Investigation of copper and zinc contaminations in bioponic
systems using chicken manure fertilizer

Mr. Satja Aksorn

A Thesis Submittedin Partial Fulfillment of the Requirements
for the Degree of Master of Science in Industrial Toxicology and Risk
Assessment
Department of Environmental Science
FACULTY OF SCIENCE
Chulalongkorn University
Academic Year 2021
Copyright of Chulalongkom University



Y
m3asdeumsduieuvemewauazdingdluszunlule Tind Taeldijoyaln

UIYAIIL ONYT

a a J 1 1 & @ = a % a
nivusiiiudunilsvesmsanmiauvangasiSaaninemaasumniiuda
AR IMegATIMNTTUazMTUsTIiuANUE MAININeITanTauado
AMZINGINEAAT YHNAINTBILINGAY

= =
U3y 2564

4

AvAnsvesginansiuminede



Thesis Title Investigation of copper and zinc contaminations in
bioponic systems using chicken manure fertilizer

By Mr. Satja Aksorn
Field of Study Industrial Toxicology and Risk Assessment
Thesis Advisor Sumeth Wongkiew, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in

Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
SCIENCE
(Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE
Chairman

(Associate Professor NAI'YANAN ARIYAKANON, Ph.D.)

Thesis Advisor

(SUMETH WONGKIEW, Ph.D.)
Examiner

(Professor WANIDA JINSART, Ph.D.)

External Examiner

(Professor THAMMARAT KOOTTATEP, D.Eng.)



[ [

9
Fa9g 9017 : MmIinstdeumsdudlouveimewamazdanzadluszuulule T4
a 4 1 . - . . . .
undla ﬂ”!%'ﬂ gy a a (Investigation of copper and zinc contaminations in
bioponic systems using chicken manure fertilizer) 8.7115nu1van : AT QU
=
NAY)

a < { ks '
szuy luTe Tuindiflusz vui 1915 2 Tominnve udom sFrmwiluuvdasig
) 4 a a =} @ = dy (4 =S
pimsdwmsumsnsyanTavesiy  luagiindleya lnimsdudlounswawazdin e d
919AIHANITNUNIIGUM WM TSV FURaN oA az dIng@iumsus Iaarn  Tag
@ J 3 a {
Sagiszasfvesmsiniiife 1) Uszdumsnlaouziveslulasnu msdaululaswu
a a a J 1A a
pazmssaauIave s luluszuulu TeTulndaniloya lnnlinsiAune wa anay
danzduay 2) 930900 UHANITNUYDINITIAUNDILAWATTINSTADMIALA UNIITINTN
A a a J A A 1 a [ 9
YOINT YUFUYAUNTIIUTINHBUALANMTIIADIUAININNITUT InAnn Tagly
Inductively coupled plasma-optical emission spectrometry (ICP-OES) Tun1s
a 4 % [ Y ] 3 1
Amsrzianudutuved Tangninne waazdangd ludredanmua HamsAnyINL N
amdsanudnduveslulaswudmsy lettuce Tao TKN oglugae 11.2+0.5 79194
+ 1.8 TAN oglur29 1.1+£0.803 1.5+ 1.8 az NOz oglusie 11.6+4.09914.9+
4.7 faansululasnudedasuay pak choi w1 TKN aglugie 16.3+0.1 53194 +
1.8 TAN aglura9 0.7 £ 0.4 830.9 £ 0.5 1ag NOz oglusie 8.8 +6.8 94 10.1+638
a a o 1 a o w < 1 o { a
vaansululasnudeaas mwdiay mstnsdadlimuimewawazdingd maulu
1 [N J 9 a A 9 1 v o w
floya’lnlidwasoanudaud unazlsz@nsmums g luTasouve sivod1 o d 19y
] o aa '
(p < 0.05) Taganuduvuvemewaazdnzanasanululuuazsinues lettuce og
Tuyae 5.6+0.199 7.2+ 1.0 uaz 64.8+ 13.8 94 89.9 + 2.6 Nadniwsian lansuuaz
pak choi oglug3 1.3+£0.3894.1+ 2.9 uaz 43.3 +1.59119.8 +34.1 fladniuao
Alansy mud ey MImsizianugnguFuins vesuuuIauns duSnuIniy  wuh
IWawuunaiiie Proteobacteria az Planctomycetes innugnaugaiiga awd ey ms
YsiunNMUFSRO FUNMNINMIT VT URAND WAWA LTINTTHIUMI VI TAARN  WUN
[ aA (% d‘ 1 Id' 1 g Y ]
noanadnardIngd@NmszauamdTesdequainedi HQ uaz HI< 1 1e% 1431
nolAmAAMMEsINIIg UM NINMIU3 1anfdn  lettuce uas pak choi minszuulule Ty
a o4 (A v A < vg
undnudlounswawazdinzaniludnuazg vy

a

11791 WHIMNGIQATIHNTTUNGAE DVUOTOUAR oo
- 4
Malsziiunnudes

Umsfnu 2564 A10%0 8. NUSAMINER oo



##6270108623: MAJOR INDUSTRIAL TOXICOLOGY AND RISK
ASSESSMENT
KEYWORDS: Bioaccumulation, Bioponics, Health risk, Heavy metal, Microbial
community
Satja Aksorn : Investigation of copper and zinc contaminations in bioponic
systems usingchicken manure fertilizer. Advisor: SUMETH WONGKIEW,
Ph.D.

The bioponic system is a system that utilizes biological waste as a nutrient-
rich source such as chicken manure fertilizer for plant growth integrated with
aquaponic. Atpresent, chicken manure fertilizer is contaminated with Cuand Zn may
have the potential health effects through vegetable consumption. The objective of this
study was to evaluate nitrogen transformation, nitrogen recovery, and plant growth in
chicken manure-based bioponics at Cu (50-150 mg/kg) and Zn (200-600 mg/kg)
supplementation and investigate the effects of Cu and Zn supplementations on plant
bioaccumulation, root microbial community, and dietary health risk. Cu and Zn
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CHAPTER1
INTRODUCTION
1.1 Background of the study

Bioponics is an emerging technology for conversion of biowaste to vegetable
products using the symbiosis of microbes and plants. Bioponics system is an advanced
version of the hydroponic system (Wongkiew etal., 2021). It requires a small area for
plant growth and can reduce the water problem in agriculture. Bioponics recirculates
and reuses water and nutrients; thus, reducing soil and water pollutions (Wongkiew et
al., 2021). Chicken manure is a high potential biowaste substrate in bioponics as it
contains high nitrogen and phosphorus concentrations and provides high nitrogen use
efficiency. Studies showed that the productivity of plant in bioponics with chicken
manure were comparable to soil agriculture, but higher nutrients was conserved and
utilized by plants in bioponic systems. Key functions of bioponics are organic
degradations of chicken manure, nutrient mineralization, and nitrification, which are
carried outby microbial community in bioponics (Kechasovetal.,2021). Thus, chicken
manure based bioponics can be further used in commercial and fulfill organic indoor

vertical faming and sustainable agricultural method.

However, there are concerns of usingchicken manure in bioponics dueto heavy
metal contaminations in chicken manure, especially copper (Cu) and zinc (Zn). In
commercial chicken farms, Cu and Zn unavoidably contaminate in chicken manure
because Cuand Zn are used as mineral additives in animal feed due to their antibacterial
and growth-stimulating properties to support the growth of the animals. Chicken
manure was found to contaminate with Cu and Zn in ranges of 51.6 to 81.1 mg/kg dry

wt. and 268.2 to 384.2 mg/kg dry wt., respectively (Hejna et al., 2018). Moreover,



chicken manure with high Cu and Zn levels can cause bioaccumulation in the
environment/ ecosystem, leading to intoxication on plant growth and shift in microbial
community. Cu and Zn uptake by human through vegetable consumption (ingestion
route) also contributes significant adverse health effects to human body over a lifetime
(Ahmad etal., 2021). Zn toxicity in plants is directly affects decreased in tissue water
content, photosystem Il efficiency, root and shoot fresh and dry biomass weight, and
decreased plant growth (Kaya et al., 2018) and human body affect at the cellular level,
for example, controlling apoptosis in a variety of cell types and playing a key partin
neuronal death (Plum et al., 2010). Cu toxicity in plants can lead to membrane injury
due to membrane proteins and to an increased peroxidase activity causing reduced plant
biomass and plant growth (Marastoni et al., 2019) and disruptions in the homeostasis
of Cu are associated with tissue damage and several diseases in humans (Gaetke et al.,
2014). As the results, Cu and Zn contaminations in chicken manure used as substrate
in bioponics must be evaluated in terms of effects on plant productivity,
bioaccumulations, and health risk assessments along with the performance in nitrogen

recovery.

Ecotoxicology and health risk assessment have been well integrated in several
study to link toxic compound contamination levels to the ecosystem, which can be
integrate with health risk assessment (e.g., oral exposure). Several studies used
bioconcentrations factor (BCF) and distribution coefficient (K ) to indicate the level of
bioaccumulation of heavy metals in plants and adsorbent (e.g., soil) from polluting
sources, which can be used to predict the average daily intake from consumption and
evaluate in comparison to acceptable dose (e.g., reference dose, RfD). Studies have

investigated heavy metal accumulation in leaf vegetables and associated potential



health risks of vegetable consumption. The bioconcentration factors (BCF) of heavy
metals from soil to vegetables were estimated, and the potential health risks of heavy
metal exposure through consumption (Chang et al., 2014). Moreover, microbial
community reveal the insights on ecology of biological systems and microbial
interactions associated with plant growth, nitrogen transformation, and toxicant
contaminations. The shift of microbial community structure and biomarkers can be the
bioindicator of contaminating source and suggest the shift in specific functions of
biological processes. Studies of the effects of heavy metals on microbial communities
and bioindicators reported heavy metals significantly affected to microbial
communities and bioindicatorswere predict the contamination status of heavy metals
(Li et al., 2020a). However, there is lack of information in microbial community,
bioaccumulation, and health risk assessment of using Cu and Zn contaminated in

chicken manure in bioponics with respect on nitrogen recovery.

1.2 Objectives
1.2.1 Evaluate nitrogen transformation, nitrogen recovery, and plant growth in
chicken manure-based bioponics at Cu (50-150 mg/kg) and Zn (200-600 mg/kQg)

supplementation.

1.2.2 Investigate the effects of Cu and Zn supplementations on plant

bioaccumulation, root microbial community, and dietary health risk.

1.3 Hypotheses

1.3.1 Under low concentrations of Cu and Zn contaminated in the chicken

manure, there will be a high rate of nitrogen uptake by plants. However, high



concentrations of Cu and Zn contaminated in the chicken manure can cause a decrease

in nitrogen uptake by plants.

1.3.2 Plants can accumulate a high amount of Cu and Zn when applied with a

high Cu and Zn concentrations but could cause a negatively effect on plant growth.

1.3.3 Cu and Zn contaminated in chicken manure can cause different human
health risk levels from low to high if operated at different Cu and Zn contamination

levels.

1.4 Scopes of the study

1.4.1 The experiment was conducted using two plant varieties namely romaine

lettuce (Lactuca sativa L. var. longifolia) and pak choi (Brassica rapa var. chinensis).

1.4.2 To prepare Cu and Zn concentrations in chicken manure, this study was
added solutions of Cu and Zn directly to dry chicken manure in the unit of milligram

heavy metal per kilograms of dry chicken manure.

1.4.3 This study was scope at increasing the Cu and Zn concentrations only,
although there are relatively small amounts of other heavy metals. A constant load of
chicken manure of 200 grams per system (8 plants) was added in bioponic system. This
study was conducted using nutrient film technique systems (NFT) bioponics and 35

days of planting including seed germination.

1.5 Problem and significant of study

Recently global warming reached approximately 1.0+0.2 °C above pre-
industrial levels in 2017, increasing at 0.2 °C+0.1 °C per decade that affect climate

change. Climate change may affect the water cycle and plants available water. The



climate with high temperatures (annual mean of 25-35 °C) and low rainfall can affect
nutrient concentration and moisture conditions in the soil that can impact on plant
growth in agricultural food production (Li et al., 2020b). Organics waste recycling is
the recycling of organic materials to a useful product, especially manure to fertilizer
and plant biomass. Organics waste recycling provides a benefit such as nutrient source
or fertilizer e.g., nitrogen and phosphorus that necessary nutrient element for plant
growth in the agricultural food production process and soil amendment and

environmentally friendly (Edenetal., 2017).

Bioponics system can solve the water problem in agriculture because the
bioponic system will be reuse water in the system and the use of organic nutrients
reduces soil and water pollution. Itis one of highly efficient alternative technology for
agricultural food production (Wongkiew etal., 2021). The global situation right now,
thereis an increasingly huge number of livestock farms, especially chicken farms. Most
chicken farms use food additive that is added with essential heavy metals, mostly
consisting of Cu and Zn for raising the growth rate of animals in the process of animal
production (Hejnaetal., 2018). That a reason causes essential heavy metals Cu and Zn
to over contaminate in the animals or chicken manure at high concentrations and can
representatoxic substance andcan completelyenterthe food chain. The essential heavy
metals pollution Cu and Zn at high concentrations contaminate in the chicken manure
can have potential adverse effects and bioaccumulation in plants cause toxicity on the
living organisms in ecological and representa risk on the environment. In this study
conducted a research experiment to investigate the effects of essential heavy metals Cu
and Zn in the chicken manure on plant uptake and plant growth in bioponics. In

addition, this study can classify and indicate the potential ecological risk level of



essential heavy metals contaminated in the chicken manure that applied use to

cultivated plants in bioponic systems.



CHAPTER?2

LITERATURE REVIEW

2.1 Theoretical Backgrounds
2.1.1 Bioponic system

Bioponic system is related to hydroponics and aquaponics but focuses on the
use of completely organic nutrients rather than adding fish and other aquatic creatures
to supplement nutrition (Adriana, 2015). The growing method of organic bioponic has
raise in only less than a decade. Bioponic systems use the same organic inpufts,
processes, and principles as field growers. Organic matter (plant and animal material)
is added to the system to provide nutrition sources for the soil microbiology to flourish
and provide nutrients source to the plant's growth (Fang, 2018). With this method,
bioponic systems can shift from a conventional approach using inorganic fertilizers,
towards a more sustainable way of employing organic fertilizers that are recycled from
organic wastes; and thus, fit better into urban agriculture in pursuit of sustainable

development (Hsieh etal., 2018).

2.1.2 Plants
Romaine lettuce (Lactuca sativa L. var. longifolia) is one of the most valuable
fresh vegetables and is in the top ten most valuable crops. Romaine lettuce is also the
most popular, commercially produced leafy vegetable worldwide. Romaine Lettuce is
the primary ingredient of the increasingly popular, packaged, ready -to-eat salads and
may ingredient other manure (Teng et al., 2019). However, lettuce contains health-
promoting nutrients and biosynthesis of such phytochemicals varies depending on

cultivar, leaf color and growing conditions. Thus, lettuce contains several dietary



minerals important for human health such as iron (Fe), zinc (Zn), calcium (Ca),
phosphorus (P), magnesium (Mg), manganese (Mn), and potassium (K) and other
health-promoting bioactive compounds (Kim et al., 2016). Romaine lettuce
consumptionvegetables maybe one of the mostsignificantsources of trace metal intake
through the diet (Dala-Paula et al., 2018) food contamination generates even greater
concern, especially in vegetables. This vegetable stands out, as it is one of the most
widespread crops in green leaf and presents the possibility of continuous cultivation
throughoutasingle year, alongwith low production costsand low susceptibility (Franca
et al., 2017). Lettuce is typically used to study in bioaccumulations. Lettuce can
bioaccumulate significant amount of heavy metals in their edible parts than other
vegetables, thus potentially provides a sensitive indicator for assessing the risk posed
by soil heavy metals in relation to compliance with food standards (Cavanagh et al.,

2019).

Pak choi (Brassica rapa var. chinensis) is important vegetables grown in Asia
where earliest reports of their use are from the fifth century A.D. These green
vegetables were made known around the world by the efforts of the travelers and
immigrants (Balkaya et al., 2018). Pak choi is very important Brassica vegetable in
East, Northeast, and Southeast Asia (Han et al., 2020). It accounts for 30-40% of the
vegetable production areain Chinaand Taiwan. Pak choihas thick white leaf stemsand
large, spoon-shaped, dark green leaves. Color and size of the stem and leaves vary with
different types of pak choiare consumed in different forms. The plant is being used
mostly forits leavesand leaf stalks (Maetal., 2017). It’s a short growth cycle, low cost,
and rich nutritional value. Pak choi can grow under contaminations of heavy metals

possessing a high capacity for heavy metal accumulation in the edible parts (Li et al.,



2018). Pak choi is well known to be tolerant of heavy metals such as Cd, Cu and Zn. It
accumulates metal ions mainly in the leaves. Due to the high uptake coefficient for
heavy metals, pak choi has been the subject of research on the risks of heavy metals

contaminated soils and hydroponics (Pan etal., 2019).

2.1.3 Heavy metals

Copper (Cu) is one of the regularly utilized heavy metals for different
applications such as food additive animal feeding and one of the most toxic heavy
metals usually found in the environment (Labidi et al., 2016). CuSO, is the most
common form of Cu thatis added to animal feed. It is generally utilized in electronic
chips, batteries, cell phones, semiconductors, water pipes, fertilizer industry, pulp, and
paper industry, fungicides, insecticides, catalysts, and metal processing products
(Vardhan et al., 2019). In recent decades, the economic boom has stimulated the
demand for animal products such as pig and chicken products. It isa common practice
to add minerals such as Cu to animal feeds via mineral additives because of growth-
stimulating (Zhang et al., 2012). Copper is an essential trace element needed for the
human body and well-known micronutrient for plants and animals, but it is toxic if it
exceedsthe limit specified (SudhaRanietal.,2018). Inaddition, swine and poultry and
chicken manure represent the most important sources of Cu pollution contaminated in
environment. This is also linked to the additives used in animal feed in a livestock
industry (Hejna et al., 2018). The higher Cu concentration exposure in the plants the
toxicity of Cu can leads to membrane of plant injury due to the binding of the metal to
the thiol-groups of membrane proteins and to an increased peroxidase activity causing

reduced plant biomass and plant growth (Marastoni etal., 2019).
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Zinc (Zn) is generally uncommon in nature; however, it has a long history of
utilization due to its availability in restricted deposits. Zn is available in various
minerals which include zinc oxide (ZnO), zinc sulfate (ZnS), zinc carbonate (ZnCO3,
zinc silicate (Zn2SiOy etc. (Vardhan et al., 2019). However, ZnO is the most common
form of Zn thatis added to animal feed. Zn is an essential nutrient element for plants
and plays arole in several plant physiological process i.e., photosynthesis, respiration,
and synthesis of protein (Mohammadi and Khoshgoftarmanesh, 2014). In addition, Zn
pollution has become a general global problem. This is also linked to the additives used
in animal feed. The livestock industry contributes to Zn pollution as it is widely used
in animal feed additives and swine and poultry represent the most important sources of
Zn pollution. This is related to the high content of Zn in animal additives, which have
usually resulted in a higher concentration in the manurethat can cause toxicif itexceeds
the limit (Hejna etal., 2018). Higher Zn exposure concentration in the plants induce Zn
toxicity directly affects decreased in tissue water content, photosystem Il efficiency,
root and shoot fresh and dry biomass weight, and decreased plant growth (Kaya et al.,
2018). Zinc has beneficial effects for crops, since this microelement is involved in the
synthesis of tryptophan, a precursor of indole acetic acid (I1AA), responsible for growth
stimulation. The sensitivity to Zn toxicity differed among other crops, being sensitivity
higherin celery > Chinese cabbage >pak choi. But pak choican accumulate high levels

of Zn in their edible parts with negative impact for human health (Fatemi et al., 2020).
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2.2 Cuand Zn contaminated in animal manure and bioaccumulation by plant
Pathogen antimicrobial and growth-stimulating properties, heavy metals,
particularly Cu and Zn, are frequently over-added to animal feeds. Cu and Zn given to
animal feeds can cause Cu and Zn to accumulate and reside in high concentrations in
chicken manure. However, heavy metals such as Cu and Zn concentrations were found
at high concentrations in chicken manure and plant absorption and accumulation in
plant tissues when it was applied as a fertilizer for plant growth in the agriculture
industry (Yazdankhah etal., 2014). The distribution coefficient or partition coefficient
(Ky) is one of the key parameters for assessing the potential migration of a pollutant in
the liquid phase thatis in contactwith sedimentor suspended matter. This tool describes
in quantitative terms the partitioning of a heavy metal’s element or compound between
sediments and the water column. The partition coefficient is the ratio of heavy metals
pollutant concentrations between sediments (animals manure) and water (Gormley-
Gallagher etal., 2015). The ability of egetables to absorb and accumulate heavy metals
from soil, water, and manure fertilizer is known as the bioconcentration factor, which
describes how much heavy metals are absorbed by plants (Cai and Song, 2019). The
translocation factor, which indicates the plant’s ability to translocate the pollutant heavy

metals from the roots to the shoot of the plant (Coakley et al., 2019).
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Table 1 Comparison of Cu and Zn content in chicken manure fertilizer (unit: mg/kg)

Element Range concentration (mg/kg) Reference
Cu 61.66
(Lietal., 2021)
Zn 424.11
Cu 3.55~916
(Yangetal., 2017)
Zn 11.8~3692
Cu 17.9-1726.3
(Wang etal., 2013b)
Zn 73.0-1827.3
Cu 21.83-487.43
(Zhangetal., 2012)
Zn 152.17-1063.32
Cu 225.50 £4.95
(Chen etal., 2015)
Zn 672.00 +8.49
Cu 51.6~81.1
(Hejnaetal., 2018)
Zn 268.2~384.2
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2.3 Nitrogen cycle and nitrogen uptake by plant

The nitrogen cycle is a biogeochemical process through which nitrogen is
converted into many forms, the fate of the nitrogen passing from the atmosphere to the
soil to the organism and back into the atmosphere. The nitrogen cycle that has been
divided into fourth major processes including N fixation,ammonification, nitrification,
and denitrification and microorganisms play an important role in the nitrogen
transformation in the nitrogen cycle (Stein and Klotz, 2016). The first processes are
ammonification is the second step of mineralization by microorganism represents in the
nitrogen transformation process. The organic nitrogen decomposition and is often
referred to as nitrogen mineralization contained in the chicken manure are converted to
ammonium (NH4*) (Hopkinson and Giblin, 2008). The second processes are
nitrification is the oxidation nitrogen transformation process of NH4* to NO, and
NO3 occurs readily in oxic environments through the activity of nitrifying bacteria.
This process is important for nitrogen fertility as nitrate is readily assimilated by plants
uptake (Qianetal., 2016). The fourth processesare denitrification describes the process
of anaerobic respiration of microorganism to transform nitrite (NO; ), nitrate (NO3 ),
nitric oxide (NO), and nitrous oxide (N,O) to nitrogen gas (N,) microorganism that can
directly couple these three reactions with the reduction of nitrate to nitrite and perform
denitrification from NO3 to Njare referred to as classical denitrifiers (Stein and Klotz,
2016). The last processes are nitrogen fixation is the process by which nitrogen is taken
from its molecular form (N;) in the atmosphere and converted into biologically
available forms of nitrogen (nitrogen compound) useful for other biochemical
processes. Fixation can occur through atmospheric (lightning), industrial, or biological

processes (Marino and Howarth, 2014).
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Figure 1 Nitrogen transformation cycle and picture modified from Wongkiew et al.
(2018a)

Nitrogen (N) is a required nutrient for plant growth to complete their life cycles
and is the most important nutrient acquired by roots assimilation. Mainly in the forms
of nitrogen nutrient for plants assimilation is ammonium (NH,*), nitrite (NO, ) and
nitrate (NO3 ). Most forms of nitrogen uptake by plant species are NH,* and NO3
accordingto both nitrogen forms root of the plant can uptake rapidly. In addition, pH
values are important for the root of plants to uptake nutrients. Optimum pH can make

the root of the plant uptake nutrients better (Fengetal., 2020).

2.4 Nitrogen recovery from organic waste recycling in agriculture

@vsthus etal. (2017) studied the effects of nitrogen fertilizer from four waste-
derived including anaerobically digested food waste (AD), shrimp shell (SS), algae
meal (AM) and sheep manure (SM) and organic materials in a cropping sequence of
broccoli, potato and lettuce grown. Effects of different N application rates and residual

effects were tested on crop yield, N uptake, N recovery efficiency (NRE), N balance,
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N content in produce, mineral N in soil, product quality parameters and content of
nitrate in lettuce. Mineral fertilizer (MF) served as control. Results showed that for
crops fertilized with AD and SS were not significantly different from MF at the same
N application rate, while AM, in agreementwith its negative effecton N mineralization,
gave negative or near-neutral effects compared to the control. No residual effect was

detected after the year of application.

Wu etal. (2017) studied nitrogen fertilizer for grain yield and nitrogen recovery
efficiency inadoublerice (OryzasativaL.) in subtropical China. Field plotexperiments
were conducted to evaluate the effects of N fertilizer placement on grain yield and N
recovery efficiency (NRE). Different N application methods included: no N application
(CK), N application (NBP), N deep placement (NDP) and NPK deep placement
(NPKDP). Results showed that grain yield and apparent NRE significantly increased
for NDP and NPKDP as compared to NBP. The experiment indicated that NDP could
maintain a higher N supply in deep soil layers during rice growth. One important
finding was that NDP and NPKDP significantly increased fertilizer NRE but did not
lead to N declined in soil compared to NBP and NPKDP induced rice plants to absorb

more fertilizer N rather than soil N.

2.5 Contamination in manures and bioaccumulation in plants of heavy metals
Zhen et al. (2020) studied heavy metal contamination in protected-field
vegetable production and manure is one of the contamination sources. The experiment

was conducted of three manure treatments (chicken manure: cattle manure = 3:1) with

high (HMAR), medium (MMAR) and low (LMAR) applications to evaluate the long-

term risks of heavy metal pollution. Results showed that high manure application rates
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significantly increased the total concentrations of soil Cd, Zn, Cr, and Cu rather than
Pb, Ni, or As. The high application rate of manure also increased soil accumulation
rates and available heavy metalsalthough the soil organic matter was increased as well.
Heavy metal accumulationrisk (RAR), Zn, Cu, and Cr under HMAR and Cd and Zn
under MMAR would exceed their soil threshold values and RAR could be a useful

indicator for monitoring the long-term risk of soil heavy metal pollution.

Michalska and Asp (2006) studied plant uptake of heavy metals (Cd and Pb) by
three lettuces (Lactuca sativa L.) in the hydroponic system. The experiment was added
Cd and Pb to the nutrient solution following concentration (0; 0.05 mM Cd; 0.5 mM
Cd; 0.05 mMPb; 0.5 mM Pb; 0.5 mM Cd together with 0.5 mM Pb). Results showed
that fresh and dry leaves and roots of plants were significantly reduced by the presence
at concentration 0.5 mM Cd and 0.5 mM Cd together with 0.5 mM Pb. The higher the
Cd or Pb concentration more Cd and Pb accumulated in the plants. Most of the
accumulated heavy metals were in the roots. Roxette accumulated the least of Pb in the

roots at 0.5mM Pb whereas Pia the least when both Cd and Pb.

Wan et al. (2020) studied heavy metal contamination of agricultural soils can
cause the accumulation of heavy metals in food. A field experiment was carried out to
investigate the effect of the continuous application of chicken or swine manure on the
heavy metals (Pb, Cd, Cr and As) bioavailability, fractionation, and accumulation in
soil and uptake by rice plants. Results showed that chicken or swine manure
significantly reduced the Cd and Pb contents in rice grain with increasing application
rates and the number of years; the exchangeable Cd and Pb fractions, and the Cd and

Pb in the soil were also decreased. The application of chicken or swine manure
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substantially increased the As an accumulation in rice grain. Therefore, livestock
manure can be used as soil amendments to decrease Cd and Pb accumulation in rice

grains.

Wangetal. (2013a) studied about organic fertilizer application contaminated of
Cu and Zn and their different bioavailability change in soil-rice system as affected by
biowaste application. A field experiment was carried out to the accumulation and
availability of Cu and Zn in soil, and their uptake by rice under the application of
chicken manure, pig manure, and sewage sludge. Results showed that after applied
chicken manure, pig manure and sewage sludge application, the soil Cu accumulation
rates were higher Zn accumulation rates Compared to the control, the chicken - and pig
manure treatments significantly decreased the Cu but increased the Zn in soils; thus
decreased the Cu contents in rice grain and increased the grain Zn. The addition of
sewage sludge significantly increased bioavailability of Zn in soil and its accumulation

inrice.

2.6 Health risk assessment of heavy metals through vegetable consumption
Rahmdel et al. (2018) studied heavy metal contamination of vegetables
(spinach, dill, cilantro, and cress) from the production sites of Shiraz Iran and its
outskirts. Examined for lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni),
and cobalt (Co) content. The potential health risks of these metals to residents via the
consumption of leafy vegetables were also estimated. Results showed that mean
concentrations of Pb, Cd, Cu, Zn, Ni, and Co were 3.21,0.28, 4.55, 40.44, 3.11, and
1.86 mg/kg dry weight, respectively. Cu and Zn was dominate high concentration in

leafy of plants at the meanand 97.5 percentile levels. The estimated daily intake (EDI)
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was used to evaluated heavy metals consumptionthrough leafyand all health risk index

(HRI) values were less than the safe limit (< 1) of all heavy metals.

Mahmood and Malik (2014) studiedassociated soil pollution contaminated with
heavy metals due to discharge of untreated urban and industrial wastewater. The
presenting study aimed to determine human health risks associated via food chain
contamination of heavy metals routing from irrigation of urban and industrial
wastewater. Transfer factor (TF), daily intake of metals (DIM) and health risk index
(HRI) were also calculated. Results showed that In food crops grown in wastewater,
the extent of heavy metal concentration was in the order of Cr2+ > Pb2* > Cd?*> Co?
> Ni2* > Cu?*> Zn2* > Mn2*, but Cr2*, Pb2* and Cd?* in vegetables cultivated by
wastewater exceeded the permissible limits, while others especially Cu and Zn was not
exceeded the permissible limitsand HRI was found to be maximum for Spinacia
oleracea (2.42 mg/kg) and Brassica campestris (2.22 mg/kg) cultivated by wastewater.
S. oleracea, B. campestris, Coriandrum sativum posed a severe health risk with respect

to Cd and Mn.

Singh et al. (2010) studied to human health risk assessment by heavy metals
(Cd, Cu, Pb, Zn, Ni and Cr) through the intake of locally grown vegetables, cereal crops
and milk from wastewater irrigated site. Results showed that concentration of heavy
metals in vegetable leafy of Cd, Cu Pb, Zn, Ni and Cr were 7.17, 16.09, 10.01, 73.54,
2.70 and 3.86 mg/kg respectively. For health risk assessment found that Cd, Pb and Ni
concentrations were above the ‘safe’ limits of Indian and WHO/FAO standards, while
other heavy metals were below the permission limit in all the vegetables and cereals.

The higher values of metal pollution index and health risk index indicated heavy metal
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contamination in the wastewater irrigated site that presented a significant threat of
negative impact on human health. Health risk was greater due to higher contribution of
cereals in the diet. The study suggests that wastewater irrigation led to accumulation of

heavy metals in food stuff causing potential health risks to consumers.

Ali et al. (2021) studied to investigation heavy metals concentrations in the
wastewater, soil, and consumed vegetables from the Gadoon Industrial Estate Swabi,
Khyber Pakhtunkhwa Pakistan. Physicochemical parameters such as pH, electrical
conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS) and total
solids (TS) and heavy metals such as Pb, Cr, Cd, Ni, Zn, Cu, Fe, Mn were determined
using Atomic Absorption Spectrophotometer (AAS). Health risks due to the
consumption of vegetables have also been estimated. Results showed that pH and TSS
in wastewater were found to be higher than the permissible limit set by WHO (1996).
Heavy metals concentration in vegetable of Pb, Cr, Cd, Ni, Zn, Cu, Fe, Mn was range
0.70-18.14,0.13-17,0.02-3.64, 0.02—-26.85, 0.04-95.83, 0.05-25.83, 7.42-102.14,
7.03-44.16 mg/kg respectively. Health assessment via consumption of vegetables was
higher level than the permissible limit (HRI > 1) for Pb and Cd, while Cr, Ni, Zn, Cu,
Fe, Mn was lower than the permissible limit children and adults. Based on the findings
of thisstudy, there would be a significantrisk to the consumers of Pb and Cd associated
with consumptions of vegetables. Therefore, strict regulatory control measures are

highly recommended for the safety of vegetables originated from the study area.
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2.7 Human health risk assessment

HAZARD IDENTIFICATION
What health problem are caused by
the pollutant?

I

DOSE-RESPONSE ASSESSMENT| [ EXPOSURE ASSESSMENT

Quantified dose-response curve or How much the people exposure during
reference dose (RfD), NOAEL and BMD a specific time, exposure amount and

exposure route

RISK CHARACTERIZATION
Predicting the likelihood and severity
of health impacts in the population.

Figure 2 A four step of human health risk assessment framework

Source: U.S.EPA (2014)

A human health risk assessment is the process to estimate the nature and
probability of adverse health effects in humans who may be exposed to chemicals in
contaminated environmental media, now or in the future. The health risk assessment
process is typically described as consisting of four basic steps including hazard
identification, doseresponse assessment, exposureassessmentand risk characterization

(U.S.EPA, 2014). These steps are defined below.
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2.7.1 Hazard identification

Hazard identification is the process of identifying the type of hazard to human
health (e.g., cancer, birth defects) posed by the exposure of interest for a given risk
assessment. Hazard identification may be focused on health risks of exposureto specific
individual chemicals or identification of groups of chemicals with common MOAs
(e.g., heavy metals and pesticides). Chemical agents are a subset of all stressors (e.g.,
chemical, biological, social, or physical). In the case of chemical agents, the process
examines the available scientific data specific to individual chemical i.e., material
safety data sheet (SDS) for a given chemical properties, toxicity, and a characterization
of hazard. This step requires identification, evaluation, and synthesis of information to
describe the health effects of individual chemicals or chemical mixtures (U.S.EPA,

2014).

2.7.2 Dose-response assessment

The relationship between a contaminant's exposure or dose and the occurrence
of specific health effects or outcomes is assessed in this component of impacts dose-
response characterization. Dose-response characterization can describe the magnitude
of aresponse e.g., magnitude of 1Q loss. The assessmentalso may includethe derivation
of an established metric, such as EPA’s reference doses (RfD) and reference
concentrations (RfC). Toxicokinetic information also is described; in data-rich
situations, measured or modeled target tissue dose may be used in the dose-response
calculations. In some cases, multiple chemicals may be included in a single dose-
response assessment, with decisions made about the grouping of chemicals, as well as

how the chemicals will be combined e.g., common MOA, common toxic effect,
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estimation of cancer potency factors, specific data for chemical mixtures, likelihood of
simultaneous exposure (U.S.EPA, 2014).

2.7.3 Exposure assessment
Exposure assessment is one of the primary components of risk assessment; it
describes how humans come into contact with hazards substants. The use of exposure
science has been instrumental in forecasting, preventing and mitigating exposures that
lead to adverse human health outcomes (U.S.EPA, 2014). The average daily dose
(ADDyng) oral exposure is the lifetime average daily dose from ingestion exposure
(mg/kg/day) of heavy metals from consumption vegetable (Kim and Han, 2011). The

exposure assessment of human intake can estimate by following Ep1.
ADDjg = (Crmetat X INgR x DW x EF x ED)/AT (1)

where;
ADDyq is the average daily dose (mg/kg-day)

Cmeta 1S the heavy metal concentration (Cu or Zn) in plants of the edible part
(mg/kg)

IngR is the ingestion rate (g/kg-day)

DW is conversion factor dry weight to wet weight of plants

EF is the exposure frequency (365 days/year)

ED is the exposure duration (years)

AT is the average time (365 days/year x ED)
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2.7.4 Risk characterization

Risk characterization is the final step, integrative step of risk assessment. This
step integrates heavy metals exposure assessment and effects assessment into
quantitative and qualitative estimates of risk (U.S.EPA, 2014). The hazard quotient
(HQ) isone of the mostused methods for determiningthe levels of concern for pollutant
exposure of an individual heavy metals. The Hazard index (HI) shows that overall
heavy metals can pose a human health risk (Chonokhuu et al., 2019). However, the HQ
values lower than the permitted limit of 1, indicating that adults and children who
consume heavy metal do not pose a non-carcinogenic risk in human health. Whereas
the HQ and HI values over than the permission limitof 1, indicates the potential of non-
carcinogenic to health impact of individual heavy metals may affected to the human
health. The HQ and HI values can estimate by following below Eq 2. And Eq 3.

respectively.

HQ = ADD\,(/RfD  (2)
HI =HQc,+ HQz,  (3)

where;

HQ is the hazard quotient

HQc, is the hazard quotient of Cu

HQz, is the hazard quotient of Zn

ADD)yq is the average daily dose (mg/kg-day)

RfD is the daily reference dose (mg/kg/day) of Cu and Zn
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CHAPTERS3
METHODOLOGY

3.1 Bioponic system setup

Eight chicken manure-based nutrient film technique (NFT) bioponic systems
were operated at the Department of Environmental Science, Faculty of Science,
Chulalongkorn University. Each bioponic system consisted of a water recirculating
tank (volume: 28.3 L), biofilter tank (volume: 24.7 L), and grow bed (length: 1.8 m)
Figure 3. Water in the recirculating tank flowed continuously (600 L/h) to a bioponic
grow bed channel and back to the recirculating tank. Biofilter tank connected to the
water circulating tank for purifying water suitable for plant growth in grow bed. The
biofilter tank also contained a mesh bag of chicken manure (200 g dry wt. of chicken
manure) placed between the layers of the aquarium filter pad, leaching organic and
inorganic nutrients into the water and then flowed to recirculating tank (600 L/h). Eight
plants in each grow bed channel assimilated nutrients from recirculating water and
recovery nutrients for their growth. All bioponic systems were operated for 28 days
after 10 days of seedling. To acclimate microbes and nutrients, each bioponic system
without plants and heavy metal supplementation was operated with 200 g dry wt. of

chicken manure before starting each experimental phase for two weeks.



25

wa)sAs aluodoiqg ayr Jo weibeip uonannsuo) € aanbi4

A._r_\._ Oomv QS\._ Oowv mew_.tm_ﬁ w Omov
(peqmoib6 03)  (3ue}ayyoiq 03) A o.n. v2)
dwnd wnuenby dwnd wnuenby yue} Jayoig

(WD 0S°T X 0E X OF)
(ssoyy 133s94|0d)
ped 13}y wnuenby

Heq yssw wnuenbe ul
alnuew uaIyd L1q

(W2 05T X OE X O)
(ssoyy 133s94|od)

' ped 19}y wnuenby

(4233welp w og"0)
(10€°82)
Jjuel mc_pm_zu.__um._ J91ep\

1 1 D

/syueld 8 ‘W 08'T y18u3)]) paq Mou3 |puueyd 9|3uIsS

(w gz°0 Bupeds [puueyd ‘Puueyd

10Yd Xed 20N119| aulewoy



Reactor of bioponic sy stean
and fabrication setup

Water parameter analyds
{(weekly)
- Heawy metd Cu, Zn

-TEN, TAN, MOy, N~

h 4

Phase I Laciues sativa L. var,
longifalia

Control: no added Cu and Zn

Supplanentation 1: Cu 50: Zn

200 mgfkg

Supplanentation 2: Cu 100:

Zn 400 mgike

Supplementation 3 Cu 150:

Zn 600 mglke

h

V

Phase Il Srassica rape var.
chimensis

Control: o added Cu and Zn
Supplanentation 1. Cu 50: Zn
200 mgfkg
Supplementation 2: Cu 100:
Zn 400 mgike
Supplanentation 3 Cu 150:
Zn 600 mglke

Plant analy g5 (at the end of
experinn ait)
- Heawy metal Cu, Zn

- TEN and %:NUE

- Biomass weight

26

Chicken manure analysis (at
the before and end of
experim ait)

- Heawy metal Cu, Zn

- Dry weight
- TEMN

h' 4

Rdative abundance of
microbial commumity in plant
root analysis (at the end of
experimn eit)

b 4

- Health risk assesanent of
CcOILSIRE

- Nitrogen use efficiency of
plant

- Rdative abundance of
micr obial community

- BCF

-TF

-Ka

W
Statistical analysis data

)

- deling of hiopomc system
and mitrogen uge efficiency
(NUE)

- Cuand Zn concentration level
in bioponics applied with chicken
manure

- Health nisk status of indivi dual
Cu and Zn and overdl, of heavy
metds of consumer

Figure 4 Experimental design and conceptual framework diagram of bioponic

system.

3.2 Experimental design

The experiments were separated into two phases using romaine lettuce (Lactuca

sativa L. var. longifolia) in phase | and pak choi (Brassica rapa var. chinensis) in phase

I1. Raw chicken manure fertilizer was produced and purchased froma local commercial

farm in dry weight form. The nutrient characteristics of the chicken manure fertilizer

was purchased from local farm including organic matter (OM) was 29.8 +2.6% (n =3

) (Walkley and Black Method), total nitrogen (N) was 3.1 £0.2% (n = 3) ( Kjeldahl M

ethod), phosphorus (P,Os) was 7.3 £0.3% (n =3) (Spectrophotometric Molybdovana
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dophosphate Method) and potassium(K,O) was 2.5+ 1.2% (n = 3) (Flame Photometric
Method) respectively. Chicken manure was used in this experiment have a Cu and Zn
contaminated background was 49.3 + 26.3 and 370.5 + 188.6 mg/kg respectively. This
study was conductedatfour Cu (CuSO4+5H,0) and Zn (ZnSO4+7H,0) supplementation
including contaminated background of chicken manure fertilizer, namely (1) Cu: Zn =
0: 0 mg/kg dry wt. (control is background contaminated), (2) Cu: Zn =50: 200 mg/ kg
dry wt., (3) Cu: Zn =100: 400 mg/kg dry wt., and (4) Cu: Zn =150: 600 mg/kg dry wt.
Before chicken manure was added to biofilter tank the Cu and Zn solution was added
to 200 g dry wt. of chicken manure fertilizer in supplementation condition. Then,
chicken manure was oven-dried at 60°C overnight before added 200 g dry wt. in
biofilter tank of each system. The ranges of Cu (50—-150 mg/kg dry wt.) and Zn (200-
600 mg/kg dry wt.) concentrations were selected based on possible concentrations of
Cu and Zn in chicken manure from previous study (Hejna et al., 2018). All experiments

were conducted in duplicate.

3.3 Sampling and preparation

Water samples were collected weekly from the recirculation tanks and filtered
through filter paper Whatman No.42before analyses. For Cu and Zn analyses, the water
samples were preserved by adding concentrated HNO3 to adjust pH level below 2 and
stored at 4 °C. Plants were harvested at the end of each experiment and were separated
into two parts: shoot (whole edible part) and roots. The plant parts were then analyzed
for the total wet weight and dry weight using 70°C for 24 h., respectively (Montiel-
Rozasetal., 2016). Dry chicken manure stock was sampled before each experiment (n
= 3), and digested chicken manure residue in each biofilter was also taken at the end of

each experiment. The manure sampleswere oven-dried for 24 h. at 105 °C. Finally, the
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dry plantroots, shoot, and chickenmanuresamples were groundusinga ceramic mortar
and pass through a 2 mm sieve (Lamine et al., 2019). The homogenized plant and
manure sampleswere stored in zip lock bagsand keptin desiccator atroom temperature

before analyses.

Prior to the analyses for Cu and Zn concentrations, dry plant shoot and roots
and chicken manure were digested. The samples (~ 1 gram per sample) were digested
in digestion vessel using 10 mL concentrated HNOj3 at 95 °C for approximately 2 h
(until the HNO3volume decreased to about 5 mL). Then, 2 mL of deionized water and
5 mL of 30% H,0, were added, and the sampleswere continuously heated until brown
fumes disappeared, and a clear color solution observed. Finally, 5mL of concentrated
HCl and 10 mL of deionized water were added and heated at 95 °C for 15 minutes. The
samples were rested to room temperature and filtered before adjusted to 50 mL for Cu

and Zn analysis (U.S.EPA, 1996).

Because microbial communities in plant roots apparently reflect the shift in
microbial community from pollutant exposure, lettuce and pak choi roots in all
bioponicswere collectedatthe end of the experiment for microbial community analyses
(n = 2). This is to assess the shift in microbial communities in plant roots affected by

exposure to Cu and Zn concentrations.

3.4 Analytical methods
3.4.1 Physical and chemical analysis
pH, temperature, and dissolved oxygen (DO) concentration in bioponic systems
were measured on-site weekly at recirculating tank using the pH meter (Multi 9620

IDS) and DO meter equipped with temperature probe (InoLab® Oxi 7310). Total
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Kjeldahl Nitrogen (TKN), total ammonia nitrogen (TAN), nitrite (NO, ), and nitrate
(NO3 ) in recirculating water were analyzed using titrimetric Kjeldahl (APHA, 2017),
Nessler (Jeong et al., 2013), spectrophotometric (APHA, 2017) and sodium salicylate
(M.1.C. Monteiro, 2003) methods, respectively. TKN contents in plantroots, shoot, and
dry chicken manure were analyzed using acid digestion method (USEPA 3052)
followed by Kjeldahl method (AOAC 955.04D). Moisture contentin plantsamples was
determined based on the standard method (APHA, 2017). Cu and Zn concentrations in
water samples and plant roots, shoot, and dry chicken manure digested samples were
analyzed using inductive coupled plasma-optical emission spectroscopy (ICP-OES,

PlasmaQuant 9100 Elite, Analytik Jena, Germany).

3.4.2 Next-generation sequencing analysis

Bacterial 16S rRNA gene sequencing was used to investigate bacteria commu
nity of plantroots in the bioponics. TIANamp Soil DNA Kit (Tiangen Biotech, China
) was used to extract bacterial rRNA genes from plant roots. In this study, 341F (TCG
TCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) an

d 805R (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGG

GTATCTAATCC) primers (V3 V4 regions) and sparQ HiFi polymerase chain reactio

n (PCR) master mix (Quantabio, USA) were used to amplify the target gene. A
denaturation (94°C, 3 min) followed by a total of 25 cycles of desaturation (98°C, 20
min), annealing (60°C, 30 min), and extension (72°C, 30 min), and a final extension
(72°C, 5 min) were used to amplify bacterial genes (Wongkiew etal., 2021). Following
that, the amplified genes were purified with AMPure XP beads and indexed in a 50-ml

PCR reaction with 5 ml of each Nextera XT index primer and followed by 8—10 cycles
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of the same PCR. The final PCR products were then cleaned, pooled, and diluted to a
concentration of 6 pM for final loading to Illumina MiSeq to generate clusters of
sequences of 250 bp paired-end reads. Bioinformatic analysis for the microbial
community was performed using QIIME 2-2019.10 (Bolyen et al., 2019) with g2-
demux plugin for demultiplex/quality filtering of raw sequences and DADAZ2 (through
g2-dada?2) for denoising (Callahan et al., 2016). The SEPP g2-plugin and sepp-refs-gg-
13-8.qzareference was used to generate a phylogeny (Janssen et al., 2018). The g2-
feature-classifier (Bokulich et al., 2018) and scikit-learn naive Bayes classifier were
used to classify operational taxonomic units (OTUSs) of microbial community against
Greengenes 13_8reference at 99% similarity (McDonald et al., 2012). Using the giime
taxa filter-table command in the g2-taxa plugin, chloroplast DNA sequences were

filtered out.

3.5 Calculations
3.5.1 Nitrogen use efficiency
Nitrogen use efficiency (NUE) was used to evaluate the efficiency of nitrogen
uptake by plants (Dobermann, 2005). Since chicken manure is the main source of

nitrogen for plant growth in the bioponics, NUE was calculated using Ep. 4.

NUE = (Un-Ug)/Fy x 100 (4)
where;
NUE is nitrogen use efficiency (%)
Uy is nitrogen assimilated in whole plants at the end of each experiment (gN)
Uy is nitrogen before the experimentin plant tissues, which was negligible in

this study (gN = 0)



31

Fx is nitrogen released from chicken manure
3.5.2 The bioconcentration factor (BCF), translocation factor (TF), and
distribution coefficient (K)

The bioconcentration factor (BCF) was calculated based on the heavy metal
contents in plant tissues (shoot and roots) per the heavy metal concentrations in
bioponicrecirculatingwater (Taghipourand Jalali, 2019). BCF can be determined using
the slope of Eq. 5.

BCF = Cpiant/Cwater ~ (5)
where;

BCF is the bioconcentration factor
Cplant is the Cu or Zn content in plants tissues (mg/kg)
Cuwater 1S the Cu or Zn concentrations in water (mg/L).

Translocation factor (TF) was calculated as the ratio of the heavy metal
concentration in plant shoot divided by roots. TF values higher than 1 indicate that the
plants effectively translocate metals from the root to shoot (Dinu etal., 2020). TF can

be determined using the slope of Eq. 6.

TF= Cplant/Croot (6)

where;
TF is the translocation factor
Cplant is the Cu or Zn contents in shoot (mg/kg)

Croot IS the Cu or Zn contents in root (mg/kg)
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The distribution coefficient (Ky) was used to evaluate the potential distribution
of heavy metal in chicken manure relative to water (Sedefio-Diaz etal., 2019). Kgcan

be determined using the slope of Eq. 7.
Ka = Cem/Cuater (7
where;
Ky is distribution coefficient

Ccwm is the Cu or Zn contents in chicken manure at the end of experiment

(mg/kg)
Cuwater 1S the Cu or Zn concentrations in bioponic water (mg/L)

3.5.3 Average daily dose of Cu and Zn
The average daily dose (ADD,g) through ingestion route pathway was used to
evaluate human (Weietal., 2020) exposure of Cu and Zn from consuming lettuce and
pak choi grown by bioponics with Cu and Zn contaminations during a time span of ve

getable consumption Eq. 8.
ADDINgG = (Cre X INgR x DW x EF x ED)/AT  (8)
Where;
ADD)yq is the average daily dose (mg/kg-day)
Cmetal 1S the Cu or Zn contents in the edible part of plants (mg/kg)

IngR is the ingestion rate of vegetable (children 8.1 g/lkg-day and adult5.9 g/kg-

day at 95t percentile)
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DW is conversion factor dry weight to wet weight of lettuce (0.050) and pak

choi (0.113)

EF is the exposure frequency (365 days/year)

ED is the exposure duration (10 years for children, and 64 years for adults)
AT is the average time (365 days/year x ED) (U.S.EPA, 2018).

3.5.4 Noncarcinogenic risks assessment

Hazard quotient (HQ) was used to assess long-term non-carcinogenic health risk
from exposure of a heavy metal via ingestion. HQ was calculated using a ratio of
ADDjng of Cu or Zn per a reference dose (RfD) (Eq. 9). The hazard index (HI)
represents the overall potential of non-carcinogenic health risk of total heavy metals
(Eq. 10). This study did not perform carcinogenic health risk assessment because Cu
and Zn were not classified as carcinogen. In this study, only Cu and Zn were detected
and supplemented in the bioponics. Thus, HI was calculated based on Cu and Zn (Wei

etal., 2020).
HQ = ADD;,(/RfD  (9)
HI=HQcy+HQz (10)
where;
HQcy and HQz, are the hazard quotient of Cu and Zn, respectively
HI is the overall of Cu and Zn health risk assessment

RfD is the daily reference dose (mg/kg/day) of Cu and Zn (0.04 and 0.3

mg/kg/day for Cu and Zn, respectively) (Tepanosyan etal., 2018)
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HQ and HI above 1 identify the possible non-carcinogenic health risk from consuming
vegetable during a lifetime of ingestion (10 years for children, and 64 years for adults).
HQ and HI values below 1 suggest no non-carcinogenic health risk from the vegetable

consumption (Njugunaetal., 2019).

3.6 Statistic analysis

Difference of means in a compared group (>2 groups) were analyzed by one-
way ANOVA and ANCOVA for data without covariance and with covariance (e.g,
days of operation), respectively. ANOVA and ANCOVA were followed by Tukey-
Kramer post-hoc test at a significant level of 0.05. Linear regression and Pearson’s
correlation was used to evaluate a slope and significant correlation of two sets of
variables respectively. Minitab software version 19.1 was used for statistical analyses.
Heatmap visualization and biostatistical analyses of the bioponic root microbiota were
performed using Statistical Analysis of Metagenomic Profiles (STAMP) software

version 2.1.3.
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CHAPTER4
RESULTS AND DISCUSSION

4.1 Bioponics performance and nitrogen recovery

The bioponic systems with and without Cu and Zn supplementations showed a
good performance for nutrientmineralizationand transformation. Operating parameters
(DO concentrations, pH levels, and water temperature) were maintained equally in all
bioponic systems andweekly was measured of water in the recirculating tank was found
DO concentrations ranged from 4.35 + 0.4 t0 4.52 + 0.5 mg/L, pH levels ranged from
8.12+0.21t0 8.24 £ 0.2, and water temperatures ranged from 28.3 £1.3t028.9+ 1.7
°C for lettuce grown in phase I. While the experiment in phase I1, pak choi grown was
measured of DO concentrations was found ranged from 4.03 £0.3t0 4.10 £ 0.4 mg/L,
pH levels ranged from 8.11 + 0.1 to 8.24 + 0.2, and water temperatures ranged from
28.1+1.31t029.4+1.3°C. was shownin Table 2 and Table 3 of each phase experiment

respectively.

The pH values in this study are slightly alkaline and might be a direct effect on
nitrogen transformation in the nitrification process of NH4* and NO3z; (plant
assimilation), and heavy metals concentration and uptake by plants was decreased. This
study utilized 200 g dry wt. of chicken manure and nutrient characterization consisting
of high organic matter 29.8 + 2.6 percent, phosphorus (P,Os) 7.3 + 0.3 percent, and
potassium (K,0) 2.5 + 1.2 percent was released, resulting in pH was high (alkaline pH
buffer condition) in bioponics water. However, the focus of this study was on nitrogen
recovery from chicken manure with 200 g dry wt., and phosphorus and potassium in

bioponics water should be measured in future research. It was suggested that 1.0 M
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H,SO, be used to adjust pH values and maintain optimal pH levels (pH 6.0-7.5) for
available nutrients and plants grown in bioponics (Zou etal., 2016). Previous research
study operated bioponics with pH 8.38-8.45 is also negative effect to plant yield
cultivated in bioponic systems (Wongkiew et al., 2021). Because the alkaline condition
might induce a high rate of organic compound precipitation is not good for organic
compounds and inorganic compounds dissolution (ion) into water. Optimal pH levels
condition in bioponics water can enhance capable dissolution of organic and inorganic
compounds including nitrogen use efficiency (NUE) and Cu and Zn absorption and
bioavailable forms (ion) for plant uptake because might increasing capable of ion
exchangeable of plantrootinthe bioponic system (Neina, 2019). Accordingto previous
research, the highest nitrogen use efficiency uptake by plants was 50.9 percent at pH 6,
while 47.3 percent and 44.7 percent at pH 7.5 and pH 9 in aquaponic systems,
respectively (Zou et al., 2016) obtained at acidity condition have the highest
performance organic and inorganic compounds dissolution in water rather than alkaline
condition. However, in statistical analysis of DO concentrations, pH levels, and the
water temperature was notsignificantly differentfrom each other condition at p =0.671,
0.236 and 0.982 for DO concentrations, 0.775,0.940 and 0.000 for pH levels, and
0.828, 0.651 and 0.084 for temperature in phases | and Il respectively. One-way
ANOVA was used to determine the difference of means in a compared group (> 2
groups) for data of parameters without covariance days of operation (e.g., pH, DO, and
temperature), followed by Tukey-Kramer post-test represent statistical differences with
comparisons were made separately within each parameter at a significant level of 0.05.

The result indicates that range of Cu and Zn concentrations in chicken manure at
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loadings of 200 g dry wt. per system did not significantly affect nutrients for plant

growth and NUE during the period time of operation.

Plant biomass yields (g wet wt.) and nitrogen use efficiency of plants in
bioponic system were highest plant biomass and nitrogen use efficiency at control,
while Cu and Zn supplementations at highest supplementation condition were affected
to plant biomass and nitrogen use efficiency of lettuce and pak choi-based bioponics
applied with chicken manure loading 200 g dry wt. as nutrients source was shown in
Figure 5 and Figure 6 respectively. In phase I, lettuce cultivated had the highest edible
biomass yield performance was shown at Cu 50: Zn 200 mg/kg supplementation and
biomass yield was ranged from 144.2 £19.6 to 194.8 £ 22.7 g wet wt. and % NUE was
ranged from 7.3 £3.3 and 13.9 * 3.3 respectively. Pak choi cultivated had the highest
edible biomass yield performance was shown at control condition and biomass yield
was ranged from 163.2 +50.1to 253.8 £ 14.4 g wet wt. and the % NUE of phase Il was

ranged from 35.8 £29.7and 71.2 £ 3.1 was shown in Table 2 and Table 3 respectively.

Lettuce-based bioponics of Cu and Zn concentration in root and shoot highest
was shown at highest (Cu 150: Zn 600 mg/kg) supplementation condition was 20.6 +
2.8 mg/kg and 395.6 +13.9 mg/kg for root, and 7.2 £ 1.0 mg/kg and 89.9 £+ 2.6 mg/kg
for shoot and the highest for %Cu and %Zn uptake of lettuce was 0.7 £ 0.4 and 1.51 +
0.2 respectively. Pak choi cultivated-based bioponic system the average highest
bioconcentration of Cu and Zn concentration in root and shoot was shown at Cu 150:
Zn 600 mg/kg supplementation similarity with phase | was 19.2 + 1.5 mg/kg and 280.4
+17.3mg/kgforroot,and 3.8 £2.6 mg/kgand 119.8 £34.1 mg/kgfor shootand highest

for %Cu and %Zn uptake of pak choi was ranged 1.4 £0.6 and 4.5 + 01.5 respectively,
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Cu and Zn highest accumulated are present in highest supplementation condition (Cu

150: Zn 600 mg/kg) was shown in Table 4 and Table 5 respectively.

However, the DO concentrations in this However, the DO concentrations in this
study two phases cycle of the experiment operated with lower optimal concentrations
were ranged from 4 to 5 mg/L and water temperature was ranged from 28 to 29.4 °C.
The results indicate that DO concentrations were lower than the optimal range for
bioponic system and the optimal was ranged 6 to 7 mg/L. Because at the beginning of
the experiment, chicken manure was added to the bioponics, causing a flow rate of
water turbulence was affected the organic matter released from chicken manure at
highest concentration into bioponics water resulting in decreasing at low DO
concentration in bioponics. Based on the experience of the experiment suggested that
to prevent turbulence of water in bioponic system chicken manure should be added to
a biofilter tank before adding water to bioponics. The operational water temperature
and the ability of solubility of dissolved oxygen together with microbial communities
on roots are respiration to increase during the plant growth process and recirculation
rate in the bioponics obtained affect to the DO concentration to drop (Wongkiew et al,,
2018a). Previous studies have suggested that optimal range recommendation to avoid
anaerobic conditions in the biofilter and rot disease in the plant roots (Wongkiew et al.,
2021). According to the experiment for plant production in bioponics suggested that
should be operated with optimal DO concentration in bioponicsto avoid nitrogen loss
and anaerobic conditions in bioponics, it can affect plants grown in bioponics. It is
suggested that aeration and increasing the flow rate of water in the recirculating tank

be used to enhance the dissolved oxygen in bioponics water.
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Figure 5 Fresh weight of lettuce and pak choi cultivated with different Cu and Zn

supplementation of the bioponics system.
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Figure 6 %NUE of lettuce and pak choi cultivated with different Cu and Zn

supplementation of the bioponics system.
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Table 6 %Nitrogen outputdistribution of lettuce-based bioponic system with 200 g

dry weight of chicken manure.

Phase I: Lettuce-based bioponics

Supplementation
Lettuce (QN)  Nitrogenloss (N)  CMatter (gN)
condition (mg/kg)

Control 0.14+0.032 4.76 +0.032

Cu 50:Zn 200 0.14+0.032 4.76 +0.032
25.7+15

Cu 100: Zn 400 0.11+0.082 4.78+0.082

Cu 150: Zn 600 0.07 £0.032 4.82 +0.032

Values reported as mean + standard deviation ANOVA. The superscripts a represent
statistical differences by Tukey-Kramer post-test (p < 0.05). Comparisons were made

within each column.
Table 7 %Nitrogen output distribution of pak choi-based bioponic system with 200 g

dry weight of chicken manure.

Phase Il: Pak choi-based bioponics

Supplementation
Pak choi (gN)  Nitrogen loss (gN) CMuarter (ON)
condition (mg/kg)

Control 0.71+0.032 4.18+0.032

Cu 50: Zn 200 0.41+0.08¢2 4.48 +0.082
25.7+15

Cu 100: Zn 400 0.42+0.242 4.48 £0.032

Cu 150: Zn 600 0.37+0.292 4.52+0.032

Values reported as mean + standard deviation ANOVA. The superscripts a represent
statistical differences by Tukey-Kramer post-test (p < 0.05). Comparisons were made

within each column.
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(B) Lettuce, Cu 50: Zn 200 mg/kg
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B Remaining in chicken manure

Figure 7 %Nitrogen outputdistribution at different Cu and Zn supplementation (A—

D) of lettuce-based bioponic system.
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(B)  Pak choi, Cu 50: Zn 200 mg/kg

1.35%

14.64%

84.01%

u Plant
m Nitrogen loss
© Remaining in chicken manure

(D) Pak choi, Cu 150: Zn 600 mg/kg

1.22%

14.77%

84.01%
H Plant

m Nitrogen loss
= Remaining in chicken manure

Figure 8 %Nitrogen output distribution at different Cu and Zn supplementation (A—

D) of pak choi-based bioponic system.
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The nutrient characteristics of the chicken manure fertilizer before the
experiment consist of macronutrients is organic matter 29.8 + 2.6%, total nitrogen (N)
3.1 £ 0.2%, phosphorus (P,0s) 7.3 + 0.3% and potassium (K,0) 2.5 £ 1.2%
respectively. Nutrient concentration (nitrogen, phosphorus, and potassium) was high
enough for the plant to require in the growth process, and no symptoms of nutrient
deficiency of lettuce and pak choi growth in bioponics were observed (Wongkiew et
al., 2021). was range from 1589+6.9t019.38+11.2,1.11+0.8t01.48+1.8,0.02+
0.2t100.04+£0.04and 11.59+4.0t0 14.89 £ 4.7 mgN/L, followed by phase Il pak choi-
based bioponics were range from 18.87 +8.5t020.15+11.8,0.70 £0.4t0 0.94 £ 0.5,
0.01+0.01t00.02+0.04 and 8.80 +6.8 to 10.13 + 6.8 mgN/L was shown in Table 2
and Table 3 respectively. The trend nitrogen parameter of TKN, TAN,NO; ,and NOs;
at phases I and 11 of the experiment was shown highest concentration at day zero of the
experiment and then, which continually decreased from the first week (7 days) of
operation until at the end of the experiment in all experimental supplementation
conditions. Because TKN was converted to TAN, NO, , and NOs , plants uptake and
accumulation, nitrogen loss, absorbed by the biofilter, re-absorbed by chicken manure,
and microorganisms in the bioponic system also (Anjana and Igbal, 2007; Farrell et al.,

2014)

The table of %nitrogen output distribution of lettuce and pak choi-based
bioponics was show in Table 6 and Table 7 respectively. In the control, nitrogen
accumulation in plant tissues was higher than the highest Cu 150: Zn 600 mg/kg
supplementation. However, the composition of residue of nitrogen in chicken manure
after the experiment was highest nitrogen accumulation concentration and followed by

nitrogen loss and lowest nitrogen concentration in plant tissues of lettuce and pak choi-
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based bioponics was show in Figure 7 and Figure 8 respectively. The bioaccumulation
of Cuand Zn in lettuce, pak choi and nitrogen concentration in plants tissues was not
significantly different and Cu and Zn supplementation had no effect on nitrogen
concentration in a bioponic system not significantly different at p < 0.05 using
ANCOVA with covariance (days operation). The samples size in this study was taken
to Cu and Zn analysis (n =2), resulting in a large standard deviation and for increasing
accuracy and significantly of statistical analysis should the size sample (n = 3).
Furthermore, the concentration of A previous study of Cu and Zn supplementation was
reported that Cu and Zn can accumulate in plant tissues at a significant level (p <
0.0001) using ANOVA (Ondo J.A, 2012). The nitrogen mass balance of chicken
manure 200 g dry wt. per system of bioponic system was remaining highest
concentration in chicken manure after experiment following with nitrogen loss and
lowest nitrogen concentration in plants tissues of all condition of the experiment in
phases I and Il was shown in Figure 9 - 17 respectively. However, in a previous study
plants uptake heavy metals from soil the relationship between root and soil, but in this
study in the bioponics system the relationship between root and water for heavy metals
uptake. Thus, the chicken manure loading rate of 200 g dry wt. per system could be
optimal level for nitrogen required by plants was enough associate to nitrogen released
concentration from chicken manure fertilizer. This indicates that nitrogen has a low
potential to release and soluble from chicken manure fertilizer to bioponics water but
does not affect the nitrogen necessary for plant growth because the nitrogen
concentration in water is more enough for plant growth and plants have no symptoms

of nitrogen deficiency during the experiment period time (Wongkiew et al., 2021).
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At the beginning time of operation, soluble organic nitrogen compounds could
hydrolyze by heterotrophs organisms into TAN (e.g., proteins in chicken manure are
hydrolyzed). Then, ammonia oxidizing bacteria (AOB) and nitrite oxidizing (NOB)
converted TANto NO, andthenNO, toNO;3; -respectively. The anaerobiccondition
in the bioponic system can release N, and N,O to the atmosphere via the denitrification
process by the denitrification organism. This process has the capability of removing
nitrogen from the bioponic system (Zhu et al., 2013). N,O, is a greenhouse gas, was
one significant contributor to the ozone layer-depleting that causes the global warming
phenomenon (Wu and Mu, 2019). However, there is still a lack of research on N,O loss
via denitrification process from bioponics systems. Previous research study of N,O
emissions from agquaponic systems (similar system with bioponics) resulted found that
total N,O emission in lettuce and pak choi cultivated was 25.1 +2.7 and 22.2 £1.9
mgN/day respectively (Wongkiew et al., 2018Db). It was suggested that the biopoonic
system should be run at the optimal DO concentration along the experiment times to
minimize nitrogen loss from the bioponic system. However, there were no symptoms
of nutritional inadequacy of lettuce and pak choi when nitrogen concentrations
decreased. The nitrogen concentrations in the bioponic systems applied with 200 g dry
wt. of chicken manure were enough for the growth of both plant species. (Wongkiew

etal., 2021).

The nitrogen transformation process is important for transforming organic
nitrogen to NH3*, NO, , and NO3 by nitrifying microbial group, which are available
easy forms for plant assimilation and the dynamic of nitrogen concentration of
bioponics water in this study was assessed as TKN, TAN, NO, , and NO3 . The

dynamic of nitrogen parameter consists of the major forms suchas TKN, TAN, NO; ,
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and NO3; of phase I lettuce, phase Il pak choi cultivated of 5 weeks of period time of
experiment under four supplementation conditions of Cu and Zn was shown in Figure
17 and Figure 18 respectively. These all two phases of the experiment indicate that
TKN was found at high concentration than others because the nitrogen release from
chicken manure into bioponics wateras organic nitrogen degradationform (presented
by TKN in this study), while NO, was found ata low concentration from beginning
to the end of experiment of all experiment Cu and Zn supplementations. This is the
advantage for plants and microorganisms in bioponics because NO, of the plant is
needed at very low concentration assimilation. However, if NO, concentration are
raised too high, this can cause toxicity to plants and microorganisms (Wongkiew et al.,
2017). Inthis study, NOs and TAN were found as the majororganic nitrogen for plant

uptake.

Nitrogen mass balance
Lettuce, control

—— Lettuce 0.2 gN
Chicken manure
200gdrywt. Bioponic system

— -
nitrogen 30.6 gN Nitrogen loss 4.7 gN

= Remaining in chicken
manure 25.7 gN

Figure 9 Nitrogen mass balance of lettuce-based bioponics (phase 1) at control
condition.
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Nitrogen mass balance
Lettuce, Cu 50: Zn 200 mg/kg

—— Lettuce 0.2 gN
Chicken manure
200gdrywt. Bioponic system

—_— N
nitrogen 30.6 gN Nitrogen loss 4.7 gN

= Remaining in chicken
manure 25.7 gN

Figure 10 Nitrogen mass balance of lettuce-based bioponics (phase I) at Cu 50: Zn

200 mg/kg supplementation condition.

Nitrogen mass balance
Lettuce, Cu 100: Zn 400 mg/kg

—— Lettuce 0.1 gN

Chicken manure

200gdrywt. Bioponic system .

Nitrogen 30.6 gN — Nitrogen loss 4.8 gN

—— Remaining in chicken
manure 25.7 gN

Figure 11 Nitrogen mass balance of lettuce-based bioponics (phaseI) at Cu 100: Zn

400 mg/kg supplementation condition.

Nitrogen mass balance
Lettuce, Cu 150: Zn 600 mg/kg

—— Lettuce 0.1 gN

Chicken manure . .
Bioponic system .
200 g dry wt, ————— —> Nitrogen loss 4.8 gN

nitrogen 30.6 gN

—— Remaining in chicken
manure 25.7 gN

Figure 12 Nitrogen mass balance of lettuce-based bioponics (phaseI) at Cu 150: Zn

600 mg/kg supplementation condition.



Chicken manure
200 g dry wt.
nitrogen 30.6 gN

—-

Pak choi, control
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Nitrogen mass balance

Bioponic system

- Pak choi 0.7 gN

—> Nitrogen loss 4.2 gN

—— Remaining in chicken

manure 25.7 gN

Figure 13 Nitrogen mass balance of pak choi-based bioponics (phase Il) at control

condition.

Nitrogen mass balance

Pak choi, Cu 50: Zn 200 mg/kg

Chicken manure
200 g dry wt.
nitrogen 30.6 gN

——-

Bioponic system

— Pak choi 0.4 gN

— Nitrogen loss 4.5 gN

— Remaining in chicken

manure 25.7 gN

Figure 14 Nitrogen mass balance of pak choi-based bioponics (phase Il) at Cu 50: Zn

200 mg/kg supplementation condition.

Nitrogen mass balance

Pak choi, Cu 100: Zn 400 mg/kg

Chicken manure
200 g dry wt.
nitrogen 30.6 gN

—

Bioponic system

——— Pak choi 0.4 gN

— Nitrogen loss 4.5 gN

= Remaining in chicken
manure 25.7 gN

Figure 15 Nitrogen mass balance of pak choi-based bioponics (phase I1) at Cu 100:

Zn 400 mg/kg supplementation condition.
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Nitrogen mass balance
Pak choi, Cu 150: Zn 600 mg/kg

—— Pak choi 0.3 gN

Chicken manure Bioponic system
200 g dry wt. ———————s —> Nitrogen loss 4.6 gN

nitrogen 30.6 gN

= Remaining in chicken
manure 25.7 gN

Figure 16 Nitrogen mass balance of pak choi-based bioponics (phase I1) at Cu 150:

Zn 600 mg/kg supplementation condition.



54

*(Z = u) uoneiAap prepuels Juasaidal sieq

lou3 ‘suoneluaws|ddns uz pue nD e salodoiq paseg-2aNNa| Ul SUOIRIIUSIUOD dleliu pue ‘[lliu ‘NV.L ‘NML Jo solweukq 2T a84nbi4

(s&e(q) uonerado jo sdeq (sAeq) uoneaado jo sfeq

5 8 Iz ¥l L 0 - ~ 8t X4 4 L 0 =
Wec  Sutatmtatainteind Lbt bl DTS NI u 2 0°0 e i it X 2

M m.C -..-.'.-..c. [~ W W W.O ..o.c..’..-. m m-
201 g or_3 _ =z = 0 _ g,
2zt "Meuzi Z2V P
EgsT  (unSw) anu-e “Y B8 £EsT - (pnSw onnmee mmh g
R . ~

EO0E - (yNgw) NyLe 2 g 0¢ (UN3w) NV 1o v B

- =2 = =
gse (T/NSw) 21e01u 9= 0 3 2 NM (/NSw) ajeniu g o |
50 st g g (UNSw) N> L= g

g o (NBw) NI o g 2 oy -
(8y/8w g9 uzZ :0ST nD) NP1 (qQ) (3/3w g uZ :001 ND) NPT (D)

(sAe(q) uoneiado Jo sfe(q (sAeqq) woneiado Jo sie(q

=B 14 I Pl L 0 - o 8 17 vl L 0 =
200 g=————@————8—————b=———g () 7 2 00 "|||||o.||||b|||||o...|||.o 0 m
mmc .....-.’.:-. G M M S0 .-....o...’.-.... S M
_z0T - = =% . 01~ E. &0 -~ ol o
=51 25 gEs1 i
TR ot - SISR: RZ . s 2
Ea 0T= g <32 <’
- g ST “ v g =8 ey =3
2 o¢  (UNBW) ann-e- ST 8 T2 pe (UNSW onm-e st B

2 o¢ (/NBW) NV L-e- 0 2 g e (UNSW) NV L-o- 0c B

= =

m,. ot (/NSw) aenmu g S€ m,. g e (/NBw) 2je1) I g€ =

5 oy (T/NSw) NI o 2oy (UNSw) ML op =

(83/8w 90z uZ :08 nD) 0] (4) (Jonyuoyy) sanpary (v)



55

"(z = u) uoneiAsp prepuels Jussaidal sieq

Jou3 ‘suoneuswsalddns uz pue nJ 1e soluodolq paseg-10y2 Yed ul SUONRAUSIUO0D B1eNIU pUe ‘B1IU ‘NVL ‘NML Jo solweuAq 8T a4nbiq

(seqq) uoneaado jo sfeq (sAe(q) uoneaado jo sfeq
87 1z 14 L 0
- 87 |54 1 L 0 - = =
200 0 ——— o o————20 5 0o Qllll.ho.|l||||ollll|0.||l|.o o7
AR TIESAE LALTTEMRRRRTIIEE A s £ z 50 4\\;*..1!.?! - s B
= - - . = . “. < s
=7 01 - - ., o 2 01 .... o1 I
2 &, . c_)mn -~ E g1 o .V.f...... )M
Eget .+m:mm EN- . S'RE
550t wZ?® ZRT v 0022
Egst 28 Egst 5 g3
m 0'E ("T/NSW) 9)1)U.g= st 2 2 oc (T/NSw) 211100 st 3
= 3 Y = swr P 1
2 ¢ (TN3W) NV L& 0c 2 2 o¢ @wb INVL o £
2 op (T/NSw) Jeniu o e = 2 o (/NBw) aeu e ¢ 2
[=]
2 oy (/NSw) NLL-- o = S op (NSw) N L= w =
(3/8ur pg9 uz :0ST nD) 10Yd yed (a) (@1/8u pop uZ 1001 D) 10yd yed ()
(sAe(q) uoneaado Jo sAeq = (sde@) uope.rado jo sieq
5 s 17 Pl L 0 7 5 8 1 pY L 0 =
wc.o o|||||o.||||.o|||||n.||||6 [ Z 00 ollllu.u..lllltll..nlo.llnl.o 0 w
E S0 ¢.osy. STl A A s a B S0 @ureg = T~ TP s &
S v T S~ o1= B 20 | Sl R - o =
—~ & -~ ‘e, = = ... - B
H hovadl g SO v ags
$g 07 Sz 22507 S Es
—E ST 2 Egst e
m 0€ (/NBw) 3117 1Ug= ST m m 06 (/N3w) 9y 1u-ge sz m
g s (T/NS®W) NVI-e- ot 2 2 s (/NBW) NV Lo € 2
m. 0¥ (NSw) ey - St m. Wv. 0 ("I/NSw) 2jen U SE m
sv (UNFw) N L= or 5 ¢y (INSw) NYLL-® ow o

(83/3w g uz :08 nD) 10yd Mg () (1o1u0)) 1042 yed (v)



56

"(uz pue nQ) [e1aw Aneay pue (_EON pue ‘' 2ON ‘NV.L

‘NM.L) uonenuaduod usboniu ‘(ainesadwsal pue ‘0q ‘Hd) sia1sweled Bunesado o1 10yd Med pue aonns| ay) 4o sdiysuoneley 6T a4nbi4

(“1ea pauieidxa %805) 10d
oo

[Iy]
(o]
[F]
(3]
h
=
|.EIJ

10yd YBg e
aanya

sdnouf

{"Jen paueldxe %,6'Gl) Z22d




57

4.2 Dissolution of Cu and Zn in bioponic system

In the control condition of the experiment (contaminated with Cu and Zn at
background concentration level) because Cu and Zn are regarded as essential elements
that animals require nutrition for growth in commercial livestock (e.g., poultry and
swine). Thus, Cu and Zn are used as mineral additives in animal feed due to their
antibacterial and growth-stimulating properties to support the growth of the animals
(Hejna et al., 2018) causing Cu and Zn unavoidably contaminated in chicken manure.
The result showed that Cu and Zn concentrations in water were higher than those at
control conditionsduring the first week of operation. Trend of the concentrations of Cu
and Zn in water of all experimental supplementation tanks including control, Cu 50: Zn
200,Cu100:Zn 400,and Cu 150: Zn 600 mg/kgduringthe experimentperiod of lettuce
and pak choi-based bioponics was shown in Figure 23 and Figure 24 respectively.
Lettuce and pak choi cultivated was found to uptake and accumulate Cu and Zn in
biomass, which is proportional to the level of Cu and Zn contaminated in chicken
manure and water. Cu and Zn in chicken manure fertilizer can dissolve in bioponics
water in complex (binding with another organic substance e.g., organometallic form)
and anion forms. Thus, plants can adsorb organometallic and anion (biodegradable by
a microbe), and microorganisms (e.g., bioaccumulation) can cause toxicity to plants
and microorganisms in bioponics (Briffa et al., 2020). However, Cu and Zn
supplementation was carried out in this work using CuSO45H,0, and ZnSO4*7H,0, it
does not form complexes has a higher capacity to dissolve in bioponics water in ion

form than organometallic form (Wuana and Okieimen, 2011).

The dissolution of Cu and Zn concentration from chicken manure into water of

lettuce-based bioponics (phase I) at the beginning of the experiment was ranged from
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0.003 to 0.762 mg/L for Cu and 0.037 to 1.955 mg/L for Zn, while pak choi based-
bioponics (phase I1) range from 0.035 to 0.743 mg/L for Cu and 0.177 to 1.355 mg/L
forZn. The highestdissolution was found in the Cu 150: Zn 600 mg/kg supplementation
of all phases that was contaminated with the highest Cu and Zn contents in chicken
manure. Cu and Zn in chicken manure at control (no Cu and Zn added), Cu 50: Zn 200
mg/kg, Cu 100: Zn 400 mg/kg, and Cu 150: Zn 600 mg/kg supplementation conditions
of phases I and Il had no effect on plant biomass weight and growth. This indicates that
the Cu and Zn concentrations in chicken manure of four Cu and Zn supplementations
and plant accumulation in tissues from each Cu and Zn supplementation conditions
were not significantly differentat p <0.05. However, phases | and 11 of the experiment
Cu and Zn concentrations were highest at the first week of operation (week 0), and then
continually decreased in the first week (7 days) to the end of the operation and then
remain or stable at low concentration levels because Cu and Zn concentrations in water
decreased over the operation period because of the plant uptake and heavy metals were

absorb by biofilter/precipitation and re-absorb in chicken manure.

The highest ability of plant uptake and accumulation of Cu and Zn in lettuce-
based bioponics was 0.8% and 1.5%, while pak choi-based bioponics was 0.4% and
4.6% respectively was shown in Table 4 and 5. Pak choi have high ability to uptake and
accumulation Cu and Zn better than lettuce obviously. Cu and Zn dramatically
decreasing and which plants can assimilate/accumulate Cu and Zn in plant tissues,
chicken manure and microbial biofilms in biofilter could adsorb heavy metals. Thus,
which this reason were significantly reduce the Cu and Zn concentration in the water
(Sharifan etal., 2019). In addition, pH value is major factor that affects the capability

of heavy metals dissolution into water. Where slightly acidic condition in boponics can
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increasing the capability of Cu and Zn dissolution into bioponics water. On the other
hand, the average overall pH values in this study were ranged 8.11 to 8.24. The pH in
bioponics water was alkaline values not good for Cu and Zn and which could reduce
the capability of Cu and Zn dissolution into the bioponics water. In alkaline condition
can induce Cu and Zn binding with organic compound and precipitation rather than
dissolution (Jalali and Najafi, 2018). The result from this study indicates that Cu and
Zn contentin chicken manure could be bound in an organic and residual fraction of
chicken manure and microbial biofilm in biofilter when operated the bioponics with
alkaline condition (Wierzbowskaetal.,2018). Thisindicates thatwhen applied chicken
manure fertilizer was contaminated Cu and Zn as a nutrient source of plants production

in bioponics can not affect the health risk of a consumer of plant from bioponics.

The relationship of solubility of heavy metals of metal hydroxide and metal
sulphide at different pH level was shown in Figure 20. Metal hydroxide precipitation is
optimal at pH 8.0-9.5 for Cu and pH 9-9.5 for Zn, while metal sulphide precipitation is
optimal at pH 8 for Cu and pH 10-10.5 for Zn respectively (Nur, 2019). Heavy metals
(Cu and Zn) have a higher potential for solubility at low pH than at high pH. However,
this study was conducted and measurable at approximate pH 8-8.5 in bioponics water
of phases I and Il. This indicatesthat in this study, pH 8-8.5 may completely induce Cu

and Zn precipitation in bioponic system water.
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Figure 20 The solubility of heavy metals (Cu, Zn, Cd, Ag, Pb and Ni) at different pH

Source: Nur (2019)

The table of %Cu and Zn output distribution at different Cu and Zn
supplementation of lettuce and pak choi-based-bioponics was show in Table 8 and
Table 9 respectively. The composition of Cu and Zn distribution was the most
remaining accumulation in chicken manure and water and the lowest Cu and Zn
concentration in plants tissues, but Zn can have a higher potential bioaccumulate in
plant tissues than Cu of lettuce and pak choi-based bioponics was show in Figure 21
and Figure 22 respectively. The heavy metal mass balance of chicken manure 200gdry
wt. persystem and difference Cuand Zn supplementationsof bioponicsystem. Cu mass
balance was shown in Figure 25-32 and Zn mass balance was shown in Figure 33-40
of phases I and Il respectively. The result indicates that Cu and Zn concentration did

not affect nitrogen concentration for plant uptake, but the major factor was affected to
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the nitrogen concentration and nitrogen transformation is temperature, pH levels and
DO concentration (Grzyb et al., 2021) in the water of bioponic system. Suggesting
nitrification process was occurred in bioponic systems. One-way ANCOVA was used
to determine the difference of means in a compared group (> 2 groups) for data of
parameters with covariance days of operation (e.g., TKN, TAN, NO3 , NO; , Cu and
Zn), followed by Tukey-Kramer post-test represent statistical differences with
comparisons were made separately within each parameter at a significant level of 0.05.
Principial component analysis was performed to identify the relationship between Cu
and Zn levels in chicken manure at highest concentration in the experiment (Cu = 0—
150 mg/kg, and Zn = 0-600 mg/kg) and nitrogen parameter concentration. Indicates
that the relationship was positive relation and heavy metals did not cause negative
effects on nitrogen concentration for plant growth and the relationship was shown in

Figure 19.
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(A) Lettuce, Cu control B) Lettuce, Zn control

11.34%

12.77%

15.46%

27.05%
60.18%

73.19%

mWater wPlant mRemaining in chicken manure mWater wmPlant w» Remaining in chicken manure

«©) Lettuce, Cu 50 mg/kg (D) Lettuce, Zn 200 mg/k)

21.67%

37.45%

54.98% 54.16%

24.17%

.58%

mWater =Plant ®=Remaining in chicken manure EWater mPlant » Remaining in chicken manure

(E) Lettuce, Cu 100 mg/kg (F) Lettuce, Zn 400 mg/kg

6.69%

36.58%

29.29%

58.35%

64.02%
5.07%

mWater =Plant ®Remaining in chicken manure mWater ®Plant = Remaining in chicken manure

(G) Lettuce, Cu 150 mg/kg (H) Lettuce, Zn 600 mg/kg

31.31%

45.66%

3.00% 64.79%

21.43%
w Remaining in chicken manure

mWater wmPlant m Remaining in chicken manure mWater wmPlant

Figure 21 %Cu and Zn outputdistribution at different Cu (A, C, Eand G) and Zn (B,

D, F and H) supplementation of lettuce-based bioponic system.
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Figure 22 %Cu and Zn outputdistribution at different Cu (A, C, Eand G) and Zn (B,

D, F and H) supplementation of pak choi-based bioponic system.
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and (B) represent Zn of lettuce-basedbioponics. Error bars represent standard deviation

(n=2).
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Cu mass balance
Lettuce, control

Chicken manure
200 g dry wt, ——
Cu 49.2 mgCwkg

Bioponic system
Cu accumulation

in water 2.7 mgCwkg

Cu precipitated
25.4 mgCu/kg
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—————— Lettuce 3.7 mgCuwkg

= Remaining in chicken
manure 17.4 mgCuwkg

Figure 25 Cu mass balance of lettuce-based bioponics (phase I) at control condition.

Cu mass balance

Lettuce, Cu 50 mg/kg supplementation

Chicken manure
200 g dry wt, ——
Cu 99.2 mgCuw/kg

Bioponic system

Cu accumulation
in water 40.1 mgCuw/kg

Cu precipitated
26.3 mgCu/kg

———————— Lettuce 5.5 mgCu/kg

—— Remaining in chicken
manure 27.3 mgCuw/kg

Figure 26 Cu mass balance of lettuce-based bioponics (phase I) at Cu 50 mg/kg

supplementation condition.

Cu mass balance

Lettuce, Cu 100 mg/kg supplementation

Chicken manure
200 g dry wt, ——
Cu 149.2 mgCu/kg

Bioponic system

Cu accumulation
in water 59.9 mgCu/kg

Cu precipitated
46.6 mgCu/kg

————— Lettuce 5.2 mgCu/kg

= Remaining in chicken
manure 37.5 mgCu/kg

Figure 27 Cu mass balance of lettuce-based bioponics (phase I) at Cu 100 mg/kg

supplementation condition.
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Cu mass balance
Lettuce, Cu 150 mg/kg supplementation

Bioponic system

—_— Lett 5.6 mgCuw/k
Chicken manure ertuce mgl-wke

Cu accumulation
200 g dry wt, ——————— in water 92.3 mgCwkg
Cu 199.2 mgCu/kg Cu precipitated —— Remaining in chicken
56.7 mgCu/kg manure 44.6 mgCuw/kg

Figure 28 Cu mass balance of lettuce-based bioponics (phase I) at Cu 150 mg/kg

supplementation condition.

Cu mass balance
Pak choi, control

Bioponic system

. —————————Pak choi 2.6 mgCuwkg
Chicken manure Cu accumulation

200 g dry wt. ——— in water 31.3 mgCu/kg
Cu 49.2 mgCuw/kg C e .
Cu released from —— Remaining in chicken
bioponics 1.6 mgCwkg manure 16.9 mgCwkg

Figure 29 Cu mass balance of pak choi-based bioponics (phase I1) at control

condition.

Cu mass balance
Pak choi, Cu 50 mg/kg supplementation

Bioponic system

X —Pak choi 3.9 mgCu/kg
Chicken manure

Cu accumulation
200 gdry wt, —————— in water 69.2 mgCwkg

Cu 99.2 mgCu/kg Cu released from —— Remaining in chicken

bioponics 3.2 mgCwkg Manure 29.3 mgCuw/kg

Figure 30 Cu mass balance of pak choi-based bioponics (phase I1) at Cu 50 mg/kg

supplementation condition.
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Pak choi, Cu 100 mg/kg supplementation

Chicken manure
200 g dry wt, ——
Cu 149.2 mgCu/kg

Bioponic system

Cu accumulation
in water 61.0 mgCuw/kg

Cu precipitated
48.8 mgCuw/kg

—Pak choi 4.1 mgCu/kg

= Remaining in chicken
manure 35.3 mgCuwkg

Figure 31 Cu mass balance of pak choi-based bioponics (phase I1) at Cu 100 mg/kg

supplementation condition.

Cu mass balance

Pak choi, Cu 150 mg/kg supplementation

Chicken manure
200 g dry wt, ————

Cu 199.2 mgCuw/kg

Bioponic system

Cu accumulation
in water 134.8 mgCu/kg

Cu precipitated
16.2 mgCwkg

———Pak choi 4.6 mgCuwkg

= Remaining in chicken
manure 43.6 mgCuwkg

Figure 32 Cu mass balance of pak choi-based bioponics (phase I1) at Cu 150 mg/kg

supplementation condition.

Chicken manure
200 g dry wt, ———
Zn 370.5 mgZn/kg

Zn mass balance
Lettuce, control

Bioponic system
Zn accumulation

in water 33.1 mgZn/kg

Zn precipitated
111.4 mgZn/kg

—— ettuce 70.1 mgZn/kg

—— Remaining in chicken
manure 155.9 mgZn/kg

Figure 33 Zn mass balance of lettuce-based bioponics (phase 1) at control condition.
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Zn mass balance
Lettuce, Zn 200 mg/kg supplementation

Bioponic system
—— ettuce 82.1 mgZn/kg

Chicken manure Zn accumulation
200 g dry wt, —————— in water 73.6 mgZn/kg
Zn 570.5 mgZn/kg Zn precipitated ———+ Remaining in chicken
231.0 mgZn/kg manure 183.8 mgZn/kg

Figure 34 Zn mass balance of lettuce-based bioponics (phase I) at Cu 200 mg/kg

supplementation condition.

7Zn mass balance
Lettuce, Zn 400 mg/kg supplementation

Bioponic system

. ————} cttuce 91.2 mgZn/kg
Chicken manure Zn accumulation
200 g dry wt. —————> in water 20.8 mgZn/kg
Zn 770.5 mgZn/k
& & Zn precipitated —— Remaining in chicken

459.3 mgZn/kg manure 199.2 mgZn/kg

Figure 35 Zn mass balance of lettuce-based bioponics (phase I) at Cu 400 mg/kg

supplementation condition.

Zn mass balance
Lettuce, Zn 600 mg/kg supplementation

Bioponic system

. ———f ettuce 97.2 mgZn/kg
Chicken manure Zn accumulation
200 g dry wt. ———> in water 149.2 mgZn/kg

Zn 970.5 mgZn/k
’ i Zn precipitated —— Remaining in chicken

517.2 mgZn/kg manure 206.9 mgZn/kg

Figure 36 Zn mass balance of lettuce-based bioponics (phase I) at Cu 600 mg/kg

supplementation condition.



Chicken manure
200 g dry wt.
Zn 370.5 mgZn/kg

———

Zn mass balance
Pak choi, control

Bioponic system
Zn accumulation
in water 172.0 mgZn/kg

Zn precipitated
57.0 mgZn/kg
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—Pak choi 36.4 mgZn/kg

— Remaining in chicken
manure 105.1 mgZn/kg

Figure 37 Zn mass balance of pak choi-based bioponics (phase 1) at control

condition.

Zn mass balance

Pak choi, Zn 200 mg/kg supplementation

Chicken manure
200 g dry wt.
Zn 570.5 mgZn/kg

—

Bioponic system
Zn accumulation

in water 159.4 mgZn/kg

Zn precipitated
235.4 mgZn/kg

=2k choi 45.8 mgZn/kg

= Remaining in chicken
manure 129.9 mgZn/kg

Figure 38 Zn mass balance of pak choi-based bioponics (phase I1) at Cu 200 mg/kg

supplementation condition.

Zn mass balance
Pak choi, Zn 400 mg/kg supplementation

Bioponic system
. —P - .
Chicken manure ak choi 64.2 mgZn/kg
200 g dry wt.
Zn 770.5 mgZn/kg

Zn accumulation
in water 214.3 mgZn/kg

———

— Remaining in chicken

Zn precipitated
manure 121.0 mgZn/kg

371.0 mgZn/kg

Figure 39 Zn mass balance of pak choi-based bioponics (phase Il) at Cu 400 mg/kg

supplementation condition.
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Zn mass balance
Pak choi, Zn 600 mg/kg supplementation

Bioponic system
—Pak choi 80.1 mgZn/kg

Chicken manure Zn accumulation
200 g dry wt. —————— in water 228.2 mgZn/kg
Zn 970.5 mgZn/kg s .
Zn precipitated — Remaining in chicken
531.9 mgZn/kg manure 130.3 mgZn/kg

Figure 40 Zn mass balance of pak choi-based bioponics (phase I1) at Cu 600 mg/kg

supplementation condition.
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4.3 Bioconcentration factor, translocation factor, and distribution coefficient of

Cu and Zn in bioponics

The bioconcentration factor (BCF) is a measurable indicator of plant contamin
ation that is generally used to evaluate the toxicity and accumulation of heavy metals
transferred from water to plantbiomass (Yanezetal.,2019). The BCF valuesof Cuand
Zn in lettuce root were 28.86 and 199.94 L/kg, while the BCF values in pak choi root
were 24.19 and 386.44 L/kg respectively. BCF in lettuce shoot was 6.69 L/kg for Cu
and 42.61 L/kg for Zn, whereas BCF in pak choi shoot was 10.50 L/kg for Cu and
223.04 L/kg for Zn. The BCF values for Cu and Zn in plant roots and shoot are
presented in Table 10. The BCF values of lettuce and pak choi in roots are higher than
shoot of both heavy metals similar together to the previous study, average BCF values
in rootof Cuand Zn was 5.11 and 6.28 for respectively, and shootwas 1.82 and 11.03
respectively (Wanget al., 2013a) and (Cai and Song, 2019) also reported the BCF of
Zn was 0.297 was higherthan Cuwas 0.059 in plants. Lettuce may have a lowtolerance
to heavy metal accumulation in plant tissues, as well as a low capacity and tolerance to
grow in stressful environments (e.g., heavy metals) (Rascio and Navari-lzzo, 2011)
causing lettuce less ability to uptake heavy metals than pak choi. Pak choi has a high
potential for heavy metal uptake and accumulation in tissue. Furthermore, pak choi has
the ability and tolerance to grow in extreme environmental conditions (Kamran et al.,
2019). Due to pak choi root having a specific diverse microbial community
(rhizobacteria) than lettuce, it is one major factor for enhancing the ability for nutrients
and heavy metals uptake and bioaccumulation in plant biomass. This indicates that the
ability of Cu and Zn of bioaccumulation and transfer from root to shoot of pak choi has

greater potential than lettuce obviously. Thus, Cu and Zn were absorbed by lettuce and
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pak choi and accumulation into shoot with lower Cu and Zn concentrations than roots.
Because Zn was used at a higher concentration than Cu in the experiment, lettuce and
pak choi roots were directly exposed to bioponic water. This resulted in a higher Zn
content in water than Cu, as well as ion exchangeable nutrients and heavy metals in a
bioponic system. Which indicate plants have a migration ability to transfer Cu and Zn
to shoot because Cu and Zn are classified category to be necessary nutrients required

for plant growth also (Kouame Kouame Victor and Yapi Dope Armel Cyrille, 2016).

Translocation factor (TF) is an indicator of a plant's ability to transport heavy
metals from roots to accumulate in shoot (Kharazi etal., 2021). The TF values for each
Cu and Zn of lettuce and pak choi was shown in Table 10. The highest TF was related
to Zn was 0.52 L/kg and Cu 0.42 L/kg in pak choi respectively, while the lowest TF
values was 0.12 L/kg were found for Cu in lettuce cultivated. The result TF was
obtained higher in pak choi than lettuce because pak choi could grow and tolerance in
heavy metal contaminated environments and tend to accumulate high concentration
levels of heavy metals in edible parts compared to lettuce (Gupta et al., 2021). The
mobility transfer of Cu lower than Zn in pak choi and lettuce, and pak choi grown in
different varied four conditions of the experiment have a high ability Zn uptake than

Cu and transfer fromroot to shoot obviously.

The value of the partition coefficients (Ky) is the potential mobility of Cu and
Zn dissolution from chicken manure into the water in the bioponics was shown in Table
10. Ky of Cu and Zn was found in lettuce cultivated was 544.39 L/kgand 452.19 Lkg
respectively, are higher than Cu and Zn in pak choi cultivated was 443.61 L/kg and

263.12 L/kg respectively. In this study result, the Ky for Zn is more released and
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dissolution into the water than Cu. Because Zn is sensitive to fluctuationsand mobility

would increase under high pH conditions more rapidly than Cu (Diatta, 2010).

Table 10 The bioconcentration factor (BCF), translocation factor (TF) of plants and

Kq of distribution coefficients of chicken manure.

Sample BCF in root BCF in shoot TF Kad
Lettuce-Cu 28.86 6.692 0.12 544.39
Lettuce-Zn 199.94 42.61 0.19 452.19
Pak choi-Cu 24.19 10.51 0.43 443.61
Pak choi-Zn 386.44 223.04 0.52 263.12

4.4 Microbial community in plant roots of bioponics and their roles in nitrogen
transformations

High-throughput sequencing was used to analyze the density of the bacterial
community in plant roots samples under all four supplementations with 200 g dry wt.
of chicken manure per system. The relationship of microbial community in plant roots
may promote plant growth for example, enhance nutrient uptake, improve drought
tolerance, assistance in pathogen defense, and even contribute in environmental
remediation for plant growth (Jones et al., 2019). In bioponics plant roots samples,
microbial community play an important role in nutrient degradation and bioavailability
for plant growth, with a diversity of bacterial communities in each sample consists of
the dominant high top 20 phyla with different relative abundance. The bacterial
community relative abundance of all roots samples at the phylum level is shown in

Figure 41. The highestrelative abundances of phylum were found in plantroots samples
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of the bioponics was Planctomycetes ranged from 17.68% to 25.69%. Planctomycetes
are considered to play a significant role in global environmental cycles, contributing to
the carbon, nitrogen, and sulfur cycles. Especially, in anaerobic ammonia oxidation in
the process of convertingammonia and nitrite directly into dinitrogen without the usual
conversion fromnitrite to nitrate and nitrogen gas (Faria et al., 2018). Suggested that
operated bioponics with optimal DO concentration in bioponics was recommended to
prevent nitrogen loss from the bioponic system. One of the dominant bacterial phyla in
root samples of bioponics belongs to Proteobacteria and Firmicutes, the density was
found to ranged from 16.53% to 23.68% and 9.63% to 23.06% respectively. Thus,
Proteobacteria and Firmicutes community in plant root are playing a key role in
organic matter decomposition and nutrienttransformations especially, nitrogen fixation
and transformationby producing many kinds of glycosyl hydrolases, suchas cellulases,
and amylases in the bioponics, which can be used asa carbon resource by other bacteria

Wei etal.,2017).

The prevalence of the bacterial community following with Actinobacteria

relative abundance ranged from 7.37%t0 14.52%. Actinobacteria have the potential to

play important ecophysiological roles in plantresidue decomposition and possess genes
for nitrogen fixation and the production of antibiotics (Bao etal., 2021). However, the
dominant relative abundance of the bacterial community has importance for enhanced
nitrogen transformation and nutrients available for plant uptake applied with chicken
manure fertilizer based-bioponics. Furthermore, Nitrospirae is an important and
dominant nitrite-oxidizing bacteria in biological nutrient removal systems, especially
when dissolved oxygen and substrate levels are low. Moreover, a previous study

discovers Nitrospirae canperformingcomplete ammonia oxidation (comammox) about
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the actual role of Nitrospirae in both nitrification steps (Mehranietal., 2020). Although
its less relative abundance of Nitrosprirae in plant root samples of bioponics was found
ranged from 0.20% to 0.76%. The relative abundance of Nitrospira in root samples of
bioponics is not different from previous research study was found 0.2% to 0.9% in

bioponics (Wongkiew etal., 2021).
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Figure 41 Relative abundance of bacteriacommunity at the phyla in plants root at
phylum level.

In this study, the bacterial community composition in plant root of bioponics
was found several phyla have play a key role and relevant to nitrogen decomposition
and transformationsuch as Planctomycetes, Proteobacteria, Firmicutes, Bacteroidetes,
Nitrospirae, and Actinobacteria (Chen et al., 2019). Long-term bioponics operation
might result in a shift in microbial community structure depending on the major

conditions that might be associated with pH and DO concentration. The pH has a major
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impact on the relative abundance, prevalence, and diversity of bacterial community
structure in plant roots. Furthermore, pH is important in controlling the rates of
microbial decomposition of organic matter. The pH of bioponics water was found
between 7 to 9, causing individual phyla such as Actinobacteria, Proteobacteria, and
Planctomycetes to be dominant in high relative abundance due to prevalence more than
others because there commonly were foundin alkaline conditions (Bartrametal., 2014,
Yunetal., 2016). In bioponics, the DO concentration is the one factor that effected and
influences prevalence, diversity, and bacterial community composition. DO
concentrations of this study in bioponics water was found ranged from 4 to 5 mg/L,
according to the previous study indicated that DO concentration was found range 4.5
to 5.5 mg/L is the highest rate for nitrogen transformation (Wanget al., 2018). It was
suggested that in a bioponic system, the nitrification bacteria group needed an optimal
DO concentration of 6-7 mg/L to improve nutrient conversion and performance of

nitrogen transformation.

4.5 Microbial biomarkers in bioponics exposed to Cu and Zn

The major dominant top 30 at genera level of plantroot in lettuce and pak choi-
based bioponics cultivated included Luteolibacter (rhizobacteria; 0.24%—2.78%),
WD2101_soil_group (phosphorus solubilizer; 0.34%-10.98%), Pseudoxanthomonas
(denitrifier; 0.04%-13.01%) (Wongkiew et al., 2021), and Blastopirellula (strictly
aerobe responsible in COD and ammonium removal; 0.09%-9.33%) (Chen et al.,
2019), whereas majordominantunculturedgenerawere in the families of Pirellulaceae
(ammonia oxidizer; 1.89% to 28.39%) (Yamashita et al., 2019), Caldilineacea
(filamentous bacteria; 1.11%-13.51%), Blastocatellaceae (chemoorganotroph; 0.17%—

9.39%) (Huber etal., 2017), and Gemmataceae (strictly aerobe and chemoorganotroph
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found in freshwater; 1.25%-10.33%), respectively (Dedysh etal., 2020) was shown in
Figure 42. A heatmap of microbial community structure at genus level reveals
significant genera (effect size >0.6, p < 0.05) in roots under the Cu and Zn exposure.
The heatmap shows that microbial profiles in plant roots with Cu and Zn
supplementation were different from those without Cu and Zn supplementation, as

shown by the cluster dendrogram was shown in Figure 43.

The dominant bacterial communities in plant roots at the family and genus
levelsindicate thatthese bacterial community groups are tolerantto Cu and Zn exposure
(Miao et al., 2019). Moreover, these groups play important roles associated with
organic nitrogen degradation and nitrogen transformation (e.g., ammonification,
nitrification, and denitrification) in bioponics, which located around the surface of plant
roots and support nutrients uptake by plants (Patel etal., 2021). Overall, key microbial
community functioned wellunder the Cuand Zn supplementations although there some
shifts in microbial community structure. A Long-term bioponics operation may result
in a shift in microbial community structure depending on operating parameters such as
pH and DO concentration. The extended error bar plot was further used to identify a
bacterial community in phylum level that was significantly different in abundances in
plants root of the experiment with effect size >2.0, p <0.05. When lettuce control and
lettuce-exposed were compared, it was found that Chloroflexi in control had a
significantly higher abundance proportionthan exposed. While pak choi control and
pak choi exposed was shown to have a higher abundance proportion of Firmicutes in
control than exposed because during the period of the experimentis shown in Figure
44. At the phylum level, the relative abundances of Chloroflexi (nutrient-limited

biomarker) in lettuce roots and Firmicutes (nutrient-rich biomarker) in pak choi roots
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at control condition were higher than those from Cu and Zn supplemented conditions.
Indicating that Chloroflex and Firmicutes, these two phyla of bacterial community are
represented bioindicators in the experiment applied with chicken manure of bioponic

system.

Welch’s t-test in STAMP was further used to identify significant microbial
biomarkers (effect size > 2.0, p < 0.05) in bioponics under Cu and Zn exposure.
Although Cu and Zn can provide beneficial effects on plant and microbial growth, high
concentrations of Cu and Zn could pose either inhibitory or stimulating effects,
resulting decrease/increase in relative abundance of some phylum (Eo and Park, 2016)
of lettuce and pak choi was shown in Figure 44A and 44B respectively. The results
suggested that the biomarkers from those phyla could well reflect the growth and NUE
between the two plants, where pak choi had higher NUE than lettuce (Figure 6).
Similarly, previous study was reported that several bacterial phylum dominant in soil
such as Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes, Verrucomicrobia, and
Planctomycetes, were dominant under high exposure to heavy metals (Song et al.,

2018).

Cu and Zn supplementations of each conditions have an effect shifted the
bacterial community structure in plant roots, and the significant biomarkers from those
genera were dependent on plant types. At Cu and Zn supplementation in lettuce
based bioponics, Lachnospiraceae (uncultured genus; fermentative chemoorganotrop
hs) (Stackebrandt, 2014), WD2101 soil _group, and Ruminiclostridium (anaerobes
found in decayed plants) (Wu etal., 2021) were significantly higher than that at control

was shown in Figure 45. This suggested that lettuce roots could be weaken under Cu
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and Zn exposure, leading to partial root decay, anaerobic environment, and decrease in
plant growth and NUE. In contrast, in pak choi-based bioponics, Mesorhizhobium
(plant growth promoter) (Vermaetal., 2013) was significantly dominant at Cu and Zn
supplemented condition, and Lachnospiraceae (uncultured genus), and
Ruminiclostridium were dominant at control condition was shown in Figure 46. The
relationship of these key important biomarkers (depending on plant type) can promote
plant growth through a variety of mechanisms, for example, symbiotic mutualists can
promote nutrient availability for plant uptake and can enhance Cu and Zn uptake to
plant tissues (Liu, 2020). The results suggested that Cu and Zn could promote the
growth of beneficial bacteria in pak choi roots; however, Cu and Zn bioaccumulation
in plant roots and shoot could cause an inhibitory effect on growth. Although these
genera were tolerable to Cu and Zn exposure and play key roles associated with
nitrogen transformation and plant growth promotion in bioponics (Wongkiew et al.,
2021), key consideration should focus to the inhibitory levels of Cu and Zn and the
adverse level on plantgrowth. Furthermore, non-essential element heavy metals besides
Cu and Zn should be evaluated for their harmful effects on bacterial community in

bioponic systems.
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Figure 42 Relative abundance of bacteria at the genus levels in plant roots. Top 30

abundant bacterial genera were shown in this heatmap.
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Figure 43 Relative abundance of bacteria at genus levels in plant roots. Bacterial

genera with effect size > 0.6, p <0.05 were shown in this heatmap.
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Figure 45 Differential abundancesof microbial communities at the genus levels in

lettuce roots from bioponics with and without Cu and Zn supplementation based on

Welch’s t-test (effect size > 2.0, p <0.05).
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Figure 46 Differential abundances of microbial communities at the genus levels in
pak choi roots and from bioponics with and without Cu and Zn supplementation based

on Welch’s t-test (effect size > 2.0, p <0.05).

4.6 Noncarcinogenic risk assessment of vegetable consumption

The noncarcinogenic risk assessment results show the HQ for individual Cu or
Zn and HI for summation of Cu and Zn, which indicates the possible risk of single and
total heavy metal exposure through vegetable consumption, respectively. To calculate
ADD)ng through ingestion route was shown in Table 11 and conversion factor was used
to conversion plants weight from dry weight to wet weight. ADD,y was used to
represent Cu and Zn uptake rates and health risks from consuming lettuce and pak choi
from the bioponicsin this study was shown in Table 4 and 5 respectively. The ADDy
values through consumption of lettuce in adults and children were 0.001-0.002for Cu
and 0.019-0.036 for Zn, and those of pak choi were 0.001-0.004 for Cu and 0.029—
0.110 for Zn. This study found that the ADDy 0of exposures in children and adults to

Cu and Zn were in range of other studies. ADD g in this study were comparable with

p-value (corrected)
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intake dose of vegetables from irrigated wastewater, in which the ADD g of Cu and Zn
in were 0.005-0.076 and 0.006-0.009, respectively (Ali et al., 2021). Human has a
mechanism for detoxification of toxic elements such as heavy metals and toxic organic
compounds (Siand Lang, 2018). The human body has a metallothionein gene that can
be bound with heavy metals (e.g., Cu, Zn, and Pb) for decreasing the toxicity of heavy

metals into the human body through vegetable consumption.

In thisstudy, children had higher HQs of Cu and Zn than adults from consuming
vegetables produced by lettuce and pak choi-based bioponics. The worse condition was
found atthe Cu 150: Zn 600 mg/kg condition for both plants was shown in Table 12.
The highest HI values in children and adults were 0.195 and 0.142 in lettuce-based
bioponics, while those in children and adults were 0.453 and 0.330 in pak choi-based
bioponics. Although HQ and HI were affected by age, consumption rate, exposure time
and frequency, and body weight (Ametepey et al., 2018), the results show all HI values
(including upper boundary at 95% confident interval) were below risk levels (HI < 1).
The results indicate the levels of Cu (150 mg/kg) and Zn (600 mg/kg) supplementation
in chicken manure based-bioponics will not cause a long-term non-carcinogenic risk in
children and adult over their lifetime from consuming bioponics grown lettuce and pak
choi at the contamination levels. This was similar to previous studies health risk
assessmentof heavy metals (i.e., Cuand Zn) contaminated in soil through consumption
of vegetables, where no adverse health effects from the consumption of vegetables in
children and adults were noted (Cherfiet al., 2015). However, another study reported
that chicken manure located nearby highly heavy metal contaminated areas (e.g.,
industrial zones and mining area) could be contaminated with other toxic elements (Pb,

As, Mn, Hg, Cr, Cd) from soils and feeds and increase in health risk of vegetable
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consumption, which should be also considered in bioponics (Cerneetal., 2021). Further
study should be evaluated non-carcinogenic risk and carcinogenic risk of other heavy
metals such as Pb, Hg, Cr, and Cd in vegetables that could be contaminated in other
organic waste substrates before certainly using in bioponic systems. Since bioponics
can be applied with reclaimed wastewater and irrigation water, health risk assessment
of all possible heavy metals as well as xenobiotics in vegetables must be considered for

both carcinogenic and noncarcinogenic health risk assessment (Intriago etal., 2018).
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CHAPTERS
CONCLUSIONSAND RECOMMENDATIONS

5.1 Conclusions

This study was conducted finding to 1) evaluate nitrogen transformation,
nitrogen recovery, and plant growth in chicken manure-based bioponics at Cu (50-150
mg/kg) and Zn (200-600 mg/kg) supplementation. 2) investigate the effects of Cu and
Zn supplementations on plant bioaccumulation, root microbial community, and dietary
health risk. This study result found in this present study can conclusion important

finding as following

1. Nitrogen concentration in bioponic system of phase I, phase 11 was measured
as TKN, TAN, NO, and NO3z and all nitrogen parameters two phases of the

experiment have sufficient nitrogen for plants grown in bioponic system.

2. The nitrogen recovery from chicken manure 200 g dry wt./system was
effective for plant production based bioponics. The yield of lettuce was range
from 144.2 +19.6 to 194.8 £ 22.7 g wet wt. with %NUE was range from 2.4 +
3.31t0 13.8 £ 3.5 and pak choi yield ranged from 163.29 + 20.1to 253.83 + 14.4

with %NUE was range from 35.8 +29.7 to 71.2 + 3.1 respectively.

3. In control condition was higher effective of plants yield and NUE than Cu
and Zn supplementation conditions respectively. This indicates that Cu and Zn
contaminated in chicken manure at low to high concentrations did not affect

nitrogen concentration and plant growth in bioponics.
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4. The ability of Zn was accumulated higher in edible part of lettuce and pak

choi than Cu concentration obviously.

5. The major dominant phyla of bacterial communities in plants root was found
with different relative abundance included Proteobacteria, Planctomycetes,
Firmicutes and, Actinobacteria, indicates that Cu and Zn supplementations

slightly affect to these dominant phyla of bacterial communities.

6. The biomarker at the phylum level, the relative abundances of Chloroflexi
(nutrient-limited biomarker) in lettuce roots and Firmicutes (nutrient-rich
biomarker) in pak choi roots. At the genus level were dependent on plant types
in lettuce based bioponics was Lachnospiraceae , WD2101_soil_group, and

Ruminiclostridium, while pak choi based bioponics was Mesorhizhobium.

7. The overall ADD),q values of Zn was higher than Cu in both of children and
adults through consumption of lettuce and pak choi-based bioponics, the
highest ADD,,y was present in the highest Cu and Zn supplementation

condition.

8. HQ and HI values of individual and overall Cu and Zn through lettuce and
pak choi consumption based bioponics was lower than acceptable permission
limitof 1 (HQ and HI<1) indicatesthat no adverse health effects of childrenand

adults who consumed lettuce and pak choi-based bioponics.
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5.2 Recommendations for future work
Inthis study, accordingto the result, followingthe recommendations to improve
more understanding and concerns in the future or further study of plants production

based bioponic system.

1. Sample size of all samples (e.g., root and shoot of plants, water) should be
increasing accurate of statistical analysis (n =3) of the sample.

2. The bioponic system should be operating with control of the pH and DO
concentration in the optimal range to prevent nutrient loss from the system.

3. Non-essential element heavy metals (e.g., Pb, Cd, Cr) should investigate in
plant tissues and health risk assessment using contaminated chicken manure
in bioponics system.

4. Heavy metals have the potential to bioaccumulate in the microbial
community; therefore, additional research should be conducted to
investigate the effect and bioaccumulation of heavy metals on the microbial
community (biomarker) relationship with nutrient release concentration in

bioponic system.
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Figure 7 Slope of regression NUE trend of pak choi with Cu supplementation (0, 50,

100, 150 mg/kg) of the experiment in phase I.
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Figure 8 Slope of regression NUE trend of pak choi with Zn supplementation (0, 200,

400, 600 mg/kg) of the experiment in phase .
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Figure 9 The bioconcentration factor values (BCF) of Cu and Zn in root of the lettuce
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Figure 11 The translocation values (TF) in lettuce and pak choi of the bioponics.
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Figure 13 Relative abundance of bacteria the class level in plant roots. Bacterial class

with effect size > 0.6 were shown in this heatmap.
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Figure 14 Differential abundance of microbial communities at the class level in lettuce
roots from bioponics with and without Cu and Zn supplementation based on Welch’s t-
test (effectsize >2.0, p <0.05).
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choi roots from bioponics with and without Cu and Zn supplementation based on

Welch’s t-test (effect size >2.0, p <0.05)
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Figure 16 Relative abundance of bacteria the order level in plant roots. Bacterial order

with effect size > 0.6 were shown in this heatmap.
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Figure 19 Relative abundance of bacteria the family level in plant roots. Bacterial

family with effect size > 0.6 were shown in this heatmap.
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Figure 20 Differential abundance of microbial communities at the family level in
lettuce roots from bioponics with and without Cu and Zn supplementation based on

Welch’s t-test (effect size > 2.0, p <0.05).
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