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One of the main problems in the development of text-to-speech (TTS) sys-

tems is its reliance on subjective measures, typically the Mean Opinion Score

(MOS). MOS requires a large number of people to reliably rate each utterance,

making the development process slow and expensive. Recent research on speech

quality assessment tends to focus on training models to estimate MOS, which re-

quires a large number of training data, something that might not be available in

low-resource languages. We propose an objective assessment metric based on the

DTW distance using the spectrogram and the high-level features from an Auto-

matic Speech Recognition (ASR) model to cover both acoustic and linguistic infor-

mation. Experiments on Thai TTS and the Blizzard Challenge datasets show that

our method outperformed other baselines in both utterance- and system-level by

a large margin in terms of correlation coefficients. Our metric also outperformed

the best baseline by 9.58% when used in head-to-head utterance-level compar-

isons. Ablation studies suggest that the middle layers of the ASR model are most

suitable for TTS evaluation when used in conjunction with spectral features.
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Chapter I

INTRODUCTION

Nowadays, Text-to-Speech (TTS) systems have advanced to synthesize

speech close to human-level based on deep learning approaches. However, there

is still a problem in indicating the model’s performance during the development

process when the objective loss is not reliable on model selection. A common ap-

proach is to evaluate TTS using the Mean Opinion Score (MOS) result depending

on human perception. MOS is rating scores from listeners in the range of 1 to 5 for

quality and naturalness of speech audio. MOS is simple but not suitable for TTS

development due to expensive and time-consuming. According to these problems,

many objective quality assessments had been developed for TTS evaluation.

Objective quality assessments are mainly classified into two categories: intru-

sive and non-intrusive. Intrusive methods rely on the existence of human reference

recordings which are used to compare against the synthesized speeches. Due to

this limitation, there is an increasing focus on non-intrusive assessments. Any

synthesized speech can be scored according to the predictions from machine learn-

ing models such as Support Vector Machines (Soni and Patil, 2016) and Neural

Networks (Qiang Fu et al., 2000; Fu et al., 2018; Tang and Zhu, 2019; Avila et al.,

2019; Mittag and Möller, 2020). Predictive models are easy to use, but they re-

quire a large amount of costly labeled data for training. This usually requires

different kinds of TTS models to be trained and evaluated, which can be hard for

low resourced-languages.

On the other hand, intrusive assessments, needing no expensive training

data, use the distance between synthesized and reference audios as a proxy for

quality estimates. In this work, we will focus on this kind of assessment method.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Traditionally, intrusive approaches compare the similarity between spectral

features of two audios (Kubichek, 1993; Wang et al., 1992; Rao et al., 2015; Sailor

and Patil, 2014). Lately, hidden representations from Automatic Speech Recog-

nition (ASR) models have been used instead of traditional features (Bińkowski

et al., 2020).

The ASR embeddings from end-to-end models have been studied in various

works in order to understand their relationships to human concepts (Belinkov and

Glass, 2017; Li et al., 2020; Belinkov et al., 2019). Linguistic properties (Belinkov

and Glass, 2017; Belinkov et al., 2019), such as phonetics information, and the

speaker characteristics (Li et al., 2020), such as speaker identity, are found in

the different layers of the model and are proven to be effective for estimating the

goodness of synthetic audios (Bińkowski et al., 2020).

Bińkowski et al. (2020) has shown that the Fréchet distance between the

distributions of high-level features from synthesized and reference speech is highly

correlated to MOS and can be used as an objective evaluation of TTS models

(Bińkowski et al., 2020). However, they did not analyze the different effects each

layer of the model might have. ASR features might also fail to discern noise or

artifacts due to the fact that ASR models are often trained to ignore such dis-

tinctions. Moreover, their metric, which is based on distributions, cannot be used

to estimate errors and artifacts on the utterance level. To score on the utterance

level, dynamic time warping (DTW) (Sakoe and Chiba, 1978; Sakoe and Chiba,

1971) was often used as an utterance-level distance function for comparing two au-

dios (Kubichek, 1993; Wang et al., 1992; Rao et al., 2015; Sailor and Patil, 2014).

Using low-level signal representations, such as spectral features and MFCCs, this

approach better captures the fine artifacts in synthesized speech. However, nowa-

days, TTS models have become very high quality and often indistinguishable by



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

using only low-level signal representations.

In this work, we present a new intrusive assessment method, Spectral and

Latent Speech Representation Distortion (SLSRD), for TTS evaluation. SLSRD

uses both low-level signal and high-level linguistic information for measuring both

the naturalness and the correctness of the synthesized audios. The spectrogram is

used to represent the signal information and high-level linguistic representations

are extracted from the hidden units of an ASR model. Extensive experiments on

the Thai dataset and the Blizzard Challenge (King and Karaiskos, 2012, 2014; Wu

et al., 2019) show that SLSRD outperforms the baselines in terms of the correlation

coefficient. SLSRD also has a higher agreement rate with human raters in head-

to-head evaluation scenarios than other baselines. Many parts of this thesis was

reported in InterSpeech 2021 (Kongthaworn et al., 2021).

1.1 Objective

The goal of this thesis is to evaluate TTS systems by simulating human

perception by utilizing spectral and latent data from the ASR model. We uses

speech synthesis from various TTS systems such as unit selection, Hidden Markov

Model, Hybrid, and Deep Learning to test the efficacy of proposed method.

1.2 Scope of Work

The area of this thesis is to assess the performance of TTS systems with

the proposed method by analyzing the listening results corpus from four datasets,

which are our in-house dataset as well as two datasets from the Blizzard Challenge

2012-2013 and 2019.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

BACKGROUND

2.1 Speech assessment of TTS

Most speech audios are assessed using a subjective assessment that was

human-engaged. Subjective assessment assesses speech audios in many attributes

depending on The objective usage of systems and the user’s needs. Most attributes

usually assessed are comprehensibility, intelligibility, and quality. Comprehensi-

bility assesses the listeners’ understanding of the content of the speech audio by

asking questions that consider how well a listener has understood. Whereas in-

telligibility assesses the content of speech audio is consistent with the given text

by asking the listener to transcribe. Nowadays, TTS systems have become more

highly intelligible causing less need for intelligibility measurements. Quality is

the most used attribute to assess nowadays and is highly subjective by measur-

ing many attributes of speech audios (e.g. intelligibility and naturalness) in one

score. A listener was asked to score how the goodness of speech audio in various

ranges. However, subjective quality assessment is difficult to be reliable and accu-

rate caused of the different opinions of listeners. Many TTS studies have reported

results that cannot be compared because the results are subjective. Other disad-

vantages include the fact that it is time-consuming and costly. Thus, objective

quality assessments for TTS evaluation were developed to solve this problem.

An objective assessment is more exact and neutral than a subjective assess-

ment because it is based on perception theory and signal processing. Objective

assessment can be classified into intrusive and non-intrusive assessments. Intrusive

assessments are metrics that need a reference for measuring goodness. It’s usu-

ally done by calculating the similarity between synthesized and reference speech



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

audio using spectral features such as MFCCs, and spectrogram. However, the

intrusive assessment that exists nowadays does not match well with human opin-

ion. For example, the listeners felt that the sounds were totally worse, but they

just gave the score of ”good.” Because of this constraint, the intrusive assessment

was mostly employed in tuning and we used subjective assessment in the final

experiment (Wagner et al., 2019). On the other hand, Non-intrusive assessments

eliminate the need for reference speech by evaluating synthesized speech using

machine learning model. The correlation of predicted scores and human scores

between system-level assessments might be passable, but utterance-level correla-

tions are low (Wagner et al., 2019). Moreover, it needs a lot of training data to

be generalized that might be unavailable for low-resource languages. As a result,

objective assessment with a high correlation to subjective assessment is essential

in the TTS development process and helps fine-tune modeling and model selection

prior to subjective testing.

2.2 Dynamic Time Warping

Most traditional objective speech quality uses DTW to compare the reference

speech to synthesized speech. DTW is an algorithm for comparing two time series

that differ in time and speed. For example, with voice authentication, a word or

a brief sentence from the same user may be faster or slower than another, even if

they are the same utterance. As a result, it is impossible to compare it to the linear

method. DTW is a non-linear method for finding the optimal match between two

time series with limitations. The optimal match is the one that constrains all of

the conditions while also being the lowest. The equation of DTW can be written

as



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Equation of DTW can be written as

DTW (X, Y ) = d(N,M) (2.1)

d(i, j) = ||xi − yj||+ min


d(i, j − 1)

d(i− 1, j)

d(i− 1, j − 1)

(2.2)

where X and Y are time series data, N and M are data point numbers of X and

Y , and d is a recursive function that calculates the distance between data points

at i and j.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

RELATED WORKS

In this chapter, we will describe embedding-based assessment in Sec. 3.1.

Then, in Sec. 3.2, we’ll examine into ASR Feature study, followed by other speech

quality objective measures that are still used. It has been divided into intrusive

and non-intrusive assessments in Sec. 3.3 and 3.4, respectively.

3.1 Embedding-Based Metric

The use of discriminative model features to evaluate generative models has

attracted researchers’ interest. A text-generating machine translation example is

BERTScore (Zhang* et al., 2020), which takes contextual embeddings from the

BERT model and computes weighted matching using cosine similarity between

the generated and reference sentences. In terms of correlation, BERTScore out-

performs common metrics and is useful for model selection. Fréchet Inception

Distance (FID) (Heusel et al., 2017), is another embedding-based metric used in

computer vision to evaluate generated images from GANs. FID takes Inception

model features and computes a distance between reference and generated im-

ages using Fréchet Distance. For speech synthesis, Fréchet DeepSpeech Distance

(FDSD) (Bińkowski et al., 2020) was inspired by FID to calculate the similarity

between synthesized and reference speech feature distributions using Fréchet dis-

tance as same as FID. The characteristics were retrieved from the DeepSpeech2

(Amodei et al., 2016a) speech recognition model’s penultimate layer (before the

softmax layer). This research has demonstrated that ASR high-level features can

be utilized to evaluate TTS models. However, The objective assessment is not

the main finding of their study. As a result, they did not test the influence that

each layer of the model might have, and the method’s disadvantage is that it



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

can’t be utilized for utterance-level evaluation. .These studies demonstrate that

the discriminative model’s features are meaningful and adequate for evaluating a

generative model.

3.2 Research on ASR Features

There have been numerous studies that have looked into the meaning of

ASR Features. Belinkov and Glass (2017); Li et al. (2020) investigated layer-

wise quality features in terms of several classification tasks and found that the

features in different layers capture different levels of speech information. The

top layers more accurately represent character than phonetic information, while

the intermediate layer more accurately represents phonetic information. Li et al.

(2020) investigated the reduction of speaker characteristics through the layers by

synthesizing speech from ASR features. These studies show that ASR features

are a good representation of speech, and the quality of features in each layer is

different.

3.3 Intrusive assessments

Mel Cepstral Distortion (MCD) (Kubichek, 1993): is a measure of the

difference between two sequences of MFCC. Typically differences in timing are

allowed for; this is enabled by either DTW, or by synthesizing test utterances with

the ”gold” durations from the original speech. The formula of MCD calculataion

is

MCD(X, Y ) =
10
√
2

ln 10

1

T

∑
t

√√√√ 20∑
i

2||Cx(t, i)− Cy(t, i)||2 (3.1)

where Cx and Cy are cepstral coefficients of reference, X, and synthesized, Y , and

T is number of frame.
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Mel spectral Distortion (MSD) (Weiss et al., 2021): is very similar to

MCD. The only difference is that the 80-channels log-mel magnitude spectrogram

is used instead of the MFCC.

Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001): is

defined by the ITU-T recommendation P.862. PESQ is a speech quality metric

used in telecommunications (Cerňak and Rusko, 2005). It was also used to assess

TTS. The speech signals are aligned before being transformed into a Bark Spectro-

gram. The absolute difference between two speech signals is used to calculate their

similarity. The PESQ score can range from –0.5 to 4.5. In most circumstances,

the output range will be the same as that of MOS.

Virtual Speech Quality Objective Listener (ViSQOL) (Chinen et al.,

2020): measures the similarity between spectrograms with patch alignment. The

reference and synthesized speech are segmented into patches. The similarity be-

tween the reference and a synthesized patch is calculated frame by frame using

the Neurogram Similarity Index Measure (Hines and Harte, 2012) (NSIM) and

converted to MOS.

The equation of NSIM is defined as

Q(X,Y ) = l(X, Y ) · s(X, Y ) =
2uxuy + C1

u2
x + u2

y + C1

· σxy + C2

σxσy + C2

(3.2)

where C1 and C2 are constant values that value 0.01L and (0.03L)2, and L is the

intensity range.

Fréchet DeepSpeech Distance (FDSD) (Bińkowski et al., 2020): is the

Fréchet distance between synthesized and reference speech feature distributions as

described in Sec. 3.1
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3.4 Non-Intrusive assessments

MOSNet (Lo et al., 2019): is a MOS-predictive model trained using the

Voice Conversion Challenge (VCC) 2018 Lorenzo-Trueba et al. (2018) dataset.

This work has shown success in using deep learning to estimate the quality of

converted speech audio. The predicted MOS from MOSNet has a high correlation

to humans’ MOS at the system level and the utterance level.

NISQA-TTS (Mittag and Möller, 2020): is a MOS-predictive model based

on deep learning architecture trained on listening score data from various years of

the Blizzard Challenge and the VCC2018 to estimate the quality of synthesized

speech.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

PROPOSED METHOD

The main idea of our proposed method, SLSRD, is to evaluate the sound

quality using both acoustic and phonetic properties in the objective evaluation,

mimicking the opinion scores provided by humans. This is done by using tra-

ditional spectral features in tandem with latent features extracted from an ASR

model to compute the distance between the reference and the synthesized speech

using DTW.

4.1 Preprocessing

The raw speech audios were preprocessed to remove aspects that are unre-

lated to quality assessment. Silences were removed from both ends of the recording

by using a simple energy-based method. The inner silences were kept as is to pre-

serve prosody. The loudness of each synthesized utterance was also normalized to

be the same as the reference recording.

4.2 Spectral features

The spectrogram is used as the low-level signal representation to capture the

fine details in the speech.

Given the synthesized waveform, x ∈ RTx , and the reference waveform, y ∈

RTy , Spectrograms are computed, Sx ∈ RNx×L and Sy ∈ RNy×L, respectively,

where Tx and Ty are the number of synthesized and reference samples, L is the

number of frequency bins, Nx and Ny are the number of synthesized and reference

frames. These features are standardized using utterance-level statistics.
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4.3 Latent features

The latent features extracted from the ASR model are used for capturing

phonetic properties from the input signal. It has been shown that the phonetic

information in the features is rich enough for speech synthesis (Li et al., 2020).

By measuring the difference between the features of the synthesized and refer-

ence audios, The human-likeness and pronunciation correctness of the synthesized

speeches can roughly be estimated.

The high-level features are computed, hx ∈ RPx×K and hy ∈ RPy×K , from the

synthesized and reference speeches by using the synthesized and reference audios

as the input to the ASR model. Px and Py, are the number of frames for the

synthetic and reference audios, respectively. Again, the features, hx and hy , are

standardized.

4.4 Scoring with DTW

Since the reference and the synthesized audio can have different lengths,

DTW is a great choice for computing the distance which can then be used as a

quality measure. The SLSRD score is the DTW distance between two audios using

the concatenated spectral and latent features. Euclidean distance was used for

the frame-level distance. Since the two features are based on different frame rates,

the high-level ASR features are upsampled before the concatenation to prevent

the time-resolution mismatch. SLSRD is calculated according to the following

equation: (4.1).

SLSRD (x, y) =
1

T
√
C
DTW (Sx ⊕ hx, Sy ⊕ hy) (4.1)

where T is number of points used in the DTW backtraced, ⊕ denotes the concate-

nate operation, C = L+K is the size of the concatenated features, the lower the

better.
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A version without the spectrogram features, LSRD, can also be computed

as shown:

LSRD (x, y) =
1

T
√
K

DTW (hx, hy) (4.2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

EXPERIMENTAL RESULTS

5.1 Datasets

Blizzard Challenge dataset

We used the test results from the Blizzard Challenge 2012, 2013, and 2019

(King and Karaiskos, 2012, 2014; Wu et al., 2019) that contain audios synthesized

using HMM-based, diphone, unit-selection, hybrid TTS, and deep learning models.

We used the subset of EH1 test results from the 2012 and 2013 competitions, and

all available test results from the 2019 in our experiments and denoted them as

BLZ2012, BLZ2013, and BLZ2019.

Thai dataset

We also created our Thai dataset (TH) for evaluating the proposed objec-

tive metric. The synthesized audios were created from two variations of end-

to-end TTS models, the autoregressive Tacotron 2 (Shen et al., 2018) and the

non-autoregressive FastSpeech (Ren et al., 2019) which focuses more on inference

speed. Both models were trained on the grapheme level using a 29-hour (20k utter-

ances) single-speaker Thai dataset with the same training hyperparameters as in

the original papers. The grapheme duration information for training FastSpeech

was extracted from Tacotron 2. The WaveGlow vocoder (Prenger et al., 2019) was

used for generating the waveform values from the predicted Mel frequency values.

Thirty-four new sentences were used for two evaluation tasks, MOS and

head-to-head comparison. The synthesized audios were scored and compared by

138 Thai native speakers volunteers with the criteria of naturalness and sound
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quality. To control the quality of the score, we tracked action on the play button

and found four people score the speech audios without clicking the play button

then we removed them out. Finally, we have evaluation results from 134 Thai

native speakers.

For head-to-head comparison, the human raters were presented with 15 ran-

dom audio pairs from 136 pairs of the same Thai sentence but generated from

different models and asked to select the better one or indicate a tie.

For MOS evaluation, we used a straightforward 1–5-point scale. The highest

MOS of 5 was given to the goods, and the lowest MOS of 1 was given to the bads.

The 30 random synthesized audios were presented to a human rater for scoring.

The MOS scores from each model were summarized in Table 5.1.

Table 5.1: MOS values for the Thai TTS dataset. We report the average with
95% confidence interval.

Model Checkpoint MOS
Real speech n/a 4.17 ± 0.07
Tacotron 2 90k 3.46 ± 0.07
Tacotron 2 96k 3.28 ± 0.08
Tacotron 2 100k 3.33 ± 0.08
FastSpeech 1.15M 3.18 ± 0.09

5.2 Experimental setup

We used 200 bins for the spectrogram features. It was computed using the

Hann window with 20ms window size, and 10ms hop size. The sampling rate were

kept at 16 kHz for all experiments.

The ASR model used to extract the latent feature was Wav2Letter+, an

ASR model with 17 convolutional layers (Kuchaiev et al., 2018). For English, we

used the pre-trained model provided in the OpenSeq2Seq1 library. For Thai, we
1https://github.com/NVIDIA/OpenSeq2Seq

https://github.com/NVIDIA/OpenSeq2Seq
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trained the model from scratch using the official NVIDIA implementation with-

out any modification except for the alphabets. Manually transcribed 636-hour

Thai utterances taken from YouTube videos were used for training. For more

details regarding the dataset see Naowarat et al. (2021). The model achieved

6.76% Character Error Rate (CER). We also trained the model from scratch for

Chinese Mandarin with AISHELL-1 (Hui Bu, 2017) dataset that achieved 12.87%

Character Error Rate (CER).

As for the DTW scoring, we used FastDTW (Salvador and Chan, 2007) to

approximate the DTW distance instead of the standard algorithm. We only found

minimal difference between the two, but the approximation method had superior

time and space performance.

Evaluation criteria

To evaluate the performance of an objective metric, we compute the cor-

relation between the objective score and the MOS value. We report the Pearson

correlation coefficient, r, that measures the linear relationship and the Kendall Tau

Rank Correlation, τ , that measures the correspondence between two rankings.

The evaluation can be measured on two different granularities: utterance-

and system-level scoring. The utterance-level score compares the objective score

and the average of humans’ subjective scores of a single utterance. As a result,

there is one score for one utterance. The system-level score compares the average

of objective scores and the average of subjective scores of the same system. As a

result, there is one score per system.
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Table 5.2: Correlation values between different objective assessment methods and
MOS at utterance-level. The dagger symbol (†) indicates negative correlation
coefficients of the MOSNet model.

Method TH BLZ2012 BLZ2013 BLZ2019
|r| |τ | |r| |τ | |r| |τ | |r| |τ |

PESQ 0.07 0.12 0.20 0.17 0.02 0.06 0.05 0.07
MCD 0.41 0.25 0.31 0.2 0.17 0.12 0.36 0.20
MSD 0.41 0.25 0.28 0.18 0.24 0.17 0.26 0.10

VISQOL 0.38 0.27 0.49 0.34 0.30 0.21 0.27 0.20
FDSD n/a n/a n/a n/a n/a n/a n/a n/a

MOSNet 0.1 0.08 † † 0.49 0.35 † †
NISQA-TTS 0.06 0.0 0.62 0.43 * * * *
LSRD (ours) 0.64 0.43 0.53 0.36 0.58 0.40 0.61 0.35
SLSRD (ours) 0.64 0.44 0.67 0.48 0.58 0.40 0.60 0.34

Table 5.3: Correlation values between different objective assessment methods and
MOS at system-level. The dagger symbol (†) indicates negative correlation coef-
ficients of the MOSNet model.

Method TH BLZ2012 BLZ2013 BLZ2019
|r| |τ | |r| |τ | |r| |τ | |r| |τ |

PESQ 0.40 0.0 0.37 0.33 0.19 0.18 0.08 0.05
MCD 0.80 0.67 0.37 0.24 0.37 0.17 0.37 0.10
MSD 0.89 0.67 0.40 0.33 0.44 0.33 0.59 0.39

VISQOL 0.77 0.67 0.69 0.56 0.64 0.50 0.52 0.45
FDSD 0.77 1.0 0.55 0.53 0.67 0.61 0.65 0.35

MOSNet † † † † 0.66 0.56 † †
NISQA-TTS 0.77 0.67 0.89 0.73 * * * *
LSRD (ours) 0.91 1.0 0.66 0.64 0.78 0.61 0.78 0.46
SLSRD (ours) 0.90 1.0 0.88 0.73 0.8 0.67 0.76 0.42

5.3 Correlation with MOS

In this experiment, we compared the Pearson (r) and Kendall (τ) correlation

coefficients of the proposed metrics, LSRD and SLSRD, to other baselines using

TH, BLZ2012, BLZ2013, and BLZ2019 datasets. The results are summarized

in Table 5.2 and 5.3 for utterance- and system-level, respectively. For easier

comparison, the absolute values are shown (higher is always better). The asterisk

symbol (*) denotes that the predictive model uses the dataset as the training data,

thus, cannot be used for evaluation.
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The proposed SLSRD and LSRD had superior utterance-level performance

than other metrics by a large margin in all four datasets. Adding the spectral

features improves the performance over just using ASR features especially on

BLZ2012. As for the system-level evaluation, SLSRD ranks the top three models

better than NIQSA-TTS as shown in Figure 5.2. FDSD is not applicable for

utterance-level evaluation as it computes the distance between distributions.

Note that Table 5.2 and 5.3 also highlights another downside for the use of

predictive models. MOSNet which was trained on VCC2018 only has a low or even

negative correlation with the MOS on the Thai dataset and BLZ2012 (denoted

with †), which shows that predictive models can be language dependent, and did

not generalize well. SLSRD has less correlation with MOS than LSRD in BLZ2019

while gaining a lot improve in BLZ2012. We have investigated more ASR models

to compare between LSRD and SLSRD in BLZ2012 and BLZ2019 as shown in

Table 5.4 and Table 5.5.

Most ASR models used in this experiment choose from available pre-trained

models from several open source to investigate. For English, we use pretrained

from Nvidia NeMo (Kuchaiev et al., 2019) for QuartzNet15x5 (Kriman et al.,

2020), CitriNet (Majumdar et al., 2021) and Conformer Large (Gulati et al., 2020),

pretrained from SpeechBrain (Ravanelli et al., 2021) for Transformer, and pre-

trained from github2 for Deepspeech2. For Chinese Mandarin, we use pretrained

from library as same as English except for DeepSpeech2 (Amodei et al., 2016b)

which is trained from scratch . We also investigated self-supervised for ASR like

Wav2Vec2 (Baevski et al., 2020).

As a results in Table 5.4 and 5.5, LSRD is quite better than SLSRD in sev-

eral models in BLZ2019 and shows that adding spectral features has less effective
2https://github.com/SeanNaren/deepspeech.pytorch
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Table 5.4: Compare correlation coefficients of different ASR models at utterance-
level between SLSRD and LSRD in BLZ2012 and BLZ2019.

Model
BLZ2012 BLZ2019

LSRD SLSRD LSRD SLSRD
|r| |τ | |r| |τ | |r| |τ | |r| |τ |

QuartzNet15x5 0.54 0.38 0.61 0.43 0.62 0.36 0.58 0.32
CitriNet 0.62 0.45 0.70 0.52 0.73 0.49 0.71 0.46

Conformer Large 0.57 0.41 0.71 0.52 0.69 0.42 0.68 0.41
Transformer 0.57 0.40 0.67 0.49 0.61 0.36 0.59 0.33
DeepSpeech2 0.25 0.20 0.23 0.23 0.26 0.17 0.27 0.20
Wav2Vec2 0.57 0.39 0.57 0.39 0.64 0.40 0.61 0.38

Table 5.5: Compare correlation coefficients of different ASR models at system-level
between SLSRD and LSRD in BLZ2012 and BLZ2019.

Model
BLZ2012 BLZ2019

LSRD SLSRD LSRD SLSRD
|r| |τ | |r| |τ | |r| |τ | |r| |τ |

QuartzNet15x5 0.72 0.64 0.93 0.73 0.62 0.36 0.58 0.32
CitriNet 0.88 0.69 0.96 0.78 0.81 0.55 0.80 0.52

Conformer Large 0.77 0.64 0.92 0.78 0.81 0.56 0.81 0.43
Transformer 0.71 0.56 0.85 0.64 0.61 0.36 0.59 0.33
DeepSpeech2 0.28 0.24 0.28 0.29 0.26 0.17 0.27 0.20
Wav2Vec2 0.76 0.51 0.74 0.63 0.85 0.60 0.81 0.54

when evaluating high quality of synthesized speech audios. BLZ2019 dataset con-

tains many Deep Learning-based models that generate speech quality higher than

HMM used in BLZ2012 as we can see in MOS density in Figure 5.1. MOS density

of BLZ2012 is right-skewed distribution and BLZ2019 is a left-skewed distribu-

tion which means most synthesis speech audio in BLZ2019 has MOS higher than

BLZ2012. SLSRD demonstrates the simple yet effective use of spectral and latent

ASR features for evaluating TTS models and is more effective to artifacts than

LSRD. ASR is usually trained using data augmentation strategies for model gener-

alization which leads to using latent ASR features only less effective to evaluate low

quality speech audios. This can be helpful in TTS development on low-resource

languages   which might not have access to large-scale MOS data from multiple

TTS systems.
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Figure 5.1: Density of MOS on BLZ2012 (left) and BLZ2019 (right)
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Figure 5.2: Regression analysis for utterance-level (top) and system-level (bot-
tom) of NIQSA-TTS (left) and SLSRD (right) on BLZ2012. Translucent bands
represent the 95% confidence interval for the regression estimate.
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5.4 Ablation study on the layer location to extract the latent feature

In this section, we investigated how changing the choice of the hidden layer

from an ASR model affects the correlation coefficient in the Thai dataset. As

pointed out by previous works (Belinkov and Glass, 2017; Belinkov et al., 2019; Li

et al., 2020), different layers of the ASR network play different roles and capture

different kinds of information. The purpose of this experiment is to find the layer

that is most suitable for TTS evaluation.

Table 5.6 shows that outputs from ReLU9, a layer in the middle of the

entire network, yield the highest correlation coefficient, contrary to Bińkowski

et al. (2020) which uses the penultimate layer. A similar trend was also found in

other ASR models in Table 5.4 and 5.5. All of the highest correlation coefficient

was yielded from an intermediate layer. According to Belinkov and Glass (2017)

and Belinkov et al. (2019), the intermediate layers better capture the phonetic

properties than the top layers. Li et al. (2020) also reported that the speaker

characteristics were gradually removed in the deeper layers. This result suggests

that the sound quality might rely on both the phonetic and speaker information.

LSRD, which has no spectral features, has the best Kendall correlation by

using latent features of the shallowest layer. However, the deeper layer is better

for SLSRD, since lower layers and spectral features provide highly correlated infor-

mation. Note that the best τ values for SLSRD and LSRD are tied at 0.444. This

might be due to the fact that our simple feature concatenation method cannot

fully utilize the additional information. This is a venue for further investigation.

5.5 Head-to-head comparison between synthesized audios

In this experiment, we studied the agreement between SLSRD and human

annotations in head-to-head audio quality comparison.
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Table 5.6: The correlation coefficients when different layers were used to extract
the latent features.

Layer LSRD SLSRD
|r| |τ | |r| |τ |

ReLU3 0.585 0.444 0.555 0.391
ReLU6 0.627 0.439 0.6 0.420
ReLU9 0.638 0.426 0.640 0.444
ReLU12 0.598 0.421 0.611 0.416
ReLU15 0.584 0.421 0.575 0.388
ReLU17 0.578 0.389 0.578 0.38

To remove ambiguous pairs in the analysis, we only considered pairs that

resulted in a majority. The most selected option must have at least three more

votes than the runner-up. This leaves 110 pairs of which 17 of them were voted

to be equally good.

SLSRD outperformed the best baseline by 9.58% absolute as illustrated in

Table 5.7. Figure 5.3 shows the boxplot of the difference between SLSRD scores

for each kind of audio pair. The score difference shows a clear separation between

each type. For the pairs that were judged to be equal, the SLSRD score difference

is very close to zero.

Table 5.7: Agreement rates between objective measures and human on the head-
to-head comparison between synthesized audios

Method Human agreement rate (%)
MCD 61.03
MSD 65.95
LSRD 67.02
SLSRD 75.53
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Figure 5.3: Boxplot of the difference between SLSRD scores for each kind of audio
pair in the head-to-head experiment.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

CONCLUSION

We proposed intrusive quality assessments, SLSRD and LSRD, for TTS eval-

uation. LSRD is the DTW distance between the reference and the synthesized

audios using ASR features while SLSRD uses spectrogram tandem. Experiments

on the Thai and Blizzard Challenge datasets showed that SLSRD and LSRD

outperformed other objective measures in terms of correlation with the MOS and

agreement rate with human raters in head-to-head comparisons. Our metric can be

used to guide TTS development in any language requiring just reference speeches

and an ASR model, which can be acquired more easily than predictive methods

that require an assessment dataset.
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