Then, the low-quality nucleotides were removed by using Trimmomatic v. 0.39 (Bolger et al., 2014) with the parameter

SLIDINGWINDOW:4:30, where the software scanned the nucleotide reads as a fourbase wide sliding window and trimmed the sequence by removing the nucleotide positions starting at the window where the average quality within dropped below 30 of the Phred quality score. Then, FastQC was used again to re-check the quality of the trimmed reads (Figure C.1B).

Taxonomic classification

To annotate the taxa present in the *Cladophora* microbiota, the sequenced amplicons were compared to their appropriate reference databases. 16S and 18S amplicons were compared against the SILVA ribosomal RNA gene database release 138.1 (Quast et al., 2013) using SILVA next-generation sequencing (SILVAngs) analysis platform. In this automatic software pipeline, the input reads were aligned using SILVA INcremental Aligner (SINA) (Pruesse et al., 2012). In this step, only the 16S and 18S amplicons that were highly similar to the reference sequences were retained. Reads that did not meet the alignment criteria were all discarded from the data set. The discarded reads included reads shorter than 50 aligned nucleotides, reads with ambiguities greater than 2%, reads with homopolymer greater than 2%, and reads with low aligned quality reads (aligned reads with identity value under 50% and alignment score under 40).

The reads that passed this alignment step were clustered into Operational Taxonomic Units (OTUs) by using cd-hit-est (Li & Godzik, 2006) with the parameters accurate mode, ignoring overhangs, and assigning identity criteria of 1.00 and 0.98. After this step, the highly similar reads were then grouped together as an OTU, and only a single sequence from each OTU was used for taxonomic classification by performing BLASTN against the non-redundant SILVA SSU Ref database release 138.1 (Quast et al., 2013) with standard settings.

In metagenomic analysis, due to the conservation of the DNA markers used in the analysis, the PCR amplicons might be formed from two or more biological sequences joined together, known as chimeric reads. Therefore, this study checked for the presence of these chimeric reads by searching the annotated amplicons against the SILVA release 138.1 SSU by using VSEARCH v. 2.8.3.0 (Rognes et al., 2016) implemented in Galaxy v. 1.39.5.1 (Afgan et al., 2018). Then, the annotated OTUs that arose from these chimeric amplicons were discarded from the analysis. Finally, only the reads with good BLASTN results with a percentage of "(% sequence identity + % alignment coverage)/2" greater than or equal to 93 were taxonomically classified into taxa. If not, the OTUs were defined as "No relatives".

Amplicons of ITS were similarly searched using BLASTN against their appropriate database, the UNITE fungal database v. 7.2 (Nilsson et al., 2019), using parameter E-value = 1E-10, and the chimeric reads were similarly removed by searching against UCHIME reference datasets v. 7.1 (Nilsson et al., 2015).

3.2.4.3 Ecological functional inference

To infer the putative function of the present microbiota, concepts described in Zulkifly et al. (2012), where the functional inference could be estimated at the genus level of the microbiota. Therefore, in this study, the genus names of the annotated OTUs were used as the queries for literature searches.

3.2.4.4 Diversity of Cladophora sp. microbiota

The annotated Cladophora microbiota collected from different locales were then assessed for their diversity. In this study, the alpha diversity was assessed to estimate the diversity within one collecting site by using alpha diversity indices, including Shannon's index, Simpson's index, Chao1, and richness. The Shannon's and Simpson's indices were calculated by using function diversity implemented in the vegan package v. 2.5-7 (Oksanen et al., 2020). The Chao1 and richness were calculated using function estimateR implemented in the same vegan package. To evaluate whether the values of alpha diversity indices were statistically different or not, One-way ANOVA (P < 0.05) and Tukey's HSD were performed using function aov implemented in stats package v. 4.0.0 (R Core Team, 2021) and function HSD.test implemented in agricolae package (de Mendiburu, 2021), respectively. These alpha indices and Tukey's HSD results were then visualized in box plots using package ggplot2 (Wickham, 2016). Beta diversity was assessed to estimate the diversity between collecting sites using Bray-Curtis dissimilarity. This Bray-Curtis dissimilarity was calculated using function vegdist implemented in vegan package (Oksanen et al., 2020) and visualized in PCoA using function cmdscale complemented in stats package (R Core Team, 2021) and package ggplot2 (Wickham, 2016).

3.2.5 Comparative analysis of *Cladophora* microbiota

To compare the microbiota of the *Cladophora* sp. collected from Nan River in this study to those collected from *Cladophora* spp. in different locales, which were Lake Michigan and Lake Mendota, USA. The read archives of those studies (Table 3.3) were acquired and re-analyzed using the methods described above. This step of re-analyzing the archived data from previous studies was crucial as the newer version of the reference might help in capturing the taxa that were not identifiable at the time.

BioProject	Sequencing technology	Sampling site	Reference	
DD IN A 260140	16S amplicon	Lake Mendota,	Prove at al 2017	
r KJINAJ00140	sequencing	Madison, USA	Diaus et al., 2017	
DD IN A 326542	16S amplicon	Lake Michigan,	Chun et al., 2017	
I KJINA320342	sequencing	Chicago, USA		
DD IN A 267502	Shotgun metagenomic	Lake Mendota,	Graham et al.,	
FKJ1NA207302	sequencing	Madison, USA	2015	

 Table 3.3 Sequence read archives of previous Cladophora studies.

CHULALONGKORN UNIVERSITY

CHAPTER IV RESULTS

4.1 Identification of the *Cladophora* host

In this study, the algal samples were collected from five collecting sites, four replicates per site, along Nan River, Nan Province, Thailand, in March 2020 (Figure 3.1). During the sampling time, the water levels at the collecting sites were about ankle to knee height (Figure 4.1), and the *Cladophora* masses appeared as turf attached to rocks, pebbles, or other substrates, such as tree branches (Figure 4.2).

Figure 4.1 Views of collecting sites of Nan River, Nan Province, Thailand. A. Site CKD, B. Site PUA. C. Site TD1, D. Site TD2, and E. Site MND.

Figure 4.2 Habitats of algal samples collected from Nan River, Nan province. A–C. Algae attached to rocks and pebbles. D. Algae attached to rocks and tree branches.

In addition to collecting the algal samples, for each replicate, the water samples were also measured for pH, ammonium, nitrate, and total phosphorus contents. Unfortunately, the water analysis was not possible. To solve this problem, the secondary data on physical parameters were acquired from Regional Environmental Office 2 (Lampang), and the information of water level and total rainfall were acquired from the telemetering system of the Electricity Generating Authority of Thailand (Figures 4.3–4).

In general, the total water level and rainfall were congruent, except for the rainy season of site NR3. During the sampling time (March 2020), when the alga was in bloom, the total water level and rainfall were averagely lower than that of other seasons (Figure 4.3). Similarly, the physical parameters were generally similar across sites (although statistical tests were not possible). By observing the graphs plotted by available information, during February and May 2020, the WQI ranged from 56

(poor) to 95 (excellent), the DO ranged from 6.1 to 8.1 mg/L, the BOD ranged from 0.47 to 2.1 mg/L, and the ammonia content ranged from 0 to 0.25 mg/L (Figure 4.4).

Figure 4.3 Total water level and rainfall of Nan River during 2019–2020. A. Site NR3, B. Site NR5, and C. Site NR7. The locations sites NR3, 5, and 7 shown in figure 3.1. Bar graphs indicate water level and line graphs indicate total rainfall.

A. Water quality index (WQI), B. Dissolved oxygen (DO), C. Biological oxygen demand (BOD), and D. Ammonia nitrogen content. WQI values were calculated from five parameters: DO, BOD, total coliform bacteria, fecal coliform bacteria, and ammonia nitrogen content. Rating scales of WQI were ranked into five classes: excellent (91–100), good (71–90), fair (61–70), poor (31–60), and very poor
(0-30). Each color indicates different water sampling sites. Asterisks indicate the estimated sampling time (March 2020).

Morphological identification of the Cladophora host

The dominant algal host of collected samples was identified to the genus level using "How to know the freshwater Algae" (Prescott, 1964). According to the algal morphology of having conspicuous branching filament, reticulate chloroplast, and thick cell wall, the samples from sites CKA, PUA, and TD1 were *Cladophora*-dominant samples (Figures 4.5A–B). On the other hand, the algal samples collected from sites TD2 and MND were *Spirogyra*-dominant (Figures 4.5C–D), as they were unbranched filaments with spiral chloroplast and mucilaginous sheath. Therefore, only *Cladophora*-dominant samples from sites CKD, PUA, and TD1 were used for this study.

Figure 4.5 Micrographs of algal samples collected from Nan River, Nan Province. A–B. *Cladophora*-dominant samples from sites CKD, PUA, and TD1. C–D. *Spirogyra*-dominant samples from sites TD2 and MND.

Phylogenetic estimation DNA extraction and amplification of marker genes

The regions of 18S rRNA, 23S rRNA, 28S rRNA, and ITS were successfully amplified from the extracted DNAs of *Cladophora*-dominant samples. These amplified PCR products were visualized using gel electrophoresis (Figure 4.6) and Sanger sequenced from both forward (5' terminal) and reverse (3' terminal) ends of the amplicons (Table 4.1). Then, only the trimmed reads with BLASTN hits annotated as *Cladophora* sequences were used for phylogenetic estimation (Tables A1–4).

Figure 4.6 Agarose gel electrophoresis of PCR amplified products from primers listed in table 3.1.

Lanes M are 100 bp DNA ladders. Lanes 1–3 are PCR amplified products of the 18S rDNA gene. Lanes 4–6 are PCR amplified products of the 23S rDNA gene. Lanes 7–9 are PCR amplified products of the 28S rDNA gene. Lane 10–12 are PCR amplified products of the ITS1-5.8S-ITS2 region. Lanes 1, 4, 7, and 10 are amplified products of CKD. Lanes 2, 5, 8, and 11 are amplified products of PUA. Lanes 3, 6, 9, and 12 are amplified products of TD1.

Table 4.1 Raw reads of 18S, 23S, 28S rDNAs and ITS amplicons obtained from

 Sanger sequencing technology.

Letters separated by hyphen of sequence name indicate marker gene, collecting site, and sequencing direction. F indicates the direction starting from the 5' terminal (forward primer). R indicates the direction starting from the 3' terminal (reverse primer). * indicates sequences that returned BLASTN search results as *Cladophora*.

a

No.	Sequence name	Sequence
1	18S- CKD-F*	TCAGGGTTAGCTACATATGGCTCGGTTCATCCGTTATAGATTATCTTCGATAGTCGCATCCTACC CGGTACCGCAATAACACTAGAGCTAATACGTGCGTAAATCCCGACTTTTGGAAGGGACGTATTT ATTAGATTTATGGCCAGCCGGGCTTGCCCGACCAGCGGTGAATCATGGTAACTTGACGGATTGC ATGGCCTCCGTGCCGGCGACGTGTCATTCAAGTTTCTGCCCATCAGGTTTCGACTGTAGTGTAT TGGACTACAGTGCCTATAACGGGTAGCGGAGGAGGAGGGGCCCCATCAGGGTTCGACTGCAGTGCCGAGGAGGGAG
2	18S- CKD-R*	AGGACATGAGCTATGACCCGCCATGCACCACCATCCGCAACATCTTTAAAGAGCTATCAATCTG TAAATCCGAATCTTGTCTGGACCTGGTAAGTTTTCCCGTGTTGAGTCAAATTAAGCCGCAGGCT CCACGCCTGGTGGTGCCGTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCG AAGCCCATAAATTTTGCTTTCGCGGAAGGTGCTGGAGGAGGCATATTGGATCCGCCCTCCAATC CCTAATTGGCATCGTTTATGGTCGAGACTACGACGGTATCTAATCGTCTTCGATCCCCCGACTT CGTCCTTGACTAATGAAAGCGTCCTTGGCAAAATGCTTTCGCAGTAGTTCGTCTTTCGCAAAATCCA AGAATTTCACCTCTGACAGCGAAATACGAATGCCCCCGACCGTCCCTATTAGCCATTACCAACA GGTCTACAGGCCAACAAGATAGACCATCGGTCATGTCGTGTTATCCCATGCTAGTGTATTCAGA GCGCGAGCTTGCTTTGAACACTCTATTTTACTCAAAGTAACCTTGGCAAGCGCCGTTCCCGGCG AGTTAACGCCGAGATACGGTCTTGCCAGAAAGACAACCCACGACAGTACTCACGAAACGCGGA CCGTCAGGGTTGCCCGAGGTTCAGCTACGGGCACTTTTAATCGCAACAACTTACATAACGCGA CCGTCAGGGTTGCCCGAGGTTCAGCTAGCGCACCAGACCTGCCCTCCAATTACCGCTAG TTGAGCTGGAATTACCGCGGCTGGCACCAGACTTGCCTCCAATTGATACTCGTTAAGTGA TTTAGATTGTTCCATTCCA
3	18S- PUA-F*	CCAGTAACCCGGTCGCTCCAATGGCTCGGTAATCAGTTATAGTTTATTTGATAGTGCATCCTACT CGGATAACCGTAGTAACACTAGAGCTAATACGTGCGTAAATCCCGACTTTTGGAAGGGACGTAT TTATTAGATTTATGGCCAGCCGGGCTTGCCCGACCAGCGGTGAATCATGGTAACTTGACGGATT GCATGGCCTCCGTGCCGGCGACGTGTCATTCAAGTTTCTGCCCCATCAGGTTTCGACTGTAGTGT ATTGGACTACAGTGCCTATAACGGGTAGCGGAGGAGGAGGCGCCCAAGTCGGAGAGGGAGG

No.	Sequence name	Sequence	
4	18S- PUA-R*	GGGCAATGACTGTTTCGACATGCACCACCATCCAAAAAATCTTTAAAGAGCTATCAATCTGTAA ATCCTAATCTTGTCTGGACCTGGTAAGTTTTCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCAC GCCTGGTGCCGTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCGAAGC CCATAAATTTGCTTTCGCGGGAAGGTGCTGGAGGAGGAGGCATATTGGATCCGCCCTCAATCCCTA ATTGGCATCGTTTATGGTCGAGGACTACGACGGTATCTAATCGTCTTCGATCCCCCGACTTTCGTC CTTGACTAATGAAAGCGTCCTTGGCAAATGCTTTCGCAGTAGTTCGTCTTTCGCAAATCCAAGA ATTTCACCTCTGACAGCGAAATACGAATGCCTTCGCAGTAGTTCGTCTTTCGCAAATCCAAGA ATTTCACCTCTGACAGCGAAATACGAATGCCCCCGACCGTCCCTATTAGCCATTACCAACAGGT CTACAGGCCAACAAGATAGACCATCGGTCATGTCGTGTTATCCCATGCTAGTGTATTCAGAGCG CGAGCTTGCTTTGAACACTCTATTTTACTCAAAGTAACCTTGGCAAGCGCCGTTCCCGGCGAGGTT AACGCCGAGGATACGGTCTTGCCAGAAAGACAACCCCAGCACAGTACTCACGAAACGCGGACCGT CAGGGTTGCCCGAGGTTCAGCTACGGGCTTTTTAATCGCAACAACTTACATATACGCTATTGGA GCTGGAATTACCGCGGCTGCTGCGCGCCGCCCCCCAATTGCTATTCTGTCACTACCTCCT GAGTTGCATTCCAATTGCAAGGCACCGCCGCCTCCCAATTGCTATTCTGTCACTACCTCCCT GAGTTGGGAATTGGGTAATTTGCCGCCCGCCTCCTGGAAGTGGTAGCCGTTTCCAGGCT CCCTCTCCGGAATCGAACCCTAATCCTCCGCTACCCGTTATAGGCACTGTAGTCCAATACACTA CAGTCGAAATCGAACCCTAATCCTCCGCTACCCGTTATAGGCACTGTAGTCCAATACACTA CAGTCGAAACCTGATGGGGCAGAAACTTGAATGAAACGTCGCCGGCACGAAGGCCATGCAAT CCGGTCAAGTTACCATGGATCACGCCTTGTTGTCGGCA	
5	18S- TD1-F*	CCGGGTAACTAGACATGGCTCGGTAATCAGTTATAGTTTATTTGATAGTGCATCCTACTCGGAT AACCGTAGTAACACTAGAGCTAATACGTGCGTAAATCCCGACTTTTGGAAGGGACGTATTTATT	
6	18S- TD1-R*	TCCGTGAGCTAGTACCAGGCCATGCACCACCATCCAAAAATCTTTAAAGAGCTATCAATCTGTA AATCCTAATCTTGTCTGGACCTGGTAAGTTTTCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCA CGCCTGGTGGTGCCGTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCGAAG CCCATAAATTTTGCTTTCGCGGAAGGTGCTGGAGGAGGAGGCATATTGGATCCGCCCTCAATCCCT AATTGGCATCGTTTATGGTCGAGACTACGACGGTATCTAATCGTCTTCGATCCCCCGACTTTCGT CCTTGACTAATGAAAGCGTCCTTGGCAAATGCTTTCGCAGTAGTTCGTCTTTCGCAAATCCAAG AATTTCACCTCTGACAGCGAAATACGAATGCCGCCGACCGTCCCTATAAGCCATTACCAACAGG TCTACAGGCCAACAAGATAGACCATCGGTCATGTCGTGTTATCCCATGCTAGTGTATTCAGAGC GCGAGCTTGCTTTGAACACTCTATTTTACTCACAGTAACCTTGGCAAGCGCCGTTCCCGGCGAG TTAACGCCGAGATACGGTCTTGCCAGAAAGACAACCCACGACAGTACTCACGAAACGCGGAGC GTCAGGGTTGCCCGAGGTTCAGCTACGGGCTTTTTAATCGCAAACTTACAAAGTCGAAACGCGGAGC GTCAGGGTTGCCCGAGGTTCAGCTACGGGCACTGTGCCTCCAATTGAAACGCGAACTACGCTATTG AAGCTGGAATTACCGCGGGCTGCTGGCACCAGACTTGCCCACGAAACTACATATACGCTATTG AAGCTGGAATTACCGCGGGCTGCTGGCACCAGAACTCCCCCCAATTGATACTCGTAAAGTGATT TAGATTGTTCTCATTCCAATTGCAGAAGCAAGCCACGCCTCCCAATTGATACTCGTAAAGTGATT TCAAGGCTCCCTCTTCCGGAAATCGAAACCCAAAATCCTCCGGCAACGGTTTCCGGCACCGGCTTCC CTGAATTGGGGATTAGGGTAATTGGCACCAAAATCCTCCGCCATTGCTATTCTGGTCACCACCGTTTC CCAGGCCCCTCTTCCGGAAACGAAAC	
7	23S- CKD-F	GAGGTCGTAGCTTATCTGGCGAGGTACGTAGAGGCTATGATCATATTCCTTTCGGCTTGTCTGTA GCCTCTCTAACATACACTCTTGTTATGCTCGATTCTGACTTCGGCCATTATCAGGTACGTAC	
8	23S- CKD-R	CATTCCCTCGGCACGTCGGATCACTAAGAGCCGACTTTCGTCTGCTCGACTTGTCAGTCTCGA GTCAAGCTCCCTTATGCCTTTACACTCGACGGCTGATTTTCCGACCAGTCTGAGGGAACCTTTGC GCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCACCTGAAACTGTCCCCT AACCGGATTATGGGGCAAAGTTAGAAATCTCAAGCTACCCGAAGGGGTGTCTCACGGATGGCT CCCATATACCCGGAGAAAGAAGATTCAAAGCCTCCCACCTATCCTGCGCAAATGAAGACCAAA GCCAATTTCAAGGTACAGAAAAGTTCCTAGGGTTTTTTTT	

No	Sequence	Saguanaa		
INU.	name	Sequence		
9	23S- PUA-F*	ACGCTTCAGTTTATGCGCAGTATAGGTGGGAGGCTATGATAATCTTTTTGCGGATGTTTGATCCT CTCTGACATACCACTCCCATTACGCTAGATTTCTAACTTTGCATCATTATCAGGACACCGTACAG CGCCTCGCGGACAGTTTGACTGGCGAGCTCGCCTCTCAAACGGTCACGGAGGCACAGTACGGTT TCCTCAGAACGGGTCGAAATCGTATCTCGAGTGTAAAGGCATAGGGAAGCTTGACTGTGAGAC CTACTAGTCGAGCAGGGACGAAAGTCGGTCCTAGTGATCTGACGGTGCTGAGTGGAAAGGCCG TCACTCAACGGATAAAGTTACTCTAGGATTTTTTGCTTCAAAA		
10	23S- PUA-R*	CCACTTGAGGAGGCGTTCCCTCAGCACCGTCAGATCACTAAGACCGACTTTCGTCCTGGC ACTTGTAGGTCTCACAGTCAAGCTTCCTTATGCCTTTACACTCTAGATACGATTTCTACCCGTTC AGAGGAAACCTTTGTGCGCCTCCGTTACCGTTTGGCGAGGCGCCCCAGCCAACAACTGCCCGC CTGAAACTGTTCTTTGACCAGATAATGATGCAAAGTTAACAATTAACATTAAGAGTGGTAT CTCACTGAGGGCTCAAACCTTTCCGGCAGAAAAGATTAAAGCTCAACATTATAAGAGTGGTAT CTCACTGAGGGCTCAAACCTTTCCAGTTACAGTAAAGCTTCATAGGCTCCCCACCTATACTGCGCCATA TAAAGTCCAATTTTCAATCTCAAGTTACAGTAAAGCTTCATAGGCCCCCCAACCGCCCTATACTGCGCCA CAACTCACAATATTTTCAATTACAGCAAAAATCACAGGCCCCCCAACCGCCCTATTACCG CAACTCACAATATTTTCAACTTATATACAGCAAAAATCACAGGCCCCCCAACCGCCCTATTACCG ATTTAAACATAGGTTCCTAGGGACAAATTAAAAGACCAAGGCCTGATGTGGCTCTGTCCCCCT TGTGAAGTGTATCGAAAAGCGGAGCATCTTTGTTTTGT		
11	23S- TD1-F*	CGTAAATCGTGATGAGGCGGTCCCTACATGCGGTCATATCGTGAAGACCTACTTTCGTCCTTGTT CGACTTGTAGGTCTCACAGTCAAGCTTCCTTATGCCTTTACACTCTAGATACAATTTCTACCCGT TCAGAGGAAACCTTTGTGCCCCTCCGTTACCGTTTGGGAGCCACCCCCCCAAGTCAACTGGCCC CCTGAACTGTTCCTTGACCAGATAAAGAAGGTGGTTAGAAATATTATTTTTAAGAGTTGTATCAT CTGATGGACCTCCGTGAGGGAAAAAGTTTCATAGCGTTCTCGGACCGGGCATGCGGGGTGCACGT CAAAAGAGGGACGGTAAAGCTTTGCGGGGTTGTTCTGTTCACAATCCGGGAATTCAGTTAGGAGC GAATGCGGGGGGTTCCGAAGGCCGTTAGGAGTAAAAAAAA		
12	23S- TD1-R*	TTTTCCCTCAGCACCGTCAGATCACTAAGACCGACTTTCGTCCCTGCTCGACTTGTAGGTCTCAC AGTCAAGCTTCCTTATGCCTTTACACTTCTAGATACGATTTTCCACCCCGTTCAGAGGAAACCTT TTGTGCGCCTCCGTTACCGTTTTGGGAGGCGACCGCCCCAGTCAAACTGCCCGCCTGACACTG TTCTTTGACCAGATAATGATGCAAAGTTAGAAATCTAACATTATAAGAGTGGTATCTCACTGAT GGCTCACACCTTTCCGCAGAAAGATTTTCATAGCCTCCCACCTATCCAGCGCATATCAAGTCCA ATTTCAATCTCAAGTGACAGTAAAGCTTCATAGGCCTTTTTTGGTCCCCGAA		

No.	Sequence name	Sequences		
13	28S- CKD-F*	TCCGTTAGTAACGGCGAGCGAAGCGGGAAGAGCCCAGCATGTAAATCTCCGGTTTCCGGCTAA TTGTATTCTGGAGTAACAACTCCTGGTGCCGTGCC		
14	28S- CKD-R*	TTGAACATACGAGACGATCAACCTCATCACCCGCGCTTGAAGAGCCAACACCTTAGTTTGGGGA TTTGCAAGCGCAGGTGTCGGCACCATCCTGCTCAAGGTGTATTCTAGAGCTTTTAGAGCACTGT ATACCCTCGGGCAATACGCCCCGCCATCCCTTCCCACTATACTTTTCATGCACTCTTTCACTCGC TTGCCAGCGGTCTTTTCATCGTTACCTCGAGGTACTTTTTTGCTATCGGTCTCCCACAGGTATTTA GCCATATATGGGGTTTACCACACAGTTGGGGCTGCATTCCCGAACAACCCTACCCTGCGTGAGC ACTCCGTGTGGGAGCTCGTGCCGGCCTACGGGGCTCTCAACCTCTGAGGCTATCTAT		
15	28S- PUA-F	AGATCCCTTTCCTCAGTAACGGCGAGTGAAGCGGGATGAGCCCACCATGTGATCTGGACTTGAA GTTTTTGTCGTTTAAGTGTGATCTGTGGGGTGGG		
16	28S- PUA-R	TAGGGGCAGCTACCACATATGTGGCATCCAGTCCATCCAACCCAATCGGGCAGACGCTAGCCA CAGCGCCCCAAGCCGCAAGCGGAGGGGGGAAGTACGACCTTGCTTG		
17	28S- TD1-F*	GGCTGTCAGTAACGGCGACTGAAGCGGGATAGAGCTCACAATGTAGAATCTCGCGCTTGATATT TTTTGGCGTTGAGTTGTAGGTCCGCGGACGTGCGTGTTCATTGTGCCGGCTCGAATTACATGGA CACGGAGGGTGAAAACGCTGATACTCCCCTTAACCTCCCCCTCGAACCGCTCACGCAGAGTCGG GTTGTTTGGGATTGCAGCCCCAATTGGGTGGTAAACTCCATCTTAGGCTAAATATCGGTGGGAG ACCGATAGCCCAAAAGTACCTTGAGGGAAAGATGAAAAGGACGCTTGAAAGAGAGTGAAAGA GTACCTGAAATTGCTTAAAGGGAAGGG		
18	28S- TD1-R	TTGATGGTGGGAAGGAATAACCGACCTGTGGAATCCGCTCCATCACCCCCAACCTGGCAGACG CTACCCACAGCGCCCCAAGCCGCAAGCGGAGGGGGAAGTATGACCTTGCTTG		

No.	Sequence name	Sequences
19	ITS- CKD-F*	GCACGGGATTGGTAGCCTATTCCAGTAAGGGAGGCTCCTGCAGAAGTTCACTGAACCCTCTCAT CTAGAGTAAGGAGAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCCATAGCAT TCGTAAACCAACTTGTCGGTCAAAAATAAAAGCGAGGGGGGGACCCCTCTCGAACGACCCTCC TTGGCTAGGGCTGGCCGCCCGAGCGGCGCCAGACACAGGCCTCACTGCCACGGTACCGTGGTG CCCTGCAACCCCCGGGAGAACGTTGTCCCATTGGGGGGCGCGCGGGGACCCAAGCACCGGTAC GGACTTGCGCTTAAAACCGACACCCCCCTTGCGGGTGGGCTCGGGCTTACGGGACCGAGACACG GGACTTGCGCTTAAAACCGACACCCCCCTTGCGGGTGGGCTCGGGCTTACGGGACGGGAAAGT GGGGTTCAAAAAGACGCTCAGCTACAAAAGTGGTCCAGCTCGAGGGCTTACGGGGGACGGGAAAGT GGGGTTCAAAAAGACGCTCAGCAACAAGTGGTCCAGCTCGAGGGCTTGGGGGGACGGGGAAAGT GGGGTTCAAAAAGACGCTCAGCAACAAGTGGTCCAGCTCGGGGCTTACGGGGGAAGCGGGGG TAGCCAAATTCGATTATTCCAAGAATTCTTACATTCATACTAACAATCGCCCTTTGTGTGGTGTG TTGAGCGATTTGGGGGCCAAGAAATCCATCGGAAAAGAGTTTCTGTTCGGTTGGAATTGCTGG CTCCGCCATAGACTAAGAGGCCAGCCAAGCCGGGAAATCTAATGAGAATTGTAGAATTACGGTG AATAAGCGAATTTGTTGATCCCACATTGCCGCGGCGGCCCCCCAAGGAGCCTGGGGCTTT AAGCCGTGACCTCTGGCACGTCGCCGCGGCGCCCCCCAGGCAGCAGCACCTTTCCTGGCA CTGGGTCAGCGGAAGCCTGCGCCGCTCCCAGGAGCCTGCCCCCCCGGCGA CTGGGTCAGCGGAAGCCTGCGCCGCTCCCCAGGACGCCTCCCGGCGAA CTGGGTCAGCGGAAGCCTGCGGCAATCTCGTGGCACAGCACCTTCCTGGCAA CATCCGCTGCGGCAATGGTGGTCGTTCGAACCAAGACCGCCACACCTTCCTT
20	ITS- CKD-R*	CGTTATCGTCCGCTTATTGCATATAGCGTTAAGCTTCAGCGGGATAACCCTGCCTAAACTCAGG TCGAATGGTGTGTGTGCGCGCAGGTGTCCAGCCGGAAGAAGCTTGCGCGCGC
21	ITS- PUA-F*	CTATTGGCTAGCCTTTCCGTAAGCGGAGGCTCCTGAGAAGTTCACTGAACCCTCTCATCTAGAG GAAGGAGAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCGGAGGGATCCATAGCATTCGTAA ACAAACTTGTCGGTCAAAAATACAAGCGAGGGGGGGGGG
22	ITS- PUA-R*	TGCTGCTTATTGATATAGCTTAAGTTCAGCGGGGTAACCCTGCCTAAACTCAGGTCGAATGGTGT GATGCCCAACCAGGTGTCCCGCCGAAGCAGCTTGCGAGGGCACCCCGCAAACACACAC

No.	Sequence name	Sequences		
23	ITS- TD1-F*	CGGGGTCATGTTCGGATTGGTAGCCTATTCCGTAAGGTAGGT		
24	ITS- TD1-R*	CTTTTCGTCCGCTTATTGATATGCTTAAGTTCAGCGGGGTAACCCTGCCTAAACTCAGGTCGAATG GTGTGTTGCCGCAGCCAGGTGTCCAGCCGAAGCAGCTTGCGCGCGC		

BLASTN analysis of all Sanger sequenced reads suggested that only sequences of 18S rDNA (No. 1–6), 23S rDNA (No. 9–12), 28S rDNA (No. 13, 14, and 17), and ITS region (No. 19–24), as listed in table 4.1, were annotated as *Cladophora* (see more details in Tables A.1–4). Therefore, only these sequences were used for phylogenetic-based *Cladophora* host identification.

Phylogenetic estimation of Cladophora host using 18S, 23S, and 28S rDNAs, and ITS reads sequenced by Sanger sequencing

Maximum likelihood tree constructed by using amplicons of 18S, 23S, and 28S rDNAs, and ITS region placed the amplicons within clades of Cladophora species (Figures 4.7–10). The 18S rDNA tree showed that the algal samples from this study were placed in the clade of *Cladophora* spp. with various other species and *C*. glomerata collected from Thailand (Figure 4.7, JQ071987.1–JQ072004.1, table B.1). For 23S rDNA, only the amplicons from PUA and TD1 were *Cladophora* (Table 4.1), where the maximum likelihood tree topology suggested that these taxa were closely related to the unclassified *Cladophora* collected from Northern California (Figure 4.8, MG021094.1, table B.2). For 28S rDNA, the reads from CKD and TD1 were Cladophora (Table 4.1), where the maximum likelihood tree suggested that the CKD reads were closely related to an unclassified Cladophora collected from China (Figure 4.9, KU904748.1, table B.3) and C. columbiana (Figure 4.9, LT607285.1 and LT607285.1, table B.3), whereas TD1 read was closely related to C. vagabunda (Figure 4.9, KX281896.1, table B.3) from North Carolina, USA. For ITS region, all reads from the three sites were closely related to *Cladophora* (Table 4.1), where the maximum likelihood tree suggested that they were closely related to C. glomerata (Figure 4.10, OM478590.1, LC KC914578.1, LC536858.1, LC536864.1, and LC482128.1, table B.4) and the unclassified *Cladophora* clade (Figure 4.10, KU185997.1, KU904777.1, and 25 species in collapsed branch, table B.4).

Figure 4.7 Maximum likelihood trees inferred from 18S rDNA of *Cladophora* and other members of Cladophoraceae.

Rhizoclonium pachydermum was used as an outgroup. Values at nodes indicate maximum likelihood bootstrap values (left) and Bayesian posterior probability values (right). Stars represent sequences obtained from marker-gene primers and Sanger sequencing. F indicates the Sanger sequencing direction starting from the 5' terminal of the amplicon. R indicates the Sanger sequencing direction starting from the 3' terminal of the amplicon. Circles represent the 18S amplicon read obtained from universal primers and Illumina Miseq sequencing identified as *Cladophora*. NCBI accession numbers are labelled in parentheses. Roman numerals indicate the number of sequences included in each species. Branches with two diagonal lines were shortened to one-fifth of their original length. The scale bar represents the estimated number of nucleotide substitutions per site.

Figure 4.8 Maximum likelihood trees inferred from 23S rDNA of *Cladophora* and other members of Cladophoraceae.

Rhizoclonium sp. was used as an outgroup. Values at nodes indicate maximum likelihood bootstrap values (left) and Bayesian posterior probability values (right). Stars represent sequences obtained from marker-gene primers and Sanger sequencing. F indicates the Sanger sequencing direction starting from the 5' terminal of the amplicon. R indicates the Sanger sequencing direction starting from the 3' terminal of the amplicon. NCBI accession numbers are labelled in parentheses. Roman numerals indicate the number of sequences included in each species. The scale bar represents the estimated number of nucleotide substitutions per site.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 4.9 Maximum likelihood trees inferred from 28S rRNA of *Cladophora* and other members of Cladophoraceae.

Chaetomorpha aerea was used as an outgroup. Values at nodes indicate maximum likelihood bootstrap values (left) and Bayesian posterior probability values (right). Stars represent sequences obtained from marker-gene primers and Sanger sequencing. F indicates the Sanger sequencing direction starting from the 5' terminal of the amplicon. R indicates the Sanger sequencing direction starting from the 3' terminal of the amplicon. NCBI accession numbers are labelled in parentheses. Roman numerals indicate the number of sequences included in each species. Branches with two diagonal lines were shortened to one-fifth of their original length. The scale bar represents the estimated number of nucleotide substitutions per site.

Figure 4.10 Maximum likelihood trees inferred from ITS rRNA of *Cladophora* and other members of Cladophoraceae.

Rhizophydium haynaldii was used as an outgroup. Values at nodes indicate maximum likelihood bootstrap values (left) and Bayesian posterior probability values (right). Stars represent sequences obtained from marker-gene primers and Sanger sequencing. F indicates the Sanger sequencing direction starting from the 5' terminal of the amplicon. R indicates the Sanger sequencing direction starting from the 3' terminal of the amplicon. NCBI accession numbers are labelled in parentheses. Roman numerals indicate the number of sequences included in each species.

Additional phylogenetic estimation of Cladophora sp. using amplicons from universal 18S rDNA primers and Illumina Miseq sequencing

To overcome the problems of ambiguity present in the amplified sequences, the *Cladophora* 18S rDNA reads obtained from the metagenomic analysis were additionally used to construct the maximum likelihood tree (Table 4.2). The alignment of the data matrix showed that the 18S rDNA reads from all collecting sites were identical (Figure A.25). Results from maximum likelihood tree topology suggested that the *Cladophora* collected from this study was placed in the clade of *Cladophora* spp., together with the 18S rDNA amplified from primers listed in table 3.1.

Table 4.2 The raw reads of 18S rDNA amplified by the universal 18S rDNA primers and sequenced by Illumina Miseq technology from site CKD, representing the identical *Cladophora* reads obtained from the *Cladophora* host of this study.

Sequence name	Sequence
18S-CKD- Cladophora	GCAGTTAAAAAGCTCGTAGCTGAACCTCGGGCAACCCTGACGGTCC GCGTTTCGTGAGTACTGTCGTGGGGTTGTCTTTCTGGCAAGACCGTAT CTCGGCGTTAACTCGCCGGGAACGGCGCTTGCCAAGGTTACTTTGAG TAAAATAGAGTGTTCAAAGCAAGCTCGCGCTCTGAATACACTAGCAT GGGATAACACGACATGACCGATGGTCTATCTTGTTGGCCTGTAGACC TGTTGGTAATGGCTAAT

4.2 Study of the diversity of epiphytic microbiota of Kai *Cladophora* sp.

4.2.1 Morphological identification

Under the best circumstances, the epiphytic microbiota of *Cladophora* microbiome were observed under the light compound microscope and captured. For all the *Cladophora* samples, the prokaryotes and eukaryotes were classified into different taxonomic groups. These included cyanobacteria – *Chamaesiphon* (Figure 4.11A) and *Oscillatoria* (Figure 4.11B), a protozoa *Vorticella* (Figure 4.12), and stramenopiles – *Cocconeis* (Figure 4.13A), *Gomphonema* (Figure 4.13B), *Navicula* (Figure 4.13C), *Pinnularia* (Figure 4.13D), *Synedra* (Figure 4.13E), and *Synura* (Figure 4.13F). In greater detail, *Cocconeis, Gomphonema*, and *Synura* appeared attached to the *Cladophora* cell surface, while *Navicula, Pinnularia*, and *Synura* were present as both attachments and free-floating within the algal biosphere.

Figure 4.11 Micrographs of cyanobacterial members of *Cladophora* microbiota.A. Black arrowhead points *Chamaesiphon* attached to surface of *Cladophora* host.B. *Oscillatoria* in *Cladophora* dominant sample.

Figure 4.12 Micrograph of protozoal member of *Cladophora* microbiota.

Figure 4.13 Micrographs of stramenopile-members of *Cladophora* microbiota. A. *Cocconeis*, B. *Gomphonema*, and E. *Synedra* attached to the surface of the *Cladophora* host. C. Black arrowhead-pointed *Navicula*, D. *Pinnularia*, and F. black arrowhead-pointed *Synura* in *Cladophora* dominant samples.

4.2.2 Taxonomic identification using amplicon-based metagenomic analysis

DNA extraction, marker gene amplification, and sequencing

The metagenomic DNAs of *Cladophora*-dominant samples (CKD, PUA, and TDI) were successfully extracted and amplified for the 16S rRNA, 18S rRNA, and ITS (Figure 4.14A-C), where the amplicons were then paired-end sequenced using an Illumina MiSeq, 250 bp, by Omics Sciences and Bioinformatics Center (See more details in table C.1).

The extracted DNAs from three *Cladophora* dominant sites, each with four replicates, totaling twelve extracted DNAs, were amplified for 16S rRNA, 18S rRNA, and ITS regions using the primers listed in table 3.2. Agarose gel electrophoresis showed that all replicates of 16S rDNA (Figure 4.14A) and 18S rDNA (Figure 4.14B) amplicons were successfully amplified, while only one replicate of ITS regions (Figure 4.14C) from site TD1 was successfully amplified. These amplicons were paired-end sequenced using an Illumina MiSeq, 250 bp, by Omics Sciences and Bioinformatics Center.

A. 16S rDNA amplicon, B. 18S rDNA amplicon, C. ITS amplicon. Lanes 1–4 are four replicates from site CKD, lanes 5–8 are four replicates from site PUA, lanes 9–12 are four replicates from site TD1, and lanes M are 100 bp DNA ladders. All replicates of 16S rDNA (A) and 18S rDNA (B) amplicons were successfully amplified, while only one replicate of ITS amplicon (C; lane 9) from site TD1 was successfully amplified.

Taxonomic classification

In this study, three universal primer sets were used to capture the hypervariable regions of 16S rDNA, 18S rDNA, and ITS for taxonomic classification. By utilizing these regions, the organisms present in the *Cladophora* microbiota could be categorized into three groups which are bacteria, eukaryotes, and fungi.

Bacterial taxa

The identified bacteria included 45 distinct phyla, plus some unidentified taxa (Figure 4.15; see more details in table C.2). The five most abundant phyla in all study were Proteobacteria, Bacteroidota, Firmicutes, Verrucomicrobia, sites and Planctomycetota. For site CKD, the five most abundant phyla were Proteobacteria (40.04%), Bacteroidota (21.07%), Firmicutes (10.59%), Verrucomicrobia (5.30%), and Planctomycetota (4.80%). For site PUA, the five most abundant phyla were Proteobacteria (29.29%), Bacteroidota (22.50%),Firmicutes (10.86%),Planctomycetota (6.88%), and Cyanobacteria (6.20%). For site TD1, the five most abundant phyla were Proteobacteria (31.77%), Bacteroidota (24.37%), Firmicutes (6.67%), Verrucomicrobia (6.22%), and Cyanobacteria (4.98%).

At the genus level, as shown in figure 4.16 and table C.3, the members of these 45 bacterial phyla were classified into 689 distinct genera. For site CKD, the five most abundant genera were Proteobacteria *Aeromonas* (5.58%), Bacteroidota *Paludibacter* (4.40%), Bacteroidota *Flavobacterium* (2.67%), Proteobacteria *Acinetobacter* (2.65%), and Campylobacterota *Pseudarcobacter* (1.87%). For site PUA, the five most abundant genera were Bacteroidota *Flavobacterium* (2.56%), Proteobacteria *Aeromonas* (2.95%), Bacteroidota *Flavobacterium* (2.56%), Verrucomicrobia *Luteolibacter* (1.33%), and Planctomycetota *Fimbriiglobus* (1.17%). For site TD1, the five most abundant genera were Bacteroidota *Paludibacter* (6.57%), Bacteroidota *Flavobacterium* (1.86%), Proteobacteria *Propionivibrio* (1.75%), Proteobacteria *Hydrogenophaga* (1.36%), and Verrucomicrobia *Luteolibacter* (1.20%) (Figure 4.15).

Figure 4.15 Stacked bar chart of relative abundance of bacterial phyla based on 16S amplicon analysis.

Figure 4.16 Stacked bar chart of relative abundance of the five most abundant genera and others based on 16S amplicon analysis.

The annotated 689 bacterial genera present in all replicates were classified into three groups. The first group included 163 bacterial genera present in all replicates at only one sampling site, named "unique taxa". The second group included 346 bacterial genera present in all replicates of more than one sampling site, named "shared taxa". The third group included 180 genera, including the bacterial taxa present in only some replicates.

The unique and shared bacterial taxa present in the *Cladophora* microbiota were the main focus of this study. As shown in the Venn diagram (Figure 4.17), 46, 60, and 57 unique taxa were observed in CKD, PUA, and TD1, respectively. For the shared taxa, 269, 240, 291, and 227 taxa were present in CKD-PUA, CKD-TD1, PUA-TD1, and CKD-PUA-TD1, respectively. For the 227 taxa that were shared across all sites, 42 taxa appeared to be more abundant at CKD than at other locales. These taxa with high abundance at CKD, written here as the relative abundance present at CKD, PUA, and TD1, included Proteobacteria Aeromonas (5.58%, 2.95%, and 0.57%), Bacteroidota Flavobacterium (2.67%, 2.56%, and 1.86%), Proteobacteria Acinetobacter (2.65%, 0.32%, and 0.16%), Campylobacterota Pseudarcobacter (1.87%, 0.16%, and 0.08%), Firmicutes Clostridium sensu stricto 12 (1.77%, 0.77%, and 0.25%), Bacteroidota Bacteroides (1.66%, 0.25%, and 0.05%), Proteobacteria Vogesella (1.23%, 0.87%, and 0.25%), Bacteroidota Acetobacteroides (1.18%, 1.15%, and 0.81%), and Bacteroidota Cloacibacterium (0.69%, 0.44%, and 0.11%). On the other hand, 50 taxa appeared to be more abundant at TD1 than at other locales. These taxa with high abundance at TD1, written here as TD1, PUA, and CKD, included and Bacteroidota Paludibacter (4.40%)5.62%, 6.57%), Proteobacteria Hydrogenophaga (0.45%, 0.74%, and 1.36%), Firmicutes Fusibacter (0.34%, 0.63%, and 1.42%), Proteobacteria Phreatobacter (0.24%, 0.61%, and 0.67%), and Proteobacteria *Leptothrix* (0.24%, 0.37%, and 0.86%).

Figure 4.17 Venn diagram of 509 bacterial genera obtained from 16S rDNA amplicon analysis.

Eukaryotic taxa

The identified eukaryotes included six supergroups plus some unidentified taxa (figure 4.18 and table C.4). The five most abundant supergroups in all study sites were Amorphea, Stramenopiles, Archaeplastida, Rhizaria, and Alveolata. For site CKD, the five most abundant supergroups were Amorphea (46.19%), Stramenopiles (27.10%), Archaeplastida (17.33%), Rhizaria (5.55%), and Alveolata (3.66%). For site PUA, the five most abundant supergroups were Stramenopiles (45.84%), Amorphea (28.95%), Archaeplastida (15.71%), Rhizaria (5.33%), and Alveolata (4.01%) For site TD1, the five most abundant supergroups were Stramenopiles (46.04%), Amorphea (27.83%), Archaeplastida (12.55%), Rhizaria (7.02%), and Alveolata (6.37%).

At the genus level, as shown in figure 4.19 and table C.5, the members of these six supergroups were classified into 575 distinct genera. For site CKD, the five most abundant genera were Stramenopiles *Cocconeis* (4.86%), *Ochromonas* (3.64%), *Pythium* (3.26%), Amorphea *Sorodiplophrys* (3.07%), and *Paramicrosporidium* (2.45%). For site PUA, the five most abundant genera were Stramenopiles *Cocconeis* (4.27%), Archaeplastida *Spirogyra* (4.27%), Stramenopiles *Ochromonas* (4.19%), Amorphea *Sorodiplophrys* (2.70%), and Stramenopiles *Poteriospumella* (1.16%). For

site TD1, the five most abundant genera were Stramenopiles *Cocconeis* (21.10%), *Gomphonema* (4.59%), Amorphea *Sorodiplophrys* (4.09%), Archaeplastida *Spirogyra* (3.40%), and Stramenopiles *Ochromonas* (3.06%).

Figure 4.18 Stacked bar chart of relative abundance of eukaryotic supergroups based on 18S rDNA amplicon analysis.

Chulalongkorn University

Figure 4.19 Stacked bar chart of relative abundance of the five most abundant genera and others based on 18S rDNA amplicon analysis.

Among the 575 eukaryotic genera, only 83 genera were "unique taxa", taxa present in all four replicates of only one sampling site. In addition, 96 genera appeared as "shared taxa", the taxa commonly present in more than one study site. The unique taxa present in CKD, PUA, and TD1 were 26, 9, and 48 taxa, respectively. For the shared taxa, CKD–PUA, CKD–TD1, PUA–TD1, and CKD–PUA–TD1 shared 58, 60, 80, and 51 taxa, respectively (Figure 4.20).

For the 51 taxa that were shared across all sites, 14 taxa appeared to be more abundant at CKD than at other locales. These taxa with high abundant at CKD, written here as the relative abundance present at CKD, PUA, and TD1, included Amorphea *Paramicrosporidium* (2.45%, 1.05%, and 0.18%), Stramenopiles *Poteriospumella* (1.42%, 1.26%, and 0.44%), Archaeplastida *Planktosphaeria* (0.97%, 0.60%, and 0.21%), and Archaeplastida *Deasonia* (0.70%, 0.44%, and 0.08%). On the other hand, five taxa appeared to be more abundant at TD1 than at other locales. These taxa with high abundance TD1, written here as the relative

abundance present at TD1, PUA, and CKD, included Stramenopiles *Cymbella* (0.34%, 0.66%, and 1.12%) and Rhizaria *Cercomonas* (0.14%, 0.21%, 0.56%).

Figure 4.20 Venn diagram of 179 eukaryotic genera obtained from 18S rDNA amplicon analysis.

Eukaryotic taxa identified by ITS amplicon

Only one replicate of ITS amplicons (Figure 4.14C) from site TD1 was successfully amplified and sequenced. The identifiable fungi included eight fungal phyla, including Ascomycota (53.96%), Chytridiomycota (29.95%), Basidiomycota (9.22%), Rozellomycota (0.81%), Glomeromycota (0.26%), Entomophthoromycota (0.12%), Mortierellomycota (0.06%), and Mucoromycota (0.04%), as shown in figure 4.21A. At the genus level, the members of these eight phyla were classified into 133 distinct genera (Table C.6). The seven most abundant genera were Chytridiomycota *Avachytrium* (18.57%) and *Entophlyctis* (10.95%), Ascomycota *Cladosporium* (3.61%) and *Capnobotryella* (2.54%), Basidiomycota *Sporobolomy* (2.29%), as shown in figure 4.21B.

Figure 4.21 Stacked bar chart of relative abundance of fungal taxa based on the ITS amplicon analysis.

A. phylum level and B. genus level.

Fungal taxa present in 18S rDNA vs ITS amplicon analyses

18S rDNA and ITS amplicon analyses showed the presence of fungal genera (Figures 4.14A and 4.14C). In this study, only one replicate of the amplicon from TD1 was successfully sequenced. Therefore, to compare the taxonomic results obtained from 18S rDNA and ITS analyses, the identified fungal taxa present in at least one replicate of 18S rDNA were compared to that of TD1 ITS. Results showed that 185 and 133 fungal genera were obtained from 18S rDNA and ITS of three sampling sites, respectively. Among these, 82 fungal genera were commonly found by using both conserved regions (Figure 4.22).

When comparing the 18S rDNA results of identified fungal genera across sites, results showed that 51, 4, and 14 fungal genera were uniquely present at CKD, PUA, and TD1, respectively (Table C.7). CKD shared 43 genera with PUA and 61 genera with TD1, PUA shared 37 genera with TD1, and 36 genera were commonly present in all sites, as shown in figure 4.22 and table C.7. When adding the ITS results at TD1 to the comparison, results showed four additional genera were shared between TD1 and PUA, which were Ascomycota *Phaffomyces*, Basidiomycota *Tilletiopsis*, *Trametes*, and *Tropicoporus*. In addition, four genera were shared for all sites. These included Basidiomycota *Symmetrospora*, Ascomycota *Parastagonospora*, *Mycosisymbrium*, and *Neotestudina*.

หาลงกรณ์มหาวิทยาลัย

4.2.3 Ecological functional inference Bacterial ecological functions

To demonstrate the ecological roles of annotated *Cladophora* microbiota, literatures were searched for the putative ecological functions of the shared taxa. The functions were categorized into two main groups: nitrogen cycling and other nutrient cyclings (Tables 4.3–4).

For nitrogen cycling, the functions were divided into eleven ecological functions, written with the example of the taxa with relative high abundance, including heterotrophic nitrification and aerobic denitrification (*Aeromonas* and *Acinetobacter*), dissimilatory reduction of nitrate to ammonium (*Aeromonas*, *Lacunisphaera*, and *Pelosinus*), ammonium oxidation (*Pirellula*), nitrate reduction (*Vogesella*), denitrifying phosphorus-accumulation, nitrite reduction, and nitrogen

fixation (*Dechloromonas*). For other nutrient cyclings, there were bacteria involved in amino acid fermentation (*Acidaminobacter*), cellulose degradation (*Bacteroides* and *Paludibacter*), chitin degradation (*Fimbriiglobus*), degradation of aromatic compound (*Hydrogenophaga*), fermentative hydrogen production (*Acetobacteroides* and *Clostridium sensu stricto* 12), polyphosphate accumulation (*Acinetobacter* and *Propionivibrio*), and vitamin B₁₂ biosynthesis (*Flavobacterium*).

Fungal ecological functions

The ecological functions of fungi present in this study included decomposition, plant-fungal interaction, predation, mutualism, and parasitism in algae, amoebae, and other fungi. Among the taxa, some showed high relative abundances when compared to others. These included *Capnobotryella* (lichenforming fungus), *Entophlyctis* (parasite in algae), *Paramicrosporidium* (parasite in amoebae), and *Hannaella* (phylloplane fungus), as shown in table 4.5.

	Table	4.3	Putative eco	ological	functions	invol	ving in	n nitrogen	cycling
--	-------	-----	--------------	----------	-----------	-------	---------	------------	---------

Ecological function	Bacterial genera	Reference
Denitrification	Acidovorax	Heylen et al., 2008
	Arenimonas	Feng et al., 2020
	Chromobacterium	Bazylinski et al., 1986
	CL500-29 marine group	Chen et al., 2020b
	Comamonas	Zhang et al., 2016
	Devosia	Tanikawa et al., 2018
	Hyphomicrobium	Martineau et al., 2015
	Leptothrix	Feng et al., 2020
	Methylotenera	Kalyuhznaya et al., 2009
	Chloroflexi bacterium	Zhang et al 2021
	OLB13	Zhang et al., 2021
	Opitutus	Tanikawa et al., 2018
	Paracoccus	Feng et al., 2020
	Pseudomonas	Tanikawa et al., 2018
	Rhodobacter	Tanikawa et al., 2018
	Planctomycetes SM1A02	Qi et al., 2020
	Thauera	Liu et al., 2013

* indicates bacteria with high relative abundance.

Ecological function	Bacterial genera	Reference
Heterotrophic	Acinetobacter*	Chen et al., 2019
nitrification and aerobic	Aeromonas*	Chen et al., 2014a
denitrification	Bacillus	Yang et al., 2011
	Chryseobacterium	Kundu et al., 2014
	Comamonas	Chen & Ni, 2011
	Klebsiella	Padhi et al., 2013
	Massilia	Qiao et al., 2020
	Paracoccus	Yang et al., 2008
	Pseudomonas	Yang et al., 2019
	Rhizobium	Qiao et al., 2020
Denitrifying phosphorus-	Candidatus Accumulibacter	Huang et al., 2020
accumulation	Dechloromonas*	Huang et al., 2020
Dissimilatory reduction	Aeromonas*	Zhao et al., 2020
of nitrate to ammonium	Geobacter	Zhao et al., 2020
	Lacunisphaera*	Zhao et al., 2020
	Pelosinus*	Beller et al., 2013
Ammonium oxidation	Blastopirellula	Khramenkov et al., 2013
	Brevifollis	Muwawa et al., 2021
6	Ellin6067	Podlesnaya et al., 2020
	Gemmata	Tian et al., 2015
	mle1-7	Podlesnaya et al., 2020
	oc32	Podlesnaya et al., 2020
ຈູາ	Pirellula*	Tian et al., 2015
Сни	Planctomycetes SM1A02	Vico et al., 2021
Nitrate reduction	Noviherbaspirillum	Wu et al., 2021
	Rhizobacter	Goto & Kuwata, 1988
	Sulfurospirillum	Hubert & Voordouw, 2007
	Thauera	Hubert & Voordouw, 2007
	Vogesella*	Rameshkumar et al., 2016
Nitrite oxidation	Candidatus Nitrotoga	Ishii et al., 2020

Ecological function	Bacterial genera	Reference
Nitrite reduction	Arenimonas	Huang et al., 2020
	Azoarcus	Huang et al., 2020
	Dechloromonas*	McIlroy et al., 2016
	Haliangium	McIlroy et al., 2016
	Rhodoferax	Hougardy & Klemme, 1995
	Sulfuritalea	McIlroy et al., 2016
Nitrogen fixation	Anaeromyxobacter	Masuda et al., 2020
	Azospira	Bae et al., 2007
	Dechloromonas*	Salinero et al., 2009
	Devosia	Rivas et al., 2002
	Mesorhizobium	Laranjo et al., 2014
	Methylocystis	Takeda, 1988
	Nordella	Yu et al., 2019
	Pelomonas	Xie & Yokota, 2005
	Rhizobium	Sheu et al., 2015
	Shinella	Taulé et al., 2016
Nitrous oxide reduction	Gemmatimonas	Park et al., 2017

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Ecological function	Bacterial genera	Reference
Iron cycling		
Fe (II) oxidation	Curvibacter	Gülay et al., 2018
	Leptothrix	Peng et al., 2021
	Noviherbaspirillum	Wu et al., 2021
	Sideroxydans	Liu et al., 2012
	Undibacterium	Gülay et al., 2018
Fe (III) reduction	Acidibacter	Falagan & Johnson, 2014
	Geobacter	Peng et al., 2021
	Rhodoferax	Peng et al., 2021
Manganese cycling		2
Mn (II) oxidation	Pedomicrobium	Ridge et al., 2007
	Sideroxydans	Liu et al., 2012
Mn (IV) reduction	Geobacter	Peng et al., 2021
	Rhodoferax	Peng et al., 2021
Phosphorous cycling		
Polyphosphate	Acinetobacter*	Seviour et al., 2003
accumulation	Arcicella	Chai et al., 2017
	Limnohabitans	Chai et al., 2017
	Propionivibrio*	Li et al., 2019a
Sulfur cycling		
Sulfate reduction	Desulfobulbus	Taylor & Parkes, 1983
	Desulfomicrobium	Copeland et al., 2009
	Desulfovibrio	Karnachuk et al., 2021
Sulfur oxidation	Limnobacter	Chen et al., 2016
	Meiothermus	Sun et al., 2018
Sulfur reduction	Fusibacter	Fadhlaoui et al., 2015
Uranium cycling		
U (IV) reduction	Anaeromyxobacter	North et al., 2004
	Geobacter	North et al., 2004

Table 4.4 Putative ecological functions involving in other nutrient cyclings.

* indicates bacteria with high relative abundance.

Ecological function	Bacterial genera	Reference
Degradation		
Alkane degradation	Aquabacterium	Masuda et al., 2014
	Tropicimonas	Harwati et al., 2009
Cellulose degradation	Aquitalea	Woo et al., 2014
	Bacteroides*	Hatamoto et al., 2014
	Caulobacter	Song et al., 2013
	Cellvibrio	DeBoy et al., 2008
	Cloacibacterium	Cui et al., 2019
	Cytophaga	Xie et al., 2007
	Exiguobacterium	Cui et al., 2019
	Ilumatobacter	Cai et al., 2018
	Paludibacter*	Cui et al., 2019
	Roseimarinus	Co & Hug, 2021
	Ruminiclostridium	Ravachol et al., 2016
Chitin degradation	Chitinibacter	Gao et al., 2015
	Chitinimonas	Joung et al., 2014
	Fimbriiglobus*	Ravin et al., 2018
	Massilia	Chen et al., 2020a
	Planctomyces sp. SH-PL14	Kulichevskaya et al., 2019
Degradation of	Acinetobacter	Vedler et al., 2013
aromatic compounds	Azoarcus	Peng et al., 2021
	Hydrogenophaga*	Fan et al., 2019
	Hyphomicrobium	Kim et al., 2020
	Leptothrix	Peng et al., 2021
	Limnobacter	Vedler et al., 2013
	Methylibium	Kane et al., 2007
	Ottowia	Kim et al., 2020
	Pseudomonas	Vedler et al., 2013
	Sulfuritalea	Kim et al., 2020
	Thauera	Mechichi et al., 2002
Degradation of biodegradable plastics	Sphingopyxis	Verma et al., 2020
Volatile fatty acid degradation	Ohtaekwangia	Shu et al., 2015
Other organic pollutant degradation	Rheinheimera	Kumar & Chandra, 2020

Ecological function	Bacterial genera	Reference
Vitamin biosynthesis		
Cobalamin (vitamin B ₁₂) biosynthesis	Bacillus	Raux et al., 1998
	Candidatus Udaeobacter	Brewer et al., 2016
	Flavobacterium*	Tekedar et al., 2017
	Mycobacterium	Zhang et al., 2021
	Porphyrobacter	Krohn-Molt et al., 2017
	Porphyromonas	Roper et al., 2000
	Pseudomonas	Cameron et al., 1989
Phototrophy	SAM 112	
Cyanobacterial	Chamaesiphon	Kurmayer et al., 2018
phototrophy	Cyanobium	Komárek et al., 1999
Bacterial phototrophy	Chloroflexus	Herter et al., 2002
Anoxygenic	NOR5/OM60 clade	Yan et al., 2009
phototrophy	Rhodobacter	Yutin & Beja, 2005
	Rhodoferax	Jung et al., 2004
	Tabrizicola	Tarhriz et al., 2019
Photoheterotrophy	Rubrivivax	Li & Fang, 2008
Chemotrophy		
Aerobic	Armatimonas	Tamaki et al., 2011
chemoheterotrophy	Fimbriiglobus*	Kulichevskaya et al., 2017
	Flavisolibacter	Yoon & Im, 2007
	Hirschia	Schlesner et al., 1990
	Lewinella	Khan et al., 2007
	Phaeodactylibacter	Chen et al., 2014b
Aerobic	Ahniella	Watanabe et al., 2020
chemoorganotrophy	Albidovulum	Albuquerque et al., 2002
	Bryobacter	Kulichevskaya et al., 2010
	Chryseobacterium	Vandamme et al., 1994
	Haloferula	Yoon et al., 2008
	Hyphomonas	Weiner et al., 2000
	Ideonella	Tanasupawat et al., 2016
	Larkinella	Vancanneyt et al., 2006
	Lysobacter	Christensen & Cook, 1978
	Novosphingobium	Takeuchi et al., 2001
	Polaromonas	Irgens et al., 1996

Ecological function	Bacterial genera	Reference
Aerobic	Runella	Larkin & Williams, 1978
chemoorganotrophy	Stenotrophobacter	Pascual et al., 2015
	Truepera	Albuquerque et al., 2005
	Zavarzinella	Kulichevskaya et al., 2009
Anaerobic	Anaeroanusas and	Strömpl, 2015
chemoorganotrophy	Phascolarctobacterium	Del Dot et al., 1993
	Saccharofermentans	Chen et al., 2010
	Sporomusa	Möller et al., 1984
Carbohydrate	Alistipes	Song et al., 2006
fermentation	Ferruginibacter	Li et al., 2019b
	Prevotella 9	Bai et al., 2021
	Treponema	Abt et al., 2013
	Vallitalea	Sun et al., 2019
Animo acid	Acidaminobacter*	Stams & Hansen, 1984
fermentation	Anaerovorax	Matthies et al., 2000
Fermentative	Acetobacteroides*	Su et al., 2014
hydrogen production	Clostridium sensu stricto 1	Yang & Wang, 2019
	Clostridium sensu stricto 12*	Lu et al., 2020
	Cytophaga xylanolytica	Haack & Breznak, 2004
Other	S. Xi	
Antifungal effect	Duganella	Haack et al., 2016
Predator	Bdellovibrio	Starr & Baigent, 1966
	Herpetosiphon	Kiss et al., 2011
Methane oxidation	Gemmobacter	Takeda, 1988
	OM43 clade	Esson et al., 2016
	Methylocystis	Takeda, 1988
	Methylovulum	Esson et al., 2016
Extracellular polymeric substance (EPS) secretion	Terrimonas	Zhao et al., 2019
Biosorption of heavy metals	Sphaerotilus	Esposito et al., 2001

Table 4.5 Putative ecological functions of fungal genera present in the *Cladophora* microbiota.

^a Found in both 18S rDNA and ITS amplicon analyses of TD1 sample. ^b Found in only ITS amplicon analysis. * indicates fungal genera with high relative abundance.

Ecological function	Bacterial genera	Reference
Decomposing cycling		
Saprotrophy	Acremonium ^a	Fernandez-Trujillo et al., 1997
	Alternaria ^a	Woudenberg et al., 2013
	Arthrinium	Crous & Groenewald, 2013
	Aspergillus ^a	de Vries & Visser, 2001
	Avachytrium ^b	Gleason et al., 2008
	Capnobotryella ^{*,b}	Sert et al., 2007
	Chaetospermum	Rungjindamai et al., 2008
د د	Chytriomyces	Reisert & Fuller, 1962
	Cladosporium ^a	Bensch et al., 2012
	Emericellopsis	Zuccaro et al., 2004
	Entophlyctis ^b	Longcore, 1995
G	Fusarium ^a	Fracchia et al., 2000
	Galactomyces	Varnaitė et al., 2011
_	Gibellulopsis ^a	Giraldo et al., 2019
	Glutinoglossum ^b	Fedosova et al., 2018
0	Hannaella* ^{,a}	Landell et al., 2014
	Helicascus	Zhang et al., 2014
	Inocybe ^b	White et al., 1993
	Lentithecium	Calabon et al., 2021
	Mortierella ^a	Li et al., 2018
	Nowakowskiella	Marano et al., 2011
	<i>Ochroconis^a</i>	Machouart et al., 2014
	Piromyces	Ali et al., 1995
	Pyrenochaeta ^a	Khan et al., 2011
	Sporobolomyces ^a	Wang & Bai, 2004
	Wiesneriomyces	Suetrong et al., 2014

Ecological function	Bacterial genera	Reference
Plant-fungal interaction		
Ectomycorrhizal fungi	Inocybe ^b	White et al., 1993
Endophytic fungi	Acremonium ^a	White et al., 1993
	Alternaria ^a	Woudenberg et al., 2013
	Arthrinium	Crous & Groenewald, 2013
	Cladosporium ^a	Bensch et al., 2012
Phylloplane fungi	Cladosporium ^a	Bensch et al., 2012
	Geotrichum	Pereira et al., 2002
	Hannaella*,a	Landell et al., 2014
	<i>Occultifur</i> ^a	Srisuk et al., 2019
	Pichia	Limtong & Kaewwichian, 2015
	Rhodotorula ^a	Into et al., 2020
	<i>Sporobolomyces</i> ^a	Limtong & Kaewwichian, 2015
	Vishniacozyma ^a	Into et al., 2020
Plant growth-promoting fungi	Mortierella ^a	Ozimek & Hanaka, 2021
Plant pathogen	Alternaria ^a	Woudenberg et al., 2013
	Arthrinium	Crous & Groenewald, 2013
	Cladosporium ^a	Bensch et al., 2012
^	Fusarium ^a	Ma et al., 2013
	Gibellulopsis ^a	Giraldo et al., 2019
	<i>Sporisorium</i> ^a	Que et al., 2014
Mutualism		
Lichen-forming fungi	Capnobotryella ^{*,b}	Sert et al., 2007
Predation		
Amoebophagous fungi	Stylopage	Corsaro et al., 2018
Nematophagous fungi	Stylopage	Persmark et al., 1995
Parasitism		
Endoparasitic chytrid	Rozella	Corsaro et al., 2014
Hyperparasites on other fungi	<i>Cladosporium</i> ^a	Bensch et al., 2012
Ecological function	Bacterial genera	Reference
----------------------	-----------------------------	-------------------------------------
Parasites of algae	Entophlyctis ^{*,b}	Shin et al., 2001
	Phlyctochytrium	Letcher & Powell, 2005
	Rhizophydium	Gromov et al., 1999
Parasites of amoebae	Acaulopage	Hirotani-Akabane & Saikawa, 2010
	Cochlonema	Hirotani-Akabane & Saikawa, 2010
	Paramicrosporidium*	Corsaro et al., 2014
Parasitoids of algae	Aphelidium	Karpov et al., 2014
	Paraphelidium	Karpov et al., 2019

4.2.4 Diversity of *Cladophora* sp. microbiota

Prokaryotic taxa

To investigate the diversity level of bacteria present in each site, Shannon's index, Simpson's index, Chao1, and richness or number of identified taxa were employed. At the phylum level, as shown in figure 4.23, Shannon's indices of CKD, PUA, and TD1 were 2.00, 2.24, and 2.23, respectively, where the values for PUA and TD1 were statistically higher than that of CKD (p < 0.001). Simpson's indices of CKD, PUA, and TD1 were 0.77, 0.83, and 0.82, respectively, where the values for PUA and TD1 were statistically higher than that of CKD (p < 0.005). Additionally, estimated Chao1 and richness were equal for CKD, PUA, and TD1, which were 31, 36, and 37, respectively, in which the value from TD1 was statistically higher than that of CKD (p < 0.01). Results of Shannon's index, Simpson's index, Chao1, and richness overall suggested that the bacterial phyla present at sites PUA and TD1 were more diverse than that of CKD.

At the genus level, as shown in figure 4.24, Shannon's indices of sites CKD, PUA, and TD1 were 4.91, 5.11, and 5.12, respectively. Simpson's indices of all sites were 0.98. Chao1 for CKA, PUA, and TD1 were 488, 497, and 496, respectively, and the richness was 461, 474, and 470, respectively. All alpha diversity indices of bacteria at the genus level were not statistically different, suggesting that the diversity of bacterial genera of all locales was not different.

Figure 4.23 Box plots of bacterial phyla alpha diversity indices.

A. Shannon's index, B. Simpson's index, C. Chao1, and D. richness. Different lowercase letters indicate statistically significant differences using Tukey's HSD at 0.05 significance level.

CHULALONGKORN UNIVERSITY

A. Shannon's index, B. Simpson's index, C. Chao1, and D. richness. Different lowercase letters indicate statistically significant differences using Tukey's HSD at 0.05 significance level.

Ghulalongkorn University

Eukaryotic taxa

At the genus level, Shannon's indices of CKD, PUA, and TD1 were 4.34, 3.23, and 3.71, respectively, where the value for CKD was statistically higher than that of PUA (p < 0.01). Simpson's indices of sites CKD, PUA, and TD1 were 0.96, 0.82, and 0.90, respectively, where the values for CKD and TD1 were statistically higher than that of PUA. Chao1 of CKA, PUA, and TD1 were 290, 210, and 264, respectively, and the richness were 263, 190, and 237, respectively. The estimated values of Chao1 and richness from the three sampling sites were not statistically different (Figure 4.25).

A. Shannon's index, B. Simpson's index, C. Chao1, and D. richness. Different lowercase letters indicate statistically significant differences using Tukey's HSD at 0.05 significance level.

Ghulalongkorn University

To compare the diversity of the bacterial genera and eukaryotic genera between sampling sites, principal coordinate analysis based on Bray-Curtis dissimilarity was employed. For bacteria, at the genus level, as shown in figure 4.26A, the variance explained for PCo1 and PCo2 were 45.31% and 22.42% (67.73% in total). R of ANOSIM was 0.852 as p < 0.001 and p value of permANOVA was 0.001. For eukaryotes, at the genus level, as shown in figure 4.26B, the variance explained for PCo1 and PCo2 were 47.86% and 22.17% (70.03% in total). R of ANOSIM was 0.630 as p < 0.001 and p value of permANOVA was 0.001. Ellipsoids represent a 95% confidence interval enclosing each site. These suggested that the diversity of bacteria and eukaryotes present in the four replicates of each study site had smaller dissimilarity than that of other sites. Also, as appeared in figure 4.26, the clusters of bacterial genera ordinated further apart than those of eukaryotic genera.

Figure 4.26 Principal coordinate analysis based on Bray-Curtis dissimilarity of *Cladophora* microbiota.

A. bacterial genera and B. eukaryotic genera. Ellipsoids represent a 95% confidence interval enclosing each site.

4.3 Comparative analysis of *Cladophora* microbiota

This study investigated the microbiota of *Cladophora* present in three sites in the course of the Nan River, Thailand. To expand the knowledge of the *Cladophora* shared prokaryotic and eukaryotic microbiota, the shared taxa of CKD, PUA, and TD1 identified in this study were compared to microbiota studied worldwide and identified as the "core taxa", which were the taxa shared in all the studies. After comparing the results from this study to that of Lake Mendota reported by Braus et al. (2017), and Lake Michigan reported by Chun et al. (2017) and Graham et al. (2015). Among the identified taxa, 17 bacterial genera were present in all the studies. These bacteria included Bacteroidota *Flavobacterium, Terrimonas, Chryseobacterium,* Deinococcus-Thermus *Deinococcus*, Proteobacteria *Pseudorhodobacter, Pseudomonas, Hyphomicrobium, Rhodobacter, Altererythrobacter, Novosphingobium, Sphingopyxis, Acidovorax, Aquabacterium, Hydrogenophaga, Methylotenera, Acinetobacter,* and

Bdellovibrio (Table C.8). Some were inferred to play crucial roles in freshwater *Cladophora* microbiome (Tables 4.3–4), e.g., vitamin B₁₂ biosynthesis (*Flavobacterium* and *Pseudomonas*), extracellular polymeric substance secretion (*Terrimonas*), aerobic chemoorganotrophy (*Chryseobacterium* and *Novosphingobium*), anoxygenic phototrophy (*Rhodobacter*), polyphosphate accumulation (*Acinetobacter*), denitrification (*Acidovorax* and *Methylotenera*), degradation of alkane (*Aquabacterium* and *Hyphomicrobium*), and aromatic compounds (*Hydrogenophaga*).

CHAPTER V DISCUSSION

5.1 Identification of the *Cladophora* host

According to morphological identification, the algal samples from sites CKD, PUA, and TD1 were *Cladophora*-dominant samples. The presence of *Cladophora* in the locales was congruent with reports from previous studies (Laungsuwon & Chulalaksananukul, 2014; Peerapornpisal et al., 2005; 2006; Surayot et al., 2016; Yarnpakdee et al., 2021), where the researchers found *C. glomerata*, locally called "Kai", in water bodies in Pua and Tha Wang Pha districts, Nan province. On the other hand, algal samples from sites TD2 and MND were *Spirogyra*-dominant samples and were discarded from the analysis. This presence of *Spirogyra*-rich algal turf was also congruent with the previous study by Peerapornpisal et al. (2005), where they found *Spirogyra*, commonly called "Tao" or "Tao Nam", present in Pua, Tha Wang Pha, and Mueang Nan districts. Anyhow, this study focused on the microbiota of *Cladophora*. Therefore, only the algal samples collected from CKD, PUA, and TD1 were used in this study.

All the collected *Cladophora* samples exhibited similar morphology and appeared as thalli attached to similar substrates – rocks and pebbles. To identify the alga to the species level, phylogenetic relationships using gene markers were estimated. Maximum likelihood trees of 18S rDNA, 23S rDNA, and ITS sequences suggested that *Cladophora* sequences amplified from genes-specific primers placed the samples in clades consisting of *Cladophora* species. However, sequences from each replication differed and the bootstrap values for those observed clades were low. Therefore, the species of *Cladophora* samples could not be inferred from the amplicons amplified from gene-marker-specific primers. The presence of the different PCR products arising among replicates might be from the PCR steps, where the primers were not sufficiently specific and bound to DNA from various organisms other than the *Cladophora* sp. and thus give us a combination of various sequences within a band observed by gel electrophoresis. Additionally, the Sanger sequencing

might not give us the high-quality reads as exhibited in the chromatograms (Figures A.1–24).

To solve the problem of taxonomic classification using the data from genespecific primers, the 18S rDNA data acquired from the higher-quality sequencing technique, Illumina, were utilized. In this method, the amplicons annotated as *Cladophora* sp. from all replicates were extracted, aligned, and used in phylogenetic estimation. The alignment of all the *Cladophora* sequences showed that they were identical, suggesting that, for the amplified regions, all the *Cladophora* hosts collected in this study were from the same algal population. Although the information obtained in this study was not sufficient for the identification of the *Cladophora* host to the species level, results from the maximum likelihood tree suggested that the alga was placed within the clade with other *Cladophora* species.

One interesting finding that arose from the taxonomic identification of the *Cladophora* host used in this study was that the *Cladophora* 18S rDNA sequences obtained from this study were not identical to that of other *Cladophora* samples previously reported from Thailand nor other countries in Southeast Asia (Boedeker et al., 2016; Thiamdao et al., 2012). This suggests that the diversity of *Cladophora* present in this region is higher than what we previously knew and has not yet been investigated.

5.2 Study of the diversity of epiphytic microbiota of Kai *Cladophora* sp.

The nature of having a high surface area of *Cladophora* made the alga an ecological engineer, which provides the microhabitats for other microorganisms. Investigation of *Cladophora* microbiota using light microscopy and amplicon analysis revealed congruent results as the epiphytic cyanobacteria, protozoa, and diatoms were observed both by microscopy and amplicon analysis.

For eukaryotic taxa, photosynthetic stramenopiles, namely diatoms, were abundantly present on the algal surface. The frequently observed taxa included *Cocconeis, Gomphonema, Synura, Synedra*, and *Navicula*. Among identified diatoms, *Cocconeis* and *Gomphonema* were CKD–PUA–TD1 shared taxa with a high abundance. The relative abundance of *Cocconeis* ranged from 4.9% at CKD to 27.4% at PUA, and *Gomphonema* ranged from 0.8% at PUA to 4.6% at TD1 (Table C.5).

The presence of dominant *Cocconeis* and *Gomphonema* were congruent with previous amplicon-based metagenomic studies of Lake Mendota *Cladophora* microbiome (Graham et al., 2015; Zulkifly et al., 2012), where they suggested that the cell shape of these diatoms allowed them to avoid grazing from other consumers and maintain a firm attachment to the algal filament.

For more details, according to results from amplicon analysis, there were various diatom genera present in the algal microbiota, such as Achnanthidium, Amphora, Cocconeis, Craticula, Cymbella, Discostella, Epithemia, Fistulifera, Gomphonema, Melosira. Navicula, Nitzschia, Pinnularia, Planothidium, Pleurosigma, Pleurosira, Rhopalodia, Sellaphora, Thalassiosira and Ulnaria (Table C.5). The presence of these diatoms might be explained by their capability to tolerate shading in the *Cladophora* tuft, which resulted from the densely algal filament growth that overshadows some regions of the algal filament. To tolerate shading, diatoms can maintain their abundance by upregulation of genes involved in transcription and photosynthesis to compensate for the lower light intensity (Buntha et al., 2020). The presence of these diatoms on the algal surface also enhances the diversity of the algal microbiota as these diatoms release extracellular polymeric substances, primarily as exopolysaccharides, which aided in biofilm formation, where groups of other minute eukaryotes and bacteria reside (Bahulikar & Kroth, 2007).

Amplicon analysis revealed a total of 575 eukaryotic genera and 698 bacterial genera, which were present variedly in the study sites. Among the identified bacteria, 227 genera were shared taxa, commonly present in all sites. Some were high abundant taxa those involved in various processes, i.e., cellulose degradation (*Bacteroides* and *Paludibacter*), vitamin B₁₂ biosynthesis (*Flavobacterium*), fermentative hydrogen production (*Acetobacteroides* and *Clostridium sensu stricto* 12), ammonium oxidation (*Pirellula*), amino acid fermentation (*Acidaminobacter*), dissimilatory reduction of nitrate to ammonium (*Pelosinus, Aeromonas*, and *Lacunisphaera*), nitrite reduction (*Dechloromonas*), nitrate reduction (*Vogesella*), sulfur reduction (*Fusibacter*), polyphosphate accumulation (*Dechloromonas*), degradation of aromatic compounds (*Hydrogenophaga*), anaerobic chemoheterotrophy (*Fimbriiglobus*), and bacteria with

no known specific ecological function, e.g., *Emticicia, Pseudarcobacter*, and WCHB1-32.

Among the bacterial genera, some fecal indicator bacteria in nuisance *Cladophora* were found with a low abundance, written here as the relative abundance present at CKD, PUA, and TD1, including *Escherichia-Shigella* (0.21%, 0.14%, and 0.03%), *Enterococcus* (0.02%, 0.02%, and 0.00%), *Streptococcus* (0.01%, 0.01%, and 0.00%), and *Salmonella* (0.14%, 0.02%, and 0.00%). The presence of these bacteria seemed to be habitat-specific as not all the *Cladophora* microbiota had these bacteria (Braus et al., 2017; Byappanahalli et al., 2003; Byappanahalli et al., 2007; Englebert et al., 2008a, 2008b; Graham et al., 2015; Olapade et al., 2006; Vanden Heuvel et al., 2010; Verhougstraete et al., 2010; Zulkifly et al., 2012). This suggested that only the *Cladophora* growing in clean habitats should be used for consumption, and it might be worthwhile to examine the presence of these bacteria before utilizing the alga.

The shared fungal taxa present in all sites were mainly involved in decomposition (e.g., *Avachytrium, Entophlyctis*, and *Glutinoglossum*), parasitism in algae, amoebae, and other fungi, plant-fungal interaction, predation, as well as mutualism as in the lichen-forming fungi. It is not yet clear at this stage whether these fungi were present temporarily (e.g., lichen-forming fungus, phylloplane fungi, and plant pathogens). However, it is hypothetically possible that the portion of these fungal taxa, mainly the decomposers, live in associations within the algal microbiome. In order to investigate whether the presence of these fungi was from the influx of the nearby floodplain, more temporal and spatial microbiome studies are needed.

The PCoA plots suggested that the microbiota were more similar between replicates than between sites, where the eukaryotic taxa appeared to be more diverse at CKD than at PUA and TDI, while bacterial taxa appeared to have the opposite fashion by being more diverse at PUA and TD1 than at CKD. It is not yet clear why the diversity of the microbiota differed between sites. Although it has been suggested that the trophic level does not affect the diversity of the organisms (Danilov & Ekelund, 1999; Lee & Liu, 2018; Spatharis et al., 2011), a more sufficient information of water quality index, dissolved oxygen, biological oxygen demand, and ammonia nitrogen content at the sampling sites, as well as the information of seasonal rainfall, the vegetation of the nearby floodplains and riverbanks are needed.

5.3 Comparative analysis of *Cladophora* microbiota

This study provided the first information of microbiota associated with *Cladophora* sp. living in a lotic, running water bodies, environment. Comparisons of the microbiota between this lotic habitat and other lentic, still water bodies, habitats (Braus et al., 2017; Chun et al., 2017; Graham et al., 2015; Zulkifly et al., 2012) revealed shared bacterial taxa among all studies. These shared taxa involved in vitamin B₁₂ biosynthesis (*Flavobacterium* and *Pseudomonas*), extracellular polymeric substance secretion (Terrimonas), aerobic chemoorganotrophy (Chryseobacterium and Novosphingobium), anoxygenic phototrophy (Rhodobacter), polyphosphate accumulation (Acinetobacter), denitrification (Acidovorax and Methylotenera), degradation of alkane (Aquabacterium and Hyphomicrobium), and aromatic compounds (Hydrogenophaga). Innately, lakes are known for their significant methane emission to the atmosphere, resulting in global warming. Zulkifly et al. (2012) showed that the aerobic methanotrophs - Methylotenera, Methylibium, and Methylobacter - were present in the *Cladophora* microbiome from Lake Mendota in 2011. Later Braus et al. (2017) also showed that the methanotrophs - Crenothrix, Methylobacter, Methylocaldum, Methylocella, Methylocyctis, Methylomonas, and Methylovulum – were increasingly present in the Cladophora microbiome from Lake Mendota in 2014. These suggested the constant emission of methane from the lake sediments. Compared to this study, methanotrophs - Gemmobacter, OM43 clade, Methylocystis, and Methylovulum were low abundant genera. These indicated that the lotic Nan River might not be the methane hot spot like those lentic ecosystems. It is not clearly known why these taxa were commonly present in the Cladophora microbiome living in lentic and lotic environments and whether they play crucial roles in the dispersal and survival of this worldwide distributed algal genus. Afterall, it also could be from the wide distribution of the bacteria themselves. To answer the question, a further study of interactions between these bacteria and *Cladophora* is needed.

CHAPTER VI CONCLUSION

6.1 Conclusions

In this study, the algal samples were collected from five collecting sites, four replicates per site, along Nan River, Nan Province, Thailand, in March 2020. The algal samples from Chiang Klang, Pua, and Tha Wang Pha districts were morphologically identified as *Cladophora*-dominant samples and performed phylogenetic analysis. Maximum likelihood trees of 18S rDNA, 23S rDNA, and ITS sequences suggested that *Cladophora* sequences obtained from Nan River were placed in clades consisting of *Cladophora* species. Then, *Cladophora*-dominant samples were further studied for the diversity of epiphytic microbiota using amplicon-based metagenomic analysis.

Results from 16S rDNA amplicon analysis showed that the identified bacterial taxa included 45 phyla, and the five most abundant phyla were Proteobacteria, Bacteroidota, Firmicutes, Verrucomicrobia, and Planctomycetota. These 45 bacterial phyla were classified into 689 distinct genera with varied relative abundance. Among the identified bacteria, 227 genera were shared taxa, commonly present in all sites. Some were high-abundant taxa those involved in various processes, i.e., cellulose degradation (Bacteroides and *Paludibacter*), vitamin B_{12} biosynthesis (Flavobacterium), and ammonium oxidation (Pirellula). Among these shared taxa, 17 genera were core taxa, present in *Cladophora* microbiota of this study and other previous studies from the USA. Some were bioinformatically inferred to play crucial roles in freshwater *Cladophora* microbiome, e.g., vitamin B₁₂ biosynthesis (Flavobacterium and Pseudomonas), extracellular polymeric substance secretion (Terrimonas), and denitrification (Acidovorax and Methylotenera).

Results from 18S rDNA amplicon analysis showed that the identified eukaryotic taxa included six eukaryotic supergroups, and the five most abundant supergroups were Amorphea, Stramenopiles, Archaeplastida, Rhizaria, and Alveolata. These six eukaryotic supergroups were classified into 575 distinct genera with varied relative abundance. Among the identified genera, 51 genera were shared across all sites. Some were high-abundant taxa, which was congruent with results from microscopic observation. These taxa included photosynthetic stramenopiles (diatoms), *Cocconeis*, and *Gomphonema*.

Only one replicate of ITS amplicon analysis, which was the sample from TD1, was successful. The identified fungi included eight fungal phyla, of which the three most abundant phyla were Ascomycota, Chytridiomycota, and Basidiomycota. These eight fungal phyla were classified into 133 distinct genera with varied relative abundance. When comparing these genera with the results from 18S rDNA amplicon analysis, 22 genera were shared across all sites and were inferred to involve in various processes, i.e., decomposition, parasitism, plant-fungal interaction, and predation.

In conclusion, the information of the epiphytic microbiota of Kai *Cladophora* sp. obtained in this study allows us to have a better understanding of the taxonomic composition and the putative ecological functions of the epiphytic microbiota of *Cladophora* sp. in the Nan River, Nan Province, Thailand. Evidence observed in this study suggested that the *Cladophora* host and its microbiota thus play crucial roles in this freshwater ecosystem.

6.2 Perspectives

- 1. To predict the potential metabolites in associated epiphytic microbiota of Kai *Cladophora* sp. based on the amplicon-based metagenomic analysis.
- 2. To separately identify the core microbiota of the lentic and lotic ecosystem.

UHULALONGKORN UNIVERSITY

APPENDIX A

Phylogenetic estimation of Cladophora host

10 WAAAAAAA AGCT MMMMMMMM MMMMAA AMMAAAAAAAMMAA INA ΛΛΛ MM WWW M/W/ ANNA MARAMAA ANNA 630 AMMAMMAA AAMAAAM AMMAA N 920 940 M 1,030 1,040 1,010 1,080 XX

Figure A.1 Sanger chromatogram of 1,103 bp of 18S rDNA amplified from CKD sample sequenced in 5'–3' direction (starting from the forward primer).

Figure A.2 Sanger chromatogram of 1,070 bp of 18S rDNA amplified from CKD sample sequenced in 3'–5' direction (starting from the reverse primer).

Figure A.3 Sanger chromatogram of 1,147 bp of 18S rDNA amplified from PUA sample sequenced in 5'–3' direction (starting from the forward primer).

Figure A.4 Sanger chromatogram of 1,064 bp of 18S rDNA amplified from PUA sample sequenced in 3'–5' direction (starting from the reverse primer).

Figure A.5 Sanger chromatogram of 1,090 bp of 18S rDNA amplified from TD1 sample sequenced in 5'–3' direction (starting from the forward primer).

Figure A.6 Sanger chromatogram of 1,122 bp of 18S rDNA amplified from TD1 sample sequenced in 3'–5' direction (starting from the reverse primer).

Figure A.7 Sanger chromatogram of 356 bp of 23S rDNA amplified from CKD sample sequenced in 5'–3' direction (starting from the forward primer).

Figure A.8 Sanger chromatogram of 369 bp of 23S rDNA amplified from CKD sample sequenced in 3'–5' direction (starting from the reverse primer).

Figure A.9 Sanger chromatogram of 363 bp of 23S rDNA amplified from PUA sample sequenced in 5'–3' direction (starting from the forward primer).

1 1	10 2	20 3	30 40	50	60	70	80	90	100	110	120	130
2200		20002977	wh MMM		WWW	AMM &	WWW		MMM	AMM AM	WWW	
CCACTTTGA	TGAGGCGTTC	CCTCAGCACC	GTCAGATCACTAA 0 170	GACCGACTTT	CGTCCCTGCT	200	AGGTCTCACAG 210	TCAAGCTTCC	TTATGCCTTT 230	ACACTCTAGA	TACGATTTCTA 250	CCCGTTCAG
MWM	MAAAAA	MAMM	MAMM	MMM	WW MAA		MAMAM	MAMAAA		MAMAA	MAAAAA	MAMA
AGGAAACCT	TTGTGCGCCT 280	CCGTTACCGT	TTGGGAGGCGACC 300	GCCCCAGTCA 310	AACTGCCCGC 320	CTGAAACTO 330	340	AGATAATGAT 350	GCAAAGTTAG 360	370	TTATAAGAGTG 380	GTATCTCAC 390
AMAMA	MMMM	MAAAAA	WWWWW	MMM		WWW	MMM	MARAM	WWW	MAN	Allen	
TGAGGGCTC	410	GCAAAAAGAT 420	TTTCATAGCCTCC 430	сасстатаст 440	GCGCATATAA 450	AGTCCAATI 460	ТСААТСТСАА 470	GTTACAGTAA 480	AGCTTCATAG 490	GGTATTTCCT 500	510 510	CCAACTCAC 520
200			altha	<u>(1000)</u>	And	<u> </u>		2000				opanalos
530	ACATATATAC	AGCAAAAATC	ACAGGCCCCCAA 560	570	AGCCATTTAA 580	ACATAGGTI 590	CCTAGGGACA 600	AATTAAAAAG 610	ACCAAGCGCT 620	GATGTGGCTC	640	TGAAGTGTA 650
<u>a 2003</u>	(Alacica)	<u>~~~~</u>	and the	3.000m			<u> </u>	<u>* 2000</u>	<u>~~~~</u>			<u></u>
TCGAAAAGC	670	680 680	690	700	710	720	AGAAAAAGCGA 730	GCCTGTCTAC 740	750	760	770	780
man		APAGAN		horn	$\Delta \sim \sim$		<u></u>		Yard	~	\sim	
GGTTGTGGT 790	GGTTGGGACG 800	GAGAAAGGAA 810	AAGAACCAGGGAA 820	ACCCCAAATC 830	AAATCTCATC 840	SGTCGAAACC	CGCTAAAAGAA 860	CTCGGAACGG 870	BGGGCCCTGG 880	890	900	TTCGGGGTT 910
****	-		<u> </u>	****		Awan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		An and Ane	<u>~~~</u>		
920	930	940 940	950 950 950 950 950 950 950 950 950 950	GGGGTTGATT	GGGCATGAAA	980 980	990	т GTTGGGGGT 1,000 1	ACGCAAGGAG	GAGCAAGAAA 1,020 1	ACCCCTTATGA 1,030 1,	GATAGCCAC 040
<u>~~~</u>	<u> </u>		1500000				<u>Man</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a/	Salaca -
1,050	1,060	1,070	ACCGGTAAGGGAT 1,080 1,0	1,10 1,10	GAGAGAAACG	10 1	,120 1,	130 1,	140 1,	150 1,	ATGTGATGAGG 160 1,1	CGAGGAGCG 70
<u>Andre</u>	Long	<u>~~~~</u>	<u></u>			~~~		<u>^^^</u>	<u> </u>	<u> </u>	2000000	SAn and
1,180 1	1,190 1	1,200 1	1,210 1,220) 1,230) 1,24	.0 1,2	50 1,2	60 1,27	70 1,2	80 1,29	90 1,30	1,310
Masse		<u> </u>	mann.	Marko	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~~~~~</u>	<u> and an</u>	nonaci	<u>~~~</u>			$\sim \sim $
GAGACCTAT	320 1,:	330 1,:	340 1,350	1,360	1,370	1,38	0 1,390	0 1,400	1,41	0 1,420) 1,430	1,440
~~~~~	<u></u>	~~~^	<u></u>	<u></u>	<u>Ace and</u>	<u>~~~</u>			<u> </u>	the second	<u>an san san san san san san san san san s</u>	
1,45	50 1,4 ⁶	60 1,47	70 1,480	1,490	1,500	1,510	1,520	1,530	1,540	1,550 1,550	1,560	1,570
*****		<u>~~~~~</u>	100000		<u> </u>	<u>~~~~</u>		<u>~~~~~~</u>	<u></u>	<u> </u>		
1,580	) 1,590	0 1,600	) 1,610	1,620	1,630	1,640	1,650	1,660	1,670	1,680	1,690	1,700
		ACC ACC				<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 AC		A-7277		
1,710	1,720	1,730	1,740	1,750	1,760	1,770	1,780	1,790	1,800	1,810	1,820	1,830
<u>~~~</u>		an mo	Marca Marca	<u>~~</u> ^	Accor	to Mary	-		<u>~~~~~</u>		<u>~^^~</u>	<u></u>
1,840	1,850	1,860	1,870	1,880	1,890	1,900	1,910 1,910	1,920	1,930	1,940	1,950 1,950	1,960
		<u></u>	<u>~~~~~~</u>	<u>~~~~</u>		<u>~~~~</u>	<u> </u>	<u></u>		<u>Annal</u>		
1,970	1,980	1,990	2,000	2,010	2,020	2,030	2,040	2,050	2,060	2,070	2,080	2,090
<u>~^~~</u>	Anna	<u></u>		<u></u>	<u>~~~~~</u>	Am	<u>~~~~</u>		<u>~~~~</u>	<u></u>		
2,100	2,110	2,120	2,130	2,140 :	GCGCGGGCAT 2,150	2,160	2,170	2,180	2,190	2,200	2,211	ALCACAGAA
	Alan	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	K hard	<u>~~~</u>	<u>~~</u>	^	<u></u>	<u> </u>	~~~~	<u></u>	<u></u>	

**Figure A. 10** Sanger chromatogram of 2,211 bp of 23S rDNA amplified from PUA sample sequenced in 3'–5' direction (starting from the reverse primer).



**Figure A.11** Sanger chromatogram of 731 bp of 23S rDNA amplified from TD1 sample sequenced in 5'–3' direction (starting from the forward primer).



**Figure A.12** Sanger chromatogram of 374 bp of 23S rDNA amplified from TD1 sample sequenced in 3'–5' direction (starting from the reverse primer).

110 120 100 130 000 210 150 220 250 260 270 And And M Amarian Mam MAN

**Figure A.13** Sanger chromatogram of 553 bp of 28S rDNA amplified from CKD sample sequenced in 5'–3' direction (starting from the forward primer).

จุฬาสงกรณมหาวทยาลย

**Figure A.14** Sanger chromatogram of 552 bp of 28S rDNA amplified from CKD sample sequenced in 3'–5' direction (starting from the reverse primer).

AGATCCCTTTCCTCAG 170 150 160 220

**Figure A.15** Sanger chromatogram of 589 bp of 28S rDNA amplified from PUA sample sequenced in 5'–3' direction (starting from the forward primer).

**Figure A.16** Sanger chromatogram of 581 bp of 28S rDNA amplified from PUA sample sequenced in 3'–5' direction (starting from the reverse primer).

**Figure A.17** Sanger chromatogram of 554 bp of 28S rDNA amplified from TD1 sample sequenced in 5'–3' direction (starting from the forward primer).



**Figure A.18** Sanger chromatogram of 356 bp of 28S rDNA amplified from TD1 sample sequenced in 3'–5' direction (starting from the reverse primer).





**Figure A.19** Sanger chromatogram of 1,100 bp of ITS region amplified from CKD sample sequenced in 5'–3' direction (starting from the forward primer).



**Figure A.20** Sanger chromatogram of 971 bp of ITS region amplified from CKD sample sequenced in 3'–5' direction (starting from the reverse primer).



**Figure A.21** Sanger chromatogram of 805 bp of ITS region amplified from PUA sample sequenced in 5'–3' direction (starting from the forward primer).



**Figure A.22** Sanger chromatogram of 1,100 bp of ITS region amplified from PUA sample sequenced in 3'–5' direction (starting from the reverse primer).



**Figure A.23** Sanger chromatogram of 1,100 bp of ITS region amplified from TD1 sample sequenced in 5'-3' direction (starting from the forward primer).



**Figure A.24** Sanger chromatogram of 1,100 bp of ITS region amplified from TD1 sample sequenced in  $3^{\circ}-5^{\circ}$  direction (starting from the reverse primer).



**Figure A.25** Multiple sequence alignment of *Cladophora* 18S rDNA amplicons obtained from universal primers, sequenced by Illumina Miseq, and visualized using Geneious Prime 2021.1.1.

 Table A.1 Top ten BLASTN search results of 18S rDNA amplicon sequenced by

 Sanger technology.

Sequence queries indicate collecting sites and sequencing directions. F indicates the direction starting from the 5' terminal (forward primer). R indicates the direction starting from the 3' terminal (reverse primer).

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	1	KU904705.1	<i>Cladophora</i> sp. HLJ1407 18S ribosomal RNA gene, partial sequence	1439	100%	0	95.57
CKD-F	2	KU904721.1	<i>Cladophora</i> sp. TB1461 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	3	KU904720.1	<i>Cladophora</i> sp. TB1439 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	4	KU904718.1	<i>Cladophora</i> sp. TB1401 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	5	KU904717.1	<i>Cladophora</i> sp. YN1402 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	6	KU904716.1	<i>Cladophora</i> sp. YN1401 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	7	KU904715.1	<i>Cladophora</i> sp. YN1303 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	8	KU904713.1	<i>Cladophora</i> sp. FJ1301 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	9	KU904697.1	Cladophora sp. HEN1508 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	10	KU904705.1	Cladophora sp. HEN1504 18S ribosomal RNA gene, partial sequence	1434	100%	0	95.46
	1	LS974894.1	<i>Cladophora</i> sp. QH1505 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
CKD-R	2	KU904733.1	<i>Cladophora</i> sp. QH1504 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	3	KU904732.1	<i>Cladophora</i> sp. QH1503 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	4	KU904731.1	<i>Cladophora</i> sp. QH1502 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	5	KU904730.1	<i>Cladophora</i> sp. QH1501 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	6	KU904728.1	<i>Cladophora</i> sp. QH1403 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	7	KU904725.1	<i>Cladophora</i> sp. QH1304 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
CKD-R	8	KU904724.1	<i>Cladophora</i> sp. QH1303 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	9	KU904723.1	<i>Cladophora</i> sp. QH1302 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	10	KU904722.1	<i>Cladophora</i> sp. QH1301 18S ribosomal RNA gene, partial sequence	1796	100%	0	99.39
	1	KU904719.1	<i>Cladophora</i> sp. TB1433 18S ribosomal RNA gene, partial sequence	1450	95%	0	95.55
	2	KU904650.1	<i>Cladophora</i> sp. HB1422 18S ribosomal RNA gene, partial sequence	1450	95%	0	95.55
	3	KU904689.1	Cladophora sp. HEN1416 18S ribosomal RNA gene, partial sequence	1447	95%	0	95.44
	4	KU904658.1	<i>Cladophora</i> sp. HUN1406 18S ribosomal RNA gene, partial sequence	1447	95%	0	95.44
	5	KU904721.1	<i>Cladophora</i> sp. TB1461 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
PUA-F	6	KU904720.1	<i>Cladophora</i> sp. TB1439 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
	7	KU904718.1	<i>Cladophora</i> sp. TB1401 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
	8	KU904717.1	<i>Cladophora</i> sp. YN1402 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
	9	KU904716.1	<i>Cladophora</i> sp. YN1401 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
	10	KU904715.1	<i>Cladophora</i> sp. YN1303 18S ribosomal RNA gene, partial sequence	1445	95%	0	95.44
	1	KU904702.1	<i>Cladophora</i> sp. HLJ1404 18S ribosomal RNA gene, partial sequence	1882	99%	0	99.42
PUA-R	2	KU904734.1	<i>Cladophora</i> sp. QH1505 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	3	KU904733.1	<i>Cladophora</i> sp. QH1504 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	4	KU904732.1	<i>Cladophora</i> sp. QH1503 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	5	KU904731.1	<i>Cladophora</i> sp. QH1502 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	6	KU904730.1	<i>Cladophora</i> sp. QH1501 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
Query PUA-R	7	KU904728.1	<i>Cladophora</i> sp. QH1403 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	8	KU904725.1	<i>Cladophora</i> sp. QH1304 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	9	KU904724.1	<i>Cladophora</i> sp. QH1303 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	10	KU904723.1	Cladophora sp. QH1302 18S ribosomal RNA gene, partial sequence	1881	99%	0	99.33
	1	KU904719.1	<i>Cladophora</i> sp. TB1433 18S ribosomal RNA gene, partial sequence	1016	94%	0	88.72
	2	KU904659.1	<i>Cladophora</i> sp. HUN1407 18S ribosomal RNA gene, partial sequence	1016	94%	0	88.72
	3	KU904650.1	Cladophora sp. HB1422 18S ribosomal RNA gene, partial sequence	1016	94%	0	88.72
	4	KU904721.1	<i>Cladophora</i> sp. TB1461 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
TD1 E	5	KU904720.1	<i>Cladophora</i> sp. TB1439 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
IDI-F	6	KU904718.1	<i>Cladophora</i> sp. TB1401 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
	7	KU904717.1	Cladophora sp. YN1402 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
	8	KU904716.1	<i>Cladophora</i> sp. YN1401 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
	9	KU904715.1	<i>Cladophora</i> sp. YN1303 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72
	10	KU904713.1	<i>Cladophora</i> sp. FJ1301 18S ribosomal RNA gene, partial sequence	1014	94%	0	88.72

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	1	LS974894.1	<i>Cladophora</i> glomerata partial 18S rRNA gene, specimen voucher WELT: A033724, isolate Q41	1559	99%	0	97.7
	2	KU904720.1	<i>Cladophora</i> sp. TB1439 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	3	KU904718.1	<i>Cladophora</i> sp. TB1401 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	4	KU904717.1	<i>Cladophora</i> sp. YN1402 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
TD1-R	5	KU904716.1	<i>Cladophora</i> sp. YN1401 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	6	KU904715.1	<i>Cladophora</i> sp. YN1303 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	7	KU904713.1	<i>Cladophora</i> sp. FJ1301 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	8	KU904702.1	<i>Cladophora</i> sp. HLJ1404 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	9	KU904701.1	Cladophora sp. HLJ1403 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7
	10	KU904697.1	Cladophora sp. HEN1508 18S ribosomal RNA gene, partial sequence	1559	99%	0	97.7

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

 Table A.2 Top ten BLASTN search results of 23S rDNA amplicon sequenced by

 Sanger technology.

Sequence queries indicate collecting sites and sequencing directions. F indicates the direction starting from the 5' terminal (forward primer). R indicates the direction starting from the 3' terminal (reverse primer).

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	1	MW675675.1	<i>Erythrotrichia longistipitata</i> chloroplast clone contig 32, complete genome	570	99%	3.00E- 72	91.75
	2	HQ421333.1	<i>Erythrotrichia</i> sp. ARS- 2011 voucher ARS04482 23S ribosomal RNA gene, partial sequence; plastid	285	99%	3.00E- 72	91.75
	3	KF907445.1	<i>Cryptomonas</i> sp. Dumo2 100310C 23S large subunit ribosomal RNA gene, partial sequence; plastid	282	97%	1.00E- 71	92.08
	4	KF907437.1	Cryptomonas pyrenoidifera strain CNUCRY 134 23S large subunit ribosomal RNA gene, partial sequence; plastid	282	97%	1.00E- 71	92.08
CKD-R	5	KF907429.1	<i>Cryptomonas ovata</i> strain CNUCRY 231 23S large subunit ribosomal RNA gene, partial sequence; plastid	282	97%	1.00E- 71	92.08
	6	KF907426.1	Cryptomonas obovata strain Saenae080611D 23S large subunit ribosomal RNA gene, partial sequence; plastid	<b>í 9</b> 282 Sity	97%	1.00E- 71	92.08
	7	KF907425.1	Cryptomonas obovata strain Hanjeong080610A 23S large subunit ribosomal RNA gene, partial sequence; plastid	282	97%	1.00E- 71	92.08
	8	HQ421332.1	<i>Erythrotrichia</i> sp. ARS- 2011 voucher ARS04481 23S ribosomal RNA gene, partial sequence; plastid	282	97%	1.00E- 71	92.08
	9	CP021983.2	Halomicronema hongdechloris C2206 genome	561	99%	4.00E- 71	91.26
	10	KY856939.1	<i>Cryptomonas curvata</i> strain CNUKR plastid, complete genome	556	97%	5.00E- 70	91.58
Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
---------	-----	---------------------	-----------------------------------------------------------------------------------------------------------------------	----------------	----------------	---------------	-----------------
	1	MW648602.1	<i>Cocconeis euglypta</i> strain TCC720-sq1 large subunit ribosomal RNA gene, partial sequence; chloroplast	249	100%	3.00E- 61	83.90
	2	MG021094.1	<i>Cladophora</i> sp. JIAC-WT- filamentous 2 large subunit ribosomal RNA gene, partial sequence; chloroplast	245	100%	3.00E- 60	83.90
	3	KY916410.1	Uncultured organism clone UniqueSequence1835 23S ribosomal RNA gene, partial sequence	217	100%	4.00E- 52	80.93
	4	KY916246.1	Uncultured organism clone UniqueSequence1671 23S ribosomal RNA gene, partial sequence	217	100%	4.00E- 52	80.93
PUA-F	5	KY915958.1	Uncultured organism clone UniqueSequence1383 23S ribosomal RNA gene, partial sequence	217	100%	4.00E- 52	80.93
	6	KF803893.1	Uncultured organism clone QHS-288-1 23S ribosomal RNA gene, partial sequence	217	100%	4.00E- 52	80.93
	7	KF803789.1	Uncultured organism clone QHS-22-4 23S ribosomal RNA gene, partial sequence	217	100%	4.00E- 52	80.93
	8	MW648606.1	Gomphonema parvulum strain TCC888-sq1 large subunit ribosomal RNA gene, partial sequence; chloroplast	217	100%	4.00E- 52	80.93
	9	KC284811.1	Uncultured organism clone DGCM54 23S ribosomal RNA gene, partial sequence	217 19	100%	4.00E- 52	80.93
	10	KC284763.1	Uncultured organism clone C36 23S ribosomal RNA gene, partial sequence	<b>S</b> 217	100%	4.00E- 52	80.93
	1	MW648602.1	<i>Cocconeis euglypta</i> strain TCC720-sq1 large subunit ribosomal RNA gene, partial sequence; chloroplast	628	100%	1.00E- 175	99.42
PUA-R -	2	MZ469850.1	Aureoumbra sp. strain DAD-ALGEUK-122 large subunit ribosomal RNA gene, partial sequence; chloroplast	568	100%	2.00E- 157	96.24
	3	EU342146.1	Uncultured organism clone C6.71 23S ribosomal RNA gene, partial sequence	562	100%	1.00E- 155	95.95
	4	NC_044464.1	Halamphora calidilacuna chloroplast, complete genome	1113	100%	5.00E- 154	95.66
	5	NC_044463.1	Halamphora americana chloroplast, complete genome	1113	100%	5.00E- 154	95.66
	6	MK045451.1	Halamphora calidilacuna chloroplast, complete genome	1113	100%	5.00E- 154	95.66

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	7	MK045450.1	Halamphora americana chloroplast, complete genome	1113	100%	5.00E- 154	95.66
	8	MZ469805.1	<i>Cerataulina</i> sp. strain DAD- ALGEUK-77 large subunit ribosomal RNA gene, partial sequence; chloroplast	556	100%	5.00E- 154	95.66
РОА-К	9	EU342166.1	Uncultured organism clone C6.11 23S ribosomal RNA gene, partial sequence	556	100%	5.00E- 154	95.66
	10	EU342158.1	Uncultured organism clone C6.10 23S ribosomal RNA gene, partial sequence	556	100%	5.00E- 154	95.66
	1	KY915958.1	Uncultured organism clone UniqueSequence1383 23S ribosomal RNA gene, partial sequence	202	99%	7.00E- 48	97.46
	2	KM458300.1	Uncultured Diadesmis isolate OTU 00008 23S ribosomal RNA gene,	202	99%	7.00E- 48	97.46
	3	KM458301.1	Uncultured Diadesmis isolate OTU 00009 23S ribosomal RNA gene, partial sequence: plastid	202	99%	7.00E- 48	97.46
TD1-F	4	KJ671835.1	<i>Chaetoceros didymus</i> strain 32 23S ribosomal RNA gene, partial sequence; chloroplast	202	99%	7.00E- 48	97.46
	5	NC_044464.1	Halamphora calidilacuna chloroplast, complete genome	393	99%	3.00E- 46	96.61
	6	NC_044463.1	Halamphora americana c chloroplast, complete genome	393	99%	3.00E- 46	96.61
	7	MK045451.1	Halamphora calidilacuna chloroplast, complete genome	393	99%	3.00E- 46	96.61
	8	MK045450.1	Halamphora americana chloroplast, complete genome	393	99%	3.00E- 46	96.61
	9	NC_038001.1	<i>Entomoneis</i> sp. chloroplast, complete genome	393	99%	3.00E- 46	96.61
	10	MG755800.1	<i>Entomoneis</i> sp. chloroplast, complete genome	393	99%	3.00E- 46	96.61
TD1-R	1	MW648602.1	<i>Cocconeis euglypta</i> strain TCC720-sq1 large subunit ribosomal RNA gene, partial sequence; chloroplast	527	100%	4.00E- 145	95.76
	2	MG021094.1	<i>Cladophora</i> sp. JIAC-WT- filamentous 2 large subunit ribosomal RNA gene, partial sequence; chloroplast	475	92%	1.00E- 129	95.10
	3	NC_044464.1	Halamphora calidilacuna chloroplast, complete genome	932	100%	8.00E- 127	92.42
	4	NC_044463.1	Halamphora americana chloroplast, complete genome	932	100%	8.00E- 127	92.42
	5	MK045451.1	Halamphora calidilacuna chloroplast, complete genome	932	100%	8.00E- 127	92.42

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	6	MK045450.1	Halamphora americana chloroplast, complete genome	932	100%	8.00E- 127	92.42
	7	MZ469850.1	Aureoumbra sp. strain DAD-ALGEUK-122 large subunit ribosomal RNA gene, partial sequence; chloroplast	466	100%	8.00E- 127	92.42
TD1-R	8	KJ671831.1	Amphiprora alata strain J 23S ribosomal RNA gene, partial sequence; chloroplast	460	100%	4.00E- 125	92.15
	9	EU342146.1	Uncultured organism clone C6.71 23S ribosomal RNA gene, partial sequence	460	100%	4.00E- 125	92.15
	10	KY916472.1	Uncultured organism clone UniqueSequence1897 23S ribosomal RNA gene, partial sequence	457	99%	5.00E- 124	92.07

 Table A.3 Top ten BLASTN search results of 28S rDNA amplicon sequenced by

 Sanger technology.

Sequence queries indicate collecting sites and sequencing directions. F indicates the direction starting from the 5' terminal (forward primer). R indicates the direction starting from the 3' terminal (reverse primer).

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	1	LT607103.1	Cladophora cf. rivularis H28 partial 28S rRNA gene, specimen voucher WELT: A033264, isolate H28	684	100%	0	91.57
	2	CHUL LT607091.1	Cladophora cf. glomerata P02 partial 28S rRNA gene, specimen voucher WELT: A033290, isolate P02	671	100%	0	91.16
	3	KU904758.1	<i>Cladophora</i> sp. TB1461 28S ribosomal RNA gene, partial sequence	665	100%	0	90.96
CKD-F	4	KU904745.1	<i>Cladophora</i> sp. HUN1440 28S ribosomal RNA gene, partial sequence	665	100%	0	90.96
	5	KU904743.1	<i>Cladophora</i> sp. HUN1436 28S ribosomal RNA gene, partial sequence	665	100%	0	90.96
	6	KU904738.1	<i>Cladophora</i> sp. HB1425 28S ribosomal RNA gene, partial sequence	665	100%	0	90.96
	7	LS974958.1	<i>Cladophora</i> sp. T52 partial 28S rRNA gene, specimen voucher WELT: A033729, isolate T52	665	100%	0	90.96

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	8	LS974948.1	<i>Cladophora glomerata</i> partial 28S rRNA gene, specimen voucher WELT: A033724, isolate Q41	665	100%	0	90.96
CKD-F	9	LS974947.1	<i>Cladophora glomerata</i> partial 28S rRNA gene, specimen voucher WELT: A033722, isolate Q39	665	100%	0	90.96
	10	LS974946.1	Cladophora glomerata partial 28S rRNA gene, specimen voucher WELT: A033694, isolate P92	665	100%	0	90.96
	1	LT607103.1	<i>Cladophora</i> cf. <i>rivularis</i> H28 partial 28S rRNA gene, specimen voucher WELT: A033264, isolate H28	654	98%	0	91.60
	2	KM676861.1	Cladophora glomerata voucher ARS07398_00001 28S ribosomal RNA gene, partial sequence	649	100%	0	90.91
	3	KU904758.1	Cladophora sp. TB1461 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	4	KU904748.1	<i>Cladophora</i> sp. HEN1404 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	5	KU904745.1	<i>Cladophora</i> sp. HUN1440 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
CKD-R	6	KU904741.1	<i>Cladophora</i> sp. HUN1414 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	7	KU904739.1	<i>Cladophora</i> sp. HB1503 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	8	KU904738.1	<i>Cladophora</i> sp. HB1425 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	9	KU866513.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1439 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	10	KU866512.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1401 28S ribosomal RNA gene, partial sequence	647	100%	0	90.91
	1	AM710566.1	<i>Cocconeis pediculus</i> partial 28S rRNA gene, strain AT-212.07	220	83%	3.00E- 52	74.8
ΓυΑ-Γ	2	AM710569.1	<i>Cocconeis placentula</i> partial 28S rRNA gene, strain AT-212Gel11	215	81%	3.00E- 51	75.2

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
PUA-F	3	OL780369.1	<i>Cocconeis euglypta</i> strain CBac2019019 large subunit ribosomal RNA gene, partial sequence	212	82%	4.00E- 50	74.4
	4	LT607077.1	<i>Chaetomorpha spiralis</i> partial 28S rRNA gene, specimen voucher WELT: A033220, isolate D52	198	44%	8.00E- 46	82.41
	5	LT607060.1	<i>Chaetomorpha antennina</i> partial 28S rRNA gene, specimen voucher WELT: A033218, isolate D45	198	44%	8.00E- 46	82.41
	6	LT607059.1	Chaetomorpha antennina partial 28S rRNA gene, specimen voucher LAF: BW02589, isolate Fx1141	198	44%	8.00E- 46	82.41
	7	LT607218.1	Chaetomorpha spiralis partial 28S rRNA gene, specimen voucher GENT: F.0165 (D760), isolate Fx1353	198	44%	8.00E- 46	82.41
	8	LT607217.1	Chaetomorpha vieillardii partial 28S rRNA gene, specimen voucher WELT: A033185, isolate B69, JW4416	198	44%	8.00E- 46	82.41
	9	LT607216.1	<i>Chaetomorpha antennina</i> partial 28S rRNA gene, specimen voucher WELT: A033254, isolate G73	198	44%	8.00E- 46	82.41
	10	LT607215.1	Chaetomorpha antennina partial 28S rRNA gene, specimen voucher GENT: GUAM118, isolate F701	198	44%	8.00E- 46	82.41
	1	AM710566.1	<i>Cocconeis pediculus</i> partial 28S rRNA gene, strain AT- 212.07	567	100%	5.00E- 157	87.29
	2	OL780369.1	<i>Cocconeis euglypta</i> strain CBac2019019 large subunit ribosomal RNA gene, partial sequence	516	100%	3.00E- 141	84.96
PUA-R	3	AM710569.1	<i>Cocconeis placentula</i> partial 28S rRNA gene, strain AT-212Gel11	437	100%	6.00E- 118	81.36
	4	MK585217.1	Phaeodactylum tricornutum strain CCMA106 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	343	93%	3.00E- 89	78.78

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identit (%)
	5	KM407585.1	<i>Nitzschia</i> sp. LFS-2014 isolate Ant015-G03 28S ribosomal RNA gene, partial sequence	343	99%	3.00E- 89	77.87
	6	OM859331.1	Phaeodactylum tricornutum strain OUCE6 large subunit ribosomal RNA gene, partial sequence	343	93%	3.00E- 89	78.78
	7	OU594944.1	Phaeodactylum tricornutum isolate CCAP 1055/1 genome assembly, chromosome: 3	686	93%	3.00E- 89	78.78
PUA-R	8	EF553459.1	Nitzschia closterium f. minutissima strain MACC- B228 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	343	93%	3.00E- 89	78.78
	9	EF553458.1	Phaeodactylum tricornutum strain CCAP 1055/1 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	343	93%	3.00E- 89	78.78
	10	DQ085806.1	Phaeodactylum tricornutum strain CCMP631 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	343 SITY	93%	3.00E- 89	78.78
	1	LT969748.1	<i>Cladophora pellucida</i> partial 28S rRNA gene, specimen voucher GENT:SV0093	219	40%	4.00E- 52	86.5
	2	FM205038.1	Cladophora pellucidoidea partial 28S rRNA gene, specimen voucher GENT:CpoT	219	40%	4.00E- 52	86.5
TD1-F	3	FM205037.1	<i>Cladophora pellucida</i> partial 28S rRNA gene, specimen voucher L:0793562	219	40%	4.00E- 52	86.5
-	4	FM205036.1	<i>Cladophora pellucida</i> partial 28S rRNA gene, specimen voucher GENT:HEC 15794	219	40%	4.00E- 52	86.5
	5	AM503475.1	<i>Cladophora sibogae</i> partial 28S rRNA gene, specimen voucher FL910c (F430)	217	39%	1.00E- 51	86.43

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
TD1-F	6	AJ544752.1	<i>Cladophora sibogae</i> partial large subunit ribosomal RNA gene, specimen voucher F61	217	39%	1.00E- 51	86.43
	7	FM205029.1	<i>Cladophora echinus</i> partial 28S rRNA gene, specimen voucher UTEX:LB 1480 (Delepine no. 60/55)	213	40%	2.00E- 50	86.14
	8	MH017624.1	<i>Tursiocola varicopulifera</i> voucher WGA voucher FLManM99TurWGA23 large subunit ribosomal RNA gene, partial sequence	195	33%	7.00E- 45	87.95
	9	MH017623.1	Tursiocola varicopulifera voucher WGA voucher FLManM99TurWGA22 large subunit ribosomal RNA gene, partial sequence	195	33%	7.00E- 45	87.95
	10	MH017616.1	Tursiocola varicopulifera voucher WGA voucher FLManM95TurWGA2 large subunit ribosomal RNA gene, partial sequence	195	33%	7.00E- 45	87.95
	1	AM710566.1	<i>Cocconeis pediculus</i> partial 28S rRNA gene, strain AT- 212.07	570	88%	1.00E- 157	89.11
	2	OL780369.1	Cocconeis euglypta strain CBac2019019 large subunit ribosomal RNA gene, partial sequence	535	88%	3.00E- 147	87.53
	3	AM710569.1	Cocconeis placentula partial 28S rRNA gene, strain AT-212Gel11	471	88%	3.00E- 128	84.44
TD1-R	4	MK585217.1	Phaeodactylum tricornutum strain CCMA106 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	8 8376	88%	2.00E- 99	80.53
	5	OM859331.1	Phaeodactylum tricornutum strain OUCE6 large subunit ribosomal RNA gene, partial sequence	376	88%	2.00E- 99	80.53
	6	OU594944.1	Phaeodactylum tricornutum isolate CCAP 1055/1 genome assembly, chromosome: 3	752	88%	2.00E- 99	80.53

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
TD1-R	7	EF553459.1	Nitzschia closterium f. minutissima strain MACC- B228 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	376	88%	2.00E- 99	80.53
	8	EF553458.1	Phaeodactylum tricornutum strain CCAP 1055/1 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	376	88%	2.00E- 99	80.53
	9	DQ085806.1	Phaeodactylum tricornutum strain CCMP631 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	376	88%	2.00E- 99	80.53
	10	DQ085805.1	Phaeodactylum tricornutum strain CCMP630 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	376	88%	2.00E- 99	80.53

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

 Table A.4 Top ten BLASTN search results of ITS amplicon sequenced by Sanger technology.

Sequence queries indicate collecting sites and sequencing directions. F indicates the direction starting from the 5' terminal (forward primer). R indicates the direction starting from the 3' terminal (reverse primer).

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity
	1	LS975015.1	<i>Cladophora</i> sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA gene, ITS2, strain WELT: A033729, isolate T52	405	37%	5.00E- 108	90.16
CKD-F	2	KU186047.1	Cladophora sp. ZZ-2016 voucher HUN1435 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	403	37%	2.00E- 107	90.16
	3	KU186020.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1513 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	399	37%	2.00E- 106	89.84
	4	ন্ব ম্ব <b>Chul</b> KU186018.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1509 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	าลัย ERSITY 399	37%	2.00E- 106	89.84
	5	KU186015.1	Cladophora sp. ZZ-2016 voucher HEN1504 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	399	37%	2.00E- 106	89.84

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
CKD-F	6	KU186008.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1408 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	399	37%	2.00E- 106	89.84
	7	KU186007.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1406 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	394	37%	1.00E- 104	89.74
	8	KC914578.1	Cladophora glomerata strain HB1211 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	394	32%	1.00E- 104	92.45
	9	КU186017.1 СНИ	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1508 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	388 388 14 9 RSITY	37%	5.00E- 103	89.21
	10	LS975015.1	<i>Cladophora</i> sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA gene, ITS2, strain WELT: A033729, isolate T52	405	37%	5.00E- 108	90.16
CKD-R	1	KU186015.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1504 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	106	12%	4.00E- 18	93.24

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
CKD-B	2	LC482135.1	Cladophora glomerata sp3-8 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	3	LC482134.1	Cladophora glomerata sp3-7 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	4	LC482131.1	Cladophora glomerata sp3-4 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	5	LC482130.1	Cladophora glomerata sp3-3 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	6	LC482129.1	Cladophora glomerata sp3-2 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	7	LC482128.1	Cladophora glomerata sp3-1 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	104	11%	1.00E- 17	94.29
	8	LS975015.1	<i>Cladophora</i> sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA gene, ITS2, strain WELT: A033729, isolate T52	104 1 <b>a</b> ย	11%	1.00E- 17	94.29
	9	LC309740.1	Uncultured fungus gene for ITS1, 5.8S rRNA and ITS2, partial and complete sequence, OTU: Bi-F-460	<b>RSIT</b> 104	11%	1.00E- 17	94.29
	10	KU186020.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1513 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	104	11%	1.00E- 17	94.29

Query	No.	Accession number	Description Tot sco	tal ore	Query cover	E- value	Identity (%)
	1	KU186047.1	<i>Cladophora</i> sp. ZZ-2016 voucher HUN1435 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	12	100%	1.00E- 119	92.11
	2	LS975015.1	Cladophora sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA 43 gene, ITS2, strain WELT: A033729, isolate T52	38	100%	2.00E- 118	91.8
	3	KU186045.1	Cladophora sp. ZZ-2016 voucher HUN1432 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	33	100%	8.00E- 117	91.25
PUA-F	4	KU186020.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1513 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	33	100%	8.00E- 117	91.48
	5	аж Сни кu186018.1	Cladophora sp. ZZ-2016	<b>5)</b> 33	100%	8.00E- 117	91.48
	6	KU186015.1	Cladophora sp. ZZ-2016 voucher HEN1504 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	33	100%	8.00E- 117	91.48

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
PUA-F -	7	KU186008.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1408 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	433	100%	8.00E- 117	91.48
	8	KU186055.1	<i>Cladophora</i> sp. ZZ-2016 voucher YN1303 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	431	100%	3.00E- 116	91.25
	9	KU186051.1	<i>Cladophora</i> sp. ZZ-2016 voucher HUN1441 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	431	100%	3.00E- 116	91.25
	10	ки185995.1 Сниг	<i>Cladophora</i> sp. ZZ-2016 voucher TS1307 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	431 RSIT	100%	3.00E- 116	91.25
PUA-R	1	KU186061.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1461 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	374	88%	1.00E- 98	79.19

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)	
	2	KU186058.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1419 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	370	88%	1.00E- 97	79.03	
	3	LC482135.1	Cladophora glomerata sp3-8 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38	
		4	LC482134.1	Cladophora glomerata sp3-7 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38
	5	LC482131.1	Cladophora glomerata sp3-4 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38	
PUA-R	6	LC482130.1	Cladophora glomerata sp3-3 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38	
	7	LC482129.1	Cladophora glomerata sp3-2 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38	
	8	LC482128.1	Cladophora glomerata sp3-1 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	80.5	8%	3.00E- 10	91.38	
	9	LS975015.1	<i>Cladophora</i> sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA gene, ITS2, strain WELT: A033729, isolate T52	80.5	8%	3.00E- 10	91.38	
	10	LC309740.1	Uncultured fungus gene for ITS1, 5.8S rRNA and ITS2, partial and complete sequence, OTU: Bi-F-460	80.5	8%	3.00E- 10	91.38	

Query	No.	Accession number	Description 7 s	Fotal core	Query cover	E- value	Identity (%)
	1	LS975015.1	<i>Cladophora</i> sp. T52 genomic DNA sequence contains ITS1, 5.8S rRNA gene, ITS2, strain WELT: A033729, isolate T52	517	98%	2.00E- 84	88.56
	2	KU186020.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1513 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	511	98%	1.00E- 82	88.19
	3	KU186018.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1509 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	511	98%	1.00E- 82	88.19
TD1-F	4	KU186015.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1504 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	511	98%	1.00E- 82	88.19
	5	<del>ү и</del> Сниг кu186008.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1408 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	511	98%	1.00E- 82	88.19
	6	KU186055.1	<i>Cladophora</i> sp. ZZ-2016 voucher YN1303 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	502	93%	4.00E- 82	87.96

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
TD1-F	7	KU186051.1	<i>Cladophora</i> sp. ZZ-2016 voucher HUN1441 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	497	93%	4.00E- 82	87.96
	8	KU186047.1	<i>Cladophora</i> sp. ZZ-2016 voucher HUN1435 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	497	98%	4.00E- 82	88.19
	9	KU186045.1	<i>Cladophora</i> sp. ZZ-2016 voucher HUN1432 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	497	93%	4.00E- 82	87.96
	10	LS975015.1	<i>Cladophora</i> sp. ZZ-2016 voucher TS1307 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	497 RSIT	93%	4.00E- 82	87.96
	1	KU186061.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1461 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	558	99%	2.00E- 154	85.97
101-4	2	KU186058.1	<i>Cladophora</i> sp. ZZ-2016 voucher TB1419 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	547	98%	5.00E- 151	85.82

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
	3	KU904777.1	<i>Cladophora</i> sp. HB1503 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	585	82%	3.00E- 128	89.42
	4	KU186036.1	Cladophora sp. ZZ-2016 voucher HUN1414 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	585	82%	3.00E- 128	89.42
	5	KU186017.1	Cladophora sp. ZZ-2016 voucher HEN1508 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	595	82%	3.00E- 128	89.42
TD1-R	6	КU186015.1 СНИС	Cladophora sp. ZZ-2016 voucher HEN1504 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	595 A E RSIT	82%	3.00E- 128	89.42
	7	KU186011.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1417 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	580	82%	3.00E- 128	89.42
	8	KU186010.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1416 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	589	81%	3.00E- 128	89.42

Query	No.	Accession number	Description	Total score	Query cover	E- value	Identity (%)
TD1 D	9	KU186009.1	<i>Cladophora</i> sp. ZZ-2016 voucher HEN1411 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	580	82%	3.00E- 128	89.42
1D1-K	10	KU185997.1	<i>Cladophora</i> sp. ZZ-2016 voucher HB1403 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	580	82%	3.00E- 128	89.42



**CHULALONGKORN UNIVERSITY** 

## **APPENDIX B**

## Reference sequences used in phylogenetic estimation

**Table B.1**147 reference sequences used in maximum likelihood phylogeneticestimation using 18S rDNA gene.

Accession number	Description	AlgaeBase nomenclature
Z35317.1	C.albida (83.3) gene for 18S ribosomal RNA	Cladophora albida (Nees) Kutzing, 1843
Z35421.1	<i>C. albida</i> (A85.101) gene for 18S ribosomal RNA	Cladophora albida (Nees) Kutzing, 1843
LC650014.1	<i>Cladophora albida</i> 1A32G gene for 18S rRNA, partial sequence	Cladophora albida (Nees) Kutzing, 1843
AB665583.1	<i>Cladophora albida</i> gene for 18S rRNA, partial sequence, isolate: alb-6	Cladophora albida (Nees) Kutzing, 1843
LT607349.1	<i>Cladophora albida</i> partial 18S rRNA gene, specimen voucher WELT: A033275, isolate H87	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308264.1	<i>Cladophora albida</i> voucher AST2010006 18S ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308267.1	<i>Cladophora albida</i> voucher AST2010012 18S ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308274.1	<i>Cladophora albida</i> voucher AST2010031 18S ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281853.1	<i>Cladophora albida</i> voucher NCweed-1509 18S small subunit ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281856.1	<i>Cladophora albida</i> voucher NCweed-1520 18S small subunit ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281850.1	<i>Cladophora albida</i> voucher NCweed-1548 18S small subunit ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
AM498747.1	<i>Cladophora aokii</i> partial 18S rRNA gene, strain C ryu 1 (F222)	<i>Cladophora aokii</i> Yamada, 1925
LT607351.1	<i>Cladophora capensis</i> partial 18S rRNA gene, specimen voucher WELT: A033161, isolate A69	Cladophora capensis (C.Agardh) De Toni, 1889
Z35418.1	<i>C. catenata</i> (CcatHJ) gene for 18S ribosomal RNA	<i>Cladophora catenata</i> Kützing, 1843
Z35315.1	C. coelothrix 87.1 gene for 18S ribosomal RNA	<i>Cladophora coelothrix</i> Kützing, 1843
FR865756.1	<i>Cladophora coelothrix</i> genomic DNA containing 18S rRNA gene, culture collection CCAP 505/10	<i>Cladophora coelothrix</i> Kützing, 1843
AM498748.1	<i>Cladophora coelothrix</i> partial 18S rRNA gene, strain C coel 2 (F275)	<i>Cladophora coelothrix</i> Kützing, 1843

Accession number	Description	AlgaeBase nomenclature
AM498749.1	<i>Cladophora coelothrix</i> partial 18S rRNA gene, strain PH 568 (F135)	<i>Cladophora coelothrix</i> Kützing, 1843
LT607353.1	<i>Cladophora columbiana</i> partial 18S rRNA gene, specimen voucher WELT: OR 1949, isolate H09	<i>Cladophora columbiana</i> F.S.Collins, 1903
LS974873.1	<i>Cladophora compacta</i> partial 18S rRNA gene, specimen voucher WELT: A033698, isolate Q05	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
AB807628.1	<i>Cladophora flexuosa</i> gene for 18S ribosomal RNA, partial sequence	<i>Cladophora flexuosa</i> (O.F.Müller) Kützing, 1843
LS974879.1	<i>Cladophora floccosa</i> partial 18S rRNA gene, specimen voucher WELT: A033714, isolate Q23	Cladophora floccosa C.Meyer, 1927
LS974887.1	<i>Cladophora fracta</i> partial 18S rRNA gene, specimen voucher WELT: A033723, isolate Q40	<i>Cladophora fracta</i> (O.F.Müller ex Vahl) Kützing, 1843
LS974889.1	<i>Cladophora globula</i> partial 18S rRNA gene, specimen voucher WELT: A033718, isolate Q27	<i>Cladophora globula</i> (C.Meyer) C.Meyer, 1976
LS974888.1	<i>Cladophora globulina</i> partial 18S rRNA gene, specimen voucher WELT: A033721, isolate Q37	<i>Cladophora globulina</i> (Kützing) Kützing, 1845
LC536843.1	Cladophora glomerata 1-CL-2019 gene for 18S rRNA, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
GQ337527.1	<i>Cladophora glomerata</i> 18S ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
AB062706.1	<i>Cladophora glomerata</i> gene for 18S ribosomal RNA, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
AB665578.1	<i>Cladophora glomerata</i> gene for 18S rRNA, partial sequence, isolate: glo-3	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
LT607357.1	<i>Cladophora glomerata</i> partial 18S rRNA gene, isolate D06	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
LS974892.1	<i>Cladophora glomerata</i> partial 18S rRNA gene, specimen voucher WELT: A033694, isolate P92	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071989.1	<i>Cladophora glomerata</i> strain SOR11 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ072003.1	<i>Cladophora glomerata</i> strain SOR13 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071990.1	<i>Cladophora glomerata</i> strain SOR16 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071991.1	<i>Cladophora glomerata</i> strain SOR18 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071992.1	<i>Cladophora glomerata</i> strain SOR20 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071993.1	<i>Cladophora glomerata</i> strain SOR39 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JQ071994.1	<i>Cladophora glomerata</i> strain SOR41 small subunit ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843

Accession Description		AlgaeBase
number	Description	nomenclature
10071005 1	Cladophora glomerata strain SOR45 small	Cladophora glomerata
JQ0/1995.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10071006 1	Cladophora glomerata strain SOR48 small	Cladophora glomerata
JQ0/1990.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10071987 1	Cladophora glomerata strain SOR5 small	Cladophora glomerata
JQ0/170/.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10072004 1	Cladophora glomerata strain SOR50 small	Cladophora glomerata
3Q072004.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
IO071997 1	Cladophora glomerata strain SOR53 small	Cladophora glomerata
3Q0/1777.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10071998 1	Cladophora glomerata strain SOR54 small	Cladophora glomerata
JQ0/1990.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10071000 1	Cladophora glomerata strain SOR56 small	Cladophora glomerata
JQ0/1999.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10072000 1	Cladophora glomerata strain SOR57 small	Cladophora glomerata
JQ072000.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10072001 1	Cladophora glomerata strain SOR58 small	Cladophora glomerata
JQ072001.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10071088 1	Cladophora glomerata strain SOR6 small	Cladophora glomerata
JQ0/1988.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
10072002 1	Cladophora glomerata strain SOR66 small	Cladophora glomerata
JQ072002.1	subunit ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676884 1	Cladophora glomerata voucher ARS04069_00001	Cladophora glomerata
KW0/0004.1	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676886 1	Cladophora glomerata voucher ARS04319_00001	Cladophora glomerata
KW0/0000.1	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676887 1	Cladophora glomerata voucher ARS04369_00001	Cladophora glomerata
<b>KW0/000/.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676885 1	Cladophora glomerata voucher ARS04411_00001	Cladophora glomerata
<b>KW070005.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676001 1	Cladophora glomerata voucher ARS04678_00001	Cladophora glomerata
<b>KW070771.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676010 1	Cladophora glomerata voucher ARS04755_00001	Cladophora glomerata
<b>KW0/0910.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676880 1	Cladophora glomerata voucher ARS05449_00001	Cladophora glomerata
KW0/0009.1	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676801 1	Cladophora glomerata voucher ARS05452_00001	Cladophora glomerata
<b>KW070071.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
VM676011 1	Cladophora glomerata voucher ARS05456_00001	Cladophora glomerata
<b>KW070711.1</b>	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
KM676917 1	Cladophora glomerata voucher ARS07020_00001	Cladophora glomerata
1110/0/1/.1	18S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
IN574840-1	Cladophora gracilis voucher AST2009001	Cladophora gracilis
JINJ/+040.1	18S ribosomal RNA gene, partial sequence	Kützing, 1845

Accession		AlgaeBase
number	Description	nomenclature
A D 907607 1	Cladophora hutchinsiae gene for 18S	Cladophora hutchinsiae
AB80/02/.1	ribosomal RNA, partial sequence	(Dillwyn) Kützing, 1845
I T607262 1	Cladophora hutchinsiae partial 18S rRNA gene,	Cladophora hutchinsiae
L100/302.1	specimen voucher WELT: A033249, isolate E85	(Dillwyn) Kützing, 1845
	Cladophora hutchinsiae voucher NCweed-	Cladophora butchinsiga
KX281848.1	1492 18S small subunit ribosomal RNA gene,	(Dillwyn) Kützing 1845
	partial sequence	(Dinwyn) Kutzing, 1845
AB807629 1	Cladophora hutchinsioides gene for 18S	Cladophora hutchinsioides
71007027.1	ribosomal RNA, partial sequence	C.Hoek & Womersley, 1984
IO308268 1	Cladophora hutchinsioides voucher AST2010013	Cladophora hutchinsioides
3Q300200.1	18S ribosomal RNA gene, partial sequence	C.Hoek & Womersley, 1984
LS974895 1	Cladophora kursanovii partial 18S rRNA gene,	Cladophora kursanovii
20771075.1	specimen voucher WELT: A033674, isolate 475	Skabichevskij, 1976
AB665577 1	Cladophora laetevirens gene for 18S rRNA,	Cladophora laetevirens
11000007711	partial sequence, isolate: lae-2	(Dillwyn) Kützing, 1843
LT607363 1	Cladophora laetevirens partial 18S rRNA gene,	Cladophora laetevirens
21007303.1	specimen voucher WELT: A033284, isolate J95	(Dillwyn) Kützing, 1843
LT607364 1	Cladophora lehmanniana partial 18S rRNA gene,	Cladophora lehmanniana
E1007501	specimen voucher WELT: A033279, isolate J33	(Lindenberg) Kützing, 1843
7353181	C. liebetruthii (VGA) gene for 18S ribosomal	Cladophora liebetruthii
233310.1	RNA	Grunow, 1884
LS974898 1	Cladophora meyeri partial 18S rRNA gene,	Cladophora meyeri var.
2077107011	specimen voucher WELT: A033705, isolate Q12	gracilioir (Meyer) Hollerbach
AB665581.1	Cladophora oligocladoidea gene for 18S	Cladophora oligocladoidea
1120020111	rRNA, partial sequence, isolate: oli-3	C.Hoek & M.Chihara, 2000
AB665580.1	Cladophora opaca gene for 18S rRNA, partial	<i>Cladophora opaca</i> Sakai,
11200220011	sequence, isolate: opa-2	1964
JO308265.1	Cladophora opaca voucher AST2010008 18S	Cladophora opaca Sakai,
	ribosomal RNA gene, partial sequence	1964
Z35422.1	C. prolifera (84.28) gene for 18S ribosomal	Cladophora prolifera
	RNA	(Roth) Kützing, 1843
AM498750.1	Cladophora prolifera partial 18S rRNA gene,	Cladophora prolifera
	strain C prol 2 (F2/8)	(Roth) Kützing, 1843
AF510145.1	Cladophora prolifera specimen-voucher BG-IT05-	Cladophora prolifera
	3 18S ribosomal RNA gene, partial sequence	(Roth) Kützing, 1843
KX281852.1	Cladophora prolifera voucher NCweed-762 18S	Cladophora prolifera
	small subunit ribosomal RNA gene, partial sequence	(Roth) Kützing, 1843
LS974902 1	Cladophora pulvinata partial 18S rRNA gene,	Cladophora pulvinata
2.577 .702.11	specimen voucher WELT: A033676, isolate 627	(Meyer) Skabichevsky, 1976
LT607371.1	Cladophora rivularis partial 18S rRNA gene,	Cladophora rivularis
	specimen voucher WELT: A033234, isolate E20	(Linnaeus) Kuntze, 1891
Z353191	C. rupestris (83.5) gene for 18S ribosomal	Cladophora rupestris
200017.1	RNA	(Linnaeus) Kützing, 1843
LT607376 1	Cladophora rupestris partial 18S rRNA gene,	Cladophora rupestris
L100/J/0.1	specimen voucher WELT: A033257, isolate G92	(Linnaeus) Kützing, 1843

Accession	Description	AlgaeBase
number	Description	nomenclature
725220 1	C. sericea (85.35) gene for 18S ribosomal	Cladophora sericea
255520.1	RNA	(Hudson) Kützing, 1843
I TC07270 1	Cladophora sericea partial 18S rRNA gene,	Cladophora sericea
L100/3/9.1	specimen voucher WELT: A033243, isolate E55	(Hudson) Kützing, 1843
725422 1	C. socialis (CPC2) gene for 18S ribosomal	Cladophora socialis
235425.1	RNA	Kützing, 1849
AD071262 1	Cladophora socialis gene for 18S rRNA,	Cladophora socialis
AD9/1203.1	partial sequence, strain: SCORL000358	Kützing, 1849
AN(400752 1	Cladophora socialis partial 18S rRNA gene,	Cladophora socialis
AM498/33.1	strain C soc 1 (F224)	Kützing, 1849
A N ( 400751 1	Cladophora socialis partial 18S rRNA gene,	Cladophora socialis
AM498/51.1	strain C soc 2 (F225)	Kützing, 1849
A \$ 1400750 1	Cladophora socialis partial 18S rRNA gene,	Cladophora socialis
AM498/52.1	strain Wysor 233 (F200)	Kützing, 1849
10200270 1	Cladophora stimpsonii voucher AST2010019	Cladophora stimpsonii
JQ308270.1	18S ribosomal RNA gene, partial sequence	Harvey, 1860
	Cladophora subtilissima voucher NCweed-80	Cladophora subtilissima
KX281854.1	18S small subunit ribosomal RNA gene, partial	R.L.Taylor & Freshwater.
	sequence	2017
	Cladophora subtilissima voucher NCweed-82	Cladophora subtilissima
KX281855.1	18S small subunit ribosomal RNA gene, partial	R.L.Taylor & Freshwater.
	sequence	2017
	Cladophora vadorum voucher NCweed-1495	Cladophora vadorum
KX281851.1	18S small subunit ribosomal RNA gene, partial	(Areschoug) Kützing,
	sequence	1849
7252161	C. vagabunda (83.17) gene for 18S ribosomal	Cladophora vagabunda
Z35316.1	RNA	(Linnaeus) Hoek, 1963
102002 (0.1	Cladophora fascicularis voucher AST2010014	Cladophora vagabunda
JQ308269.1	18S ribosomal RNA gene, partial sequence	(Linnaeus) Hoek, 1963
A DOCO710 1	Cladophora vagabunda gene for 18S	Cladophora vagabunda
AB062/10.1	ribosomal RNA, partial sequence	(Linnaeus) Hoek, 1963
	<i>Cladophora vagabunda</i> gene for 18S rRNA,	Cladophora vagabunda
AB6655/5.1	partial sequence, isolate: vag-3	(Linnaeus) Hoek, 1963
1 0 0 7 2 0 1 1	Cladophora vagabunda partial 18S rRNA gene,	Cladophora vagabunda
L160/381.1	specimen voucher WELT: A033246, isolate E75	(Linnaeus) Hoek, 1963
	<i>Cladophora vagabunda</i> voucher NCweed-	
KX281845.1	1240 18S small subunit ribosomal RNA gene,	Cladophora vagabunda
	partial sequence	(Linnaeus) Hoek, 1963
	<i>Cladophora vagabunda</i> voucher NCweed-	
KX281847.1	1508 18S small subunit ribosomal RNA gene,	Cladophora vagabunda
	partial sequence	(Linnaeus) Hoek, 1963
	Cladophora vagabunda voucher NCweed-	
KX281849.1	1639 18S small subunit ribosomal RNA gene.	Ciadophora vagabunda
11201077.1	partial sequence	(Linnaeus) Hoek, 1963

Accession	Description	AlgaeBase
number		nomenclature
KF595076.1	<i>Cladophora wrightiana</i> strain KMP201308 18S ribosomal RNA gene, partial sequence	<i>Cladophora wrightiana</i> Harvey, 1860
FM205047.1	<i>Cladophora battersii</i> partial 18S rRNA gene, specimen voucher L:0793567	<i>Lychaete battersii</i> (C.Hoek) M.J.Wynne, 2017
FM205048.1	<i>Cladophora dotyana</i> partial 18S rRNA gene, specimen voucher US:DML40094	<i>Lychaete dotyana</i> (W.J.Gilbert) M.J.Wynne, 1965
FM205049.1	<i>Cladophora feredayi</i> partial 18S rRNA gene, specimen voucher L:0793564	<i>Lychaete feredayi</i> (Harvey) M.J.Wynne, 2017
Z35419.1	<i>C. zollingerii</i> (CloZ) gene for 18S ribosomal RNA	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
LT607360.1	<i>Cladophora herpestica</i> partial 18S rRNA gene, specimen voucher WELT: A033291, isolate P06	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
AB062707.1	<i>Cladophora japonica</i> gene for 18S ribosomal RNA, partial sequence	<i>Lychaete japonica</i> (Yamada) M.J.Wynne, 2017
FM205050.1	<i>Cladophora mirabilis</i> partial 18S rRNA gene, specimen voucher L:0793561	Lychaete mirabilis (C.Agardh) J.Agardh, 1846
AB062708.1	<i>Cladophora ohkuboana</i> gene for 18S ribosomal RNA, partial sequence	Lychaete ohkuboana (Holmes) M.J.Wynne, 2017
LT607367.1	<i>Cladophora ohkuboana</i> partial 18S rRNA gene, specimen voucher GENT: DHO151, isolate F172	Lychaete ohkuboana (Holmes) M.J.Wynne, 2017
Z35314.1	<i>C. pellucida</i> (84.23) gene for 18S ribosomal RNA	Lychaete pellucida (Hudson) M.J.Wynne
LT607370.1	<i>Cladophora pellucida</i> partial 18S rRNA gene, specimen voucher L: 0793562, isolate A25	Lychaete pellucida (Hudson) M.J.Wynne
Z35424.1	<i>C. pellucidoidea</i> (85.100) gene for 18S ribosomal RNA	Lychaete pellucidoidea (C.Hoek) M.J.Wynne, 2017
FM205051.1	<i>Cladophora pygmaea</i> partial 18S rRNA gene, specimen voucher L:0793569	<i>Lychaete pygmaea</i> (Reinke) M.J.Wynne, 2017
FM205052.1	<i>Cladophora radiosa</i> partial 18S rRNA gene, specimen voucher L:0793566	<i>Lychaete radiosa</i> (Suhr) M.J.Wynne, 2017
AB062709.1	<i>Cladophora sakaii</i> gene for 18S ribosomal RNA, partial sequence	<i>Lychaete sakaii</i> (I.A.Abbott) M.J.Wynne, 2017
LT607365.1	<i>Cladophora montagneana</i> partial 18S rRNA gene, specimen voucher WELT: A033289, isolate N80	<i>Willeella brachyclados</i> (Montagne) M.J.Wynne, 2016
Z35420.1	C. sp. (WC) gene for 18S ribosomal RNA	-
KU904710.1	<i>Cladophora</i> sp. CQ1410 18S ribosomal RNA gene, partial sequence	-
LT607385.1	<i>Cladophora</i> sp. D23 partial 18S rRNA gene, isolate D23	-

Accession number	Description	AlgaeBase nomenclature
LT607387.1	<i>Cladophora</i> sp. D64 partial 18S rRNA gene, specimen voucher WELT: A033221, isolate D64	-
LT607388.1	<i>Cladophora</i> sp. D73 partial 18S rRNA gene, specimen voucher WELT: A033223, isolate D73	-
LT607386.1	<i>Cladophora</i> sp. F653 partial 18S rRNA gene, specimen voucher US: DML 61670, isolate F653	-
KU904713.1	<i>Cladophora</i> sp. FJ1301 18S ribosomal RNA gene, partial sequence	-
KC898947.1	<i>Cladophora</i> sp. HB1206 18S ribosomal RNA gene, partial sequence	-
KU904647.1	<i>Cladophora</i> sp. HB1413 18S ribosomal RNA gene, partial sequence	-
KU904653.1	<i>Cladophora</i> sp. HB1501 18S ribosomal RNA gene, partial sequence	-
KU904681.1	<i>Cladophora</i> sp. HEN1401 18S ribosomal RNA gene, partial sequence	-
KU904692.1	<i>Cladophora</i> sp. HEN1501 18S ribosomal RNA gene, partial sequence	-
KU904698.1	<i>Cladophora</i> sp. HEN1513 18S ribosomal RNA gene, partial sequence	-
KU904699.1	<i>Cladophora</i> sp. HLJ1401 18S ribosomal RNA gene, partial sequence	-
KU904656.1	<i>Cladophora</i> sp. HUN1401 18S ribosomal RNA gene, partial sequence	-
KU904722.1	<i>Cladophora</i> sp. QH1301 18S ribosomal RNA gene, partial sequence	-
KU904726.1	<i>Cladophora</i> sp. QH1401 18S ribosomal RNA gene, partial sequence	-
KU904730.1	<i>Cladophora</i> sp. QH1501 18S ribosomal RNA gene, partial sequence	-
KU904711.1	<i>Cladophora</i> sp. SD1201 18S ribosomal RNA gene, partial sequence	-
KU904712.1	<i>Cladophora</i> sp. SD1401 18S ribosomal RNA gene, partial sequence	-
KU904714.1	<i>Cladophora</i> sp. SX1501 18S ribosomal RNA gene, partial sequence	-
KU904718.1	<i>Cladophora</i> sp. TB1401 18S ribosomal RNA gene, partial sequence	-
KU904719.1	<i>Cladophora</i> sp. TB1433 18S ribosomal RNA gene, partial sequence	-
KU904720.1	<i>Cladophora</i> sp. TB1439 18S ribosomal RNA gene, partial sequence	-

Accession number	Description	AlgaeBase nomenclature
KU004644 1	Cladophora sp. TS1306 18S ribosomal RNA	
KU 704044.1	gene, partial sequence	-
KU904715.1	Cladophora sp. YN1303 18S ribosomal RNA	
	gene, partial sequence	-
KU904716.1	Cladophora sp. YN1401 18S ribosomal RNA	
	gene, partial sequence	-
KM892872.1*	Rhizoclonium pachydermum strain HUN1405	Rhizoclonium pachydermum
	18S ribosomal RNA gene, partial sequence	Kjellman, 1877
* (1		

* represents the outgroup.

 Table B.2
 56 reference sequences used in maximum likelihood phylogenetic

 estimation using 23S rDNA gene.

Accession	Description	AlgaeBase
number		nomenclature
A 15/1762 1	Cladophora capensis partial large subunit	Cladophora capensis
AJ 344 / 03.1	ribosomal RNA gene, specimen voucher F80	(C.Agardh) De Toni, 1889
A 15/1/75/ 1	Cladophora coelothrix partial large subunit	Cladophora coelothrix
AJ344734.1	ribosomal RNA gene, specimen voucher F58	Kützing, 1843
A 15 4 4752 1	Cladophora coelothrix partial large subunit	Cladophora coelothrix
AJ544755.1	ribosomal RNA gene, specimen voucher F62	Kützing, 1843
MT558949.1	<i>Cladophora compacta</i> voucher C.B. 170 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora compacta (K.I.Meyer) K.I.Meyer, 1976
MT558952.1	<i>Cladophora compacta</i> voucher C.B. 247 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558954.1	<i>Cladophora compacta</i> voucher C.B. 248 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558958.1	<i>Cladophora compacta</i> voucher C.B. 323 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976

Accession number	Description	AlgaeBase nomenclature
MT558948.1	<i>Cladophora compacta</i> voucher C.B. 344 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558950.1	<i>Cladophora compacta</i> voucher C.B. 345 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558956.1	<i>Cladophora compacta</i> voucher C.B. 364 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558955.1	<i>Cladophora compacta</i> voucher C.B. 369 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558957.1	<i>Cladophora compacta</i> voucher C.B. 397 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558947.1	<i>Cladophora compacta</i> voucher C.B. 682 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558951.1	<i>Cladophora compacta</i> voucher C.B. 683 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558953.1	<i>Cladophora compacta</i> voucher C.B. 848 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976

Accession number	Description	AlgaeBase nomenclature
MT558962.1	<i>Cladophora floccosa</i> subsp. <i>floccosa</i> voucher C.B. 28 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora floccosa C.Meyer, 1927
MT558961.1	<i>Cladophora floccosa</i> subsp. <i>floccosa</i> voucher C.B. 304 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora floccosa C.Meyer, 1927
MT558960.1	<i>Cladophora floccosa</i> subsp. <i>floccosa</i> voucher C.B. 676 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence3	Cladophora floccosa C.Meyer, 1927
MT558959.1	<i>Cladophora floccosa</i> voucher C.B. 301 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora floccosa C.Meyer, 1927
MT558964.1	<i>Cladophora floccosa</i> var. <i>irregularis</i> voucher C.B. 275 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora floccosa</i> var. <i>irregularis</i> Skabichevskij, 1934
MT558963.1	<i>Cladophora floccosa</i> var. <i>irregularis</i> voucher C.B. 477 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora floccosa</i> var. <i>irregularis</i> Skabichevskij, 1934
MT558978.1	<i>Cladophora kursanovii</i> voucher C.B. 148 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora kursanovii Skabichevskij, 1976
MT558984.1	<i>Cladophora kursanovii</i> voucher C.B. 222 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora kursanovii Skabichevskij, 1976

Accession number	Description	AlgaeBase nomenclature
MT558979.1	<i>Cladophora kursanovii</i> voucher C.B. 297 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
MT558980.1	<i>Cladophora kursanovii</i> voucher C.B. 384 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
MT558977.1	<i>Cladophora kursanovii</i> voucher C.B. 771 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
MT558982.1	<i>Cladophora kursanovii</i> voucher C.B. 804 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
MT558981.1	<i>Cladophora kursanovii</i> voucher C.B. 826 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
MT558983.1	<i>Cladophora kursanovii</i> voucher C.B. 865 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
AJ544761.1	<i>Cladophora laetevirens</i> partial large subunit ribosomal RNA gene, specimen voucher F29	<i>Cladophora laetevirens</i> (Dillwyn) Kützing, 1843
MT558966.1	<i>Cladophora meyeri</i> var. <i>gracilior</i> voucher C.B. 286 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora meyeri</i> var. gracilioir (Meyer) Hollerbach

Accession number	Description	AlgaeBase nomenclature
MT558965.1	<i>Cladophora meyeri</i> var. <i>gracilior</i> voucher C.B. 334 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora meyeri</i> var. <i>gracilioir</i> (Meyer) Hollerbach
MT558967.1	<i>Cladophora meyeri</i> subsp. meyeri voucher C.B. 264 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora meyerii</i> Skabitschevsky, 1976
MT558985.1	<i>Cladophora pulvinata</i> voucher C.B. 212 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora pulvinata</i> (Meyer) Skabichevsky, 1976
AJ544764.1	<i>Cladophora rupestris</i> partial large subunit ribosomal RNA gene, specimen voucher F44	Cladophora rupestris (Linnaeus) Kützing, 1843
AJ544752.1	<i>Cladophora sibogae</i> partial large subunit ribosomal RNA gene, specimen voucher F61	<i>Cladophora sibogae</i> Reinbold, 1905
AJ544760.1	<i>Cladophora vagabunda</i> partial large subunit ribosomal RNA gene, specimen voucher F5	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
AJ544756.1	Cladophora dotyana partial large subunit ribosomal RNA gene, specimen voucher F31	<i>Lychaete dotyana</i> (W.J.Gilbert) M.J.Wynne, 1965
AJ544755.1	<i>Cladophora dotyana</i> partial large subunit ribosomal RNA gene, specimen voucher F57	Lychaete dotyana (W.J.Gilbert) M.J.Wynne, 1965
AJ544762.1	<i>Cladophora montagneana</i> partial large subunit ribosomal RNA gene, specimen voucher F30	Willeella brachyclados (Montagne) M.J.Wynne, 2016
AJ544757.1	<i>Cladophora ordinata</i> partial large subunit ribosomal RNA gene, specimen voucher F8	<i>Willeella ordinata</i> Børgesen, 1930
KX421223.1	<i>Cladophora</i> sp. JC1 large subunit ribosomal RNA gene, partial sequence	-
KX421224.1	<i>Cladophora</i> sp. JC2 large subunit ribosomal RNA gene, partial sequence	-
KX421225.1	<i>Cladophora</i> sp. JC3 large subunit ribosomal RNA gene, partial sequence	-
MG021092.1	<i>Cladophora</i> sp. JIAC-WT-filamentous 2 isolate JIAC-WT-Filamentous 2 large subunit ribosomal RNA gene, partial sequence	-

Accession number	Description	AlgaeBase nomenclature
MG021094.1	<i>Cladophora</i> sp. JIAC-WT-filamentous 2 large subunit ribosomal RNA gene, partial sequence; chloroplast	-
KX421226.1	<i>Cladophora</i> sp. LC1 large subunit ribosomal RNA gene, partial sequence	-
KX421227.1	<i>Cladophora</i> sp. LC2 large subunit ribosomal RNA gene, partial sequence	-
KX421228.1	<i>Cladophora</i> sp. SQW1 large subunit ribosomal RNA gene, partial sequence	-
KX421229.1	<i>Cladophora</i> sp. SQW2 large subunit ribosomal RNA gene, partial sequence	-
KX421230.1	<i>Cladophora</i> sp. SQW3 large subunit ribosomal RNA gene, partial sequence	-
KX421231.1	<i>Cladophora</i> sp. ST1 large subunit ribosomal RNA gene, partial sequence	-
KX421232.1	<i>Cladophora</i> sp. ST2 large subunit ribosomal RNA gene, partial sequence	-
KX421233.1	<i>Cladophora</i> sp. XA1 large subunit ribosomal RNA gene, partial sequence	-
KX421234.1	<i>Cladophora</i> sp. XA2 large subunit ribosomal RNA gene, partial sequence	-
AJ544763.1	<i>Cladophora capensis</i> partial large subunit ribosomal RNA gene, specimen voucher F80	<i>Cladophora capensis</i> (C.Agardh) De Toni, 1889
AJ544754.1	<i>Cladophora coelothrix</i> partial large subunit ribosomal RNA gene, specimen voucher F58	<i>Cladophora coelothrix</i> Kützing, 1843
AJ544753.1	<i>Cladophora coelothrix</i> partial large subunit ribosomal RNA gene, specimen voucher F62	<i>Cladophora coelothrix</i> Kützing, 1843
MT558949.1	<i>Cladophora compacta</i> voucher C.B. 170 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora compacta (K.I.Meyer) K.I.Meyer, 1976
MT558952.1	<i>Cladophora compacta</i> voucher C.B. 247 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558954.1	<i>Cladophora compacta</i> voucher C.B. 248 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976

Accession number	Description	AlgaeBase nomenclature
MT558958.1	<i>Cladophora compacta</i> voucher C.B. 323 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558948.1	<i>Cladophora compacta</i> voucher C.B. 344 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MG021093.1*	<i>Rhizoclonium</i> sp. JIAC-WT-filamentous 3 isolate JIAC-WT-Filamentous 3 large subunit ribosomal RNA gene, partial sequence	-

* represents the outgroup.

 Table B.3
 145 reference sequences used in maximum likelihood phylogenetic

 estimation using 28S rDNA gene.

Accession	Description	AlgaeBase
number	Description	nomenclature
AM502422 1	Cladophora albida partial 28S rRNA gene,	Cladophora albida
AWI303433.1	specimen voucher A85.101/Calb3 (F516)	(Nees) Kutzing, 1843
I T060747 1	Cladophora albida partial 28S rRNA gene,	Cladophora albida
L1909/4/.1	specimen voucher GENT:SV0092	(Nees) Kutzing, 1843
I T060753 1	Cladophora albida partial 28S rRNA gene,	Cladophora albida
L1909755.1	specimen voucher GENT:SV0148	(Nees) Kutzing, 1843
I T607282 1	Cladophora albida partial 28S rRNA gene,	Cladophora albida
L1007282.1	specimen voucher WELT: A033205, isolate C84	(Nees) Kutzing, 1843
I T607081 1	Cladophora albida partial 28S rRNA gene,	Cladophora albida
L1007081.1	specimen voucher WELT: A033275, isolate H87	(Nees) Kutzing, 1843
KY281860 1	Cladophora albida voucher NCweed-1509	Cladophora albida
<b>K</b> A201007.1	28S ribosomal RNA gene, partial sequence	(Nees) Kutzing, 1843
KX281872 1	Cladophora albida voucher NCweed-1520	Cladophora albida
<b>K</b> / <b>X</b> 201072.1	28S ribosomal RNA gene, partial sequence	(Nees) Kutzing, 1843
KY281865 1	Cladophora albida voucher NCweed-1548	Cladophora albida
KA20100J.1	28S ribosomal RNA gene, partial sequence	(Nees) Kutzing, 1843
AM503434.1	Cladophora aokii partial 28S rRNA gene,	Cladophora aokii
	specimen voucher CryHJ/Cryu1 (F222)	Yamada, 1925
LT607083.1	Cladophora capensis partial 28S rRNA gene,	Cladophora capensis
	specimen voucher WELT: A033161, isolate A69	(C.Agardh) De Toni, 1889
AM503/35 1	Cladophora catenata partial 28S rRNA gene,	Cladophora catenata
AM503435.1	specimen voucher KZN454 (F114)	Kützing, 1843

129

Accession	Description	AlgaeBase
number	Description	nomenclature
AN502441 1	Cladophora coelothrix partial 28S rRNA gene,	Cladophora coelothrix
AM505441.1	specimen voucher JW4448 (B89)	Kützing, 1843
I T607200 1	Cladophora columbiana partial 28S rRNA	Cladophora columbiana
L100/288.1	gene, isolate H19	F.S.Collins, 1903
I TC07095 1	Cladophora columbiana partial 28S rRNA gene,	Cladophora columbiana
L100/085.1	specimen voucher WELT: OR 1949, isolate H09	F.S.Collins, 1903
I \$07/030 1	Cladophora compacta partial 28S rRNA gene,	Cladophora compacta
L39/4930.1	specimen voucher Q35, isolate Q35	(K.I.Meyer) K.I.Meyer, 1976
I \$07/026 1	Cladophora compacta partial 28S rRNA gene,	Cladophora compacta
L3974920.1	specimen voucher WELT: A033698, isolate Q05	K.I.Meyer) K.I.Meyer, 1976
I \$074027 1	Cladophora compacta partial 28S rRNA gene,	Cladophora compacta
L39/4927.1	specimen voucher WELT: A033699, isolate Q06	K.I.Meyer) K.I.Meyer, 1976
1 5074029 1	Cladophora compacta partial 28S rRNA gene,	Cladophora compacta
L39/4928.1	specimen voucher WELT: A033712, isolate Q21	K.I.Meyer) K.I.Meyer, 1976
1 5074020 1	Cladophora compacta partial 28S rRNA gene,	Cladophora compacta
L39/4929.1	specimen voucher WELT: A033719, isolate Q34	K.I.Meyer) K.I.Meyer, 1976
VV000210 1	Cladophora dalmatica voucher L4132667 28S	Cladophora dalmatica
KA890318.1	ribosomal RNA gene, partial sequence	Kützing, 1843
A D 907616 1	Cladophora flexuosa gene for 28S ribosomal	Cladophora flexuosa
AD80/010.1	RNA, partial sequence	(O.F.Müller) Kützing, 1843
I CO74021 1	Cladophora floccosa partial 28S rRNA gene,	Cladophora floccosa
L39/4931.1	specimen voucher WELT: A033717, isolate Q26	C.Meyer, 1927
	Cladophong fugeta portial 285 rDNA gono	Cladophora fracta
LS974941.1	Cladophora fracta partial 28S rRNA gene,	(O.F.Müller ex Vahl)
	specifien voucher wEL1. A033723, Isolate Q40	Kützing, 1843
	Cladophora fracta vor intricata portiol 288	Cladophora fracta var.
LT607320.1	rDNA gene isolete 152	intricata (Lyngbye)
	IKIVA gene, isolate 355	C.Hoek, 1963
1 \$97/9/3 1	Cladophora globula partial 28S rRNA gene,	Cladophora globula
LS774743.1	specimen voucher WELT: A033718, isolate Q27	(C.Meyer) C.Meyer, 1976
1 \$97/9/2 1	Cladophora globulina partial 28S rRNA gene,	Cladophora globulina
L3774742.1	specimen voucher WELT: A033721, isolate Q37	(Kützing) Kützing, 1845
AB807613-1	Cladophora glomerata gene for 28S ribosomal	Cladophora glomerata
AB607013.1	RNA, partial sequence	(Linnaeus) Kützing, 1843
I T607080 1	Cladophora glomerata partial 28S rRNA gene,	Cladophora glomerata
L100/089.1	isolate D06	(Linnaeus) Kützing, 1843
I N670067 1	Cladophora glomerata partial 28S rRNA gene,	Cladophora glomerata
LIN0/9007.1	isolate K89	(Linnaeus) Kützing, 1843
I T607211 1	Cladophora glomerata partial 28S rRNA gene,	Cladophora glomerata
L100/311.1	specimen voucher WELT: A033133, isolate A15	(Linnaeus) Kützing, 1843
I T607316 1	Cladophora glomerata partial 28S rRNA gene,	Cladophora glomerata
L100/310.1	specimen voucher WELT: A033237, isolate E32	(Linnaeus) Kützing, 1843
I \$07/0/6 1	Cladophora glomerata partial 28S rRNA gene,	Cladophora glomerata
LS9/4946.1	specimen voucher WELT: A033694, isolate P92	(Linnaeus) Kützing, 1843

Accession	Description	AlgaeBase
number		nomenclature
VM(7(000 1	Cladophora glomerata voucher ARS04151_00001	Cladophora glomerata
KIVI0/0829.1	28S ribosomal RNA gene, partial sequence	(Linnaeus) Kützing, 1843
A D 007 ( 10 1	Cladophora hutchinsiae gene for 28S	Cladophora hutchinsiae
AB80/012.1	ribosomal RNA, partial sequence	(Dillwyn) Kützing, 1845
LT607094.1	Cladophora hutchinsiae partial 28S rRNA gene,	Cladophora hutchinsiae
	specimen voucher WELT: A033249, isolate E85	(Dillwyn) Kützing, 1845
KX281863.1	Cladophora hutchinsiae voucher NCweed-1492	Cladophora hutchinsiae
	28S ribosomal RNA gene, partial sequence	(Dillwyn) Kützing, 1845
AB807614.1	Cladophora hutchinsioides gene for 28S	Cladophora hutchinsioides
	ribosomal RNA, partial sequence	C.Hoek & Womersley, 1984
LS974949.1	Cladophora kursanovii partial 28S rRNA gene,	Cladophora kursanovii
	specimen voucher WELT: A033674, isolate 475	Skabichevskij, 1976
I T607247 1	Cladophora laetevirens partial 28S rRNA	Cladophora laetevirens
L160/24/.1	gene, isolate A71, Lt84.37	(Dillwyn) Kützing, 1843
I T607252 1	Cladophora laetevirens partial 28S rRNA gene,	Cladophora laetevirens
L1007235.1	specimen voucher GENT: HV1269, isolate F711	(Dillwyn) Kützing, 1843
EM205022 1	Cladophora laetevirens partial 28S rRNA	Cladophora laetevirens
FM205055.1	gene, specimen voucher GENT:Bunker4	(Dillwyn) Kützing, 1843
EN 1205022 1	Cladophora laetevirens partial 28S rRNA	Cladophora laetevirens
FM205052.1	gene, specimen voucher L:0793552	(Dillwyn) Kützing, 1843
LTC07245 1	Cladophora laetevirens partial 28S rRNA gene,	Cladophora laetevirens
L1607245.1	specimen voucher WELT: A033136, isolate A21	(Dillwyn) Kützing, 1843
1 7 (07005 1	Cladophora laetevirens partial 28S rRNA gene,	Cladophora laetevirens
L160/095.1	specimen voucher WELT: A033284, isolate J95	(Dillwyn) Kützing, 1843
<b>VV2</b> 01050 1	Cladophora laetevirens voucher NCweed-1507	Cladophora laetevirens
KA281859.1	28S ribosomal RNA gene, partial sequence	(Dillwyn) Kützing, 1843
LTC070(1 1	Cladophora lehmanniana partial 28S rRNA gene,	Cladophora lehmanniana
L160/261.1	specimen voucher BM: 000840678, isolate J14	(Lindenberg) Kützing, 1843
LT607096.1	Cladophora lehmanniana partial 28S rRNA gene,	Cladophora lehmanniana
	specimen voucher WELT: A033279, isolate J33	(Lindenberg) Kützing, 1843
AM503461.1	<i>Cladophora liebetruthii</i> partial 28S rRNA	Cladophora liebetruthii
	gene, specimen voucher KZN802 (F127)	Grunow, 1884
WW0000101	Cladophora liniformis voucher L4123464 28S	Cladophora liniformis
KX890319.1	ribosomal RNA gene, partial sequence	Kützing, 1849
1.0074050.1	Cladophora meyeri partial 28S rRNA gene,	Cladophora meyeri var.
LS9/4952.1	specimen voucher WELT: A033705, isolate Q12	gracilioir (Meyer) Hollerbach
A D 007 ( 15 1	<i>Cladophora opaca</i> gene for 28S ribosomal	Cladophora opaca Sakai,
AB807615.1	RNA, partial sequence	1964
OU375458.1	<i>Cladophora prolifera</i> partial 28S rRNA gene,	Cladophora prolifera
	specimen voucher GENT: Barbara 19545	(Roth) Kützing, 1843
LT969755.1	Cladophora prolifera partial 28S rRNA gene,	Cladophora prolifera
	specimen voucher GENT:SV0151	(Roth) Kützing, 1843
AM503466.1	Cladophora prolifera partial 28S rRNA gene,	Cladophora prolifera
	specimen voucher ODC519 (F106)	(Roth) Kützing, 1843

Accession	Description	AlgaeBase
number	Description	nomenclature
KX281867.1	Cladophora prolifera voucher NCweed-762	Cladophora prolifera
	28S ribosomal RNA gene, partial sequence	(Roth) Kützing, 1843
LS974955.1	Cladophora pulvinata partial 28S rRNA gene,	Cladophora pulvinata
	specimen voucher WELT: A033716, isolate Q25	(Meyer) Skabichevsky, 1976
LT607101.1	Cladophora rivularis partial 28S rRNA gene,	Cladophora rivularis
	specimen voucher WELT: A033234, isolate E20	(Linnaeus) Kuntze, 1891
I N670060 1	Cladophora ruchingeri partial 28S rRNA	Cladophora ruchingeri
LIN0/9009.1	gene, isolate C62	(C.Agardh) Kützing, 1845
I N670071-1	Cladophora ruchingeri partial 28S rRNA	Cladophora ruchingeri
LIN0/90/1.1	gene, isolate CAW_01	(C.Agardh) Kützing, 1845
	Cladophora ruchingeri partial 28S rRNA	Cladophong muching oni
LT607276.1	gene, specimen voucher GENT: Cruch3 =	(C A gordh) Kijtzing 1845
	Ru84.60, isolate F220	(C.Agaidii) Kutzilig, 1843
I T607105 1	Cladophora rupestris partial 28S rRNA gene,	Cladophora rupestris
L100/103.1	isolate D04	(Linnaeus) Kützing, 1843
I T607224 1	Cladophora rupestris partial 28S rRNA gene,	Cladophora rupestris
L1007224.1	specimen voucher WELT: A033173, isolate B24	(Linnaeus) Kützing, 1843
AN502474 1	Cladophora sericea partial 28S rRNA gene,	Cladophora sericea
AM303474.1	specimen voucher S84.35/Cser1 (F518)	(Hudson) Kützing, 1843
I T607107 1	Cladophora sericea partial 28S rRNA gene,	Cladophora sericea
L100/10/.1	specimen voucher WELT: A033180, isolate B47	(Hudson) Kützing, 1843
I T607265 1	Cladophora sericea partial 28S rRNA gene,	Cladophora sericea
L1007203.1	specimen voucher WELT: A033208, isolate C91	(Hudson) Kützing, 1843
I T607270 1	Cladophora sericea partial 28S rRNA gene,	Cladophora sericea
L100/2/0.1	specimen voucher WELT: A033259, isolate G95	(Hudson) Kützing, 1843
KX28180/ 1	Cladophora sericea voucher FHL14-085 28S	Cladophora sericea
KA201094.1	ribosomal RNA gene, partial sequence	(Hudson) Kützing, 1843
AM503475 1	Cladophora sibogae partial 28S rRNA gene,	Cladophora sibogae
AW1505475.1	specimen voucher FL910c (F430)	Reinbold, 1905
A B 97126/ 1	Cladophora socialis gene for 28S rRNA,	Cladophora socialis
AD7/1204.1	partial sequence, strain: SCORL000358	Kützing, 1849
AM503440 1	Cladophora socialis partial 28S rRNA gene,	Cladophora socialis
AW1505440.1	specimen voucher B. Wysor233 (F200)	Kützing, 1849
AM503476 1	Cladophora socialis partial 28S rRNA gene,	Cladophora socialis
AW1505470.1	specimen voucher HV523 (F173)	Kützing, 1849
	<i>Cladophora subtilissima</i> voucher NCweed-80 28S ribosomal RNA gene, partial sequence	Cladophora subtilissima
KX281870.1		R.L.Taylor & Freshwater,
		2017
	<i>Cladophora vadorum</i> voucher NCweed-1495 28S ribosomal RNA gene, partial sequence	Cladophora vadorum
KX281866.1		(Areschoug) Kützing,
		1849
LN679068.1	Cladophora vagabunda partial 28S rRNA	Cladophora vagabunda
	gene, isolate E62	(Linnaeus) Hoek, 1963

Accession	Description	AlgaeBase
LT607299.1	<i>Cladophora vagabunda</i> partial 28S rRNA gene, specimen voucher GENT: LT0060, isolate Fx1218	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
AM503481.1	<i>Cladophora vagabunda</i> partial 28S rRNA gene, specimen voucher V83.17/Cvaga3 (F519)	Cladophora vagabunda (Linnaeus) Hoek, 1963
LT607293.1	<i>Cladophora vagabunda</i> partial 28S rRNA gene, specimen voucher WELT: A033209, isolate C93	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
LT607110.1	<i>Cladophora vagabunda</i> partial 28S rRNA gene, specimen voucher WELT: A033246, isolate E75	Cladophora vagabunda (Linnaeus) Hoek, 1963
KX281896.1	<i>Cladophora vagabunda</i> voucher FHL14-065 28S ribosomal RNA gene, partial sequence	Cladophora vagabunda (Linnaeus) Hoek, 1963
KX281860.1	<i>Cladophora vagabunda</i> voucher NCweed-1240 28S ribosomal RNA gene, partial sequence	Cladophora vagabunda (Linnaeus) Hoek, 1963
KX281864.1	<i>Cladophora vagabunda</i> voucher NCweed-1639 28S ribosomal RNA gene, partial sequence	Cladophora vagabunda (Linnaeus) Hoek, 1963
OU375374.1	<i>Cladophora wrightiana</i> partial 28S rRNA gene, specimen voucher GENT:FL1242	Cladophora wrightiana Harvey, 1860
LT904845.1	<i>Cladophora dotyana</i> partial 28S rRNA gene, specimen voucher REU:ARV473	<i>Lychaete dotyana</i> (W.J.Gilbert) M.J.Wynne, 1965
FM205027.1	<i>Cladophora dotyana</i> partial 28S rRNA gene, specimen voucher US:DML40094	<i>Lychaete dotyana</i> (W.J.Gilbert) M.J.Wynne, 1965
FM205029.1	<i>Cladophora echinus</i> partial 28S rRNA gene, specimen voucher UTEX:LB 1480 (Delepine no. 60/55)	<i>Lychaete echinus</i> (Biasoletto) M.J.Wynne, 2017
FM205030.1	<i>Cladophora feredayi</i> partial 28S rRNA gene, specimen voucher L:0793564	<i>Lychaete feredayi</i> (Harvey) M.J.Wynne, 2017
LT607136.1	<i>Cladophora feredayi</i> partial 28S rRNA gene, specimen voucher WELT: A033158, isolate A59	<i>Lychaete feredayi</i> (Harvey) M.J.Wynne, 2017
AM503460.1	<i>Cladophora herpestica</i> partial 28S rRNA gene, specimen voucher Cloz20b3SJ/Cherp3 (F517)	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
FM205031.1	<i>Cladophora herpestica</i> partial 28S rRNA gene, specimen voucher GENT:ClozC007	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
LT969750.1	<i>Cladophora herpestica</i> partial 28S rRNA gene, specimen voucher GENT:SV0137	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
LT607092.1	<i>Cladophora herpestica</i> partial 28S rRNA gene, specimen voucher WELT: A033291, isolate P06	<i>Lychaete herpestica</i> (Montagne) M.J.Wynne, 2017
FM205034.1	<i>Cladophora mirabilis</i> partial 28S rRNA gene, specimen voucher L:0793561	<i>Lychaete mirabilis</i> (C.Agardh) J.Agardh, 1846
Accession	Description	AlgaeBase
--------------	----------------------------------------------	------------------------------
number	Description	nomenclature
EM205025 1	Cladophora ohkuboana partial 28S rRNA	Lychaete ohkuboana
FW1203033.1	gene, specimen voucher GENT:DHO151	(Holmes) M.J.Wynne, 2017
EM205026 1	Cladophora pellucida partial 28S rRNA gene,	Lychaete pellucida
FMI203030.1	specimen voucher GENT:HEC 15794	(Hudson) M.J.Wynne, 2017
I TO60749 1	Cladophora pellucida partial 28S rRNA gene,	Lychaete pellucida
L1909/40.1	specimen voucher GENT:SV0093	(Hudson) M.J.Wynne, 2017
EM205027 1	Cladophora pellucida partial 28S rRNA gene,	Lychaete pellucida
FMI203037.1	specimen voucher L:0793562	(Hudson) M.J.Wynne, 2017
EM205028 1	Cladophora pellucidoidea partial 28S rRNA	Lychaete pellucidoidea
TW1203038.1	gene, specimen voucher GENT:CpoT	(C.Hoek) M.J.Wynne, 2017
EM205020 1	Cladophora pygmaea partial 28S rRNA gene,	Lychaete pygmaea
FM203039.1	specimen voucher GENT:Bunker3	(Reinke) M.J.Wynne, 2017
EN/2050/2 1	Cladophora radiosa partial 28S rRNA gene,	Lychaete radiosa (Suhr)
FMI203042.1	specimen voucher L:0793566	M.J.Wynne, 2017
EN1205042 1	Cladophora rhodolithicola partial 28S rRNA	Lychaete rhodolithicola
FM203045.1	gene, specimen voucher GENT:FL1036	(Leliaert) M.J.Wynne, 2017
EN/205046 1	Cladophora sakaii partial 28S rRNA gene,	Lychaete sakaii (I.A.Abbott)
FMI203040.1	specimen voucher GENT:CsakCJ	M.J.Wynne, 2017
	Cladophora montagneana partial 28S rRNA	Willeella brachyclados
LT607097.1	gene, specimen voucher WELT: A033289,	(Montagne) M.J.Wynne,
	isolate N80	2016
I T607000 1	Cladophora ordinata partial 28S rRNA gene,	Willeella ordinata
L100/099.1	specimen voucher US: DML 64271, isolate F834	Børgesen, 1930
AM502490 1	Cladophora sp. 1-F224 partial 28S rRNA	
AWI303460.1	gene, specimen voucher CPSCr/Csoc1 (F224)	-
	Cladophora sp. A32_B partial 28S rRNA	
LT607246.1	gene, specimen voucher WELT: A033141,	-
	isolate A32_B	
I T607280 1	Cladophora sp. A42 partial 28S rRNA gene,	
L100/280.1	specimen voucher WELT: A033148, isolate A42	_
I T607262 1	Cladophora sp. A54 partial 28S rRNA gene,	
L1007202.1	isolate A54	_
I T607202 1	Cladophora sp. B25 partial 28S rRNA gene,	
L1007292.1	specimen voucher WELT: A033174, isolate B25	_
I T607221 1	Cladophora sp. B28 partial 28S rRNA gene,	
L100/321.1	specimen voucher WELT: A033176, isolate B28	_
LT607263.1	Cladophora sp. B48 partial 28S rRNA gene,	
	specimen voucher WELT: A033181, isolate B48	-
LT607275.1	Cladophora sp. C08 partial 28S rRNA gene,	
	specimen voucher WELT: A033193, isolate C08	-
I TC07212 1	Cladophora sp. C77 partial 28S rRNA gene,	
L100/312.1	specimen voucher WELT: A033203, isolate C77	_
KI 1001751 1	Cladophora sp. CQ1405 28S ribosomal RNA	
KU904754.1	gene, partial sequence	

number	Description	AlgaeBase nomenclature
LT607114.1	<i>Cladophora</i> sp. D23 partial 28S rRNA gene, isolate D23	-
LT607249.1	<i>Cladophora</i> sp. D43 partial 28S rRNA gene, specimen voucher WELT: A033217, isolate D43	-
LT607267.1	<i>Cladophora</i> sp. E78 partial 28S rRNA gene, specimen voucher WELT: A033247, isolate E78	-
LT607254.1	<i>Cladophora</i> sp. F719 partial 28S rRNA gene, specimen voucher GENT: Bunker4, isolate F719	-
LT607290.1	<i>Cladophora</i> sp. Fx1234 partial 28S rRNA gene, specimen voucher GENT: HV1898, isolate Fx1234	-
LT607269.1	<i>Cladophora</i> sp. G83 partial 28S rRNA gene, specimen voucher WELT: A033256, isolate G83	-
LT607256.1	<i>Cladophora</i> sp. H84,ASF537 partial 28S rRNA gene, specimen voucher WELT: A033273, isolate H84	-
KU904738.1	<i>Cladophora</i> sp. HB1425 28S ribosomal RNA gene, partial sequence	-
KU904739.1	<i>Cladophora</i> sp. HB1503 28S ribosomal RNA gene, partial sequence	-
KU904748.1	<i>Cladophora</i> sp. HEN1404 28S ribosomal RNA gene, partial sequence	-
KU904740.1	<i>Cladophora</i> sp. HUN1413 28S ribosomal RNA gene, partial sequence	-
LT607272.1	<i>Cladophora</i> sp. J36 partial 28S rRNA gene, specimen voucher GENT: FL1028, isolate J36,FL1028	-
LT607295.1	<i>Cladophora</i> sp. J84 partial 28S rRNA gene, specimen voucher WELT: A033282, isolate J84	_
LT607287.1	<i>Cladophora</i> sp. J96 partial 28S rRNA gene, specimen voucher WELT: A033285, isolate J96	_
KU904759.1	<i>Cladophora</i> sp. QH1301 28S ribosomal RNA gene, partial sequence	-
LS974958.1	<i>Cladophora</i> sp. T52 partial 28S rRNA gene, specimen voucher WELT: A033729, isolate T52	
KU904757.1	<i>Cladophora</i> sp. TB1433 28S ribosomal RNA gene, partial sequence	_
KU904755.1	<i>Cladophora</i> sp. YN1401 28S ribosomal RNA gene, partial sequence	_
KU866507.1	<i>Cladophora</i> sp. ZZ-2016 voucher CQ1409 28S ribosomal RNA gene, partial sequence	-
	$C_{1} = 1$ $C_{2} = 77.201$ $C_{2} = 1.5$ EI1201.200	
KU866510.1	ribosomal RNA gene, partial sequence	

Accession number	Description	AlgaeBase nomenclature
VIIOCCACC 1	Cladophora sp. ZZ-2016 voucher HB1501 28S	
KU800400.1	ribosomal RNA gene, partial sequence	-
VI1066406 1	Cladophora sp. ZZ-2016 voucher HEN1401	
KU800480.1	28S ribosomal RNA gene, partial sequence	-
VU966402 1	Cladophora sp. ZZ-2016 voucher HEN1501	
KU800493.1	28S ribosomal RNA gene, partial sequence	-
VI1966400 1	Cladophora sp. ZZ-2016 voucher HLJ1401	
KU800499.1	28S ribosomal RNA gene, partial sequence	-
VIIOCCACO 1	Cladophora sp. ZZ-2016 voucher HUN1401	
KU800408.1	28S ribosomal RNA gene, partial sequence	-
VI10665111	Cladophora sp. ZZ-2016 voucher QH1401	
KU800314.1	28S ribosomal RNA gene, partial sequence	-
VU966500 1	Cladophora sp. ZZ-2016 voucher SD1401 28S	
KU800309.1	ribosomal RNA gene, partial sequence	-
VI106651111	Cladophora sp. ZZ-2016 voucher SX1501 28S	
KU000311.1	ribosomal RNA gene, partial sequence	-
VI19665121	Cladophora sp. ZZ-2016 voucher TB1401 28S	
KU800312.1	ribosomal RNA gene, partial sequence	-
KU866462.1	Cladophora sp. ZZ-2016 voucher TS1306 28S	
	ribosomal RNA gene, partial sequence	-
EM205026 1*	Chaetomorpha aerea partial 28S rRNA gene,	Chaetomorpha aerea
FIVI203020.1*	specimen voucher GENT:Bunker5	(Dillwyn) Kützing, 1849
Nr (1	- Hard and a second and a second s	

* represents the outgroup.

Table	<b>B.4</b>	80	reference	sequences	used in	maximum	likelihood	phylogenetic
estimat	tion u	ising	ITS regior	ลงกรณ์	มหาวิท			

Accession number	<b>CHULALON Description</b>	AlgaeBase nomenclature
AB665570.1	<i>Cladophora albida</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: alb-1	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308250.1	<i>Cladophora albida</i> voucher AST2010006 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308253.1	<i>Cladophora albida</i> voucher AST2010012 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
JQ308260.1	<i>Cladophora albida</i> voucher AST2010031 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843

Accession number	Description	AlgaeBase nomenclature
KX281887.1	<i>Cladophora albida</i> voucher NCweed-1509 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	Cladophora albida (Nees) Kutzing, 1843
KX281880.1	<i>Cladophora albida</i> voucher NCweed-1581 internal transcribed spacer 1 and 5.8S ribosomal RNA gene, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281891.1	<i>Cladophora albida</i> voucher NCweed-1624 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281889.1	<i>Cladophora albida</i> voucher NCweed-1625 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
KX281885.1	<i>Cladophora albida</i> voucher NCweed-1627 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora albida</i> (Nees) Kutzing, 1843
MT558947.1	<i>Cladophora compacta</i> voucher C.B. 682 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora compacta</i> (K.I.Meyer) K.I.Meyer, 1976
MT558959.1	<i>Cladophora floccosa</i> voucher C.B. 301 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora floccosa</i> C.Meyer, 1927
LC536858.1	<i>Cladophora glomerata</i> 1-CL-2019 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
LC536864.1	<i>Cladophora glomerata</i> 1-UL-2019 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	Cladophora glomerata (Linnaeus) Kützing, 1843
AB665565.1	<i>Cladophora glomerata</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: glo-1	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843

Accession number	Description	AlgaeBase nomenclature
OM478590.1	<i>Cladophora glomerata</i> isolate Iso 1 internal transcribed spacer 1 and 5.8S ribosomal RNA gene, partial sequence	Cladophora glomerata (Linnaeus) Kützing, 1843
LC482128.1	<i>Cladophora glomerata</i> sp3-1 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	Cladophora glomerata (Linnaeus) Kützing, 1843
KC914578.1	<i>Cladophora glomerata</i> strain HB1211 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	<i>Cladophora glomerata</i> (Linnaeus) Kützing, 1843
JN574849.1	<i>Cladophora gracilis</i> voucher AST2009001 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora gracilis</i> Kützing, 1845
KX281879.1	<i>Cladophora hutchinsiae</i> voucher NCweed- 1492 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	Cladophora hutchinsiae (Dillwyn) Kützing, 1845
JQ308254.1	<i>Cladophora hutchinsioides</i> voucher AST2010013 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora</i> <i>hutchinsioides</i> C.Hoek & Womersley, 1984
MT558977.1	<i>Cladophora kursanovii</i> voucher C.B. 771 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora kursanovii</i> Skabichevskij, 1976
AB665564.1	<i>Cladophora laetevirens</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: lae-1	<i>Cladophora laetevirens</i> (Dillwyn) Kützing, 1843
MT991608.1	<i>Cladophora laetevirens</i> isolate QM19122905 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora laetevirens (Dillwyn) Kützing, 1843

Accession number	Description	AlgaeBase nomenclature
KX281875.1	<i>Cladophora laetevirens</i> voucher NCweed- 1507 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	<i>Cladophora laetevirens</i> (Dillwyn) Kützing, 1843
MT558965.1	<i>Cladophora meyeri</i> var. <i>gracilior</i> voucher C.B. 334 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	<i>Cladophora meyeri</i> var. <i>gracilioir</i> (Meyer) Hollerbach
AB665568.1	<i>Cladophora oligocladoidea</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: oli-1	<i>Cladophora</i> <i>oligocladoidea</i> C.Hoek & M.Chihara, 2000
AB665567.1	<i>Cladophora opaca</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: opa-1	<i>Cladophora opaca</i> Sakai, 1964
JQ308251.1	<i>Cladophora opaca</i> voucher AST2010008 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora opaca</i> Sakai, 1964
KX281886.1	<i>Cladophora prolifera</i> voucher NCweed-762 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora prolifera</i> (Roth) Kützing, 1843
MT558985.1	<i>Cladophora pulvinata</i> voucher C.B. 212 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence	Cladophora pulvinata (Meyer) Skabichevsky, 1976
MK127549.1	<i>Cladophora socialis</i> voucher G-1240 small subunit ribosomal RNA gene and internal transcribed spacer 1, partial sequence	<i>Cladophora socialis</i> Kützing, 1849
JQ308256.1	<i>Cladophora stimpsonii</i> voucher AST2010019 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	Cladophora stimpsonii Harvey, 1860

Accession number	Description	AlgaeBase nomenclature
KX281888.1	<i>Cladophora subtilissima</i> voucher NCweed-80 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	<i>Cladophora subtilissima</i> R.L.Taylor & Freshwater, 2017
KX281884.1	<i>Cladophora vadorum</i> voucher NCweed-1495 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora vadorum</i> (Areschoug) Kützing, 1849
JQ308258.1	Cladophora expansa voucher AST2010023 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
JQ308255.1	Cladophora fascicularis voucher AST2010014 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
AB665562.1	<i>Cladophora vagabunda</i> genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: vag-1	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
LC482124.1	<i>Cladophora vagabunda</i> sp1-1 genes for 18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
KX281890.1	<i>Cladophora vagabunda</i> voucher NCweed-1518 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
KX281882.1	<i>Cladophora vagabunda</i> voucher NCweed-1618 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	<i>Cladophora vagabunda</i> (Linnaeus) Hoek, 1963
KF595077.1	<i>Cladophora wrightiana</i> strain KMP201308 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	<i>Cladophora wrightiana</i> Harvey, 1860
FM205054.1	<i>Cladophora pygmaea</i> ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene (partial), specimen voucher GENT:Bunker3	<i>Lychaete pygmaea</i> (Reinke) M.J.Wynne, 2017

Accession number	Description	AlgaeBase nomenclature
FM205055.1	<i>Cladophora rhodolithicola</i> ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene (partial), specimen voucher GENT:Bunker1	<i>Lychaete rhodolithicola</i> (Leliaert) M.J.Wynne, 2017
GU384875.1	<i>Cladophora amphibia</i> 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	Wittrockiella amphibia (Collins) C.Boedeker & G.I.Hansen, 2010
OK642357.1	<i>Cladophora</i> sp. CUH/AL/FW 124 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
OK642358.1	<i>Cladophora</i> sp. CUH/AL/FW 203 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	_
OK642146.1	<i>Cladophora</i> sp. CUH/AL/FW 340 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
MT752939.1	<i>Cladophora</i> sp. CUH/AL/FW193 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
MT649492.1	<i>Cladophora</i> sp. CUH/AL/FW330870 voucher CUH/AL/FW330 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
OK642145.1	<i>Cladophora</i> sp. CUH/AL/MW 216 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
OK642356.1	<i>Cladophora</i> sp. CUH/AL/MW 260 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
KF318887.1	<i>Cladophora</i> sp. FB-2013 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	-

Accession number	Description	AlgaeBase nomenclature
KC914574.1	<i>Cladophora</i> sp. HB1206 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	_
KU904777.1	<i>Cladophora</i> sp. HB1503 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	-
KU904789.1	<i>Cladophora</i> sp. HUN1443 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
KU865580.1	<i>Cladophora</i> sp. JGDN5 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence	-
MG018619.1	<i>Cladophora</i> sp. JIAC-WT-filamentous 2 internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence	-
KU904803.1	<i>Cladophora</i> sp. QH1301 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	_
KU904807.1	<i>Cladophora</i> sp. QH1503 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	-
KU185989.1	<i>Cladophora</i> sp. ZZ-2016 voucher CQ1405 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	-
KU185993.1	<i>Cladophora</i> sp. ZZ-2016 voucher FJ1301 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	-
KU185997.1	<i>Cladophora</i> sp. ZZ-2016 voucher HB1403 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence	_

Accession number	Description	AlgaeBase nomenclature
	Cladophora sp. ZZ-2016 voucher HB1501 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186001.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher HEN1401 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186003.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher HEN1501 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186013.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher HLJ1401 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186021.1	transcribed spacer 1 and 5.8S ribosomal RNA	-
	gene, complete sequence; and internal transcribed	
	spacer 2, partial sequence	
	Cladophora sp. ZZ-2016 voucher HUN1401 18S	
VIII06000 1	ribosomal RNA gene, partial sequence; internal	
KU186029.1	transcribed spacer 1, 5.85 ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	285 Hoosomal KINA gene, partial sequence	
	ribosomal DNA gong, partial sequences internal	
KU186062 1	transcribed enger 1 5 85 ribesomal DNA gana and	
KU180002.1	internal transcribed spacer 2 complete sequence: and	-
	28S ribosomal RNA gene, partial sequence	
	Cladonhora sp. 77 2016 youcher SD1202 internal	
	transcribed spacer 1, partial sequence: 5.85 ribosomal	
KU186053.1	RNA gene complete sequence: and internal	-
	transcribed spacer 2 partial sequence	
	Cladophora sp. 77-2016 voucher SD1401 18S	
	ribosomal RNA gene partial sequence: internal	
KU186054-1	transcribed spacer 1 and 5.8S ribosomal RNA	_
<b>K</b> 0100054.1	gene complete sequence: and internal transcribed	
	spacer 2. partial sequence	
	Cladophora sp. ZZ-2016 voucher SX1501 18S	
	ribosomal RNA gene, partial sequence: internal	
KU185992.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	_
1010077211	internal transcribed spacer 2, complete sequence: and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher TB1401 18S	
	ribosomal RNA gene, partial sequence; internal	
VII106057 1	transcribed spacer 1 and 5.85 ribesomal DNA	_
KU180057.1	ualiscitucu spacer i aliu 3.65 fitussolilar KINA	
KU180057.1	gene, complete sequence; and internal transcribed	

Accession number	Description	AlgaeBase nomenclature
mannou	Cladophora sp. 77-2016 youcher TB1419 18S	
	ribosomal RNA gene, partial sequence: internal	
KU186058 1	transcribed spacer 1 and 5.8S ribosomal RNA	_
11010000011	gene, complete sequence: and internal transcribed	
	spacer 2. partial sequence	
	Cladophora sp. ZZ-2016 voucher TB1433 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186059.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher TB1439 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186060.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher TB1461 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186061.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher TS1306 18S	
	ribosomal RNA gene, partial sequence; internal	
KU185994.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher YN1303 18S	
	ribosomal RNA gene, partial sequence; internal	
KU186055.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Cladophora sp. ZZ-2016 voucher YN1402 18S	
WI1060561	ribosomal RNA gene, partial sequence; internal	
KU186056.1	transcribed spacer 1, 5.8S ribosomal RNA gene, and	-
	internal transcribed spacer 2, complete sequence; and	
	28S ribosomal RNA gene, partial sequence	
	Rhizophydium haynaldii voucher DAOM_BR100	
VE160950 1*	105 FIDOSOMAI KINA gene, partial sequence;	Rhizophydium littoreum
rf100839.1*	Internal transcribed spacer 1 and 5.85 ribosomal	Amon, 1984
	transprind appear 2 partial accurace	
	n'anscribed spacer 2, partial sequence	

* represents the outgroup.

## **APPENDIX C**

## Amplicon-based metagenomic analysis

Table C.1 Statistics of ray	v reads obt	ained from	Illumina	Miseq	sequencing.

Sampla	16S amplicon		18S a	mplicon	ITS amplicon	
sample	Number	Average	Number	Average	Number	Average
name	of reads	read length	of reads	read length	of reads	read length
CKD1-F	75,185	250.4 bp	23,218	240.7 bp	-	-
CKD1-R	75,185	250.7 bp	23,218	240.6 bp	-	-
CKD2-F	77,429	250.7 bp	28,759	240.8 bp	-	-
CKD2-R	77,429	250.8 bp	28,759	241.0 bp	-	-
CKD3-F	78,242	250.7 bp	59,219	239.4 bp	-	-
CKD3-R	78,242	250.8 bp	59,219	239.3 bp	-	-
CKD4-F	84,794	250.8 bp	68,406	248.8 bp	-	-
CKD-R	84,794	250.9 bp	68,406	248.6 bp	-	-
PUA1-F	79,314	250.8 bp	69,795	248.2 bp	-	-
PUA1-R	79,314	250.9 bp	69,795	248.1 bp	-	-
PUA2-F	73,818	250.8 bp	74,897	248.9 bp	-	-
PUA2-R	73,818	250.9 bp	74,897	248.8 bp	-	-
PUA3-F	79,595	250.7 bp	68,000	246.9 bp	-	-
PUA3-R	79,595	250.9 bp	68,000	246.9 bp	-	-
PUA4-F	100,136	250.8 bp	67,089	246.2 bp	-	-
PUA4-R	100,136	250.9 bp	67,089	246.1 bp	-	-
TD11-F	68,853	250.8 bp	72,608	249.0 bp	55,020	233.7 bp
TD11-R	68,853	250.8 bp	72,608	249.1 bp	55,020	234.6 bp
TD12-F	66,930	250.7 bp	75,656	248.0 bp	-	-
TD12-R	66,930	250.8 bp	75,656	248.1 bp	-	-
TD13-F	78,261	250.8 bp	67,373	247.8 bp	-	-
TD13-R	78,261	250.8 bp	67,373	247.9 bp	-	-
TD14-F	73,577	250.8 bp	73,919	250.4 bp	-	-
TD14-R	73,577	250.8 bp	73,919	250.4 bp	-	-



**Figure C.1** Per base sequence quality plots generated from FastQC of one replicate of 16S amplicon from site CKD.

A. The raw reads originally obtained from Illumina MiSeq at Omics Sciences and Bioinformatics Center. B. The trimmed reads obtained by using Trimmomatic v. 0.39, with parameter SLIDINGWINDOW:4:30.

Na	De eterricher bede	Relative abundance			
10.	Bacteriai phyla	CKD	PUA	TD1	
1	Abditibacteriota	0.02%	0.02%	0.01%	
2	Acidobacteriota	2.14%	2.01%	2.45%	
3	Actinobacteriota	2.64%	3.26%	2.41%	
4	Armatimonadota	0.34%	0.58%	0.40%	
5	Bacteroidota	21.07%	22.50%	24.37%	
6	Bdellovibrionota	0.49%	1.16%	1.51%	
7	Calditrichota	0.00%	0.01%	0.00%	
8	Campylobacterota	2.44%	0.49%	0.76%	
9	Chloroflexi 🥥 🧕	1.40%	1.75%	1.97%	
10	Cloacimonadota	0.01%	0.00%	0.02%	
11	Cyanobacteria	1.65%	6.20%	4.98%	
12	Deferrisomatota	0.00%	0.02%	0.00%	
13	Deinococcota	0.30%	1.38%	0.94%	
14	Dependentiae	0.08%	0.12%	0.06%	
15	Desulfobacterota	1.25%	0.90%	1.62%	
16	Elusimicrobiota	0.01%	0.01%	0.04%	
17	Euryarchaeota	0.01%	0.00%	0.00%	
18	FCPU426	0.00%	0.00%	0.02%	
19	Fibrobacterota	1.11%	0.52%	1.64%	
20	Firmicutes	10.59%	10.86%	6.67%	
21	Fusobacteriota	1.08%	1.30%	0.83%	
22	Gemmatimonadota	0.25%	0.26%	0.32%	
23	Halobacterota	0.00%	0.01%	0.02%	
24	Hydrogenedentes	0.00%	0.02%	0.02%	
25	Latescibacterota	0.12%	0.07%	0.09%	
26	LCP-89	0.00%	0.03%	0.04%	
27	Margulisbacteria	0.00%	0.02%	0.01%	
28	MBNT15	0.02%	0.02%	0.02%	
29	Methylomirabilota	0.03%	0.02%	0.03%	
30	Myxococcota	0.88%	1.74%	2.42%	
31	NB1-j	0.04%	0.07%	0.09%	
32	Nitrospinota	0.00%	0.01%	0.02%	
33	Nitrospirota	0.03%	0.03%	0.01%	
34	Patescibacteria	1.36%	1.57%	3.12%	
35	Planctomycetota	4.80%	6.88%	4.08%	

**Table C.2** Identified bacterial phyla and their relative abundance obtained from16S rDNA amplicon analysis.

No	Postorial phylo	<b>Relative abundance</b>			
INO.	Bacteriai phyla	CKD	PUA	TD1	
36	Proteobacteria	40.04%	29.29%	31.77%	
37	RCP2-54	0.01%	0.02%	0.00%	
38	SAR324 clade (Marine group B)	0.13%	0.28%	0.20%	
39	Spirochaetota	0.21%	0.41%	0.57%	
40	Sumerlaeota	0.02%	0.03%	0.04%	
41	Sva0485	0.02%	0.00%	0.01%	
42	Synergistota	0.03%	0.00%	0.03%	
43	Verrucomicrobiota	5.30%	5.93%	6.22%	
44	WPS-2	0.01%	0.10%	0.08%	
45	Zixibacteria	0.00%	0.01%	0.02%	
	unidentified taxa	0.07%	0.05%	0.08%	

**Table C.3** Identified bacterial genera and their relative abundance obtained from16S rDNA amplicon analysis.

No Bactorial nhyla		Pastorial ganara	Relative abundance			
INO.	bacteriai pilyia	Bacterial genera	CKD	PUA	TD1	
1	Abditibacteriota	Abditibacterium	0.02%	0.02%	0.04%	
2	Acidobacteriota	Aridibacter	0.02%	0.00%	0.02%	
3	Acidobacteriota	Blastocatella	0.03%	0.09%	0.06%	
4	Acidobacteriota	Bryobacter	0.18%	0.24%	0.24%	
5	Acidobacteriota	Candidatus Solibacter	0.03%	0.03%	0.05%	
6	Acidobacteriota	Geothrix	0.12%	0.01%	0.04%	
7	Acidobacteriota	Holophaga	0.10%	0.02%	0.20%	
8	Acidobacteriota	JGI 0001001-H03	0.04%	0.02%	0.01%	
9	Acidobacteriota	Luteitalea	0.06%	0.04%	0.04%	
10	Acidobacteriota	marine group	0.01%	0.00%	0.03%	
11	Acidobacteriota	Paludibaculum	0.19%	0.19%	0.13%	
12	Acidobacteriota	RB41	0.00%	0.01%	0.03%	
13	Acidobacteriota	Stenotrophobacter	0.03%	0.03%	0.04%	
14	Acidobacteriota	Subgroup 10	0.04%	0.09%	0.02%	
15	Actinobacteriota	Actinomycetospora	0.01%	0.00%	0.00%	
16	Actinobacteriota	Actinotalea	0.02%	0.01%	0.00%	
17	Actinobacteriota	Agromyces	0.02%	0.00%	0.00%	
18	Actinobacteriota	Angustibacter	0.00%	0.00%	0.01%	
19	Actinobacteriota	Arthrobacter	0.01%	0.00%	0.00%	
20	Actinobacteriota	Cellulomonas	0.02%	0.02%	0.00%	
21	Actinobacteriota	Chryseoglobus	0.01%	0.01%	0.00%	

No. Postorial phylo		Destavial gamena	Relative abundance			
INO.	Bacterial phyla	Bacteriai genera	CKD	PUA	TD1	
22	Actinobacteriota	CL500-29 marine group	0.28%	0.49%	0.33%	
23	Actinobacteriota	Collinsella	0.00%	0.00%	0.00%	
24	Actinobacteriota	Conexibacter	0.07%	0.07%	0.03%	
25	Actinobacteriota	Demequina	0.05%	0.04%	0.01%	
26	Actinobacteriota	Gaiella	0.06%	0.07%	0.04%	
27	Actinobacteriota	Glutamicibacter	0.01%	0.00%	0.00%	
28	Actinobacteriota	hgcI clade	0.00%	0.02%	0.01%	
29	Actinobacteriota	Iamia	0.05%	0.07%	0.07%	
30	Actinobacteriota	Ilumatobacter	0.07%	0.11%	0.06%	
31	Actinobacteriota	IMCC26207	0.06%	0.09%	0.03%	
32	Actinobacteriota	Kineosporia	0.00%	0.03%	0.02%	
33	Actinobacteriota	Longivirga	0.06%	0.06%	0.04%	
34	Actinobacteriota	Marmoricola	0.03%	0.00%	0.01%	
35	Actinobacteriota	Micromonospora	0.02%	0.00%	0.00%	
36	Actinobacteriota	MWH-Ta3	0.00%	0.00%	0.02%	
37	Actinobacteriota	Mycobacterium	0.07%	0.07%	0.03%	
38	Actinobacteriota	Nakamurella	0.01%	0.00%	0.00%	
39	Actinobacteriota	Nocardioides	0.23%	0.09%	0.06%	
40	Actinobacteriota	Paenarthrobacter	0.02%	0.00%	0.00%	
41	Actinobacteriota	Pedococcus-Phycicoccus	0.03%	0.00%	0.00%	
42	Actinobacteriota	Pseudarthrobacter	0.06%	0.00%	0.00%	
43	Actinobacteriota	Pseudonocardia	0.01%	0.00%	0.00%	
44	Actinobacteriota	Rhodococcus	0.02%	0.00%	0.00%	
45	Actinobacteriota	Rubrobacter	0.00%	0.00%	0.03%	
46	Actinobacteriota	Sinomonas	0.02%	0.00%	0.00%	
47	Actinobacteriota	Solirubrobacter	0.02%	0.00%	0.00%	
48	Actinobacteriota	Sporichthya	0.00%	0.03%	0.02%	
49	Actinobacteriota	Streptomyces	0.05%	0.02%	0.02%	
50	Actinobacteriota	Sva0996 marine group	0.00%	0.02%	0.00%	
51	Actinobacteriota	Tetrasphaera	0.01%	0.00%	0.00%	
52	Actinobacteriota	Yonghaparkia	0.02%	0.02%	0.00%	
53	Armatimonadota	Armatimonas	0.18%	0.42%	0.17%	
54	Bacteroidota	[ <i>Cytophaga</i> ] xylanolytica group	0.41%	0.32%	0.56%	
55	Bacteroidota	Acetobacteroides	1.18%	1.15%	0.81%	
56	Bacteroidota	Adhaeribacter	0.02%	0.00%	0.00%	
57	Bacteroidota	Algoriphagus	0.00%	0.00%	0.03%	
58	Bacteroidota	Alistipes	0.07%	0.06%	0.05%	

No Postarial phy		hula Destarial server	Relative abundance		
INO.	Bacteriai p	nyia Bacteriai genera	CKD	PUA	TD1
59	Bacteroidota	Alloprevotella	0.04%	0.02%	0.02%
60	Bacteroidota	Arcicella	0.05%	0.15%	0.06%
61	Bacteroidota	Arsenicibacter	0.00%	0.00%	0.00%
62	Bacteroidota	Aurantisolimonas	0.09%	0.11%	0.14%
63	Bacteroidota	Aureispira	0.00%	0.02%	0.04%
64	Bacteroidota	Bacteroides	1.66%	0.25%	0.05%
65	Bacteroidota	Blvii28 wastewater-sludge group	0.08%	0.02%	0.05%
66	Bacteroidota	BSV13	0.07%	0.03%	0.07%
67	Bacteroidota	Candidatus Amoebophilus	0.02%	0.07%	0.03%
68	Bacteroidota	Carboxylicivirga	0.01%	0.00%	0.02%
69	Bacteroidota	Cesiribacter	0.00%	0.00%	0.01%
70	Bacteroidota	Chryseobacterium	0.41%	0.16%	0.12%
71	Bacteroidota	Chryseolinea	0.01%	0.00%	0.00%
72	Bacteroidota	Cloacibacterium	0.69%	0.44%	0.11%
73	Bacteroidota	Crocinitomix	0.02%	0.00%	0.01%
74	Bacteroidota	Cytophaga	0.15%	0.20%	0.22%
75	Bacteroidota	Dinghuibacter	0.16%	0.19%	0.18%
76	Bacteroidota	Dyadobacter	0.01%	0.00%	0.09%
77	Bacteroidota	Dysgonomonas	0.02%	0.04%	0.02%
78	Bacteroidota	Edaphobaculum	0.04%	0.06%	0.09%
79	Bacteroidota	Emticicia	0.49%	0.89%	0.76%
80	Bacteroidota	Ferruginibacter	0.14%	0.21%	0.28%
81	Bacteroidota	Filimonas	0.00%	0.02%	0.02%
82	Bacteroidota	Flaviaesturariibacter	0.02%	0.01%	0.01%
83	Bacteroidota	Flavisolibacter	0.03%	0.04%	0.02%
84	Bacteroidota	Flavobacterium	2.67%	2.56%	1.86%
85	Bacteroidota	Flectobacillus	0.17%	0.43%	0.15%
86	Bacteroidota	Flexibacter	0.02%	0.11%	0.05%
87	Bacteroidota	Flexithrix	0.00%	0.04%	0.13%
88	Bacteroidota	Fluviicola	0.16%	0.30%	0.24%
89	Bacteroidota	Fluviimonas	0.00%	0.00%	0.01%
90	Bacteroidota	Haliscomenobacter	0.19%	0.30%	0.14%
91	Bacteroidota	Hassallia	0.04%	0.04%	0.02%
92	Bacteroidota	Hymenobacter	0.01%	0.00%	0.01%
93	Bacteroidota	Lacibacter	0.06%	0.03%	0.03%
94	Bacteroidota	Lacihabitans	0.35%	0.55%	0.44%
95	Bacteroidota	Larkinella	0.02%	0.02%	0.02%

No Destarial phy		Avia Pastarial ganara	Relative abundance			
INO.	bacteriai pi	iyia bacteriai genera	CKD	PUA	TD1	
96	Bacteroidota	Lentimicrobium	0.02%	0.00%	0.06%	
97	Bacteroidota	Lewinella	0.24%	0.05%	0.13%	
98	Bacteroidota	Macellibacteroides	0.06%	0.04%	0.00%	
99	Bacteroidota	Mangroviflexus	0.00%	0.01%	0.04%	
100	Bacteroidota	Marinifilum	0.01%	0.00%	0.01%	
101	Bacteroidota	Mariniradius	0.00%	0.00%	0.02%	
102	Bacteroidota	Ohtaekwangia	0.05%	0.08%	0.05%	
103	Bacteroidota	OLB12	0.11%	0.12%	0.08%	
104	Bacteroidota	OLB8	0.00%	0.00%	0.00%	
105	Bacteroidota	Paludibacter	4.40%	5.62%	6.57%	
106	Bacteroidota	Parabacteroides	0.02%	0.02%	0.03%	
107	Bacteroidota	Parapedobacter	0.02%	0.01%	0.03%	
108	Bacteroidota	Parasediminibacterium	0.01%	0.02%	0.04%	
109	Bacteroidota	Parasegetibacter	0.00%	0.00%	0.01%	
110	Bacteroidota	Pedobacter	0.00%	0.00%	0.09%	
111	Bacteroidota	Phaeodactylibacter	0.06%	0.19%	0.15%	
112	Bacteroidota	Pontibacter	0.00%	0.00%	0.02%	
113	Bacteroidota	Porphyromonas	0.03%	0.02%	0.04%	
114	Bacteroidota	Portibacter	0.00%	0.02%	0.02%	
115	Bacteroidota	Prevotella	0.08%	0.03%	0.00%	
116	Bacteroidota	Prevotella 9	0.18%	0.10%	0.04%	
117	Bacteroidota	Prevotellaceae NK3B31 group	0.03%	0.00%	0.00%	
118	Bacteroidota	Prevotellaceae UCG-001	0.02%	0.00%	0.00%	
119	Bacteroidota	Pseudarcicella	0.04%	0.04%	0.04%	
120	Bacteroidota	GHUL ⁴ Puia GKORN UNIVERSIT	0.00%	0.02%	0.02%	
121	Bacteroidota	Raineya	0.00%	0.03%	0.03%	
122	Bacteroidota	Rikenellaceae RC9 gut group	0.00%	0.02%	0.00%	
123	Bacteroidota	Roseimarinus	0.02%	0.04%	0.06%	
124	Bacteroidota	Rubidimonas	0.01%	0.02%	0.03%	
125	Bacteroidota	Runella	0.09%	0.10%	0.14%	
126	Bacteroidota	Rurimicrobium	0.03%	0.00%	0.02%	
127	Bacteroidota	Sediminibacterium	0.04%	0.07%	0.11%	
128	Bacteroidota	Segetibacter	0.00%	0.02%	0.03%	
129	Bacteroidota	Siphonobacter	0.00%	0.00%	0.01%	
130	Bacteroidota	Solitalea	0.03%	0.03%	0.08%	
131	Bacteroidota	Soortia	0.00%	0.00%	0.00%	
132	Bacteroidota	Sphingobacterium	0.01%	0.00%	0.01%	
133	Bacteroidota	Spirosoma	0.00%	0.00%	0.01%	

No	Ractorial phyla	Postorial gamona	Relative abundance			
INO.	bacteriai pilyia	bacteriai genera	CKD	PUA	TD1	
134	Bacteroidota	Sporocytophaga	0.00%	0.03%	0.02%	
135	Bacteroidota	Sunxiuqinia	0.00%	0.00%	0.00%	
136	Bacteroidota	Taibaiella	0.01%	0.00%	0.00%	
137	Bacteroidota	Terrimonas	0.22%	0.27%	0.23%	
138	Bacteroidota	Thermoflexibacter	0.01%	0.04%	0.03%	
139	Bacteroidota	WCHB1-32	1.01%	0.42%	0.88%	
140	Bacteroidota	Williamwhitmania	0.36%	0.17%	0.47%	
141	Bdellovibrionota	Bacteriovorax	0.04%	0.02%	0.12%	
142	Bdellovibrionota	Bdellovibrio	0.06%	0.28%	0.48%	
143	Bdellovibrionota	Oligoflexus	0.00%	0.01%	0.02%	
144	Bdellovibrionota	OM27 clade	0.24%	0.39%	0.47%	
145	Bdellovibrionota	Peredibacter	0.02%	0.09%	0.07%	
146	Bdellovibrionota	Silvanigrella	0.00%	0.03%	0.01%	
147	Campylobacterota	Arcobacter	0.02%	0.00%	0.00%	
148	Campylobacterota	Pseudarcobacter	1.87%	0.16%	0.08%	
149	Campylobacterota	Sulfuricurvum	0.04%	0.02%	0.03%	
150	Campylobacterota	Sulfurimonas	0.02%	0.00%	0.00%	
151	Campylobacterota	Sulfurospirillum	0.32%	0.24%	0.48%	
152	Campylobacterota	Sulfurovum	0.02%	0.00%	0.00%	
153	Chloroflexi	Anaerolinea	0.04%	0.00%	0.00%	
154	Chloroflexi	Anaerolineaceae UCG-001	0.03%	0.00%	0.00%	
155	Chloroflexi	Candidatus Chloroploca	0.00%	0.01%	0.03%	
156	Chloroflexi	Candidatus Chlorothrix	0.00%	0.01%	0.00%	
157	Chloroflexi	Chloroflexus	0.01%	0.03%	0.02%	
158	Chloroflexi	Chloronema	0.00%	0.00%	0.02%	
159	Chloroflexi	Herpetosiphon	0.14%	0.16%	0.19%	
160	Chloroflexi	Leptolinea	0.00%	0.00%	0.00%	
161	Chloroflexi	Litorilinea	0.00%	0.01%	0.00%	
162	Chloroflexi	Chloroflexi bacterium OLB13	0.03%	0.02%	0.02%	
163	Chloroflexi	Oscillochloris	0.00%	0.02%	0.02%	
164	Cyanobacteria	Aerosakkonema Lao26	0.00%	0.00%	0.02%	
165	Cyanobacteria	Anabaena HBU1	0.00%	0.01%	0.01%	
166	Cyanobacteria	Anabaena XPORK15F	0.00%	0.00%	0.00%	
167	Cyanobacteria	Aphanizomenon NIES81	0.00%	0.03%	0.00%	
168	Cyanobacteria	Calothrix KVSF5	0.02%	0.49%	0.15%	
169	Cyanobacteria	Calothrix PCC-6303	0.00%	0.11%	0.02%	
170	Cyanobacteria	Calothrix UAM 374	0.00%	0.08%	0.01%	
171	Cyanobacteria	CENA518	0.01%	0.00%	0.00%	

No. Restorial phylo		Destavial gamena	Relative abundance		
INO.	Bacterial phyla	Bacterial genera	CKD	PUA	TD1
172	Cyanobacteria	Cephalothrix SAG 75.79	0.00%	0.00%	0.02%
173	Cyanobacteria	Chamaesiphon PCC-7430	0.04%	0.12%	0.05%
174	Cyanobacteria	Chroococcidiopsis PCC 7203	0.01%	0.00%	0.00%
175	Cyanobacteria	Chroococcidiopsis PCC-6712	0.00%	0.01%	0.03%
176	Cyanobacteria	Chroococcidiopsis SAG 2023	0.00%	0.00%	0.01%
177	Cyanobacteria	Chroococcopsis	0.00%	0.01%	0.00%
178	Cyanobacteria	Cyanobium PCC-6307	0.08%	0.06%	0.06%
179	Cyanobacteria	Cyanothece PCC 7425	0.00%	0.07%	0.04%
180	Cyanobacteria	Cylindrospermopsis CRJ1	0.00%	0.03%	0.00%
181	Cyanobacteria	Cylindrospermum PCC-7417	0.01%	0.02%	0.00%
182	Cyanobacteria	Fischerella PCC-9339	0.00%	0.04%	0.01%
183	Cyanobacteria	Geminocystis PCC-6308	0.00%	0.00%	0.00%
184	Cyanobacteria	Gloeotrichia PYH6	0.00%	0.04%	0.00%
185	Cyanobacteria	Gloeotrichia SAG 32.84	0.00%	0.00%	0.03%
186	Cyanobacteria	LB3-76	0.00%	0.09%	0.06%
187	Cyanobacteria	Leptolyngbya BN43	0.01%	0.00%	0.00%
188	Cyanobacteria	Leptolyngbya EcFYyyy-00	0.00%	0.01%	0.00%
189	Cyanobacteria	Leptolyngbya PCC-6306	0.00%	0.02%	0.00%
190	Cyanobacteria	Limnothrix	0.02%	0.08%	0.06%
191	Cyanobacteria	Lyngbya PCC-7419	0.00%	0.00%	0.01%
192	Cyanobacteria	Mastigocladopsis PCC-10914	0.00%	0.01%	0.00%
193	Cyanobacteria	Nostoc PCC-7107	0.00%	0.01%	0.00%
194	Cyanobacteria	Nostoc PCC-73102	0.00%	0.00%	0.00%
195	Cyanobacteria	Oscillatoria PCC-10802	0.00%	0.00%	0.02%
196	Cyanobacteria	Oscillatoria SAG 1459-8	0.00%	0.01%	0.00%
197	Cyanobacteria	Phormidium CYN64	0.00%	0.01%	0.00%
198	Cyanobacteria	Phyllonema CENA325	0.00%	0.01%	0.00%
199	Cyanobacteria	Pleurocapsa PCC-7319	0.01%	0.04%	0.00%
200	Cyanobacteria	Potamolinea 1PC	0.04%	0.09%	0.03%
201	Cyanobacteria	Pseudanabaena NgrPSln22	0.00%	0.03%	0.01%
202	Cyanobacteria	Pseudanabaena PCC-7429	0.00%	0.07%	0.08%
203	Cyanobacteria	Roseofilum AO1-A	0.00%	0.00%	0.03%
204	Cyanobacteria	Schizothrix LEGE 07164	0.02%	0.08%	0.04%
205	Cyanobacteria	Sphaerospermopsis BCCUSP55	0.02%	0.13%	0.00%
206	Cyanobacteria	SU2 symbiont group	0.01%	0.03%	0.00%
207	Cyanobacteria	Synechocystis PCC-6803	0.00%	0.00%	0.02%
208	Cyanobacteria	Trichodesmium IMS101	0.04%	0.00%	0.23%

Na	Bacterial phyla	Destarial series	Relative abundance			
INO.		bacteriai genera	CKD	PUA	TD1	
209	Cyanobacteria	Tychonema CCAP 1459-11B	0.01%	0.09%	0.00%	
210	Deferrisomatota	Deferrisoma	0.00%	0.02%	0.00%	
211	Deinococcota	Deinococcus	0.24%	0.66%	0.38%	
212	Deinococcota	Meiothermus	0.02%	0.14%	0.04%	
213	Deinococcota	Truepera	0.02%	0.30%	0.06%	
214	Desulfobacterota	[ <i>Desulfobacterium</i> ] catecholicum group	0.03%	0.02%	0.03%	
215	Desulfobacterota	Bilophila	0.02%	0.00%	0.00%	
216	Desulfobacterota	Citrifermentans	0.17%	0.05%	0.22%	
217	Desulfobacterota	Desulfatirhabdium	0.00%	0.00%	0.00%	
218	Desulfobacterota	Desulfobulbus	0.13%	0.06%	0.06%	
219	Desulfobacterota	Desulfomicrobium	0.13%	0.11%	0.14%	
220	Desulfobacterota	Desulfovibrio	0.13%	0.13%	0.20%	
221	Desulfobacterota	Desulfuromonas	0.03%	0.04%	0.09%	
222	Desulfobacterota	Geobacter	0.20%	0.17%	0.80%	
223	Desulfobacterota	Geothermobacter	0.04%	0.02%	0.06%	
224	Desulfobacterota	Sva0081 sediment group	0.01%	0.01%	0.00%	
225	Desulfobacterota	Syntrophobacter	0.01%	0.00%	0.00%	
226	Desulfobacterota	Syntrophorhabdus	0.01%	0.00%	0.00%	
227	Desulfobacterota	Syntrophus	0.00%	0.00%	0.01%	
228	Euryarchaeota	Methanobacterium	0.01%	0.00%	0.00%	
229	Fibrobacterota	Fibrobacter	0.20%	0.02%	0.03%	
230	Fibrobacterota	possible genus 06	0.12%	0.01%	0.07%	
231	Firmicutes	[ <i>Anaerorhabdus</i> ] furcosa group	0.01%	0.00%	0.02%	
232	Firmicutes	[Eubacterium] brachy group	0.06%	0.04%	0.06%	
233	Firmicutes	[Eubacterium] hallii group	0.01%	0.00%	0.00%	
234	Firmicutes	[ <i>Eubacterium</i> ] ventriosum group	0.01%	0.00%	0.00%	
235	Firmicutes	[ <i>Ruminococcus</i> ] gnavus group	0.01%	0.00%	0.00%	
236	Firmicutes	[ <i>Ruminococcus</i> ] torques group	0.03%	0.01%	0.00%	
237	Firmicutes	Acetoanaerobium	0.01%	0.00%	0.00%	
238	Firmicutes	Acetobacterium	0.02%	0.03%	0.06%	
239	Firmicutes	Acidaminobacter	0.54%	0.53%	1.49%	
240	Firmicutes	Acidaminococcus	0.03%	0.02%	0.00%	
241	Firmicutes	Agathobacter	0.02%	0.00%	0.01%	
242	Firmicutes	Amnipila	0.03%	0.00%	0.00%	

Na	Bacterial phyla	bala Destarial con ano	Relat	ive abundance	
INO.		nyla Bacterial genera	CKD	PUA	TD1
243	Firmicutes	Anaerobacillus	0.00%	0.04%	0.00%
244	Firmicutes	Anaerobacterium	0.00%	0.00%	0.03%
245	Firmicutes	Anaerobium	0.02%	0.02%	0.00%
246	Firmicutes	Anaerocolumna	0.01%	0.00%	0.02%
247	Firmicutes	Anaeromusa-Anaeroarcus	0.14%	0.13%	0.10%
248	Firmicutes	Anaerosinus	0.02%	0.02%	0.00%
249	Firmicutes	Anaerospora	0.03%	0.05%	0.00%
250	Firmicutes	Anaerosporobacter	0.18%	0.05%	0.02%
251	Firmicutes	Anaerosporomusa	0.02%	0.04%	0.06%
252	Firmicutes	Anaerostipes	0.01%	0.00%	0.00%
253	Firmicutes	Anaerovorax	0.13%	0.13%	0.35%
254	Firmicutes	Bacillus	0.12%	0.47%	0.09%
255	Firmicutes	Blautia	0.03%	0.02%	0.00%
256	Firmicutes	Butyricicoccus	0.00%	0.02%	0.00%
257	Firmicutes	Butyrivibrio	0.02%	0.00%	0.00%
258	Firmicutes	Candidatus Soleaferrea	0.00%	0.02%	0.02%
259	Firmicutes	Christensenellaceae R-7 group	0.08%	0.05%	0.08%
260	Firmicutes	Chryseomicrobium	0.00%	0.00%	0.02%
261	Firmicutes	Clostridium sensu stricto 1	0.34%	0.31%	0.04%
262	Firmicutes	Clostridium sensu stricto 10	0.10%	0.26%	0.04%
263	Firmicutes	Clostridium sensu stricto 11	0.05%	0.00%	0.00%
264	Firmicutes	Clostridium sensu stricto 12	1.77%	0.77%	0.25%
265	Firmicutes	Clostridium sensu stricto 13	0.19%	0.16%	0.04%
266	Firmicutes	Clostridium sensu stricto 14	0.06%	0.02%	0.00%
267	Firmicutes	Clostridium sensu stricto 16	0.08%	0.09%	0.12%
268	Firmicutes	Clostridium sensu stricto 2	0.02%	0.01%	0.00%
269	Firmicutes	Clostridium sensu stricto 3	0.07%	0.09%	0.01%
270	Firmicutes	Clostridium sensu stricto 4	0.00%	0.02%	0.00%
271	Firmicutes	Clostridium sensu stricto 5	0.04%	0.12%	0.00%
272	Firmicutes	Clostridium sensu stricto 8	0.09%	0.15%	0.06%
273	Firmicutes	Clostridium sensu stricto 9	0.07%	0.10%	0.04%
274	Firmicutes	Colidextribacter	0.02%	0.03%	0.02%
275	Firmicutes	Crassaminicella	0.00%	0.00%	0.04%
276	Firmicutes	Defluviitaleaceae UCG-011	0.10%	0.18%	0.32%
277	Firmicutes	Enterococcus	0.02%	0.02%	0.00%
278	Firmicutes	Epulopiscium	0.05%	0.05%	0.00%
279	Firmicutes	Erysipelothrix	0.29%	0.27%	0.40%

No	<b>Destarial</b> n	hulo Destarial ganava	Relative abundance			
190.	bacteriai p	biyia bacteriai genera	CKD	PUA	TD1	
280	Firmicutes	Exiguobacterium	0.20%	0.49%	0.05%	
281	Firmicutes	Faecalibacterium	0.06%	0.02%	0.04%	
282	Firmicutes	Fictibacillus	0.00%	0.01%	0.00%	
283	Firmicutes	Fonticella	0.02%	0.03%	0.04%	
284	Firmicutes	Fusibacter	0.34%	0.63%	1.42%	
285	Firmicutes	Gracilibacillus	0.00%	0.02%	0.00%	
286	Firmicutes	Herbinix	0.04%	0.03%	0.04%	
287	Firmicutes	HN-HF0106	0.01%	0.03%	0.07%	
288	Firmicutes	Holdemania	0.00%	0.00%	0.00%	
289	Firmicutes	Jeotgalibacillus	0.00%	0.06%	0.00%	
290	Firmicutes	Lachnoclostridium	0.10%	0.14%	0.09%	
291	Firmicutes	Lachnospira	0.00%	0.02%	0.00%	
292	Firmicutes	Lachnospiraceae AC2044 group	0.01%	0.02%	0.07%	
293	Firmicutes	Lachnospiraceae NK4A136 group	0.05%	0.04%	0.04%	
294	Firmicutes	Lachnospiraceae UCG-008	0.02%	0.00%	0.00%	
295	Firmicutes	<i>Lachnospiraceae</i> XPB1014 group	0.01%	0.01%	0.00%	
296	Firmicutes	Lactococcus	0.03%	0.03%	0.00%	
297	Firmicutes	Lutispora	0.00%	0.03%	0.06%	
298	Firmicutes	Megamonas	0.02%	0.03%	0.00%	
299	Firmicutes	Megasphaera	0.05%	0.03%	0.03%	
300	Firmicutes	Natranaerovirga	0.00%	0.03%	0.09%	
301	Firmicutes	NK4A214 group	0.04%	0.03%	0.03%	
302	Firmicutes	Oxobacter	0.03%	0.02%	0.00%	
303	Firmicutes	Paenibacillus	0.00%	0.05%	0.00%	
304	Firmicutes	Paludicola	0.00%	0.01%	0.00%	
305	Firmicutes	Papillibacter	0.00%	0.00%	0.02%	
306	Firmicutes	Paraclostridium	0.02%	0.02%	0.00%	
307	Firmicutes	Pelosinus	0.66%	0.97%	0.37%	
308	Firmicutes	Phascolarctobacterium	0.09%	0.04%	0.01%	
309	Firmicutes	Propionispira	0.12%	0.04%	0.00%	
310	Firmicutes	Proteiniclasticum	0.05%	0.25%	0.02%	
311	Firmicutes	Proteocatella	0.08%	0.03%	0.00%	
312	Firmicutes	Romboutsia	0.03%	0.04%	0.02%	
313	Firmicutes	Roseburia	0.03%	0.02%	0.00%	
314	Firmicutes	Ruminiclostridium	0.02%	0.09%	0.09%	

Na	Bacterial phyla	Bacterial genera	Relative abundance		
190.			CKD	PUA	TD1
315	Firmicutes	Ruminococcus	0.05%	0.14%	0.06%
316	Firmicutes	Saccharofermentans	0.06%	0.02%	0.04%
317	Firmicutes	Sedimentibacter	0.01%	0.01%	0.00%
318	Firmicutes	Sediminibacillus	0.00%	0.05%	0.00%
319	Firmicutes	Sporacetigenium	0.00%	0.03%	0.00%
320	Firmicutes	Sporomusa	0.07%	0.20%	0.11%
321	Firmicutes	Streptococcus	0.01%	0.01%	0.00%
322	Firmicutes	Succiniclasticum	0.01%	0.00%	0.00%
323	Firmicutes	TC1	0.00%	0.01%	0.00%
324	Firmicutes	Terrisporobacter	0.01%	0.02%	0.00%
325	Firmicutes	Trichococcus	0.08%	0.09%	0.00%
326	Firmicutes	Tumebacillus	0.00%	0.00%	0.01%
327	Firmicutes	Turicibacter	0.00%	0.02%	0.00%
328	Firmicutes	Tyzzerella	0.00%	0.01%	0.00%
329	Firmicutes	UBA1819	0.01%	0.00%	0.00%
330	Firmicutes	UCG-002	0.04%	0.03%	0.01%
331	Firmicutes	UCG-005	0.01%	0.00%	0.00%
332	Firmicutes	Vallitalea	0.02%	0.07%	0.09%
333	Firmicutes	Veillonella	0.08%	0.03%	0.00%
334	Firmicutes	XBB1006	0.02%	0.00%	0.00%
335	Firmicutes	Youngiibacter	0.02%	0.03%	0.00%
336	Firmicutes	ZOR0006	0.12%	0.21%	0.00%
337	Fusobacteriota	Cetobacterium	0.08%	0.04%	0.02%
338	Fusobacteriota	Fusobacterium	0.09%	0.04%	0.00%
339	Fusobacteriota	Hypnocyclicus	0.59%	0.78%	0.46%
340	Gemmatimonadota	Gemmatimonas	0.13%	0.13%	0.12%
341	Halobacterota	Methanosaeta	0.00%	0.00%	0.04%
342	Halobacterota	Methanosarcina	0.00%	0.01%	0.00%
343	Methylomirabilota	Sh765B-TzT-35	0.02%	0.00%	0.02%
344	Myxococcota	Anaeromyxobacter	0.10%	0.11%	0.16%
345	Myxococcota	Byssovorax	0.00%	0.02%	0.02%
346	Myxococcota	Corallococcus	0.00%	0.00%	0.00%
347	Myxococcota	Haliangium	0.15%	0.30%	0.28%
348	Myxococcota	KD3-10	0.00%	0.03%	0.06%
349	Myxococcota	Labilithrix	0.00%	0.02%	0.02%
350	Myxococcota	Nannocystis	0.00%	0.04%	0.04%
351	Myxococcota	P3OB-42	0.06%	0.08%	0.12%
352	Myxococcota	Pajaroellobacter	0.10%	0.22%	0.29%

Na	Ractorial nhyla	Bacterial genera	<b>Relative abundance</b>		
INO.	Bacteriai phyla		CKD	PUA	TD1
353	Myxococcota	Phaselicystis	0.10%	0.20%	0.25%
354	Myxococcota	Polyangium	0.02%	0.07%	0.10%
355	Myxococcota	Sandaracinus	0.02%	0.05%	0.11%
356	Myxococcota	Sorangium	0.01%	0.02%	0.05%
357	Nitrospirota	Nitrospira	0.03%	0.02%	0.00%
358	Patescibacteria	Candidatus Saccharimonas	0.00%	0.01%	0.01%
359	Patescibacteria	TM7a	0.01%	0.00%	0.00%
360	Planctomycetota	Aquisphaera	0.02%	0.03%	0.01%
361	Planctomycetota	Blastopirellula	0.14%	0.20%	0.13%
362	Planctomycetota	Bythopirellula	0.00%	0.02%	0.00%
363	Planctomycetota	Candidatus Anammoximicrobium	0.03%	0.01%	0.02%
364	Planctomycetota	CL500-3	0.00%	0.01%	0.00%
365	Planctomycetota	Fimbriiglobus	0.57%	1.17%	0.47%
366	Planctomycetota	Gemmata	0.52%	0.70%	0.43%
367	Planctomycetota	Pir4 lineage	0.09%	0.09%	0.08%
368	Planctomycetota	Pirellula	0.76%	0.95%	0.70%
369	Planctomycetota	Planctomicrobium	0.04%	0.05%	0.00%
370	Planctomycetota	Planctopirus	0.02%	0.06%	0.04%
371	Planctomycetota	Rhodopirellula	0.03%	0.06%	0.05%
372	Planctomycetota	Schlesneria	0.07%	0.05%	0.05%
373	Planctomycetota	Planctomyces sp. SH-PL14	0.21%	0.34%	0.19%
374	Planctomycetota	Singulisphaera	0.00%	0.02%	0.00%
375	Planctomycetota	Planctomycetes SM1A02	0.06%	0.08%	0.03%
376	Planctomycetota	Telmatocola	0.07%	0.13%	0.03%
377	Planctomycetota	Tundrisphaera	0.02%	0.04%	0.01%
378	Planctomycetota	Zavarzinella	0.07%	0.15%	0.08%
379	Proteobacteria	[Agitococcus] lubricus group	0.00%	0.07%	0.10%
380	Proteobacteria	AAP99	0.12%	0.35%	0.28%
381	Proteobacteria	Acidibacter	0.06%	0.15%	0.15%
382	Proteobacteria	Acidiphilium	0.02%	0.02%	0.03%
383	Proteobacteria	Acidovorax	0.32%	0.08%	0.21%
384	Proteobacteria	Acinetobacter	2.65%	0.32%	0.16%
385	Proteobacteria	Aeromonas	5.58%	2.95%	0.57%
386	Proteobacteria	Aestuariibacter	0.02%	0.01%	0.00%
387	Proteobacteria	Ahniella	0.10%	0.09%	0.13%
388	Proteobacteria	Albidovulum	0.02%	0.05%	0.04%
389	Proteobacteria	Alkanindiges	0.02%	0.08%	0.04%

NT-	Destarial phylo	Posterial ganana	Relat	ive abundance	
INO.	Bacteriai phyla	bacteriai genera	CKD	PUA	TD1
		Allorhizobium-			
390	Proteobacteria	Neorhizobium-	0.39%	0.12%	0.31%
		Pararhizobium-Rhizobium			
391	Proteobacteria	alphaI cluster	0.16%	0.13%	0.17%
392	Proteobacteria	Altererythrobacter	0.09%	0.11%	0.07%
393	Proteobacteria	Alteromonas	0.01%	0.01%	0.00%
394	Proteobacteria	Amphiplicatus	0.00%	0.02%	0.00%
395	Proteobacteria	Ancalomicrobium	0.01%	0.00%	0.00%
396	Proteobacteria	Anderseniella	0.00%	0.00%	0.02%
397	Proteobacteria	Annwodia	0.00%	0.00%	0.01%
398	Proteobacteria	Aquabacterium	0.15%	0.09%	0.11%
399	Proteobacteria	Aquaspirillum	0.00%	0.04%	0.22%
400	Proteobacteria	Aquicella	0.00%	0.02%	0.02%
401	Proteobacteria	Aquimonas	0.00%	0.00%	0.03%
402	Proteobacteria	Aquitalea	0.16%	0.03%	0.06%
403	Proteobacteria	Arenimonas	0.11%	0.10%	0.13%
404	Proteobacteria	Asticcacaulis	0.01%	0.01%	0.07%
405	Proteobacteria	Aureimonas	0.02%	0.00%	0.00%
406	Proteobacteria	Azoarcus	0.18%	0.05%	0.10%
407	Proteobacteria	Azohydromonas	0.02%	0.00%	0.10%
408	Proteobacteria	Azonexus	0.04%	0.01%	0.04%
409	Proteobacteria	Azospira	0.31%	0.13%	0.22%
410	Proteobacteria	Azospirillum	0.00%	0.01%	0.01%
411	Proteobacteria	Azovibrio	0.05%	0.02%	0.15%
412	Proteobacteria	Bauldia	0.00%	0.03%	0.00%
413	Proteobacteria	BD1-7 clade	0.09%	0.07%	0.07%
414	Proteobacteria	Beggiatoa	0.00%	0.02%	0.08%
415	Proteobacteria	BIyi10	0.03%	0.01%	0.00%
416	Proteobacteria	Bordetella	0.01%	0.00%	0.00%
417	Proteobacteria	Bosea	0.02%	0.02%	0.01%
418	Proteobacteria	Brachymonas	0.00%	0.00%	0.02%
419	Proteobacteria	Bradyrhizobium	0.00%	0.01%	0.04%
420	Proteobacteria	Brevundimonas	0.03%	0.01%	0.09%
401	D ( 1 ( '	Burkholderia-Caballeronia-	0.020/	0.000/	0.020/
421	Proteobacteria	Paraburkholderia	0.02%	0.02%	0.03%
422	Proteobacteria	Buttiauxella	0.03%	0.00%	0.00%
423	Proteobacteria	C39	0.02%	0.01%	0.00%
424	Proteobacteria	Caenimonas	0.01%	0.02%	0.05%

N.	Destanial abula	Bacterial genera	Relative abundance		
INO.	Bacterial phyla		CKD	PUA	TD1
425	Proteobacteria	Candidatus Accumulibacter	0.55%	0.33%	0.74%
426	Proteobacteria	Candidatus Alysiosphaera	0.03%	0.05%	0.06%
427	Proteobacteria	Candidatus Bealeia	0.00%	0.00%	0.00%
428	Proteobacteria	Candidatus Berkiella	0.02%	0.02%	0.03%
429	Proteobacteria	Candidatus Captivus	0.00%	0.00%	0.00%
430	Proteobacteria	Candidatus Jidaibacter	0.00%	0.00%	0.01%
431	Proteobacteria	Candidatus Megaira	0.00%	0.02%	0.01%
432	Proteobacteria	Candidatus Nitrotoga	0.05%	0.05%	0.08%
433	Proteobacteria	Candidatus Ovatusbacter	0.00%	0.01%	0.00%
434	Proteobacteria	Candidatus Paracaedibacter	0.01%	0.01%	0.02%
435	Proteobacteria	Candidatus Symbiobacter	0.06%	0.04%	0.14%
436	Proteobacteria	Candidatus Tenderia	0.03%	0.02%	0.01%
437	Proteobacteria	Caulobacter	0.06%	0.05%	0.11%
438	Proteobacteria	Cellvibrio	0.14%	0.23%	0.33%
439	Proteobacteria	Cereibacter	0.00%	0.00%	0.04%
440	Proteobacteria	Chitinibacter	0.07%	0.15%	0.07%
441	Proteobacteria	Chitinilyticum	0.03%	0.04%	0.00%
442	Proteobacteria	Chitinimonas	0.10%	0.07%	0.13%
443	Proteobacteria	Chitinivorax	0.03%	0.00%	0.03%
444	Proteobacteria	Chromobacterium	0.03%	0.02%	0.01%
445	Proteobacteria	Chthonobacter	0.04%	0.04%	0.07%
446	Proteobacteria	Citrobacter	0.15%	0.01%	0.00%
447	Proteobacteria	CM1G08	0.02%	0.03%	0.03%
448	Proteobacteria	Collimonas	0.01%	0.00%	0.00%
449	Proteobacteria	Comamonas	0.61%	0.32%	0.37%
450	Proteobacteria	Coxiella	0.00%	0.06%	0.01%
451	Proteobacteria	Craurococcus-Caldovatus	0.02%	0.00%	0.00%
452	Proteobacteria	Crenobacter	0.09%	0.03%	0.01%
453	Proteobacteria	Crenothrix	0.03%	0.01%	0.02%
454	Proteobacteria	Cronobacter	0.06%	0.01%	0.00%
455	Proteobacteria	Cupriavidus	0.02%	0.00%	0.00%
456	Proteobacteria	Curvibacter	0.33%	0.13%	0.25%
457	Proteobacteria	Dechlorobacter	0.05%	0.03%	0.09%
458	Proteobacteria	Dechloromonas	1.53%	0.47%	0.57%
459	Proteobacteria	Dechlorosoma	0.00%	0.00%	0.03%
460	Proteobacteria	Deefgea	0.04%	0.03%	0.00%
461	Proteobacteria	Defluviimonas	0.02%	0.01%	0.00%
462	Proteobacteria	Delftia	0.30%	0.13%	0.10%

N.	De stardel a bale	Bacterial genera	Relative abundance		
INO.	Bacterial phyla		CKD	PUA	TD1
463	Proteobacteria	Denitratisoma	0.01%	0.01%	0.02%
464	Proteobacteria	Devosia	0.13%	0.06%	0.11%
465	Proteobacteria	Diaphorobacter	0.05%	0.02%	0.08%
466	Proteobacteria	Dongia	0.02%	0.00%	0.03%
467	Proteobacteria	DSSD61	0.02%	0.01%	0.03%
468	Proteobacteria	Duganella	0.13%	0.04%	0.07%
469	Proteobacteria	Ellin6055	0.01%	0.00%	0.00%
470	Proteobacteria	Ellin6067	0.19%	0.23%	0.24%
471	Proteobacteria	Elstera	0.02%	0.04%	0.04%
472	Proteobacteria	Ensifer	0.02%	0.00%	0.02%
473	Proteobacteria	Enterobacillus	0.04%	0.00%	0.00%
474	Proteobacteria	Enterobacter	0.32%	0.03%	0.00%
475	Proteobacteria	Erwinia	0.02%	0.00%	0.00%
476	Proteobacteria	Erythrobacter	0.00%	0.01%	0.03%
477	Proteobacteria	Escherichia-Shigella	0.21%	0.14%	0.03%
478	Proteobacteria	Falsirhodobacter	0.00%	0.00%	0.01%
479	Proteobacteria	Ferribacterium	0.03%	0.02%	0.09%
480	Proteobacteria	Filomicrobium	0.02%	0.04%	0.03%
481	Proteobacteria	Flavimaricola	0.00%	0.00%	0.01%
482	Proteobacteria	Fluviicoccus	0.00%	0.00%	0.03%
483	Proteobacteria	Formivibrio	0.12%	0.18%	0.12%
484	Proteobacteria	FukuN57	0.00%	0.00%	0.00%
485	Proteobacteria	Gallionella	0.01%	0.00%	0.00%
486	Proteobacteria	Gemmobacter	0.14%	0.14%	0.11%
487	Proteobacteria	Giesbergeria	0.05%	0.04%	0.04%
488	Proteobacteria	GKS98 freshwater group	0.00%	0.00%	0.02%
489	Proteobacteria	GOUTA6	0.00%	0.00%	0.01%
490	Proteobacteria	Gulbenkiania	0.02%	0.02%	0.01%
491	Proteobacteria	Haemophilus	0.01%	0.00%	0.00%
492	Proteobacteria	Hafnia-Obesumbacterium	0.10%	0.00%	0.00%
493	Proteobacteria	Halomonas	0.02%	0.02%	0.00%
494	Proteobacteria	Herbaspirillum	0.08%	0.04%	0.04%
495	Proteobacteria	Herminiimonas	0.01%	0.00%	0.01%
496	Proteobacteria	Hirschia	0.07%	0.04%	0.06%
497	Proteobacteria	Hydrogenophaga	0.45%	0.74%	1.36%
498	Proteobacteria	Hyphomicrobium	0.21%	0.58%	0.34%
499	Proteobacteria	Hyphomonas	0.04%	0.06%	0.04%
500	Proteobacteria	Ideonella	0.27%	0.27%	0.49%

Na	Ractorial nhyla	Bacterial genera	<b>Relative abundance</b>		
INO.	Bacterial phyla		CKD	PUA	TD1
501	Proteobacteria	Inhella	0.24%	0.20%	0.54%
502	Proteobacteria	Iodobacter	0.04%	0.09%	0.00%
503	Proteobacteria	IS-44	0.00%	0.01%	0.01%
504	Proteobacteria	Jannaschia	0.00%	0.00%	0.01%
505	Proteobacteria	Kingella	0.02%	0.00%	0.00%
506	Proteobacteria	Klebsiella	0.50%	0.09%	0.05%
507	Proteobacteria	Kluyvera	0.03%	0.00%	0.00%
508	Proteobacteria	Kosakonia	0.02%	0.00%	0.00%
509	Proteobacteria	Labrys	0.00%	0.03%	0.00%
510	Proteobacteria	Lautropia	0.08%	0.17%	0.15%
511	Proteobacteria	Leeia	0.05%	0.03%	0.06%
512	Proteobacteria	Legionella	0.06%	0.16%	0.03%
513	Proteobacteria	Lelliottia	0.05%	0.00%	0.00%
514	Proteobacteria	Leptothrix	0.24%	0.37%	0.86%
515	Proteobacteria	Limibaculum	0.00%	0.00%	0.03%
516	Proteobacteria	Limnobacter	0.04%	0.10%	0.04%
517	Proteobacteria	Limnohabitans	0.23%	0.24%	0.33%
518	Proteobacteria	Luteimonas	0.03%	0.05%	0.03%
519	Proteobacteria	Lysobacter	0.23%	0.20%	0.19%
520	Proteobacteria	Macromonas	0.02%	0.04%	0.09%
521	Proteobacteria	Magnetospirillum	0.00%	0.00%	0.04%
522	Proteobacteria	Malikia	0.13%	0.02%	0.12%
523	Proteobacteria	Massilia	0.48%	0.17%	0.31%
524	Proteobacteria	MD3-55	0.00%	0.00%	0.01%
525	Proteobacteria	Mesorhizobium	0.04%	0.04%	0.01%
526	Proteobacteria	Methylibium	0.02%	0.02%	0.04%
527	Proteobacteria	Methylobacterium- Methylorubrum	0.01%	0.00%	0.02%
528	Proteobacteria	Methylocaldum	0.03%	0.01%	0.00%
529	Proteobacteria	Methylocystis	0.05%	0.03%	0.03%
530	Proteobacteria	Methyloglobulus	0.05%	0.11%	0.07%
531	Proteobacteria	Methylomagnum	0.00%	0.00%	0.01%
532	Proteobacteria	Methylomicrobium	0.01%	0.00%	0.00%
533	Proteobacteria	Methylomonas	0.00%	0.00%	0.05%
534	Proteobacteria	Methyloparacoccus	0.01%	0.00%	0.00%
535	Proteobacteria	Methylophilus	0.03%	0.00%	0.02%
536	Proteobacteria	Methylotenera	0.17%	0.08%	0.08%
537	Proteobacteria	Methyloversatilis	0.01%	0.01%	0.02%

No	Doctorial phylo	Bacterial genera	Relative abundance		
INO.	Bacterial phyla		CKD	PUA	TD1
538	Proteobacteria	Methylovirgula	0.00%	0.01%	0.00%
539	Proteobacteria	Methylovulum	0.03%	0.04%	0.04%
540	Proteobacteria	Microvirga	0.04%	0.01%	0.04%
541	Proteobacteria	Microvirgula	0.03%	0.00%	0.00%
542	Proteobacteria	Mitsuaria	0.05%	0.00%	0.00%
543	Proteobacteria	mle1-7	0.06%	0.10%	0.10%
544	Proteobacteria	MM1	0.02%	0.00%	0.00%
545	Proteobacteria	MND1	0.02%	0.02%	0.03%
546	Proteobacteria	Nitratireductor	0.03%	0.03%	0.00%
547	Proteobacteria	Niveibacterium	0.32%	0.24%	0.35%
548	Proteobacteria	Niveispirillum	0.00%	0.00%	0.01%
549	Proteobacteria	Nordella	0.05%	0.10%	0.05%
550	Proteobacteria	Noviherbaspirillum	0.06%	0.18%	0.11%
551	Proteobacteria	Novosphingobium	0.31%	0.19%	0.11%
552	Proteobacteria	oc32	0.13%	0.06%	0.07%
553	Proteobacteria	Ochrobactrum	0.02%	0.00%	0.00%
554	Proteobacteria	Oleiphilus	0.00%	0.00%	0.04%
555	Proteobacteria	OM43 clade	0.02%	0.01%	0.01%
556	Proteobacteria	OM60(NOR5) clade	0.08%	0.09%	0.11%
557	Proteobacteria	Orientia	0.01%	0.00%	0.01%
558	Proteobacteria	Ottowia	0.02%	0.04%	0.07%
559	Proteobacteria	Oxalobacter	0.00%	0.02%	0.00%
560	Proteobacteria	Paenochrobactrum	0.00%	0.04%	0.00%
561	Proteobacteria	Paludibacterium	0.02%	0.02%	0.00%
562	Proteobacteria	Pantoea	0.06%	0.01%	0.02%
563	Proteobacteria	Paracoccus	0.04%	0.03%	0.04%
564	Proteobacteria	Parasutterella	0.01%	0.00%	0.00%
565	Proteobacteria	Parvibium	0.00%	0.03%	0.00%
566	Proteobacteria	Paucibacter	0.35%	0.10%	0.32%
567	Proteobacteria	Pectobacterium	0.02%	0.00%	0.00%
568	Proteobacteria	Pedomicrobium	0.11%	0.20%	0.07%
569	Proteobacteria	Pelagibacterium	0.00%	0.00%	0.00%
570	Proteobacteria	Pelomonas	0.47%	0.25%	0.59%
571	Proteobacteria	Permianibacter	0.02%	0.00%	0.01%
572	Proteobacteria	Phenylobacterium	0.03%	0.02%	0.04%
573	Proteobacteria	Phreatobacter	0.24%	0.61%	0.67%
574	Proteobacteria	Piscinibacter	0.05%	0.05%	0.06%
575	Proteobacteria	Pleomorphomonas	0.05%	0.00%	0.04%

No	Rootonial nhula	Destanial gamona	Relative abundance		
INO. Dac	Bacteriai phyla	bacteriai genera	CKD	PUA	TD1
576	Proteobacteria	Plesiomonas	0.08%	0.09%	0.04%
577	Proteobacteria	Polaromonas	0.03%	0.03%	0.03%
578	Proteobacteria	Polymorphobacter	0.02%	0.01%	0.02%
579	Proteobacteria	Polynucleobacter	0.00%	0.05%	0.05%
580	Proteobacteria	Porphyrobacter	0.04%	0.06%	0.06%
581	Proteobacteria	Porticoccus	0.00%	0.00%	0.02%
582	Proteobacteria	Pragia	0.01%	0.00%	0.00%
583	Proteobacteria	Propionivibrio	1.15%	0.73%	1.75%
584	Proteobacteria	Prosthecomicrobium	0.02%	0.00%	0.04%
585	Proteobacteria	Pseudoduganella	0.02%	0.00%	0.00%
586	Proteobacteria	Pseudomonas	1.13%	0.25%	0.33%
587	Proteobacteria	Pseudorhodobacter	0.12%	0.16%	0.11%
588	Proteobacteria	Pseudoxanthomonas	0.02%	0.00%	0.03%
589	Proteobacteria	Psychroglaciecola	0.01%	0.03%	0.00%
590	Proteobacteria	Psychromonas	0.01%	0.00%	0.00%
591	Proteobacteria	Quatrionicoccus	0.01%	0.00%	0.00%
592	Proteobacteria	Ralstonia	0.00%	0.00%	0.01%
593	Proteobacteria	Ramlibacter	0.03%	0.05%	0.05%
594	Proteobacteria	Raoultella	0.05%	0.01%	0.00%
595	Proteobacteria	Reyranella	0.08%	0.07%	0.05%
596	Proteobacteria	Rheinheimera	0.41%	0.39%	0.55%
597	Proteobacteria	Rhizobacter	0.23%	0.16%	0.26%
598	Proteobacteria	Rhizorhapis	0.00%	0.04%	0.03%
599	Proteobacteria	Rhodobacter	0.48%	0.58%	0.51%
600	Proteobacteria	Rhodoferax	0.23%	0.22%	0.36%
601	Proteobacteria	Rhodopila	0.01%	0.01%	0.00%
602	Proteobacteria	Rhodoplanes	0.03%	0.03%	0.01%
603	Proteobacteria	Rickettsia	0.01%	0.01%	0.00%
604	Proteobacteria	Rickettsiella	0.00%	0.01%	0.01%
605	Proteobacteria	Rivibacter	0.01%	0.00%	0.02%
606	Proteobacteria	Rivicola	0.02%	0.03%	0.10%
607	Proteobacteria	Roseateles	0.02%	0.02%	0.02%
608	Proteobacteria	Roseitalea	0.00%	0.00%	0.01%
609	Proteobacteria	Roseococcus	0.02%	0.01%	0.02%
610	Proteobacteria	Roseomonas	0.17%	0.15%	0.19%
611	Proteobacteria	RS62 marine group	0.00%	0.00%	0.02%
612	Proteobacteria	Rubellimicrobium	0.05%	0.06%	0.10%
613	Proteobacteria	Rubritepida	0.00%	0.00%	0.02%

Na	Rootorial nhyla	Bacterial genera	<b>Relative abundance</b>		
INO.	Bacterial phyla		CKD	PUA	TD1
614	Proteobacteria	Rubrivivax	0.17%	0.18%	0.19%
615	Proteobacteria	Salmonella	0.14%	0.02%	0.00%
616	Proteobacteria	Sandaracinobacter	0.03%	0.01%	0.01%
617	Proteobacteria	Sandarakinorhabdus	0.02%	0.02%	0.03%
618	Proteobacteria	Schlegelella	0.01%	0.01%	0.01%
619	Proteobacteria	Serratia	0.06%	0.02%	0.00%
620	Proteobacteria	Shewanella	0.38%	0.14%	0.07%
621	Proteobacteria	Shinella	0.03%	0.04%	0.04%
622	Proteobacteria	Sideroxydans	0.10%	0.10%	0.19%
623	Proteobacteria	Silanimonas	0.06%	0.09%	0.17%
624	Proteobacteria	Simiduia	0.00%	0.01%	0.00%
625	Proteobacteria	Simplicispira	0.05%	0.01%	0.02%
626	Proteobacteria	Sphaerotilus	0.04%	0.04%	0.11%
627	Proteobacteria	Sphingobium	0.02%	0.03%	0.01%
628	Proteobacteria	Sphingomonas	0.18%	0.13%	0.22%
629	Proteobacteria	Sphingopyxis	0.12%	0.13%	0.27%
630	Proteobacteria	Sphingorhabdus	0.02%	0.05%	0.08%
631	Proteobacteria	Stenotrophomonas	0.05%	0.00%	0.00%
632	Proteobacteria	Steroidobacter	0.02%	0.02%	0.00%
633	Proteobacteria	Succinivibrio	0.01%	0.01%	0.02%
634	Proteobacteria	Sulfuritalea	0.06%	0.08%	0.16%
635	Proteobacteria	Sutterella	0.02%	0.03%	0.00%
636	Proteobacteria	SWB02	0.06%	0.10%	0.10%
637	Proteobacteria	Tabrizicola	0.11%	0.15%	0.13%
638	Proteobacteria	Tahibacter	0.02%	0.00%	0.01%
639	Proteobacteria	Thauera	0.17%	0.12%	0.09%
640	Proteobacteria	Thermomonas	0.02%	0.00%	0.03%
641	Proteobacteria	Thioalkalispira- Sulfurivermis	0.02%	0.00%	0.00%
642	Proteobacteria	Thiobacillus	0.02%	0.00%	0.03%
643	Proteobacteria	Thioclava	0.00%	0.02%	0.03%
644	Proteobacteria	Thiohalobacter	0.00%	0.01%	0.00%
645	Proteobacteria	Thiohalophilus	0.02%	0.01%	0.00%
646	Proteobacteria	Thiomonas	0.00%	0.02%	0.03%
647	Proteobacteria	Thiothrix	0.00%	0.00%	0.00%
648	Proteobacteria	Tolumonas	0.81%	0.43%	0.04%
649	Proteobacteria	Tropicimonas	0.02%	0.04%	0.02%
650	Proteobacteria	UKL13-1	0.00%	0.01%	0.02%

Na	Postanial nhyla	Bacterial genera	Relative abundance		
INO.	Bacteriai phyla		CKD	PUA	TD1
651	Proteobacteria	Uliginosibacterium	0.16%	0.07%	0.11%
652	Proteobacteria	Undibacterium	0.36%	0.13%	0.32%
653	Proteobacteria	Variovorax	0.01%	0.00%	0.00%
654	Proteobacteria	Vogesella	1.23%	0.87%	0.25%
655	Proteobacteria	Vulcaniibacterium	0.00%	0.00%	0.00%
656	Proteobacteria	Woeseia	0.01%	0.02%	0.00%
657	Proteobacteria	Wolbachia	0.00%	0.00%	0.01%
658	Proteobacteria	Xylophilus	0.01%	0.00%	0.00%
659	Proteobacteria	Z-35	0.02%	0.04%	0.07%
660	Proteobacteria	Zoogloea	0.18%	0.01%	0.26%
661	Spirochaetota	Salinispira	0.02%	0.11%	0.22%
662	Spirochaetota	Spirochaeta 2	0.06%	0.17%	0.21%
663	Spirochaetota	Treponema	0.04%	0.03%	0.17%
664	Spirochaetota	Turneriella	0.01%	0.02%	0.00%
665	Sumerlaeota	Sumerlaea	0.02%	0.03%	0.04%
666	Verrucomicrobiota	ADurb.Bin063-1	0.11%	0.06%	0.05%
667	Verrucomicrobiota	Akkermansia	0.02%	0.00%	0.00%
668	Verrucomicrobiota	Alterococcus	0.02%	0.01%	0.06%
669	Verrucomicrobiota	Brevifollis	0.03%	0.06%	0.09%
670	Verrucomicrobiota	Candidatus Omnitrophus	0.01%	0.03%	0.00%
671	Verrucomicrobiota	Candidatus Protochlamydia	0.00%	0.02%	0.01%
672	Verrucomicrobiota	Candidatus Udaeobacter	0.02%	0.06%	0.06%
673	Verrucomicrobiota	Candidatus Xiphinematobacter	0.05%	0.05%	0.05%
674	Verrucomicrobiota	Cephaloticoccus	0.05%	0.01%	0.11%
675	Verrucomicrobiota	Cerasicoccus	0.01%	0.02%	0.02%
676	Verrucomicrobiota	Chthoniobacter	0.44%	0.80%	0.42%
677	Verrucomicrobiota	DEV008	0.23%	0.10%	0.13%
678	Verrucomicrobiota	DEV114	0.08%	0.08%	0.10%
679	Verrucomicrobiota	Ellin516	0.06%	0.05%	0.02%
680	Verrucomicrobiota	Haloferula	0.04%	0.03%	0.02%
681	Verrucomicrobiota	IMCC26134	0.05%	0.08%	0.11%
682	Verrucomicrobiota	Lacunisphaera	0.46%	0.31%	0.88%
683	Verrucomicrobiota	LD29	0.02%	0.05%	0.03%
684	Verrucomicrobiota	Lentimonas	0.01%	0.02%	0.01%
685	Verrucomicrobiota	Luteolibacter	1.29%	1.33%	1.20%
686	Verrucomicrobiota	Neochlamydia	0.02%	0.03%	0.04%
687	Verrucomicrobiota	Oikopleura	0.06%	0.03%	0.03%

No.	Bacterial phyla	Bacterial genera	Relative abundance		
			CKD	PUA	TD1
688	Verrucomicrobiota	Opitutus	0.08%	0.10%	0.25%
689	Verrucomicrobiota	Pedosphaera	0.00%	0.00%	0.00%
690	Verrucomicrobiota	Prosthecobacter	0.10%	0.16%	0.07%
691	Verrucomicrobiota	Roseibacillus	0.01%	0.03%	0.00%
692	Verrucomicrobiota	Roseimicrobium	0.02%	0.04%	0.02%
693	Verrucomicrobiota	Rubritalea	0.00%	0.02%	0.00%
694	Verrucomicrobiota	SCGC AAA164-E04	0.02%	0.02%	0.02%
695	Verrucomicrobiota	SH3-11	0.17%	0.18%	0.26%
696	Verrucomicrobiota	Terrimicrobium	0.05%	0.06%	0.11%
697	Verrucomicrobiota	Verruc-01	0.00%	0.00%	0.02%
698	Verrucomicrobiota	Verrucomicrobium	0.02%	0.05%	0.02%
	unidentified taxa		26.95%	34.63%	35.38%

**Table C.4** Identified eukaryotic supergroups and their relative abundance obtained from 18S rDNA amplicon analysis.

No.	E-L-	Relative abundance			
	Eukaryotic supergroups	CKD	PUA	TD1	
1	Alveolata	3.66%	4.01%	6.37%	
2	Amorphea	46.19%	28.95%	27.83%	
3	Archaeplastida	17.33%	15.71%	12.55%	
4	Cryptophyceae	0.12%	0.12%	0.17%	
5	Rhizaria	5.55%	5.33%	7.02%	
6	Stramenopiles	27.10%	45.84%	46.04%	
	unidentified taxa_ONGKORN	0.05%	0.04%	0.02%	

no.	Eukaryotic supergroups	ic Eutrovatia ganara	Relative abundance		
		ps Eukryotic genera	CKD	PUA	TD1
1	Amorphea	Schizoplasmodiopsis	0.02%	0.00%	0.00%
2	Amorphea	Choanocystis	0.00%	0.00%	0.08%
3	Amorphea	Pterocystis	0.03%	0.14%	0.37%
4	Amorphea	Chlamydaster	0.07%	0.11%	0.17%
5	Amorphea	Heterophrys	0.03%	0.05%	0.06%
6	Amorphea	Sphaerastrum	0.00%	0.02%	0.04%
7	Amorphea	Dictyostelium	0.02%	0.00%	0.00%
8	Amorphea	Angulamoeba	0.06%	0.14%	0.05%
9	Amorphea	Korotnevella	0.06%	0.10%	0.25%
10	Amorphea	Paramoeba	0.00%	0.03%	0.03%
11	Amorphea	Vermistella	0.00%	0.04%	0.06%
12	Amorphea	Platyamoeba	0.00%	0.00%	0.02%
13	Amorphea	Unda	0.00%	0.00%	0.02%
14	Amorphea	Vannella	0.07%	0.07%	0.22%
15	Amorphea	Acanthamoeba	0.06%	0.00%	0.00%
16	Amorphea	Filamoeba	0.02%	0.00%	0.10%
17	Amorphea	Flamella	0.02%	0.00%	0.02%
18	Amorphea	Telaepolella	0.02%	0.02%	0.04%
19	Amorphea	Amastigomonas	0.00%	0.04%	0.07%
20	Amorphea	Subulatomonas	0.00%	0.00%	0.02%
21	Amorphea	Dictyamoeba	0.03%	0.05%	0.03%
22	Amorphea	Ischnamoeba	0.04%	0.00%	0.02%
23	Amorphea	Micronuclearia	0.04%	0.12%	0.12%
24	Amorphea	Rigifila	0.06%	0.05%	0.14%
25	Amorphea	Mycamoeba	0.03%	0.11%	0.10%
26	Amorphea	Protosporangium	0.02%	0.03%	0.00%
27	Amorphea	Protostelium	0.03%	0.02%	0.00%
28	Amorphea	Schoutedamoeba	0.06%	0.11%	0.29%
29	Amorphea	Sorodiplophrys	3.07%	2.70%	4.09%
30	Amorphea	Phalansterium	0.04%	0.22%	0.19%
31	Amorphea	Schizoplasmodium	0.03%	0.00%	0.00%
32	Amorphea	BOLA868	0.06%	0.05%	0.10%
33	Amorphea	Pyxidicula	0.00%	0.00%	0.06%
34	Amorphea	Diaphanoeca	0.02%	0.05%	0.09%
35	Amorphea	Marine Choanoflagellates 1	0.00%	0.00%	0.04%

**Table C.5** Identified eukaryotic genera and their relative abundance obtained from18S rDNA amplicon analysis.

no.	Eukaryotic supergroups	Eulervotio conoro	Relative abundance		
		ps Eukryotic genera	CKD	PUA	TD1
36	Amorphea	Stephanoeca	0.00%	0.04%	0.02%
37	Amorphea	Codosiga	0.00%	0.00%	0.09%
38	Amorphea	Monosiga	0.09%	0.07%	0.28%
39	Amorphea	Sphaeroeca	0.00%	0.00%	0.06%
40	Amorphea	Freshwater Choanoflagellates 1	0.45%	0.45%	0.42%
41	Amorphea	Lagenoeca	0.03%	0.07%	0.02%
42	Amorphea	Freshwater Choanoflagellates 2	0.17%	0.17%	0.21%
43	Amorphea	Salpingoeca	0.13%	0.22%	0.48%
44	Amorphea	Stagondoeca	0.03%	0.00%	0.00%
45	Amorphea	Eccrinidus	0.16%	0.03%	0.08%
46	Amorphea	AT4-11	0.00%	0.02%	0.03%
47	Amorphea	Dermocystidium	0.02%	0.02%	0.00%
48	Amorphea	Rhinosporidium	0.02%	0.00%	0.00%
49	Amorphea	Freshwater Ichthyosporeans 1	0.00%	0.05%	0.00%
50	Amorphea	Paramoebidium	0.08%	0.04%	0.02%
51	Amorphea	Anurofeca	0.06%	0.05%	0.07%
52	Amorphea	LKM51	0.12%	0.07%	0.04%
53	Amorphea	Limnognathia	0.00%	0.03%	0.00%
54	Amorphea	Rotaria	0.09%	0.00%	0.08%
55	Amorphea	Aphelidium	0.04%	0.18%	0.09%
56	Amorphea	Paraphelidium	0.22%	0.06%	0.03%
57	Amorphea	Dendrochytridium	0.00%	0.00%	0.09%
58	Amorphea	Chytriomyces	0.02%	0.05%	0.02%
59	Amorphea	Rhizoclosmatium	0.00%	0.02%	0.21%
60	Amorphea	Nowakowskiella	0.03%	0.06%	0.11%
61	Amorphea	Catenomyces	0.02%	0.00%	0.00%
62	Amorphea	Clydaea	0.03%	0.00%	0.00%
63	Amorphea	Neokarlingia	0.00%	0.00%	0.03%
64	Amorphea	Polytrychium	0.00%	0.00%	0.02%
65	Amorphea	Rhizophlyctis	0.04%	0.00%	0.09%
66	Amorphea	Rhizophydium	0.15%	0.18%	0.40%
67	Amorphea	Olpidium	0.02%	0.00%	0.00%
68	Amorphea	Geranomyces	0.03%	0.00%	0.02%
69	Amorphea	Phlyctochytrium	0.02%	0.02%	0.06%
70	Amorphea	Spizellomyces	0.03%	0.00%	0.00%
71	Amorphea	Gonapodya	0.03%	0.00%	0.00%
72	Amorphea	Paramicrosporidium	2.45%	1.05%	0.46%
73	Amorphea	Rozella	0.15%	0.09%	0.40%
Eukaryotic		ic Eulematic genera	Relative abundance		
------------	-----------	-----------------------	--------------------	-------	-------
по.	supergrou	ps Eukryotic genera	CKD	PUA	TD1
74	Amorphea	Conidiocarpus	0.02%	0.00%	0.00%
75	Amorphea	Cladosporium	0.22%	0.08%	0.10%
76	Amorphea	Toxicocladosporium	0.02%	0.00%	0.00%
77	Amorphea	Vermiconia	0.03%	0.00%	0.00%
78	Amorphea	Cercospora	0.02%	0.00%	0.00%
79	Amorphea	Lecanosticta	0.02%	0.00%	0.00%
80	Amorphea	Neophloeospora	0.02%	0.00%	0.00%
81	Amorphea	Suberoteratosphaeria	0.03%	0.00%	0.00%
82	Amorphea	Phaeotheca	0.00%	0.00%	0.02%
83	Amorphea	Elsinoe	0.03%	0.00%	0.00%
84	Amorphea	Arthopyrenia	0.05%	0.00%	0.00%
85	Amorphea	Biatriospora	0.04%	0.00%	0.00%
86	Amorphea	Corynespora	0.09%	0.00%	0.02%
87	Amorphea	Pyrenochaeta	0.07%	0.02%	0.02%
88	Amorphea	Didymella	0.10%	0.00%	0.03%
89	Amorphea	Lentithecium	0.03%	0.02%	0.02%
90	Amorphea	Leptosphaeria	0.03%	0.00%	0.00%
91	Amorphea	Neophaeosphaeria	0.03%	0.00%	0.00%
92	Amorphea	Helicascus	0.05%	0.02%	0.02%
93	Amorphea	Periconia	0.02%	0.00%	0.02%
94	Amorphea	Ophiosphaerella	0.07%	0.00%	0.00%
95	Amorphea	Parastagonospora	0.02%	0.02%	0.00%
96	Amorphea	Alternaria	0.03%	0.02%	0.02%
97	Amorphea	Bipolaris	0.13%	0.00%	0.02%
98	Amorphea	Pleospora CRN UNVERSI	0.03%	0.00%	0.02%
99	Amorphea	Preussia	0.06%	0.00%	0.03%
100	Amorphea	Westerdykella	0.03%	0.00%	0.02%
101	Amorphea	Neotestudina	0.02%	0.02%	0.00%
102	Amorphea	Torula	0.03%	0.00%	0.00%
103	Amorphea	Helicoma	0.02%	0.00%	0.00%
104	Amorphea	Wiesneriomyces	0.03%	0.02%	0.02%
105	Amorphea	Mycosisymbrium	0.05%	0.02%	0.00%
106	Amorphea	Ochroconis	0.13%	0.02%	0.02%
107	Amorphea	Cyphellophora	0.05%	0.00%	0.02%
108	Amorphea	Bradymyces	0.03%	0.00%	0.00%
109	Amorphea	Knufia	0.04%	0.00%	0.02%
110	Amorphea	Aspergillus	0.09%	0.05%	0.02%
111	Amorphea	Talaromyces	0.03%	0.00%	0.00%

no	Eukaryoti	ic Eulematic genera	Relative abundance			
no.	supergrou	ps Eukryouc genera	CKD	PUA	TD1	
112	Amorphea	Lecophagus	0.00%	0.00%	0.02%	
113	Amorphea	Arthrobotrys	0.06%	0.00%	0.13%	
114	Amorphea	Neournula	0.02%	0.00%	0.00%	
115	Amorphea	Peziza	0.02%	0.00%	0.00%	
116	Amorphea	Phymatotrichopsis	0.02%	0.00%	0.00%	
117	Amorphea	Diaporthe	0.04%	0.00%	0.02%	
118	Amorphea	Colletotrichum	0.03%	0.00%	0.00%	
119	Amorphea	Acrostalagmus	0.02%	0.00%	0.00%	
120	Amorphea	Gibellulopsis	0.09%	0.02%	0.03%	
121	Amorphea	Plectosphaerella	0.05%	0.00%	0.00%	
122	Amorphea	Verticillium	0.02%	0.00%	0.00%	
123	Amorphea	Ochronectria	0.00%	0.00%	0.02%	
124	Amorphea	Conoideocrella	0.03%	0.00%	0.00%	
125	Amorphea	Akanthomyces	0.02%	0.00%	0.00%	
126	Amorphea	Parengyodontium	0.02%	0.00%	0.00%	
127	Amorphea	Drechmeria	0.04%	0.00%	0.00%	
128	Amorphea	Acremonium	0.20%	0.02%	0.04%	
129	Amorphea	Emericellopsis	0.02%	0.05%	0.02%	
130	Amorphea	Sarocladium	0.13%	0.00%	0.02%	
131	Amorphea	Fusarium	0.21%	0.08%	0.13%	
132	Amorphea	Mariannaea	0.00%	0.00%	0.02%	
133	Amorphea	Hirsutella	0.03%	0.00%	0.00%	
134	Amorphea	Septofusidium	0.03%	0.00%	0.00%	
135	Amorphea	Myrothecium	0.03%	0.00%	0.00%	
136	Amorphea	Lentomitella	0.00%	0.02%	0.00%	
137	Amorphea	Lunulospora	0.02%	0.00%	0.00%	
138	Amorphea	Kohlmeyeriopsis	0.00%	0.00%	0.02%	
139	Amorphea	Lignincola	0.03%	0.00%	0.02%	
140	Amorphea	Myrmecridium	0.02%	0.00%	0.00%	
141	Amorphea	Chaetomium	0.03%	0.00%	0.00%	
142	Amorphea	Pestalotia	0.04%	0.00%	0.00%	
143	Amorphea	Arthrinium	0.07%	0.02%	0.03%	
144	Amorphea	Circinotrichum	0.03%	0.00%	0.02%	
145	Amorphea	Hyponectria	0.02%	0.00%	0.02%	
146	Amorphea	Phialemoniopsis	0.02%	0.00%	0.00%	
147	Amorphea	Hypoxylon	0.03%	0.00%	0.00%	
148	Amorphea	Candida-Lodderomyces clade	0.04%	0.00%	0.00%	
149	Amorphea	Kurtzmaniella-Candida clade	0.02%	0.00%	0.00%	

Eukaryotic		c Eukovotio gonoro	Relative abundance			
110.	supergroup	ps Eukryotic genera	CKD	PUA	TD1	
150	Amorphea	Galactomyces	0.07%	0.03%	0.02%	
151	Amorphea	Geotrichum	0.09%	0.03%	0.03%	
152	Amorphea	Yarrowia	0.00%	0.00%	0.02%	
153	Amorphea	Ambrosiozyma	0.00%	0.00%	0.02%	
154	Amorphea	Candida	0.00%	0.00%	0.02%	
155	Amorphea	Middelhovenomyces	0.03%	0.00%	0.00%	
156	Amorphea	Starmerella-Candida clade	0.04%	0.00%	0.00%	
157	Amorphea	Clavispora-Candida clade	0.02%	0.00%	0.00%	
158	Amorphea	Kodamaea	0.00%	0.02%	0.00%	
159	Amorphea	Metschnikowia	0.02%	0.00%	0.00%	
160	Amorphea	Barnettozyma-Candida clade	0.02%	0.00%	0.00%	
161	Amorphea	Cyberlindnera-Candida clade	0.00%	0.02%	0.00%	
162	Amorphea	Phaffomyces	0.00%	0.02%	0.00%	
163	Amorphea	Martiniozyma	0.02%	0.00%	0.00%	
164	Amorphea	Pichia	0.20%	0.03%	0.04%	
165	Amorphea	Lachancea	0.03%	0.00%	0.00%	
166	Amorphea	Nakaseomyces-Candida clade	0.02%	0.00%	0.00%	
167	Amorphea	Hanseniaspora	0.04%	0.00%	0.00%	
168	Amorphea	Saccharomycopsis	0.03%	0.00%	0.00%	
169	Amorphea	Trichomonascus	0.07%	0.00%	0.02%	
170	Amorphea	Neolecta	0.02%	0.00%	0.00%	
171	Amorphea	Schizosaccharomyces	0.00%	0.00%	0.02%	
172	Amorphea	Agaricus	0.03%	0.00%	0.00%	
173	Amorphea	Leucoagaricus	0.02%	0.00%	0.00%	
174	Amorphea	Macrolepiota	0.02%	0.00%	0.00%	
175	Amorphea	Conocybe	0.03%	0.00%	0.00%	
176	Amorphea	Coprinopsis	0.03%	0.00%	0.00%	
177	Amorphea	Gymnopus	0.02%	0.00%	0.00%	
178	Amorphea	Physalacria	0.00%	0.00%	0.02%	
179	Amorphea	Pleurotus	0.03%	0.00%	0.00%	
180	Amorphea	Psathyrella	0.02%	0.00%	0.02%	
181	Amorphea	Boletellus	0.02%	0.00%	0.00%	
182	Amorphea	Coniophora	0.03%	0.00%	0.00%	
183	Amorphea	Tapinella	0.03%	0.00%	0.00%	
184	Amorphea	Craterellus	0.00%	0.02%	0.00%	
185	Amorphea	Rhizoctonia	0.03%	0.00%	0.05%	
186	Amorphea	Thanatephorus	0.02%	0.00%	0.00%	
187	Amorphea	Hyphodontia	0.02%	0.00%	0.00%	

Eukaryotic		C Entructio conoro	Relative abundance		
по.	supergrou	ps Eukryotic genera	CKD	PUA	TD1
188	Amorphea	Sistotrema	0.02%	0.00%	0.00%
189	Amorphea	Geastrum	0.03%	0.00%	0.00%
190	Amorphea	Phellinus	0.02%	0.00%	0.00%
191	Amorphea	Tropicoporus	0.00%	0.02%	0.00%
192	Amorphea	Phallus	0.04%	0.00%	0.00%
193	Amorphea	Donkia	0.00%	0.00%	0.02%
194	Amorphea	Ganoderma	0.03%	0.00%	0.00%
195	Amorphea	Hyphodermella	0.00%	0.00%	0.02%
196	Amorphea	Trametes	0.00%	0.02%	0.00%
197	Amorphea	Ceriporia	0.03%	0.00%	0.00%
198	Amorphea	Chaetospermum	0.09%	0.03%	0.02%
199	Amorphea	Sebacina	0.02%	0.00%	0.00%
200	Amorphea	Trechispora	0.00%	0.00%	0.02%
201	Amorphea	Dacrymyces	0.02%	0.00%	0.00%
202	Amorphea	Filobasidium	0.00%	0.00%	0.02%
203	Amorphea	Bullera	0.03%	0.00%	0.00%
204	Amorphea	Bulleribasidium	0.00%	0.00%	0.02%
205	Amorphea	Derxomyces	0.02%	0.00%	0.00%
206	Amorphea	Hannaella	0.09%	0.02%	0.06%
207	Amorphea	Vishniacozyma	0.07%	0.04%	0.02%
208	Amorphea	Papiliotrema	0.06%	0.02%	0.00%
209	Amorphea	Trichosporon	0.02%	0.00%	0.00%
210	Amorphea	[Sporobolomyces] group	0.03%	0.00%	0.00%
211	Amorphea	Occultifur	0.02%	0.02%	0.02%
212	Amorphea	Erythrobasidium	0.04%	0.00%	0.05%
213	Amorphea	Hasegawazyma	0.00%	0.00%	0.02%
214	Amorphea	Symmetrospora	0.06%	0.02%	0.00%
215	Amorphea	Spencerozyma	0.00%	0.00%	0.03%
216	Amorphea	Colacogloea	0.02%	0.00%	0.00%
217	Amorphea	Microbotryum	0.00%	0.00%	0.02%
218	Amorphea	Rhodosporidiobolus	0.02%	0.00%	0.02%
219	Amorphea	Rhodotorula	0.07%	0.03%	0.02%
220	Amorphea	Sporobolomyces	0.12%	0.07%	0.10%
221	Amorphea	Heterodoassansia	0.00%	0.00%	0.02%
222	Amorphea	Tilletiopsis	0.00%	0.02%	0.00%
223	Amorphea	Meira	0.03%	0.00%	0.02%
224	Amorphea	Sympodiomycopsis	0.00%	0.00%	0.02%
225	Amorphea	Malassezia	0.05%	0.02%	0.00%

Eukaryotic		Euleryatia ganara	Relative abundance		
по.	supergroups	Eukryouc genera	CKD	PUA	TD1
226	Amorphea	Fereydounia	0.04%	0.00%	0.03%
227	Amorphea	Anthracoidea	0.00%	0.00%	0.02%
228	Amorphea	Sporisorium	0.03%	0.04%	0.02%
229	Amorphea	Ustilago	0.03%	0.00%	0.02%
230	Amorphea	Acaulospora	0.00%	0.00%	0.02%
231	Amorphea	Glomus	0.02%	0.00%	0.00%
232	Amorphea	Rhizophagus	0.00%	0.00%	0.02%
233	Amorphea	Mortierella	0.10%	0.06%	0.04%
234	Amorphea	Endogone	0.02%	0.02%	0.00%
235	Amorphea	Piromyces	0.05%	0.05%	0.08%
236	Amorphea	Ramicandelaber	0.03%	0.00%	0.00%
237	Amorphea	Acaulopage	0.38%	0.20%	0.07%
238	Amorphea	Cochlonema	0.07%	0.06%	0.02%
239	Amorphea	Stylopage	0.39%	0.12%	0.08%
240	Amorphea	Nuclearia	0.54%	0.47%	0.98%
241	Archaeplastida	Tolypella	0.00%	0.00%	0.02%
242	Archaeplastida	Lejeunea	0.00%	0.04%	0.00%
243	Archaeplastida	Equisetum	0.02%	0.00%	0.00%
244	Archaeplastida	Azolla	0.37%	0.02%	0.11%
245	Archaeplastida	Gnetum	0.13%	0.00%	0.00%
246	Archaeplastida	Helianthus	0.05%	0.00%	0.00%
247	Archaeplastida	Batis	0.02%	0.00%	0.00%
248	Archaeplastida	Brassica	0.12%	0.00%	0.00%
249	Archaeplastida	Floerkea	0.03%	0.00%	0.00%
250	Archaeplastida	Nasturtium	0.19%	0.05%	0.09%
251	Archaeplastida	Chenopodium	0.02%	0.00%	0.00%
252	Archaeplastida	Persicaria	0.00%	0.00%	0.02%
253	Archaeplastida	Arachis	0.00%	0.00%	0.02%
254	Archaeplastida	Mezoneuron	0.02%	0.00%	0.00%
255	Archaeplastida	Oxygyne	0.03%	0.00%	0.00%
256	Archaeplastida	Potamogeton	0.00%	0.00%	0.14%
257	Archaeplastida	Eleusine	0.02%	0.00%	0.00%
258	Archaeplastida	Hordeum	0.13%	0.00%	0.02%
259	Archaeplastida	Sorghum	0.02%	0.00%	0.00%
260	Archaeplastida	Hevea	0.03%	0.00%	0.00%
261	Archaeplastida	Heywoodia	0.02%	0.00%	0.00%
262	Archaeplastida	Gossypium	0.03%	0.02%	0.02%
263	Archaeplastida	Broussonetia	0.00%	0.02%	0.02%

<b>n</b> 0	Eukaryotic	Eulervatia ganara	Relative abundance		
по.	supergroups	Eukryotic genera	CKD	PUA	TD1
264	Archaeplastida	Ficus	0.04%	0.00%	0.02%
265	Archaeplastida	Humulus	0.02%	0.00%	0.00%
266	Archaeplastida	Capsicum	0.00%	0.02%	0.00%
267	Archaeplastida	Ipomoea	0.18%	0.04%	0.00%
268	Archaeplastida	Pinus	0.07%	0.02%	0.00%
269	Archaeplastida	Closterium	0.04%	0.05%	0.02%
270	Archaeplastida	Cosmarium	0.11%	0.02%	0.10%
271	Archaeplastida	Gonatozygon	0.02%	0.00%	0.00%
272	Archaeplastida	Micrasterias	0.00%	0.00%	0.02%
273	Archaeplastida	Cylindrocystis	0.02%	0.10%	0.00%
274	Archaeplastida	Mesotaenium	0.03%	0.02%	0.00%
275	Archaeplastida	Sirogonium	0.00%	0.02%	0.02%
276	Archaeplastida	Spirogyra	1.44%	4.27%	3.40%
277	Archaeplastida	Tetraselmis	0.06%	0.00%	0.04%
278	Archaeplastida	Chaetopeltis	0.00%	0.00%	0.04%
279	Archaeplastida	Floydiella	0.00%	0.02%	0.02%
280	Archaeplastida	Aphanochaete	0.11%	0.26%	0.18%
281	Archaeplastida	Barranca	0.02%	0.05%	0.00%
282	Archaeplastida	Chaetophora	0.04%	0.09%	0.06%
283	Archaeplastida	Stigeoclonium	0.05%	0.04%	0.02%
284	Archaeplastida	Cephalomonas	0.00%	0.00%	0.03%
285	Archaeplastida	Characium	0.09%	0.03%	0.09%
286	Archaeplastida	Chlamydomonas	0.27%	0.15%	0.09%
287	Archaeplastida	Chlorococcum	0.25%	0.23%	0.17%
288	Archaeplastida	Chloromonas	0.00%	0.02%	0.00%
289	Archaeplastida	Deasonia	0.70%	0.44%	0.19%
290	Archaeplastida	Dysmorphococcus	0.05%	0.00%	0.00%
291	Archaeplastida	Golenkinia	0.06%	0.02%	0.00%
292	Archaeplastida	Gonium	0.02%	0.00%	0.00%
293	Archaeplastida	Hafniomonas	0.00%	0.02%	0.00%
294	Archaeplastida	Lobochlamys	0.00%	0.02%	0.00%
295	Archaeplastida	Lobomonas	0.00%	0.02%	0.02%
296	Archaeplastida	Neospongiococcum	0.04%	0.00%	0.00%
297	Archaeplastida	Oogamochlamys	0.02%	0.00%	0.02%
298	Archaeplastida	Pachycladella	0.03%	0.00%	0.02%
299	Archaeplastida	Phacotus	0.05%	0.00%	0.00%
300	Archaeplastida	Polytoma	0.02%	0.00%	0.00%
301	Archaeplastida	Protosiphon	0.09%	0.19%	0.12%

Eukaryotic		Eulerwotia gonoro	Relative abundance		
по.	supergroups	Euki youc genera	CKD	PUA	TD1
302	Archaeplastida	Tetracystis	0.06%	0.00%	0.00%
303	Archaeplastida	Vitreochlamys	0.02%	0.00%	0.00%
304	Archaeplastida	Chlorosarcinopsis	0.00%	0.00%	0.02%
305	Archaeplastida	Neochlorosarcina	0.03%	0.00%	0.02%
306	Archaeplastida	Carteria	0.00%	0.02%	0.00%
307	Archaeplastida	Chlamydopodium	0.03%	0.04%	0.06%
308	Archaeplastida	Chlorochytrium	0.00%	0.00%	0.03%
309	Archaeplastida	Pleurastrum	0.03%	0.02%	0.00%
310	Archaeplastida	Oedocladium	0.00%	0.02%	0.02%
311	Archaeplastida	Oedogonium	0.14%	0.36%	0.75%
312	Archaeplastida	Acutodesmus	0.03%	0.07%	0.07%
313	Archaeplastida	Ankistrodesmus	0.04%	0.02%	0.00%
314	Archaeplastida	Auctodesmus	0.15%	0.18%	0.12%
315	Archaeplastida	Bracteacoccus	0.09%	0.05%	0.06%
316	Archaeplastida	Characiopodium	0.28%	0.21%	0.20%
317	Archaeplastida	Chlorolobion	0.02%	0.00%	0.00%
318	Archaeplastida	Chlorotetraedron	0.14%	0.13%	0.07%
319	Archaeplastida	Chromochloris	0.18%	0.06%	0.05%
320	Archaeplastida	Coelastrella	0.10%	0.03%	0.03%
321	Archaeplastida	Coelastrum	0.11%	0.07%	0.06%
322	Archaeplastida	Desmodesmus	0.57%	0.36%	0.53%
323	Archaeplastida	Hylodesmus	0.00%	0.02%	0.00%
324	Archaeplastida	Messastrum	0.00%	0.02%	0.00%
325	Archaeplastida	Monoraphidium	0.23%	0.15%	0.17%
326	Archaeplastida	Mychonastes	0.07%	0.07%	0.10%
327	Archaeplastida	Neochloris	0.49%	0.30%	0.17%
328	Archaeplastida	Neodesmus	0.17%	0.13%	0.11%
329	Archaeplastida	Pectodictyon	0.02%	0.00%	0.08%
330	Archaeplastida	Planktosphaeria	0.97%	0.60%	0.21%
331	Archaeplastida	Polyedriopsis	0.02%	0.00%	0.00%
332	Archaeplastida	Protodesmus	0.00%	0.02%	0.00%
333	Archaeplastida	Pseudomuriella	0.12%	0.09%	0.11%
334	Archaeplastida	Pseudopediastrum	0.21%	0.11%	0.12%
335	Archaeplastida	Pseudoschroederia	0.14%	0.11%	0.06%
336	Archaeplastida	Radiococcus	0.10%	0.05%	0.00%
337	Archaeplastida	Rotundella	0.02%	0.00%	0.00%
338	Archaeplastida	Scenedesmus	0.15%	0.10%	0.11%
339	Archaeplastida	Stauridium	0.09%	0.05%	0.02%

no	Eukaryotic	Eukryotic genera	Relative abundance		
по.	supergroups		CKD	PUA	TD1
340	Archaeplastida	Tetraedron	0.11%	0.09%	0.10%
341	Archaeplastida	Tetranephris	0.08%	0.05%	0.05%
342	Archaeplastida	Verrucodesmus	0.05%	0.07%	0.09%
343	Archaeplastida	Westella	0.03%	0.02%	0.00%
344	Archaeplastida	Asterococcus	0.02%	0.00%	0.00%
345	Archaeplastida	Fritschiella	0.06%	0.13%	0.04%
346	Archaeplastida	Bathycoccus	0.00%	0.02%	0.00%
347	Archaeplastida	Pedinomonas	0.06%	0.00%	0.00%
348	Archaeplastida	Chlorella	0.14%	0.07%	0.09%
349	Archaeplastida	Heveochlorella	0.21%	0.02%	0.00%
350	Archaeplastida	Makinoella	0.08%	0.05%	0.11%
351	Archaeplastida	Micractinium	0.16%	0.09%	0.12%
352	Archaeplastida	Nannochloris	0.05%	0.04%	0.02%
353	Archaeplastida	Oocystella	0.02%	0.02%	0.06%
354	Archaeplastida	<i>Oocystis</i>	0.09%	0.03%	0.07%
355	Archaeplastida	Prototheca	0.02%	0.00%	0.00%
356	Archaeplastida	Tetrastrum	0.02%	0.00%	0.00%
357	Archaeplastida	Choricystis	0.13%	0.07%	0.06%
358	Archaeplastida	Dictyosphaerium	0.05%	0.05%	0.00%
359	Archaeplastida	Heterochlorella	0.32%	0.07%	0.00%
360	Archaeplastida	Picochlorum	0.02%	0.02%	0.00%
361	Archaeplastida	Prasiola	0.02%	0.00%	0.00%
362	Archaeplastida	Stichococcus	0.04%	0.00%	0.02%
363	Archaeplastida	Trebouxia	0.02%	0.00%	0.00%
364	Archaeplastida	Bryopsis	0.02%	0.00%	0.00%
365	Archaeplastida	Desmochloris	0.02%	0.00%	0.00%
366	Archaeplastida	Cladophora	0.16%	0.19%	0.11%
367	Archaeplastida	Rhizoclonium	0.56%	0.80%	0.24%
368	Archaeplastida	Gloeotilopsis	0.03%	0.02%	0.02%
369	Archaeplastida	Pseudoneochloris	0.02%	0.00%	0.00%
370	Archaeplastida	Cloniophora	0.02%	0.00%	0.00%
371	Archaeplastida	Jaoa	0.22%	0.92%	0.13%
372	Archaeplastida	Pseudendoclonium	0.00%	0.04%	0.00%
373	Archaeplastida	Ulvella	0.03%	0.08%	0.00%
374	Archaeplastida	Nemalionopsis	0.07%	0.05%	0.02%
375	Archaeplastida	Sheathia	0.02%	0.09%	0.00%
376	Archaeplastida	Thorea	0.08%	0.14%	0.00%
377	Archaeplastida	Porphyridium	0.05%	0.00%	0.05%

Eukaryotic		Fulzmatic ganara	Relative abundance		
110.	supergroups	Eukryouc genera	CKD	PUA	TD1
378	Cryptophyceae	Cryptomonas	0.02%	0.03%	0.03%
379	Cryptophyceae	Guillardia	0.02%	0.00%	0.00%
380	Cryptophyceae	Hanusia	0.02%	0.00%	0.00%
381	Cryptophyceae	Teleaulax	0.03%	0.00%	0.00%
382	Cryptophyceae	Goniomonas	0.00%	0.04%	0.09%
383	Cryptophyceae	Roombia	0.03%	0.05%	0.03%
384	Excavata	Notosolenus	0.00%	0.00%	0.02%
385	Excavata	Carpediemonas	0.03%	0.00%	0.00%
386	Excavata	Paratrimastix	0.02%	0.00%	0.00%
387	Incertae Sedis	Ancyromonas	0.00%	0.02%	0.10%
388	Incertae Sedis	Nutomonas	0.00%	0.03%	0.08%
389	Incertae Sedis	Palpitomonas	0.02%	0.00%	0.02%
390	Alveolata	Babesia	0.00%	0.00%	0.02%
391	Alveolata	Theileria	0.03%	0.00%	0.00%
392	Alveolata	Hepatozoon	0.02%	0.05%	0.25%
393	Alveolata	Aggregata	0.02%	0.00%	0.00%
394	Alveolata	Goussia	0.09%	0.02%	0.07%
395	Alveolata	Rhytidocystis	0.03%	0.00%	0.02%
396	Alveolata	Cryptosporidium	0.26%	0.13%	0.10%
397	Alveolata	Elev-18S-1089	0.15%	0.02%	0.04%
398	Alveolata	Hoplorhynchus	0.00%	0.00%	0.02%
399	Alveolata	Lecudina	0.02%	0.00%	0.00%
400	Alveolata	Paraschneideria	0.03%	0.02%	0.00%
401	Alveolata	Stylocephalus	0.03%	0.00%	0.00%
402	Alveolata GH	Syncystis	0.14%	0.06%	0.03%
403	Alveolata	Apicystis	0.02%	0.00%	0.00%
404	Alveolata	Bryometopus	0.00%	0.02%	0.02%
405	Alveolata	Bromeliothrix	0.03%	0.00%	0.00%
406	Alveolata	Colpoda	0.02%	0.00%	0.00%
407	Alveolata	Cyrtolophosis	0.02%	0.06%	0.06%
408	Alveolata	Microdiaphanosoma	0.00%	0.00%	0.03%
409	Alveolata	Zosterodasys	0.02%	0.02%	0.00%
410	Alveolata	Ichthyophthirius	0.00%	0.00%	0.02%
411	Alveolata	Tetrahymena	0.06%	0.22%	0.20%
412	Alveolata	Carchesium	0.00%	0.00%	0.02%
413	Alveolata	Cothurnia	0.00%	0.06%	0.28%
414	Alveolata	Epicarchesium	0.00%	0.00%	0.02%
415	Alveolata	Pseudepistylis	0.05%	0.07%	0.00%

Eukaryotic		Fukryotic gonora	Relative abundance		
110.	supergroup	ps Eukryotic genera	CKD	PUA	TD1
416	Alveolata	Pseudovorticella	0.00%	0.00%	0.03%
417	Alveolata	Telotrochidium	0.14%	0.08%	0.13%
418	Alveolata	Vaginicola	0.04%	0.04%	0.05%
419	Alveolata	Vorticella	0.02%	0.61%	0.52%
420	Alveolata	Cyclidium	0.00%	0.05%	0.00%
421	Alveolata	Hippocomos	0.02%	0.00%	0.00%
422	Alveolata	Chilodonella	0.00%	0.07%	0.23%
423	Alveolata	Phascolodon	0.00%	0.00%	0.09%
424	Alveolata	Pseudochilodonopsis	0.00%	0.00%	0.02%
425	Alveolata	Trithigmostoma	0.00%	0.00%	0.07%
426	Alveolata	Trochilia	0.00%	0.46%	2.00%
427	Alveolata	Heliophrya	0.02%	0.00%	0.00%
428	Alveolata	Trimyema	0.02%	0.00%	0.00%
429	Alveolata	Cryptocaryon	0.00%	0.06%	0.05%
430	Alveolata	Prorodon	0.00%	0.00%	0.02%
431	Alveolata	Acineria	0.00%	0.00%	0.02%
432	Alveolata	Amphileptus	0.00%	0.07%	0.14%
433	Alveolata	Chaenea	0.00%	0.02%	0.00%
434	Alveolata	Hemiophrys	0.03%	0.00%	0.00%
435	Alveolata	Litonotus	0.00%	0.07%	0.06%
436	Alveolata	Loxophyllum	0.00%	0.02%	0.02%
437	Alveolata	Bundleia	0.03%	0.00%	0.00%
438	Alveolata	Aspidisca	0.00%	0.00%	0.02%
439	Alveolata	Hemiurosomoida	0.00%	0.00%	0.02%
440	Alveolata	Holosticha	0.00%	0.04%	0.06%
441	Alveolata	Stylonychia	0.00%	0.03%	0.02%
442	Alveolata	Sinophysis	0.00%	0.02%	0.00%
443	Alveolata	Lepidodinium	0.00%	0.00%	0.02%
444	Alveolata	Cochlodinium	0.02%	0.00%	0.00%
445	Alveolata	Biecheleria	0.03%	0.06%	0.00%
446	Alveolata	Symbiodinium	0.10%	0.06%	0.03%
447	Alveolata	Azadinium	0.00%	0.00%	0.03%
448	Alveolata	Peridiniopsis	0.07%	0.00%	0.02%
449	Alveolata	Peridinium	0.02%	0.00%	0.00%
450	Alveolata	Roscoffia	0.00%	0.00%	0.03%
451	Alveolata	Cryptoperidiniopsis	0.02%	0.05%	0.00%
452	Alveolata	Pfiesteria	0.00%	0.00%	0.02%
453	Alveolata	Colponema	0.03%	0.00%	0.00%

Eukaryotic		Fulzyotia gonoro	Relative abundance		
по.	supergroups	Eukryouc genera	CKD	PUA	TD1
454	Alveolata	Chromera	0.00%	0.02%	0.00%
455	Alveolata	Colpodella	0.00%	0.00%	0.03%
456	Alveolata	Parvilucifera	0.02%	0.00%	0.00%
457	Rhizaria	Cavernomonas	0.00%	0.02%	0.00%
458	Rhizaria	Cercomonas	0.14%	0.21%	0.56%
459	Rhizaria	Eocercomonas	0.00%	0.03%	0.02%
460	Rhizaria	Paracercomonas	0.09%	0.36%	0.42%
461	Rhizaria	Allantion	0.00%	0.00%	0.12%
462	Rhizaria	Bodomorpha	0.15%	0.17%	0.19%
463	Rhizaria	Heteromita	1.29%	0.43%	0.46%
464	Rhizaria	Orciraptor	0.05%	0.04%	0.00%
465	Rhizaria	Viridiraptor	0.03%	0.10%	0.11%
466	Rhizaria	Massisteria	0.05%	0.10%	0.19%
467	Rhizaria	Pseudopirsonia	0.00%	0.00%	0.02%
468	Rhizaria	Nudifila	0.00%	0.00%	0.02%
469	Rhizaria	Euglypha	0.03%	0.02%	0.03%
470	Rhizaria	Tracheleuglypha	0.07%	0.07%	0.05%
471	Rhizaria	Paulinella	0.11%	0.10%	0.02%
472	Rhizaria	Trinema	0.00%	0.02%	0.02%
473	Rhizaria	CCe	0.00%	0.02%	0.03%
474	Rhizaria	Thaumatomonas	0.00%	0.00%	0.09%
475	Rhizaria	Spongomonas	0.03%	0.07%	0.15%
476	Rhizaria	Gymnophrys	0.16%	0.36%	0.52%
477	Rhizaria	Kraken	0.03%	0.03%	0.09%
478	Rhizaria GH	Aurigamonas Conversion	0.00%	0.00%	0.04%
479	Rhizaria	Rhogostoma	0.38%	0.07%	0.32%
480	Rhizaria	Lecythium	0.02%	0.00%	0.04%
481	Rhizaria	Pseudodifflugia	0.05%	0.07%	0.00%
482	Rhizaria	Collophidium	0.02%	0.00%	0.00%
483	Stramenopiles	Bicosoeca	0.05%	0.05%	0.35%
484	Stramenopiles	Siluania	0.02%	0.00%	0.00%
485	Stramenopiles	Blastocystis	0.06%	0.02%	0.03%
486	Stramenopiles	Pirsonia	0.00%	0.00%	0.02%
487	Stramenopiles	Labyrinthula	0.04%	0.00%	0.05%
488	Stramenopiles	Aplanochytrium	0.03%	0.02%	0.00%
489	Stramenopiles	Thraustochytrium	0.00%	0.00%	0.02%
490	Stramenopiles	Bolidomonas	0.07%	0.00%	0.00%
491	Stramenopiles	Chrysamoeba	0.00%	0.07%	0.00%

Eukaryotic		Eulematic genera	Relative abundance		
110.	supergroups	Eukryotic genera	CKD	PUA	TD1
492	Stramenopiles	Cyclonexis	0.00%	0.00%	0.02%
493	Stramenopiles	JBNA46	0.04%	0.14%	0.13%
494	Stramenopiles	Oikomonas	0.09%	0.22%	0.13%
495	Stramenopiles	Poterioochromonas	0.00%	0.00%	0.10%
496	Stramenopiles	Poteriospumella	1.42%	1.26%	0.44%
497	Stramenopiles	Spumella	0.02%	0.06%	0.17%
498	Stramenopiles	Chromophyton	0.02%	0.00%	0.00%
499	Stramenopiles	Lagynion	0.00%	0.00%	0.02%
500	Stramenopiles	Epipyxis	0.00%	0.00%	0.02%
501	Stramenopiles	Ochromonas	3.64%	4.19%	3.06%
502	Stramenopiles	Paraphysomonas	0.43%	1.16%	1.12%
503	Stramenopiles	Achnanthidium	0.07%	0.12%	0.17%
504	Stramenopiles	Amphora	0.13%	0.09%	0.12%
505	Stramenopiles	Bacillaria	0.02%	0.02%	0.00%
506	Stramenopiles	Cocconeis	4.86%	27.43%	21.10%
507	Stramenopiles	Craticula	0.13%	0.07%	0.08%
508	Stramenopiles	Cymbella	0.34%	0.66%	0.42%
509	Stramenopiles	Diadesmis	0.05%	0.07%	0.00%
510	Stramenopiles	Diploneis	0.06%	0.00%	0.06%
511	Stramenopiles	Encyonema	0.00%	0.00%	0.06%
512	Stramenopiles	Entomoneis	0.03%	0.00%	0.00%
513	Stramenopiles	Epithemia	0.04%	0.07%	0.04%
514	Stramenopiles	Fistulifera	0.07%	0.04%	0.07%
515	Stramenopiles	Geissleria	0.00%	0.02%	0.00%
516	Stramenopiles	Gomphonema	2.28%	0.76%	4.59%
517	Stramenopiles	Gyrosigma	0.00%	0.00%	0.02%
518	Stramenopiles	Lemnicula	0.03%	0.00%	0.03%
519	Stramenopiles	Navicula	0.17%	0.25%	0.46%
520	Stramenopiles	Neidium	0.02%	0.00%	0.00%
521	Stramenopiles	Nitzschia	0.52%	0.50%	0.70%
522	Stramenopiles	Pinnularia	0.32%	0.14%	0.05%
523	Stramenopiles	Placoneis	0.03%	0.07%	0.02%
524	Stramenopiles	Planothidium	0.14%	0.24%	0.08%
525	Stramenopiles	Pleurosigma	0.10%	0.11%	0.00%
526	Stramenopiles	Pseudo-nitzschia	0.03%	0.03%	0.02%
527	Stramenopiles	Rhaphoneis	0.00%	0.00%	0.02%
528	Stramenopiles	Rhopalodia	0.49%	0.59%	0.22%
529	Stramenopiles	Eolimna	0.00%	0.00%	0.04%

<b>n</b> 0	Eukaryotic	Eulervotio gonoro	Relative abundance			
supergroups		Eukryouc genera	CKD	PUA	TD1	
530	Stramenopiles	Fallacia	0.03%	0.02%	0.00%	
531	Stramenopiles	Sellaphora	0.26%	0.24%	0.35%	
532	Stramenopiles	Staurotropis	0.00%	0.02%	0.00%	
533	Stramenopiles	Surirella	0.03%	0.04%	0.00%	
534	Stramenopiles	Chaetoceros	0.03%	0.00%	0.00%	
535	Stramenopiles	Cyclotella	0.05%	0.00%	0.07%	
536	Stramenopiles	Discostella	0.14%	0.05%	0.05%	
537	Stramenopiles	Lauderia	0.00%	0.00%	0.02%	
538	Stramenopiles	Pleurosira	0.13%	0.05%	0.00%	
539	Stramenopiles	Skeletonema	0.00%	0.03%	0.00%	
540	Stramenopiles	Stephanodiscus	0.03%	0.00%	0.00%	
541	Stramenopiles	Thalassiosira	0.14%	0.02%	0.05%	
542	Stramenopiles	Fragilaria	0.02%	0.09%	0.00%	
543	Stramenopiles	Hyalosira	0.03%	0.00%	0.02%	
544	Stramenopiles	Hyalosynedra	0.00%	0.00%	0.02%	
545	Stramenopiles	Licmophora	0.03%	0.04%	0.00%	
546	Stramenopiles	Stauroforma	0.02%	0.00%	0.00%	
547	Stramenopiles	Staurosira	0.02%	0.00%	0.04%	
548	Stramenopiles	Ulnaria	0.30%	0.28%	0.40%	
549	Stramenopiles	Aulacoseira	0.03%	0.00%	0.00%	
550	Stramenopiles	Melosira	0.15%	0.04%	0.08%	
551	Stramenopiles	Tenuicylindrus	0.00%	0.00%	0.02%	
552	Stramenopiles	Pteridomonas	0.00%	0.00%	0.02%	
553	Stramenopiles	Goniochloris	0.61%	0.31%	0.12%	
554	Stramenopiles	Monodus	0.05%	0.02%	0.00%	
555	Stramenopiles	Pseudocharaciopsis	0.58%	0.31%	0.36%	
556	Stramenopiles	Trachydiscus	0.14%	0.08%	0.06%	
557	Stramenopiles	Vacuoliviride	0.15%	0.03%	0.02%	
558	Stramenopiles	Vischeria	0.02%	0.00%	0.00%	
559	Stramenopiles	Tetrasporopsis	0.02%	0.00%	0.00%	
560	Stramenopiles	Bumilleriopsis	0.14%	0.03%	0.00%	
561	Stramenopiles	Ophiocytium	0.04%	0.02%	0.00%	
562	Stramenopiles	Tribonema	0.03%	0.00%	0.00%	
563	Stramenopiles	Achlya	0.03%	0.20%	0.10%	
564	Stramenopiles	Aphanomyces	0.27%	0.88%	0.59%	
565	Stramenopiles	Apodachlya	0.02%	0.00%	0.00%	
566	Stramenopiles	Halodaphnea	0.00%	0.03%	0.02%	
567	Stramenopiles	Haptoglossa	0.09%	0.08%	0.03%	

-	Enlymotic company	Nela	Relative abundance			
supergroups	Eukryouc genera	CKD	PUA	TD1		
Stramenopiles	Lagenidium	0.03%	0.02%	0.08%		
Stramenopiles	Leptolegnia	0.22%	0.18%	1.50%		
Stramenopiles	Olpidiopsis	0.04%	0.10%	0.15%		
Stramenopiles	Phytophthora	0.16%	0.00%	0.00%		
Stramenopiles	Pythium	3.26%	0.56%	1.11%		
Stramenopiles	Salispina	0.00%	0.00%	0.05%		
Stramenopiles	Saprolegnia	0.06%	0.05%	0.35%		
Stramenopiles	Sapromyces	0.02%	0.02%	0.00%		
unidentified taxa	1223	43.45%	30.58%	27.82%		
	supergroups Stramenopiles Stramenopiles Stramenopiles Stramenopiles Stramenopiles Stramenopiles Stramenopiles unidentified taxa	supergroupsLagenidiumStramenopilesLagenidiumStramenopilesLeptolegniaStramenopilesOlpidiopsisStramenopilesPhytophthoraStramenopilesPythiumStramenopilesSalispinaStramenopilesSaprolegniaStramenopilesSapronycesunidentified taxaStramenopiles	supergroupsLagenidiumCKDStramenopilesLagenidium0.03%StramenopilesLeptolegnia0.22%StramenopilesOlpidiopsis0.04%StramenopilesPhytophthora0.16%StramenopilesPythium3.26%StramenopilesSalispina0.00%StramenopilesSaprolegnia0.06%StramenopilesSapronyces0.02%unidentified taxa43.45%	supergroupsCKDPUAStramenopilesLagenidium0.03%0.02%StramenopilesLeptolegnia0.22%0.18%StramenopilesOlpidiopsis0.04%0.10%StramenopilesPhytophthora0.16%0.00%StramenopilesPythium3.26%0.56%StramenopilesSalispina0.00%0.00%StramenopilesSaprolegnia0.06%0.05%StramenopilesSaprolegnia0.02%0.02%unidentified taxa43.45%30.58%		

 Table C.6 Identified fungal genera and their relative abundance obtained from ITS amplicon analysis from site TD1.

no.	Fungal phyla	Fungal genera	Relative abundance
1	Ascomycota	Acremonium	0.38%
2	Ascomycota	Alternaria	0.05%
3	Ascomycota	Aquanectria	0.01%
4	Ascomycota	Aspergillus	0.02%
5	Ascomycota	Atractium	0.01%
6	Ascomycota	Candida	0.21%
7	Ascomycota	Capnobotryella	2.54%
8	Ascomycota	Cladosporium	3.61%
9	Ascomycota	Claussenomyces	0.29%
10	Ascomycota	Colletotrichum	0.13%
11	Ascomycota	Coniosporium	0.03%
12	Ascomycota	Cosmospora	0.04%
13	Ascomycota	Curvularia	0.04%
14	Ascomycota	Cyberlindnera	0.01%
15	Ascomycota	Cylindrocarpon	0.01%
16	Ascomycota	Cyphellophora	0.05%
17	Ascomycota	Debaryomyces	0.02%
18	Ascomycota	Devriesia	0.06%
19	Ascomycota	Didymella	0.07%
20	Ascomycota	Diutina	0.06%
21	Ascomycota	Erysiphe	0.01%
22	Ascomycota	Exophiala	0.04%
23	Ascomycota	Fusarium	0.31%

no.	Fungal phyla	Fungal genera	Relative abundance
24	Ascomycota	Fusicolla	0.17%
25	Ascomycota	Geosmithia	0.02%
26	Ascomycota	Gibberella	0.07%
27	Ascomycota	Gibellulopsis	0.02%
28	Ascomycota	Glutinoglossum	2.33%
29	Ascomycota	Hansfordia	0.05%
30	Ascomycota	Hirsutella	0.01%
31	Ascomycota	Knufia	0.02%
32	Ascomycota	Kodamaea	0.02%
33	Ascomycota	Microdochium	0.01%
34	Ascomycota	Murispora	0.01%
35	Ascomycota	Musicillium	0.02%
36	Ascomycota	Mycosphaerella	0.08%
37	Ascomycota	Nectria	0.04%
38	Ascomycota	Neodevriesia	0.01%
39	Ascomycota	Nigrospora	0.05%
40	Ascomycota	Ochroconis	0.02%
41	Ascomycota	Orbilia	0.13%
42	Ascomycota	Penicillium	0.12%
43	Ascomycota	Periconia	0.06%
44	Ascomycota	Phaeoacremonium	0.01%
45	Ascomycota	Phaeosphaeria	0.13%
46	Ascomycota	Phialemoniopsis	0.04%
47	Ascomycota	Phialophora	0.02%
48	Ascomycota	Phyllosticta	0.03%
49	Ascomycota	Plectosphaerella	0.16%
50	Ascomycota	Pseudocercospora	0.04%
51	Ascomycota	Pseudomassariosphaeria	0.14%
52	Ascomycota	Purpureocillium	0.02%
53	Ascomycota	Pyrenochaeta	0.06%
54	Ascomycota	Pyrenochaetopsis	0.18%
55	Ascomycota	Rhinocladiella	0.02%
56	Ascomycota	Roussoella	0.03%
57	Ascomycota	Saitoella	0.17%
58	Ascomycota	Sarocladium	0.27%
59	Ascomycota	Scedosporium	0.02%
60	Ascomycota	Setomelanomma	0.03%
61	Ascomycota	Setophaeosphaeria	0.01%

no.	Fungal phyla	Fungal genera	Relative abundance
62	Ascomycota	Setophoma	0.05%
63	Ascomycota	Sphaerulina	0.02%
64	Ascomycota	Stagonospora	0.03%
65	Ascomycota	Stephanonectria	0.04%
66	Ascomycota	Stilbella	0.02%
67	Ascomycota	Talaromyces	0.05%
68	Ascomycota	Thyronectria	0.02%
69	Ascomycota	Tingoldiago	0.03%
70	Ascomycota	Trichomerium	0.06%
71	Ascomycota	Uwebraunia	0.02%
72	Ascomycota	Valsonectria	0.01%
73	Ascomycota	Vermispora	0.05%
74	Ascomycota	Volutella	0.02%
75	Basidiomycota	Abortiporus	0.03%
76	Basidiomycota	Agaricus	0.02%
77	Basidiomycota	Amanita	0.13%
78	Basidiomycota	Boletus	0.03%
79	Basidiomycota	Bullera	0.01%
80	Basidiomycota	Bulleribasidium	0.02%
81	Basidiomycota	Calocera	0.02%
82	Basidiomycota	Clavulina	0.07%
83	Basidiomycota	Cryptococcus	0.61%
84	Basidiomycota	Derxomyces	0.02%
85	Basidiomycota	Dioszegia	0.02%
86	Basidiomycota	Erythrobasidium	0.09%
87	Basidiomycota	Exidia	0.01%
88	Basidiomycota	Gliophorus	0.34%
89	Basidiomycota	Goffeauzyma	0.02%
90	Basidiomycota	Grammothele	0.01%
91	Basidiomycota	Gymnopilus	0.04%
92	Basidiomycota	Hannaella	2.40%
93	Basidiomycota	Heterobasidion	0.01%
94	Basidiomycota	Hygrocybe	0.04%
95	Basidiomycota	Hypochnicium	0.01%
96	Basidiomycota	Inocybe	0.96%
97	Basidiomycota	Malassezia	0.02%
98	Basidiomycota	Microbotryozyma	0.02%
99	Basidiomycota	Microbotryum	0.02%

no.	Fungal phyla	Fungal genera	Relative abundance
100	Basidiomycota	Moesziomyces	0.01%
101	Basidiomycota	Occultifur	0.10%
102	Basidiomycota	Papiliotrema	0.07%
103	Basidiomycota	Phyllozyma	0.02%
104	Basidiomycota	Psathyrella	0.02%
105	Basidiomycota	Pycnopulvinus	0.02%
106	Basidiomycota	Rhodosporidiobolus	0.09%
107	Basidiomycota	Rhodotorula	0.07%
108	Basidiomycota	Saitozyma	0.11%
109	Basidiomycota	Sakaguchia	0.01%
110	Basidiomycota	Sampaiozyma	0.06%
111	Basidiomycota	Sirobasidium	0.07%
112	Basidiomycota	Sistotrema	0.01%
113	Basidiomycota	Sporisorium	0.02%
114	Basidiomycota	Sporobolomyces	2.29%
115	Basidiomycota	Symmetrospora	0.11%
116	Basidiomycota	Trechispora	0.01%
117	Basidiomycota	Tremella	0.03%
118	Basidiomycota	Vishniacozyma	0.02%
119	Basidiomycota	Wallemia	0.05%
120	Chytridiomycota	Alphamyces	0.09%
121	Chytridiomycota	Avachytrium	18.57%
122	Chytridiomycota	Cladochytrium	0.02%
123	Chytridiomycota	Delfinachytrium	0.18%
124	Chytridiomycota	Entophlyctis EST	10.95%
125	Chytridiomycota	Pateramyces	0.03%
126	Chytridiomycota	Powellomyces	0.03%
127	Entomophthoromycota	Basidiobolus	0.01%
128	Entomophthoromycota	Schizangiella	0.10%
129	Glomeromycota	Acaulospora	0.03%
130	Glomeromycota	Dentiscutata	0.16%
131	Glomeromycota	Diversispora	0.04%
132	Mortierellomycota	Mortierella	0.06%
133	Mucoromycota	Endogone	0.04%
	unidentified taxa		48.43%

**Table C.7** Identified fungal genera of *Cladophora* microbiota obtained from 18SrDNA and ITS amplicon analyses.

	18S amplicons			ITS
	CKD	PUA	TD1	TD1
<b>22 fungal genera:</b> Acremonium.	√	√ I C/I		√
Aspergillus, Cladosporium, Hannaella, Helicascus, Mortierella, Nowakowskiella.				vskiella.
Occultifur. Ochroconis. Paramicrosporidium. Paraphelidium. Phlyctochytrium.				
Pichia, Piromyces, Pyrenochaeta, Rhiz	ophydium, l	Rhodotorula	, Rozella, S	porisorium,
Sporobolomyces, Vishniacozyma, and V	Viesneriomy	vces		
14 fungal genera: Acaulopage,	$\checkmark$	$\checkmark$	$\checkmark$	Х
Alternaria, Aphelidium, Arthrinium, Ch	naetospermi	ım, Chytrion	nyces, Coch	nlonema,
Emericellopsis, Fusarium, Galactomyc	es, Geotrich	hum, Gibellu	lopsis, Len	tithecium,
and Stylopage	11/2		-	
4 fungal genera: Neotestudina,	1	$\checkmark$	Х	$\checkmark$
Mycosisymbrium, Parastagonospora, a	nd Symmetr	rospora		
3 fungal genera: Endogone,		$\checkmark$	Х	Х
Malassezia, and Papiliotrema				
8 fungal genera: Periconia,		Х	$\checkmark$	$\checkmark$
Pleospora, Preussia, Psathyrella, Rhize	octonia, Rhi	zophlyctis, S	Sarocladiun	n, and
Trichomonascus				
17 fungal genera: Arthrobotrys,		Х	$\checkmark$	Х
Bipolaris, Circinotrichum, Corynespor	a, Cyphello	phora, Diap	orthe, Didy	mella,
Erythrobasidium, Fereydounia, Gerand	omyces, Hyp	oonectria, K	nufia, Ligni	incola,
Meira, Rhodosporidiobolus, Ustilago, a	and Westerd	lykella		
31 fungal genera: Acrostalagmus,	1	Х	Х	$\checkmark$
Agaricus, Ganoderma, Gymnopus, Hirs	sutella, Mid	delhovenom	yces, Myrot	thecium,
Nakaseomyces/Candida clade, Neolecto	a, Neophloe	ospora, Neo	ournula,	
Ophiosphaerella, Parengyodontium, Pa	estalotia, Pe	eziza, Phallu	s, Phellinus	5,
Phialemoniopsis, Phymatotrichopsis, P	Plectosphaer	ella, Pleuro	tus, Ramica	undelaber,
Saccharomycopsis, Sebacina, Starmere	ella/Candidd	a clade, Sube	eroteratospi	haeria,
Tapinella, Thanatephorus, Torula, Tric	chosporon, a	and Verticill	ium	
<b>51 fungal genera:</b> <i>Akanthomyces</i> ,	$\checkmark$	Х	Х	Х
Arthopyrenia, Barnettozyma/Candida c	clade, <i>Biatri</i>	ospora, Bole	etellus, Bra	dymyces,
Bullera, Candida/Lodderomyces clade, Catenomyces, Cercospora, Ceriporia,				
Chaetomium, Clavispora/Candida clade, Clydaea, Colacogloea, Colletotrichum,				
Conidiocarpus, Coniophora, Conocybe, Conoideocrella, Coprinopsis, Dacrymyces,				
Derxomyces, Drechmeria, Elsinoe, Geastrum, Glomus, Gonapodya, Hanseniaspora,				
Helicoma, Hyphodontia, Hypoxylon, Kurtzmaniella/Candida clade, Lachancea,				
Lecanosticia, Leptosphaeria, Leucoagaricus, Lunulospora, Macrolepiota,				
Mariniozyma, Metschnikowia, Myrmecriaium, Neophaeosphaeria, Olpidium,				
Septojusiaium, Sistotrema, Spizellomyces, Talaromyces, Toxicocladosporium,				
vermiconia, and [Sporobolomyces] group				

				amplicons			
	CKD	PUA	TD1	TD1			
1 fungal genus: Rhizoclosmatium	Х	$\checkmark$	$\checkmark$	$\checkmark$			
4 fungal genera: Phaffomyces,	Х	$\checkmark$	Х	$\checkmark$			
Tilletiopsis, Trametes, and Tropicoport	ı						
4 fungal genera: Craterellus,	Х	$\checkmark$	Х	Х			
Cyberlindnera/Candida clade, Kodama	iea, and Len	ntomitell					
12 fungal genera: Acaulospora,	Х	Х	$\checkmark$	$\checkmark$			
Hasegawazyma, Neokarlingia, Ochron	ectria, Phae	eotheca, Phy	vsalacria,				
Polytrychium, Rhizophagus, Schizosaco	charomyces	, Spencerozy	yma,				
Sympodiomycopsis, and Yarrowia							
14 fungal genera: Ambrosiozyma,	<b>14 fungal genera:</b> Ambrosiozyma, $X$ $X$ $$ $X$						
Anthracoidea, Bulleribasidium, Candic	la, Dendroc	hytridium , .	Donkia, Fil	obasidium,			
Heterodoassansia, Hyphodermella, Ko	hlmeyeriops	sis, Lecopha	gus, Maria	nnaea,			
Microbotryum, and Trechispora		5					
51 fungal genera: Goffeauzyma,	X	> X	Х	$\checkmark$			
Grammothele, Gymnopilus, Hansfordic	a, Microdoc	hium, Moes	ziomyces, M	lurispora,			
Musicillium, Mycosphaerella, Nectria,	Neodevries	ia, Nigrospo	ora, Orbilia	,			
Pateramyces, Penicillium, Phaeoacrem	ionium, Pha	eosphaeria,	Phialopho	ra,			
Phyllosticta, Phyllozyma, Powellomyce	s, Pseudoce	ercospora,					
Pseudomassariosphaeria, Purpureocillium, Pycnopulvinus, Pyrenochaetopsis,							
Rhinocladiella, Roussoella, Saitoella, Saitozyma, Sakaguchia, Sampaiozyma,							
Scedosporium, Schizangiella, Setomelanomma, Setophaeosphaeria, Setophoma,							
Sirobasidium, Sphaerulina, Stagonospora, Stephanonectria, Stilbella, Thyronectria,							
Tingoldiago, Tremella, Trichomerium, Uwebraunia, Valsonectria, Vermispora,							
Volutella, and Wallemia							

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Table C.8 Shared microbiota of freshwater Cladophe	ora.
----------------------------------------------------	------

	Nan River (This study)	Lake Mendota (Braus et al. 2017)	Lake Michigan (Chu et al. 2017)	Lake Mendota (Graham et al. 2015)
17 bacterial genera: Flavobacterium,	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
Pseudorhodobacter, Pseudomonas, Terrimonas, Chry Deinococcus, Hyphomicrobium, Rhodobacter, Alterer Sphingopyxis, Acidovorax, Aquabacterium, Hydroger Acinetobacter	vseobacte rythrobac 10phaga,	erium, Bde cter, Novos Methylote	llovibrio, sphingobiu nera, and	um,
15 bacterial genera: Arenimonas, Paludibacter,	$\checkmark$	$\checkmark$	$\checkmark$	Х
Ferruginibacter, Pseudarcicella, Porphyrobacter, Co Pelomonas, Rhodoferax, AAP99, Aeromonas, Cellvik and Luteolibacter	omamona prio, NOI	s, Limnoha R5/OM60 a	abitans, clade, Lute	eimonas,
<b>17 bacterial genera:</b> <i>Paludibaculum, Lewinella,</i>	$\checkmark$	$\checkmark$	Х	$\checkmark$
Haliscomenobacter, Phaeodactylibacter, Fluviicola, J Haliangium, Planctomyces sp. SH-PL14, Hyphomona Leptothrix, Rhizobacter, Rubrivivax, mle1-7, and Dec	Meiother as, Sphin _t chloromo	mus, Gemi gomonas ,I nas	matimonas Lautropia,	',
57 bacterial genera: Armatimonas, Bryobacter,	$\checkmark$	$\checkmark$	Х	Х
CL500-29 marine group, Ilumatobacter, Aurantisolimonas, Dinghuibacter, Flavisolibacter, Lacibacter, Cytophaga, OLB12, Arcicella, Emticicia, Lacihabitans, Runella, OM27 clade, Chamaesiphon, Cyanobium, Truepera, P3OB-42, Phaselicystis, Pajaroellobacter, Planctomycetes SM1A02, Fimbriiglobus, Blastopirellula, Pirellula, Roseomonas, Hirschia, alphaI cluster, Pedomicrobium, Phreatobacter, Gemmobacter, Tabrizicola, Sphingorhabdus, Limnobacter, Chitinibacter, Ideonella, Inhella, Polaromonas, Ramlibacter, Ellin6067, CM1G08, Massilia, Noviherbaspirillum, Candidatus Accumulibacter, Niveibacterium, Propionivibrio, Sulfuritalea, Rheinheimera, Acidibacter, Methylocystis, Methylovulum, BD1-7 clade, Ahniella, Lysobacter, Chthoniobacter, DEV114, and SH3, 11				
9 bacterial taxa: Bacillus, Vogesella,	$\checkmark$	Х	$\checkmark$	$\checkmark$
Christensenellaceae R-7 group, Bacteroides, Mesorhi Plesiomonas, and Shewanella	zobium, S	Sphaerotili	us, Klebsie	lla,
16 bacterial taxa: Acidaminobacter, Fusibacter,	$\checkmark$	Х	$\checkmark$	Х
Nocardioides, Prevotella 9, Exiguobacterium, Clostridium sensu stricto 1, Clostridium sensu stricto 12, Anaeromusa and Anaeroarcus, Devosia, Rhizobium, Shinella, Vogesella, Curvibacter, Delftia, Ottowia, and Paucibacter				
20 bacterial taxa: Mycobacterium, Chloroflexus,	$\checkmark$	Х	Х	$\checkmark$
Porphyromonas, Desulfovibrio, Haloferula, IMCC26207, Alistipes, Hassallia, Cloacibacterium, Herpetosiphon, Erysipelothrix, Lachnoclostridium, Anaeromyxobacter, Chromobacterium, Leeia, Azoarcus, Thauera, Treponema, IMCC26134, and Lacunisphaera <b>4 eukaryotic taxa:</b> Spirogyra, Pseudopediastrum, Cercomonas, and Aphanomyces				

## REFERENCES

- Abt, B., et al. 2013. Genome sequence of the thermophilic fresh-water bacterium *Spirochaeta caldaria* type strain (H1^T), reclassification of *Spirochaeta caldaria*, *Spirochaeta stenostrepta*, and *Spirochaeta zuelzerae* in the genus *Treponema* as *Treponema caldaria* comb. nov., *Treponema stenostrepta* comb. nov., and *Treponema zuelzerae* comb. nov., and emendation of the genus *Treponema*. *Standards in Genomic Sciences* 8(1), 88–105.
- Afgan, E., et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Research* 46(W1), W537–W544.
- Albuquerque, L., et al. 2002. *Albidovulum inexpectatum* gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus *Rhodovulum*. *Applied and Environmental Microbiology* 68(9), 4266–4273.
- Albuquerque, L., et al. 2005. *Truepera radiovictrix* gen. nov., sp. nov., a new radiation resistant species and the proposal of *Trueperaceae* fam. nov. *FEMS Microbiology Letters* 247(2), 161–169.
- Ali, B. R. S., et al. 1995. Cellulases and hemicellulases of the anaerobic fungus *Piromyces* constitute a multiprotein cellulose-binding complex and are encoded by multigene families. *FEMS Microbiology Letters* 125(1), 15–21.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215(3), 403–410
- Amann, R. I., Ludwig, W., & Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. *Microbiological Reviews* 59(1), 143–169.
- Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Available from <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc</u> [10 September, 2020]
- Bae, H. S., et al. 2007. Description of *Azospira restricta* sp. nov., a nitrogen-fixing bacterium isolated from groundwater. *International Journal of Systematic and Evolutionary Microbiology* 57(7), 1521–1526.
- Bahulikar, R. A., & Kroth, P. G. 2007. Localization of EPS components secreted by freshwater diatoms using differential staining with fluorophore-conjugated lectins and other fluorochromes. *European Journal of Phycology* 42(2), 199– 208.
- Bai, Y., et al. 2021. *In vitro* fermentation characteristics and fiber-degrading enzyme kinetics of cellulose, arabinoxylan, β-glucan and glucomannan by pig fecal microbiota. *Microorganisms* 9(5), 1071.
- Bazylinski, D. A., Palome, E., Blakemore, N. A., & Blakemore, R. P. 1986. Denitrification by *Chromobacterium violaceum*. *Applied and Environmental Microbiology* 52(4), 696–699.
- Beller, H. R., Han, R., Karaoz, U., Lim, H., & Brodie, E. L. 2013. Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute *Pelosinus* sp. strain HCF1. *Applied and Environmental Microbiology* 79(1), 63–73.
- Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. 2012. The genus

*Cladosporium. Studies in Mycology* 72, 1–401.

- Blanco, S. 2020. Diatom taxonomy and identification keys. In Cristóbal, G., Blanco, S., & Bueno, G. (eds.), *Modern Trends in Diatom Identification* pp. 25–38. Cham: Springer International Publishing.
- Boedeker, C., Leliaert, F., & Zuccarello, G. C. 2016. Molecular phylogeny of the Cladophoraceae (Cladophorales, Ulvophyceae), with the resurrection of *Acrocladus* Nägeli and *Willeella* Børgesen, and the description of *Lurbica* gen. nov. and *Pseudorhizoclonium* gen. nov. *Journal of Phycology* 52(6), 905–928.
- Bolger, A. M., Lohse, M., & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30(15), 2114–2120.
- Boonprab, K., Matsui, K., & Kataoka, N. 2018. Preliminary study on bioethanol from fresh water algae, *Cladophora glomerata* (Sarai Kai) by the fungus, *Monascus* sp. NP1. *Journal of Applied Phycology* 30(1), 137–141.
- Bradley, I. M., Pinto, A. J., & Guest, J. S. 2016. Design and evaluation of Illumina MiSeq-compatible, 18S rRNA gene-specific primers for improved characterization of mixed phototrophic communities. *Applied and Environmental Microbiology* 82(19), 5878–5891.
- Braus, M. J., Graham, L. E., & Whitman, T. L. 2017. Spatiotemporal dynamics of the bacterial microbiota on lacustrine *Cladophora glomerata* (Chlorophyta). *Journal* of Phycology 53(6), 1255–1262.
- Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., & Fierer, N. 2016. Genome reduction in an abundant and ubiquitous soil bacterium '*Candidatus* Udaeobacter copiosus'. *Nature Microbiology* 2(2), 16198.
- Buntha, P., Traichaiyaporn, S., & Thapanya, D. 2020. Food source for hydropsychid larvae during an algae bloom in Nan River, Nan Province, Thailand (Trichoptera: Hydropsychidae). *Zoosymposia* 18(1), 9–16.
- Byappanahalli, M. N., Shively, D. A., Nevers, M. B., Sadowsky, M. J., & Whitman, R. L. 2003. Growth and survival of *Escherichia coli* and enterococci populations in the macro-alga *Cladophora* (Chlorophyta). *FEMS Microbiology Ecology* 46(2), 203–211.
- Byappanahalli, M. N., Whitman, R. L., Shively, D. A., Ferguson, J., Ishii, S., & Sadowsky, M. J. 2007. Population structure of *Cladophora*-borne *Escherichia coli* in nearshore water of Lake Michigan. *Water Research* 41(16), 3649–3654.
- Byappanahalli, M. N., Nevers, M. B., Przybyla-Kelly, K., Ishii, S., King, T. L., & Aunins, A. W. 2019. Great Lakes *Cladophora* harbors phylogenetically diverse nitrogen-fixing microorganisms. *Environmental DNA* 1(2), 186–195.
- Cai, L., Chen, T. B., Zheng, S. W., Liu, H. T., & Zheng, G. D. 2018. Decomposition of lignocellulose and readily degradable carbohydrates during sewage sludge biodrying, insights of the potential role of microorganisms from a metagenomic analysis. *Chemosphere* 201, 127–136.
- Calabon, M. S., et al. 2021. Phylogenetic assessment and taxonomic revision of *Halobyssothecium* and *Lentithecium* (Lentitheciaceae, Pleosporales). *Mycological Progress* 20(5), 701–720.
- Cambridge, M. L., Breeman, A. M., & van den Hoek, C. 1990. Temperature limits at the distribution boundaries of four tropical to temperate species of *Cladophora* (Cladophorales: Chlorophyta) in the North Atlantic ocean. *Aquatic Botany* 38(2), 135–151.

- Cameron, B., Briggs, K., Pridmore, S., Brefort, G., & Crouzet, J. 1989. Cloning and analysis of genes involved in coenzyme B₁₂ biosynthesis in *Pseudomonas denitrificans*. *Journal of Bacteriology* 171(1), 547–557.
- Chai, X., et al. 2017. Ecosystem activation system (EAS) technology for remediation of eutrophic freshwater. *Scientific Reports* 7(1), 4818.
- Chen, M., et al. 2014a. Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium *Aeromonas* sp. HN-02. *Bioresource Technology* 167, 456–461.
- Chen, Q., & Ni, J. 2011. Heterotrophic nitrification–aerobic denitrification by novel isolated bacteria. *Journal of Industrial Microbiology and Biotechnology* 38(9), 1305–1310.
- Chen, Q., Meyer, W. A., Zhang, Q., & White, J. F. 2020a. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. *Peerj* 8, e8417.
- Chen, S., Niu, L., & Zhang, Y. 2010. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. International Journal of Systematic and Evolutionary Microbiology 60(12), 2735–2738.
- Chen, S., He, S., Wu, C., & Du, D. 2019. Characteristics of heterotrophic nitrification and aerobic denitrification bacterium *Acinetobacter* sp. T1 and its application for pig farm wastewater treatment. *Journal of Bioscience and Bioengineering* 127(2), 201–205.
- Chen, Y., Feng, X., He, Y., & Wang, F. 2016. Genome analysis of a *Limnobacter* sp. identified in an anaerobic methane-consuming cell consortium. *Frontiers in Marine Science* 3(257).
- Chen, Y., Shao, Z., Kong, Z., Gu, L., Fang, J., & Chai, H. 2020b. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment. *Journal of Water Process Engineering* 37, 101414.
- Chen, Z., et al. 2014b. *Phaeodactylibacter xiamenensis* gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga *Phaeodactylum tricornutum*. *International Journal of Systematic and Evolutionary Microbiology* 64(10), 3496–3502.
- Christensen, P., & Cook, F. D. 1978. *Lysobacter*, a new genus of nonfruiting, gliding bacteria with a high base ratio. *International Journal of Systematic Bacteriology* 28(3), 367–393.
- Chun, C. L., et al. 2017. Virulence and biodegradation potential of dynamic microbial communities associated with decaying *Cladophora* in Great Lakes. *Science of the Total Environment* 574, 872–880.
- Co, R., & Hug, L. A. 2021. Prediction, enrichment and isolation identify a responsive, competitive community of cellulolytic microorganisms from a municipal landfill. *FEMS Microbiology Ecology* 97(5).
- Copeland, A., et al. 2009. Complete genome sequence of *Desulfomicrobium baculatum* type strain (X^T). *Standards in Genomic Sciences* 1(1), 29–37.
- Corsaro, D., Walochnik, J., Venditti, D., Steinmann, J., Müller, K.-D., & Michel, R. 2014. Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. *Parasitology Research* 113(5), 1909–1918.
- Corsaro, D., Köhsler, M., Wylezich, C., Venditti, D., Walochnik, J., & Michel, R. 2018.

New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales). *Parasitology Research* 117(1), 157–167.

- Crous, P. W., & Groenewald, J. Z. 2013. A phylogenetic re-evaluation of *Arthrinium*. *IMA Fungus* 4(1), 133–154.
- Cui, J., et al. 2019. Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. *Frontiers in Microbiology* 10(618).
- Daniel, R. 2005. The metagenomics of soil. *Nature Reviews Microbiology* 3(6), 470–478.
- Danilov, R., & Ekelund, N. G. A. 1999. The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden. *Science of the Total Environment* 234(1-3), 15–23.
- Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* 9(8), 772.
- De Filippis, F., Laiola, M., Blaiotta, G., & Ercolini, D. 2017. Different amplicon targets for sequencing-based studies of fungal diversity. *Applied and Environmental Microbiology* 83(17), e00905-00917.
- de Mendiburu, F. 2021. agricolae: Statistical Procedures for Agricultural Research. Available from <u>https://CRAN.R-project.org/package=agricolae</u> [15 March, 2021]
- de Vries, R. P., & Visser, J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews 65(4), 497–522.
- DeBoy, R. T., et al. 2008. Insights into plant cell wall degradation from the genome sequence of the soil bacterium *Cellvibrio japonicus*. *Journal of Bacteriology* 190(15), 5455–5463.
- Del Dot, T., Osawa, R., & Stackebrandt, E. 1993. *Phascolarctobacterium faecium* gen. nov, spec. nov., a novel taxon of the *Sporomusa* group of *Bacteria*. *Systematic* and Applied Microbiology 16(3), 380–384.
- Dodds, W., & Gudder, D. 1992. The ecology of *Cladophora. Journal of Phycology* 28, 415–427.
- Englebert, E. T., McDermott, C., & Kleinheinz, G. T. 2008a. Effects of the nuisance algae, *Cladophora*, on *Escherichia coli* at recreational beaches in Wisconsin. *Science of the Total Environment* 404(1), 10–17.
- Englebert, E. T., McDermott, C., & Kleinheinz, G. T. 2008b. Impact of the alga *Cladophora* on the survival of *E. coli*, *Salmonella*, and *Shigella* in laboratory microcosm. *Journal of Great Lakes Research* 34(2), 377–382.
- Esposito, A., Pagnanelli, F., Lodi, A., Solisio, C., & Vegliò, F. 2001. Biosorption of heavy metals by *Sphaerotilus natans*: an equilibrium study at different pH and biomass concentrations. *Hydrometallurgy* 60(2), 129–141.
- Esson, K. C., Lin, X., Kumaresan, D., Chanton, J. P., Murrell, J. C., & Kostka, J. E. 2016. Alpha- and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. *Applied and Environmental Microbiology* 82(8), 2363–2371.
- Fadhlaoui, K., et al. 2015. *Fusibacter fontis* sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. *International Journal of Systematic and Evolutionary Microbiology* 65(10), 3501–3506.

- Fahprathanchai, P., Saenphet, K., Peerapornpisal, Y., & Aritajat, S. 2006. Toxicological evaluation of *Cladophora glomerata* Kützing and *Microspora floccosa* Thuret in albino rats. *The Southeast Asian Journal of Tropical Medicine and Public Health* 37, 206–209.
- Falagan, C., & Johnson, D. B. 2014. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18(6), 1067–1073.
- Fan, X., Nie, L., Shi, K., Wang, Q., Xia, X., & Wang, G. 2019. Simultaneous 3-/4hydroxybenzoates biodegradation and arsenite oxidation by *Hydrogenophaga* sp. H7. *Frontiers in Microbiology* 10, 1346.
- Fedosova, A. G., Popov, E. S., Lizon, P., & Kucera, V. 2018. Towards an understanding of the genus *Glutinoglossum* with emphasis on the *Glutinoglossum glutinosum* species complex (*Geoglossaceae*, *Ascomycota*). *Persoonia* 41, 18–38.
- Feng, L., et al. 2020. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor. *Bioresource Technology* 308, 123274.
- Fernandez-Trujillo, J. P., Martínez, J. A., Salmerón, M. C., & Artés, F. 1997. Isolation of Acremonium species causing postharvest decay of peaches in Spain. Plant Disease 81(8), 958.
- Fracchia, S., Garcia-Romera, I., Godeas, A., & Ocampo, J. A. 2000. Effect of the saprophytic fungus *Fusarium oxysporum* on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. *Plant and Soil* 223(1), 177– 186.
- Gao, C., Zhang, A., Chen, K., Hao, Z., Tong, J., & Ouyang, P. 2015. Characterization of extracellular chitinase from *Chitinibacter* sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. *Biochemical Engineering Journal* 97, 59–64.
- Giraldo, A., Hernández-Restrepo, M., & Crous, P. W. 2019. New plectosphaerellaceous species from Dutch garden soil. *Mycological Progress* 18(9), 1135–1154.
- Gleason, F. H., Kagami, M., Lefevre, E., & Sime-Ngando, T. 2008. The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. *Fungal Biology Reviews* 22(1), 17–25.
- Goto, M., & Kuwata, H. 1988. *Rhizobacter daucus* gen. nov., sp. nov., the causal agent of carrot bacterial gall. *International Journal of Systematic and Evolutionary Microbiology* 38(3), 233–239.
- Graham, L. E., Knack, J. J., Graham, M. E., Graham, J. M., & Zulkifly, S. 2015. A metagenome for lacustrine *Cladophora* (Cladophorales) reveals remarkable diversity of eukaryotic epibionts and genes relevant to materials cycling. *Journal* of *Phycology* 51(3), 408–418.
- Greeson, P. E. 1982. An annotated key to the identification of commonly occurring and dominant genera of algae observed in the phytoplankton of the United States. Washington: U.S. Department of the Interior.
- Gromov, B. V., Pljusch, A. V., & Mamkaeva, K. A. 1999. Cultures of *Rhizophydium* spp. (Chytridiales) parasites of chlorococcalean algae. *Algological Studies* 95, 115–123.
- Guiry, M. D., & Guiry, G. M. 2022. AlgaeBase. Available from

https://www.algaebase.org

- Gülay, A., Cekic, Y., Musovic, S., Albrechtsen, H. J., & Smets, B. F. 2018. Diversity of iron oxidizers in groundwater-fed rapid sand filters: evidence of Fe(II)dependent growth by *Curvibacter* and *Undibacterium* spp. *Frontiers in Microbiology* 9, 2808.
- Haack, F. S., et al. 2016. Molecular Keys to the *Janthinobacterium* and *Duganella* spp. interaction with the plant pathogen *Fusarium graminearum*. *Frontiers in Microbiology* 7, 1668.
- Haack, S., & Breznak, J. 2004. *Cytophaga xylanolytica* sp. nov., a xylan-degrading, anaerobic gliding bacterium. *Archives of Microbiology* 159(1), 6–15.
- Harwati, T. U., Kasai, Y., Kodama, Y., Susilaningsih, D., & Watanabe, K. 2009. *Tropicimonas isoalkanivorans* gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. *International Journal of Systematic and Evolutionary Microbiology* 59(2), 388–391.
- Hatamoto, M., Kaneshige, M., Nakamura, A., & Yamaguchi, T. 2014. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. International Journal of Systematic and Evolutionary Microbiology 64(5), 1770–1774.
- Hayakawa, Y.-i., Ogawa, T., Yoshikawa, S., Ohki, K., & Kamiya, M. 2012. Genetic and ecophysiological diversity of *Cladophora* (Cladophorales, Ulvophyceae) in various salinity regimes. *Phycological Research* 60(2), 86–97.
- Herter, S., Fuchs, G., Bacher, A., & Eisenreich, W. 2002. A bicyclic autotrophic CO₂ fixation pathway in *Chloroflexus aurantiacus*. *Journal of Biological Chemistry* 277(23), 20277–20283.
- Heylen, K., Lebbe, L., & De Vos, P. 2008. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. International Journal of Systematic and Evolutionary Microbiology 58(1), 73–77.
- Hirotani-Akabane, E., & Saikawa, M. 2010. Germination and morphology of zygospores in two *Cochlonema* and one *Acaulopage* species. *Mycologia* 102(1), 39–43.
- Hoflmann, J. P. 1990. Dependence of photosynthesis and vitamin B₁₂ uptake on cellular vitamin B₁₂ concentration in the multicellular alga *Cladophora glomerata* (Chlorophyta). *Limnology and Oceanography* 35(1), 100–108.
- Hougardy, A., & Klemme, J.-H. 1995. Nitrate reduction in a new strain of *Rhodoferax fermentans*. *Archives of Microbiology* 164(5), 358–362.
- Huang, W., Gong, B., He, L., Wang, Y., & Zhou, J. 2020. Intensified nutrients removal in a modified sequencing batch reactor at low temperature: Metagenomic approach reveals the microbial community structure and mechanisms. *Chemosphere* 244, 125513.
- Hubert, C., & Voordouw, G. 2007. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Applied and Environmental Microbiology 73(8), 2644–2652.
- Hugenholtz, P., & Tyson, G. W. 2008. Metagenomics. Nature 455(7212), 481-483.
- Into, P., Pontes, A., Sampaio, J. P., & Limtong, S. 2020. Yeast diversity associated with the phylloplane of corn plants cultivated in Thailand. *Microorganisms* 8(1), 80.
- Irgens, R. L., Gosink, J. J., & Staley, J. T. 1996. *Polaromonas vacuolata* gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica.

International Journal of Systematic Bacteriology 46(3), 822–826.

- Ishii, K., Fujitani, H., Sekiguchi, Y., & Tsuneda, S. 2020. Physiological and genomic characterization of a new '*Candidatus* Nitrotoga' isolate. *Environmental Microbiology* 22(6), 2365–2382.
- Johnson, L. P. 1956. Key to some common freshwater protozoa. Bios 27(1), 3-32.
- Joung, Y., Lee, B. I., Kang, H., Kim, H., & Joh, K. 2014. *Chitinimonas viridis* sp. nov., isolated from a mesotrophic artificial lake. *International Journal of Systematic and Evolutionary Microbiology* 64(4), 1123–1126.
- Jung, D. O., Achenbach, L. A., Karr, E. A., Takaichi, S., & Madigan, M. T. 2004. A gas vesiculate planktonic strain of the purple non-sulfur bacterium *Rhodoferax antarcticus* isolated from Lake Fryxell, Dry Valleys, Antarctica. *Archives of Microbiology* 182(2), 236–243.
- Kalyuhznaya, M. G., et al. 2009. Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. *Environmental Microbiology Reports* 1(5), 385–392.
- Kane, S. R., et al. 2007. Whole-genome analysis of the methyl *tert*-butyl etherdegrading beta-proteobacterium *Methylibium petroleiphilum* PM1. *Journal of Bacteriology* 189(5), 1931–1945.
- Karnachuk, O. V., et al. 2021. Microbial sulfate reduction by *Desulfovibrio* is an important source of hydrogen sulfide from a large swine finishing facility. *Scientific Reports* 11(1), 10720.
- Karpov, S. A., Mamkaeva, M. A., Benzerara, K., Moreira, D., & López-García, P. 2014. Molecular phylogeny and ultrastructure of *Aphelidium* aff. *melosirae* (Aphelida, Opisthosporidia). *Protist* 165(4), 512–526.
- Karpov, S. A., Cvetkova, V. S., Annenkova, N. V., & Vishnyakov, A. E. 2019. Kinetid structure of *Aphelidium* and *Paraphelidium* (Aphelida) suggests the features of the common ancestor of fungi and Opisthosporidia. *Journal of Eukaryotic Microbiology* 66(6), 911–924.
- Katoh, K., Asimenos, G., & Toh, H. 2009. Multiple alignment of DNA sequences with MAFFT. *Methods in Molecular Biology* 537, 39–64.
- Khan, S. T., Fukunaga, Y., Nakagawa, Y., & Harayama, S. 2007. Emended descriptions of the genus Lewinella and of Lewinella cohaerens, Lewinella nigricans and Lewinella persica, and description of Lewinella lutea sp. nov. and Lewinella marina sp. nov. International Journal of Systematic and Evolutionary Microbiology 57(12), 2946–2951.
- Khan, Z., et al. 2011. *Pyrenochaeta romeroi*: a causative agent of phaeohyphomycotic cyst. *Journal of Medical Microbiology* 60(6), 842–846.
- Khramenkov, S. V., et al. 2013. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. *Microbiology* 82(5), 628–636.
- Khuantrairong, T., & Traichaiyaporn, S. 2009. Production of biomass, carotenoid and nutritional
- values of *Cladophora* sp. (Kai) by cultivation in mass culture. *Phycologia* 48, 60–66.
- Khuantrairong, T., & Traichaiyaporn, S. 2011. The nutritional value of edible freshwater alga *Cladophora* sp. (Chlorophyta) grown under different phosphorus concentrations. *International Journal of Agriculture and Biology* 13, 297–300.

- Khuantrairong, T., & Traichaiyaporn, S. 2012. Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: *Cladophora* sp.) by supplementary inorganic phosphate and investigation of its biomass production. *Maejo International Journal of Science and Technology* 6(1), 1–11.
- Kim, E., Yulisa, A., Kim, S., & Hwang, S. 2020. Monitoring microbial community structure and variations in a full-scale petroleum refinery wastewater treatment plant. *Bioresource Technology* 306, 123178.
- Kiss, H., et al. 2011. Complete genome sequence of the filamentous gliding predatory bacterium *Herpetosiphon aurantiacus* type strain (114-95^T). *Standards in Genomic Sciences* 5(3), 356–370.
- Klindworth, A., et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic Acids Research* 41(1), e1.
- Komárek, J., Kopecký, J., & Cepák, V. 1999. Generic characters of the simplest cyanoprokaryotes *Cyanobium*, *Cyanobacterium* and *Synechococcus*. *Cryptogamie Algologie* 20(3), 209–222.
- Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35(21), 4453–4455.
- Krohn-Molt, I., et al. 2017. Insights into microalga and bacteria interactions of selected phycosphere biofilms using metagenomic, transcriptomic, and proteomic approaches. *Frontiers in Microbiology* 8, 1941.
- Kulichevskaya, I. S., Baulina, O. I., Bodelier, P. L., Rijpstra, W. I., Damste, J. S., & Dedysh, S. N. 2009. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, *Gemmata*-like planctomycete from a Siberian peat bog. International Journal of Systematic and Evolutionary Microbiology 59(2), 357–364.
- Kulichevskaya, I. S., Suzina, N. E., Liesack, W., & Dedysh, S. N. 2010. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. International Journal of Systematic and Evolutionary Microbiology 60(2), 301–306.
- Kulichevskaya, I. S., Ivanova, A. A., Baulina, O. I., Rijpstra, W. I. C., Sinninghe Damste, J. S., & Dedysh, S. N. 2017. *Fimbriiglobus ruber* gen. nov., sp. nov., a *Gemmata*-like planctomycete from *Sphagnum* peat bog and the proposal of *Gemmataceae* fam. nov. *International Journal of Systematic and Evolutionary Microbiology* 67(2), 218–224.
- Kulichevskaya, I. S., Naumoff, D. G., Ivanova, A. A., Rakitin, A. L., & Dedysh, S. N. 2019. Detection of chitinolytic capabilities in the freshwater planctomycete *Planctomicrobium piriforme. Microbiology* 88(4), 423–432.
- Kumar, V., & Chandra, R. 2020. Metagenomics analysis of rhizospheric bacterial communities of *Saccharum arundinaceum* growing on organometallic sludge of sugarcane molasses-based distillery. *3 Biotech* 10(7), 316.
- Kundu, P., Pramanik, A., Dasgupta, A., Mukherjee, S., & Mukherjee, J. 2014. Simultaneous heterotrophic nitrification and aerobic denitrification by *Chryseobacterium* sp. R31 isolated from abattoir wastewater. *BioMed Research International* 2014, 436056.
- Kurmayer, R., Christiansen, G., Holzinger, A., & Rott, E. 2018. Single colony genetic analysis of epilithic stream algae of the genus *Chamaesiphon* spp.

Hydrobiologia 811(1), 61–75.

- Landell, M. F., et al. 2014. *Hannaella pagnoccae* sp. nov., a tremellaceous yeast species isolated from plants and soil. *International Journal of Systematic and Evolutionary Microbiology* 64(6), 1970–1977.
- Laranjo, M., Alexandre, A., & Oliveira, S. 2014. Legume growth-promoting rhizobia: An overview on the *Mesorhizobium* genus. *Microbiological Research* 169(1), 2–17.
- Larkin, J., & Williams, P. M. 1978. Runella slithyformis gen. nov., sp. nov., a curved, nonflexible, pink bacterium. International Journal of Systematic Bacteriology 28(1), 32–36.
- Laungsuwon, R., & Chulalaksananukul, W. 2013. Antioxidant and anticancer activities of freshwater green algae, *Cladophora glomerata* and *Microspora floccosa*, from Nan River in northern Thailand. *Maejo international journal of science and technology* 7, 181–188.
- Laungsuwon, R., & Chulalaksananukul, W. 2014. Chemical composition and antibacterial activity of extracts from freshwater green algae, *Cladophora* glomerata Kützing and Microspora floccosa (Vaucher) Thuret. Journal of BioScience & Biotechnology 3(3), 211–218.
- Lee, T. C., & Liu, C. C. K. 2018. Assessing eutrophication potential of a freshwater lake by relating Its bioproductivity and biodiversity: A case study of Lake Wilson on Central Oahu, Hawaii. *Water* 10(3).
- Lehner, B., Verdin, K. L., & Jarvis, A. 2008. New global hydrography derived from spaceborne elevation data. *Eos, Transactions, American Geophysical Union* 89(10), 93–94.
- Letcher, P., & Powell, M. 2005. Phylogenetic position of *Phlyctochytrium planicorne* (Chytridiales, Chytridiomycota) based on zoospore ultrastructure and partial nuclear LSU rRNA gene sequence analysis. *Nova Hedwigia* 80(1–2), 135–146.
- Levy, A., Conway, J. M., Dangl, J. L., & Woyke, T. 2018. Elucidating bacterial gene functions in the plant microbiome. *Cell Host & Microbe* 24(4), 475–485.
- Li, C., Liu, S., Ma, T., Zheng, M., & Ni, J. 2019a. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. *Chemosphere* 229, 132–141.
- Li, F., et al. 2018. *Mortierella elongata*'s roles in organic agriculture and crop growth promotion in a mineral soil. *Land Degradation & Development* 29(6), 1642–1651.
- Li, R. Y., & Fang, H. H. P. 2008. Hydrogen production characteristics of photoheterotrophic *Rubrivivax gelatinosus* L31. *International Journal of Hydrogen Energy* 33(3), 974–980.
- Li, T., Guo, F., Lin, Y., Li, Y., & Wu, G. 2019b. Metagenomic analysis of quorum sensing systems in activated sludge and membrane biofilm of a full-scale membrane bioreactor. *Journal of Water Process Engineering* 32, 100952.
- Li, W., & Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22(13), 1658–1659.
- Limtong, S., & Kaewwichian, R. 2015. The diversity of culturable yeasts in the phylloplane of rice in Thailand. *Annals of Microbiology* 65(2), 667–675.
- Liu, B., Mao, Y., Bergaust, L., Bakken, L. R., & Frostegard, A. 2013. Strains in the genus *Thauera* exhibit remarkably different denitrification regulatory

phenotypes. *Environmental Microbiology* 15(10), 2816–2828.

- Liu, J., et al. 2012. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium *Sideroxydans lithotrophicus* ES-1. *Frontiers in Microbiology* 3.
- Longcore, J. E. 1995. Morphology and zoospore ultrastructure of *Entophlyctis luteolus* sp. nov. (Chytridiales): Implications for chytrid taxonomy. *Mycologia* 87(1), 25–33.
- Lu, J. H., Chen, C., Huang, C., & Lee, D. J. 2020. Glucose fermentation with biocharamended consortium: microbial consortium shift. *Bioengineered* 11(1), 272–280.
- Ma, L.-J., et al. 2013. *Fusarium* pathogenomics. *Annual Review of Microbiology* 67, 399–416.
- Machouart, M., Samerpitak, K., Hoog, S., & Gueidan, C. 2014. A multigene phylogeny reveals that *Ochroconis* belongs to the family Sympoventuriaceae (Venturiales, Dothideomycetes). *Fungal Diversity* 65(1), 77–88.
- Mande, S. S., Mohammed, M. H., & Ghosh, T. S. 2012. Classification of metagenomic sequences: methods and challenges. *Briefings in Bioinformatics* 13(6), 669–681.
- Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M., & Gleason, F. H. 2011. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. *Hydrobiologia* 659(1), 93–109.
- Martineau, C., Mauffrey, F., & Villemur, R. 2015. Comparative analysis of denitrifying activities of *Hyphomicrobium nitrativorans*, *Hyphomicrobium denitrificans*, and *Hyphomicrobium zavarzinii*. *Applied and Environmental Microbiology* 81(15), 5003–5014.
- Masuda, H., Shiwa, Y., Yoshikawa, H., & Zylstra, G. J. 2014. Draft genome sequence of the versatile alkane-degrading bacterium *Aquabacterium* sp. strain NJ1. *Genome Announcements* 2(6), e01271-01214.
- Masuda, Y., et al. 2020. Diazotrophic ability of *Anaeromyxobacter* isolated from soils. *Applied and Environmental Microbiology* 86(16), e00956-00920.
- Matthews, R. 2016. Freshwater algae in Northwest Washington, Volume I. Cyanobacteria. Bellingham: Institute for Watershed Studies, Huxley College of the Environment, Western Washington University.
- Matthies, C., Evers, S., Ludwig, W., & Schink, B. 2000. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. International Journal of Systematic and Evolutionary Microbiology 50(4), 1591–1594.
- McIlroy, S. J., et al. 2016. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. *Environmental Microbiology* 18(1), 50–64.
- Mechichi, T., Stackebrandt, E., Gad'on, N., & Fuchs, G. 2002. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of *Thauera phenylacetica* sp. nov., *Thauera aminoaromatica* sp. nov., and *Azoarcus buckelii* sp. nov. *Archives of Microbiology* 178(1), 26–35.
- Michalak, I., & Messyasz, B. 2021. Concise review of *Cladophora* spp.: macroalgae of commercial interest. *Journal of Applied Phycology* 33(1), 133–166.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. 2012. The CIPRES science gateway:

*enabling high-impact science for phylogenetics researchers with limited resources.* Paper presented at the Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond, Chicago, Illinois, USA.

- Möller, B., Oßmer, R., Howard, B. H., Gottschalk, G., & Hippe, H. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Archives of Microbiology 139(4), 388–396.
- Munir, M., Qureshi, R., Bibi, M., & Khan, A. M. 2019. Pharmaceutical aptitude of *Cladophora*: A comprehensive review. *Algal Research* 39, 101476.
- Muwawa, E. M., Obieze, C. C., Makonde, H. M., Jefwa, J. M., Kahindi, J. H. P., & Khasa, D. P. 2021. 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. *PLoS One* 16(3), e0248485.
- Nilsson, R. H., et al. 2015. A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. *Microbes and Environments* 30(2), 145–150.
- Nilsson, R. H., et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. *Nucleic Acids Research* 47(D1), D259–D264.
- North, N. N., Dollhopf, S. L., Petrie, L., Istok, J. D., Balkwill, D. L., & Kostka, J. E. 2004. Change in bacterial community structure during *in situ* biostimulation of subsurface sediment cocontaminated with uranium and nitrate. *Applied and Environmental Microbiology* 70(8), 4911–4920.
- Nusit, K., Tantanee, S., Subsomboon, K., Leungvichcharoen, S., & Yiemwattana, S. 2019. The design of flood protection along Nan river, Phitsanulok Province, Thailand. *Geographia Technica* 14, 129–137.
- Oksanen, J., et al. 2020. vegan: Community Ecology Package, R Package Version 2.5– 7. Available from <u>http://CRAN.R-project.org/package=vegan</u> [15 March, 2021]
- Olapade, O. A., Depas, M. M., Jensen, E. T., & McLellan, S. L. 2006. Microbial communities and fecal indicator bacteria associated with *Cladophora* mats on beach sites along Lake Michigan shores. *Applied and Environmental Microbiology* 72(3), 1932–1938.
- Olson, K. R., & Kreznor, W. 2021. Managing the Chao Phraya River and delta in Bangkok, Thailand: flood control, navigation and land subsidence mitigation. *Open Journal of Soil Science* 11(04), 197.
- Ozimek, E., & Hanaka, A. 2021. *Mortierella* species as the plant growth-promoting fungi present in the agricultural soils. *Agriculture* 11(1), 7.
- Padhi, S. K., Tripathy, S., Sen, R., Mahapatra, A. S., Mohanty, S., & Maiti, N. K. 2013. Characterisation of heterotrophic nitrifying and aerobic denitrifying *Klebsiella pneumoniae* CF-S9 strain for bioremediation of wastewater. *International Biodeterioration & Biodegradation* 78, 67–73.
- Park, D., Kim, H., & Yoon, S. 2017. Nitrous oxide reduction by an obligate aerobic bacterium, *Gemmatimonas aurantiaca* strain T-27. *Applied and Environmental Microbiology* 83(12), e00502-00517.
- Pascual, J., Wust, P. K., Geppert, A., Foesel, B. U., Huber, K. J., & Overmann, J. 2015. Novel isolates double the number of chemotrophic species and allow the first

description of higher taxa in *Acidobacteria* subdivision 4. *Systematic and Applied Microbiology* 38(8), 534–544.

- Peerapornpisal, Y., et al. 2005. Potential of freshwater macroalgae as food and medicine. *Final report submitted to Thailand Research Fund (TRF)*.
- Peerapornpisal, Y., Amornledpison, D., Rujjanawate, C., Ruangrit, K., & Kanjanapothi, D. 2006. Two endemic species of macroalgae in Nan river, northern Thailand, as therapeutic agents. *ScienceAsia* 32, 71–76.
- Peng, H., Zhang, Q., Tan, B., Li, M., Zhang, W., & Feng, J. 2021. A metagenomic view of how different carbon sources enhance the aniline and simultaneous nitrogen removal capacities in the aniline degradation system. *Bioresource Technology* 335, 125277.
- Pereira, P. T., de Carvalho, M. M., Girio, F. M., Roseiro, J. C., & Amaral-Collaco, M. T. 2002. Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. *Journal of Basic Microbiology* 42(6), 396–407.
- Persmark, L., Marban-Mendoza, N., & Jansson, H.-B. 1995. Nematophagous fungi from agricultural soils of Central America. *Nematropica* 25(2), 117–124.
- Podlesnaya, G., et al. 2020. Diversity of nitrifying bacteria in microbial communities from water and epilithic biofilms of the Lake Baikal littoral zone. *Limnology and Freshwater Biology* 3(4), 1008–1010.
- Prazukin, A. V., Anufriieva, E. V., & Shadrin, N. V. 2020. Is biomass of filamentous green algae *Cladophora* spp. (Chlorophyta, Ulvophyceae) an unlimited cheap and valuable resource for medicine and pharmacology? A review. *Reviews in Aquaculture* 12(4), 2493–2510.
- Prescott, G. W. 1964. *How to know the fresh-water algae; an illustrated key for identifying the more common fresh-water algae to genus, with hundreds of species named and pictured and with numerous aids for their study.* Dubuque: William C. Brown Company.
- Pruesse, E., Peplies, J., & Glöckner, F. O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. *Bioinformatics* 28(14), 1823–1829.
- Qi, W., et al. 2020. Denitrification performance and microbial communities of solidphase denitrifying reactors using poly (butylene succinate)/bamboo powder composite. *Bioresource Technology* 305, 123033.
- Qiao, Z., et al. 2020. Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. *Environmental Research* 191, 110069.
- Quast, C., et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research* 41(Database issue), D590–D596.
- Que, Y., et al. 2014. Genome sequencing of *Sporisorium scitamineum* provides insights into the pathogenic mechanisms of sugarcane smut. *BMC Genomics* 15(1), 996.
- R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from <u>https://www.R-project.org/</u>
- Rambaut, A. 2018. FigTree v. 1.4.4. Available from <u>http://tree.bio.ed.ac.uk/software/figtree/</u>
- Rameshkumar, N., Lang, E., & Tanaka, N. 2016. Description of Vogesella oryzae sp.

nov., isolated from the rhizosphere of saline tolerant pokkali rice. *Systematic and Applied Microbiology* 39(1), 20–24.

- Ranjan, R., Rani, A., Metwally, A., McGee, H. S., & Perkins, D. L. 2016. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. *Biochemical and Biophysical Research Communications* 469(4), 967–977.
- Raux, E., Lanois, A., Warren, M. J., Rambach, A., & Thermes, C. 1998. Cobalamin (vitamin B₁₂) biosynthesis: identification and characterization of a *Bacillus megaterium cobI* operon. *The Biochemical journal* 335(1), 159–166.
- Ravachol, J., et al. 2016. Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium *Ruminiclostridium cellulolyticum*. *Scientific Reports* 6(1), 22770.
- Ravin, N. V., et al. 2018. Genome analysis of *Fimbriiglobus ruber* SP5^T, a planctomycete with confirmed chitinolytic capability. *Applied and Environmental Microbiology* 84(7), e02645-02617.
- Reisert, P. S., & Fuller, M. S. 1962. Decomposition of chitin by *Chytriomyces* species. *Mycologia* 54(6), 647–657.
- Ridge, J. P., Lin, M., Larsen, E. I., Fegan, M., McEwan, A. G., & Sly, L. I. 2007. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in *Pedomicrobium* sp. ACM 3067. *Environmental Microbiology* 9(4), 944–953.
- Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. 2004. Metagenomics: genomic analysis of microbial communities. *Annual Review of Genetics* 38(1), 525–552.
- Rivas, R., et al. 2002. A new species of *Devosia* that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume *Neptunia natans* (L.f.) druce. *Applied and Environmental Microbiology* 68(11), 5217–5222.
- Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. 2016. VSEARCH: a versatile open source tool for metagenomics. *Peerj* 4, e2584.
- Ronquist, F., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61(3), 539–542.
- Roper, J. M., et al. 2000. The enigma of cobalamin (vitamin B₁₂) biosynthesis in *Porphyromonas gingivalis*: Identification and characterization of a functional corrin pathway. *Journal of Biological Chemistry* 275(51), 40316–40323.
- Rungjindamai, N., Sakayaroj, J., Plaingam, N., Somrithipol, S., & Jones, E. B. 2008. Putative basidiomycete teleomorphs and phylogenetic placement of the coelomycete genera: *Chaetospermum*, *Giulia* and *Mycotribulus* based on nurDNA sequences. *Mycological Research* 112(7), 802–810.
- Salinero, K. K., et al. 2009. Metabolic analysis of the soil microbe *Dechloromonas aromatica* str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. *BMC Genomics* 10(1), 351.
- Satjarak, A., Piapukiew, J., Chanthapatchot, W., Ruen-Pham, K., & Vangnai, A. S.
   2021. Herbicide atrazine alters the microbiota of the filamentous green alga *Cladophora* sp. cultured from Thailand. *Sains Malaysiana* 50(5), 1255–1265.
- Schlesner, H., Bartels, C., Sittig, M., Dorsch, M., & Stackebrandt, E. 1990. Taxonomic and phylogenetic studies on a new taxon of budding, hyphal *Proteobacteria*, *Hirschia baltica* gen. nov., sp. nov. *International Journal of Systematic and Evolutionary Microbiology* 40(4), 443–451.

- Sert, H. B., Sumbul, H., & Sterflinger, K. 2007. A new species of *Capnobotryella* from monument surfaces. *Mycological Research* 111(10), 1235–1241.
- Setchell, W. A., & Gardner, N. L. 1920. *The marine algae of the Pacific coast of North America. Part II. Chlorophyceae* (Vol. 8): University of California Press.
- Seviour, R. J., Mino, T., & Onuki, M. 2003. The microbiology of biological phosphorus removal in activated sludge systems. *FEMS Microbiology Reviews* 27(1), 99– 127.
- Sharpton, T. J. 2014. An introduction to the analysis of shotgun metagenomic data. *Frontiers in Plant Science* 5.
- Sherwood, A. R., & Presting, G. G. 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. *Journal of Phycology* 43(3), 605–608.
- Sheu, S. Y., Huang, H. W., Young, C. C., & Chen, W. M. 2015. *Rhizobium alvei* sp. nov., isolated from a freshwater river. *International Journal of Systematic and Evolutionary Microbiology* 65(2), 472–478.
- Shin, W., Boo, S. M., & Longcore, J. 2001. Entophlyctis apiculata, a chytrid parasite of Chlamydomonas sp. (Chlorophyceae). Canadian Journal of Botany 79(9), 1083– 1089.
- Shu, D., He, Y., Yue, H., Zhu, L., & Wang, Q. 2015. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process. *Bioresource Technology* 196, 621– 633.
- Song, N., Cai, H.-Y., Yan, Z.-S., & Jiang, H.-L. 2013. Cellulose degradation by one mesophilic strain *Caulobacter* sp. FMC1 under both aerobic and anaerobic conditions. *Bioresource Technology* 131, 281–287.
- Song, Y., et al. 2006. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. International Journal of Systematic and Evolutionary Microbiology 56(8), 1985–1990.
- Spatharis, S., Roelke, D. L., Dimitrakopoulos, P. G., & Kokkoris, G. D. 2011. Analyzing the (mis)behavior of Shannon index in eutrophication studies using field and simulated phytoplankton assemblages. *Ecological Indicators* 11(2), 697–703.
- Srimaroeng, C., et al. 2015. Antidiabetic and renoprotective effects of *Cladophora glomerata* Kützing extract in experimental type 2 diabetic rats: a potential nutraceutical product for diabetic nephropathy. *Journal of Diabetes Research* 2015, 320167.
- Srisuk, N., Nutaratat, P., Surussawadee, J., & Limtong, S. 2019. Yeast communities in sugarcane phylloplane. *Microbiology* 88(3), 353–369.
- Stams, A. J. M., & Hansen, T. A. 1984. Fermentation of glutamate and other compounds by *Acidaminobacter hydrogenoformans* gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. *Archives of Microbiology* 137(4), 329–337.
- Starr, M. P., & Baigent, N. L. 1966. Parasitic interaction of *Bdellovibrio bacteriovorus* with other bacteria. *Journal of Bacteriology* 91(5), 2006–2017.
- Strömpl, C. 2015. Anaeromusa. In Bergey's Manual of Systematics of Archaea and Bacteria pp. 1–2.

- Su, X. L., et al. 2014. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family *Rikenellaceae* isolated from a reed swamp. *International Journal of Systematic and Evolutionary Microbiology* 64(9), 2986–2991.
- Suanmali, W., Moonmaun, S., & Phoomyai, P. 2017. Efficiency of antioxidant compounds from macro edible algae. *Journal of Energy and Power Engineering* 11.
- Suetrong, S., Rungjindamai, N., Sommai, S., Rung-Areerate, P., Somrithipol, S., & Jones, E. 2014. *Wiesneriomyces* a new lineage of Dothideomycetes (Ascomycota) basal to Tubeufiales. *Phytotaxa* 176(1), 283.
- Sun, W., et al. 2018. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. *Environmental Science & Technology* 52(22), 13370–13380.
- Sun, Y. T., et al. 2019. Vallitalea okinawensis sp. nov., isolated from Okinawa Trough sediment and emended description of the genus Vallitalea. International Journal of Systematic and Evolutionary Microbiology 69(2), 404–410.
- Surayot, U., Hun Lee, J., Kanongnuch, C., Peerapornpisal, Y., Park, W., & You, S. 2016. Structural characterization of sulfated arabinans extracted from *Cladophora glomerata* Kützing and their macrophage activation. *Bioscience*, *Biotechnology, and Biochemistry* 80(5), 972–982.
- Takeda, K. 1988. Characteristics of a nitrogen-fixing methanotroph, *Methylocystis* T-1. *Antonie Van Leeuwenhoek* 54(6), 521–534.
- Takeuchi, M., Hamana, K., & Hiraishi, A. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology 51(4), 1405–1417.
- Tamaki, H., et al. 2011. Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. International Journal of Systematic and Evolutionary Microbiology 61(6), 1442–1447.
- Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. 2016. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology 66(8), 2813–2818.
- Tanikawa, D., Nakamura, Y., Tokuzawa, H., Hirakata, Y., Hatamoto, M., & Yamaguchi, T. 2018. Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification-denitrification using a downflow hanging sponge reactor. *International Biodeterioration & Biodegradation* 132, 268–273.
- Tarhriz, V., et al. 2019. Emended description of the genus *Tabrizicola* and the species *Tabrizicola aquatica* as aerobic anoxygenic phototrophic bacteria. *Antonie van Leeuwenhoek* 112(8), 1169–1175.
- Taulé, C., Castillo, A., Villar, S., Olivares, F., & Battistoni, F. 2016. Endophytic colonization of sugarcane (*Saccharum officinarum*) by the novel diazotrophs *Shinella* sp. UYSO24 and *Enterobacter* sp. UYSO10. *Plant and Soil* 403(1), 403–418.

- Taylor, J., & Parkes, R. J. 1983. The cellular fatty acids of the sulphate-reducing bacteria, *Desulfobacter* sp., *Desulfobulbus* sp. and *Desulfovibrio desulfuricans*. *Journal of General Microbiology* 129(11), 3303–3309.
- Tekedar, H. C., Karsi, A., Reddy, J. S., Nho, S. W., Kalindamar, S., & Lawrence, M. L. 2017. Comparative genomics and transcriptional analysis of *Flavobacterium columnare* strain ATCC 49512. *Frontiers in Microbiology* 8, 588.
- Thiamdao, S., Boo, G. H., Boo, S. M., & Peerapornpisal, Y. 2012. Diversity of edible *Cladophora* (Cladophorales, Chlorophyta) in Northern and Northeastern Thailand, based on morphology and nuclear ribosomal DNA sequences. *Chiang Mai Journal of Science* 39(2), 300–310.
- Tian, M., et al. 2015. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. *Journal of Environmental Sciences* 35, 181–190.
- Trisurat, Y., Shirakawa, H., & Johnston, J. M. 2019. Land-use/land-cover change from socio-economic drivers and their impact on biodiversity in Nan Province, Thailand. *Sustainability* 11(3), 649.
- Tsutsui, I., et al. 2015. Ecological and morphological profile of floating spherical *Cladophora socialis* aggregations in central Thailand. *PLoS One* 10(4), e0124997.
- van den Hoek, C. 1963. *Revision of the European species of Cladophora*. Leiden: E.J. Brill.
- van den Hoek, C. 1979. The phytogeography of *Cladophora* (Chlorophyceae) in the Northern Atlantic Ocean, in comparison to that of other benthic algal species. *Helgoländer wissenschaftliche Meeresuntersuchungen* 32(3), 374–393.
- Vancanneyt, M., et al. 2006. *Larkinella insperata* gen. nov., sp. nov., a bacterium of the phylum '*Bacteroidetes*' isolated from water of a steam generator. *International Journal of Systematic and Evolutionary Microbiology* 56(1), 237–241.
- Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K., & Holmes, B. 1994. New perspectives in the classification of the flavobacteria: description of *Chryseobacterium* gen. nov., *Bergeyella* gen. nov., and *Empedobacter* nom. rev. *International Journal of Systematic Bacteriology* 44(4), 827–831.
- Vanden Heuvel, A., et al. 2010. The green alga, *Cladophora*, promotes *Escherichia coli* growth and contamination of recreational waters in Lake Michigan. *Journal of Environmental Quality* 39(1), 333–344.
- Varnaitė, R., Raudonienė, V., & Bridžiuvienė, D. 2011. Enzymatic biodegradation of lignin-cellulose complex in plant origin material. *Materials Science* 17(1), 99–103.
- Vedler, E., et al. 2013. *Limnobacter* spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes. *Systematic and Applied Microbiology* 36(8), 525–532.
- Verhougstraete, M. P., Byappanahalli, M. N., Rose, J. B., & Whitman, R. L. 2010. *Cladophora* in the Great Lakes: impacts on beach water quality and human health. *Water Science and Technology* 62(1), 68–76.
- Verma, H., et al. 2020. Comparative genomics of *Sphingopyxis* spp. unravelled functional attributes. *Genomics* 112(2), 1956–1969.
- Vico, P., Iriarte, A., Bonilla, S., & Piccini, C. 2021. Metagenomic analysis of *Raphidiopsis raciborskii* microbiome: beyond the individual. *Biodiversity Data*
Journal 9, e72514.

- Wang, Q.-M., & Bai, F.-Y. 2004. Four new yeast species of the genus *Sporobolomyces* from plant leaves. *FEMS Yeast Research* 4(6), 579–586.
- Watanabe, M., Kojima, H., & Fukui, M. 2020. Aerosticca soli gen. nov., sp. nov., an aerobic gammaproteobacterium isolated from crude oil-contaminated soil. Archives of Microbiology 202(5), 1069–1076.
- Weiner, R. M., Melick, M., apos, Neill, K., & Quintero, E. 2000. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. International Journal of Systematic and Evolutionary Microbiology 50(2), 459–469.
- White, J. F., Morgan-Jones, G., & Morrow, A. C. 1993. Taxonomy, life cycle, reproduction and detection of *Acremonium* endophytes. *Agriculture, Ecosystems & Environment* 44(1), 13–37.
- White, T., et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A. & Gelfand, D. H. (eds.), *PCR protocols: a guide to methods and applications* Vol. 31, pp. 315–322. London: Academic Press Inc.
- Whitton, B. A. 1970. Biology of *Cladophora* in freshwaters. *Water Research* 4(7), 457–476.
- Wickham, H. (2016). ggplot2: elegant graphics for data analysis. doi:10.1007/978-3-319-24277-4
- Woo, H. L., Hazen, T. C., Simmons, B. A., & DeAngelis, K. M. 2014. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. *Systematic and Applied Microbiology* 37(1), 60–67.
- Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. 2013. Alternaria redefined. Studies in Mycology 75, 171–212.
- Wu, Y.-F., et al. 2021. Anaerobic As(III) oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by *Noviherbaspirillum* species. *ACS Earth and Space Chemistry* 5(8), 2115–2123.
- Xie, C. H., & Yokota, A. 2005. Reclassification of Alcaligenes latus strains IAM 12599^T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology 55(6), 2419–2425.
- Xie, G., et al. 2007. Genome sequence of the cellulolytic gliding bacterium *Cytophaga hutchinsonii*. *Applied and Environmental Microbiology* 73(11), 3536–3546.
- Yan, S., et al. 2009. Biogeography and phylogeny of the NOR5/OM60 clade of *Gammaproteobacteria*. *Systematic and Applied Microbiology* 32(2), 124–139.
- Yang, G., & Wang, J. 2019. Changes in microbial community structure during dark fermentative hydrogen production. *International Journal of Hydrogen Energy* 44(47), 25542–25550.
- Yang, H., Huang, J., & Liu, B. 2008. Advances in research of heterotrophic nitrification-aerobic denitrification strain *Paracoccus pantotrophus* ATCC 35512. *Chinese Journal of Applied and Environmental Biology* 14(4), 585–592.
- Yang, L., et al. 2019. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium *Pseudomonas putida* strain NP5. *Bioresource Technology* 285, 121360.

- Yang, X.-P., Wang, S.-M., Zhang, D.-W., & Zhou, L.-X. 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, *Bacillus subtilis* A1. *Bioresource Technology* 102(2), 854–862.
- Yarnpakdee, S., Senphan, T., Wangtueai, S., Jaisan, C., & Nalinanon, S. 2021. Characteristic and antioxidant activity of *Cladophora glomerata* ethanolic extract as affected by prior chlorophyll removal and drying methods. *Journal of Food Processing and Preservation*, e15534.
- Yoon, J., et al. 2008. *Haloferula rosea* gen. nov., sp. nov., *Haloferula harenae* sp. nov., *Haloferula phyci* sp. nov., *Haloferula helveola* sp. nov. and *Haloferula sargassicola* sp. nov., five marine representatives of the family *Verrucomicrobiaceae* within the phylum '*Verrucomicrobia*'. *International Journal of Systematic and Evolutionary Microbiology* 58(11), 2491–2500.
- Yoon, M. H., & Im, W. T. 2007. Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. International Journal of Systematic and Evolutionary Microbiology 57(8), 1834–1839.
- Yu, X., et al. 2019. Rhizobia population was favoured during *in situ* phytoremediation of vanadium-titanium magnetite mine tailings dam using *Pongamia pinnata*. *Environmental Pollution* 255, 113167.
- Yutin, N., & Beja, O. 2005. Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics. *Environmental Microbiology* 7(12), 2027–2033.
- Zhang, L., Hao, S., Wang, Y., Lan, S., Dou, Q., & Peng, Y. 2021. Rapid start-up strategy of partial denitrification and microbially driven mechanism of nitrite accumulation mediated by dissolved organic matter. *Bioresource Technology* 340, 125663.
- Zhang, Q., Ji, F., & Xu, X. 2016. Effects of physicochemical properties of poly-εcaprolactone on nitrate removal efficiency during solid-phase denitrification. *Chemical Engineering Journal* 283, 604–613.
- Zhang, Y., et al. 2014. *Helicascus gallicus* sp. nov., a new freshwater pleosporalean ascomycete from France. *Phytotaxa* 183(3), 183–192.
- Zhao, Y., Jiang, B., Tang, X., & Liu, S. 2019. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. *Science of the Total Environment* 687, 50–60.
- Zhao, Y., Bu, C., Yang, H., Qiao, Z., Ding, S., & Ni, S.-Q. 2020. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China. *Chemosphere* 250, 126195.
- Zhu, H., Zhao, Z. J., Liu, X. D., Song, H. Y., Liu, G. X., & Hu, Z. Y. 2018. Molecular phylogeny and morphological diversity of inland *Cladophora* (Cladophorales, Ulvophyceae) from China. *Phycologia* 57(2), 191–208.
- Zuccaro, A., Summerbell, R., & Mitchell, J. 2004. A new *Acremonium* species associated with *Fucus* spp., and its affinity with a phylogenetically distinct marine *Emericellopsis* clade. *Studies in Mycology* 50, 283–297.
- Zulkifly, S., et al. 2012. The epiphytic microbiota of the globally widespread macroalga *Cladophora glomerata* (Chlorophyta, Cladophorales). *American Journal of Botany* 99(9), 1541–1552.

Zulkifly, S. B., et al. 2013. The Genus *Cladophora* Kützing (Ulvophyceae) as a globally distributed ecological engineer. *Journal of Phycology* 49(1), 1–17.



## VITA

NAME	Karnjana Ruen-Pham
DATE OF BIRTH	6 December 1996
PLACE OF BIRTH	Chonburi, Thailand
INSTITUTIONS ATTENDED HOME ADDRESS	Bachelor of Science Degree field of Botany (2nd Class Honors) Chulalongkorn University 292/36, Ban Chang District, Rayong province, 21130
PUBLICATION	Satjarak, A., Piapukiew, J., Chanthapatchot, W., Ruen-Pham, K., & Vangnai, A. S. 2021. Herbicide atrazine alters the microbiota of the filamentous green alga Cladophora sp. cultured from Thailand. Sains Malaysiana 50(5), 1255–1265. Ruen-Pham, K., Graham, L. E., & Satjarak, A. 2021. Spatial variation of Cladophora epiphytes in the Nan River, Thailand. Plants 10(11), 2266.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University