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Coronavirus disease 2019 (COVID-19) still provides global public health issues although 

several vaccines and antiviral agents have been developed. Some patients experience severe 
conditions needed medical intensive care, and some are dead due to the failure of treatments. 
Therefore, identifying the key genes and underlying molecular mechanisms is necessary to 
discover precisely targeted drugs. Analysis of protein-protein interaction (PPI) networks provides 
invaluable information to find disease mechanisms and effective alternative drugs. Hence, PPI 
network analysis based on leukocyte transcriptomic profiles of severe COVID-19 collected from 
Gene Expression Omnibus (GEO) DataSets was proposed for this study. A network diffusion 
method called Laplacian heat diffusion (LHD) algorithm was performed to construct an immune-
related PPI network (IPIN). Furthermore, several network centrality measurements can identify 23 
key genes from the IPIN. Subsequently, drug-gene interaction networks were constructed using 
database searching based on the key genes. There were 5 candidate drugs having the potential 
effect of interacting with the key genes. To find additional key genes and candidate drugs, two 
different leukocyte transcriptomic datasets were combined for the common PPI network 
construction. Centrality measurement and survival analysis were used to find and validate the 
further key genes. The analysis revealed 4 common key genes. The drug-gene interaction and 
molecular docking technique provided 2 further candidate drugs that interacted with the key 
genes. Additionally, miRNA-mRNA regulatory networks were built based on the PPI network to 
recognize 5 novel biomarkers for severe COVID-19 prediction. In conclusion, PPI network analysis 
can discover candidate biomarkers and drugs to predict and treat severe COVID-19 patients.  
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PART I  
INTRODUCTION 

 
1.1 BACKGROUND AND MOTIVATION 
 The world has experienced coronavirus disease 2019 (COVID-19), a rapidly 

spreading infectious disease, although several vaccines and antiviral agents are 

developed. The infection occurs with the symptoms of unclassified bilateral pneumonia 

originated in Wuhan, province Hubei, China, in 2019 [1, 2]. COVID-19 is caused by 

severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is positive-sense 

single-stranded RNA (+ssRNA) β-coronavirus classified in Coronaviridae family [3, 4]. 

For the global statistics, the number of confirmed cases and death in COVID-19 from 

WHO data on May 25, 2022, were 524,339,768 and 6,281,260, respectively [5]. In 

addition, the global fatality rate is 3.4%. The main transmission route is receiving the 

infectious respiratory droplets from direct person-to-person contact [6, 7]. The infection 

can spread in all stages of the disease: asymptomatic, presymptomatic, and 

symptomatic [8]. The most common clinical features of COVID-19 are dry cough, fever, 

fatigue, and myalgia. Some patients have gastrointestinal symptoms, for instance, 

nausea, anorexia, and diarrhea [9-12]. About 64% to 80% of patients present with a loss 

of smell and taste sensation [13-15]. Furthermore, at least 50% of patients will progress 

to dyspnea [2]. Acute respiratory distress syndrome (ARDS) is a common condition 

found in severe COVID-19 [16]. Several risk factors contributing to severe illness include 

older age, chronic lung disease, cardiovascular diseases, diabetes mellitus, obesity, 

chronic kidney disease, immunocompromised host, and cancer [11, 17]. Nearly 17% to 

35% of admitted patients needed intensive care units (ICU) due to respiratory failure [7]. 

The main causes of death are ARDS, acute respiratory failure, coagulopathy, septic 

shock, metabolic acidosis, cardiovascular complications, and multiple organ failure [16-

19]. Pathogenesis and pathophysiology of COVID-19 are still required for further studies. 

They can classify the disease into 2 stages, such as early and late stages [7]. In the 
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early stage, SARS-Co-V 2 infects host cells and initiate proliferation. It enters respiratory 

epithelial cells and alveolar cells via using spike (S) protein which is primed by type 2 

transmembrane serine protease (TMPRSS2) binding to angiotensin-converting enzyme 2 

(ACE2) receptor [20, 21]. While viral replication occurs in the host cells, the innate 

immune system is activated. Hence, mild constitutional symptoms arise during this 

stage. Type 1 interferons (IFN-I) production is increased by activating JAK-STAT 

pathway, which promotes the expression of IFN-stimulated genes (ISGs). The activated 

type 1 IFN will recruit myeloid-lineage leukocytes, such as macrophages, neutrophils, 

and natural killer (NK) cells, to alveolar tissue [6]. In the late stage, pulmonary tissue 

damage and hyperinflammation emerge. Infected host respiratory cells (pneumocytes 

and alveolar endothelial cells) have injury and death, which cause interstitial fluid 

leakage. Therefore, pulmonary edema will occur and progress to ARDS later [7, 9, 20].   

Furthermore, some patients have the clinical progression to hyperinflammation stage or 

cytokine storm caused by an imbalance between immune hyperactivation and under 

regulation [22]. Cytokine storm is characterized by cytokine overproduction, causing 

collateral tissue damage apart from the lungs, such as the heart, liver, kidneys, and 

brain [20]. Advance and uncontrolled COVID-19-induced cytokine storm can lead to 

multiple organ failures and death in the last stage [7, 22]. Generally, cytokines promoted 

in cytokine storm due to infection are IL-1, IL-6, IL-12, IL-17, IL-18, and tumor necrotic 

factor (TNF). Meanwhile, mitogen-activated protein kinase (MAPK), nuclear factor κB 

(NF-κB), Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3), 

and mammalian target of rapamycin (mTOR) are predominant signaling pathways 

during hyperinflammation stage [22]. However, COVID-19 associated cytokine storm 

has still not well understood molecular mechanisms [22]. As a result, the discovery of 

targeted therapy involving cytokine storm mechanisms could play a crucial role in 

improving COVID-19 severity. 
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 The gold standard diagnostic testing of COVID-19 is reverse transcriptase-

polymerase chain reaction (RT-PCR) from nasal and throat swab samples [7, 11]. The 

primary treatment of COVID-19 is supportive care and respiratory support [6, 7]. 

Medical therapies include dexamethasone, remdesivir, and favipiravir [19, 20, 23]. 

Nonetheless, the current treatments cannot cover all patients with severe conditions, 

especially patients with the cytokine storm. Therefore, targeted therapy discovery 

strategies in COVID-19 are still needed. In addition, the role of vaccines in COVID-19 

prevention has been studied and needs further investigation.  

 Bioinformatics, systems biology, and multi-omics data from high throughput 

technologies allow translational and precision medicine to be effective in clinical 

practice [24]. For example, TBX1 mutation disrupts the network function demonstrated 

by several clinical features in DiGeorge syndrome. High-throughput-based network 

analysis can predict key proteins that target drug discovery and repurposing [24]. 

Moreover, integration of structural bioinformatic methods, such as molecular docking 

and molecular dynamics, with systems biology and drug repurposing has greatly 

impacted in silico experiments. It is interesting to note that one of the most powerful 

tools used in bioinformatics and system biology and still popular is network analysis. A 

network consists of members or units called nodes or vertices and interactions or 

relationships between nodes called edges or links [24-26]. Networks can be classified 

into undirected and directed graphs depending on whether edges have directions [24, 

25]. There are several measurements used in topological network analysis. Degree is 

clarified by the number of edges that a node has. Nodes having high degrees are 

categorized to be hub nodes. Shortest path distance is the lowest number of edges 

linked between a pair node, and the clustering coefficient measures how many nodes 

are prone to group together. Moreover, there are measurements of the importance of a 

node in a network or called centrality. For instance, betweenness centrality is the 

frequency summation of the shortest path of node pairs that passes through the 
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interested node, and closeness centrality considers how closed the node is to other 

nodes. Eigenvector centrality is concerned with node influence by calculating 

eigenvalues in the adjacency matrix [26]. In biological networks, the essentiality of 

nodes is measured from degree and betweenness centrality. Nodes with a high degree 

and betweenness centrality are considered necessary [27]. Topological analysis reveals 

that biological networks are scale-free, small world, and robust [25, 27]. Protein-protein 

interaction (PPI) network is one of the most networks used in the study of systems 

biology. In PPI networks, the nodes represent proteins and edges represent physical 

interaction between proteins [24, 27, 28].  

 There are two common methods for disease-related PPI network construction: 

neighborhood and network diffusion approach. Neighborhood method constructs the 

network considering nodes adjacent to known disease genes or seed nodes. Network 

diffusion establishes the network based on the intensity of the signal propagated 

throughout the network from the seed nodes. The advantages of neighborhood-based 

PPI network construction are the user-friendly method and less computational time 

consumption. Several studies in biological network analysis have operated this method 

for PPI network construction [29-33]. However, the method provides higher false-positive 

results than the diffusion method. On the other hand, network diffusion can predict 

disease-associated nodes distant from the seed nodes with low false-positive results, 

although it requires coding skills and prolonged running time.    

 There are several previous studies related to biological network analysis in 

COVID-19. For example, Gordon et al. (2020) generated a viral-host interactome using 

affinity-purification mass spectrometry from an infected cell line (HK-293T/17) [4]. They 

also did pathway enrichment analysis. Network and functional enrichment analysis 

revealed that several viral proteins interact with host proteins involved in innate immune 

systems. They also found that viral proteins can interact with a Cullin ubiquitin ligase and 

bromodomain proteins [4]. Prasad et al. (2020) built a transcriptomic-based PPI network 
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from infected alveolar adenocarcinoma cells (A549). They discovered 15 hub proteins 

related to IFN pathway. Drug-gene interaction analysis showed that poly I:C, imiquimod, 

mitomycin C, and vanadium oxide could be potential drugs to improve the disease 

severity [34]. Zhou et al. (2020) used network-based drug repurposing established from 

human interactome, viral-host PPI network, and drug-target network. The outcome 

reveals that many compounds such as melatonin, mercaptopurine, and sirolimus could 

be potential drugs. Moreover, drug combination identification was conducted based on 

the complementary exposure pattern. The result shows that combinations between 

sirolimus and dactinomycin, toremifene and emodin, and mercaptopurine and melatonin 

could have a role in COVID-19 therapy [35]. Messina et al. (2020) compared viral-host 

interactome based on S protein by using gene expression data. Random walk with 

restart (RWR) algorithm was performed to find a proximity network from a seed protein 

(S protein). The finding indicates that pathway enrichment analysis involves innate 

immune systems such as Toll-like receptors, TGF-β, and many chemokines [36]. 

Adhami et al. (2021) used a clustering algorithm called fast agglomerate edge 

clustering (FAG-EC) to form modules in the PPIs network with data from BioGRID and 

STRING database. They showed that target drugs are paclitaxel, bortezomib, 

carboplatin, crizotinib, cytarabine, daunorubicin, and vorinostat. Pathway enrichment 

analysis was concentrated in the cancer pathway, RNA transport, AMPK signaling 

pathway, RIG-1-like receptor signaling pathway, and ribosome [37]. More et al. (2021) 

conducted a PPI network based on SARS-CoV-2 related genes from GeneCards 

database. Gene Ontology (GO) biological process of hub proteins composed of viral life 

cycle, C-C chemokine receptor activity, and platelet activation, while Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment consists of FoxO, 

GnRH, ErbB, Neurotrophin, Toll-like receptor, IL-17, TNF, insulin, HIF-1, JAK-STAT, 

estrogen, NF-κ, chemokines, VEGF, and thyroid hormone signaling pathway [38].  
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 Several previous studies applied biological network analysis to discover the key 

genes, molecular mechanisms, and candidate targeted drugs in COVID-19. However, 

they mainly focused on the high-throughput data from cell cultures and animal models 

rather than the clinical data. Furthermore, a small number of network biology research 

used gene expression data from leukocytes to investigate inflammatory responses in 

COVID 19. Therefore, biological network analysis and drug repurposing in COVID-19 

induced cytokine storm based on severe patients is the primary goal in this study 

 This study aims to identify the key genes, underlying molecular mechanisms, 

candidate targeted drugs, and novel biomarkers pertinent to the cytokine storm 

processes in COVID-19 using PPI network analysis based on leukocytes transcriptomics 

data of severe COVID-19 patients. The further goals of this study are to reveal candidate 

biomarkers and target drugs from systems biology approaches. 

1.2 RESEARCH OBJECTIVE  
1. To identify the key genes and underlying molecular mechanisms of inflammatory 

processes in severe COVID-19 patients using PPI network analyses 

2. To discover the novel biomarkers and candidate drugs via PPI network analysis 

and network-based drug repurposing 

1.3 SCOPES OF THE REASERCH 
 In this study, the leukocyte transcriptomic profiles of severe COVID-19 patients 

were downloaded from Gene Expression Omnibus (GEO) DataSets [39] to identify 

differentially expressed genes (DEGs). In addition, the human interactome data was 

collected from Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

v11.0 database [40] for human interactome network construction. The DEGs were 

mapped with the list of the genes in the interactome data for establishing the seed 

nodes. The immune-related PPI network was constructed using a network diffusion 

algorithm called Laplacian heat diffusion (LHD). Functional enrichment analysis was 

performed on the network to find molecular mechanisms. Moreover, the key genes were 
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identified via several network centrality measurements. The drug-gene interaction 

networks were built based on the identified key genes using drug-gene or drug-protein 

interaction databases searching to discover the alternative targeted drugs. The 

interaction results were confirmed using structural analysis such as molecular docking. 

Furthermore, the combination of two transcriptomic datasets from different studies was 

conducted to construct the common PPI network for further discovery of key genes and 

candidate drugs. MicroRNA (miRNA)-mRNA regulatory networks were also established 

to find novel candidate biomarkers for severe COVID-19 prediction. 

1.4 EXPECTED OUTCOMES 
1. This study could reveal underlying molecular mechanisms and key genes in 

severe COVID-19.  

2. This study could discover candidate targeted drugs and novel biomarkers to treat 

and predict severe COVID-19. 

3. The identified candidate drugs and biomarkers can be applied in clinical practice. 

1.5 AN OVERVIEW OF THE RESEARCH 
 Figure 1 shows the overview of this thesis. The thesis contains three parts. Part I 

describes the background, motivation, research objectives, scopes of the research, and 

expected outcomes. Part II consists of two research articles relevant to the proposed 

study. Part III explains discussions, limitations, suggestions, and future works. 

 
Figure 1. An overflow of the contains in the thesis. 
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 The topic of the first article is “Immune-Related Protein Interaction Network in 

Severe COVID-19 Patients toward the Identification of Key Proteins and Drug 

Repurposing”. This article proposed a network diffusion method named Laplacian heat 

diffusion (LHD) algorithm to construct an immune-related PPI network (IPIN) based on 

leukocyte transcriptomic profiles in severe COVID-19 patients. Functional enrichment 

analysis was performed to find the underlying molecular mechanisms. Additionally, two 

network clustering algorithms, such as Markov Clustering (MCL) and Molecular Complex 

Detection (MCODE), were proceeded to compare the difference between module 

detection. Numerous centrality measurements, such as degree, betweenness, 

closeness, and eigenvector, were computed to find the key genes and proteins in the 

network. Moreover, a ranking scoring was developed by all centrality scores 

prioritization to identify the key genes in comparison with the conventional centrality 

measurements. Drug-gene and drug-protein interaction networks were also constructed 

based on the identified key genes to discover candidate targeted drugs using searching 

drug interaction databases. The identified key genes and candidate drugs were 

validated via evidence from literature reviews in computational, experimental, and 

clinical research.   

 The topic of the second article is “Multi-level Biological Network Analysis Based 
on Leukocyte Transcriptomic Profiles in Severe COVID-19: Shed Light on Systems 
Biology to Precision Medicine”. To find further molecular mechanisms, key genes, and 
candidate drugs, two transcriptomic datasets were combined to find common DEGs. 
Functional enrichment analysis was conducted based on the common DEGs. This article 
aims for non-bioinformatician users to understand the workflow of systems biology 
application in precision medicine. Therefore, the PPI network was constructed in a 
software tool in the STRING database and was analyzed and visualized in a user-
friendly software tool. In addition, the key genes were identified using a combination of 
between and degree centrality calculation. A survival analysis using the myeloid 
leukemia model was conducted to validate the key genes. Drug-gene interaction 
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networks were also established from the searching databases. The interactions were 
evaluated from a structural biological approach called molecular docking. Furthermore, 
network community detection was operated using a network clustering algorithm to find 
specific molecular mechanisms of severe COVID-19. miRNA-mRNA regulatory networks 
were also built based on the clustered PPI network to identify novel biomarkers, which 
were miRNAs. 
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PART II 
RESEARCH ARTICLES 

 
2.1 RESEARCH ARTICLE 1 

(Published: Biomolecules, vol. 12, no. 5, p. 690–721) 
Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the 

Identification of Key Proteins and Drug Repurposing 
Pakorn Sagulkoo 1,2, Apichat Suratanee 3,4 and Kitiporn Plaimas 5,6,* 

1Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University,  
Bangkok 10330, Thailand; pakorn.sagulkoo@cmu.ac.th  

2Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine,  
Chiang Mai University, Chiang Mai 50200, Thailand 

3Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology 
North Bangkok, Bangkok 10800, Thailand; apichat.s@sci.kmutnb.ac.th  

4Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology 
Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, 

Thailand 
5Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and 
Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 

6Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University,  
Bangkok 10330, Thailand 

*Correspondence: kitiporn.p@chula.ac.th 

Abstract: Coronavirus disease 2019 (COVID-19) is still an active global public health 
issue. Although vaccines and therapeutic options are available, some patients 
experience severe conditions and need critical care support. Hence, identifying key 
genes or proteins involved in immune-related severe COVID-19 is necessary to find or 
develop the targeted therapies. This study proposed a novel construction of an immune-
related protein interaction network (IPIN) in severe cases with the use of a network 
diffusion technique on a human interactome network and transcriptomic data. 
Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate 
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immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-
three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), 
mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the 
potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, 
IPIN can be a good representative network for the immune system that integrates the 
protein interaction network and transcriptomic data. Thus, the key proteins and target 
drugs in IPIN help to find a new treatment with the use of existing drugs to treat the 
disease apart from vaccination and conventional antiviral therapy. 
Keywords: severe COVID-19; immune system; network diffusion; protein-protein 

interaction network; drug repurposing 

2.1.1 INTRODUCTION  
Coronavirus disease 2019 (COVID-19) has been spreading worldwide, despite 

several developed vaccines, still causing numerous cases. Moreover, most causes of 
death are from severe complications from the disease. Currently, the global statistical 
data from the World Health Organization (WHO) indicate that 476,374,234 and 
6,108,976 cases are infected and dead, respectively (26 March 2022) [1]. COVID-19 is 
an infectious disease caused by severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), a positive-sense single-strand RNA (+ssRNA) virus [2]. SARS-CoV-2 is a 
betacoronavirus, classified in the Coronaviridae family [3]. Although SARS-CoV-2 incurs 
a well-known pandemic coronavirus infection in the present, for severe respiratory 
diseases resulting from the two coronavirus diseases, most known cases emerged 
before, in the last two decades. For example, SARS-CoV pneumonia occurred from 
November 2002 to August 2003 from Guangdong, China, spreading to 30 countries 
worldwide, having 8422 confirmed cases and 916 deaths [4]. Several epidemiolocal 
studies suggested that palm civets (Paguma larvata) in a market in Guangdong were 
the initial hosts for SAR-CoV infection before the emergence of human-to-human 
transmission [5]. Middle East Respiratory Syndrome (MERS) was first reported in 
Jeddah, Saudi Arabia, in June 2012. It then spread to many countries in the Arabian 
Peninsula and to some countries in North Africa, Western Europe, East Asia, Southeast 
Asia, and North America [6]. The disease is caused by MERS coronavirus (MERS-CoV), 
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which has much evidence indicating that its hosts are camels [7]. Various reports show 
2578 confirmed cases and 888 deaths from MERS [8,9]. The first case of COVID-19 was 
reported in Wuhan, China, in December 2019 [10]. The patient was diagnosed with 
severe pneumonia with an unknown cause [11], while the number of cases in Wuhan 
increased to 41 in January 2020. In the same month, the first evidence revealed human-
human transmission and asymptomatic or pre-symptomatic transmission [12]. 
Afterwards, COVID-19 spread from China to Thailand, Singapore, Vietnam, Taiwan, 
Japan, South Korea, Nepal, and the United States [13]. On 11 February 2020, COVID-19 
was declared a pandemic by the WHO [12]. 

As mentioned above, COVID-19 is caused by SARS-CoV-2, a +ssRNA virus 
classified as a betacoronavirus. SARS-CoV-2 genome sequence shares 79% of genes 
with SARS-CoV genome compared to MERS-CoV, which has only 53% similarity. 
Nonetheless, SARS-CoV-2 has a percent identity of more than 96% when compared to 
bat-SARS-like CoV (SL-CoV), suggesting that bats can be an initial host of COVID-19 
[14]. SARS-CoV-2 genome also shares 85.5 to 92.4% of identity with pangolin 
coronavirus genomes, indicating that pangolins could be an initial host of the infection 
[15]. The genomic content of SARS-CoV-2 consists of 16 non-structural proteins (NPs), 4 
structural proteins, and 9 putative accessory factors [16]. The 16 NPs contain open 
reading frame (ORF) 1a and 1b. There are three crucial NPs that play a vital role in 
SARS-CoV-2 replication and pathogenesis. For instance, papain-like protease (PLpro) 
and 3C-like protease (3CLpro) have functions to cleave the viral polyprotein translated 
from ORF1a and ORF1b into 16 NPs. RNA dependent RNA polymerase (RdRp) 
replicates the viral genome in host cells [17,18]. Structural proteins, composed of spike 
(S), envelope (E), membrane (M), and nucleocapsid (N) protein, play a significant role 
as a viral genome protector and virulent factors used for virus entry [19]. The putative 
accessory factors are encoded from ORF3b, ORF6, ORF7a and ORF8. Their roles are 
not well understood, although some studies revealed that they were involved in 
interferon antagonism and impaired host immune response [20]. 

The pathogenesis of COVID-19 occurs when the virus enters a host respiratory 
epithelial cell using an S protein primed by transmembrane serine protease 2 
(TMPRSS2) binding with a host membrane receptor, such as angiotensin-converting 
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enzyme 2 (ACE2) receptor [21,22]. Meanwhile, SARS-CoV-2 also binds with Toll-like 
receptors (TLR) 4 and 8, causing innate immune response that will be described in 
further detail [23]. After entering the host cell, the viral genetic material is replicated to 
copied viral genomes and translated to essential viral proteins in the host cytoplasm. 
The copied viral genomes are assembled with the translated structural proteins to form 
the mature viral particles. Then, the replicated virions are released from the infected host 
cell and enter other non-infected host cells [24]. During the viral replication, some viral 
components become pathogen-associated molecular patterns (PAMPs) while the 
infected host cells express endogenous damage-associated molecular patterns 
(DAMPs). These molecules are recognized by pattern recognition receptors (PRRs) in 
the host cells such as TLR-3, 7, and 8, retinoic acid-inducible gene 1 (RIG-1)-like 
receptors (RLRs)/melanoma differentiation-associated gene 5 (MDA5), and NOD-like 
receptors (NLRs) [25]. The interaction between PAMPs including DAMPs and PRRs in 
the infected host cells activates the host innate immune response by promoting the 
production of antiviral and proinflammatory cytokines; for example, interferon α (IFN-α), 
IFN-β, IFN-γ, interleukin 1β (IL-1β), IL-6, IL-12, IL-18, IL-33, and tumor necrosis factor α 
(TNF-α) [26]. Moreover, PAMPs and DAMPs’ interaction with PRRs releases nuclear 
factor κB (NF-κB) [27]. NF-κB from the infected host cell stimulates innate immune cells 
such as dendritic cells (DCs), monocytes, macrophages, neutrophils, and natural killer 
(NK) cells to secrete further proinflammatory cytokines [27,28]. As a result, the 
uncontrolled proinflammatory cytokines are excessively released from both immune and 
respiratory epithelial cells, leading to collateral tissue damage. This phenomenon is 
called hyperinflammation or a cytokine storm, the most common fatal complication in 
COVID-19 [29]. 

Pathophysiology of severe COVID-19 is initiated when cytokine storm injures 
lung epithelial and endothelial cell damage and induces apoptosis, resulting in 
increased pulmonary vascular permeability [30]. The plasma is then leaked from the 
capillary to the alveolar space. Consequently, the gas exchange defect occurs, leading 
to acute respiratory distress syndrome (ARDS). Patients with ARDS will have progressive 
dyspnea, hypoxia and require ventilation support and intensive care [31]. Unfortunately, 
the excessive proinflammatory cytokines also affect other organs, such as the 
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gastrointestinal tract, cardiovascular system, brain, liver, and kidney [32]. As a result, 
the patients will progress the signs and symptoms of multiple organ injuries; for 
instance, nausea, vomiting, diarrhea, hemodynamic instability, alterative mental status, 
heart tissue damage, elevated liver enzyme, and creatinine rising [33]. Cytokine storms 
not only directly injure several organs but also generate organ infarction due to 
increased thromboembolic phenomena [34]. In addition, disseminated intravascular 
coagulation (DIC) can arise in severe COVID-19 because of the persistent coagulation 
factor and platelet consumption, inducing further multiple organ injury [35]. Severe 
COVID-19 patients usually die from multiple organ dysfunction [36]. Cytokine storms can 
also provoke other serious conditions, such as secondary hemophagocytic 
lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS), characterized 
by monocytes and macrophages engulfing erythrocytes, platelets, immune cells, and 
other host cells. Hence, both sHLH and MAS can promote more collateral tissue 
damage, worsening multiple organ dysfunction [37]. 

The current treatment trends in COVID-19 are using vaccination to prevent the 
disease and prescribing antiviral agents to infected people [38-41]. Although COVID-19 
susceptibility and severity can be improved by using well-developed vaccines and 
effective antiviral therapies, some patients still progress the disease to the cytokine 
storm and other severe complications. COVID-19-associated cytokine storms can be 
treated with intravenous corticosteroid. Several systemic reviews and meta-analyses 
have indicated that systemic corticosteroids can improve critically ill COVID-19 patients 
[42-46]. However, systemic corticosteroid provides many unexpected side effects, such 
as hyperglycemia, adrenal suppression, and increased secondary bacterial infection 
[47-49]. Therefore, finding novel target treatments in severe COVID-19 instead of 
conventional medication is necessary for more effective treatment and fewer side 
effects. Drug repositioning is another technique to discover an existing drug to treat a 
disease. Systems biology and network analysis have been directly applied to identify 
key genes or proteins [50-53], drug–gene or drug–protein interactions [54,55], and 
drug–disease associations [56,57]. Structural bioinformatics is the main task at the 
molecular structure level to identify possibilities of compound targeting, such as the 
study of inverse docking fingerprints in drug repurposing for SAR-CoV-2 [58]. Modern 
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biopharmaceutical approaches, such as large biomolecules like antibodies 
(immunoglobulins) and plasma, are of interest to treat COVID-19. However, their roles in 
clinical trials are currently being studied to treat severe cases. 

In the precision medicine and data science era, bioinformatics and systems 
biology are central in molecular medicine and targeted therapy. Network biology is a 
powerful tool to identify key genes and targeted drugs involved in many diseases by 
using topological analysis and network diffusion algorithms. In addition, protein–protein 
interaction network analysis is usually used to find hub and bottleneck proteins [59-61], 
to infer protein functions [62-64], find gene–disease [65-67] and disease–disease 
associations [68,69]. Various centrality calculations, such as degree, betweenness, 
closeness, and eigenvector, play an important role in biological network analysis. 
Several systems biological studies have performed these centralities to identify key 
genes and gene prioritization in the disease-related networks [53,70-72]. Nonetheless, 
analyses of importance and difference of the centralities in biological roles are still 
needed for further investigation. 

There are two methods for extracting a specific subnetwork: the neighborhood 
and diffusion approaches. Neighborhood method is a traditional technique performed 
widely in many biological network studies [73-77]. Furthermore, there are several 
COVID-19 network studies constructing protein–protein interaction networks and 
selecting a group of related proteins using this method [50,51,54,55,78-80]. This method 
extracts subnetworks by considering the nodes with the low shortest path with disease-
associated genes or seed nodes [81]. The benefits of neighborhood-based subnetwork 
construction are that the approach is user-friendly and has fast running time. However, 
some neighbor nodes in the networks are not disease-associated genes, causing 
topological changes and missing identification of key nodes. Therefore, the diffusion-
based method is preferred to build specific protein–protein interaction subnetworks, 
such as immune, inflammation, and viral–host interaction network, with lower false-
positive disease-related nodes, although it is time consuming and requires coding skills. 
Network diffusion is the method used to predict novel disease-associated genes based 
on known disease-associated genes via considering the diffusion or probability scores 
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from iterative running algorithms at time stable. Nodes with high diffusion scores are 
inferred as theoretical disease-related genes [82]. 
 Moreover, there have been no COVID-19 studies involved in immune-related 
biological networks using the network diffusion method. As a result, we proposed this 
method to construct an immune-related protein interaction network (IPIN). A network 
diffusion method named Laplacian heat diffusion (LHD) algorithm on a human 
interactome network was conducted in this study to construct an IPIN in severe COVID-
19 patients. Key immune-related proteins in the network were identified using several 
centralities and ranking score measurement. Additionally, drug repurposing was also 
performed to find target medication to those key proteins. This study aims to discover 
candidate target drugs to treat severe COVID-19 at clinical levels. 

2.1.2 MATERIALS AND METHODS 
The summary of materials and methods used in our study is illustrated as a 

diagram in Figure 2. First, differentially expressed genes (DEGs) of the transcriptomic 
data downloaded from GEO DataSets were mapped with the human interactome data 
from STRING v11.0 database [83] for forming the seed nodes. Second, construction of a 
human protein interactome network obtained from STRING database [83]. Third, the 
Laplacian heat diffusion (LHD) algorithm operated network diffusion. Fourth, a 
permutation test filtered out false-positive high diffusion score nodes. Fifth, significantly 
high diffuse score nodes were used to construct the IPIN. Metascape [84] was also 
performed for the functional enrichment analysis of the network. Sixth, Molecular 
Complex Detection (MCODE) and the Markov Clustering (MCL) algorithm were 
conducted to find IPIN modules. Next, the centralities and the ranking score were 
calculated to identify the key immune-related proteins. Finally, candidate drugs targeting 
the key proteins were discovered by chemical and drug databases searching for drug–
gene and drug–protein interactions. 
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Figure 2. Summary of the process to identify the key proteins and drug repurposing in 
the severeCOVID-19 based on an immune-related protein interaction network (IPIN). 
Circles represent protein nodes in a protein-protein interaction network. Dark blue 
circles are nodes of the DEGs’ proteins. Light blue circles are nodes of proteins having 
diffuse scores. Orange circles represent high diffusion score proteins for IPIN. Red, 
green, and yellow circles are proteins in different modules. Pink circles are target 
proteins of an existing drug. 

2.1.2.1 DATA COLLECTION AND PREPROCESSING 
i. Human Protein Interactome 

The human protein interactome data, containing 19,566 proteins (or nodes) and 
11,938,498 interactions, was obtained from STRING v11.0 database (https://string-
db.org/ accessed on 20 November 2021) [83]. R package ‘dplyr’ [85] was used to 
manipulate the data. The interactions with a combined score between 900 and 999 were 
included. R package ‘igraph’ [86] was conducted to eliminate isolated nodes and 
multiple edges. As a result, the rest of the interactome had 11,334 proteins and 123,263 
interactions. The combined scores between 900 and 999 were changed to a weighted 
score by rescaling into the range of [0.01, 1]. 

ii. Transcriptomic Data 
The collected data was from Gill et al.’s study (2020) in GEO DataSets 

(GSE154998) (https://string-db.org/ accessed on 20 November 2021) [87]. The 
researchers collected leukocytes samples from COVID-19 cases and controls in an 
intensive care unit (ICU) to perform transcriptomic profiles by RNA sequencing (RNA-
seq) method. The total sample size was 14, with 7 samples being COVID-19 cases and 
the rest being controls. The SARS-CoV-2-positive cases were confirmed using reverse 

https://string-db.org/
https://string-db.org/
https://string-db.org/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

transcription-polymerase chain reaction (RT-PCR) method. In addition, genes from RNA-
seq data having the false discovery rate (FDR) < 0.05 and log2fold change (log2 FC) > 
1.5 were differentially expressed genes (DEGs). Hence, there were 224 genes meeting 
the criterion (Table S1 in Supplementary Materials). The DEGs then were mapped with 
the protein list in the protein–protein interaction network of the STRING v11.0 database 
by using Ensembl ID joining [83]. Thus, there were 189 Ensembl protein IDs (Table S2 in 
Supplementary Materials). 

With the use of network diffusion, the seed nodes were prepared from mapping 
between these 189 Ensembl IDs (the immune-related proteins from DEGs) and the 
human interactome data (in Section 2.1.1). This resulted in 141 seed nodes (Table S3 in 
Supplementary Materials). 

2.1.2.2 IPIN CONSTRUCTION WITH NETWORK DIFFUSION 
i. LHD Algorithm 

This study used LHD algorithm to operate human interactome network 
propagation. In many studies, LHD is one of the most common network diffusion 
algorithms used to infer disease-associated genes or proteins [88,89]. Given a network 
called G, let W be a weight adjacency matrix of network G calculated from rescaling the 
combined scores and D be a diagonal matrix whose values are a degree of each node 
arranged diagonally. Laplacian matrix (L) was calculated from D − W. An initial diffusion 
vector (𝐻0) of all nodes is conducted normally by setting the initial heat diffusion score 
(ℎ0) to each node. In general, the initial heat scores (ℎ0) are set as 1/n where n is the 
number of seed nodes related to the subject of interest (immune-related proteins as 
seeds in our case) while the other nodes are set as 0. The diffusion vector at time t (𝐻𝑡) 
was updated based on the previous diffusion vector at time t-1 (𝐻𝑡−1) according to this 
equation: 

𝐻𝑡 = 𝐻𝑡−1 × 𝑒−𝐿𝑡 (1) 

where e is defined as Euler’s number (≈2.1828). The network diffusion was iterated 
based on Equation (1) until two consecutive diffusion vectors were relatively similar. In 
our case, the relative similarity is met if ║𝐻𝑡 − 𝐻𝑡−1║ < 10−6, then the diffusion 
becomes stable. The latest diffusion scores after the stability are used as an indicator of 
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the relevant scores to the seed nodes. In another word, a node with a high diffusion 
score was strongly associated with seed nodes. 

In our cases, the initial diffusion vector (𝐻0) contained the initial scores of 11,334 
protein nodes in the whole protein–protein interaction network. The initial scores for 141 
seed nodes were set as 1/141 while other protein nodes are set as 0. After the network 
propagation was stable, the final scores were then used for further permutation test 
analysis. In this study, LHD algorithm was carried out by using R package ‘diffusr’ [90]. 
The parameters in the package were well-established using the default setting. 

ii. Permutation Test 
When LHD algorithm finishes the network propagation, in theory, the nodes with 

the high diffusion score are strongly associated with the disease-associated proteins. 
However, some nodes receiving the high diffusion score can be false-positive. This 
false-positive result can occur because some factors such as the topological structure 
of network G can provide a high diffusion score apart from the actual association with 
the seed nodes. Therefore, a permutation test should be conducted to filter out nodes 
with the false-positive high diffusion score. The permutation test measures whether 
nodes have a high diffusion score due to statistical significance or chance. The test was 
operated by assigning 1000 different sets of the initial seeds into the human interactome 
network for LHD algorithm. Before running the algorithm in each set, 141 seed nodes 
were randomly assigned, independent of DEGs, from 11,334 nodes. Hence, the sets of 
seed nodes in the original set and in the 1000 sets were different. The z-score of the 
diffusion score of node n (𝑍(𝑛)) was calculated according to this equation: 

𝑍(𝑛) =  
ℎ(𝑛) −  𝑋̅(𝑛)

𝑆𝐷(𝑛)
 , (2) 

where h(n) is defined as the diffusion score of node n in the original set, 𝑋̅(𝑛) and 
𝑆𝐷(𝑛) are the mean and standard deviation, respectively, of diffusion score of node n in 
the original set and 1000 permutation sets. A node with a z-score more than 1.96 (p-
value < 0.05) had the true-positive high diffusion score and was selected for the IPIN 
construction. Table S4 in Supplementary Materials shows the original diffuse scores 
including with the mean and standard deviation calculated from the diffusion score in 
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the original set and 1000 permutation sets in each node in the whole protein–protein 
interaction network. 

iii. IPIN Construction 
After the network diffusion by LHD algorithm and the validation of the high 

diffuse score nodes by permutation testing were performed, 154 nodes with significant 
diffusion scores were obtained (Table S5 in Supplementary Materials). The filtered 
significant nodes from the permutation test were mapped with the STRING human 
interactome network. The largest component of the significantly high diffusion score 
nodes consisting of 97 nodes and 778 interactions was selected as our immune-related 
protein interaction network or IPIN for further functional enrichment analysis, topological 
analysis, and centrality measurement. The construction of the IPIN was based on 
leukocytes or white blood cells’ transcriptome data. Leukocytes are the cells that play an 
important role in pathogen defense mechanisms or immunity. The gene expression of 
leukocytes during the infection indicates the host’s immune status against the 
pathogens. Thus, this IPIN was constructed to represent a core host immune system 
against the severe COVID-19. The edge list information for this IPIN is also provided in 
Table S14 in Supplementary Materials. 

2.1.2.3 TOPOLOGICAL ANALYSIS, NETWORK CENTRALITY, AND RANKING 
SCORES 

R package ‘igraph’ [86] was performed to calculate global and local topological 
parameters and network centrality [86]. The global topological parameters such as the 
number of nodes (N), the number of edges (M), average degree (<k>), diameter (D), 
mean shortest path length (mspl), and average clustering coefficient (acc) were 
computed. Furthermore, degree distribution and a clustering coefficient versus degree 
curve were plotted to evaluate the scale-free network properties. Several local 
parameters and centrality measurements such as degree centrality (𝐶𝐷), betweenness 
centrality (𝐶𝐵), closeness centrality (𝐶𝐶), and eigenvector centrality (𝐶𝐸) were calculated 
to find the essential nodes in the network. A node with more than 90th percentile 
centrality value was listed and its functional importance in the network and the disease 
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was discussed. These high-value nodes in the four centrality sets were plotted using an 
upset plot from R package ‘UpSetR’ [91] to find the node overlapping in each centrality. 

Degree centrality is the number of adjacent nodes having the interaction with 
interested node i, according to this equation 

𝐶𝐷(𝑖) = ∑ 𝐴𝑖𝑗 ,

𝑗

  (3) 

where Aij is a value of a non-weight adjacency matrix (A) of node i and j, respectively. In 
network biology, the high-degree proteins are hub nodes and play an important role in 
the network function [92]. Therefore, numerous medications are designed for targeting 
the hub nodes. 

Betweenness centrality is the summation of the ratio of the shortest path between 
node u and v that passes through node i. The betweenness centrality equation is 

𝐶𝐵(𝑖) = ∑
𝜎𝑢𝑣(𝑖)

𝜎𝑢𝑣
𝑢 ≠𝑣 ≠𝑖

 , (4) 

where 𝜎𝑢𝑣 is a total number of the shortest path between node u and v and 𝜎𝑢𝑣(𝑖) is the 
number of the shortest path between node u and v that pass through node i. The high-
betweenness proteins indicate the bottleneck property, forming the bridges controlling 
the flow of information in the network. Interruption of the bottlenecks by several targeted 
therapies can result in network function destruction in many diseases, improving the 
disease outcomes [92-95]. 

Closeness centrality is the inverse of shortest path distance summation between 
node i and all other nodes in the network. The closeness centrality equation is shown as 

𝐶𝐶(𝑖) =  
𝑁 − 1

∑ 𝑑(𝑖, 𝑗)𝑁
𝑗=1,𝑗≠𝑖

 , (5) 

where N is the total number of nodes in the network and 𝑑(𝑖, 𝑗) is the shortest path 
length between node i and node j. Some studies used closeness centrality to find 
essential genes and proteins in several biological problems [96.97]. 

Eigenvector centrality is the extended form of degree centrality that focuses on 
the global high-degree nodes more than the local high-degree nodes. Eigenvector 
centrality has the assumption that the essential nodes should connect to the other 
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important nodes. Therefore, nodes with high eigenvector centrality have high degree 
centrality, and their neighbored nodes also have a high degree value. The equation is 
demonstrated as 

𝐶𝐸(𝑖) =  
1

𝜆
 ∑ 𝐴𝑖𝑗𝐶𝐸(𝑗)

𝑗

 , (6) 

where λ is the largest eigenvalue of A. Eigenvector centrality is applied to analyze many 
connectome studies in neurological diseases [98-101]. 

As mentioned above, all four centralities play a vital role in discovering essential 
genes or proteins. Moreover, numerous traditional network biology studies usually use 
degree and betweenness centrality to find essential genes and proteins. Closeness and 
eigenvector are occasionally applied to find vital genes and proteins. Therefore, a node 
with a high value of all centralities was a key protein in the network. The ranking score 
(SR) was applied to rank the nodes based on the centralities. Let C be a set of all 
centralities and c represent a centrality measure in C. A ranking score of any node i 
(𝑆𝑅(𝑖)) was calculated based on the reciprocal of the product of a ranking position of 
node i in each centrality c (𝑘(𝑖, 𝑐)), according to this equation 

𝑆𝑅(𝑖) =  ∏
1

𝑘(𝑖, 𝑐)
𝑐𝜖𝐶

 . (7) 

Nodes with high ranking scores greater than the 90th percentile were considered 
as key proteins in the IPIN network. In addition, nodes with degree and betweenness 
centrality greater than the 90th percentile were used to compare the ranking scoring 
nodes. 

2.1.2.4 FUNCTIONAL ENRICHMENT ANALYSIS AND NETWORK CLUSTERING 
Metascape (https://metascape.org/gp/index.html#/main/step1 accessed on 10 

December 2021) [84] was conducted for functional enrichment analysis in the largest 
component network according to the six terms: Gene ontology biological process (GO-
BP) [102], Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [103], 
Reactome pathways [104], WikiPathways [105], Canonical pathways [106], and CORUM 
pathway [107]. Moreover, the Molecular Complex Detection (MCODE) algorithm [108] in 
Metascape was operated to cluster the enrichment terms into large groups to find the 

https://metascape.org/gp/index.html#/main/step1
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more common biological terms. The Markov Clustering (MCL) algorithm [109] was also 
used in the STRING v11.0 database to explore the network communities in the IPIN. The 
inflation parameter of MCL was set to 1.5. Functional enrichment analysis in each 
module was also conducted in STRING v11.0 database using GO-BP, REACTOME 
pathways, KEGG pathways, and WikiPathways term. In addition, the clusters were 
visualized by using STRING v11.0. 

2.1.2.5 DETECTION OF POTENTIAL DRUGS FOR DRUG REPURPOSING 
 The key proteins, having a ranking score, degree, or betweenness centrality 

above the 90th percentile, were used as the input to find drug–gene and drug–protein 

interactions from DrugBank database (https://go.drugbank.com/ accessed on 15 

December 2021) [110], Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/ 

accessed on 15 December 2021) [111], Comparative Toxicogenomics Databases (CTD) 

(http://ctdbase.org/ accessed on 15 December 2021) [112], and GeneCards 

(https://www.genecards.org/ accessed on 15 December 2021) [113]. Drugs which have 

United States Food and Drug Administration (FDA) approval and evidence of 

interactions with the key genes or proteins were selected. The STITCH v5.0 database 

(http://stitch.embl.de/ accessed on 18 December 2021) [114], containing drug–protein 

interaction information, was performed to confirm the chosen drugs. A confidence score 

of the interaction in the STITCH database was used to find suitable drug–protein 

interactions. The confidence score is the probability value calculated based on both 

experimental and computational evidence such as text mining, high-throughput 

experiments, co-expression and gene fusion data, and information from other 

databases. A drug with a confidence score of more than 0.9 was considered a 

candidate drug having efficiency for severe COVID-19 treatment. 

2.1.3 RESULTS 
2.1.3.1 IPIN CONSTRUCTION AND TOPOLOGICAL PROPERTIES 

The immune-related protein interaction network, known as IPIN, was obtained 
after the network diffusion and the validation of the high diffuse score nodes by 
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permutation test. This network consisted of 97 nodes and 778 interactions as shown in 
Figure 3. In addition, the STRING reports showed that the average node degree and the 
expected edges are 16 and 50, respectively. 

 
Figure 3. The largest component of the IPIN constructed from the mapping between the 
nodes with the significant diffusion scores and the human interactome network. The 
network consists of 97 nodes and 778 interactions. 
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Table 1 summarizes the global topological parameters of the IPIN. The average 
degree and diameter of the IPIN are 16.04 and 7, respectively. The network has the 
small-world effect because it provided the low mean shortest path length (mspl = 3.01) 
but the high average clustering coefficient (acc = 0.74). These behaviors are 
concordant with other biological networks. Local topological parameters in each node in 
the network, for example, clustering coefficient and degree, are summarized in Table S6 
in Supplementary Materials. To find the scale-free property, a degree distribution was 
plotted to prove the power law, as shown in Figure 4a. Furthermore, a clustering 
coefficient versus degree plot is illustrated in Figure 4b. The degree distribution plot 
reveals that it does not follow the power-law distribution because it provides a low 
correlation (R2 = 0.1). This appearance is explained by the IPIN is a real-world network 
extracted from the human interactome network. Thus, the power-law properties can be 
disrupted due to the subnetwork construction. Nevertheless, the clustering coefficient 
versus degree plot shows the independence between the clustering coefficient and 
degree (R2 = 0.061). The independent relation between clustering coefficient and 
degree is found in random and scale-free networks [115]. Analysis in the STRING 
revealed that the IPIN’s protein–protein interaction (PPI) enrichment p-value is significant 
(p-value < 10-16), indicating that the proteins have interactions with each other more than 
by chance. Thus, the interactions in the IPIN were more significant than random 
interactions. The IPIN was less likely to be a random network even though there is no 
suitable reason to explain the scale-free properties of the IPIN. 
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Table 1. Global Topological Parameters of the IPIN. 
Symbol Description Value 

N Number of nodes 97 
M Number of edges 778 

<k> Average degree 16.04 
d Diameter 7 
r Radius 4 

mspl Mean shortest path length 3.01 
D Density 0.17 

acc Average clustering coefficient 0.74 

 

 

(a) (b) 
Figure 4. Topological analysis of the IPIN. (a) Degree distribution plot. (b) Clustering 
coefficient versus degree plot. k denotes the degree; p(k) denotes the probability of 
degree k; c(k) denotes the clustering coefficient of a node that has degree k. 

2.1.3.2 FUNCTIONAL ENRICHMENT AND MODULE IDENTIFICATION IN IPIN 
The functional enrichment analysis was performed using a hypergeometric test 

and Benjamini–Hochberg statistical correction algorithm in Metascape [84], which 
integrates six biological and pathway enrichment terms: GO-BP [102], KEGG pathways 
[103], REACTOME pathways [104], WikiPathways [105], Canonical pathways [106], and 
CORUM pathway [107]. The results revealed that the terms were primarily involved in 
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immune pathways, cell division, nucleotide metabolisms, and protein processing, as 
shown in Figure 5. The immune pathways were associated with innate immune response 
and antiviral signaling pathways such as type I and II IFN (IFN-I and IFN-II) and IFN-
stimulated genes (ISGs). IFN-I mainly comprises of IFN-α and IFN-β, while IFN-γ is a 
component in IFN-II. The cell division terms were relevant to mitotic cell cycle process, 
mitotic metaphase, regulation of cell cycle, phase transition of cell cycle checkpoint at 
G1/S and G2/M, cytoskeleton-dependent cytokinesis, and regulation of sister chromatid 
separation. Moreover, nucleic metabolic pathways, such as pyrimidine metabolism, 
DNA metabolic process, and regulation of DNA replication, were identified. Apoptosis 
was also found from the enrichment analysis. Other enrichment terms were protein and 
enzyme processing, such as protein modification by small protein conjugation, negative 
regulation of catalytic activity, protein tetramerization, and protein localization to 
organelle. 

 
Figure 5. The bar graph represents the enrichment terms analyzed from the IPIN at a 
significant level (p-value < 0.01). Each enrichment term is colored based on the 
significance level. 
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In addition, MCODE algorithm clustered the functional enrichment terms into four 
modules, MCODE1, MCODE2, MCODE3, and MCODE4, as shown in Figure 6. For 
instance, MCODE1 (Figure 6a) represented the biological term related to innate immune 
and proinflammatory cytokine signaling pathways: IFN-α and IFN-β. MCODE2 (Figure 
6b) was associated with mitotic cell division, cell damage detection, and chromosome 
segregation. MCODE3 (Figure 6c) was involved in cell cycle checkpoint and cell cycle 
signaling pathways, and MCODE4 (Figure 6d) was enriched with protein processing 
and antigen presentation. Table 2 shows the enrichment analysis results from the 
MCODE algorithm. 

 
                                     (a)                                (b)                                        (c)                         (d) 

Figure 6. Module detection from the IPIN using MCODE algorithm in Metascape. (a) 
MCODE1 (marked as red nodes) had 26 nodes and 320 edges. (b) MCODE2 (marked 
as blue nodes) had 16 nodes and 49 edges. (c) MCODE3 (marked as green nodes) had 
7 nodes and 17 edges. (d) MCODE4 (marked as purple nodes) had 3 nodes and 3 
edges. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

Table 2. Clustering of functional enrichment analysis in the IPIN by Molecular Complex 
Detection (MCODE) algorithm. 

Functional 
Component 

Term ID Biological Term Log10 (p-value) 

MCODE1 

R-HSA-909733 Interferon alpha/beta signaling −70.8 
R-HSA-913531 Interferon signaling −57.5 

R-HSA-1280215 
Cytokine signaling in Immune 

system 
−42.5 

MCODE2 
R-HSA-2467813 Separation of sister chromatids −13.6 

R-HSA-69278 Cell cycle, mitotic −13.5 
 GO:0098813 Nuclear chromosome segregation −13.0 

MCODE3 

R-HSA-69615 G1/S DNA damage checkpoints −12.0 

R-HSA-176409 
APC/C:CDC20 mediated 

degradation of mitotic proteins 
−11.7 

R-HSA-176814 
Activation of APC/C and 
APC/C:CDC20 mediated 

degradation of mitotic proteins 
−11.7 

MCODE4 

R-HSA-983168 
Antigen processing: ubiquitination 

and proteasome degradation 
−6.0 

R-HSA-983169 
Class I MHC mediated antigen 
processing and presentation 

−5.7 

GO:0016567 Protein ubiquitination −5.0 

Network clustering of the IPIN by MCL algorithm provided four modules: MCL1, 
MCL2, MCL3, and MCL4. Figure 6 demonstrates the MCL modules of the IPIN. Further 
detail about the clusters is described in Table S7 in Supplementary Materials. The result 
from functional enrichment analysis of the four modules revealed that the MCL1 (Figure 
7a) was related to cell cycle regulation functions while MCL2 (Figure 7b) was mainly 
enriched in innate immune responses. Moreover, MCL3 (Figure 7c) had an association 
with nucleic acid metabolism. MCL4 (Figure 7d) mixed cell division and immune 
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response terms. The details of enrichment results in each MCL module are listed in 
Table S8 in Supplementary Materials. The enrichments result was aggregable with the 
result from the MCODE analysis. 

 
                                 (a)                               (b)          (b)                                        (c)                (d) 

Figure 7. Module detection from the IPIN using MCL algorithm performed in STRING 
v11.0. (a) MCL1 (marked as red) had 48 nodes and 234 edges. (b) MCL2 (marked as 
yellow) had 42 nodes and 528 edges. (c) MCL3 (marked as green) had 4 nodes and 3 
edges. (d) MCL4 (marked as blue) had 3 nodes and 3 edges. 

Functional enrichment and network clustering analysis revealed two large 
biological pathways: antiviral and innate immune response and cell division and cell 
cycle regulation (as shown in Figures 5–7 and Table 2). The innate immune response 
found in the study mostly correlated with IFN signaling pathways. IFN can be separated 
into two groups: type I and II IFN (IFN-I and IFN-II). IFN-I cytokines, such as IFN-α and 
IFN-β, play an essential role in innate immunity to many viral infections [116]. They are 
released by the interaction between PAMPs or DAMPs and PRRs. The IFN-I activation 
controls innate immunity and increases viral clearance by stimulating various antiviral 
proteins, such as MX1, OASs, and ISGs [117-121]. IFN-I is also involved in NK cells, B 
lymphocyte, CD4+, and CD8+ T lymphocyte stimulation [121]. Nonetheless, IFN-I 
signaling is suppressed and delayed in coronavirus infections, such as SARS-CoV, 
MERS-CoV, and SARS-CoV-2, causing viral clearance dysfunction. Persistent viral 
replication causes the release of uncontrolled proinflammatory cytokines, resulting in the 
cytokine storm [116,122,123]. This phenomenon is also called paradoxical 
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hyperinflammation. Although IFN-II, consisting of IFN-γ, has an immune function 
overlapping with IFN-I to stimulate the antiviral and innate immune response, it causes 
enhancement predominantly in antigen-presenting cells (APCs) [124]. Several studies 
have revealed that IFN-II exhaustion is usually found in severe COVID-19 patients, 
suggesting a vital role of IFN-II in the immunopathology of the disease [125-127]. As a 
result, IFN signaling enrichment found in the peripheral white blood cells can be from 
the compensating mechanism of immune cells for IFN suppression and delay in severe 
cases. However, IFN signaling predominance in this study can indicate the ongoing 
activation. Persistent IFN stimulation induces apoptosis of CD4+ T lymphocytes and 
causes lymphopenia. It also increases proinflammatory cytokine production [128-130]. 
Other evidence supports the notion that increased IFN-I in influenza viral infection can 
release excessive proinflammatory cytokines, resulting in respiratory epithelial apoptosis 
and severe pneumonia [131]. Because the IFN function in severe COVID-19 is 
complicated, the study of IFN roles in the disease should be more investigated. 

Leukocyte proliferation is the immune defense mechanism responding to 
infections. However, cell division and cell cycle regulation can also participate in the 
pathophysiology of COVID-19-associated cytokine storms. In the RNA-seq study used to 
construct the IPIN, the patient data revealed that severe COVID-19 cases had elevated 
neutrophils more than lymphocytes [87]. An excessive number of neutrophils can cause 
increased production of proinflammatory cytokines. Hence, finding the key immune-
related proteins in the cell cycle regulation is necessary to modulate the immune 
response in severe cases. Nucleic acid metabolism was also found in the enrichment 
analysis. Increased cell division also stimulates nucleic acid metabolism to produce 
DNA materials for chromosome segregation. Although cell division is found in 
leukocytes during the infection, several studies revealed that SARS-CoV could induce 
cell cycle arrest in host cell lines by using viral proteins interacting with cyclin and the 
cyclin-dependent kinase (CDK) complex [132-134]. Nevertheless, there is still no 
research about the relation between SARS-CoV-2 and leukocyte cell cycle regulation. 
Therefore, studying the cell cycle regulation of host cells in COVID-19 requires further 
investigation. 
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Another term found in the enrichment analysis was apoptosis or programmed 
cell death. Apoptosis in COVID-19 causes deleterious effects, leading to severe 
complications. For instance, lymphocyte apoptosis results in lymphopenia and delays 
adaptive immune response, increasing the cytokine storm risk. Many studies have found 
that B and T lymphocyte apoptosis is associated with severe COVID-19 [135-137]. 
Apoptosis is also found in respiratory epithelial and endothelial cells, causing the blood-
air barrier defect. This event leads to ARDS progression. Therefore, apoptosis regulation 
in severe COVID-19 is essential to improve adaptive immunity and reduce fatality rates. 

Furthermore, there was protein processing found in the IPIN enrichment analysis. 
Protein processing is post-translational modification occurring in the endoplasmic 
reticulum (ER) and Golgi apparatus. The immune cells during the infection have more 
active functions, such as cell proliferation and cytokine production. Hence, protein 
processing is highly expressed to play a role in these activities. 

2.1.3.3 KEY IMMUNE-RELATED PROTEINS IN THE IPIN  
2.1.3.3.1 IMPORTANT IMMUNE-RELATED PROTEINS WITH NODE CENTRALITIES 

Network centrality aspects such as degree, betweenness, closeness, and 
eigenvector centralities of each node in the IPIN are illustrated in Table S6 in 
Supplementary Materials. Nodes with degree, betweenness, closeness, or eigenvector 
centralities above the 90th percentile are shown in Table S9–S12 in Supplementary 
Materials, respectively. From the tables, 15 nodes have large degree values, and 10 
nodes have high betweenness values. In addition, 11 and 10 nodes have high 
closeness and eigenvector scores, respectively. These nodes are proteins playing a role 
in antiviral, innate immune, apoptosis, and cell cycle regulation signaling pathways. The 
function of each protein including high centrality predominance is displayed in Table 3. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

Table 3. Summary of biological function of 23 nodes with high centrality predominance. 
Symbol Description High Centrality Biological Function 
CCNA2 Cyclin A2 DC, BC, CC Cell cycle regulation  

CCNE1 Cyclin E1 CC Cell cycle regulation  

CDC20 Cell Division Cycle 20 BC Cell cycle regulation 

CDC25A Cell Division Cycle 25A BC, CC Cell cycle regulation 

CMPK2 
Cytidine/Uridine 

Monophosphate Kinase 2 
BC, CC 

Salvage nucleotide 
synthesis 

DDX58 DExD/H-Box Helicase 58 BC, CC Viral dsRNA recognition 

FOXM1 Forkhead Box M1 BC 
Transcription activator in 

cell proliferation 

IFI6 IFN-α Inducible Protein 6 DC, EC 
Apoptosis regulation and 

antiviral activity 

IFI35 IFN Induced Protein 35 DC, BC 
Regulation of innate 
immune signaling 

pathway 

IFIH1 
IFN Induced With Helicase C 

Domain 1 
BC, CC 

Intracellular sensor of 
viral RNA 

IFIT1 
IFN Induced Protein With 

Tetratricopeptide Repeats 1 
DC, CC, EC Viral replication inhibition 

IFIT2 
IFN Induced Protein With 

Tetratricopeptide Repeats 2 
DC, EC Viral replication inhibition 

IFIT3 
IFN Induced Protein With 

Tetratricopeptide Repeats 3 
DC, EC Viral replication inhibition 

IRF7 IFN Regulatory Factor 7 DC, EC Antiviral activity 

ISG15 IFN-stimulated gene 15 DC, CC, EC Antiviral activity 
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Table 3. Cont. 
Symbol Description High Centrality Biological Function 

MX1 MX Dynamin Like GTPase 1 DC, CC, EC Viral replication inhibition 

OAS1 
2′-5′-Oligoadenylate 

Synthetase 1 
DC Viral replication inhibition 

OAS2 
2′-5′-Oligoadenylate 

Synthetase 2 
DC Viral replication inhibition 

OASL 
2′-5′-Oligoadenylate 

Synthetase Like 
DC Antiviral activity 

RRM2 
Ribonucleotide Reductase 

Regulatory Subunit M2 
BC, CC Cell cycle regulation 

RSAD2 
Radical S-Adenosyl 
Methionine Domain 

Containing 2 
DC, BC, CC, EC Antiviral activity 

STAT1 
Signal Transducer And 

Activator Of Transcription 1 
DC, EC 

Stimulation of 
proinflammatory cytokines 

XAF1 XIAP Associated Factor 1 DC, EC Antiapoptotic inhibition 

IFN, interferon; XIAP, X-linked inhibitor of apoptosis protein; dsRNA, double-strand RNA; 
DC, degree centrality; BC, betweenness centrality; CC, closeness centrality; EC, 
eigenvector centrality. 

From the tables, we found that nodes with high betweenness values were 
primarily involved in cell cycle regulation (6 of 10 nodes), while nodes with high degree 
and eigenvector values were mainly related to antiviral and innate immune signaling 
pathways (13 of 15 nodes and 9 of 10 nodes with high degree and eigenvector values, 
respectively). In addition, we discovered that the high closeness nodes had a similar 
proportion between immune signaling and cell proliferation, explaining that 6 of 11 
nodes were involved in the innate immune response. At the same time, the rest of the 
nodes had a function associated with cell cycle regulation. 
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The upset plot In Figure 8 shows that all nodes with high eigenvector values are 
in the high degree nodes. That means the high-eigenvector nodes form a subset of the 
high-degree nodes. Furthermore, the high-betweenness nodes share the node members 
mainly with the high-closeness nodes (the intersection size is calculated from 5 + 1 = 6). 
There is one node shared in all centralities (RSAD2). The degree, betweenness, and 
closeness centrality provide unique nodes that do not intersect with other centralities. 
The numbers of unique nodes in degree, betweenness, and closeness centrality are 3, 
2, and 1, respectively. 

 
Figure 8. Upset plot of nodes with high values in the four centralities: degree, 
betweenness, closeness, and eigenvector centrality. 

2.1.3.3.2 IMPORTANT IMMUNE-RELATED PROTEINS WITH THE RANKING 
SCORES  

As shown in Table 4, there are 10 nodes with a ranking score above the 90th 
percentile. Among them, eight nodes have functions relevant to innate immune response 
and antiviral activity: IFIT1, IFIT2, IFIT3, IRF7, ISG15, MX1, RSAD2, and STAT1. 
Interestingly, these immune nodes participate in IFN signaling pathways. The signaling 
pathway is usually activated when viral infections invade the hosts [138]. Stimulated 
IFNs increase the production of antiviral proteins, for example, ISG15 and MX1 
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[139,140]. In addition, the rest of the nodes, such as CDC25A and CCNA2, are involved 
in cell proliferation and cell cycle regulation. During infection, the immune system 
increases leukocyte proliferation to eradicate pathogens. As a result, cell division 
regulators can be found in the analysis. Both CDC25A and CCNA2 regulate cell cycle 
transition in G1/S phase [141]. Cell cycle control during G1/S phase is a critical point for 
cell division. Hence, drug repurposing targeting these regulators could improve the 
excessive leukocyte proliferation in the cytokine storm, leading to decreased morbidity 
and mortality rate in severe COVID-19. 

Table 4. List of nodes with high ranking scores. 
Ensembl ID Symbol Ranking Score 

ENSP00000371471 RSAD2 4.166667 × 10−2 
ENSP00000360869 IFIT1 4.629630 × 10−3 
ENSP00000368699 ISG15 6.666667 × 10−4 
ENSP00000381601 MX1 4.370629 × 10−4 
ENSP00000303706 CDC25A 1.940994 × 10−4 
ENSP00000360883 IFIT3 1.449275 × 10−4 
ENSP00000354394 STAT1 1.017501 × 10−4 
ENSP00000274026 CCNA2 6.410256 × 10−5 
ENSP00000360891 IFIT2 4.409171 × 10−5 
ENSP00000380697 IRF7 4.084967 × 10−5 

To compare with the conventional methods usually used for identifying key 
proteins in IPINs such as degree and betweenness centrality, Figure 9 displays a Venn 
diagram of nodes found in the ranking score, degree, and betweenness centrality. The 
figure shows that the score covers mostly proteins in degree centrality (9 of 15 nodes in 
the degree set). Conversely, the score captured a few nodes in betweenness centrality 
(3 of 10 nodes in the betweenness set). Noticeably, the nodes merging between degree 
and betweenness set cover almost the high-value nodes analyzed from the four 
centralities (22 of 23 nodes). Thus, a combination of degree and betweenness centrality 
can provide the best result for identifying key proteins in IPINs. Although the ranking 
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score could not capture other key proteins different from these two centralities, RSAD2 
and IFIT1 (the top two genes in Table 4) were detected as the most important immune-
related proteins. 

 
Figure 9. Venn diagram of the key proteins in the ranking score, degree, and 
betweenness centrality. 

RSAD2 or viperin is a broad-spectrum antiviral protein in several viruses such as 
measles, coxsackievirus A16, and enterovirus A71 [142-144]. Moreover, an animal study 
revealed that RSAD2 was necessary for dendritic cell development [145]. The DEGs 
analysis of the overlapping genes in postmortem lung tissue from COVID-19 cases and 
acute lung injury (ALI) murine model found that RSAD2 had a high degree centrality in a 
COVID-19-associated regulatory network [146]. Moreover, a lower respiratory tract 
transcriptomic study revealed that RSAD2 expression correlated with the viral load in 
mild and severe COVID-19 [147]. IFIT1 is an antiviral protein interacting with other IFIT 
family proteins to form an IFN-dependent multiprotein complex. The complex plays an 
important role to increase innate immunity against RNA viruses via binding between 
IFIT1 and 5'-triphosphate RNA (PPP-RNA) [148]. Nevertheless, an experimental finding 
revealed that several SARS-CoV-2 proteins, such as nsp7, nsp15, M, 3CLpro, helicase, 
and N proteins, suppressed IFT1 expression in HEK293T cells [149]. 

Although the ranking score was computed to find the key proteins by 
considering the four centralities, it captured a few proteins when compared with the 
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combination between degree and betweenness centrality. Moreover, the score covered 
the proteins mostly found in degree centrality. The reason to describe the result is that 
the proteins with high eigenvector centrality were the subset in degree centrality. 
Meanwhile, some proteins with high closeness centrality were found in both eigenvector 
and degree centrality. In addition, proteins found in betweenness centrality rarely 
overlapped with degree centrality. Therefore, the score calculation is weighted to 
degree centrality more than betweenness centrality. Noticeably, the combination of 
degree and betweenness centrality covered almost high-value centrality proteins rather 
than the ranking score, although it lost one protein with a high closeness value (CCNE1). 

As described earlier, the 23 key proteins identified using centrality measurement 
were involved in innate immune response, cell cycle regulation, and apoptosis. IFI35 is 
an IFN signaling regulator response to viral infections. Many studies have found that 
IFI35 plays an essential role in cytokine storms and severity in COVID-19 and influenza 
[150-153]. IFIH1 is an intracellular viral sensing protein that stimulates the IFN signaling 
pathway when viral particles are detected in the cell [154]. IFIH1 was reported to 
participate in SARS-CoV-2 sensing and was associated with proinflammatory cytokine 
overproduction in COVID-19 [155-157]. DDX58 also plays a role as a cytoplasmic viral 
sensor. High DDX58 expression in COVID-19 was associated with cytokine responses 
[158]. IFI6, IFIT1-3, IRF7, ISG15, MX1, OAS1, OAS2, OASL, and RSAD2 have antiviral 
activity functions. Many studies in IFI6 have revealed that IFI6 plays an essential role 
against hepatitis B virus (HBV) and flavivirus replication [159,160]. Several systems 
biological and transcriptomic studies have also shown that IFI6 is a hub gene in the 
gene co-expression networks and transcriptomic profiles in COVID-19 [52,161-163]. 
IFIT1-3, OAS1-3, and OASL were upregulated in SARS-CoV-2 and other coronavirus 
infections [164-167]. Furthermore, the IRF7 mutation causing loss of function was 
reported to be associated with severe pneumonia progression in COVID-19 [168,169]. 
The infected macrophage cell line study showed that extracellular ISG15 stimulated 
proinflammatory cytokine production, leading to hyperinflammation [170]. The result of a 
COVID-19 case-control study revealed that MX1 expression was increased depending 
on elevated viral load, and the expression was decreased in elderly patients [171]. 
Older patients have a high risk for COVID-19-associated cytokine storms, suggesting 
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that low MX1 expression could play a vital role in the cytokine storm. STAT1 is a signal 
transduction protein related to various signaling pathways such as IFN, IL-6, epidermal 
growth factor (EGF), and platelet-derived growth factor (PDGF) pathways [172-174]. 
Several studies have indicated that phosphorylated STAT1 increases in severe COVID-
19 patients, causing STAT1 signaling dysfunction and failed IFN activation [175-177]. 
XAF1 is a tumor suppressor protein playing as a positive feedback regulator in the p53-
induced apoptotic signaling pathway [178]. Numerous studies have reported that XAF1 
dysfunction plays a vital role in tumor progression [179-182]. A single-cell transcriptomic 
study in peripheral blood mononuclear cells showed that COVID-19 caused XAF1-
induced T lymphocyte apoptosis, leading to adaptive immune impairment [183]. In 
addition, IPIN analysis from COVID-19 patient lung tissue revealed that IFIH1, DDX58, 
ISG15, OASL, and XAF1 were hub genes in the network [184]. 

CCNA2 and CCNE1 are CDK kinase regulators during G1/S and G2/M phases in 
the cell cycle. Numerous studies have indicated CCNA2 and CCNE1 play a central role 
in various types of malignancy such as hepatocellular carcinoma, breast, and colon 
cancer [185-188]. CDC25A is a protein required in the cell cycle by activating CDKs 
[189]. CDC25A overexpression was found in head and neck, breast, ovarian, and non-
small cell lung cancer [190-193]. An immune study revealed that CDC25A had activities 
decreasing IFN-β transcription and DDX58-mediated antiviral signaling pathway [194]. 
CDC20 has a function involved in chromosome segregation and is the target for spindle 
assembly checkpoint (SAC) [195,196]. High-expressed CDC20 was related to the worst 
prognosis in lung squamous cell carcinoma [197]. An IPIN analysis in COVID-19-
induced thrombocytopenia also reported that CDC20 was highly expressed in COVID-
19 with thrombocytopenia [198]. CMPK2 is an enzyme associated with the nucleotide 
salvage pathway. Many studies have shown that CMPK2 participates in IFN-I activation 
and antiviral immune response [199-201]. In COVID-19 studies, CMPK2 was highly 
upregulated in severe cases related to ARDS [202,203]. Moreover, FOXM1-dependent 
tissue regeneration is impaired in severe COVID-19 cases, causing sustained lung injury 
and a high fatality rate [204]. RRM2, a cell cycle regulator, had an increased expression 
in lung adenocarcinoma with a poor prognosis [205]. A gene co-expression network and 
functional enrichment study also showed that RRM2 was a component in a module 
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involved in p53 signaling pathway, a cell cycle and apoptosis pathway, in COVID-19 
[206]. 

2.1.3.4 POTENTIAL DRUGS TO CURE SEVERE COVID-19 PATIENTS  
We used the key immune-related proteins from the ranking score, degree, and 

betweenness centrality to find the drug–gene or drug–protein interactions from four well-
known public databases: DrugBank database [110], TTD [111], CTD [112], and 
GeneCards [113]. In addition, the protein not found in both degree and betweenness 
centrality (CCNE1) was used to discover the interaction. The result from database 
searching revealed 115 FDA-approved drugs interacting with the key genes or proteins. 
Table S13 in Supplementary Materials shows the drug–gene and drug–protein 
interactions in detail among the 23 key immune-related proteins. 

STITCH v5.0 [114], a drug–protein interaction database, was conducted to 
confirm the result from the databases by the confidence score cut-off value of 0.9. The 
STITCH result is demonstrated in Figure 10. The key immune-related proteins are 
classified into two groups. The former is an antiviral, innate immune response, and 
apoptosis signaling pathway group, and the latter is a cell division and cell cycle group. 
Figure 10a displays the drug–protein interaction network in the innate immune response, 
and Figure 10b illustrates the drug–protein interaction network involved in cell cycle 
regulation. There are seven candidate drugs interacting with these seven key proteins. 
Three drugs are associated with the key proteins related to innate immune response and 
apoptosis. In contrast, the rest interacts with the proteins involved in cell cycle 
regulation. In the innate immune and apoptosis network, polyinosinic:polycytidylic acid 
(poly(I:C)) interacts with IFIH1 and DDX58, while mitomycin C interacts with MX1. 
Decitabine also binds to XAF1 in the network. There are four drug–protein interactions in 
the cell cycle regulation network. RRM2 is interacted with gemcitabine and hydroxyurea, 
respectively. Tamoxifen binds to FOXM1, and curcumin has an interaction with CCNE1. 
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                              (a)                                                    (b) 
Figure 10. Drug–protein interaction network of candidate drugs targeting the key 
proteins resulted from STITCH v5.0. (a) Drug–proteins interaction network involved in 
innate immune response and apoptosis. (b) Drug–proteins interaction network involved 
in cell cycle regulation. Grey and green edges represent protein–protein and drug–
protein interactions, respectively. 

From the STITCH v5.0 result, the seven candidate drugs interacted with the 
seven key proteins. For instance, Poly(I:C) interacted with IFIH1 and DDX58. Poly(I:C) is 
an immune stimulant used to activate innate immunity such as IFN by the TL3 agonist 
effect. It also induces cancer cell apoptosis in various types of malignancy: cervical, 
prostate, and colon cancer [207-211]. Poly(I:C) also increases cytotoxic activity in CD4+ 
T lymphocytes in viral infections, promoting adaptive immune response [212]. A study in 
influenza A virus (IAV) and a SARS-CoV-infected mice model revealed that poly(I:C) had 
a protective effect in fatal respiratory infections [213]. Interestingly, intranasal poly(I:C) in 
mice with SARS-CoV-2 infection showed a decreased viral load, suggesting that 
poly(I:C) can be an effective drug for treating the disease [214]. However, some studies 
reported that poly(I:C) increased proinflammatory production [215-217]. Therefore, 
further studies about poly(I:C) in COVID-19 treatment should consider the drug dosage 
and administration route to prevent the cytokine storm due to the medication. Mitomycin 
C, a chemotherapeutic agent, interacted with MX1. It is used to treat many cancer types 
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[218-221]. A systems biological study revealed that mitomycin C interacted with MX1, a 
key protein in an IPIN, suggesting further studies in the role of the drug in antiviral 
stimulation [50]. In addition, there was a drug–protein interaction between decitabine 
and XAF1. Decitabine is a pyrimidine nucleoside antimetabolite used to treat 
myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) [222,223]. A study 
in the mice model showed that decitabine improved FOXM1-dependent endothelial 
regeneration and vascular repair [204]. As mentioned above, lung tissue degeneration 
can cause worsening lung injury. Decitabine then could play a role in decreasing lung 
injury in severe COVID-19. Interestingly, there is a clinical trial that has been studying 
decitabine treatment in critical ill COVID-19 patients. The estimated research completion 
date August 2022. Gemcitabine and hydroxyurea also interacted with RRM2. 
Gemcitabine, a pyrimidine nucleoside analog and chemotherapeutic agent, is used to 
treat solid tumors such as bladder, pancreatic, breast, and non-small cell lung cancer 
[224]. Several studies in cell lines have found that decitabine decreases SARS-CoV-2 
replication [225-227]. In addition, in a cohort study, gemcitabine reduced SARS-CoV-2 
infection in cancer patients [228]. Hydroxyurea, an antimetabolite treating sickle cell 
anemia, has anti-inflammatory and immunomodulatory effects and was expected to 
apply well in COVID-19 [229]. 

A clinical study also revealed that the mortality rate was low in COVID-19 
patients receiving hydroxyurea, suggesting a vital role of hydroxyurea in COVID-19 
treatment [230]. Tamoxifen, a selective estrogen receptor modulator, had an interaction 
with CCNE1. The drug is used to treat estrogen receptor-positive breast cancer [231]. 
Tamoxifen downregulates TMPRSS2, preventing SARS-CoV-2 entry into host cells [232]. 
A preclinical study showed that tamoxifen reduced SARS-CoV-2 in vitro and in vivo 
[233]. Moreover, a review article in clinical studies found that tamoxifen decreased 
COVID-19 susceptibility rates in breast cancer patients [234]. Tamoxifen also inhibited 
viral replication and virus entry in many virus types such as EBOLA, MERS, and SARS-
CoV-2 [234]. The drug repurposing result also revealed that curcumin interacted with 
CCNE1. It is worth noting that curcumin is a promiscuous molecule acting on many 
receptors. Hence, the effect of curcumin in COVID-19 can be from other mechanisms. 
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Our study only proposed one of the possible mechanisms of curcumin in severe COVID-
19 treatment. Curcumin is a natural product found in turmeric (Curcuma longa). Many 
studies have indicated that curcumin has anti-inflammatory and antioxidant effects [235-
237]. Moreover, it provides effects in apoptosis promotion, cell proliferation inhibition, 
anti-cell adhesion and invasion, decreased angiogenesis, and anti-microbial activity 
[238]. Therefore, its clinical application is related to numerous diseases, such as 
rheumatoid arthritis, inflammatory bowel diseases, osteoarthritis, and various types of 
cancer. In COVID-19, several review articles have revealed that curcumin inhibits viral 
entry and replication [239-241]. It also promotes IFN and antiviral signaling pathway and 
decreases proinflammatory cytokine production. Curcumin has protective effects on 
ARDS by reducing NF-κB, inflammasome, and IL-8 pathway. Furthermore, a randomized 
control trial study showed that mild, moderate, and severe COVID-19 patients taking oral 
curcumin with piperine had better clinical outcomes and lower hospitalization duration 
than the controls [242]. A systematic review reported that curcumin reduced the 
proinflammatory cytokines, such as IL1β and IL6. It also increased the anti-inflammatory 
cytokines, for example, IL-10, IL-35 and transforming growth factor α (TGF-α) [243]. 
Therefore, further study should focus on the effective dose and administration routes of 
curcumin. 

2.1.4. DISCUSSION 
This study constructed the immune-related protein interactions network, IPIN, for 

severe COVID-19 based on the leukocyte transcriptomic profile of critically ill patients 
using network propagation on the human interactome network. Functional enrichment 
analysis and network clustering were operated to discover the underlying molecular 
mechanisms of immune-related severe COVID-19. Topological analysis, centrality, and 
ranking score measurements were calculated to identify the key immune-related 
proteins. Finally, the drug–protein interactions were searched to find the candidate 
drugs to treat the severe COVID-19 patients. 

Diffusion-based IPIN construction and permutation testing provided the highly 
connected immune-related proteins in IPIN. IPIN was a network with a small-world effect 
in relation to other biological networks. The small-world effect was proved by the low 
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average shortest path length and high average clustering coefficient. The scale-free 
property cannot be explained in the network due to a lack of a relationship between 
degree and its probability. However, the IPIN was less likely to be the random network 
because it provided the significant PPI enrichment p-value from the STRING database. 
We performed the four network centralities (degree, betweenness, closeness, and 
eigenvector) and ranking score to find the key immune-related proteins. The results 
showed that the combination of degree and betweenness centrality covered a wide 
range of the key proteins. However, the ranking score can detect the main key proteins: 
RSAD2 and IFTI1. 

We identified 23 key immune-related proteins, such as CCNA2, CCNE1, CDC20, 
CDC25A, CMPK2, DDX58, FOXM1, IFI6, IFI35, IFIH1, IFIT1, IFIT2, IFIT3, IRF7, ISG15, 
MX1, OAS1, OAS2, OASL, RRM2, RSAD2, STAT1, and XAF1, using the four centralities 
and ranking score measurement. These proteins all play an important role in severe 
COVID-19, validated by several computational, experimental, and clinical studies. The 
functional enrichment analysis from the whole network and the modules obtained from 
both MCODE and MCL methods produced similar results. The enrichment terms were 
divided into four main categories: cell cycle regulation, antiviral and innate immune 
response, apoptosis, and nucleotide metabolism. These terms were in accordance with 
leukocytes during viral infections. Furthermore, the main terms were accepted with the 
functional classification in the key proteins. For instance, the key proteins involved in cell 
cycle regulation consisted of CCNA2, CCNE1, CDC20, CDC25A, and RRM2, while the 
others associated with antiviral and innate immune response were DDX58, FOXM1, IFI6, 
IFI35, IFIH1, IFIT1, IFIT2, IFIT3, IRF7, ISG15, MX1, OAS1, OAS2, OASL, RSAD2, and 
STAT1. In addition, the remaining key proteins such as CMPK2 and XAF1 play a crucial 
role in nucleotide metabolism and apoptosis, respectively. 

Drug repurposing based on drug–gene and drug–protein interaction database 
searching provided the seven potential candidate drugs, poly(I:C), mitomycin C, 
decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin. There were three drugs 
interacting with the key proteins related to antiviral and innate immune response: 
poly(I:C), mitomycin C, and decitabine. Other drugs interacted with the key proteins 
involved in cell cycle regulation and apoptosis. Among the candidate drugs, we 
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recommend that the drugs interacting with proteins involved in IFN and antiviral 
signaling should be used carefully in clinical application because they promote IFN 
stimulation. IFN overactivation can result in excessive proinflammatory cytokine 
production in some studies that we mentioned [41-44]. Moreover, chemotherapeutic 
agents cause many adverse side effects and should be performed as the second 
choice. Therefore, we suggest using curcumin and tamoxifen as the first choices for 
clinical application. They have fewer side effects than other chemotherapeutic agents 
because curcumin is a natural product and tamoxifen is a targeted drug. In addition, 
both curcumin and tamoxifen have several clinical studies to support their effectiveness 
in COVID-19 treatment. 

2.1.5. LIMITATIONS AND FUTURE STUDY SUGGESTIONS  
Although this study provides novel knowledge and candidate targeted drugs in 

COVID-19, it has some limitations to be explained. First, the network diffusion method is 
an algorithm consuming computational time and memory space which depends on the 
number of nodes, interactions, and permutation tests. We conducted high-performance 
computing (HPC) for running the LHD algorithm in the original and 1000 random sets to 
perform the permutation test. Second, many proinflammatory cytokine signaling 
pathways, such as IL-1β, IL-6, IL-12, IL-18, IL-33, and TNF-α, were rarely detected in 
this IPIN analysis. Our reason for explaining the issue is that the data came from 
comparing controls and COVID-19 cases in an intensive care unit. Typically, critically ill 
patients have stress and inflammatory responses, leading to increased proinflammatory 
cytokines. Therefore, there was no difference in the proinflammatory cytokine gene 
expression between cases and controls. Moreover, proinflammatory cytokines are 
usually released from respiratory epithelial and immune cells in the lung parenchymal 
tissue. Studies in peripheral white blood cells can lose this proinflammatory cytokine 
information. Our suggestion for future research is to perform lung transcriptomic profiles 
comparing severe COVID-19 cases and mild illness or healthy cases for IPIN 
construction and analysis. Furthermore, a single-cell approach should be conducted to 
identify an IPIN in each cell type. In COVID-19, there are differences between each cell 
type such as cell count, behavior, function, and pathogenesis. Therefore, identifying key 
proteins in these cells can help to treat the disease more precisely. 
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2.1.6. CONCLUSIONS 
 This study proposed LHD algorithms to perform network diffusion on the human 

interactome network to construct the immune-related IPIN in severe COVID-19 based on 

the transcriptomic data. Functional enrichment analysis found that the network 

contained the proteins involved in antiviral and innate immune response signaling 

pathways, cell cycle regulation, apoptosis, and protein processing. The degree and 

betweenness centrality combination covered almost the key proteins from the four 

centrality measurements. These key proteins play a significant role in cell proliferation, 

antiviral activity, and innate immunity responding to the SARS-CoV-2 infection. 

Moreover, the candidate drugs targeting the key proteins were found from database 

searching. Most of them have experimental data supporting their effectiveness in 

COVID-19 treatment. However, other key proteins and candidate drugs were not found 

in our method and need further investigation. Therefore, a combination of advanced 

experimental and computational tools should be conducted for further efficient treatment 

discovery relating to COVID-19. 
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S12: List of nodes with high eigenvector centrality; Table S13: Drug-gene interactions of 
the identified key immune-related proteins; Table S14: Edge list of the IPIN. 
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Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte 

Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine 
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Abstract: The coronavirus disease 2019 (COVID-19) pandemic causes many morbidity 
and mortality cases. Despite several developed vaccines and antiviral therapies, some 
patients experience severe conditions that need intensive care units (ICU); therefore, 
precision medicine is necessary to predict and treat these patients using novel 
biomarkers and targeted drugs. In this study, we proposed a multi-level biological 
network analysis framework to identify key genes via protein–protein interaction (PPI) 
network analysis as well as survival analysis based on differentially expressed genes 
(DEGs) in leukocyte transcriptomic profiles, discover novel biomarkers using microRNAs 
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(miRNA) from regulatory network analysis, and provide candidate drugs targeting the 
key genes using drug–gene interaction network and structural analysis. The results 
show that upregulated DEGs were mainly enriched in cell division, cell cycle, and innate 
immune signaling pathways. Downregulated DEGs were primarily concentrated in the 
cellular response to stress, lysosome, glycosaminoglycan catabolic process, and 
mature B cell differentiation. Regulatory network analysis revealed that hsa-miR-6792-
5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p were 
predicted biomarkers. CDC25A, GUSB, MYBL2, and SDAD1 were identified as key 
genes in severe COVID-19. In addition, drug repurposing from drug–gene and drug–
protein database searching and molecular docking showed that camptothecin and 
doxorubicin were candidate drugs interacting with the key genes. In conclusion, multi-
level systems biology analysis plays an important role in precision medicine by finding 
novel biomarkers and targeted drugs based on key gene identification.     
Keywords: severe COVID-19; systems biology; key genes; novel biomarkers; drug 
repurposing 

2.2.1 INTRODUCTION 
Nowadays, our world has experienced the coronavirus disease 2019 (COVID-19) 

pandemic, causing numerous morbid and mortal cases. The disease is caused by 
severe infection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The virus is 
a positive-sense single-strand RNA β-coronavirus classified in the Coronaviridae family, 
which also consists of SARS-CoV and middle east respiratory syndrome coronavirus 
(MERS-CoV) [1]. These viruses all emerged within the first 20 years of the 21st century 
and caused numerous public health and economic issues. Comparative genomics 
studies have revealed that the SARS-CoV-2 genome resembles the SARS-CoV 
sequence, with 79% identity. In contrast, the MERS-CoV sequence shares only 50% 
identity with SARS-CoV-2’s sequence [2]. Moreover, phylogenetic analysis using whole-
genome sequences and phylogenetic tree construction by the neighbor-joining method 
reveals that SARS-CoV-2 is clustered in the sarbecovirus group and the virus is close to 
coronaviruses in bats and pangolins [2].  
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For the global statistics, the number of confirmed cases and deaths of COVID-19 
from World Health Organization (WHO) data on 21 June 2022 were 537,591,764 and 
6,319,395, respectively [3]. In addition, the global fatality rate is 3.4%. The rate is higher 
than seasonal flu but lower than SARS-CoV and MERS-CoV infections [4,5]. Despite the 
assumption that bats were hosts in this zoonotic infection, several studies have 
indicated that the disease occurred via an intermediate host such as pangolins [6,7]. 
The disease’s main transmission route is receiving infectious respiratory droplets from 
direct person-to-person contact [8,9]. SARS-CoV-2 can spread in all stages of the 
disease: asymptomatic, presymptomatic, and symptomatic stages [6]. The median 
incubation period is approximately 5.1 days, and most people (97.5%) have symptoms 
within 11.5 days. Only 1% of patients develop symptoms after 14 days of quarantine 
[10]. The most common clinical features of COVID-19 are dry cough, fever, fatigue, and 
myalgia. Some patients have gastrointestinal symptoms, for instance, nausea, anorexia, 
and diarrhea [11–13]. Less common clinical presentations include sputum production, 
headache, and hemoptysis [11,12]. About 64% to 80% of patients present with anosmia 
or ageusia [14–16]. Furthermore, at least 50% of patients will progress to dyspnea [17]. 
Progressive dyspnea and hypoxemia usually develop approximately one week after the 
clinical onset [18]. Acute respiratory distress syndrome (ARDS), characterized by 
severe hypoxemia, and bilateral pulmonary edema that cannot be explained by cardiac 
causes or volume overload, is a condition mainly found in severe COVID-19 [18]. 
Several risk factors contributing to severe illness include older age, chronic lung 
diseases, cardiovascular diseases, diabetes mellitus, obesity, chronic kidney diseases, 
immunocompromised host, and cancers [12,18]. Nearly 17% to 35% of admitted 
patients needed intensive care units (ICU) due to respiratory failure. Approximately 29% 
to 91% of patients in ICU obtain mechanical ventilation [19–22]. The main causes of 
death are ARDS, acute respiratory failure, coagulopathy, septic shock, metabolic 
acidosis, cardiovascular complications, and multiple organ failure [23]. 

Pathogenesis and pathophysiology of COVID-19 are required for further studies. 
The disease is classified into two stages: early and late stages [9]. In the early stage, 
SARS-CoV-2 infects host cells and initiates proliferation. It enters respiratory epithelial 
cells and alveolar cells via using spike (S) protein, primed by host transmembrane 
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serine protease 2 (TMPRSS2), binding to host membrane receptors, for example, 
angiotensin-converting enzyme 2 (ACE2) [24,25]. While viral replication occurs, the 
immune system will proceed. Hence, mild constitutional symptoms arise in this stage. 
The innate immunity will recruit myeloid-lineage leukocytes such as macrophages, 
neutrophils, and natural killer (NK) cells to alveolar tissue [8]. In the late stage, 
pulmonary tissue damage and hyperinflammation emerge from excessive 
proinflammatory cytokine secreted from these leukocytes. Pneumocytes and alveolar 
endothelial cells are injured and dead, resulting in interstitial fluid leakage; therefore, 
pulmonary edema will occur and progress to ARDS later [24]. Accumulation of fluid in 
alveolar space and pneumocyte damage leads to impaired gas exchange, causing 
hypoxia and hypercapnia [24]. Furthermore, some patients will develop to 
hyperinflammation stage or cytokine storm caused by excessive proinflammatory 
cytokines such as interferon α (IFN-α), IFN- β, IFN-γ, interleukin 1β (IL-1β), IL-6, IL-12, 
IL-18, IL-33, and tumor necrosis factor α (TNF-α) [26]. Cytokine storm is characterized 
by cytokine overproduction causing collateral tissue damage [27]. Uncontrolled cytokine 
storms can lead to multiple organ dysfunction and failure in the last stage [27]. Severe 
COVID-19 cases usually die due to cytokine storms with multiple organ failures [28]. 

The gold standard diagnostic testing of COVID-19 is the reverse transcriptase-
polymerase chain reaction (RT-PCR) from nasal and throat swab samples [29]. The 
specificity of PCR is nearly 100% if there are no contaminations. Antigen tests have 
benefits over PCR as they have lower costs and are used in the point-of-care setting, 
though they have sensitivity less than PCR [30,31]. Nevertheless, there are still no 
effective diagnostic testing or biomarkers used to predict the possibility of severe illness 
progression precisely. The primary treatment for COVID-19 is the best supportive care 
and respiratory support [23,24]. Medical therapies include anti-inflammatory agents 
using corticosteroids and antiviral treatments such as ritonavir and favipiravir [32–34]. In 
addition, the role of vaccines in COVID-19 prevention has been studied and needs 
further investigation. Although the current treatments improve the disease, they cannot 
cover all patients with severe conditions. As a result, discovering novel biomarkers and 
targeted drugs based on cytokine storm and impaired immune-associated key genes 
and proteins could play a crucial role in predicting and improving COVID-19 severity.  
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In the bioinformatics and precision medicine era, systems biology and multi-
omics studies allow translational medicine to be effective in clinical practices [35]. 
Several combined wet and dry experimental studies have provided invaluable 
information in molecular biology and medicine [36–38]. Moreover, a combination of 
knowledge between biology, computer science, statistics, and mathematics explores 
the underlying molecular mechanisms of numerous diseases such as cancer, 
degenerative diseases, genetic diseases, etc. Structural information on protein-related 
SARS-CoV-2 such as S protein, main protease (Mpro), and papain-like protease (PLpro), 
obtained from the Protein Data Bank (PDB), has also provided the details on physical 
protein interactions and benefits for identifying drug–protein interaction in COVID-19 via 
protein binding site analyses [39–45]. One of the most powerful tools used in 
bioinformatics is network analysis. With the use of network analysis, central node 
identification using various centrality measurements and community detection by 
several network clustering algorithms [46,47] have been widely used in much research. 
These approaches were successfully applied in several applications to identify key 
disease-related genes, disease–disease associations, disease–protein associations, 
and drug–disease associations [48–57]. Additionally, the benefit of the network analysis 
is drug repositioning or drug repurposing, characterized by discovering a new role of 
treatment from existing drugs based on the key disease-related genes identified from 
the biological network [58]. Structural bioinformatics also plays a vital role in drug 
repurposing via finding physical interactions between targeted proteins from PDB 
structures and drugs using molecular docking [59–61]. In addition, novel biomarkers 
can be recognized from the network analysis [62]. 

In this study, we proposed multi-level biological networks analysis, such as 
regulatory and protein–protein interaction (PPI) network, based on leukocyte 
transcriptomic profiles to identify novel biomarkers and key genes in severe COVID-19. 
Furthermore, drug repurposing was performed based on drug–gene and drug–protein 
interaction database searching and molecular docking. This study aims to discover 
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novel biomarkers and candidate targeted drugs to predict and treat severe COVID-19 at 
clinical levels by applying various biological data and networks. 

2.2.2 MATERIALS AND METHODS 
The overall process of identifying key genes, novel biomarkers, and candidate 

drugs using several levels of the biological network is summarized in Figure 11. All our 
proposed methods were dry experiments or in silico studies based on wet experimental 
data acquisition from databases. First, the leukocyte transcriptomic profiles from Gene 
Expression Omnibus (GEO) datasets [50] were downloaded to indicate an overall 
immune status in severe COVID-19 patients compared to controls. Common 
differentially expressed genes (DEGs) were identified by considering statistical criteria 
described in Section 2.1 Data Collection and Preprocessing. The functional enrichment 
analysis of upregulated and downregulated DEGs were conducted using Metascape 
[63]. Second, STRING v11.0 [64] was used to construct the PPI network based on the 
common DEGs. Network clustering was conducted using the Molecular Complex 
Detection (MCODE) plugin in Cytoscape [65]. The degree and betweenness centrality 
were calculated using Network Analyzer in Cytoscape to find hub and bottleneck genes 
in the PPI network. Additionally, the survival analysis from Gene Expression Profiling 
Interactive Analysis (GEPIA2) [66], using acute myeloid leukemia (LAML) as a cell type 
model, was operated to identify key genes from the hub and bottleneck genes. Third, 
MicroRNA Enrichment Turned Network (MIENTURNET) [67,68] was used to construct 
regulatory networks and identify novel biomarkers. Finally, drugs resulting from drug–
gene and drug–protein interaction databases were studied by molecular docking. 
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Figure 11. Diagram summarizes the process of identifying key genes, novel biomarkers, 
and candidate drugs using multi-levels of biological network analyses. There are four 
principal data and networks, including transcriptomics data, protein–protein interaction 
network, miRNA–mRNA interaction regulatory network, and drug–protein interaction 
network towards precision medicine. 

2.2.2.1 DATA COLLECTION AND PREPROCESSING  
Two gene expression datasets (GSE164805 and GSE154998) were downloaded 

from GEO DataSets (https://www.ncbi.nlm.nih.gov/geo/, accessed on 14 January 2022) 
[69]. Both datasets are leukocyte transcriptomic profiles collected from peripheral blood 
samples in severe COVID-19 patients compared to non-COVID-19 controls. The gene 
expression method in GSE164805 was conducted based on the microarray technique, 
while GSE154998 measured the transcriptomic profiles via the RNA sequencing (RNA-
Seq) method [70,71]. The complete data sets, consisting of false discovery rate (FDR) 
q-value and log2fold change (log2 FC), were manipulated using R package ‘dplyr’ [72]. 
The DEGs were filtered based on genes expression having the FDR < 0.05 and absolute 

https://www.ncbi.nlm.nih.gov/geo/
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log2 FC (|log2 FC|) > 1. DEGs that met the criteria in both data sets were common DEGs 
that were used for further analysis. Moreover, common DEGs with log2 FC > 1 and log2 
FC < −1 were considered upregulated and downregulated DEGs, respectively. 

2.2.2.2 FUNCTIONAL ENRICHMENT ANALYSIS BASED ON UP- AND 
DOWNREGULATED DEGs  

Metascape (https://metascape.org/gp/index.html#/main/step1, accessed on 20 
January 2022) [63] was performed for functional enrichment analysis of the upregulated 
and downregulated DEGs. Metascape is a web-based portal integrating functional 
enrichment, interactome analysis, gene annotation, and membership search from over 
40 knowledgebases [63]. Functional and pathway terms used in the software include 
Gene ontology biological process (GO-BP) [73], Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [74], Reactome pathways [75], WikiPathways [76], 
Canonical [77], and CORUM pathway [78]. The functional enrichment analysis in the 
software was performed using a hypergeometric test and Benjamini–Hochberg 
statistical correction algorithm [63]. Enrichment terms with a significant level (FDR q-
value < 0.01) were selected. 

2.2.2.3 PPI NETWORK CONSTRUCTION FROM THE COMMON DEGs  
STRING v11.0 (https://string-db.org/, accessed on 20 January 2022) [64], a 

protein interactome online database collecting a human interactome consisting of 
19,556 proteins and 11,938,498 interactions, was performed to construct the PPI 
network without adjacent node expansion using the common DEGs as the input. The PPI 
network was built with an interaction confidence score greater than 0.400 (medium 
confidence). The confidence score of the interaction is the probability value calculated 
based on both experimental and computational evidence such as text mining, high-
throughput experiments, co-expression and gene fusion data, and information from 
other databases. Furthermore, the PPI network was downloaded and exported to 
Cytoscape 3.9.0 (https://cytoscape.org/, accessed on 20 January 2022) [65], a 
biological network visualizing software.  

https://metascape.org/gp/index.html#/main/step1
https://string-db.org/
https://cytoscape.org/
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2.2.2.4 TOPOLOGICAL AND NETWORK CLUSTERING ANALYSIS OF THE PPI 
NETWORK  

In Cytoscape, the Network Analyzer plugin was performed to calculate global 
topological parameters, for instance, average degree, diameter, radius, average 
clustering coefficient, average shortest path length, and network density. Local 
topological parameters, such as degree, closeness, betweenness, and clustering 
coefficient, were also computed. Moreover, network clustering was conducted using 
MCODE plugin [79] in Cytoscape. The plugin was used by default settings, for example, 
a degree cut-off: 2, node score cut-off: 0.2, k-core: 2, and max depth: 100. An MCODE 
score cut-off for cluster selection was greater than 5. 

2.2.2.5 REGULATORY NETWORK CONSTRUCTION AND NOVEL BIOMARKERS 
IDENTIFICATION  

The gene sets in each MCODE cluster were inputted in MIENTURNET 
(http://userver.bio.uniroma1.it/apps/mienturnet/, accessed on 22 January 2022) [67], an 
online-based software, to construct microRNA (miRNA)–mRNA regulatory networks. The 
software was used to find miRNA–mRNA interactions based on miRTarBase, a miRNA-
target database validated from experimental data [68]. miRNAs with interaction FDR q-
value less than 0.05 were considered novel biomarkers in severe COVID-19. 

2.2.2.6 IDENTIFICATION OF HUB AND BOTTLENECK GENES  
Degree and betweenness centrality were measured using the Network Analyzer 

plugin in the Cytoscape to find the hub and bottleneck genes in the PPI network. Given 
a network called G, let A be a non-weight adjacency matrix of network G. Degree 
centrality (𝐶𝐷) is the number of adjacent nodes interacting with interested node i, 
according to this equation  

𝐶𝐷(𝑖) = ∑ 𝐴𝑖𝑗  ,

𝑗

  (1) 

where Aij is a value of matrix A of node i and j, respectively. In biological networks, the 
high-degree nodes are hub genes playing a crucial role in the network function due to 
numerous interactions. Nodes in the PPI network having degree centrality greater than 
the 95th percentile were considered hub genes. 

http://userver.bio.uniroma1.it/apps/mienturnet/
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Betweenness centrality (𝐶𝐵) is the summation of the ratio between the shortest 
path of node u and v that pass through node i. The betweenness centrality is calculated 
based on this equation   

𝐶𝐵(𝑖) = ∑
𝜎𝑢𝑣(𝑖)

𝜎𝑢𝑣
𝑢 ≠𝑣 ≠𝑖

 , (2) 

where 𝜎𝑢𝑣 is a total number of the shortest path between node u and v and 𝜎𝑢𝑣(𝑖) is the 
number of the shortest path between node u and v that pass through node i. Nodes with 
betweenness more than 95th percentile were bottleneck genes in the PPI network. The 
bottleneck nodes play an important function in forming the bridges controlling the flow of 
information in the network. 

2.2.2.7 FINDING KEY GENES USING SURVIVAL ANALYSIS  
Because there is no powerful tool to validate and predict the gene essentiality in 

severe COVID-19 recently, we applied the cancer survival analysis to find key genes 
from the PPI network. The key genes in severe COVID-19 were identified based on the 
hub and bottleneck genes by using GEPIA2 (http://gepia2.cancer-pku.cn/#index, 
accessed on 25 January 2022) [66]. GEPIA2 provides the single gene essentiality in 
several cancer types by using survival and gene expression analysis based on The 
Cancer Genome Atlas (TCGA) [80] and Genotype-Tissue Expression (GTEx) data [81]. 
As earlier described, the myeloid-lineage leukocytes such as macrophages, neutrophils, 
and NK cells play a vital role in COVID-19-associated cytokine storm by releasing the 
excessive proinflammatory cytokines. Hence, LAML was used as a cell type model to 
find the key genes related to immune-induced severe COVID-19. The survival analysis 
was performed by the Kaplan–Meier method, which considers these parameters such 
as log-rank p-value and hazard ratio (HR) with 95% confidence interval.   

2.2.2.8 DRUG REPURPOSING BASED ON THE KEY GENES  
i. Drug–Gene and Drug–Protein Interaction Database Searching 

The key genes were inputted to find targeted drugs in these drug–gene 
interaction databases, for example, DrugBank database (https://go.drugbank.com/, 
accessed on 30 January 2022) [82], Therapeutic Target Database (TTD) 
(http://db.idrblab.net/ttd/, accessed on 30 January 2022) [83], Comparative 

http://gepia2.cancer-pku.cn/#index
https://go.drugbank.com/
http://db.idrblab.net/ttd/
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Toxicogenomics Databases (CTD) (http://ctdbase.org/, accessed on 30 January 2022) 
[84], and GeneCards (https://www.genecards.org/, accessed on 30 January 2022) [85]. 
The selected drugs were confirmed the interaction significance using the STITCH v5.0 
database (http://stitch.embl.de/, accessed on 30 January 2022) [86], a drug–protein 
interaction database, by considering a confidence score greater than 0.400 (medium 
confidence). The confidence score is calculated based on both experimental and 
computational evidence, similar to the STRING database. Drugs that met the criteria 
were considered candidate-targeted drugs. 

ii. Molecular Docking of Potential Drugs against B-Myb 
Molecular docking was performed to elucidate the interaction between drug 

candidates and a target protein named B-Myb. This protein is encoded from MYBL2, an 
essential gene in the network analysis. The crystal structure of B-Myb was received from 
PDB (https://www.rcsb.org/, accessed on 12 June 2022) [87] using PDB ID: 6C48 from 
the study [88]. The function of B-Myb is activated via binding between the LXXLL motif 
located in the B-Myb transactivation domain and the KIX domain of coactivator p300 to 
form a transcriptional module [89–92]. Thus, the motif containing L688, R687, G686, 
L685, and L684 residues was set as the binding site. Several studies have shown that 
plumbagin, a natural naphthoquinone binding at this motif, can cause B-Myb/p300 
interaction interference [93–95]; therefore, plumbagin was used as a reference ligand in 
the docking study to compare with candidate drugs such as doxorubicin and 
camptothecin. The three compounds were individually docked into B-Myb using 
HDOCK server (http://hdock.phys.hust.edu.cn/, accessed on 12 June 2022) [96] and 
AutoDock VinaXB, a docking program using a genetic algorithm [97]. The ionized states 
of B-Myb were configured at pH 7.4 using PROPKA3.1 [98], while ChemAxon [99] was 
used to check the pKa value of the compounds. The binding affinity of the candidate 
drugs was calculated and compared to plumbagin. The 3D and 2D structures 
demonstrating the drug–protein interactions were visualized using the UCSF Chimera 
package [100] and the LigPlot [101]. 

http://ctdbase.org/
https://www.genecards.org/
http://stitch.embl.de/
https://www.rcsb.org/
http://hdock.phys.hust.edu.cn/
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2.2.3 RESULTS 
2.2.3.1 IDENTIFICATION OF COMMON DEGs   

The common DEGs were filtered from the transcriptomics data based on 
microarray and RNA-Seq dataset (see Material and Methods) by considering FDR q-
value < 0.05 and |log2 FC| > 1. There were 6692 and 1129 DEGs found by microarray 
technique and RNA-Seq technology, respectively. Figure 12a displays the Venn 
diagram representing the common DEGs from both datasets. In total, 384 common 
DEGs were identified, having 39 upregulated and 221 downregulated DEGs; however, 
the remaining common DEGs (124 genes) had both upregulation and downregulation 
because their expression pattern was contradictory between the two datasets. Figure 
12b shows the correlation heatmap of the common DEGs between the two datasets. The 
gene list of the common DEGs is shown in Table S1 in Supplementary Materials. 

 
Figure 12. Identifying the common DEGs between the two transcriptomic GEO datasets 
(GSE164805 and GSE154998). (a) Venn diagram of the DEGs found in the datasets. (b) 
Correlation heatmap of the common DEGs between the two datasets. 

2.2.3.2 FUNCTIONAL ENRICHMENT ANALYSIS OF UP- AND DOWNREGULATED 
DEGs   

The functional enrichment analysis using Metascape of the DEGs is shown in 
Figure 13. In the upregulated DEGs, the terms were primarily enriched relevantly to viral 
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innate immune response and cell cycle regulation (Figure 13a). For instance, IFN-α and 
IFN-β were type I IFN (IFN-I) predominant in the viral innate immune response. In 
addition, anaphase-promoting complex/cyclosome (APC/C), a cell cycle regulator 
complex, and chromosome segregation were enhanced in leukocytes during severe 
COVID-19. Other increased functional terms, such as regulation of binding and 
endopeptidase activity, were also found in the upregulated DEGs. Moreover, the 
functional enrichment in the downregulated DEGs was mainly associated with cellular 
response to stress, lysosome, protein localization (the processes establishing and 
maintaining proteins at specific locations), glycosaminoglycan catabolic pathway, 
mature lymphocyte differentiation, positive regulation of intracellular protein 
transportation, negative regulation of protein modification, response to hyperoxia, and 
adaptive immune response (Figure 13b).  

 
Figure 13. The bar graph represents the enrichment terms analyzed from (a) the 
upregulated DEGs and (b) the downregulated DEGs at a significant level (FDR < 0.01). 
Each enrichment term is colored based on the significance level. 
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2.2.3.3 PPI NETWORK CONSTRUCTION, TOPOLOGICAL ANALYSIS, AND 
CLUSTER DETECTION   

From the PPI network construction without the neighboring node expansion via 
STRING v11.0, there were 85 components with 384 nodes and 861 edges. The largest 
component containing 288 nodes and 848 edges was extracted for topological analysis 
and identifying clusters and key genes. The edge list information for the component is 
also provided in Table S2 in Supplementary Materials. Global topological parameters 
calculated from the Network Analyzer plugin in Cytoscape are illustrated in Table 5. 
Moreover, local topological parameters in each node in the network are summarized in 
Table S3 in Supplementary Materials. 

Table 5. Global Topological Parameters of the PPI network. 
Symbol Description Value 

N Number of nodes 288 
M Number of edges 848 

<k> Average degree 5.89 
d Diameter 11 
r Radius 7 

mspl Mean shortest path length 4.33 
D Density 0.02 

acc Average clustering coefficient 0.28 

 
The largest network visualized by STRING v11.0 is shown in Figure 14. The 

results analyzed by the STRING revealed that the average node degree, expected 
number of edges, and average local clustering coefficient were 5.89, 544, and 0.461, 
respectively. Additionally, a PPI enrichment p-value was less than 10−16, indicating that 
the proteins have interactions with each other more than by chance.  
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Figure 14. The largest component of the PPI network constructed from the common 
DEGs visualized by STRING v11.0 with the interaction confidence score > 0.400 
(medium confidence). The network consists of 288 nodes and 848 interactions. 

The network probably provided the small-world effect, such as several biological 
networks, because it had a low value of the mean shortest path length (mspl = 4.33) 
even though there was a moderate average clustering coefficient (acc = 0.28). 
Furthermore, the degree distribution plot illustrated in Figure 15a shows the power-law 
property, indicating the strong negative association between logarithmic scales of 
degree and its probability (R2 = 0.86). On the other hand, the clustering coefficient 
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versus degree plot (Figure 15b) shows no relationship between the clustering coefficient 
and degree (R2 = 0.12). These behaviors suggested that the network had scale-free 
properties.  

 
                   (a)  (b) 

Figure 15. Topological analysis of the PPI network. (a) Degree distribution plot. (b) 
Clustering coefficient versus degree plot. k denotes the degree; p(k) denotes the 
probability of degree k; c(k) denotes the clustering coefficient of a node that has degree k. 

There were three clusters identified from the MCODE plugin with the score of 
more than 5: MCODE 1, 2, and 3. Topological parameters of the clusters were 
described in Supplementary Table S4. Most MCODE 1 and 3 cluster members were 
upregulated DEGs, while MCODE2’s cluster members were downregulated DEGs. 
Functional enrichment results of each cluster are illustrated in Table 6 and 
Supplementary Figure S1. For instance, MCODE 1 (Figure 16a) is enriched in the cell 
cycle and division regulation process, while MCODE 2 (Figure 16b) is concentrated in 
the translation process and transactivation response element RNA-binding protein 
(TRBP). Moreover, MCODE 3 (Figure 16c) is associated with an innate immune 
response. 
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                     (a)                                               (b)                                         (c)                                                

Figure 16. Cluster detection of the PPI network using MCODE plugin in Cytoscape 3.9.0. 
(a) MCODE 1 had 14 nodes and 89 edges. (b) MCODE 2 had 11 nodes and 53 edges. 
(c) MCODE 3 had 10 nodes and 45 edges. The red and green nodes represent 
upregulated and downregulated DEGs. In contrast, gray nodes represent genes having 
both upregulation and downregulation.    
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Table 6. Functional enrichment analysis of the MCODE clusters using Metascape. 

Cluster 
Cluster 

Score 
Term ID Biological Term Count 

Log10 (q-

value) 

MCODE1 13.692 

R-HSA-1640170 Cell cycle 11 −11.20 

GO:0007059 
Chromosome 

segregation 
7 −6.85 

M40 PID E2F pathway 5 −6.28 

GO:1903047 Mitotic cell cycle process 7 −5.60 

MCODE2 10.600 

R-HSA-156842 
Eukaryotic translation 

elongation 
8 −13.67 

R-HSA-72766 Translation 9 −12.97 

CORUM:5380 

TRBP containing 

complex (DICER, RPL7A, 

EIF6, MOV10, and 

subunits of the 60S 

ribosomal particle) 

3 −4.38 

MCODE3 10.000 

R-HSA-913531 Interferon signaling 9 −14.37 

GO:0051607 
Defense response to 

virus 
8 −11.52 

WP4197 
Immune response to 

tuberculosis 
3 −3.91 

GO:0002831 
Regulation of response to 

biotic stimulus 

3 
−3.91 
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2.2.3.4 FINDING POTENTIAL miRNAs AS NOVEL BIOMARKERS IN REGULATORY 
NETWORKS    

Figure 17 illustrates miRNA–mRNA interaction networks constructed based on 
the three MCODE clusters. The interactions were statistically significant at FDR q-value 
< 0.05. There were five novel candidate biomarkers analyzed from the regulatory 
networks, for instance, hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-
3p, and hsa-miR-146a-5p. The further statistical and interaction data of regulatory 
networks in MCODE 1, 2, and 3 are explained in Figure S2 and Tables S5–S7 in 
Supplementary Materials. There were three miRNAs interacting with the mRNAs in 
MCODE 1 (Figure 17a): hsa-miR-6792-5p, hsa-let-7b-5p, and hsa-miR-34a-5p. In 
addition, hsa-miR-92a-3p and hsa-miR-146a-5p interacted with the mRNAs in MCODE 2 
and 3, respectively. miRNA regulates gene expression via mRNA binding and increases 
mRNA degradation or activation [102,103]. A change in miRNA levels can indicate gene 
expression status; therefore, miRNA measurement can be applied to predict severe 
COVID-19 based on the effect on gene expression patterns. 

 

                         (a)                                                  (b)                                   (c) 

Figure 17. miRNA–mRNA interaction regulatory networks based on MCODE clusters 
from the PPI network. The networks were bipartite graphs. The regulatory network of (a) 
MCODE 1 had 12 nodes and 15 edges, (b) MCODE 2 had 7 nodes and 6 edges, and (c) 
MCODE 3 had 6 nodes and 5 edges. The blue triangular nodes are miRNAs. The red 
and green circular nodes represent upregulated and downregulated DEGs, 
respectively. In comparison, gray nodes represent genes having both upregulation and 
downregulation.    
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2.2.3.5 KEY GENES IDENTIFICATION AND SURVIVAL ANALYSIS    
  There were 19 and 15 genes being hub and bottleneck, respectively. Tables S8 

and S9 in Supplementary Materials reveal topological parameters of the hub and 
bottleneck genes, such as degree, betweenness, closeness, and clustering coefficient. 
Furthermore, Figure S3 in Supplementary Materials shows a Venn diagram of nodes 
being the hub and bottleneck genes. Seven genes were both hub and bottleneck: 
AURKB, CD44, CDC25A, DDX58, DICER1, POLR2B, and RPL7. Table 7 displays the 
biological function of the hub and bottle genes. Most hub genes were involved in cell 
proliferation and differentiation, such as cell cycle regulation, hematopoiesis, 
antiapoptotic process, DNA replication and transcription, and ribosomal synthesis. 
Additionally, the bottleneck genes in the PPI network mainly play an essential role in 
inflammation, antiviral and innate immune activation, oxidative stress prevention, and 
biomolecule metabolisms, for instance, lymphocyte and macrophage activation, viral 
recognition, mitochondrial protein transportation, protein and glycosaminoglycan 
degradation, and heme catabolism. 

Table 7. Summary of the biological functions of 27 genes which were hub or bottleneck. 
Symbol Description High Centrality Biological Function 

ANXA5 Annexin A5 bottleneck 
Inflammation, growth, 

and differentiation  

AURKB Aurora Kinase B hub, bottleneck Cell cycle regulation 

BIRC5 
Baculoviral IAP Repeat 

Containing 5 
hub Antiapoptotis 

CAT Catalase bottleneck 
Oxidative stress 

prevention 

CD44 Cluster of Differentiation 44 hub, bottleneck 
Hematopoiesis and 

lymphocyte activation 

CDC20 Cell Division Cycle 20 hub Cell cycle regulation 

CDC25A Cell Division Cycle 25A hub, bottleneck Cell cycle regulation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 98 

Table 7. Cont. 

Symbol Description High Centrality Biological Function 

CSF1R 
Colony Stimulating Factor 1 

Receptor 
bottleneck 

Macrophage 
differentiation 

DDX58 DExD/H-Box Helicase 58 hub, bottleneck Viral dsRNA recognition 

DICER1 Ribonuclease III hub, bottleneck 
Small RNA production 

and antiviral agent 

EEF1D 
Eukaryotic Translation Elongation 

Factor 1 Delta 
hub 

Transport tRNAs to 
ribosome 

GUSB Glucuronidase Beta bottleneck 
Glycosaminoglycan 

degradation 

HMOX1 Heme Oxygenase 1 bottleneck Heme catabolism 

MYBL2 MYB Proto-Oncogene Like 2 hub Cell cycle regulation 

POLR2B RNA Polymerase II Subunit B hub, bottleneck DNA transcription 

PSMD4 
Proteasome 26S Subunit Ubiquitin 

Receptor, Non-ATPase 4 
bottleneck Protein degradation 

RPL7 Ribosomal Protein L7 hub, bottleneck 
A protein component in 

ribosomes 

RPL11 Ribosomal Protein L11 hub 
A protein component in 

ribosomes 

RPL13A Ribosomal Protein L13a hub 
A protein component in 

ribosomes 

RPL17 Ribosomal Protein L17 hub 
A protein component in 

ribosomes 

RPL19 Ribosomal Protein L19 hub 
A protein component in 

ribosomes 
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Table 7. Cont. 

Symbol Description High Centrality Biological Function 

RPS20 Ribosomal Protein S20 hub 
A protein component in 

ribosomes 

SDAD1 SDA1 Domain Containing 1 hub 
Ribosomal production 

and transportation 

TOMM20 
Translocase Of Outer 

Mitochondrial Membrane 20 
bottleneck 

Mitochondrial protein 
transportation 

TOP2A DNA Topoisomerase II Alpha hub 
DNA replication and 

transcription 

TYMS Thymidylate Synthetase hub 
DNA replication and 

repair 

USP9X 
Ubiquitin Specific Peptidase 9 

X-Linked 
bottleneck 

Similar to ubiquitin-
specific proteases 

IAP, inhibitor of apoptosis protein; dsRNA, double-strand RNA; tRNA; MYB, 

myeloblastosis; SDA1, severe depolymerization of actin protein 1 

The survival analysis using GEPIA2 based on the LAML model in the TCGA 
database of the 27 hub and bottleneck genes revealed that only MYBL2 provided 
significant overall survival (log-rank p-value < 0.05) and a high hazard ratio (HR = 1.7); 
however, there were three genes that were nearly significant overall survival and high 
hazard ratio, for example, CDC25A (log-rank p-value = 0.064 and HR = 1.7), GUSB (log-
rank p-value = 0.057 and HR = 0.58), and SDAD1 (log-rank p-value = 0.082 and HR = 
1.6). Figure 18 displays Kaplan–Meier overall survival analysis of the significant and 
almost significant genes. The overall survival analysis of other hub and bottleneck genes 
is illustrated in Figure S4 in Supplementary and Materials. 
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Figure 18. Kaplan–Meier overall survival analysis of the hub and bottleneck genes with 
significant or almost significant log-rank p-value: CDC25A, GUSB, MYBL2, and SDAD1. 
The curves were plotted using Gene Expression Profiling Interactive Analysis (GEPIA2). 
Acute myeloid leukemia (LAML) from The Cancer Genome Atlas (TCGA) database was 
used as a cell type model to find key survival genes in cytokine storm-related myeloid 
cells such as neutrophils, monocytes, and macrophages. 

2.2.3.6 FINDING CANDIDATE TARGETED DRUGS    
MYBL2, the significant key gene obtained from the survival analysis, was 

inputted to the drug–gene interaction databases: DrugBank database [82], TTD [83], 
CTD [84], and GeneCards [85]. The almost significant key genes, such as CDC25A, 
GUSB, and SDAD1, were also used to find drug–gene interactions. The result showed 
35 FDA-approved drugs interacting with the key genes, as illustrated in Table S10 in 
Supplementary Materials. STITCH v5.0 database [86] was used to confirm the result 
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from the search. MYBL2 was the only key gene having drug–protein interaction. The 
STITCH result revealed that doxorubicin and camptothecin interact with MYBL2, as 
shown in Figure 19. 

Figure 20 displays the molecular docking results of the studied compounds 
binding to the LXXLL motif by the HDOCK webserver (Figure 20a) and AutoDock VinaXB 
(Figure 20b). The former program showed that either plumbagin or candidate drugs 
interacted with the three crucial residues associated with the motif, i.e., L685, R687, and 
L688. Through the interaction with the active site of B-Myb, doxorubicin and 
camptothecin produced an HDOCK score of −119.59 and −88.15 kcal mol−1, relatively 
outperforming plumbagin’s (−64.19 kcal mol−1). The strong binding affinity of 
doxorubicin was supported by two hydrogen bonds formed with the two positively 
charged residues, R682 and R687. Conversely, only one hydrogen bond binding to 
residue R687 was detected in the reference ligand and camptothecin. The obtained 
data were in accordance with the AutoDock VinaXB results. All compounds can bind to 
the critical residues L685, R687, and L688 with binding affinities of −4.1, −5.6, and −5.5 
kcal mol−1 for plumbagin, doxorubicin, and camptothecin, respectively. Again, there 
were hydrogen bonds between the candidate drugs and B-Myb through R682 and R687 
residues. In contrast, no hydrogen bond formation was identified in the case of the 
reference ligand.     

 
Figure 19. Drug–protein interaction network of the candidate drugs targeting MYBL2 
resulted from STITCH v5.0. The black, green, and red edges represent protein–protein, 
drug–protein, and drug–drug interactions. 
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Figure 20. Binding orientation and interaction of the two focused drug candidates with 
the LXXLL motif of B-Myb compared to plumbagin/B-Myb complex via (a) HDOCK 
webserver and (b) AutoDock VinaXB. HDOCK scores and binding affinities of all 
complexes are also shown. 

2.2.4 DISCUSSION  
Finding novel biomarkers, key genes, and candidate targeted drugs is 

necessary to predict, treat, and follow severe COVID-19 patients. This study conducted 
various types of biological network analysis, such as regulatory and protein–protein 
interaction networks, based on common DEGs from microarray data and RNA-Seq data 
for the transcriptomics data of severe COVID-19 patients. The functional enrichment 
analysis of the upregulated and downregulated DEGs was operated to discover the 
disease’s underlying molecular mechanisms. We also detected a network community in 
the PPI network. Novel biomarkers were discovered via miRNA identification in the 
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regulatory networks constructed based on the MCODE modules. In addition, the key 
genes in the PPI network were found by finding the hub and bottleneck nodes using 
degree and betweenness centrality measurement and were validated by the overall 
survival analysis of the LAML model. Finally, drug repurposing was performed by drug–
gene and drug–protein interaction database searching, and molecular docking based 
on the key genes.  

We identified 384 common DEGs that met the two datasets, and the number of 
upregulated and downregulated genes were 39 and 221, respectively. The remaining 
124 DEGs had both upregulation and downregulation. The functional enrichment result 
of the upregulated DEGs revealed that the terms were generally involved in antiviral and 
innate immune response and cell cycle regulation. The processes and pathways were 
concordant with immune responses to infectious diseases. In host response to 
infections, immune-related, inflammatory-related, and leukocyte proliferation and 
differentiation genes are overexpressed to eradicate pathogens [104–107]; however, 
excessive immune and inflammatory responses can cause uncontrolled self-tissue 
injury, leading to severe complications and increased morbid and mortal cases. 
Furthermore, the enrichment analysis of the downregulated DEGs mainly concentrated 
in the cellular response to stress, lysosome, mature lymphocyte differentiation, negative 
regulation of protein modification, glycosaminoglycan catabolic pathway, response to 
hyperoxia, and adaptive immune response. Numerous studies have shown that impaired 
lymphocyte differentiation and adaptive immune activation are found in severe COVID-
19, resulting in delayed viral clearance and persistent proinflammatory cytokine release 
[108–112]. ARDS and severe pneumonia are also found in severe COVID-19, causing 
hypoxia. Hence, genes related to the hyperoxia response were downregulated. In 
addition, negative protein modification regulation expression was reduced to increase 
the proinflammatory cytokine and antiviral protein production and release. Decreased 
glycosaminoglycan degradation can promote SAR-CoV, MERS-CoV, and SARS-CoV-2 
to infect host cells. For example, some studies have revealed that the viruses use S 
protein binding with heparan sulfate proteoglycans (HSPGs) to enter the host cells in the 
disease’s early stage [113–116].  
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The PPI network constructed by the STRING database based on the common 
DEGs, same as other biological networks, had the scale-free property. The scale-free 
property was proved by the strong relationship between degree and degree probability 
in degree distribution and the independence of the clustering coefficient and degree. 
Furthermore, the network likely provided the small-world effect because it had a low 
average shortest path length and moderate average clustering coefficient. The PPI 
network cluster detection using the MCODE algorithm showed three clusters with high 
MCODE scores: MCODE 1, 2, and 3. MCODE 1 was the upregulated gene cluster 
mainly enriched in cell proliferation and cell cycle. MCODE 2, the downregulated gene 
set, was primarily concentrated in ribosomal synthesis and protein translation regulation. 
Furthermore, MCODE 3 was centered on antiviral and innate immune responses; 
therefore, the enrichment terms of each cluster were according to the terms found in 
upregulated and downregulated DEGs.  

The regulatory networks from the MCODE clusters showed that five miRNAs, 
hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-
5p, were the novel candidate biomarkers. hsa-miR-6792-5p, hsa-let-7b-5p, and hsa-
miR-34a-5p interacted upregulated mRNAs related to cell proliferation and 
differentiation in MCODE 1 cluster. In MCODE 2, downregulated mRNAs involved in 
protein translation regulation were associated with hsa-miR-92a-3p. Moreover, hsa-miR-
146a-5p interacted with upregulated antiviral and innate immune mRNAs in MCODE 3. 
miRNAs are small, non-coding RNAs that play an essential role in controlling gene 
expression via binding mRNA and then increase mRNA cleavage or translation 
dependent on their properties [103,117]. miRNAs also have a role in clinical applications 
such as diagnostic markers and therapeutic targets [118,119]. Because miRNAs are 
stable and detectable in serum and plasma, they are applied as biomarkers for 
diagnosis [120]. Several studies have revealed miRNA expression based on viral 
proteins, host membrane receptors, and proinflammatory cytokines [121–124]; however, 
no study has reported the relationship between the five miRNAs acquired from the 
regulatory network analysis and COVID-19. Thus, they could play a crucial role in novel 
diagnostic biomarkers and therapeutic agents in severe COVID-19 and further 
investigation of their roles should be needed.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 105 

There were 27 hub or bottleneck genes from high degree and betweenness 
value selection. The hub genes were mainly involved in cell proliferation and 
differentiation, while the bottleneck genes were focused on antiviral and innate immune 
responses. We also found the four key genes, such as CDC25A, GUSB, MYBL2, and 
SDAD1, from the overall survival analysis based on the LAML model. CDC25A is a cell 
cycle and apoptosis regulator that plays a vital role in many cancers’ progression, for 
example, breast, esophageal, lung, colorectal, prostate, and ovarian cancer [125,126]. 
Furthermore, in viral infection, a study performing Sendai virus-infected cell line showed 
that upregulated CDC25A suppressed IFN-β activation while knockdown of CDC25A 
increased IFN-β stimulation [127]. The result suggested that CDC25A could participate 
in impaired viral innate immunity and increase viral survival. GUSB is a hydrolase 
enzyme for glycosaminoglycan degradation [128]. As described earlier, declined 
glycosaminoglycan degradation can promote the coronaviruses to enter the host cells. 
As a result, GUSB can play a central role in COVID-19 progression. B-Myb, encoded 
from MYBL2, is a transcription factor in the MYB family that plays an essential role in cell 
proliferation, differentiation, apoptosis, and tumorigenesis [129]. It is used as a 
prognostic marker in many cancer types, such as hepatocellular carcinoma, 
gallbladder, colorectal, and breast cancer [130–133]. Interestingly, a weighted gene co-
expression network analysis in the COVID-19 study reported that MYBL2 was one of 52 
hub genes from the network analysis [134]. This result suggested the important role of 
MYBL2 in numerous biological networks. There are a few studies on the role of SDAD1. 
It probably plays a role in ribosomal biogenesis and tumorigenesis [135]. There is no 
report about a relationship between its expression and COVID-19. Hence, further 
studies on the biological roles of SDAD1 are needed. 

The candidate targeted drug discovery came from searching in the four drug–
gene interaction databases and the drug–protein interaction database based on the four 
key genes. The result indicated that doxorubicin and camptothecin had interacted with 
MYBL2. The drug–protein interactions can be investigated by molecular docking. No 3D 
structure of B-Myb in complex with known inhibitor is currently available. The 
involvement between the key residues and binding site in B-Myb’s LXXLL motif, a 
multifunctional binding sequence in transcriptional regulation [136], was reported [93–
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95]. The B-Myb activity was inhibited by blocking the KIX domain of the B-Myb 
interaction partner, which was p300 [89], through natural [137–139] and small 
compounds [140]; however, identifying compounds that inhibit directly on B-Myb rather 
than p300 has not been revealed. In this work, the molecular docking results from the 
HDOCK webserver and AutoDock VinaXB showed that the two drug candidates, 
doxorubicin and camptothecin, had physical interactions with B-Myb. This evidence was 
supported by a reduction in cell proliferation in cancer cell lines having MYBL2 
overexpression without proving apparent mechanisms [141,142]. We then proposed the 
possible mechanism from our study that their direct interactions with B-Myb could be 
involved in the decreased cellular activity of upregulated MYBL2 cells. Additionally, the 
candidate drugs demonstrated binding interaction and susceptibility with B-Myb 
significantly greater than plumbagin, the reference ligand; therefore, doxorubicin and 
camptothecin could be potential candidates to combat COVID-19. 

There is other evidence to support that the candidate drugs could play an 
important role in severe COVID-19 treatment. Doxorubicin is a chemotherapeutic agent 
treating various types of cancer [143]. A study of structural bioinformatics revealed that 
doxorubicin proved the significant binding energy with SARS-CoV-2 main protease in 
the molecular docking [144]. This result suggested that doxorubicin could be a potential 
drug to treat severe COVID-19. Camptothecin is a natural product extracted from the 
Chinese happy tree (Camptotheca acuminata) [145]. It is used as a chemotherapeutic 
agent in cancer treatment by inhibiting DNA replication [146,147]. Camptothecin also 
has antiviral activity by inhibiting viral replication [148–150]. A study on transcriptomic 
profile in COVID-19 using bioinformatics showed that camptothecin could reverse the 
gene signature in COVID-19 [151]. In addition, the evidence from a molecular docking 
study uncovered that camptothecin formed hydrogen bonds with SARS-CoV-2 S protein 
to prevent the binding between S protein and ACE2 receptor [152]. The results 
indicated that camptothecin could play a vital role in COVID-19 treatment. 

We studied the biological networks and structural biology to identify the key 
genes, novel biomarkers, and candidate targeted drugs based on leukocyte 
transcriptomic profiles; however, the immunopathology of severe COVID-19 is the 
interaction between immune cells and respiratory cells. Analysis of peripheral white 
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blood cell gene expression can lose some proinflammatory cytokine information. 
Performing lung transcriptomic profiles for biological network construction is our 
suggestion for future research. Single-cell methods should be conducted to identify key 
genes and targeted drugs in each cell type. Advanced computational chemical 
methods such as molecular mechanics and molecular dynamics should also be 
included to simulate drug–protein interactions. Moreover, machine learning approaches 
are needed to deal with the big data of transcriptomic profiles to find the important 
features and predict key genes, novel biomarkers, and candidate-targeted drugs more 
widely and precisely.   

2.2.5 CONCLUSIONS  
Our study performed the multi-level biological network analysis from peripheral 

white blood cell transcriptomic profiles in severe COVID-19 patients. We found that the 

upregulated genes were enriched in cell proliferation and innate immune responses 

while the downregulated genes were concentrated in lymphocyte differentiation, 

adaptive immune response, and glycosaminoglycan degradation. The regulatory 

network analysis of the PPI network clusters provided novel diagnostic biomarkers from 

miRNAs. The key genes in severe COVID-19 were also identified via topological and 

survival analysis. These key genes play a significant role in leukocyte proliferation, 

antiviral activity, and viral proliferation. Furthermore, the candidate drugs targeting the 

key genes were found from database searching and evaluated with molecular docking. 

Nonetheless, other biomarkers, key genes, and candidate-targeted drugs were not 

found and need further investigation; therefore, advanced experimental and 

computational tools should be integrated to find new biomarkers and target treatments 

more precisely and personally. 

Supplementary Materials: The following supporting information can be found and 
downloaded at: https://www.mdpi.com/article/10.3390/jpm12071030/s1. Table S1: 
Common differentially expressed genes (DEGs) from the two GEO datasets; Table S2: 
Edgelist of the largest PPI network; Table S3: Local topological parameters in each node 
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in the PPI network; Table S4: Local topological parameters of the three MCODE clusters; 
Table S5: Statistical and interaction data of regulatory networks in MCODE 1; Table S6: 
Statistical and interaction data of regulatory networks in MCODE 2; Table S7: Statistical 
and interaction data of regulatory networks in MCODE 3; Table S8: Topological 
parameters of the 19 hub genes in the PPI network; Table S9: Topological parameters of 
the 15 bottleneck genes in the PPI network; Table S10: Drug-gene interaction data of the 
key genes; Figure S1: Functional enrichment analysis of genes in each MCODE module; 
Figure S2: Bar graph of the number of interactions of miRNAs in each gene in MCODE 
modules using MIENTURNET based on miRTarBase database; Figure S3: Venn diagram 
of the key genes in the degree and betweenness centrality; Figure S4: Kaplan-Meier 
overall survival analysis of the hub and bottleneck genes in severe COVID-19. 
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PART III 
CONCLUSIONS 

 
3.1 DISCUSSIONS AND CONCLUSIONS 
 This thesis proposed the PPI network analysis based on leukocyte 

transcriptomic profiles of severe COVID-19 patients to identify the key genes, candidate 

targeted drugs, and novel biomarkers. The thesis composed the two research articles. 

The former constructed the IPIN using LHD algorithm and identified the key genes via 

several centrality measurement and ranking score calculation. The key genes were 

validated by reviewing computational, experimental, and clinical studies relevant to their 

effects on COVID-19 severity. Meanwhile, the latter combined the two different leukocyte 

transcriptomic datasets to construct the PPI network using the software tool in the 

STRING database. Moreover, the key genes were identified using the combination of 

degree and betweenness centrality. They were validated from the survival analysis using 

acute myeloid leukemia as the model in the second article. miRNA-mRNA regulatory 

networks were also established in the second article for discovering the novel 

biomarkers. Although both articles found the candidate targeted drugs using drug-gene 

or drug-protein interaction networks construction from searching drug-gene and drug-

protein interaction databases, the second article also conducted the molecular docking 

to evaluate the physical interactions between the candidate drugs and the proteins 

encoded by the key genes, according to a reviewer’s suggestion during the peer review 

process of the article.  

In topological analysis, the PPI networks constructed by both articles were not 

ideal biological network because they were not fulfilled the small-world and scale-free 

criteria. The reason is explained by that the constructed networks were subnetworks 

extracted from the human interactome. Thus, they can lose some topological properties 

from the interactome network. Furthermore, the networks are real-world networks, then 

the small-world and scale-free criterion cannot be completely fulfilled. The functional 
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enrichment analysis from the DEGs, PPI network, and network clusters in the two articles 

revealed that antiviral and innate immune responses, apoptosis, and cell cycle 

regulation term were involved, indicating the leukocyte function in severe COVID-19.  

 There were 23 key genes found in the first article: CCNA2, CCNE1, CDC20, 

CDC25A, CMPK2, DDX58, FOXM1, IFI6, IFI35, IFIH1, IFIT1, IFIT2, IFIT3, IRF7, ISG15, 

MX1, OAS1, OAS2, OASL, RRM2, RSAD2, STAT1, and XAF1. These key genes were 

identified using several centrality measurements, for instance, degree, betweenness, 

closeness, and eigenvector. The combination of degree and betweenness centrality is a 

powerful tool for identifying the key genes and proteins in PPI networks because it could 

capture the highest number of the key genes (22 of 23 genes). On the other hand, while 

the ranking score calculation captured the key genes mainly found in degree centrality 

calculation, it found a low number of the key genes measured from the betweenness 

centrality and it could not discover other key genes different from degree and 

betweenness. The reason can be described by that the ranking score was mostly 

dependent on degree centrality and its variant (eigenvector centrality). Hence, the key 

genes identified by the ranking score were primarily found in the high degree centrality 

genes. There were 12 key genes identified by the combined degree and betweenness 

centrality, but the ranking score could not capture. These genes were interesting as 

well, and they should be needed to investigate their roles in severe COVID-19. In 

addition, there were 7 potential drugs identified from searching drug-gene and -protein 

interaction databases, for example, poly(I:C), mitomycin C, decitabine, gemcitabine, 

hydroxyurea, tamoxifen, and curcumin. The literature review proved these key genes 

and candidate drugs had a role in severe COVID-19. 

 It is interesting to discuss the methods used in the first article. First, the 

permutation test was done to filter out the false-positive high diffuse score nodes 

according to the z-score calculation. However, multiple z-score measurements in every 

gene in the interactome can cause false-positive significant scores, like a p-value from 
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gene expression measurement in transcriptomics. Therefore, to correct the z-score, 

adjustment techniques such as Bonferroni, Hommel, Holm, and Benjamini-Hochberg 

test should be performed. The second thing discussed in the first article’s methods is 

the proposed gene prioritization technique in the PPI network, the ranking score. 

Although the score could not cover any gene apart from the combined degree and 

betweenness centrality, applying the proposed score to identify key genes in the 

network is suggested because the score provides many benefits. For example, it 

includes all involved centralities with normalization by using the product of their 

reciprocal rank instead of directly using the centralities’ value. Geometric mean was 

applied in the ranking score instead of arithmetic mean because a maximal score will be 

1 when using the former mean calculation. The latter mean need additional 

normalization to convert a maximal value to 1. However, the dependency among the 

considered parameters, such as degree and eigenvector centrality, providing the 

biased results, is a drawback of the score. Therefore, it is recommended to include 

independent potential factors in the score.  

 There were 4 key genes explored in the second article such as CDC25A, GUSB, 

MYBL2, and SDAD1. Three key genes, except CDC25A, were different from the key 

genes identified in the first article. Furthermore, two additional 2 candidate drugs were 

found in the article: camptothecin and doxorubicin. The structural analysis results from 

the two ligand-protein docking programs revealed that the candidate drugs provided 

the better binding affinity with the key protein than the reference ligand (plumbagin). 

These suggest that PPI network analysis based on different transcriptomic datasets 

combination can reveal further key genes and candidate drugs apart from the single 

transcriptomic profile. Additionally, there were 5 novel biomarkers identified from the 

miRNA-mRNA regulatory network analysis, for instance, hsa-miR-6792-5p, hsa-let-7b-

5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p. miRNAs have many 

applications in medicine. They play a role in therapeutic agents and predictive 
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biomarkers. Consequently, the identified miRNAs can be applied in biomarkers 

development. However, further investigation of biomarker roles in these predicted 

miRNAs is required. 

Different materials and methods exist between the two articles, such as DEGs 

selection, PPI network construction, cut-point differences, and technique for key gene 

validation. First, the first article selected only the upregulated DEGs, while the second 

included the downregulated DEGs. The reasons for describing these issues are the first 

article hypothesized that genes having upregulation were associated with COVID-19 

severity. However, more research articles about pathophysiology and disease 

mechanisms were reviewed during the second article. It was found that the 

downregulated genes also play an essential role in accelerated disease progression. 

Therefore, the downregulated DEGs were included in the study in the second article.  

The second difference is that the first article constructed the PPI network using 

the network diffusion algorithm. On the other hand, the second research created the 

network based on the protein interaction data in the STRING for the common DEGs 

(including both upregulated and downregulated DEGs) without the node expansion. The 

second network was constructed differently from the first because the LHD algorithm 

consumed prolonged computational time and the DEGs’ number in the second was 

enough to establish the PPI network without extending the network.  

Furthermore, the articles' cut-point values, such as log2 FC and drug-protein 

interaction confidence score, were quite different. In the first article, DEGs were selected 

with log2 FC greater than 1.5 and the PPI network was built using the interaction 

confidence score of more than 0.9. Moreover, the chosen drugs had STTICH’s drug-

protein interaction confidence greater than 0.9. Compared with the second study, the 

cut-off values of |log2 FC| (including both upregulated and downregulated DEGs), 

protein interaction, and drug-protein interaction confidence scores were 1, 0.4, and 0.4, 

respectively. The values were changed because previously, the second article was 
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conducted according to the cut point from the first article. As a result, no significant key 

gene from the survival analysis and no drug met with interaction confidence criteria was 

identified. Thus, relieving the strict criteria was permitted to discover possible and 

further key genes and candidate drugs. Due to still no standard cut-point value in these 

parameters, it is suggested that gene expression’s FDR q-value should not be greater 

than or equal to 0.05 because it is the highest cut-point for statistical significance as 

long as acceptable. The absolute of log2 FC (|log2 FC|) should be more than 1 because 

if it equals 1, there is no gene expression difference between the experiment and control 

group. The confidence score of protein-protein and drug-protein should not be less than 

0.4 because this cut-point is the medium confidence. Using the low interaction 

confidence score can result in the research’s reliability. 

The other difference between the two methods is validating the key genes. The 

first article validated the key genes using the review of previous computational, 

experimental, and clinical studies, while the second evaluated the key genes using the 

survival analysis based on the cancer model. The reason for using the survival analysis 

in the second article comes from the experience in the first article. Validating the key 

genes using the literature review looks quite manual and laborious and takes a long 

time. The survival analysis then was operated in the second article to deal with the 

problem. Performing the survival analysis based on the cancer data on severe COVID-

19’s key gene identification can cause erroneous results although the same key cell type 

(myelocyte-lineage leukocytes) was operated. It is recommended to use key gene 

validation tools directly involved in COVID-19 or infectious diseases if they exist. 

A comparison between the proposed methods and reviewed previous studies is 

also discussed. Prasad et al. (2020) [34] constructed a PPI network based on the SARS-

CoV-2 infected lung adenocarcinoma cell line transcriptomic profiles. They identified 

120 DEGs and used them to construct a PPI network without node expansion. Functional 

enrichment analysis based on the DEGs was performed using DAVID [45] by 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 132 

considering GO-BP [46] and KEGG pathway [47] terms. The study identified key genes 

by a combination between degree and betweenness centrality measurement. The 

targeted drugs were discovered using drug-gene interaction database searching and 

confirmed with the STITCH database [48]. The methods from Prasad et al. were mainly 

used in the proposed methods in this thesis. However, the previous techniques were 

modified to provide more accurate and specific results. For instance, this thesis 

constructed the PPI network based on the patient transcriptomes instead of the cell line 

transcriptomes. The thesis also extended the PPI network by using the LHD algorithm to 

infer the disease-associated genes more than only DEGs consideration because DEGs 

provided a few nodes. Low node samples can detect a few key genes and candidate 

drugs. Metascape [49] was performed in this thesis rather than other enrichment 

programs because the software integrates the highest number of databases collecting 

biological enrichment terms such as GO-BP, KEGG, WikiPathways [50], Reactome [51], 

Canonical [52], and CORUM pathway [53]. Other enrichment software tools only focus 

on the biological terms in GO-BP and KEGG pathways. This thesis also included several 

network centralities, such as degree, betweenness, closeness, and eigenvector, and the 

proposed ranking score to identify the key genes and measure their performance 

compared to the traditional method using combined degree and betweenness centrality. 

Moreover, this thesis conducted several network clustering algorithms to detect the 

network community for finding more specific biological terms rarely seen in the whole 

network enrichment analysis. Prasad and colleagues also performed the DrugBank 

database [54] and CTD [55] to find drug-gene interaction information. This thesis 

incorporated more drug-gene interaction databases, such as TTD [56] and GeneCards 

[57], to cover more possible candidate drugs. 

To compare with the study by Zhang et al. (2020) [58] and Messina et al. (2021) 

[59], both studies performed a network diffusion algorithm called random walk with 

restart (RWR) using human proteins interacting with viral proteins as seed nodes. The 
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previous studies used human proteins interacting with the virus as the seed nodes 

because they concerned with the key genes related to the infectivity. Conversely, this 

thesis performed the seed nodes based on the genes associated with COVID-19 

severity instead of the disease susceptibility. Additionally, there is no proven evidence 

about the performance measurement between LHD used in this thesis and RWR 

conducted in the previous studies. Interestingly, Lu et al. (2018)'s study [60], using both 

LHD and RWR to infer uveitis-related genes, revealed that both algorithms provided 

markedly different inferred genes. Hence, comparisons between the two network 

diffusion algorithms' efficacy and goal are needed for further investigation. Moreover, 

Zhang and colleagues’ study operated a permutation test to filter out false-positive 

nodes like this thesis. The permutation test used in the previous study, however, has a 

possibility to capture true-positive nodes with a low diffuse score because the test 

concerned the quality but not the quantity of the diffuse score. Therefore, we conducted 

the z-score for diffuse score level consideration by selecting the nodes having a true-

positive high diffuse score.  

It is recommended in the result part of both studies that the identified key genes 

should be analyzed about their expression statuses in individual patients. Because the 

studied patient transcriptome samples came from different countries, nationalities, ages, 

genders, and other factors, their different key gene expression pattern should be 

needed more investigation. Furthermore, in the second article, the unique DEGs in each 

leukocyte transcriptomic dataset should be additionally investigated that they play an 

important role in severe COVID-19 or are only noises. Due to the sample and dataset 

variant, some important DEGs can be found in each unique set instead of the common 

set. The proposed methods in this thesis can loss some invaluable data.  

3.2 LIMITATIONS 
 There were three limitations found in this study. First, the study focused on the 

PPI network construction principally in leukocyte transcriptomic profiles, although the 
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immunopathology of COVID-19 is the interaction between white blood cells (leukocytes) 

and pulmonary cells and other organ tissues. As a result, the study can lose the 

information of complex mechanisms of severe COVID-19 in a whole body. This research 

only constructed the PPI networks indicating the host immune status in the severe 

COVID-19 but not considered organ systems. Second, performing LHD algorithm and 

permutation test for diffusion-based PPI network construction consumes a large 

computational time and needs HPC. Third, there are still no gold standard tools to 

validate the key genes related to immune-induced severe COVID-19 compared to other 

diseases such as genetic diseases, cancers, aging, and metabolic syndrome. The 

survival analysis based on the cancer model cannot provide the best appropriate key 

gene identification results. The identified key genes in severe COVID-19 are still needed 

for further investigation.      

3.3 FUTURE WORKS 
 Machine and deep learning play an essential role in finding important features 

and classifying data in many expert areas such as business, medicine, and social 

science in the data science era. Combining machine and deep learning and biological 

network analysis will be included in the future works for finding the key genes that the 

conventional methods cannot identify. In addition, single-cell transcriptomic approaches 

are required to build specific biological networks in individual cells for more precise 

treatment, according to precision medicine concepts. Advanced network-based and 

structure-based drug repurposing are also needed to discover more accurate candidate 

existing drugs. Experimental and clinical procedure should be participated to confirm 

computational results 
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APPENDICES 
 

 In this section, the important and interesting supplementary materials, tables, 

and figures from the two research articles are shown. 

APPENDIX A: SUPPLEMENTARY DATA FOR RESEARCH ARTICLE 1 

 

Figure 21.  MCODE clusters shown in the whole network of IPIN. MCODE1, 2, 3, and 4 
are marked as red, blue, green, and purple nodes, respectively.  
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Figure 22. IPIN clustered by MCL algorithm with an inflation parameter of 1.5. The red, 
yellow, green, and blue nodes are grouped in the 1st, 2nd, 3rd, and 4th cluster, 
respectively. 
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Table 8. List of nodes with high degree centrality.  
Ensembl ID Symbol Degree Centrality 

ENSP00000360869 IFIT1 39 
ENSP00000368699 ISG15 38 
ENSP00000371471 RSAD2 38 
ENSP00000381601 MX1 38 
ENSP00000360883 IFIT3 37 
ENSP00000354394 STAT1 36 
ENSP00000360891 IFIT2 34 
ENSP00000380697 IRF7 33 
ENSP00000257570 OASL 32 
ENSP00000274026 CCNA2 31 
ENSP00000342278 OAS2 31 
ENSP00000342513 IFI6 31 
ENSP00000354822 XAF1 31 
ENSP00000388001 OAS1 31 
ENSP00000395590 IFI35 31 

Table 9. List of nodes with high betweenness centrality. 
Ensembl ID Symbol Betweenness Centrality 

ENSP00000303706 CDC25A 0.248509 
ENSP00000371471 RSAD2 0.221581 
ENSP00000256722 CMPK2 0.207767 
ENSP00000353770 RRM2 0.205415 
ENSP00000274026 CCNA2 0.186888 
ENSP00000263642 IFIH1 0.149838 
ENSP00000369213 DDX58 0.111075 
ENSP00000361540 CDC20 0.051103 
ENSP00000395590 IFI35 0.042906 
ENSP00000342307 FOXM1 0.041747 
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Table 10. List of nodes with high closeness centrality. 
Ensembl ID Symbol Closeness Centrality 

ENSP00000371471 RSAD2 0.436364 
ENSP00000303706 CDC25A 0.428571 
ENSP00000256722 CMPK2 0.424779 
ENSP00000353770 RRM2 0.422907 
ENSP00000263642 IFIH1 0.419214 
ENSP00000274026 CCNA2 0.417391 
ENSP00000369213 DDX58 0.415584 
ENSP00000262643 CCNE1 0.388664 
ENSP00000360869 IFIT1 0.38247 
ENSP00000368699 ISG15 0.380952 
ENSP00000381601 MX1 0.380952 

Table 11. List of nodes with high eigenvector centrality. 
Ensembl ID Symbol Eigenvector Centrality 

ENSP00000360869 IFIT1 1 
ENSP00000381601 MX1 0.994698 
ENSP00000368699 ISG15 0.994698 
ENSP00000371471 RSAD2 0.989394 
ENSP00000360883 IFIT3 0.985845 
ENSP00000360891 IFIT2 0.968306 
ENSP00000354394 STAT1 0.963544 
ENSP00000354822 XAF1 0.93284 
ENSP00000342513 IFI6 0.93284 
ENSP00000380697 IRF7 0.927411 
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APPENDIX B: SUPPLEMENTARY DATA FOR RESEARCH ARTICLE 2 

Table 12. Common differentially expressed genes (DEGs) from the two GEO datasets *. 
DEGs Gene Symbol 

Upregulated 

KIF18B, BTN3A1, NEK2, RSAD2, TMEM140, IFI6, SP140, PRRT4, KCNN3, HJURP, 
TYMS, LEFTY2, ZNF595, ITM2C, ZNF493, PTTG1, CDC25A, SPAG5, NBN, TOP2A, 

SAMD9, PARP9, IFIT3, AIM2, IFIT1, DDX58, AURKB, CCR10, TICRR, PSMB9, 
CARD16, GRTP1, MZB1, LGALS3BP, IFI35, PCP2, NMI, IFIT5, TK1 

Downregulated 

HLA-DRA, EPM2A, NAAA, CD44, MCUB, STARD7, TRIO, IDH3B, KYAT3, RPL13A, 
EIF4B, MYO1G, HAVCR2, RPL22, RASSF7, ATP6V1F, GLUD1, LPAR1, TAB1, 

NRG1, CYB561A3, LPXN, RBMX, CSNK2B, DMAC1, SCAI, RPL19, GOLGA8B, 
EOGT, UBXN1, RAD23A, ADCK5, LGALS3,  ALDH2, RALGPS1, CAT, TWF2, PTER, 
PGLS, LDLRAD4, SDAD1, HDAC3, PTPN13, SUGP2, IRF8, ASB1, MIOS, AHNAK, 

CTSK, ERGIC3, PSMB7, PYCARD, ZBTB22, MAP3K4, TCAF2, PREP, EID1, 
NPEPL1, MFNG, CAMK2D, TBC1D9, SLC46A2, XKR7, CREBL2, TSPAN3, RPS20, 
RASGRP4, MYO9A, TUBGCP2, SRSF11, PLCB1, RRN3, YTHDC2, GLMP, MED14, 

NCKAP1L, CENPB, ICAM3, POMT2, MAP10, THAP12, GLUD2, MAN2C1, 
ADGRE1, RUBCNL, IPO5, USP9X, GNS, LY86, ASGR1, CERS5, ASB13, CPNE1, 

CEMIP2, MPDU1, UFL1, EIF2B1, PEPD, PARL, SNX22, CREBZF, ANXA5, MTCH2, 
FCN1, RAB34, GPAT4, DDX42, MTPAP, KPNA1, SNX17, NAGA, IARS2, GSTK1, 
MALT1, GUSB, HMOX1, SF3B1, CCDC124, TXNRD2, OXA1L, DOP1A, KLHL36, 
WDR55, OPN3, CYFIP2, KIAA1143, NEPRO, DYRK2, GHITM, PTRH2, AKAP8, 

STK11IP, RTL6, BTF3, ZNF783, EEF1D, ANKRD42, RNPEP, STAB1, DET1, 
SH3BGRL, SCYL1, EIF3B, TOMM20, COMMD10, UPRT, TGFBI, SURF1, TAGLN, 
SLC25A6, GIMAP6, BCAT1, CRYBG3, PHF14, ARFGAP2, RPL7, TRUB1, SUMF1, 

FOXO1, PIP5K1A, CLK2, VPS16, INTS11, NOL6, SLC25A13, MEF2C, NOA1, 
TOMM22, ZDHHC6, ZPR1, PLXND1, INTS9, SYNJ2BP, PSMD4, SYNGR2, 

BCLAF1, MRPS17, ERCC3, ZDHHC3, GAPVD1, KDM4C, MYCL, SLC25A37, 
CSDE1, UBE2J2, SUGT1, ARPIN, DHX57, TUFM, TEPSIN, CTSO, HNRNPDL, 

MAN2B1, CDC16, TPT1, SMARCAD1, NPC1, ITFG2, GPATCH2, ELP2, ANAPC2, 
MAP3K14, DUSP22, CDK5, THTPA, WDR73, HEATR6, LRRC58, ARHGAP24, 

DPYD, GALK1, FLII, NPRL2, LILRA1, NBPF8, LARP4B, MTCH1, PCID2, SMIM7, 
GGA2, SNTB2 
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Table 12. Cont. 
DEGs Gene Symbol 

Both up- and  
downregulated 

IGBP1, ZBTB14, ZNF248, DHX32, KIAA0825, BAG1, LTA4H, RPL11, HTR7, 
GPR15, POFUT1, PLIN5, ABCB7, VSIG4, PPP4C, SLC8A1, DOCK5, IRGQ, CIPC, 

ST6GALNAC1, CYBB, VPS8, DSC2, PNPLA8, SEC61A2, SPRED1, VCAN, 
SMARCD3, TBL1XR1, RPL17,  FLOT2, RPGR, RFX2, TIMM10B, ATP6V1C1, 

NOTCH2, STX5, ZNF266, SUDS3, NRDC, WDR91, CHN2, WDR45, KIAA0753, 
FCHSD2, DICER1, SLC38A6, ZNF785, EIF3K, PIGG, ZDHHC20, BOD1, MDFIC, 
POLR2B, SLITRK4, MTRR, SIDT2, RCAN3, GDF7, AHCYL2, TBC1D14, FCGRT, 

COG8, SIAH1, EVI5, SLC39A1, GALNT2, FAM135A, AREL1, FAM168B, ZSWIM6, 
AIF1, CLK3, ZNF263, SOWAHC, SFT2D2, NPL, IGF1R, WDR37, TPCN1, TRAK1, 
DPYSL2, PIAS3, CSF1R, ERCC1, ELP1, NDUFS2, SASH1, FAM20A, FAM204A, 
STX16, SLC22A4, RALGAPA1, CACNA2D3, SPSB3, RAPGEF6, SIRPA, LAG3, 

INSYN2B, MOCS1, EGFL7, ZBTB32, MANF, BTN3A2, GALM, UHRF1, BAK1, IRF7, 
SRM, PCDHGA12, DNAJC1, PSME1, E2F7, CDC20, BTN3A3, UBE2L6, DHRS9, 

UCHL1, ARL17B, KY, BIRC5, MYBL2, LIF, NME1 

* Leukocyte transcriptomic profiles came from GSE164805 and GSE154998 datasets. 

The criterion for being DEGs were FDR q-value < 0.05 and |log2 FC| > 1. A total of 384 

common DEGs were found including 39 upregulated and 221 downregulated DEGs. 

The remaining 124 genes were found in both up- and downregulated expression. 
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Figure 23. MCODE clusters shown in the whole network of the common PPI network. 
MCODE1, 2, and 3 are marked as red, blue, and green nodes, respectively. 
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Figure 24. Functional enrichment analysis of genes in each MCODE module. The 
enrichment graphs were plotted using Metascape. 
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MCODE 1 

 
MCODE 2 

 
MCODE 3 

 

Figure 25. Bar graph of the number of interactions of miRNAs in each gene in MCODE 
modules using MIENTURNET based on miRTarBase database. The bar graph color 
represents the interaction significance. 
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                    ANXA5                                         AURKB                                          BIRC5 

                 

         CAT                                             CD44                                           CDC20 

                

                   CDC25A                                         CSF1R                                        DDX58 

               

       DICER1                                         EEF1D                                          GUSB 

               

Figure 25. Cont. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 145 

                   HMOX1                                        MYBL2                                        POLR2B 

               

                    PSMD4                                           RPL7                                          RPL11 

               

                    RPL13A                                         RPL17                                          RPL19 

               

                     RPS20                                         SDAD1                                      TOMM20 

               

Figure 25. Cont. 
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                     TOP2A                                          TYMS                                         USP9X 

               

Figure 26. Kaplan-Meier overall survival analysis of the hub and bottleneck genes in 
severe COVID-19. The curves were plotted using Gene Expression Profiling Interactive 
Analysis (GEPIA2). Acute myeloid leukemia (LAML) from The Cancer Genome Atlas 
(TCGA) database was used as a cell type model to find key survival genes in cytokine 
storm-related myeloid cells such as neutrophils, monocytes, and macrophages. 
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