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Chapter 1

INTRODUCTION

We begin by recalling basic facts about quaternion algebras and global fields.
We assume that every ring is with unit and denote by F'* the set of units of a field F.
An algebra B over a field F or an F—algebra is a vector space B over F together

with a ring structure on B satisfying
(ax)(by) = (ab)(xy) for all z,y € B,a,b € F,

or equivalently, a ring B together with a ring homomorphism from F to B whose
image lies in its center. An algebra B is a division algebra if every nonzero element
has a multiplicative inverse. Furthermore, an algebra is central if the image of its
homomorphism is exactly its center, and is simple if it has no non-trivial ideals.
For algebras A, B over a field F, an algebra homomorphism from A to B is a ring
homomorphism from A to B which is also linear over F. It is an isomorphism if it is
bijective. If there is an isomorphism from A to B, then we say that A is isomorphic

to B and denote this by A ~ B.

A quaternion algebra B over a field F'is a central simple algebra of dimension
4 over F'. If B is a quaternion algebra over a field F with char F # 2, then there are

i,j € B, a,b € F* such that {1,4, 5,45} is an F—basis for B and

[\

i =a,j2=0b,ij = —ji.

In this case, B is denoted by (“ﬁb).

Example 1.1. Let F be a field with char ¥ # 2. Recall that the algebra of
2 x 2—matrices over F is an F'—algebra, denoted by M;(F). Additionally, it is a

quaternion algebra over F, and (1) ~ My (F). In fact, an isomorphism is given by



Let K be a field extension of F, and B be a quaternion algebra over F'. We say
that K is a splitting field for B, K splits B, or B is split by K if B ®r K ~ My(K).
Note that (%%) @7 K ~ (%2).

Theorem 1.2. (Voight, 2021, Theorem 5.4.4) Let F be a field with char F # 2. Let
B = (‘%’b) be a quaternion algebra over F for some a,b € F*. The followings are
equivalent:

(1) B ~ Msy(F),
(2) B is not a division algebra,

(3) Jz,y € F:ax?+by? = 1.

Several results are known so far about quaternion algebras over Q that are split
by certain field extensions. For integers a,b and a natural number ¢, the notation
a = b (mod ¢) means that a — b is divisible by ¢. Now, we give some examples.
Recall that if p is an odd prime number and d is an integer such that p does not

divide d, then the Legendre symbol for d over p is given by

<d> 1 if Jae€Z:d=a®> (mod p),

b —1 otherwise.

Moreover, an important magnitude of a number field F is the discriminant, denoted
by Ar (Neukirch, 1999, Remark, p.14). For example, if F = Q(v/d) for some square-
free integer d, then

4d ifd=2,3 (mod 4),
Ap =

d ifd=1 (mod4).
Conditions for quaternion division algebras over quadratic number fields are in
terms of the Legendre symbol and the discriminant of that number field. The proofs
of these theorems use some properties about the local Hilbert symbol. In Acciaro
etal. (2019) and Acciaro et al. (2004), Acciaro et al. proved the following theorem:s,

which are related to quadratic extensions and Galois extensions.



Theorem 1.3. (Acciaro et al., 2019, Proposition 5) Let F = Q(v/d) with discriminant
Ap, where d # 1 is a square-free integer. Let p be an odd prime integer with p = 3

(mod 8). Then (%2) is a division algebra if and only if (4=) = 1 or d =1 (mod 8).

Theorem 1.4. (Acciaro etal., 2019, Proposition 6) Let F = Q(v/d) with discriminant
Ap, where d # 11s a square-free integer. Let p,q be odd prime integers withp = q = 3
(mod 4) and (}) # 1. Then (%) is a division algebra if and only if(%) =lord=1
(mod 8).

Theorem 1.5. (Acciaro et al., 2004, Theorem 3.9) Let F = Q(v/d) with discriminant
A, where d # 1 is a square-free integer. Let KK be an extension of F which is Galois
over Q with the dihedral group of degree 2¢ for some odd prime number ¢ as Galois
group. Let p, q be distinct prime integers. Then (52) is a division algebra if and only

if one of the following conditions is satisfied.:
() porg=1 (mod 4), (2) = ~1, and (9£) =1 or (8£) = 1;
(2) p=3 (mod 8), and (5=) =1ord=1 (mod 8);

(3) p=g=3 (mod 4), (4)=—1, and (25) =10rd=1 (mod 8).

Consequently, in the situation of Theorem 1.5, if p, ¢ are distinct prime integers
such that p = ¢ =3 (mod 4), and (£) = —1, then (%) is split by K if and only if (5)

is the matrix algebra.

The proofs of these theorems rely on the local-global principle in the version
of number fields, but we will introduce the general version in terms of global fields
in next chapters, and our results over F,(¢) where ¢ is an odd prime power will be
discussed in the final chapter. Our approach is to find an explicit quaternion algebra
which is ramified at the given places, which can be verified by the local Hilbert

symbol.



Chapter 2

VALUATIONS

In this chapter, we introduce an approach for places of global fields. Let F be a
field and F* = F\ {0}. A valuation or absolute value of ¥ is a function |-|: F — R

such that
(1) |z] >0forall z € F,
(2) |z =0<«==z=0forallz € F,
3) |z|- |y| = |zy| for all x € F,
4) |z +y| <|z|+ |yl forall z,y € F.
For example, the trivial valuation defined by
0] =0,]z| =1forall z € F*

is a valuation on F. We note that F with a valuation | - | induces a metric space by

defining the distance to be
d(z,y) := |z —y| forall z,y € F,

hence also a topological space. Moreover, two valuations of a field F' are equiv-
alent if they induce the same topology on F. A valuation | - | of a field F is
called non-archimedean if |n| stays bounded for all n € N. Otherwise, it is called
archimedean. Two valuations | - |1,| - |2 are equivalent if there is a positive real

number s such that |z|, = |z|§ for all z € F.

Proposition 2.1. (Neukirch, 1999, Chapter 2, Proposition 3.6) A valuation | - | of a

field F is non-archimedean if and only if it satisfies for all x,y € F
|z + y| < max{|z|, [y|}.

Moreover, | +y| = max{|z|, |y|} if |x] # |yl-



We define an exponential valuation of F' with respect to a non-archimedean

valuation | - | to be the function

—log|z| if z#0,
v:F —-RU{o0}, wv(z)=
00 if 2 =0.

Moreover, the exponential valuation v satisfies for all =,y € F:
(D) v(z) =00 <=2 =0,
(2) v(zy) =v(@) +v(y),
(3) v(z +y) > min{v(z),v(y)},
(4) vz +y) = min{v(z), v(y)} if v(z) # v(y),

providing a < 0o, a + 0o = 00,00 + 0o = oo for all « € R. Two exponential valuations
v1, vy are equivalent if there is a positive real number s such that v, (z) = sva(z) for
all z € F*. Conversely, if we have a function v : F — R U {oo} satisfying above

conditions, then we obtain a non-archimedean valuation defined by
|z| = ¢@ forall z € F,

for some fixed ¢ > 1. Consequently, we obtain a one-to-one correspondence between
the equivalence classes of non-archimedean valuations and the equivalence classes
of exponential valuations. From now on, valuations refer to exponential valuations

or non-archimedean valuations.

Proposition 2.2. (Neukirch, 1999, Chapter 2, Proposition 3.8) Let F be a field with
a valuation v. Then

O, :={z € Flv(z) > 0}

is a subring of F, and

py:i={x € F‘v(x) >0}

is the unique maximal ideal of O,,.



Let v be a valuation of a field F. O, is called a valuation ring, and O, /p,
is called the residue field of v. v is discrete if v(F*) = sZ for some positive real
number s, and v is a normalized discrete valuation if s = 1. In this case, there is
7w € O, such that v(r) = 1, and 7 is called a uniformizer of v. In addition, for all
x € F*, we can express = un®(®) for some u € O, \ p, (v(u) = 0). Forany z,y € F

and a uniformizer =, we will write x =y (mod =) for x —y € p,.

Let F be a field with an absolute value | - |. Let (a,),en be a sequence in F.

For an element a € F, (a,),cy converges to a if it satisfies
Ve >0IN eNVneN:n> N = |a, —a| < e.

A sequence (a,)nen in F is said to be convergent if it converges to some element

in F' called limit of the sequence. Indeed, a convergent sequence has unique limit,

and we denote the limit by lim a,. A sequence (a,)ncn in F is a Cauchy sequence
n—oo

if it satisfies
Ve > 034N e NVm,n e N:m,n > N = |a, — ap| < €.

In particular, every convergent sequence is a Cauchy sequence, and F is said to be
complete if every Cauchy sequence is convergent. The set of Cauchy sequences
together with pointwise addition and multiplication form a ring. Moreover, the set
of sequences converging to 0 is an ideal, and the quotient ring is a field, called the
completion of F. If v is a valuation of F concerning to | - |, then we denote F, the

completion of F' with respect to v.

Recall that a finite extension of Q or F,(¢) for a prime number p is called a
global field, and its completion is called a local field. We will focus on the places
of global function fields. Here a place of F' is an equivalence class of valuations of
F. The places of the rational function field over a finite field can be described by

the below theorem.

Theorem 2.3. (Stichtenoth, 2009, Theorem 1.2.2) Let q be a prime power. The
places of F(t) are given by the following:



(1) The valuation vy, where f is a monic irreducible polynomial over F, is given

by
vf <f” : }gl> =n forg,h e F,lt], g,h # 0, f does not divide both g, h.

In this case, f is a uniformizer for vy since vy(f) = 1, and we define deg vy =

deg f.

(2) The place at infinity with the valuation v, is given by
Voo <z> =degh —degg forg,helF,t], g,h #0.

In this case, % is a uniformizer for v since v (1) = 1, and we define deg v, =

1.

Now we can give an example of a completion of the rational function field:

Theorem 2.4. (Stichtenoth, 2009, Theorem 4.2.6) Let F' = F,(t). Let v be a place
of degree 1 with a uniformizer w. Then every x € F, can be written as the unique
Sform

(©.9]
T = Zaﬂri with n € Z,a; € F,.
i=n
o0 .
Moreover, for any sequence (a;);>n in F, for some n € Z, the series > a;,w* converges

i=n

in F, and the valuation can be defined on F, by
v (Z ami) = min{i|a; # 0}.

The following theorem is an important result for local fields:

Theorem 2.5 (Hensel’s Lemma). (Voight, 2021, Theorem 12.2.17) Let F be a non-
archimedean local field with valuation v, valuation ring O,, and maximal ideal p.
Let f(z) € O,lx], and a € O, satisfy m = v(f(a)) > 2v(f’(a)). Then there exists
a € O, such that

f(@)=0 and a=a (modyp™).



Let K be a finite extension over a global function field F. Let v be a place of F,
and w be a place of K. We say that w is an extension of v over K, w lies over v, or v
lies under w if v = e - w for some positive integer e, where we, by abuse of notation,
write v, w for the normalized discrete valuations associated to v, w, respectively. In
this case, e,, := e is called the ramification index. For the alternative definition of
extension of v which appears in (Stichtenoth, 2009, Proposition 3.1.4), O,,/p., is a
vector space over O, /p,, and its dimension is finite, denoted by f,,,, which is called

the inertia degree.

Theorem 2.6. (Stichtenoth, 2009, Theorem 3.1.11) Let K be a finite extension over
a function field F. Let v be a place of F, and wy, ..., w, be all extensions of v over

K where g is the number of the extensions of v over K. Then

g
Zewi\vfwi\v X\ [K X F]
i=1



Chapter 3

QUATERNION ALGEBRAS OVER GLOBAL
FIELDS

In this chapter, we introduce some facts about quaternion algebras over global
fields or local fields. Let F' be a global field, v be a place of F, and B be quaternion
algebra over F. We denote B ®r F, by B,. The splitting condition for a quaternion
algebra over F, is then given by the local Hilbert symbol. Let B = (%), where
a,b € F*. The local Hilbert symbol is defined by

1/ if By ~ My(F),
(aab)v 7

—1 if B, is a division algebra.

Note that this is well-defined since B, is again a quaternion algebra over F', hence
by Theorem 1.2 either the matrix algebra M;(F,) or a division algebra. We say that
B is split or unramified at v if (a,b), = 1, and is ramified at v if (a,b), = —1. Let

us give some basic properties of the local Hilbert symbol here:

Theorem 3.1. (Voight, 2021, Lemma 12.4.3) Let F be a global field and v be a
place of F. Let a,b € F*. Then the following statements hold:

(1) (ac®,bd?), = (a,b), forall c,d € F*.
(2) (a,b)v = (b, @)

(3) (a,b)y = (a,—ab), = (b, —ab),.

“4) (1,a)y = (a,—a)y =1L

(5) Ifa # 1, then (a,1 — a)y = 1.

Theorem 3.2. (Voight, 2021, Lemma 12.4.6) Let F be a global field and v be a
place of F. Let a,b,c € F*. Then (a,bc), = (a,b),(a,c), and (ab,c), = (a,c)y(b, ¢),.
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The computation of the local Hilbert symbol can be done as follows:

Definition 3.3. Let F be a field with a normalized discrete valuation v and a uni-
formizer = € F (i.e. v(w) = 1). For d € F such that v(d) = 0, we define the Legendre

symbol for d over 7 by

<d> 1 if 3aeF:d=d* (mod ),

—1 otherwise.

Lemma 3.4. Let q be an odd prime power and c € F;. Then s =1lifce (Fy)?
and ¢ = —1ifc e FX\ (F))2

Proof. Let ¢ be a generator of Fy. If ¢ = d* for some d € Fy, then we get that

q—1

¢z =di7! = 1. Assume c is not square. Since ¢ — 1 is even, we have ¢ = ¢+ for

some ¢ € N. It follows that

1

Proposition 3.5. Let F be a field with a normalized discrete valuation v and a uni-
formizer m € F. Suppose that the residue field k has order q for some odd prime

power q. Let a,b € F such that v(a) = v(b) = 0, then

a)(b) o (o

T ) \w /)
Proof. Consider for each a,d € F where a € O, \ p, and a — d? € p,. Observe that
d>=a—(a—d* € O0,.Ifd € F\O,,thend~! € O,, and it follows that d = d?d~! € O,.

Ifd € p,, then a = (a — d?) + d? € p,. Thus d € O, \ p,. Therefore we can conclude

that for each a € O, \ p., (£) = 1 if and only if a + p, is square in k.

Now let a,b € F such that v(a) = v(b) = 0. Let z = a + p, and y = b+ p,. Then

we have

whence the desired equation follows from Lemma 3.4 immediately. [
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Theorem 3.6. Let F' be a non-archimedean local field with uniformizer =, valuation
v with v(r) = 1, and residue field k. Let q = |k|, and suppose that q is odd. Let a,b €

F*, ifwe write a = agr® and b = byr*"® for some ag, by € F* with v(ag) = v(by) = 0,

v(b) b v(a)
— (—1)(@u®) 5 [ 20 20
o (7 (2)

Proof. If we know that (ag,bo)y = 1, (ag,m)s = (%), (m,bo)y = (2), and (7, 7), =

™

then

(~1)*%, then we can apply Theorem 3.2 to obtain the desired equation.

First, let O, be the valuation ring of F. It is known from (O’Meara, 1973,
Theorem 63:11a) that the equation agx?+bgy? = 1 has a solution modulo 7. Suppose
that xo, yo € O, are such that apz? + boys = 1 (mod 7). We may assume without loss

of generality that o # 0 (mod ), so0 v(zy) = 0. Now consider the polynomial
f(z) := agx® + boya — 1 € Oy[z].
Since ¢ is odd, we have 1 # —1 (mod 7), so v(2) = 0. By observing that
v(apzd 4+ boyd — 1) > 1> 0 = v(2) + v(ag) + v(zo) = 2v(2apx0),

we can apply Theorem 2.5 to obtain # € O, such that ap2? + byys = 1. By Theorem
1.2, we have (ag, bo), = 1.

Next, let ¢ € O;F. We will show that (c, 7), = (£). Assume that (£) = 1. Then
23 —c =0 (mod ) for some x; € F. More precisely, zo € O¢ since v(x3) = v(c) = 0.

Then we can apply Theorem 2.5 to 22 — ¢ € O,[x] and o because
v(zd —c) > 1> 0=2v(2x),

so we obtain z € O, such that 72 = c. It follows that ¢(2)? + 7(0)? = 1. Conversely,
assume that cz? + my? = 1 for some =,y € F. If 2 = 0, then we have 2v(y) = —1

which is impossible, so = # 0. Since 2v(z) # 1 + 2v(y), we have
0 = v(cx? + y?) = min{2v(z), 1+ 2v(y)},

which implies that v(z), v(y) > 0. Note that

Ty —
v(x)zv( Y 1>:v(ﬂy2—1)—v(c):0—020.

C
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Hence c is a square modulo 7.

From the previous paragraph, we obtain (ag,7), = (%). Hence by Theorem
3.1 and Lemma 3.4, we have (r, by),, = (%), and
2 -1 =1
(m, 1) = (m, =7%)y = (1, =1)o = { — ) = (=1) "
as desired. ]

Corollary 3.7. Let F be a non-archimedean local field with uniformizer «, valuation
v with v(r) = 1, and residue field k. Let q = |k|, and suppose that q is odd. The

following holds for a,b € F*:
(1) If v(a) = 0, then (a,b), = (2£)*®).

e

(2) If v(a) = v(b) = 0, then (a,b), = 1.

Proof. (1) If v(a) = 0, we can write a = an’, i.e. ap = a. Hence by Theorem 3.6, we

b, (_1)0(%>v(b) (I;S)o _ (C:?)v(b)'

(2) This follows easily from (1) by substituting v(b) = 0. [

have

The quaternion algebras over a global field can be classified by the following
theorem. Note that if K is a number field and v is an archimedean place of K, then
v can be obtained from an embedding of K in C. In this case, v is a real place if the

image of the associated embedding is contained in R and complex otherwise.

Theorem 3.8. (Voight, 2021, Theorem 14.6.1) Let F be a global field. The set of
the ramified places of a given quaternion algebra over F contains only non-complex
places and has a finite even cardinality. Conversely, for a given finite subset S of
non-complex places of F of even cardinality, there is a unique quaternion algebra

over F up to isomorphism which is ramified exactly at the places of S.

Theorem 3.9 (Local-global principle). (Voight, 2021, theorem 14.6.5) Let B, B’ be
quaternion algebras over a global field F. Then B ~ B’ if and only if B, ~ B, for
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all places v of F. In particular, B ~ M (F) if and only if B, ~ Ms(F,) for all places
vof F.



Chapter 4

QUATERNION ALGEBRAS OVER
FUNCTION FIELDS

Throughout this chapter, let ¢ be an odd prime power. We determine condi-
tions for quaternion algebra to split by the quadratic constant field extension F (t).
The results are proved by investigating the local Hilbert symbol, and basic prop-
erties about finite fields. We denote by (F;)? the set of elements in F) which are

square.

Lemma 4.1. Let c e F)\ (F))?, and f(t) € F,[t] be a monic irreducible polynomial.

Then f(t) is a uniformizer of vy, vs(c) =0, and

(f%)_) _ (1)t s )

Proof. Letd = deg f(t). Recall that the residue field of vy is O, /p,, ~ Fy[t]/(f(t)) =

F,.. By Lemma 3.4, we obtain ¢’z = —1. It follows that
¢ 2 D@ T D) L)@ T D) (),
so we conclude that (ﬁ) = (-1)4 by Lemma 3.4 again. ]

Theorem 4.2. Let F = F,(t), f(t) € F,[t] \ {0}, ¢ € F \ (F})? and B = (%51,
Suppose that f(t) = afi(t)* - - fn(t)*, where f;(t) is a monic irreducible polynomial
over Fy, o € N, and a € Fx foralli e {1,...,n} for some n € N. Then the set of

places of F at which B is ramified is one of the following:

(1) The set of places corresponding to f;(t) for which f;(t)* has odd degree if f(t)

has even degree.

(2) The set of places corresponding to f;(t) for which f;(t)* has odd degree to-
gether with the place at infinity if f(t) has odd degree.
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In particular, B is a division algebra if and only if deg f;(t) and «; are both odd for

some 1.

Proof. Letd =deg f(t), d; = deg f;(t), and v be a place of F. Then v(c) = 0 for any
place v of F', and we can apply Corollary 3.7. We now distinguish the following
cases.
Case I: v = vy, forsome i = 1,...,n. By Lemma 4.1, we have

10 = (5o5) = vt
Case 2: v = v. In this case, the residue field is F, and ¢ is not square in F,. Hence

we can apply Corollary 3.7 to get

@Jmn:(ﬁgﬁz(;gd:en¢

Case 3: v = v, where ¢(t) is a monic irreducible polynomial over F, other than

fi(®), ..., fa(t). It follows from Corollary 3.7 that (c, f(t)), = 1.

Assume that d; and o; are odd for some i. Then (c, f(t)),, = (—1)%* = -1,
i.e. B isramified at vy, in particular a division algebra. Otherwise, d; or «; is even
for all 4, which implies that d = aydy + - - - + ad,, is also even. Thus (¢, f(t)), = 1 for

all places v. Hence the proof is complete by local-global principle. ]

Theorem 4.3. Every quaternion algebra over F = F,(t) whose all ramified places

are of odd degree splits after a constant quadratic field extension F,(t).

Proof. Let B be a quaternion algebra over F whose all ramified places are of odd
degree. Let S be the set of such places, so that |S| is even by Theorem 3.8. Fix
some ¢ € F;*\ (F))? and let f(t) be the product of all monic irreducible polynomials
corresponding to the places in S except vy if v, € S. Note that this is 1 if |S] is

empty. We consider two cases.

Case 1: S contains only the places corresponding to irreducible polynomials.

Since |S| is even, we have deg f(¢) is even, so (¢, f),.. = 1. Since the irreducible
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factors of f(¢) have odd degree, it follows from Theorem 4.2 that (iF(t)) ramifies

exactly in the places of F.

Case 2: S contains the place at infinity v.
Since |S\ {v }| is 0dd, we have deg f(¢) is odd, which implies that (%(t)) is ramified
at vy.. Similarly to Case 1, we obtain (c, f(t)), = —1 if and only if v € S.

From the both cases, we see that B ~ (C’];gt)) for some f(t) € F,[t]. But then

B@pFp(t) ~ (;q{ Eg) ~ My(F 2 (t)).

. —1 . .
By Lemma 3.4 twice, we have ¢ =—1,and cis a square in IE‘;Z because

g1 q—1

c 2 =~c¢ 2 (g+1) — (—1)‘1+1 — 1’

so it yields the latter isomorphism. Therefore, F2(¢) splits B. [

Now we see that every quaternion algebra over F,(¢) which is ramified at a
places of odd degree and is ramified at no places of even degree is a division al-
gebra, but splits after the constant quadratic field extension Fp(¢). What is about
quaternion algebras over F,(¢) which is ramified at a place of even degree? We will

discuss this problem in the following theorems.

Proposition 4.4. Let F = F,(t), K = Fp(t), v be a place of F of even degree. Then

v splits completely in K, i.e. there are two valuations wy,ws in K such that

w1|F = w2|F =V, Cuyv = Cwslv = 17fw1\v = fw2|v =1

Proof. Let f(t) be the monic irreducible polynomial of degree 2d over F, corre-
sponding to v. Then there is an inclusion ¢ : Fg> < F2a = Fy[t] / (f(¢)). This can be
extended to « : F2[t] — F,[t] / (f(¢)) by sending ¢ to ¢ + (f(¢)). It is easy to see that

« is a surjective homomorphism. Hence by the first isomorphism theorem,
Fe[t] / kerao ~TFy[t] / (f(t)) = Fea.

Moreover, ker a = (g(t)) for some monic irreducible polynomial ¢(¢) of degree d over

F,> since F[t] is a PID and ker « is a prime ideal. Since a(f(t)) = f(t + (f(t))) =0,
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we have (f(t)) - Fp[t] C kera, so that g(¢t) | f(¢). Let w; be the valuation in K

corresponding to g(t). Then f,, |, = 1 since

Note that ramification index of a place of constant field extension is still 1
(Stichtenoth, 2009, Theorem 3.6.3), i.e. Cuw o = 1. By Theorem 2.6, we have an-
other place ws of K lying over v which have the same ramification index and inertia

degree as w;. L]

Lemma 4.5. Let F = Fy(t), K =Fp(t), v be aplace of F of even degree. Let B be a
quaternion algebra over F, and w a place of K lying over v. Then B is ramified at

v ifand only if B ®p K is ramified at w.

Proof. Let B = (%2) for some a,b € F* and 2d be the degree of v. Write a = aor*(®)
and b = byr*® for some uniformizer 7. By Proposition 4.4, we get that 7 = 77, for
some irreducible polynomials 7, w2 over F,2, so w corresponds to 7, without loss of

generality. By Theorem 3.6, we obtain two equations:

. v(0) 7\ V(@
Y e~ )P @u(b) 5= = [ % 2 4.1
(0,8} = (=1) o) (2 (.1
and (b) (a)
w(a)\ ¥ w(b) \ W
@»i-1 [ agm bor
(a,b)y = (—1)2@w®) = <02> <O2> ) (4.2)
m m

Now, we show that (a,b), = (a,b),, to complete the proof. Note that w|r = v because

ewp = 1, and (£) = (%) for all ¢ € F with v(c) = 0 because f,,, = 1. By considering
the parity of v(a),v(b), we may distinguish the following:
Case 1: v(a),v(b) are both even. It is clear.

Case 2: v(a),v(b) are both odd. Then
ag v(b) be v(a) ~(ao b£ (@ b£ ) w(b)+w(a)
m ™ N ™ s o s m T
w(b w(a
. amrg)(a) boﬂ'g}(b) . aoﬂ'g}(a) ) boﬂ';)(b) (@
N T ™ N ™ ™ '
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It follows that (a,b), = (a,b).

Case 3: v(a)is odd and v(b) is even (or vice versa). Then it follows from the equation

(4.1) and the equation (4.2) that

v(a) w(a) w(b) w(b) \ w(@)
(- (8) () () e €
T T sl 1

Now we can conclude this chapter with the following main result:

Theorem 4.6. Every quaternion algebra over F = F,(t) which is ramified at a place
of even degree is a division algebra, but its tensoring with the constant quadratic

field extension F . (t) is still a division algebra.

Proof. Let F = F,(t), and B be a quaternion algebra over . Suppose that B is
ramified at v for some place of even degree of F. The result follows from Lemma

4.5 automatically. ]
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