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ABSTRACT

Gribov ambiguity is a problem that arises when we try to single out the
physical gauge degree of freedom in non-Abelian gauge theory by imposing the
covariant gauge constraint. Unfortunately, the solution of the gauge constraint is not
unique, thus the redundant gauge degree of freedom, called Gribov copies, remains
unfixed. One of the traditional methods to partially resolve the Gribov problem is
to restrict the space of gauge orbits inside the bounded region known as the Gribov
region. The meaning of “partially resolve” is that this procedure can solve only the
positivity’s problem of the Faddeev-Popov operator but the Gribov copies are still
there. However, on the bright side, the restriction to the Gribov region leads to
the modification of the gluon propagator. Additionally, the new form of the gluon
propagator yields the violation of the reflection positivity which is considered as the
important axiom of the Euclidean quantum field theory. This shows that the gluon
field in the Gribov region is an unphysical particle or technically confined. In this
review article, we will start by discussing the traditional Faddeev-Popov method
and its consequence on the proof of the unitarity of the perturbative Yang-Mills
theory. Next, we will discuss the blind spot of the Faddeev-Popov quantization
and study the mathematical and physical origin of the Gribov problem. Then, the
method of the Gribov restriction will be elaborated. After that, we demonstrate the
modification of the gluon field after restricting inside the bounded Gribov region.
Finally, we show that the new form of the gluon leads to the violation of the reflection
positivity axiom.
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Conventions

• Einstein summation convention is used.

• Formally we work in the spacetime manifoldM of D = d+1 dimensions where
d is the number of spatial dimensions.

• The metric signature is taken to be (+,−,−, ...,−). However, mainly, we will
work with Euclidean signature (+,+, ...,+).

• The natural unit (c = � = kB = 1) is used.

• We sometimes write AμAμ ≡ (Aμ)
2 and AμAμAνAν = (AμAμ)

2 so on and so
forth.

• The Fourier transformation is taken to be

ϕ(x) =

∫
dDp

(2π)D
ϕ(k)e−ik·x,

and

ϕ(k) =

∫
dDx ϕ(x)eik·x.

v



Chapter 1

Introduction

Quantum chromodynamics (QCD) is a gauge theory describing the strong interac-
tion - one of four fundamental interactions of nature. In the absence of quark, QCD is
described through the pure Yang-Mills (YM) theory which is a non-Abelian analogue
of Maxwell’s model of electromagnetism. Vacuum solution of the pure classical YM
theory in (3+1)-dimensional Minkowski(or Euclidean) space(time), by construction,
undergoes a conformal symmetry (this fact can be found, for example, in appendix
C of [2] and [95]), thus the existence of YM’s mass gap is forbidden in principle.
However, all known phenomena support the existence of the mass gap since the
formation of colorless bound states of colorful particles will be not allowed to hap-
pen unless the mass gap does exist. This fact was organized to be one of the most
difficult problems in mathematics. As mentioned above, the existence of the mass
gap and the absence of free colorful particles are closely related to each other. The
latter phenomenon, relate more to physicists, is known as (color) confinement which
can not be understood by using the traditional YM construction of QCD. Color
confinement can be classified further into a quark and gluon confinement. For the
former case, we have known for a long time that quarks, specifically in long-distance
or infrared (IR) limit, only appears to be bound states called hadrons. There are
many possible candidates for describing the quark confinement, for example, the
dual conductivity model constructed by the condensate of magnetic monopole in
the vacuum (See also [47, 48, 68, 81] for further information). For gluon confine-
ment case, we do not have any experimental evidence so far, however, we believe so
much that gluon, generally colorful, cannot appear isolated and also forms a bound
state called glueball [32].

Clearly, because of conformal invariance at the classical level, the confinement
effect is therefore believed to be a very pure quantum effect. Since YM theory is a
gauge theory, its quantization is also quite difficult to be done properly. For instance,
the most traditional way, so-called Faddeev-Popov (FP) quantization [31], is also
not complete in the sense that the FP method requires the very ideal gauge fixing
choice. One merit of using the FP quantization is the introduction of new attrac-
tively harmful degrees of freedom, which violates a so-called spin-statistics theorem
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[79], known as ghost modes. This leaves quantum YM theory to be invariant un-
der new global transformation proposed firstly by Becchi, Rouet, Stora and Tyutin
[12, 13, 14, 83]. The BRST transformation can be used to classify the unphysical
state out from the overall degrees of freedom. This fact leads Kugo and Ojima to
prove the unitarity of the quantum Yang-Mills theory and propose how unphysical
spectra, involving ghosts, are confined [50, 51]. Unfortunately, the confinement of
(transverse) gluon field is not proven by this particular argument.

In the later 1970s, Gribov pointed out the incompleteness of the FP method
in almost all of the gauge fixing choices, this problem is well-known in the name
Gribov ambiguity [36]. Moreover, in numerical lattice calculations, the Gribov am-
biguity also leads to a meaningless indefinite result 0/0 known as the Neuberger
problem [62] which can be solved by introducing the mass term into the massless
YM theory. In particular, the failure of the FP quantization opened the new door
of exploration in theoretical high energy physics. There are many ways to solve this
ambiguity, for example, imposing rather a non-local gauge fixing condition than a
local one e.g. lightcone gauge. However, the main resolution is the one was proposed
by Gribov himself. He suggested the way to generalize further the FP method by
restricting the gauge orbit inside the Gribov region, in fact, inside a more restricted
region called fundamental modular region (FMR). This generalization gives a mass
of non-trivial forms to the gluon field. As a byproduct, a new look of gluon spectral
function generally violates the fundamental axiom of quantum field theory (QFT)
called reflection positivity, hence, gluon will become an unphysical asymptotic state
- technically confined. This will complete the analytical proof of the violation of the
reflection positivity axiom in the YM theory restricted inside the Gribov region as
pointed out in several papers, for example, [11, 18, 21, 42, 49].

1.1 Outline of This Review

We will start the next section by discussing the difficulty of quantizing gauge theories
and how the FP procedure avoids this difficulty. In the subsection, we will discuss
the consequence of FP quantization and then study the argument to understand the
confinement proposed by Kugo and Ojima. In chapter 2, we will begin to discuss the
big blind spot of FP procedure in covariant gauge conditions such as Landau gauge
fixing (will be mainly focused on in this review). Then, we discuss how the naive
FP method fails even in numerical computations. After we understand how harmful
the Gribov ambiguity is, we will give both mathematical and physical evidence of
how Gribov ambiguity gets into the YM model. After that, we will review the
possible resolution of the Gribov ambiguity by introducing the notion of the Gribov
region and FMR. Now then we will study the semi-classical solution of the Gribov
ambiguity which will illustrate how gluon mass of Gribov form gives rise. In the
final chapter, we will discuss the consequence of Gribov mass term to prove the
gluon confinement by starting with reviewing the axiom of QFT both Wightman
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axioms [89] and, Euclideanized version, Osterwalder-Schrader axioms [63]. Finally,
we will show that the Gribov-type massive gluon propagator violates the reflection
positivity axiom leading to the sign of gluon confinement.
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Chapter 2

Traditional Quantization

For the Yang-Mills (YM) theory, the path integral quantization is much more con-
venient to perform than the canonical one. We firstly introduce a useful tool called
(Euclidean) partition function as follows

Z(J) ≡
∫
Dϕ e−S[ϕ]−

∫
dDx J(x)ϕ(x), (2.1)

where S[ϕ] is a (Euclidean) action functional of any field operator ϕ and J represents
a source of that operator. As we have already mentioned, the YM theory is a non-
abelian gauge theory so the relevant field is, of course, a YM gauge field or YM
connection Aμ(x) ≡ Aaμ(x)T

a where T a is a generator of Lie group G. The partition
function is expressed as

Z(J) =

∫
DAe−S[A]Y M−∫

dDxJa
μA

a
μ , (2.2)

with the YM action

S[A]YM =
1

4

∫
dDx F a

μν(x)F
a
μν(x) (2.3)

Fμν , so-called YM field strength tensor or YM curvature, is defined to be ≡ ∂μAν −
∂νAμ−ig[Aμ, Aν ] with YM coupling constant g. In term of component of Lie algebra,
we have

F a
μν = ∂μA

a
ν − ∂νAaμ − gfabcAbμAcν . (2.4)

In the last term of expression (2.4), we have used the Lie algebra among generators
[T b, T c] = if bcaT a. The totally anti-symmetric tensor fabc is known as the structure
constant of the Lie group. Now let’s restrict ourselves to consider only the quadratic
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part of the action functional to focus only on the kinetic part of the theory

Zquad(J) =

∫
DA exp

[
−
∫
dDx

(
1

4
(∂μA

a
ν − ∂νAaμ)2 + AaμJ

a
μ

)]

=

∫
DA exp

[
−
∫
dDx

(
1

2
(∂μA

a
ν∂μA

a
ν − ∂μAaν∂νAaμ) + AaμJ

a
μ

)]

=

∫
DA exp

[
−
∫
dDx

(
1

2
Aaν(∂μ∂ν − gμν∂ρ∂ρ)Aaμ + AaμJ

a
μ

)]

≡
∫
DA exp

[
−
∫
dDx

(
1

2
Aaμ�μνA

a
ν + AaμJ

a
μ

)]
,

(2.5)

The partition function (2.5) is nothing but Gaussian integral easily to evaluate.
Using the identity which will be derived in appendix (A.3). We thus have

Zquad(J) =
1

det�μν

e
1
2

∫
dDx Ja

μ�−1
μν J

a
ν . (2.6)

The result obtained in (2.6) will be technically correct if an inverse of �μν really do
exist while, in fact, it does not. To make sense of this, let’s compute the equation
of motion by minimizing the action functional with respect to gauge field Aμ. We
simply obtain

�μνA
a
ν = Jaμ +O(A2). (2.7)

This means that operator �μν demonstrates a map (at leading order) from a set
of gauge fields to a set containing their source fields. Since, in principle, the gauge
field Aμ belongs to an equivalence class [A] ≡ {A}/G (gauge field belongs to a set
of all possible field Aμ modulo out by the gauge transformation) called gauge orbit.
In English, this shows that Aμ is not typically unique in the sense that other gauge
field of the form

UAμ = UAμU
−1 − i

g
(∂μU)U

−1, (2.8)

for any element U ∈ G, it also describes the same physical situation as Aμ can do.
Following this logic, we can deduce that �μν is precisely not injective (one-to-one)
but many to one implying that it is impossible to be bijective, hence, it is non-
invertible at the first place. Consequently, we need to eliminate redundant gauge
degrees of freedom, formally known as fixing the gauge, in a systematical way before
performing a consistent quantization of the YM theory. (In mathematical language,
it is known as choosing the one specific representative out from the gauge orbit.)
Specifically, in this review, we will stick in the Landau gauge (or sometimes called
Lorenz gauge), i.e. ∂μA

a
μ = 0.

2.1 Faddeev-Popov Quantization

One way to fix the gauge in path integral quantization, we will follow the most
traditional way called Faddeev-Popov (FP) quantization as already mentioned in an
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introduction. The main idea is we will impose the gauge condition, behave as the
constraint, by inserting the delta function into path integrand. However, we cannot
just naively add delta function into the partition function. So what should we do
exactly? Let’s recall the well-known identity of delta function

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)| , (2.9)

where xi is an element of kernel of function f , xi ∈ ker(f), i.e. f(xi) = 0. Taking the
integration over x in both sides of relation (2.9) and using the distribution properties
of delta function

∫
dx δ(x− xi) = 1. We then get∫

dx δ(f(x)) =
∑
i

1

|f ′(xi)| . (2.10)

To obtain the form of “1” we are seeking for, we need to evaluate the summation
in the left-hand side of (2.10). However, this summation is precisely not too trivial
to evaluate easily. To be honest, one way to evaluate this summation is to not have
the summation at the beginning. In other words, what we really want to say is
to simplify this we have to require that there exists only one value of xi satisfying
the condition f(xi) = 0. Therefore, the calculation of this summation is no longer
necessary. Thus, after imposing the condition we have discussed, we find out the
form of “1” as

1 = |f ′(xi)|
∫
dx δ(f(x)). (2.11)

In the YM theory, we will generalize the identity (2.11) into the path integral version
as following expression

1 = ΔFP

∫
Dα δ(G(αA)) (2.12)

where G(αA) is a gauge constraint we are talking about, αb denotes an infinitesimal
parameter of particular gauge transformation U ≈ 1 − iαbT b + O(α2) and ΔFP is
called Faddeev-Popov determinant defined to be

ΔFP ≡
∣∣∣∣1g detMab

∣∣∣∣ ≡
∣∣∣∣det

(
δGa(αA)

δαb

)∣∣∣∣
G(αA)=0

, (2.13)

factor g in denominator is just a convention. Determinant has been used since
the path integration measure is nothing but the product of integration measure so
|f ′(xi)| becomes the product of eigenvalues of FP matrix, hence, it becomes the de-
terminant of that particular matrix as expressed in (2.13). Another way, probably
a simpler way, to make sense of this determinant is to think it as a Jacobian associ-
ated to the transformation from the integral measure

∫ DG(αA) into other form of
measure

∫ Dα.
6



Before we continue the work, let us emphasize very important point, which fol-
lows from the condition we have imposed to ignore the summation symbol in (2.10),
that the expression (2.12) will be true if and only if there is only one gauge field Aμ
that satisfies the gauge fixing condition G(A) = 0. Technically speaking, we demand
strongly that the gauge orbit crosses or intersects the gauge fixing constraint surface
only once! Unfortunately, in general situations, this condition is too ideal as we will
discuss in detail in section 3.

Now we can insert that non-trivial 1 of the form (2.12) into the path integral
(2.2) (from now on we will turn off the source without loss of generality)

Z(0) =

∫
DA
∫
Dα δ(G(αA))e−SY MΔFP =

∫
Dα
∫
DA δ(G(αA))e−SY MΔFP .

(2.14)
Note that we need to be careful about the position FP determinant in the path inte-
gral since FP determinant is independent of the gauge transformation, which comes
from the fact that the functional derivative δG

δα
does not depend on α (infinitesimal

gauge transformation is effectively linear in group parameter), but nothing guaran-
tees that FP determinant is independent of the gauge field especially in non-Abelian
gauge theories. One might ask immediately how can we change the order of path
integral measure as we have done in the last step in (2.14). To answer that, we will
claim first that DA measure is a so-called Haar measure with respect to gauge group
G which means it is completely invariant under the gauge transformation. Intuitively
speaking, the path integration measure of gauge field Aμ does an integration over
all possible configuration of gauge fields implying that this integral is performed in
the sense that it has already involved all contributions from gauge transformation.
Thus, we can swap the measure without making any harmful karma.

In the next steps, we will use a dirty trick a bit to simplify a partition function.
Firstly, we will perform a gauge transformation from the gauge field Aμ into αAμ.
This transformation changes nothing since DA is a Haar measure and S[A]YM is
invariant under gauge transformation. Then α behaves just like dummy indices so
we can change the dummy variable back into the original one, αAμ → Aμ, without
hesitation. With these little steps, the path integral (2.14) is therefore dependent
on an infinitesimal parameter α no longer.

Z(0) =

(∫
Dα
)∫

DA δ(G(A))e−SY MΔFP = Vgroup

∫
DA δ(G(A))e−SY MΔFP ,

(2.15)
where the integration over all possible gauge parameter α is nothing more and
nothing less but a volume Vgroup of gauge group manifold (a gauge group is a Lie
group so it is also a manifold) which is generally infinite. However, even though
it is not well-defined in principle, we will treat this infinity as a normalizing factor
and throw it out from the partition function. Hence, it will not affect the physical
phenomena at all.

7



Let’s specify the gauge fixing condition, we choose the class of gauge condition

Ga(A) = ∂μA
a
μ(x)− ωa(x), (2.16)

where ωa(x) is an arbitrary scalar field contributing nothing in the physical theory
and also the FP determinant. Since the expression (2.16) is the local expression,
i.e. describing the only specific value of ωa, thus, at the end of the calculation,
we prefer the averaging over this particular variable to obtain the result describing
global information. To average this variable, we will use the Gaussian weight to
parametrize the distribution because ωa is arbitrary. On the other hand, it can
be treated as a random parameter represented by normal (Gaussian) distribution.
Finally, after we integrating over ωa, we need to divide out by the normalization
constant which can be dropped out from the path integration as usual. To conclude,
the partition function becomes

Z(0) = (...)

∫
DA
∫
Dωδ(∂μAaμ − ωa) exp

(
− 1

2ξ

∫
dDx(ωa)2

)
e−SY MΔFP

= (...)

∫
DA exp

[
−
(
SYM +

1

2ξ

∫
dDx (∂μA

a
μ)

2

)]
ΔFP .

(2.17)

In this sense, this step can be effectively realized as we just add the gauge fixing
term into action by hand. To be clear, it can be shown easily that the presence of
this extra term breaks gauge symmetry explicitly, thus the gauge fixing procedure
has been done. Unfortunately, the result has been not yet completed because FP
determinant remains undetermined.

So what we have to do is to calculate the FP determinant. Before doing that,
we need to calculate the infinitesimal form of the gauge transformation with the in-
finitesimal parameter α. Recalling the gauge transformation (2.8) then substituting

U(x) to be e−iα
a(x)Ta α�1−−→ 1− iαa(x)T a+O(α2) ≡ 1− iα(x)+O(α2) and, of course,

an inverse element U(x)−1 = eiα(x) ≈ 1 + iα(x). Finally, we thus have (keeping at
only leading order in α, i.e. O(α1)))

αAμ = (1− iα)Aμ(1 + iα)− i

g
(∂μ(1− iα))(1 + iα)

= Aμ + i[Aμ, α]− 1

g
∂μα

= Aμ − 1

g
(∂μα + ig[α,Aμ])

≡ Aμ − 1

g
Dμα,

(2.18)

where Dμϕ ≡ ∂μϕ + ig[ϕ,Aμ], known as a covariant derivative, for any field ϕ
transforming under adjoint representation of the gauge group G, namely, ϕ ≡ ϕaT a

need to be a g-valued field operator where g is a Lie algebra associated with a
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Lie group G. Honestly, we will restrict ourselves to this definition only. Although
the definition of the covariant derivative acting on a field that transforms under
the fundamental representation is, in fact, different, in this literature, we will focus
only on adjoint fields. Note also that, in color indices form, we have Dab

μ ϕ
b =

(δab∂μ − gfabcAcμ)ϕb.
We are ready to compute the FP determinant explicitly by plugging the result

(2.18) combining with the particular form of gauge fixing constraint (2.16) into the
definition (2.13). To obtain

ΔFP =

∣∣∣∣det
(

δ

δαb(y)

(
∂μA

a
μ(x)−

1

g
∂μD

ac
μ α

c(x)− ωa(x)
))∣∣∣∣

= (...) det(∂μD
ab
μ δ

D(x− y)),
(2.19)

up to some constant factor depending on the coupling constant g which can be
eliminated out by just simple re-definition of the gauge field. Notice here that in the
last step of the equation (2.19), we have implicitly thrown the absolute operation
out by keeping in our mind that we have already required the FP determinant to
be a positive value which, when the Gribov ambiguity is taken into account, does
not necessarily hold in all possible situation. For future’s usage, we can also read
off the expression of the FP operator Mab(x, y) as

Mab(x, y) = −∂μDab
μ δ

D(x− y). (2.20)

Let us give some remark first that the covariant derivative inside the expression
(2.18) will be reduced into a partial derivative for the case of the Abelian gauge
theory due to the simple fact that the Lie bracket or the commutator is trivial, i.e.
[α,Aμ] = 0. Consequently, in Abelian gauge theory, we end up with

Z(0) = (...) det(∂2)

∫
DA exp

[
−
(
SMaxwell +

1

2ξ

∫
dDx (∂μAμ)

2

)]
. (2.21)

where we have used the fact that the FP determinant in an Abelian gauge model
is dependent not to gauge fields, we then pull it out from the integrand. Note
that no matter what the value of det(∂2) is, divergent or not, we do not care since
the result will be just c-number-valued quantity or, in human language, it is just a
constant dropped out from the path integration. Hence, in Abelian gauge theories,
the FP determinant contributes not any further. Unfortunately, in non-Abelian
gauge theories, the story is completely different since the determinant is not that
trivial. To evaluate such a determinant, we will use the path integration’s identity
of Grassmann variable as will be derived in an appendix (A.10). This yields an
interesting result

Z(0) =

∫
DA
∫
Dc
∫
Dc̄ exp

{
−
[
SYM +

∫
dDx

(
1

2ξ
(∂μA

a
μ)

2 + c̄a∂μDμc
a

)]}
,

(2.22)
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up to some (infinite) normalization constant. c and c̄ are fermionic fields since it is
Grassmann variable, i.e. it satisfies anti-commutation relation. However, if we look
at the equation of motion of these fields more carefully, it takes the same form as the
complex scalar fields. As a result, c and c̄ are anti-commutating spin-0 fields which
inevitably violate the spin-statistics theorem, one of the most fundamental theorems
of QFT, stating that integer-spin fields such as scalar fields and gauge fields must
satisfy commutation relation, whereas half integer-spin fields such as spinor must
satisfy anti-commutation relation (further reading [28, 79]). Since, generally, spin-
statistics theorem plays a significant role for ensuring unitarity, as we will emphasize
later in section 2.3, thus both c and c̄ need to be unphysical particles formally known
as Faddeev-Popov ghost and anti-ghost, respectively.

Let us note further, as we have discussed slightly, even though the FP (anti-
)ghosts are very harmful in many senses, it does not imply that they need to be
invisible from the theory completely. The word “unphysical” means that they can
not appear as an asymptotic state but, honestly, they still can hang around inside
the loop diagrams. In particular, FP ghosts are necessary, in loop level calculation,
to cancel all gauge dependent parts of gluon 2-point correlation function (only gluon
bubble graphs alone can not satisfy Ward-Takahashi identity, the ghost contribution
need to be added).

Figure 2.1: Gluonic vacuum polarization diagrams: 3-point vertex gluon bubble,
4-point vertex gluon bubble, and ghost bubble contribution. Summation of all
these graphs will give rise to the true tensorial structure which satisfies the Ward-
Takahashi identity. The absence of any graph will give the wrong result in the
end.

To complete this section, we will first write down the effective Lagrangian de-
scribing the quantum version of the YM theory. We clearly obtain

LQYM =
1

4
(F a

μν)
2 +

1

2ξ
(∂μA

a
μ)

2 + c̄a∂μD
ab
μ c

b. (2.23)

This Lagrangian is said to be in linear covariant gauge or Rξ gauge (R-xi), reducible
to other gauge fixing condition. Particularly, for ξ → 0 it will return to Landau
gauge while the choice ξ = 1 will reduce the theory into a so-called Feynman-’t
Hooft gauge condition which is used widely in many standard QFT textbooks since
this choice makes the Lorentz covariant part of gluon propagator extremely easy to
deal with. Finally, we will read off the relevant Feynman rules from this Lagrangian
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as will be listed down below (the reader can understand the way to derive and read
off the momentum-space Feynman rules in, e.g. [72])

1. Gluon propagator. Let us begin by noting that the presence of the gauge fixing
term makes the kinetic operator defined in (2.5) and (2.6) will change the form
into

�μν → �̃μν =

[(
1− 1

ξ

)
∂μ∂ν − gμν∂ρ∂ρ

]
. (2.24)

Thus, the gauge fixing modification version of the equation of motion (linear
part) takes the form

δab�̃μνA
b
ν(x) = δab

[(
1− 1

ξ

)
∂μ∂ν − gμν∂ρ∂ρ

]
Abν(x) = Jaμ(x). (2.25)

Naively speaking, this equation is, in principle, easy to solve by just finding an
inverse of the operator �̃μν which, in fact, is technically difficult. Fortunately,
we have very powerful technique to change the operator-valued distribution
into the c-number-valued distribution called Fourier transformation. The op-
erator, such as, a partial derivative, in position space will look just like a num-
ber inside momentum space. Therefore, we find effectively the transformation
∂μ → −ipμ. So we end up with the (number-valued) dynamical equation

δab
[
gμνp

2 −
(
1− 1

ξ

)
pμpν

]
Abν = Jaμ . (2.26)

The solution is typically just a gluon propagator (Green’s function) we are
looking for. In any linear covariant gauge choice

p
ν, b μ, a =

−iδab
p2 + iε

(
gμν − (1− ξ)pμpν

p2

)
≡ −iδ

ab

p2 + iε
Πμν(p, ξ), (2.27)

where the last expression is defined for later advantages. We will re-compute
the gluon propagator again in the presence of Gribov problem in the section 3.3
but we will restrict ourselves in the Landau gauge ξ → 0 in that calculation.
Note also that the small complex pole iε has been inserted reasonably to
represent the time ordering in Feynman diagram level which, in the end, can
be set to be zero in almost all technical calculations.

2. Ghost propagator. This propagator is much easier to find out since the kinetic
part of (anti-)ghost field is the same form as the complex scalar field theory.
So the resulting form of propagator is then

p
b a =

iδab

p2 + iε
(2.28)
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3. The last important (at least in this review article) diagram is an interaction
between ghost fields and gluon field. The interaction encoded inside the co-
variant derivative in the last term of the QYM Lagrangian (2.23). Let’s focus
on this term carefully

Lint = −∂μc̄a(−gfabcAcμ)cb = −gfabc(∂μc̄a)Abμcc, (2.29)

in the very first step, we perform the integration by part in the exponential of
the partition function (2.22) first. The reason why we can do that is because
the boundary term does not affect to the physical situation. After that, the
last step, we have used the totally anti-symmetric property of the Lie struc-
ture constant fabc = −facb and re-define color indices slightly to obtain more
beautiful result. Then, the Feynman rule reads

pcc c̄a

μ, b

= −gfabcpμ, (2.30)

where pμ actually comes from the Fourier transformation of the partial deriva-
tive acting on the anti-ghost field (see (2.29)). However, in the next chapter,
we will work with the Feynman diagram without knowing the specific modified
form of the gluon propagator. To remedy this problem, one, instead of treat-
ing the gluon as a field, rather treats the gluon field as an external coupling.
Thus, we will modify the Feynman rule of this particular vertex as follows

pcc c̄a

Abμ

= − g√
V
fabcpμA

b
μ. (2.31)

Since the gauge field in the momentum space is not a dimensionless quantity,
thus the volume V has been introduced to maintain the dimensionality of the
Feynman graph. One can think about it as the extra variable obtained when
we performing the Fourier transformation from the gauge field in the position
space into the momentum space with the periodic boundary condition.

We will use all of these Feynman rules again in section 3.3 to calculate the pole
structure of the ghost 2-point function. In the next section, before we start dis-
cussing the main problem of the FP traditional method of quantization, we will
discuss the first argument of confinement, which is the direct consequence of the
FP quantization, due to the works of Kugo and Ojima by analyzing carefully the
Fock space of physical states [50, 51]. However, in the next section, we will prepare
the basic ingredients before we will cook a tasty dish first in the last section of this
chapter.
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2.2 Ghost and BRST Symmetry

As we have discussed in the previous section that the gauge symmetry is explicitly
broken by the gauge fixing condition during the quantization process is progress-
ing. However, we are studying gauge theories so the gauge transformation is very
important. Thus, we expect that the gauge symmetry will be eventually returned
after the quantization process has been done. Is that so? the answer is it will be
restored with the new attractive form. To warm-up, let’s explore first another extra
symmetry, easier to explore, besides the ghost generalization of the gauge symmetry.

Observe that the form of the ghost sector of the QYM Lagrangian (2.23) takes
almost the same form as the complex scalar field theory (it is not since we need
to keep in mind that c and c̄ are not Hermitian conjugation of each other as the
ordinary scalar field theory, they are completely different fields with no any relation-
ship). Hence, one might naively guess that there must be the U(1) global symmetry
transformation inside this particular sector. Explicitly, we might have

c(x)→ eiγc(x), c̄(x)→ e−iγ c̄(x). (2.32)

However, this is not quite true since U(1) transformation will be inconsistent with
the particular requirement of the Hermiticity of both ghost and anti-ghost fields.
To understand this precise reason, let’s consider the Hermitian conjugation of the
ghost sector Lagrangian. We thus obtain

L†
ghost = (ca)†

←−
∂ μ

←−
Dμ(c̄

a)†

= −(c̄a)†∂μDμ(c
a)†,

(2.33)

where we have used the anti-symmetric property of Grassmann variables in the last
step. It is precisely clear that if we demand that c̄† = c̄ and c† = c, the ghost
sector’s Lagrangian will become anti-Hermitian which is unacceptable (once again,
try to not misunderstand that c̄ = c†, it is not true at all). Therefore, we assign
that anti-ghost is Hermitian while ghost field is anti-Hermitian, i.e.

c̄† = c̄, c† = −c. (2.34)

This assignment does not allow the U(1) transformation among (anti-) ghosts. Luck-
ily, we still can have the scale transformation by space-time independent real pa-
rameter

c(x)→ eγc(x), c̄→ e−γ c̄. (2.35)

According to the Noether’s theorem, the preservation of the symmetry transfor-
mation implies the existence of an associated conserved (Noether) current. The
derivation of Noether’s current is straightforward which can be seen in many stan-
dard field theories textbooks. The conserved current associated with the scaling
inside the ghost sector can be further to calculate a so-called associated Noether
(conserved) charge as follows

Qc ≡
∫
ddx Jghost0 . (2.36)
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Because of the conservation of the charge, this charge can be used to represent the
quantum number of the QYM theory. We will call this from now on the ghost num-
ber charge used to count the ghost number of any field operator (see the more clean
reasoning in the equation (2.54) below).

After taking an appetizer, let’s move to the main dish. Since the presence of the
gauge fixing term, which remains even after the quantization has been done, breaks
the gauge symmetry among the gauge fields completely. This fact leads us to no-
tice that, the remnant gauge symmetry might complicatedly transform among both
gauge fields and ghost fields. Naively thinking, we may take the gauge parameter
α(x) to be directly proportional to the ghost field itself (this remark was given in
[72]). Explicitly, we guess

α(x) = θc(x), (2.37)

where Grassmann variable θ has been added to keep the α remain bosonic. We end
up with the set of transformation

δAaμ = θ(Dμc)
a,

δca = −1

2
θgfabccbcc,

δc̄a = −θ1
ξ
∂μA

a
μ.

(2.38)

This set of global symmetry transformation is truly the remnant gauge transforma-
tion in the existence of (anti-)ghost modes. This symmetry is known as the BRST
symmetry referred to the names of whom we have mentioned in the introduction
section. Once again, “symmetry implies conservation law”. Let us denote the as-
sociated BRST conserved charge as QB whose exact form will be left undetermined
for a while. One of traditional method to study the symmetry is to investigate the
algebraic relations among charges - a charge algebra. To do that, we will perform
the BRST transformation upon any field in the theory two times. Consider

δ2δ1c
a = δ2

(
−1

2
θ1gf

abccbcc
)

= −1

2
θ1gf

abc(δ2c
b)cc − 1

2
θ1gf

abccb(δ2c
c)

= +
1

4
θ1θ2g

2fabc(f bdecdcecc + f cdecbcdce)

=
1

4
θ1θ2g

2fabc(f bdecdcecc − f bdecdcecc)
= 0

(2.39)

where there are sub-steps changing from the third line to the fourth line in (2.39).
The first sub-step is to change dummy indices between c↔ b in the last term only.
After that, we use the totally anti-symmetric property facb = −fabc so we now get
an extra minus sign in the second term. Finally, we just swap the position of ghost
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fields which are Grassmann, however, the sign remains the same since the position
of the ghost fields has been interchange for actual two times. The mathematical
implication of the result (2.39) is very meaningful. It deduces that the algebra
among the BRS charges might presumably be of the form (up to trivial constant
factor)

Q2
B = 0 = {QB, QB}, (2.40)

followed from the nilpotency of a so-called BRST differential δ2 = 0. Now let’s
check our assumption by manipulating the double BRST transformations to other
relevant field, i.e. anti-ghost c̄, the calculation is also straightforward to be done

δ2δ1c̄
a = δ2

(
−θ1
ξ
∂μA

a
μ

)
= −1

ξ
θ1θ2∂μDμc

a
(2.41)

which is unfortunately non-vanishing in general. Particularly, the result is so familiar
somehow. One might immediately notice that the field dependent part of the result
is the same form of the equation of motion derived from the functional variation of
an anti-ghost field having the form

∂μDμc
a(x) = 0. (2.42)

Clearly, if we combine the equation of motion (2.42) with the result in (2.41), the
contaminated target has been mysteriously eliminated. This fact seems unusual to
many people, by the way, it is a very well-known fact to one who is familiar with
supersymmetric (SUSY) field theories (reading the section 5.4 of review article [77]
will be helpful). Technically speaking, the BRST algebra is said to be closed on-
shell meaning that the anti-commutation relation of the BRST charge (2.40) can
not hold by itself unless the equations of motion have already been imposed. One
might honestly ask that can we construct the off-shell representation of the BRST
algebra. Ideally, it is possible since it is not mathematically forbidden. Formally
in SUSY field theories, to construct the closed SUSY algebra, we will introduce
the non-dynamical field known as an auxiliary field and let this new field to also
transform under such a transformation demanded to be closed.

How do we find the actual form of the auxiliary field then? This is a practical
difficulty we are worrying about. Fortunately, the auxiliary field in the QYM model
is already well-known. One particular method to derive the form of this auxiliary
field was given in the useful standard textbook [88] that, in my opinion, is a very
natural method. Let us traceback when we try to fix the gauge by using the FP
method in the previous section. We have selected the class of gauge fixing constraint
to be as expressed in (2.16) with arbitrary (auxiliary) field ωa. Besides, since the
gauge fixing condition inside the delta function is a local expression, we, therefore,
average over this field by Gaussian distribution’s weight. However, this field ωa

is not unique in many senses, one can reparametrize it by any constant factor.
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Nonetheless, we can also perform a Fourier transformation from this field into other
field living in its Fourier’s space (Fourier transformation, in this context, is not
referred to the Fourier transformation from the position space into the momentum
space and vice versa but regarded as the Fourier transformation between two sets
of auxiliary fields). To be clear about all the statement above, consider the Fourier
transform of the Gaussian weight in (2.17)

F̂{e− 1
2ξ

∫
dDx(ωa)2} =

∫
Dω exp

[
− 1

2ξ

∫
dDx (ωa(x))2 − i

∫
dDx ωa(x)Ba(x)

]
,

(2.43)
where F̂ denotes the shorthand notation of the Fourier transformation. The expres-
sion (2.43) is again a Gaussian integration (A.3) yielding other Gaussian distribution
with new field variable Ba(x)

F̂{e− 1
2ξ

∫
dDx(ωa)2} = e−

ξ
2

∫
dDx(Ba)2 . (2.44)

Conversely, this shows that the original Gaussian weight factor can be thought
interestingly as the inverse Fourier transformation of the product (2.44). Up to
normalization constant, once again, dropping out from the partition function, we
have

e−
1
2ξ

∫
dDx(ωa)2 =

∫
DB exp

[
−ξ
2

∫
dDx (Ba(x))2 + i

∫
dDx ωa(x)Ba(x)

]
(2.45)

Since we have worked in the spacetime with Euclidean metric, we expect to have
the real-valued Lagrangian instead of the complex one. We conventionally redefine
the arbitrary field ωa → iωa while keeping the gauge fixing condition (2.16) fixed.
Let’s insert the expression (2.45) into the partition function (2.17), then integrating
over auxiliary field ω. Hence,

Z(0) = (...)

∫
DAμ

∫
DB exp

[
−
(
SYM +

∫
dDx

[
ξ

2
(Ba)2 + Ba∂μA

a
μ

])]
ΔFP .

(2.46)
Following these steps, we just replace the FP determinant by path integrals of the
ghost and anti-ghost as we have already done in the previous section. Henceforth,
if we are talking about the QYM Lagrangian, we will keep our eyes on the following
Lagrangian shown below

LQYM = LYM + Ba∂μA
a
μ +

ξ

2
(Ba)2 + c̄a∂μDμc

a, (2.47)

where, now, we have already introduced an auxiliary field Ba(x) formally known as
a Nakanishi-Lautrup (NL) field. To show that the BRST symmetry within this La-
grangian (2.47) becomes off-shell representation already, we will start with observing
that the set of transformation has already involved the transformation between the
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anti-ghost mode and the NL auxiliary field as shown below

δAaμ = θ(Dμc)
a,

δca = −1

2
θgfabccbcc,

δc̄a = θBa,
δBa = 0.

(2.48)

The first two transformation rules remain literally the same as in the on-shell version
(2.38), whereas, the last relation in (2.38) has already changed. Consequently, this
additional transformation rules make the computation of the double BRST trans-
formation of the anti-ghost field closed without imposing the equation of motion at
all, i.e.

δ2δ1c̄
a = δ2(θ1B

a) = 0. (2.49)

One would ask whether on-shell representation Lagrangian (2.23) can be restored
from the off-shell one in some circumstance? To answer the question, we firstly
emphasize the fact that the NL field is non-dynamical, then it can be effectively
thought of as slow mode with respect to the rest dynamical degrees of freedom. As
a result, the slow mode can be approximately treated as a classical spectrum being
able to be integrated out from the quantum path integration through the saddle
point approximation. In the action functional’s level, saddle point approximation is
a domination of the classical equation of motion of Ba field, which is very easy to
compute out explicitly. It takes the form

Ba = −1

ξ
∂μA

a
μ. (2.50)

Plugging this equation of motion (2.50) into the Lagrangian (2.47) to get precisely
the on-shell Lagrangian (2.23) back. This is what we actually expected since the NL
field helps the BRST symmetry to be closed off-shell when we lose it the equation
of motion is, therefore, essential again.

Since we have already introduced the NL auxiliary field, we will specify the
particular forms of both ghost numbers charge Qc and BRST charge QB (also in
terms of B field) as the last ingredient to be used in the next section. Beginning
with using the formula to derive the general form the Noether current from any
quantum field textbook you like. We obtain ghost number current as

Jghostμ = −i
(
c̄

∂L
∂(∂μc̄)

+
∂L

∂(∂μc)
c

)
, (2.51)

where −i has been added to future purpose and color indices have been omitted.
Observe that we are very careful about the order of the fields inside the expression
(2.51) since both ghosts, anti-ghosts, and the derivative of Lagrangian density with
respect to them are all Grassmannian. One might be confused with how the deriva-
tive of Lagrangian with respect to (anti-)ghost is fermionic, it follows from the fact
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that the Lagrangian density is bosonic thus its derivative with fermion is fermionic.
Next, using the definition (2.36) to get the ghost number charge of the form

Qc = −i
∫
ddx (c̄πc̄ + πcc) , (2.52)

where πϕ is a canonical momentum conjugate to field ϕ. Although we will keep
studying this form of charge without specifying the form of canonical momenta to
be convenient for calculating the (anti-)commutation relations, the explicit form of
the canonical momenta will be sometime clearly useful in some situation. All of the
relevant canonical momenta are listed below

πai = F a
0i,

πac̄ = (D0c)
a,

πac = −∂0c̄a,
πaB = −Aa0.

(2.53)

Let’s calculate the same-time commutation relation between the ghost number
charge and ghost field. It is very straightforward to have (the first term in (2.52)
contributes no ghost field so dropping out)

[Qc, c
a(x)] = −i

∫
ddy [πbc(y)c

b(y), ca(x)]x0=y0

= −i
∫
ddy [πbc(y)c

b(y)ca(x)− ca(x)πbc(y)cb(y)]

= i

∫
ddy [πbc(y)c

a(x)cb(y) + ca(x)πbc(y)c
b(y)]

= i

∫
ddy {πbc(y), ca(x)}cb(y)

= i

∫
ddy(−iδabδd(x− y)cb(y))

= ca(x),

(2.54)

where we have used, due to the fact that ghost is a fermion, the canonical anti-
commutation relation {πc(y)b, ca(x)} = −iδabδd(x − y). The meaning of the result
in (2.54) is clearly powerful in the sense that it demonstrates that Qc represents the
operator counting the number of ghosts. It will be more obvious if we assign how
this operator acts to the eigenstate

∣∣n〉 with n ghost numbers. That implies if we
demand that the eigenvalue of this state denoting the total numbers of the ghost of
that state, everything will be consistent quantum mechanically. We require

Qc

∣∣n〉 = n
∣∣n〉, (2.55)

leading to the consequence that the state of form c
∣∣n〉 will have n+1 ghost numbers,

i.e.

Qc(c
∣∣n〉) = [Qc, c]

∣∣n〉+ cQc

∣∣n〉 = c
∣∣n〉+ nc

∣∣n〉 = (n+ 1)(c
∣∣n〉). (2.56)
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On the other hand, we can also calculate the commutation relation between this
charge and anti-ghost field. Without losing any sweat, we get

[Qc, c̄] = −c̄, (2.57)

deducing that the anti-ghost field carries reasonable −1 ghost number.
The next relevant Noether charge, the BRST charge, can be also found directly

to be

QB = i

∫
ddx

[
πai (Dic)

a − g

2
fabcπac c

bcc + πac̄B
a
]
, (2.58)

where indices i stand for the spatial components of the gauge field Ai. Note that
the reason why we can ignore the time component is π0 = F00 = 0 at the first place.
One might also rewrite this form of charge further by using the equation of motion
of the gauge field in presence of ghosts as follows

Dab
μ F

b
μν = −∂νBa + gfabc∂ν c̄

bcc, (2.59)

choosing only the time component ν = 0, we have other form of the equation of
motion

Dab
i F

b
i0 = −Dab

i π
b
i = −∂0Ba + gfabcπbcc

c, (2.60)

where the definition (2.53) has been used. Following these step, we multiple both
sides by ca into the right hand side and then perform a simple algebra to rewrite
the middle expression of (2.60), i.e.

−(Dab
i π

b
i )c

a = −(∂iπai )ca + gfabcπbiA
c
ic
a

= −∂i(πai ca) + πai ∂ic
a − πai gfabcAcicb

= −∂i(πai ca) + πaiD
ab
i c

b.

(2.61)

Substitute the result (2.61), combining with the equation (2.60) into the expression
of the BRST charge (2.58) to obtain

QB = i

∫
ddx
[
−(∂0B)aca +

g

2
fabcπac c

bcc + πac̄B
a
]
, (2.62)

where the extra total spatial derivative term in (2.61) has already been integrated
out at the boundary of the space.

In constrast to the ghost number charge, the BRST charge is fermionic generator,
thus it will be very handy later if we introduce a so-called Z2−graded Lie bracket
or super Lie bracket, suppose A and B are any fields, defined by

[A,B} = AB − (−1)g(A)g(B)BA, (2.63)

where g(A) denoted the grade of operator A which defined to be 0 for bosonic
operator and 1 for fermionic one. It satisfies two important properties that are
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1. Super skew-symmetry

[A,B} = −(−1)g(A)g(B)[B,A}. (2.64)

2. Super Jacobi identity

(−1)g(A)g(C)[A, [B,C}}+(−1)g(B)g(A)[B, [C,A}}+(−1)g(C)g(B)[C, [A,B}} = 0.
(2.65)

This new kind of bracket seems to be quite abstract but it is not that much. We can
see that the super Lie bracket will reduce back to the original (anti-)commutator by
two sufficient conditions

[A,B} =
{
[A,B] if atleast one of them is bosonic

{A,B} if both of them are fermionic
. (2.66)

With the new fancy bracket, we can write compactly the Z2−graded canonical re-
lations among all relevant fields as

[ϕaI(x), ϕ
b
J(y)} = 0, [πϕa

I
(x), ϕbJ(y)} = −iδIJδabδd(x− y), (2.67)

where I, J are used to label the species of the particles. Nevertheless, one can find
through straightforward calculations that the BRST charge generates the BRST
symmetry transformation which follows from the converse argument of the Noether’s
theorem stating that the Noether charge will generate its associated symmetry trans-
formation. Mathematically, this statement shows by the supercommutation relation

[QB, ϕ} = δϕ, (2.68)

where δ is the BRST differential we discussed earlier by redefining the infinitesimal
parameter out and ϕ used to represent any field appearing in the quantum YM
theory including the NL field also.

Let’s move to the final supercommutation relations which are the (anti-)commutations
among charges themselves. Note that we already have one anti-commutation relation
between two BRST charges (2.40) implying the nilpotency of the BRST differential.
By the way, we need to be careful about this argument, it is okay to claim that
the nilpotency of the BRST charges implies the nilpotency of the BRST differential
but it is not necessary to be true in a converse way. To sketch the proof of our
proposition we have claimed, let’s consider the super Jacobi identity (2.65) among
(QB, QB,O) for any operator O. We have

(−1)g(O)[QB, [QB,O}}+ (−1)g(O)[O, {QB, QB}}+ (−1)1[QB, [O, QB}} = 0

(−1)g(O)[QB, [QB,O}}+ (−1)g(O)[O, {QB, QB}}+ (−1)g(O)[QB, [QB,O}} = 0

2[QB, [QB,O}}+ [O, {QB, QB}} = 0

2δ2O + [O, {QB, QB}} = 0,

(2.69)
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where we have noted that [QB[QB,O}} = δ2O and the super skew-symmetry has
been used. We actually see reasonably that if 2Q2

B = {QB, QB} = 0, then δ2O = 0
for any operator O. On the other hand, in the converse way, if we demand δ2O, it
does not essentially imply the nilpotency of the BRST charge QB, in particular, it
can imply that the anti-commutation relation between two QB yields any constant
number. On the bright side, {QB, QB} = 0 can be ensured by the direct calculation.

{QB, QB} = i

∫
ddx {QB,−(∂0B)aca − g

2
fabc∂0c̄

acbcc +D0c
aBa}

= i

∫
ddx (−[QB, ∂0B

a]ca − ∂0Ba{QB, c
a} − g

2
[QB, f

abccbcc]∂0c̄
a

− g

2
fabccbcc{QB, ∂0c̄

a}+ [QB, B
a]D0c

a + Ba{QB, D0c
a})

= i

∫
ddx

[
−∂0Ba

(
−g
2
fabccbcc

)
− g

2
fabccbcc∂0B

a
]

= 0,

(2.70)

where we have used (A.12), (2.48), (2.53), (2.68) and the fact that δ(Dμc) = 0,
which will be verified in the appendix (see (A.11)). Combining with δ(fabccbcc) as
we have done verifying indirectly in (2.39).

The rest of them are also not too hard to calculate by hand. Since Qc is bosonic
charge, the remaining relation will be the commutation relations only. That are

[Qc, QB] =− [QB, Qc]

= i

∫
ddx [QB, c̄

aD0c
a − (∂0c̄

a)ca]

= i

∫
ddx ({QB, c̄

a}D0c
a − c̄a{QB, D0c

a} − {QB, ∂0c̄
a}ca

+ ∂0c̄
a{QB, c

a})
= i

∫
ddx

[
BaD0c

a − ∂0Baca + ∂0c̄
a
(
−g
2
fabccbcc

)]
= QB,

(2.71)

Finally, the last commutation relation is simpler to be obtained, without deriving,
as

[Qc, Qc] = 0. (2.72)

One might not notice how powerful relations (2.71) and (2.72) are. Since we have
known from (2.54) and (2.55) that the result of the commutator between ghost
number charge and any operator will determine the specific ghost number of that
operator. Thus, the equation (2.72) tells us that the ghost number of the ghost
number charge must be zero which is, in fact, clear in the sense that the operator
that used to count the number of ghosts must contain no any ghost number. To un-
derstand our statement, one may think about the number operator in the quantum
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harmonic oscillation that constructed from the combination between one creation
and one annihilation. Strictly speaking, the number operator must create and an-
nihilate nothing.

On the other hand, the equation (2.71) implies the wonderful consequence that
the BRST charge carries +1 ghost number. However, this is what we expected
since, by construction, we set up the BRST transformation parameter to involve the
ghost field at the first place (see (2.37)). The reader who is familiar with differen-
tial topology might have noticed that the properties of the BRST charge, that are
nilpotency Q2

B = 0 and increasing ghost number by one, are quite familiar. Let us
remind the reader a little bit about this structure by giving the simplest example
of such a structure. Suppose, there are differential p-forms, sometime p is called
a degree, defined on the manifoldM, whose set is denoted by Ωp(M) and we can
define a so-called exterior derivative d actually map p-form to (p + 1)-form, i.e.
d : Ωp(M) → Ωp+1(M) and also satisfies the nilpotent property, explicitly, d2 = 0.
Combine all of this ingredient to construct the structure, known as the deRham
complex, expressed out as a sequence

...
d−→ Ωp−1(M)

d−→ Ωp(M)
d−→ Ωp+1(M)

d−→ ... (2.73)

The deRham complex defines the corresponding deRham cohomology as following
steps: First, we suppose that there is a so-called closed form defined to be the
differential p-form that vanishes by the action of exterior derivative or explicitly
dω = 0, ω ∈ Ωp(M). We will denote the set of closed p-forms as Zp(M) which,
in fact, forms a group structure. Due to the nilpotency of the exterior derivative,
d2 = 0, there must be a (normal) subgroup of Zp(M) denoted as Bp(M) consisting
of a so-called exact p-forms satisfying ω = dα, α ∈ Ωp−1(M). We can therefore
define the deRham cohomology group as a quotient space

Hp(M) ≡ Zp(M)/Bp(M) = ker dp/im dp−1, (2.74)

where dr is the exterior derivative acting on the differential r-forms, ker and im
stands for kernel and image, respectively. Note that the dimension of deRham coho-
mology group is related to the Betti number used to calculate the Euler characteristic
class of such manifold. Consequently, the non-trivial cohomology structure implies
a non-trivial topological structure of the theory.

In QYM theory, QB behaves the same way as the exterior derivative but acting
on the different structures. In parallel to the construction of the deRham cohomol-
ogy. Let’s suppose that there are operator-valued distribution carrying n-numbers
of ghost charge whose set is denoted by TCn (the symbol might seem not to be
related at all, on the bright side, it is truly related. TCn is generally known as the
total complex [41]). The corresponding differential, in analogue to exterior deriva-
tive, is nothing but the BRST differential δ defined by δO ≡ [QB,O} where O be
any operator of n ghost numbers ∈ TCn and the (classical) BRST charge QB is an
element of TC1. These structures, again, define the BRST complex structure as a
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sequence

...
δ−→ TC0 δ−→ TC1 δ−→ ...

δ−→ TCn δ−→ ... (2.75)

Abstractly, this kind of structure is said to admit a so-called Z-graded Poisson
superalgebra structure [41] where the state is graded by an integer (Z) which is
rigidly an eigenvalue of the ghost charge. Additionally, “super” means that the Z2

gradation still be there in the sense that even(odd) Z graded state will behave the
same way as the degree zero(one) with respect to the Z2 gradation’s perspective.

Since we have already shown that the BRST differential is truly nilpotent δ2 = 0,
hence we can define the BRST cohomology, in analogue to the deRham cohomology,
as following way

Hn
δ ≡ ker δn/im δn−1. (2.76)

One might loudly shout out immediately that all of this stuff is just an abstract
mathematical structure so how important is it physically? This mathematical stuff is
generally used to identify the physical space of the state. For the following treatment,
we will follow the argument in the reference [26]. First of all, let’s recall the partition
function of the QYM theory in the form that the normalization constant is ignored
and the source field is turning off. We thus have

Z(0) =

∫
DA
∫
DB
∫
Dc
∫
Dc̄ e−SQY M , (2.77)

and the correlation function of an operator O defined to be

〈O〉 ≡ 1

Z(0)

∫
DA
∫
DB
∫
Dc
∫
Dc̄ e−SQY MO. (2.78)

By the way, if we require O to be physical, we need to expect that O is also gauge-
invariant (BRST invariant in the quantum regime), explicitly, it needs to sufficiently
satisfy the condition δO = 0. Mathematically, it said to be that operator is an
element of the kernel of the BRST differential map, O ∈ ker δ. The ensemble
average of such an operator can be seen easily that it is also invariant under the
BRST transformation, i.e.

δ
〈O〉 = δ

(
1

Z(0)

∫
DA
∫
DB
∫
Dc
∫
Dc̄ e−SQY MO

)

=
1

Z(0)

∫
DA
∫
DB
∫
Dc
∫
Dc̄ e−SQY M δO = 0.

(2.79)

One might notice suddenly that we have required two sub-conditions to make (2.79)
hold consistently. The first requirement is the quantum YM action is invariant
under the BRST transformation which is extremely obvious since if it were not, we
would have no idea what meaningless things we have been dealing with so far. The
second one is quite not too obvious but we need to pretend that it really holds in
the present case. The second condition requires all of path integration measures to
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be Haar measures with respect to the BRST transformation. Strictly speaking, the
measure needs to be invariant under the BRST transformation, in other words, it is
lack of the BRST anomalies. The discussion of the situation that BRST symmetry
is anomalous can be seen in, for example, [54].

Suppose that these two essential conditions are satisfied, let’s consider the BRST
exact operator of n degrees Õ ∈ im δ, i.e. Õ = δO′ for any operator O′ carrying n−1
ghost numbers. We end up with the fact that an expectation value of O stays zero
no matter what (can be observed directly from (2.79)). Frankly speaking, it implies
further that the probability (expectation value) to find a non-vanishing operator O
in any situation is precisely zero. Thus, this shows that all gauge-invariant physical
states belong to the BRST cohomology group (2.76) since all BRST exact states
are generally unphysical by its nature. To be more specific, the physical states
only belong to the 0th-order BRST cohomology, or, in this sense, it means that
the physical state must carry only zero number of ghost charges. This necessary
condition will be clarified in the next section below.

2.3 Kugo-Ojima Quartet Mechanism

As we have already emphasized once in section 2.1 that ghosts and anti-ghosts have
to be unphysical degrees of freedom since they do violate the spin-statistics theorem
inevitably, we will try to convince the reader to accept that this fact is definitely
unacceptable for unitary quantum field theories. First of all, we will start with
performing the plane wave modes expansion of these two quantum fields out as
follows

ca(x) =

∫
ddk

(2π)d
1√
2ωk

(−cake−ik·x + (cak)
†eik·x),

c̄a(x) =

∫
ddk

(2π)d
1√
2ωk

(c̄ake
−ik·x + (c̄ak)

†eik·x),
(2.80)

where ωk, ϕk and ϕ†
k are an associated energy, annihilation operator and creation

operator, respectively. Note that the signs in the expressions (2.80) are chosen
to be consistent with the Hermiticity assignment of ghosts (2.34). Plugging these
expressions into the super-commutation relations (2.67) to obtain the relationship
among the creation-annihilation modes as

{(c̄ak)†, cbq} = {(cak)†, c̄bq} = −δabδd(k− q), (2.81)

while the remaining all vanish. So far we are focusing on the operator formalism,
here let’s move to the state consideration to explore the structure of the vector space
associated to this quantum theory. Let’s firstly define the simplest state called a
vacuum state

∣∣0〉 by requiring this state to be annihilated by an annihilation operator
of any value of momentum, i.e. ϕak

∣∣0〉 = 0 and satisfying the normalization condition
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〈
0
∣∣0〉 = 1. After we define this state, all particle states of momentum k and color a,∣∣ϕak〉, can be constructed directly by acting the creation operator into the vacuum

one, namely,
∣∣ϕak〉 = (ϕak)

†∣∣0〉. Unfortunately, the story about the theory involving
ghosts is too far from the word “similar” to the ordinary theory in QFT 101. To
understand our argument, let’s consider the inner product of two states, e.g.〈

c̄ak
∣∣cbq〉 = 〈0∣∣c̄ak(cbq)†∣∣0〉

=
〈
0
∣∣{c̄ak, (cbq)†}∣∣0〉− 〈0∣∣(cbq)†c̄ak∣∣0〉

= −δabδd(k− q)
〈
0
∣∣0〉 = −δabδd(k− q),

(2.82)

and we can always find easily that
〈
cak
∣∣c̄bq〉 also give the same result. The simple

computation (2.82) implies really strong consequence that is the vector space of
the quantum YM theory at the beginning has an indefinite metric. Hence, such a
vector space is absolutely not a Hilbert space (so Fock space). So? What kind is
the problem anyway? Physically speaking, if the metric’s definiteness of the vector
space associated to the quantum field theory is not guaranteed, there will be some
situation in the real world that have negative probability! This obviously leads to
the violation of the unitarity without question.

At this point, let us convince the reader even more that this situation truly
follows from the violation of the spin-statistics theorem. Suppose that (anti-)ghosts
does not violate the spin-statistics theorem, this implies that (anti-)ghost, which is
the spin-0 particle, must satisfy the commutation relations

[(c̄ak)
†, cbq] = [(cak)

†, c̄bq] = −δabδd(k− q). (2.83)

We see precisely that the computation (2.82) by using the relations (2.83) yields the
positive-definite result〈

c̄ak
∣∣cbq〉 = 〈0∣∣c̄ak(cbq)†∣∣0〉

=
〈
0
∣∣[c̄ak, (cbq)†]∣∣0〉+ 〈0∣∣(cbq)†c̄ak∣∣0〉

= δabδd(k− q)

≥ 0,

(2.84)

This shows that the unitarity is safe in the light of the satisfaction of the spin-
statistics theorem. Thus we have finished the sketch of proof of our statement.

To summarize, due to the violation of the spin-statistics theorem, ghost and
anti-ghost states generate the indefinite metric that makes Hilbert(Fock) space ill-
defined in both mathematical and physical senses. Once upon a time, people have
been figured the actual way to solve this difficulty properly, we will just follow their
path of understanding from now on. The way they do is to suppose that the true
physical state,

∣∣ψ〉 said, spans only the subspace Vphys of the total space of all states
in the QYM theory denoted by V . By the help of a so-called subsidiary condition
chosen to be of the form

QB

∣∣ψ〉 = 0, (2.85)
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as firstly suggested by Curci and Ferrari [22], we will be able to project V into its
physical subspace Vphys. One might ask curiously how could people figure out such
a condition? In fact, this condition means that the physical states must be gauge
invariant, translating into the requirement of BRST invariance in the quantum level,
which is quite making sense intuitively.

Note further that the non-Abelian subsidiary condition (2.85) can be used to
restore the traditional subsidiary condition in QED in some circumstances. In par-
ticular, in the Abelian limit that fabc = 0, the BRST charge (2.62) will reduce
to

QAbelian
B =

∫
ddx : B(x)∂0c(x)− (∂0B(x))c(x) : (2.86)

where :: is a normal ordering operation, defined such that all annihilation operators
in this operation will be relocated into the right of creation operators, inserted into
the definition of the Noether charge to get rid of the ambiguity about the order of
the operators after quantized. Once again, the NL field can be also expanded in
terms of its creation-annihilation modes. The calculation of the time derivative of
any operator can be done easily in the Heisenberg picture (in the end, we can work
in any picture since all representations are related to one another through unitary
transformation according to the Stone-von Neumann theorem [78, 84]) of such a
QFT. By assigning the NL field to be a Hermitian operator-valued field, as it should
be, we end up with

∂0c(x) = i

∫
ddk

(2π)d

√
ωk
2

(cke
−ik·x + c†ke

ik·x),

∂0B(x) = i

∫
ddk

(2π)d

√
ωk
2

(−Bke
−ik·x + B†

ke
ik·x).

(2.87)

The explicit computation of the BRST charge is quite tricky but straightforward.
Let’s try evaluate term by term, e.g. the first term of the product

∫
dd−1x : B∂0c :

=
i

2

∫
ddx

∫
ddk

(2π)d

∫
ddq

(2π)d

√
ωq
ωk

: Bkcq : e
−i(k+q)·x

=
i

2

∫
ddk

(2π)d

∫
ddq

(2π)d

√
ωq
ωk

: Bkcq : (2π)
dδd(k+ q)

=
i

2

∫
dd(−k)
(2π)d

√
ω−k
ωk

: Bkc−k :

=
i

2

∫
ddk

(2π)d
: Bkc−k :,

(2.88)

where we have used the integral representation of a Dirac delta function (A.20), the
fact that ω−k = ωk (can be seen explicitly by expressed the energy out using the
dispersion relation) and the measure ddk is invariant under the reflection symmetry
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k → −k since this integral measure has already integrate over the whole space.
Through the long calculations, we end up with the simple result

QAbelian
B = i

∫
ddk

(2π)d
(c†kBk − B†

kck). (2.89)

Next substituting the result (2.89) into (2.85) combining also with the fact that the
ghost fields in an Abelian gauge theory are constant modes contributing nothing
to the physical state. Intuitively, the ghost’s annihilation operator will instantly
annihilate the physical states while the creation operator of such a field will shift
the physical states by a meaningless constant. Thus, we deduce the subsidiary
condition for an Abelian gauge theory to be of the form

i

∫
ddk

(2π)d
Bk

∣∣ψ〉 ≡ B(+)
∣∣ψ〉 = 0. (2.90)

This condition is sometimes called the Nakanishi-Lautrup quantization condition
which is the subsidiary condition used for canonically quantizing an Abelian gauge
theory in any linear covariant gauge fixing condition [53, 59, 60]. This condition
is still not familiar for many people since, in QFT 101, we formally work with the
canonical quantization of gauge theory in the Feynman-’t Hooft gauge. In particular,
we can reduce our consideration from the linear covariant gauge into the specific
Feynman-’t Hooft gauge by setting the Gaussian width to be unity, i.e. ξ = 1. The
subsidiary condition reduces into the most familiar form called the Gupta-Bleuler
condition [16, 38]

∂μA
(+)
μ

∣∣ψ〉 = 0, (2.91)

where we have substituted the equation of motion of the NL field (2.49) into (2.90)
to obtain (2.91).

The time has come, it is time to study the asymptotic behaviors of all these fields
we focusing on. To study this, we first derive the following relations, by considering

[QB, T̂ (O1(x1)...On(xn))} = δ(T̂ (O1(x1)...On(xn)))

=
n∑
i=1

T̂ (O1(x1)...δOi(xi)...On(xn)),
(2.92)

where the operator T̂ is, known as the time ordering operator, used to re-align the
operators inside the expectation value into the right chronological order. It is very
useful to know the explicit definition of the time ordering operator which is defined
as the following form

T̂ (O(x)O(y)) = θ(x0 − y0)O(x)O(y)± θ(y0 − x0)O(y)O(x), (2.93)

the particular sign of “±” will be chosen to be minus sign if both operators are
fermionic, otherwise, it will choose to be plus sign and the operator θ(x) is a Heav-
iside step-function defined as

θ(x) =

{
0, x < 0

1, x ≥ 0.
(2.94)
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The next step is sandwiching the expression (2.92) by the vacuum states
∣∣0〉, we

thus obtain
n∑
i=1

〈O1...δOi...On
〉
=
〈
0
∣∣[QB, T̂ (O1...On)}

∣∣0〉 = 0, (2.95)

where
〈
...
〉 ≡ 〈0∣∣T̂ (...)∣∣0〉 and we have used the assumption that the vacuum state

is a physical state, as it expected to be, so QB

∣∣0〉 = 0. This relation is sometime
called a Ward-Takahashi (WT) identity for a Green function. We will consider the
two special cases of this WT identity. That are〈

0
∣∣{QB, T̂ (B

a(x)c̄b(y))}∣∣0〉 = 〈Ba(x)Bb(y)
〉
= 0, (2.96)〈

0
∣∣{QB, T̂ (A

a
μ(x)c̄

b(y))}∣∣0〉 = 〈Dμc
a(x)c̄b(y)

〉
+
〈
Aaμ(x)B

b(y)
〉
= 0. (2.97)

Consider second derivative with respect to the spacetime xμ of the first term of the
middle expression in (2.97). Let’s carefully evaluate step-by-step, for first derivative,
we have

∂

∂xμ
〈
Dμc

a(x)c̄b(y)
〉
=
〈
0
∣∣ ∂
∂xμ

θ(x0 − y0)Dμc
a(x)c̄b(y)

∣∣0〉
− 〈0∣∣ ∂

∂xμ
θ(y0 − x0)c̄b(y)Dμc

a(x)
∣∣0〉

= δ(x0 − y0)〈{Dμc
a(x), c̄b(y)}〉

=− iδabδd(x− y).

(2.98)

Note that the derivative with respect to xμ of Dμc
a(x) definitely vanishes with the

help of the equation of motion (2.42) so we therefore did not care about it in the
calculation above (2.98). Moreover, the identity ∂

∂x
θ(x) = δ(x), (2.53) and (2.67)

have been used in the sub-sequential steps. For the second derivative, it is easy to
get

�x

〈
Dμc

a(x)c̄b(y)
〉
= −iδab ∂

∂xμ
δd(x− y), (2.99)

after this step, we will perform the Fourier transformation in both sides of the
relation (2.99). Effectively, it is the same as we translate from ∂μ → −ipμ. Hence,

F̂〈Dμc
a(x)c̄b(y)

〉
= δab

pμ
p2
. (2.100)

We can also compute other relation by, once again, taking second derivative with
respect to xμ. This time, we will use the equation of motion of the NL field (2.49)
with the WT identity (2.96). In the end of all processes, it yields

F̂〈Aaμ(x)Bb(y)
〉
= −δabpμ

p2
. (2.101)

One might ask, we sure reader will, that so far what is the purpose of doing all
of these stuffs? The physical meaning of the momentum space expectation value
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between two fields, a two-point function, is nothing but a momentum space prop-
agator. Thus, we can read off the pole structures from both relations (2.100) and
(2.101). As a result, this shows that the fields in the quantum YM theory admit
the massless pole structure. Asymptotically, we can then write all fields in terms of
other massless fields

Aaμ(x)→ ∂μχ
a(x) + ...

Ba(x)→ βa(x) + ...

(Dμc)
a(x)→ ∂μγ

a(x) + ...

c̄a(x)→ γ̄a(x) + ...

(2.102)

“...” denotes the term which has different pole structure. An asymptotic version of
the super commutation (2.68) reads

[QB, χ
a] = γa, {QB, γ̄

a} = βa,

{QB, γ
a} = 0, [QB, β

a] = 0.
(2.103)

Since we are living in the operator level, we can instead work in state level by per-
forming the mode expansion as before. We have obviously the (anti-)commutations
among annihilation operators

[QB, χ
a
k] = γak , {QB, γ̄

a
k} = βak ,

{QB, γ
a
k} = 0, [QB, β

a
k ] = 0.

(2.104)

On the other hand, the (anti-)commutation relations among creation operator can
be found from taking the Hermitian conjugation into each relation in (2.104), then
using the Hermiticity properties of (anti-)commutators, i.e. [A,B]† = −[A†, B†] and
{A,B}† = {A†, B†} combining with the Hermiticity of the BRST charge Q†

B = QB.
We will obtain the right (anti-)commutation relations we have requested. Explicitly,

[QB, (χ
a
k)

†] = −(γak)†, {QB, (γ̄
a
k)

†} = (βak)
†,

{QB, (γ
a
k)

†} = 0, [QB, (β
a
k)

†] = 0.
(2.105)

We already have creation operators of each asymptotic field, we can construct the
state consistently by acting the creation operator to the vacuum state. We define∣∣k, n〉 ≡ χ†

k

∣∣0〉,
−∣∣k,−n〉 ≡ β†

k

∣∣0〉,∣∣k, n+ 1
〉 ≡ γ†k

∣∣0〉,
−∣∣k,−(n+ 1)

〉 ≡ γ̄†k
∣∣0〉,

(2.106)

where k and n label dynamical quantum number (such as momentum) and the
ghost number, respectively. The particular reasons we define the state this way
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can be understood with the following logic. First of all, we begin with assign the
longitudinal mode χk of the gauge potential to have a reference value of the ghost
number n and reference momentum k. We see precisely from the first commutation
relation of (2.104) that the BRST generates the transformation from the longitudinal
gluon into the asymptotic ghost mode of the same momentum γk. Following the
fact that the BRST charge carries one ghost number, thus, there is no wonder that
the resulting ghost field must carry “n + 1” ghost numbers. Besides, due to the
conservation of the ghost number following from the fact that the ghost charges Qc

is a Noether charge, there must also exist their pairs that carry the opposite values
of ghost numbers, i.e. −n and −n− 1 which are the NL field and anti-ghost mode,
respectively. Note that this formalism is not used only in the quantum YM theory,
however, it becomes the general formalism to construct the theory with the same
structure (quantum theory with complicated constraints), e.g. in quantum gravity
[56] and topological field theory [40, 93]. This procedure is formally known as the
Batalin-Vikovisky or field-anti-field (BV-BRST) formalism [9, 10].

Once again, this all states form the vector space that also admits the BRST
complex structure. As we have said before that the BRST complex further admits
the Z-graded Poisson superalgebra, it implies that we can decompose the vector
space of states in the quantum YM theory as the direct sum among the vector space
of each degree. Mathematically speaking, we can write Vphys =

⊕
n Vn (remember

that we have already projected from the total vector space into the physical vector
subspace). To do so practically, we will first define the n-ghost numbers projection
operator P (n) which can be constructed recursively. We guess the form of it as

P (n) ≡ 1

n
(β†

kP
(n−1)O1 + χ†

kP
(n−1)O2 + γ†kP

(n−1)O3 + γ̄†kP
(n−1)O4), (2.107)

where Oi are any operator which can be found explicitly by imposing the properties
of this projector. The question is what kind of the projection operator we expected
to have. First property will be the trivial property that every projection operator
of any kind must essentially have, that is

P (n)P (m) = P (m)P (n) = δmnP
(n), implying (P (n))2 = P (n). (2.108)

This property is obvious since once we act with the n-projector, that state will, one
hundred percent, carry n-ghost numbers already if we act once by the same projec-
tor, it will give the same result for sure. In fact, this property implies a very deep
consequence that is the projection operator of any degree has to be a bosonic gen-
erator unless the second time or more action of such an operator will give non-sense
zero. Consequently, we can deduce instantly that O1 and O2 are bosonic while O3

and O4 are fermionic.
The second property follows from the fact that we have expected the right de-

composition which is consistent with the graded algebra embedded inside the con-
sidering theory. We expect so much that the projection operator must satisfy the
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completeness relation

1 =
∞∑
n=0

P (n) = P (0) +
∞∑
n=1

P (n). (2.109)

This allows us to decompose any physical state
∣∣ψ〉 ∈ Vphys into the sum of that

state projected by projection operator of each degree. Clearly, we have

∣∣ψ〉 = P (0)
∣∣ψ〉+ ∞∑

n=1

P (n)
∣∣ψ〉. (2.110)

However, the state we are focusing on is a physical state which must be subjected to
the subsidiary condition (2.85). Nevertheless, since the vector is now decomposed
into the direct sum of each degree, we also expect that the projected states are lin-
early independent to their friends. All of these arguments imply that the projection
operator must inevitably commute with the BRST charge, namely,

[QB, P
(n)] = 0. (2.111)

Plug the expression (2.107) into the constraint (2.110) to determine the relations
among Oi with the help of (A.14), (A.15) and (2.105), it yields

0 = β†
kP

(n−1)δO1 − γ†kP (n−1)O2 + χ†
kP

(n−1)δO2 − γ†kP (n−1)δO3

+ β†
kP

(n−1)O4 − γ̄†kP (n−1)δO4.
(2.112)

If we demand the equation (2.112) to hold, we require consequently as follows

δO1 = −O4, δO4 = 0, δO3 = −O2, δO2 = 0. (2.113)

The possible choice we can choose to satisfy the requirement (2.113) is

O1 = −χk, O2 = −βk, O3 = γ̄k, O4 = γk. (2.114)

Let us note that the choice, i.e. (2.114) is not unique in general. In the original
paper [50, 51], they have chosen the slightly different choice by choosing instead
O1 = −χk−ωklβl, where ωkl is a coefficient of the matrix defined inside that paper,
which also satisfies the requirement (2.113) without hesitation.

It was suggested firstly by Fujikawa [51] that such a projection operator of n ≥ 1
degree can be rewritten into the anti-commutator between the BRST charge and
something else. Specifically, we can write

P (n) = {QB, R
(n)}, where R(n) = − 1

n
(γ̄†kP

(n−1)χk + χ†P (n−1)γ̄k). (2.115)

This form leads to a very significant consequence. To understand how important
it is, let’s define the set of state, called zero-norm state, as V0. The element of
this kind of set can be defined through the action of the n ≥ 1 projection operator
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P (n)
∣∣ψ〉 ≡ ∣∣ψ0

〉 ∈ V0. We can easily show that the zero-norm state will be orthogonal
to the physical state〈

ψ
∣∣ψ0

〉
=
〈
ψ
∣∣P (n)

∣∣ψ〉 = 〈ψ∣∣{QB, R
(n)}∣∣ψ〉 = 0, (2.116)

where we have used the expression (2.115) with the subsidiary condition (2.85).
What does the result show us? It means physically that two different states

∣∣ψ〉 and∣∣ψ + ψ0

〉
represent the same physics. In other words,

∣∣ψ0

〉
is an unphysical state

because of this reasoning. After we have already traced out all zero-norm states out
from the physical world, the remaining states are equipped by a positive-definite
metric. Thus, we can now define the physical Hilbert space for the QYM theory,
guaranteeing the unitarity to be safe since all harmful ghosts are gone, to be

P (0)V ≡ Hphys = Vphys/V0. (2.117)

In summary, the unitarity of the (perturbative) quantum YM theory will be en-
sured after we have already integrated out all four elementary unphysical particles
which are longitudinal polarization gluon, NL field, ghost, and anti-ghost as defined
in (2.106). These unphysical particles form a family so-called a quartet (quartet
means four). Strictly speaking, Kugo and Ojima used all the statements above to
prove the unitarity of the quantum YM theory by claiming that all particles belong-
ing to the quartet are confined. This mechanism, celebrating the name Kugo-Ojima
(KO) quartet mechanism, completed the first-ever proof of the ghost confinement.
Unfortunately, the transverse polarization modes of gluon still are free from the cage
and still not yet proving to be confined. The discussion about the possibility that
transverse gluon can be also formed a quartet found in, for example, [4, 5].

Before ending this section, we will give two important remarks about this mech-
anism. The first one is that the Hilbert space of physical states in the QYM theory
defined in (2.117) can be shown to be identical to the zeroth BRST cohomology de-
fined in (2.76). We think it is not too hard to convince the reader that the unphysical
state above is clearly a QB-closed and also an exact one. Reasonably speaking, the
closed property can be understood from the imposition of the subsidiary condition
(2.85) while the exact property, in the light of form (2.115), can be shown directly
as ∣∣ψ0

〉
= P (n)

∣∣ψ〉 = (QBR
(n) +R(n)QB)

∣∣ψ〉 = QB(R
(n)
∣∣ψ〉), (2.118)

do not forget that we have already imposed the subsidiary condition so the last term
in the middle expression of (2.118) typically vanishes. Finally, it implies amazingly
that the physical state, which carries zero number of ghost charges unless it will
become zero-norm mode, belongs to the zeroth-order BRST cohomology H0

QB
. One

might notice immediately that the considering cohomology is not the same cohomol-
ogy we considered in the last subsection that is instead the cohomology with respect
to the BRST differential δ. However, we have already done sketching a proof that
the nilpotency of the BRST charge truly implies the nilpotency of the BRST dif-
ferential. To conclude, the BRST cohomology H0

QB
is homomorphic to H0

δ without
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wondering.
The second remark is a much more serious one since the correctness of the KO

quartet mechanism depends strongly on this remark. If we ask the reader what is
the most essential ingredient in the recipe to construct this mechanism. What is
in the reader’s mind? For us, we will answer the subsidiary condition since, as we
have discussed earlier, this is an essential condition to project the indefinite-metric
vector space to the semi-definite vector space before we can do the last step to finish
the mechanism. The key point is a subsidiary condition supposing that the physical
state is a BRST singlet or BRST invariant. Thus, we need to be sure that the BRST
charge is well-defined in the sense that it truly represents the right BRST generator.
To be more clear, QB must suffer not to any symmetry breaking which is not always
the case. As already mentioned once in the previous subsection, the BRST symme-
try can be anomalous due to the non-invariance of the measure under the BRST
transformation. Anomalous correction can generate the explicit symmetry breaking
term, making the BRST charge ill-defined. Nonetheless, at the beginning of the sec-
tion, we have done discussing that the FP method is incomplete. The modification of
the FP quantization in the presence of the Gribov ambiguity requires the restriction
to the Gribov horizon (see in detail in the next section). The restriction to the finite
region makes the BRST transformation can not be defined globally. This obstruc-
tion leads to the breaking, interpreted to be spontaneously broken type by Maggiore
and Schaden [55], of the BRST symmetry [29]. It can be shown (read section 3.4
of [87]) that the symmetry breaking term is the operator of mass dimension 2. Ac-
cording to the renormalization group language, in 4-dimensional spacetime, it said
to be super-renormalizable which will produce no further an infinite loop correction.
That means the symmetry breaking term modifies only the physics in low-energy
(IR) regime but does not modify things living a high-energy (UV) scale. Thus, it
is called soft (this terminology is usually used in the context of the supersymmetry
breaking model). To summarize, in the deconfinement phase or UV region where
the perturbative calculation is fine (follows from the asymptotic freedom), the KO
mechanism is doing very well. Whereas, in the confinement phase or IR region, this
mechanism fails since the BRST charge is not well-defined at first glance. Hence,
the unitarity of non-perturbative quantum YM theory can not be proven with the
same argument and still not be proven yet. On the bright side, the impossibility of
proving the unitarity of the quantum YM theory in the confinement phase shines a
new signal to physics’ society. It suggests us to propose that the BRST violation
can somehow lead to the confinement phenomenon. (This kind of argument can be
found in, e.g. [64]).
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Chapter 3

Gribov Ambiguity

Even though the FP quantization with the resulting BRST symmetry seems to be
very successful in many senses, as we have discussed once in the introduction, it is
still not complete yet. What is the origin of all messes? Frankly speaking, it follows
from the fact that we demand the gauge fixing condition to be very ideal. We require
that the gauge orbit essentially crosses the gauge fixing constraint surface once and
only once. In a realistic situation, how can we be so sure about that? Unfortunately,
the actual answer is no, we cannot. In this chapter, we will start the main dish by
studying the ambiguity of the covariant gauge fixing and the most successful (but
yet not complete also) possible resolution of the problem.

3.1 Gribov Ambiguity

Recall first that the condition that there is only one solution of the gauge fixing
equation has been implicitly used to force the identity (2.12) becoming the reliable
one. Otherwise, we rather need to write the form of unity as

1 =
1∑

1
ΔFP

∫
DU δ(G(UA)), (3.1)

where the summation symbol is understood to be a sum over the all possible solutions
of the constraint equation G(A) = 0. In particular, we can rewrite the relation
(3.1) further in functional form by the help of the new variable N(G[A]) denoted
the numbers of the solution of the constraint equation, i.e. N(G[A]) ≡ |{U ∈
G|G(UA) = 0}|. Thus, we have

1 =
1

N(G[A])

∫
DU δ(G(UA))ΔFP , (3.2)

where ΔFP is a usual FP determinant which is now thought as a functional-valued
quantity. Before we go forward, we will do a terminology for a bit. Along an orbit,
if there are two Aμ and A′

μ �= Aμ which both satisfy the same gauge constraint

34



G[A] = 0, we will henceforth say Aμ and A′
μ are Gribov copy to each other. Now

let’s denote the numbers of all Gribov copies inside the one particular orbit as
NGC(G[A]). It can be seen simply that

N(G[A]) = |Z(A)| ·NGC(G[A]), (3.3)

where Z(A) is called a stabilizer subgroup ofG defined by Z(A) ≡ {U ∈ G|UA = A}.
By applying the so-called orbit-stabilizer theorem [94], we end up with the condition

N(G[A]) =
|G|
|[A]| ·NGC(G[A]). (3.4)

This shows that the functional N(G[A]) is truly orbit-dependent making things
harder to evaluate in the path integration. Most importantly, it precisely shows
that if Gribov copies really exist, the gauge degrees of freedom still not yet be fixed
completely leading to over-counting the degree of freedom. Hence, the FP procedure
fails eventually.

Nevertheless, it can be more harmful than we can ever imagine. To see that,
suppose that Aμ and A′

μ both satisfy the Landau gauge fixing condition ∂μA
a
μ = 0.

Since A′
μ is a gauge field, there must always exist the element of gauge group, U ∈ G

said, such that A′
μ =U A = UAμU

−1 − i
g
(∂μU)U

−1 ≈ Aμ − 1
g
Dμα. Thus, the gauge

condition leads to

0 = ∂μA
′
μ = ∂μAμ − 1

g
∂μDμα = −1

g
∂μDμα, (3.5)

implying that the FP operator −∂μDμ contains zero modes which is not sensitive to
the gauge constraint. What we can imply more about this? First let’s observe that
the FP operator is actually Hermitian in the light of the Landau gauge. Explicitly,

∂μDμα = ∂μ(∂μα + ig[Aμ, α])

= �α + ig[∂μAμ, α] + ig[Aμ, ∂μα]

= ∂μ(∂μα) + ig[Aμ, ∂μα]

= Dμ∂μα,

(3.6)

where we have used the linearity properties of both Lie bracket and partial derivative
to perform the Leibniz’s rule in the second line and the Landau gauge condition has
been imposed in the third sub-step. The Hermiticity of the FP operator implies that
it has only real eigenvalues. However, the perturbation around the zero modes can
generate the negative eigenvalue of the FP operator. Hence, the positive definite
condition of the FP determinant cannot be used and the introduction of ghost fields
in (2.22) is meaningless (since we have used the positive definite property of the FP
determinant to carelessly change from | detMab| into detMab in that step).

However, the Gribov ambiguity does not affect all situations of the YM theory.
In high enough energy where the coupling constant is sufficiently small, effectively
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we can think that the contribution of the gauge field is typically small Aμ → 0. The
zero modes of the FP operator as expressed in (3.5) will reduce to the zero modes
of the d’Alembertian operator � which is nothing but the well-known relativistic
wave equation. The solution is, of course, a trivial plane wave. To have a local
QFT, we require that the gauge field must be normalizable, hence vanishing at the
spatial infinity. The plane wave solution is impossible to fulfill this condition, thus
such an α cannot exist in a high energy limit and then the Gribov problem is gone.
Unfortunately, in the confinement phase, the Gribov ambiguity is still haunted.

Note further that the argument above helps us to conclude that an Abelian gauge
theory is free from the Gribov ambiguity since, in Abelian limit, fabc = 0, the FP
operator also reduces into the relativistic wave operator as also happened in the
case of a weakly coupled YM theory. This makes sure that the traditional QED still
works well.

In fact, the presence of the Gribov ambiguity does not harmfully affect only on
analytical calculations but also affects numerical computations especially in lattice
gauge theories. To understand this problem, we will first note that the unity we
have inserted into the partition function (2.12) can be thought in an alternative
way. Instead of thinking that we add the unity of the non-trivial form, we will
rather think that we insert the additional partition function whose value turns out
to be one by the help of an appropriate normalization factor. Namely, the unity of
the form (2.12) can be rewritten to be

Zgf =

∫
DU δ(G(UA)) detMab

=

∫
DB
∫
DU
∫
Dc
∫
Dc̄ e−Sgf ,

(3.7)

where Sgf denotes the action functional of both gauge fixing term and ghost term.
Note that here we have pretended to think that the traditional way of quantization
is still fine by naively neglecting the absolute symbol of the FP determinant.

In particular, the partition function can be also rewritten further by using the
functional generalization of the Dirac’s delta function identity (2.9) to obtain

Zgf =

∫
DU

∑
i

δ(U − Ui)
ΔFP (UiA)

detMab(
UA)

=
∑
i

detMab(
UiA)

| detMab(UiA)| .
(3.8)

However, we have known from the analysis before that the existence of the Gribov
copies can be translated into the existence of the zero modes of the FP operator
leading to the vanishing determinant of the FP operator. As a result, we can deduce
that the naive FP method yields a non-sense 0/0 result as appeared in computational
lattice calculations. This organizes to other well-known problem in this field which
is known to be the Neuberger 0/0 problem [62].
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To understand where did the problem actually comes from. We need to change
the mindset about how we think about the partition function first. We need not treat
the partition function in the same way we have treated in the usual path integration
in QFT 101 and statistical physics. Conversely, if we are trying to compute the
partition function of the form (3.7), it means that we are amount to compute the
topological invariant of the specific group manifold, interpreted the same way as
the Witten index in SUSY non-linear sigma model [91], which is found to excitingly
coincide with the Euler-Poincaré characteristic χ(G)numbers of lattice sites. Remember
that the gauge group G is a Lie group, thus it is also a manifold without wondering.
So the problem now lies down into the studying of the gauge group’s structure itself.

Recall that in the standard model, especially in the QCD sector, we formally use
the SU(N) as a gauge group (for IR-QCD’s extensions, we use at most SO(N)
and exceptional G2). Thus, we will try to compute the Euler characteristic of the
SU(N) group, however, it is quite hard to be done since the triangulation, which is
the beginning step to evaluate the homology group and associated Betti number, of
such a group manifold, is quite difficult to do. Fortunately, we can further reduce
our consideration on the gauge group into a much simpler manifold. Note that a
sphere of 2N − 1 dimension can be constructed as the quotient space between two
unitary group U(N) of different dimensions, i.e.

S2N−1 = U(N)/U(N − 1). (3.9)

Then, consider the Cartesian product of the spheres

S2N−1 × S2N−3 × ...× S3 = U(N)/U(N − 1)× U(N − 1)/U(N − 2)× ...
× U(2)/U(1)

∼= U(N)/U(1)
∼= SU(N).

(3.10)

This implies that SU(N) group can be written into the Cartesian product of spheres,
which are easier to compute the associated Euler characteristic, of appropriate di-
mensions. Due to the consequence of the Künneth formula (B.19), we will obtain
the Euler characteristic of the SU(N) group as

χ(SU(N)) = χ(S3)χ(S5)...χ(S2N−1). (3.11)

By direct computation of homology classes and associated Betti numbers of spheres,
one will eventually end up with the result χ(Sn) = 1+ (−1)n (see (B.22)). In other
words, the Euler characteristic of n-sphere will be zero for spheres of odd dimensions
and two for even-dimensional spheres. Combining this fact with the relation (3.11)
to get the reasonable consequence that the Euler characteristic of SU(N) group for
which N ≥ 2 case is precisely zero.

Flashback to the origin of why we need to study the Euler characteristic, we
deduce from this consequence simply that, instead of adding the unity of the form
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(3.7), we have just inserted the partition function whose value is generally zero
and then carelessly divided out by normalization factor which is also zero. Loosely
speaking, in the case that Gribov ambiguity is not free, the partition function of the
form (3.7) is misunderstood to be the unity as we usually thought in (2.12). Its true
identity is 0/0 as we found in the Neuberger situation.

There are several possible resolutions to remedy the Neuberger problem. We
will discuss two of them in a very qualitative sense. The first one is, to not have
the indefinite 0/0 form at the first glance, we can introduce the mass dimension
regulator, called the Curci-Ferrari (CF) mass mCF said, into the partition function
[43]. As a result, in this case, the expectation value of any operators in a so-called
CF model is well-behaved in the sense that it has been already free from the Neu-
berger problem. To restore the original YM result, we just take a massless limit
mCF → 0 and then using the L’Hospital rule to calculate such a thing. It was
suggested by Kondo [45] that, due to the specific form of non-linear transformation
from the original gauge field, we can eventually write the massive YM theory with
correct degrees of freedom, i.e. two transverse and one longitudinal polarization
modes. The new kind of gauge field, which will be reduced into the usual massive
Proca field in the Abelian limit, precisely gauges invariant. However, what we refer
to the word gauge invariance is the invariance under the modified version of BRST
symmetry (the CF model is no longer invariant under original BRST symmetry but
modified one). Note also that the modified BRST symmetry has already lost its
nilpotency which shows a sign of the failure of the KO’s unitarity proof. Thus, even
though the CF model is shown to be renormalizable [23] but it is not perturbatively
unitary. The particular reason why unitarity is violated in the CF model was also
argued in [46] that the CF model is not valid in high energy since it can be only
treated as a low energy effective field theory of QCD existing below some energy
scale cutoff. One way to make it valid in high energy is to take the limit ξ → ∞,
which is equivalent to the unitary gauge in the well-known YM-Higgs model, where
all unphysical fields are decoupled out from the theory. To summarize, these all
attractive features of the CF model leads people to conclude that CF model does
play a role to be an alternative massive YM model without introducing any Higgs
field.

Another way to overcome the Neuberger problem is suggested from the analysis
above showing that the vanishing of the Witten index is the real problem here. The
alternative method is to perform the partial gauge fixing known as the Abelian pro-
jection. As shown in [44] (and in more detail in [48]), the element g of the group G
can be uniquely decomposed into h multiplied by ξ which belong to the maximal sta-
bilizer subgroup H̃ and its quotient space G/H̃, respectively. By the help of the for-
mula (B.19), we can reduce the problem of computing the Euler characteristic of the
full non-Abelian group χ(G) into merely computing χ(G/H̃)χ(H̃). Let’s study the
simplest possible model that is not trivial, the SU(2) QCD, we have that the max-
imal stabilizer group uniquely coincides with the maximal torus group U(1). Now
we see that the Euler characteristic reduces into just a product of the Euler charac-
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teristics that are much easier to evaluate, i.e. χ(SU(2)) = χ(SU(2)/U(1))χ(U(1)).
The former one is nothing but the Euler characteristic of the 2-sphere which is well-
known already (see also (B.22)), that is, χ(SU(2)/U(1)) = χ(S2) = 2. The problem
is that the remaining contribution of the Euler characteristic class still vanishes. On
the bright side, we have seen precisely where does the problem actually come from. If
we fix the problem of the vanishing Witten index of the compact U(1) group, we will
completely solve the Neuberger’s problem for SU(2) case. It was suggested, by von
Smekal [85], that such a problem can be resolved by performing the stereographic
projection from U(1) ∼= S1 → R which transforms the topological space of genus
one into zero. Accordingly, the Euler characteristic now becomes non-zero and the
Neuberger’s problem for the case of SU(2) group has gone. For the more general
case, for SU(N) case, one can choose the maximal option of the Abelian projection
to project the full non-Abelian group SU(N) into the maximal torus group U(1)N−1

and the so-called flag manifold FN−1 [65] (In more abstract language, such a man-
ifold is the special case of the so-called generalized flag variety). We can check the
consistency by comparing with the SU(2) case, the maximal torus group is trivially
consistent and also F1 turns out to be isomorphic to the 1-dimensional complex
projective space, widely known as the Riemann sphere, CP 1 ∼= S2 agreeing with the
previous result. Once again, the Euler characteristic of the coset space is not the
real face of the problem but the compact torus subgroup U(1)N−1. However, we can
also repeat the same method by stereographic projecting the N − 1-torus into the
R
N−1 and we are done.
We wish that all of these kinds of stuff are enough to convince readers to un-

derstand that the Gribov ambiguity is a very dangerous thing that can destroy
everything we have believed so far without mercy. However, by far, we have just
only assumed that the Gribov ambiguity does exist. How many percent sure we can
believe about its existence. According to the Singer’s proof [75], it is one-hundred
percent inevitable for any covariant gauge fixing condition. Honestly speaking, the
proof given by Singer is very mathematically difficult to be understood easily. We
will, therefore, follow the simplified version appeared in [57].

Note that the Gribov ambiguity appeared as a non-trivial structure of the gauge
orbit. Thus, we need to reach a deeper understanding of the gauge orbit. We begin
with recalling that the gauge orbit [A] is defined to be a quotient space of the set of
overall connection 1-form {A} modulo out by gauge transformation G (mathemat-
ically known as the automorphism of the corresponding principal fibre bundle). In
differential topology language, the set of overall gauge 1-form {A} can be realized
alternatively as a principal fibre bundle over a base space [A] with associated fibre
G. Obviously, this principal fibre bundle admits a structure group G to be a con-
sidering gauge group since the transition function defined on this principal bundle
is actually an element of such a group (gauge one-forms related to one another via
adjoint gauge transformation with group element U ∈ G). In summary, this defines
the fibration of the kind

G ↪→ {A} → [A] (3.12)
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(this sequence map demonstrates the inclusion from the fibre to the corresponding
fibre bundle, then fibrating down to its base space).

Now, to see the origin of the Gribov copies, we need to impose the gauge fix-
ing constraint into the bundle structure. Mathematically, the gauge fixing is just
choosing a specific representative out from the equivalence class [A]. Alternatively,
by using the language of fibre bundle theory, picking a representative is equivalent
with defining a so-called section which does assign a point on {A} associated to each
point on its base space [A]. If the section is globally defined, it means that there
exists the unique representative, hence, lack of the Gribov copies. Strictly speaking,
showing the existence of the Gribov copies is about to prove that the fibre bundle
{A} is a trivial bundle ∼= [A] × G (there is a theorem stating that a bundle will be
a trivial bundle if and only if it admits a global section, see, e.g. Theorem 6 in the
appendix B.3 [58]).

To prove the non-triviality of the fibre bundle, one first need to extract the im-
portant information from the fact that {A}, by definition, is constructed to be a
convex set, i.e. any element in {A} can be written as a so-called affine combination
of other elements Aμ1 and Aμ2. Namely, we can always write

Aμ(τ, x) = τAμ1(x) + (1− τ)Aμ2(x). (3.13)

Convex set implies the contractibility of any loop inside that set. The deformation
properties of loops define an equivalence class, which actually forms a group, known
as homotopy class πn({A}). In this case, it implies that homotopy group of the set
{A} is trivial, i.e. πn({A}) ∼= {e} where {e} denoted trivial set for any value of n.

Next, let’s study the contractibility of fibre G. Naturally, we can introduce
a sequence of gauge transformation (gauge transformation trivially forms a group
structure) parameterized by a real variable s. The usual element of the gauge
group undergoes the triviality condition at infinity to maintain the finiteness of the
gauge theory. Therefore, we demand U(s, x) to enjoy the condition U(s, x) → 1 as
s → ±∞. Pictorially, this can be also looked like a closed curve in G whose base
point is located at an identity transformation 1. Consequently, the homotopy class
of the type π1(G) has been introduced accordingly (loop is topologically equivalent
to a circle S1). In the usual sense, the gauge element can be also realized as a
transition function that performs a map from space(time) manifold which, in this
case, there is an extra dimension s. Thus, U(s, x) represents a map from R

D+1 to
a structure group G. Once again, the finiteness of the YM energy implies that the
gauge transformation at far infinity must be trivial, this can be effectively thought
as a 1-point compactification since all points at infinity of space(time) manifold are
mapped into the same point. This leads to the compactification from R

D+1 → SD+1.
Finally, the gauge transformation of the finite gauge theory is a map SD+1 → G
defining the homotopy class πD+1(G). In the real world that has only three spatial
dimensions, we end up with the wonderful result

π1(G) ∼= π5(G). (3.14)
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For SU(3) QCD, we have π5(SU(3)) ∼= Z (See also Bott periodicity theorem for
unitary group (B.24)). So? All of these kinds of stuff tell us anything? Absolutely!
The short exact sequence of fibre structure, which we have known in the name
fibration, (3.12) can be used to imply the long exact sequence of corresponding
homotopy class [39] of the form

...→ π2({A})→ π2([A])→ π1(G)→ π1({A})→ ... (3.15)

Since we have shown earlier that the homotopy group of the overall gauge potential
{A} are all trivial. Thus, this exact sequence (3.15) melts down into

π2([A]) ∼= π1(G) ∼= π5(G), (3.16)

which is isomorphic to Z in the case of SU(3) QCD. From the theorem 5 in the
appendix B.3, we have known that if the base space is contractible to a point, then
the corresponding fibre bundle is trivial. However, this shows that the fibre bundle
{A} is precisely non-trivial meaning that the section, which is described as the gauge
fixing condition, cannot be defined globally. Hence, Gribov ambiguity!

How about SU(2) sub-dynamics of QCD? It is quite obvious that it must also
suffer from the Gribov ambiguity since we have seen in the case of lattice gauge
theories that SU(2) QCD undergoes the Neuberger problem. To see that again
in the language of Singer, we will pick one specific choice of gauge transformation
U0(x) ≡ U(s0, x) out of the sequence. In this particular case, the transition func-
tion is topologically equivalent to a homotopy class mapping from some fixed point
s = s0 on G into itself. This leads to the introduction of the zero degree homo-
topy class π0(G) which is currently isomorphic to π4(G). For G = SU(2), we have
π4(SU(2)) ∼= Z2 (this result can be obtained by performing the following steps. First
is to use the isomorphism SU(2) ∼= S3 combining with the consequence of (B.26) to
have the isomorphism π4(S

3) ∼= π1(SO(3)). In the end, just using the Bott periodic-
ity condition for an orthogonal group (B.25) to get the result we requested). Finally,
we just have to repeat our analysis of the long exact sequence again and obtain the
same consequence as same as the SU(3) case that there exists an obstruction that
forbids the fibre bundle {A} to be trivial for such a gauge group. Eventually, we
have thus finished the Singer’s proposal of proving the existence of the Gribov copies
for such a gauge group.

Note that there is also a stronger mathematical argument to ensure the exis-
tence of the Gribov ambiguity due to the independent work of Narasimhan and
Ramadas [61]. They calculated the holonomy group (the set of the closed loop
parallel transportation induced by the connection on the given bundle) on the hor-
izontal space of set of all possible gauge fields {A} (i.e. the set of tangent vectors
AT that satisfy the equation DμA

T
μ = 0). They found that such a holonomy group

is typically non-trivial. What is the consequence to that then? Following figure 3.1,
it can be seen that the transition amplitude between two points on [A] is deeply
related to that holonomy group. The non-triviality of the holonomy group leads to
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the non-uniqueness of the parallel transport. Hence, there is the Gribov ambiguity.
Moreover, in that paper, the way how to prove the twisted property of the principal
bundle is to the relevant matrix model for QCD gluon. In this particular case, SU(2)
QCD, the gluon field is constructed to be the real 3 × 3 (3 follows from the total
numbers of the adjoint degrees of freedom of the associated group) matrix, some-
times, called the matrix corresponds to the three-body bundle. In particular, the
practical construction and further generalization to SU(3) case (8× 8 real matrix)
of the QCD matrix model has been done properly in, for example, [8].

Figure 3.1: The closed loop parallel transportation comparing between on [A] and
on {A}.

For readers who did not understand the mathematical proofs above, it is okay!
Since from now on, we will discuss the alternative argument, given by Gribov him-
self [36], to guarantee the existence of the Gribov ambiguity. Gribov studied the
Gribov ambiguity appearing in the SU(2) YM theory (QCD subdynamics) with the
Coulomb gauge ∂iAi = 0 which is effectively equivalent to the Landau gauge by
assigning an additional temporal gauge condition A0 = 0, i.e. he focused on the
static field configuration. In a vacuum, where the field strength tensor naturally
vanishes, the gauge field is in the pure gauge form, namely, Aμ = U−1∂μU where
U ∈ G.

Gribov proposed the static, spherically symmetric ansatz to demonstrate his
argument. Explicitly, we choose the ansatz of the form

U(x) = exp

(
i
f(r)

2

x · σ
r

)
≡ exp

(
i
f(r)

2
n̂ · σ

)
, (3.17)

where σ is the generator of SU(2) gauge group which is nothing more but the Pauli
matrices, and r is spatial radius r ≡∑3

i x
2
i . In particular, we can perform the Taylor

42



expansion of such an ansatz to rewrite the ansatz (3.17) further such that

U = 1 + i
f(r)

2

x · σ
r
− f 2

8

(x · σ)2
r2

+ ...

= 1 + i
f(r)

2

x · σ
r
− f 2

8

xixjσiσj
r2

+ ...

= 1 + i
f(r)

2

x · σ
r
− f 2

16

xixj{σi, σj}
r2

+ ...

= 1 + i
f(r)

2

x · σ
r
− f 2

8

xixjδij
r2

+ ...

= (1− 1

2

f 2

4
+ ...) + i(

f(r)

2
+ ...)n̂ · σ

= cos
f(r)

2
+ i sin

f(r)

2
n̂ · σ,

(3.18)

where the anticommutation relation of the Pauli matrices has been used {σi, σj} =
2δij. (Note that, in this situation, we will use the spatial indices i and the color
indices a simultaneously, since both indices run from one to three.) By the help of
identities ∂ir = ni and ∂inj =

1
r
(δij − ninj), we can find the full expression of the

gauge field in this ansatz as

Ai = U−1∂iU

=
n̂i(n̂ · σ)

2
f ′ +

(δij − ninj)σj
2r

sin f +
1− cos f

2r
εijknjσk,

(3.19)

′ labels the radial derivative ∂
∂r
. Thus, the Coulomb gauge condition ∂iAi = 0 in

this ansatz can be expressed as follows

r2f ′′ + 2rf ′ − 2 sin f = 0. (3.20)

This equation is quite simple and it can be more simplified by introducing ln r = t,
we end up with very familiar equation

f̈ + ḟ − 2 sin f = 0. (3.21)

The equation (3.21) is actually an equation describing damped (forced by external
periodic force) harmonic oscillation known sometime to be the Gribov pendulum
equation. With the appropriate boundary condition, we can solve this differential
equation systematically. There exists three possible solutions: f = 0, f = f1/2(r)
and f = −f1/2(r), respectively. The non-trivial solution f1/2(r) behaves such that
f1/2(0) = 0 (to avoid singularity) and f1/2(∞) = −π/2. Remarkably, each solution
has its own topological charge, to see this, we substitute the ansatz (3.17) into the
definition of Chern-Simon number (B.38), we obtain the relation

ν = − 1

π

[
f − 1

2
sin(2f)

]r=∞

r=0

. (3.22)
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Thus, each solution carries ν = 0, 1
2
and −1

2
, respectively. Intuitively, the first so-

lution f = 0 is a trivial solution interpreted to be our usual vacuum carrying no
topological charge while the rest solutions f = f1/2(r) and f = −f1/2(r) are topo-
logically heavy vacuum solutions, which will be known from now on as the Gribov
vacua, expected to relate with the usual vacuum through somewhat mechanism. As
observed from both the Singer and Gribov arguments, we expect that such a mech-
anism must relate to the topological structure of the YM theory itself.

Finding the (vacuum) solutions of the SU(2) YM theory is equivalent to finding
the gauge field configuration which satisfies the classical equation of motion. In
other words, the classical solution of the YM theory is extremized configuration of
the YM action (2.3). To extremize the YM action, it is more convenient to slightly
rewrite the YM action, one has

SYM =
1

8

∫
dDx (F a

μν ± F̃ a
μν)

2 ∓ 1

4

∫
dDx F a

μνF̃
a
μν , (3.23)

where F̃μν is a component of a so-called dual field strength tensor defined in (B.12).
One can check very easily that this form of the YM action (3.23) is truly equivalent
to the original form of the YM action (2.3). We see that the cross term of the first
term actually cancels with the last term of the expression (3.23) but the monster
whose true form need to be revealed is the following term

F̃ a
μνF̃

a
μν =

1

4
εμναβF

a
αβεμνγδFγδ

=
1

2
(δαγδβδ − δαδδβγ)F a

αβFγδ

=
1

2
(F a

αβF
a
αβ − F a

αβF
a
βα)

= F a
μνF

a
μν .

(3.24)

So we have everything we supposed to have. Now let’s observe that the first term of
the new YM action is clearly positive definite. Thus we end up with the fact that the
YM theory must satisfy the bound known as the Bogomolnyi-Prased-Sommerfield
(or BPS for short) bound [17, 67]. The saturation of such a bound will yield the
classical YM solution. To be specific, the YM action will be extremized when the
YM field strength is either self-dual or anti-self-dual, i.e.

Fμν = F̃μν . (3.25)

Mysteriously, any self-dual anti-symmetric tensor, Sμν can be written as

Sμν = ηaμνc
a, (3.26)

where ca is any Lie-algebra-valued function and ηaμν is known formally as the ’t Hooft
tensor [82] whose components are

ηaμν = εaμν + δaμδ0ν − δaνδ0μ. (3.27)
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In fact, this symbol did not come from the heaven but did come from the brilliant
mind of ’t Hooft. To understand the origin of this symbol, let’s recall first that a
self-dual antisymmetric tensor belongs to (1, 0)-irreducible representation of Lorentz
group (to be more specific, the projective representation of the universal covering
group SL(2,C)), whereas a 4-vector lies within the (1

2
, 1
2
) representation of the same

group. Therefore, the ’t Hooft tensor is nothing but a Clebsch-Gordon coefficients
used to construct (1, 0)-representation out from tensor product between two four-
vector (1

2
, 1
2
) ⊗ (1

2
, 1
2
). Similarly, we can also write any anti-self-dual antisymmetric

tensor Aμν as Aμν = η̄aμν where the anti-’t Hooft tensor η̄aμν is almost the same as
ηaμν beside the component η̄a0i = ηai0. Before we continue our discussion, let us write
down the useful properties of ’t Hooft tensor [76] first

1.
εabcηbμρη

c
νσ = gμνη

a
ρσ − gμσηaρν + gρση

a
μν − δρνηaμσ. (3.28)

This identity is very meaningful, it shows that, by the help of the ’t Hooft
tensor, we can represent the generator associated to the SU(2) group as the
Lorentz algebra.

2.
ηaμνη

a
μν = 12. (3.29)

To summarize what we have done so far, by introducing the ’t Hooft tensor, we can
simply write the YM field strength, which is the solution of the classical YM theory,
as the ’t Hooft tensor times any function. Because of this, Corrigan, Fairlie [20], ’t
Hooft [82] and Wilczek [90] proposed the choice of ansatz to be

Aaμ = −ηaμν∂ν lnφ(x). (3.30)

If we substitute this ansatz, named after them, into the YM equation of motion

DμF
a
μν = 0. (3.31)

Although it is very tricky but straightforward to be done, we will end up with

φ3∂μ(φ
−3�φ) = 0, (3.32)

implying
φ−3�φ = constant ≡ −λ or �φ+ λφ3 = 0, (3.33)

which is merely an equation of motion of the massless Klein-Gordon equation with
self-interaction of the form −λ

4
φ4 (usually known from QFT101 as φ4 (phi to the

four) theory). Strictly speaking, this ansatz reduces the complicated problem on
non-linear YM equation into a very well-understood equation of the real scalar
field. Therefore, this ansatz is sometimes called the φ4-ansatz. The solutions of
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the massless Klein-Gordon equation are not too difficult to be found. We have two
possible solutions [34] that are

φ(x) =
1√
λx2

, (3.34)

and

φ(x) =

√
8

λ

ρ

x2 + ρ2
. (3.35)

(ρ is actually an arbitrary constant) Each solution leads to different non-trivial YM
connection. The former solution leads to the YM solution called deAlfaro-Fubini-
Furlan (AFF) (one) meron solution [3]

Aaμ(x) =
ηaμνxν

x2
, (3.36)

while the latter gives the well-known Belavin-Polyakov-Schwartz-Tyupkin (BPST)
instanton [15]

Aaμ(x) =
2ηaμνxν

x2 + ρ2
. (3.37)

Henceforth, we will study how these two YM vacuum solutions generate the Gribov
copies one-by-one. Historically, it was pointed out by Sciuto [73], independently to
Abbott and Eguchi [1] that the BPST instanton solution demonstrates the possible
relationship between two Gribov vacua. After that, Chiu, Kaul and Takasugi [19]
used the same argument to study the role of AFF meron solution to this story.
However, in this review article, we will study in the converse timeline since the AFF
one meron is, of course, simpler than the BPST instanton.

Let’s begin by noting that the AFF meron solution can be rewritten as follows

Aμ =
1

2
U−1∂μU, (3.38)

where we just throw out the factor of i by, e.g. redefining the gauge field or generator
of the gauge group and

U(x) =
x0 − iσ · x√

x2
≡ exp(iβ(x)n̂ · σ), (3.39)

with β(x) ≡ − tan−1
(
r
x0

)
(be careful about the convention that r, we used here,

is as same as the r appeared before. Namely, r does not involve time component
x0 in it). Observe that the gauge configuration (3.38) is of the pure gauge form up
to some constant factor but still not in the Coulomb gauge as expected from the
Gribov example. However, since the gauge field is not unique at the first glance, we
have a freedom to choose a different gauge field that has almost the same properties
as the AFF meron has but, instead, lies within the Coulomb gauge fixing condition.
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The so-called transverse meron solution can be related with the AFF meron through
the suitable gauge transformation. Namely,

ATμ = V −1AμV +
1

2
V −1∂μV, (3.40)

where, of course, ∂iA
T
i = 0. By introducing the new variable

G(x) = U
1
2 (x)V (x) ≡ exp

[
i
(
α(x)− π

2

) x · σ
r

]
, (3.41)

we can express out the transverse gauge field out explicitly as

ATμ =
1

2
[(U1/2G)−1∂μ(U

1/2G) + (U−1/2G)−1∂μ(U
−1/2G)]. (3.42)

Plug the gauge configuration (3.42) into the transverse Coulomb condition to obtain
the differential equation with very familiar form [19]

α′′ +
2

r
α′ − x0

r2
√
x2

sin 2α = 0. (3.43)

In asymptotic limit such that |t| � r, the differential equation (3.43) will reduce
into the Gribov pendulum equation (3.20). Thus, the gauge field of the form (3.42)
is clearly what we are looking for. The analysis given in the original paper [19] tells
us that there will be four types of solution to this equation that are

1. α(x) =

{
π
2

t < 0

π − γ(x) t > 0

2. α(x) =

{
π
2
+ γ(x) t < 0

π t > 0

3. α(x) =

{
π
2

t < 0

γ(x) t > 0

4. α(x) =

{
π
2
− γ(x) t < 0

0 t > 0

(3.44)

γ has been introduced in such a way that α = ±γ + nπ to help us understanding
the behavior of solutions. The behavior of γ itself is as follows:

1. γ(r = 0, t) = 0.

2. γ(r, t→∞)→ 0.

3. γ(r →∞, t)→ π
2
.
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The meaning will be clear when we consider the topological charge of such a solution.
Let’s use the Chern-Simon number (B.37) to represent the appropriate topological
charge in this theory. Since the Chern-Simon charge must be evaluated at the
boundary of the underlying manifold. Let’s choose the boundary condition such that
the manifold is effectively compactified into the cylinder of the type Sd × R where
R represents the time axis while the cross-section of the cylinder is the spatial part
Sd (once again, the spatial coordinates are compactified into the sphere to maintain
the finiteness of the YM energy). Thus, there will be three boundary surfaces in
this case. Two of them are the base at t = ±∞ of the cylinder while another one is
the side at r = ∞ of the cylinder. The associated Chern-Simon charges evaluated
at time infinities take the form

ν± = − 1

π
lim

T→±∞

[
α− 1

2

x0√
x2

sin 2α

]r=∞

r=0

, (3.45)

while

η =
1

π
lim
T→∞

[
α− 1

2

x0√
x2

sin 2α

]T
−T

(3.46)

represents the topological charge at the spatial infinity’s boundary. The total topo-
logical charge is therefore expressed as

ν = ν+ − ν− + η. (3.47)

This, in differential topology language, is a simple example of the well-known math-
ematical theorem known as the Atiyah-Patodi-Singer index theorem [6] which is the
generalization of the Atiyah-Singer theorem [7] to the case that contribution from
the spatial boundary of the manifold is concerned, i.e. η-invariant term. We can
check that for every possible situation in (3.44) η will always vanish. Intuitively, this
is not coincident since one knows that, for example, [58], that the η term represents
the gauge anomalies on the spatial boundary. Concisely speaking, η = 0 implies that
no gauge anomalies are living on the spatial boundary surface of this theory. The
non-trivial cases such that the η-invariant is not vanishing, but will be perfectly
canceled, can be found in several situations, e.g. M-theory compactification [25],
lattice chiral QCD and topological insulators [33].

Now let’s compute the topological charges of the fourth case (one of my favorite)
of the solution (3.44) to study the physical picture of the model. One finds through
a direct calculation that ν+ = 0, ν− = 1

2
and η = 0, this means that such a solution

describes the quantum tunneling from the Gribov vacuum carrying 1/2 charge into
the traditional topologically charged-less vacuum. To understand a more intuitive
picture of this, we consider the temporal gauge fixing A0 = 0 condition of the meron
solution. We will see that [2] the single meron solution demonstrates physically
the unstable Wu-Yang monopole. Strictly speaking, the fourth solution (3.44) can
be visualized as follows: at the beginning of time, there is a Wu-Yang monopole
located inside the vacuum, later asymptotically, such a Wu-Yang monopole decays
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completely into another vacuum satisfying the same gauge fixing condition as the
same one at the far past. Hence, this ensures the Gribov ambiguity.

For the BPST instanton (3.37) solution, we can repeat all analyses in a long-
distance limit. Why the long-distance limit is needed? Observe that, by using the
same configuration (3.39), we can rewrite the BPST instanton in a more attractive
way

Aaμ =
x2

x2 + ρ2
U−1∂μU. (3.48)

This form of the BPST instanton is almost pure gauge but it is still not. The
particular reason is the BPST has a core of finite size, i.e. finite radius ρ which differs
from the case of the meron solution. However, in the long-distance limit x� ρ, the
size of the instanton’s core will be considerably negligible, hence, it becomes pure
gauge in this limit. By the same analysis, we can show that the BPST instanton also
describes the tunneling solution interpolates between two different Gribov vacua (in
this case, the total topological charge is one, not one-half, then the transverse BPST
instanton jumps from ν− = −1/2 to ν+ = 1/2 and vice versa). Remarkably, due
to these behaviors, one believes that the BPST instanton composes of two merons
(meron, in fact, means “a part of”) and we also know that meron is merely a Wu-
Yang monopole. These all pieces of stuff reveal a deep connection between instanton
and monopole as conjectured in several papers (see, e.g. [35, 81]).

Here I will remark about the Gribov’s argument to show the existence of the
Gribov copies. Actually, the extension to the higher SU(N) group is not that
necessary since the argument is almost general at first glance. To understand the
remark, let’s recall that the unitary group SU(N) with N ≥ 3 can be written as
the product of the spheres (see (3.10)), thus we can consistently compute the 3rd
homotopy group of the SU(N) as follows

π3(SU(N)) ∼= π3(S
(2N−1))× ...× π3(S3) ∼= π3(SU(2)) ∼= Z, (3.49)

where we have used the fact that the homotopy group of the Cartesian product
space can be split into the homotopy group of each one and πk(S

n) is a trivial group
if n > k (intuitively, the triviality can be thought as following sense: the way we can
embed the sphere onto the sphere of higher dimension is always trivial, hence the
corresponding homotopy class is also trivial). In fact, we can end up with the same
result by using alternatively the Bott periodicity theorem for the unitary groups
(B.24). The meaning of the relation is that, along the appropriate direction on the
Lie group manifold, the instanton and meron solutions for a higher SU(N) group
are precisely equivalent to the solutions for the well-studied SU(2) case. Thus, the
generalization is not that essentially as claimed.
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3.2 Gribov Horizon and Fundamental Modular

Region

In the previous section, we study how the Gribov ambiguity arises in the non-
Abelian gauge theories and how harmful its consequence is. In this section, we
will now study the old but gold method suggested first by Gribov in his original
paper. Gribov proposed that, in the beginning, the gauge orbit flows across from
the place of which FP operator has positive eigenvalues, when it is about to cross
into the dangerous zone of negative modes, the gauge orbit is immediately cut right
there. In the other words, the space of gauge fields, in this sense, is restricted to the
everywhere bounded (as will be showed soon enough) region known as the Gribov
region, Ω said. Mathematically, the Gribov region is defined as follows

Ω ≡ {Aaμ| ∂μAaμ = 0, Mab(A) ≡ −∂μDab
μ > 0}. (3.50)

After restricting the path-integral measure within this region, the FP operator turns
out to be positive definite so the problem of introducing the ghost fields as we have
done in the FP procedure is resolved. Obviously, we can see it precisely that the
boundary of the Gribov region is a collection of the zero modes of the FP operator,
as will be called the (first) Gribov horizon and denoted by ∂Ω.

So far, the idea is quite clear logically but it turns to give us another big question,
that is, how can we determine the shape of this region or how can we locate the loca-
tion of the Gribov horizon? This, in fact, translates into the problem of differential
topology which aims to study the topological property of some topological space.
The well-known method we will use henceforth is called a Morse theory that studies
the properties of the topological space by investigating the critical behavior of the
so-called Morse function(al). To be specific, we will choose the Morse functional to
have attractive minima. Generically, we choose that functional to be a chiral-like
action expressed down below

S[U ] ≡ ||UA||2 ≡ Tr

∫
dDx

(
i

g
U−1∂μU + U−1AμU

)2

, (3.51)

where the gauge field here is treated as a fixed variable. Due to the gauge’s freedom,
we can always choose the configuration such that the local minimum point of such
a functional is at U = 1 which is the simplest choice possible. In the end, we reduce
the problem into finding the critical behavior of the functional called the Hilbert-
Schmidt norm defined on the gauge space. Explicitly, we are about to investigate
the functional of the form

||A||2 ≡
∫
dDx Tr(AμAμ) =

1

2

∫
dDx Aaμ(x)A

a
μ(x). (3.52)

Let’s explore what will happen if this functional has a relative extremum. Consider
an infinitesimal variation with respect to the gauge transformation (we are trying
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to explore the infinitesimal variation in the space of gauge fields)

δ||A||2 = δ

(
1

2

∫
dDx AaμA

a
μ

)

=

∫
dDx δ(Aaμ)A

a
μ

= −
∫
dDx Dab

μ α
bAaμ

= −
∫
dDx (δab∂μ − gfabcAcμ)αbAaμ

= −
∫
dDx ∂μα

aAaμ

=

∫
dDx αa(∂μA

a
μ).

(3.53)

If this configuration is truly the local extremum of this function, that implies ||A||2
must vanish for any value of infinitesimal parameter α. This implies further that
the gauge field which extremizes the Hilbert-Schmidt functional must be the gauge
configuration that satisfies the Landau gauge fixing condition ∂μA

a
μ = 0.

Next, if we demand more that the considering configuration does not only ex-
tremize the functional but also minimize it, we will end up with

δ2||A||2 = −
∫
dDx ∂μα

aδAaμ

=

∫
dDx ∂μα

aDab
μ α

b

= −
∫
dDx αa(∂μD

ab
μ )αb

=

∫
dDx αaMabαb > 0.

(3.54)

That is, Requiring that the gauge field does minimize the functional is equivalent to
require that the FP operator Mab = −∂μDab

μ is positive definite. In summary, the
specific gauge configuration minimizing the functional (3.52) will be the gauge field
inside the Gribov region satisfying the Landau gauge constraint.

Before we go through this, let us note the interesting analogue has been also
introduced in the context of the SUSY field theory by Witten [92]. In the SUSY
field theory, the relevant Morse function coincides with the so-called superpotential.
In general, the presence of the SUSY leads to the degeneracy of the ground state
since the numbers of the fermion and boson are equal in the same supermultiplet.
However, in the real world, the superpartner has been not yet found in the currently
reachable energy scale, thus the SUSY must be spontaneously broken. Particularly,
the superpotential takes responsibility for this purpose. In our situation, the Morse
function(al) which is chosen to be the Hilbert-Schmidt norm of the gauge field
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has been also introduced to eliminate the degeneracy arisen from the cancellation
between the negative and positive modes of the FP operator. In other words, one
can think the negative-positive modes cancellation in the Gribov case as the same
way one think about the cancellation between the fermionic and bosonic modes in
the supersymmetric field theory case.

So we can already locate the Gribov horizon, let’s move to the discussion of the
geometrical properties of such a region

1. It can be proved rigorously [27], by using the mathematical branch called
analysis, that every gauge orbits will pass through the gauge fixing hyperplane
at least once. Strictly speaking, if we restrict the path-integration into this
region, it ensures that the gauge condition can single out the redundant degrees
of freedom.

2. Configurations Aμ → 0 live within the Gribov region, this proposition can be
proved very easily by using the fact that, in this regime, Dμ → ∂μ makes the
FP operator positive definite, i.e. −∂2δab = p2δab > 0. This property ensures
that the perturbative calculation must work well as it always be.

3. Since the space of gauge fields is expected to be a convex set meaning that,
for every Aμ1, Aμ2 belonging to the gauge space, the affine combination Aμ =
τAμ1 + (1 − τ)Aμ2 where τ ∈ [0, 1] still belongs to the gauge space. Thus, it
is very natural to think that the same thing must occur in the Gribov’s case.
Let’s see

Mab(τAμ1 + (1− τ)Aμ2) =− ∂μ(δab∂μ − gfabc(τAcμ1 + (1− τ)Acμ2))
=− ∂μ(δabτ∂μ − gfabcτAcμ1))
− ∂μ(δab(1− τ)∂μ − gfabc(1− τ)Acμ2))

= τMab(Aμ1) + (1− τ)Mab(Aμ2).

(3.55)

This shows that if both Aμ1 and Aμ2 are living inside the Gribov region,
in the other words, Mab(Aμ1) and Mab(Aμ2) are both positive definite, so
τAμ1 + (1− τ)Aμ2. Therefore, the Gribov region is convex.

4. The Gribov region is bounded from every direction. To show that, recall that
the second part of the FP operator, to be specific g∂μ(f

abcAcμ), is traceless
since the color (SU(N)) generator is traceless by its definition. Thus, the
sum of the eigenvalues of this part of the FP operator yields zeroes meaning
that there exists the gauge configuration Aμ representing the negative mode.
Explicitly, we write ∫

dDx αa[g(fabcAcμ)]α
b ≡ κ < 0. (3.56)

52



Now consider the following gauge configuration∫
dDxαaMab(λAμ)α

b =

∫
dDx αa[−∂μ(δab∂μ − gfabcλAcμ)]αb

=

∫
dDx αa(−∂2μ)αa + λκ.

(3.57)

Since the first term of the right-hand side of the (3.57) is positive definite,
thus, with sufficiently large λ, nothing guarantees that the FP operator of the
gauge configuration above will be positive-definite. Consequently, if it is not
positive definite, then it locates outside the Gribov region. In the other words,
if we begin with some gauge field Aμ that belongs to the Gribov region, there
exists some large constant number λ such that the gauge field of the form λAμ
flows far enough until it literally lives outside the Gribov safe-zone already.

After we have reviewed the properties of the Gribov region, we hope that it is
enough to convince readers to feel safe to restrict our gauge orbit inside this region.
However, everything has both pros and cons. The most disadvantage of this region is
it is not stringent enough to expel all of the Gribov copies. Let’s focus on the gauge
field at the first Gribov horizon, we have known that things live on the boundary of
the Gribov region is the collection of zero modes of the FP operator, hence, we can
deduce easily that such a gauge configuration differs from the one belongs to the bulk
of the Gribov region in the sense that they are not essentially relative minima of the
Hilbert-Schmidt functional (3.52) which implies that, suppose the gluon field on the
Gribov horizon denoted by Aμ, there will always exist the gauge transformation such
that the transformed field is typically less than the non-transformed one. Strictly
speaking, there exists U which makes the following inequality hold

||A||2 > ||UA||2. (3.58)

Notice that this degeneracy is not that harmful since this gauge field located at
the boundary of the Gribov region meaning that, under the integration over the
gauge field restricted to the Gribov region, this configuration is then regarded as
the endpoint of the integrand contributing nothing to the result of the integration.
By the way, observe that there is another gauge field of the form (1 − ε)Aμ for an
arbitrary small parameter ε. Due to the fact that the Gribov region is convex, the
new gauge potential (1− ε)Aμ = (1− ε)Aμ+ ε× 0 also belongs to the Gribov region
but, in this situation, away from the Gribov horizon (remind ourselves that the
perturbative gauge field Aμ = 0 always lives within the Gribov region.) Thus, the
(1− ε)Aμ must be a local minimum of the functional by its construction. However,
by continuity condition, we have

||(1− ε)A||2 > ||(1− ε)UA||2. (3.59)

Thus, (1 − ε)Aμ is not an absolute minimum. Hence, Gribov copies arise in the
Gribov region Ω.
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To remedy this, of course, we must restrict to a more stringent region containing
only absolute minima of the functional (3.52) contrasting with the Gribov region that
can have the relative minima inside it. We call this region the fundamental modular
region (FMR) denoted by Λ. In literature, after restricting the gauge configuration
inside this region, it is said to be working in the minimal Landau gauge. Let’s begin
with the explicit definition of the FMR as shown below [74]

Λ ≡ {Aaμ| ||UA||2 ≥ ||A||2, ∀U ∈ G}, (3.60)

where || · || is the Hilbert-Schmidt norm as defined in (3.51) and (3.52). Since only
absolute minima are allowed to belong in the FMR, thus, it is kind of obvious that
the FMR is smaller than the Gribov region, i.e. Λ ⊂ Ω.

Once again, we will end this section by discussing the properties of the FMR.
Note first that here, in some properties, we will not go through it in detail since it
is the same properties as also appeared in the case of the Gribov region.

1. Since all gauge orbits intersect with the Gribov horizon, so the boundary of
the FMR ∂Λ.

2. Perturbative gauge fields live inside the FMR.

3. Λ is convex. We are about to prove this since this particular property is not
that trivial to see as another one. Let’s recall our chiral action (3.51)

||UA||2 = Tr

∫
dDx

(
U−1AμU +

i

g
U−1∂μU

)(
U−1AμU +

i

g
U−1∂μU

)

= ||A||2 + 2i

g
Tr

∫
dDx

(
U−1Aμ∂μU +

1

g2
∂μU

−1∂μU

)
,

(3.61)

where the cyclic property of trace operation Tr(ABC) = Tr(BCA) has been
implicitly used in the sub-sequential steps. Henceforth, it will be shown easily
that

2i

g
Tr

∫
dDxU−1[τAμ1 + (1− τ)Aμ2]∂μU +

1

g2
∂μU

−1∂μU ≥ 0 (3.62)

or ||U(τAμ1 + (1 − τ)Aμ2)||2 ≥ ||(τAμ1 + (1 − τ)Aμ2)||2 if ||UAμ1||2 ≥ ||Aμ1||2
and ||UAμ2||2 ≥ ||Aμ2||2 are independently hold. In summary, any affine com-
bination of two gauge fields belonging to the FMR also belongs to the FMR.
In other words, we have completed the proof that Λ is convex.

4. Again, since the FMR is typically smaller than the Gribov region, thus, it is
bounded from every direction.
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The final remark about this region is it still contains the Gribov copies. Fortunately,
at this point, the Gribov copies are allowed to live only on the boundary of the FMR,
not inside it. Therefore, the restriction into the FMR has then solved the Gribov
ambiguity completely in the way that the Gribov copies contribute no more to the
path-integral and the FP operator is now positive definite. The most unsatisfactory
thing is that currently there is no analytical method to do so. As good as we can get,
in the next section, we will study the Gribov’s way to restrict the path integration
inside the Gribov region [36], i.e. Even through the Gribov copies are still there, at
least, we can introduce the FP ghost in the usual way.

3.3 Gluon Propagator’s Enhancement

The time has come, we will start this section to compute the new form of the gluon
propagator due to the restriction on the Gribov region. Let’s see what are things
we can do. Recalling the partition function (2.22)

Z(0) =

∫
Ω

DA
∫
Dc
∫
Dc̄ exp

{
−
[
SYM +

∫
dDx

(
1

2ξ
(∂μA

a
μ)

2 + c̄a∂μDμc
a

)]}
.

(3.63)
However, at this moment, we deform the range of the integration from the whole

gauge space into the Gribov region

∫
DA →

∫
Ω

DA. The ultimate objective of us

now is to explore what is the most suitable condition to evaluate the deformed inte-
gral. Observe that the FP operator is nothing but the kinetic differential operator
of the ghost fields which has nothing to be curious about since the ghost fields were
introduced to evaluate the FP determinant at the first place. What is this obser-
vation tells us? Instead of thinking that the FP operator is the kinetic operator of
the ghost field, we can rather think that it can be treated as the inverse operator
of the ghost propagator. Thus, equivalent to the condition that the FP operator is
positive definite inside the Gribov region, we can alternatively look for the condition
that the ghost propagator has no non-trivial pole.

The observation suggests us strongly to extract the pole structure of the ghost
propagator. The easiest way to single out the pole structure from any propagator
is to calculate its two-points one-particle irreducible (1PI) Feynman diagram. For
one who is not familiar with the stated argument, this kind of situation can be
found also in the QFT101, e.g. The electron self-energy contributing to the extra
pole electron mass which leads further to the radiative correction of the Lamb shift
effect, the shift between 2s and 2p orbitals of the Hydrogen atom (See, for example,
[72].)

In our case, we are about to evaluate the 2-points 1PI ghost graph, especially,
at 1-loop level which is, in particular, enough to obtain what we want. Generally,
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the ghost propagator can be written in term of the geometric series as follows

iGab
ghost =

b a
+ b a + · · · , (3.64)

where · · · denotes higher-loops diagrams which can be obtained simply after we have
a 1-loop diagram. Hence, we will focus only on the 1-loop graph, for simplicity, we
will firstly truncate the external leg and will add it back later,

k k − p k

p

b a
Acμ, e Adν , f

along with the help of the Feynman rules (2.28) and (2.31), we can read off the
Feynman diagram above as

iGab
ghost,1−loop(k

2) =
g2

V
fadff ecb

∫
dDp

(2π)D
iδef

(k − p)2kν(k − p)μA
d
ν(−p)Acμ(p)

=
ig2

V
fadef ecb

∫
dDp

(2π)D
Adν(−p)Acμ(p)

kν(k − p)μ
(k − p)2 ,

(3.65)

Now we will perform very wonderful trick, in particular, we can guess the true form
of the product Adν(−p)Acμ(p) by using the following argument. Since the propagator
is legitimately Lorentz invariant and the product above is dependent only on p, thus,
the product is expected to be written in the Lorentz covariant tensorial structure
taking the unique form (up to the Lorentz scalar function C(A2))

Adν(−p)Acμ(p) = C(A2)

(
gμν − pμpν

p2

)
≡ C(A2)Πμν(p), (3.66)

where Πμν(p) is understood as Πμν(p, ξ = 0) as defined once in the expression (2.27).
Obviously Πμν is the right Lorentz covariant tensorial structure in the sense that
Πμν → Λμ

ρΛν
σΠρσ under the Lorentz transformation (this will be cancelled precisely

with the Lorentz transformation matrix from kμ → Λμνk
ν). Moreover, the Lorentz

scalar C(A2) is easy to determine by contacting both sides of the equation (3.66) by
gρμ then summing over indices ν and ρ. So we get

C(A2) =
1

d
Adμ(−p)Acμ(p). (3.67)

Plug the result of analysis (3.66) and (3.67) into (3.65) to obtain

iGab
ghost,1−loop(k

2) =
ig2

V d
fadef ecb

∫
dDp

(2π)D
AdρA

c
ρ

kν(k − p)μ
(k − p)2 Πμν . (3.68)
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The next step is to observe that the integration here is the integration over the whole
momentum space, thus, pμ in (k− p)μ can be ignored since if we split the integrand
into two separate terms, the term depending on the pμ will be the odd function on
the momentum integral over the space of p. One more thing that can use the help
of the oddity of the integrand to simplify is the product pμpν inside Πμν , it can be
understood clearly that the integrand will be odd function unless μ = ν. Thus,∫

dDp Πμν(...) =

∫
dDp

(
gμν − pμpν

p2

)
(...) = gμν

(
1− 1

D

)∫
dDp (...). (3.69)

The last thing we need to evaluate is the color indices which are not a big deal at
all since the true expression of ghost propagator must be averaged over the color
space. Consequently, we need to sum over all possible color of the final state then
dividing out by prefactor representing the total numbers of the color, i.e. N2−1 for
SU(N). Finally, we have

iGghost(k) =
δab

N2 − 1
iGab

ghost(k)

=
δab

N2 − 1

(
iδab

k2
+

i

k2
iGab

ghost,1−loop(k)
i

k2
+O(g4)

)

=
i

k2
− ig2

V D

fadef eca

N2 − 1

1

k2

∫
dDp

(2π)D
AdμA

c
μ

1

(k − p)2 +O(g4)

=
i

k2
+

ig2

V D

Nδcd

N2 − 1

1

k2

∫
dDp

(2π)D
AdμA

c
μ

1

(k − p)2 +O(g4)

=
i

k2

(
1 +

g2

V D

N

N2 − 1

∫
dDp

(2π)D
(Aaμ)

2

(k − p)2 +O(g4)
)

≡ i

k2
(1 + σ(k2, A) +O(g4)),

(3.70)

where the identity fdaef cae = Nδcd has been used. As we have mentioned once,
that the ghost propagator, in fact, can be expressed as the geometric series of the
1PI graph. Thus, we expect that the nth-ordered graph must be of the form i

k2
σn.

Using the formula of the geometric series 1 + σ + σ2 + ... = 1
1−σ . We therefore can

write

Gghost(k
2) =

1

k2
1

1− σ(k2, A) . (3.71)

There it is, the pole structure has been revealed itself already. After we are done
with the tricky calculation, let’s grab some tea and discuss the implication of the
result. Here, we see that there are two poles of the ghost propagator: one is k2 = 0
and another one is 1− σ = 0. The former is very meaningful in the sense that such
a pole is a signature that all massless field’s propagators must have. In other words,
this pole tells us that the ghost field is massless. Additionally, this pole is good since
it is, in general, positive definite following from the fact that the ghost field is not
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tachyonic. On the other hand, the latter is not a well-behaved pole since nothing
can guarantee that it will be positive definite. In the end, it helps Gribov to find
the appropriate condition to restrict the path integration into his Gribov region, i.e.
We require that

1− σ(k2, A) > 0. (3.72)

This condition, in literature, is known as the Gribov no-pole condition. In particular,
we can simplify this condition furthermore by looking carefully at the expression of
σ. Let’s see

σ(k2, A) =
g2N

VD(N2 − 1)

∫
dDp

(2π)D
(Aaμ)

2

(k − p)2 , (3.73)

it can be seen that by slight increasing of the k, the integrand becomes smaller and
smaller. Thus, we deduce reasonably that σ(k2, A) is a decrease function of k2. One
might not feel clear about this, so let’s prove it in the simplest case, in 2-dimensional
case (D = 2). We have

σ(k2, A) =
g2N

2V (N2 − 1)

∫
d2p

(2π)2
(Aaμ)

2

(k − p)2

=
g2N

8π2V (N2 − 1)

∫ ∞

0

dp p(Aaμ(p))
2

∫ 2π

0

dθ
1

k2 + p2 − 2pk cos θ

=
g2N

8π2V (N2 − 1)

∫ ∞

0

dp p(Aaμ(p))
2

[
2

k2 − p2 tan
(
k + p

k − p tan
−1

(
θ

2

))]2π
0

=
g2N

4πV (N2 − 1)

∫ ∞

0

dp
p

k2 − p2 (A
a
μ(p))

2.

(3.74)

The derivative respect to k2 will show whether (3.74) is increasing function or de-
creasing function. The derivative is very straightforward to be done

∂σ

∂k2
= − g2N

4πV (N2 − 1)

∫ ∞

0

dp
p

(k2 − p2)2 (A
a
μ(p))

2 < 0. (3.75)

Indeed, the higher-dimensional generalization, which is harder to perform the inte-
gration, is needed to be sure but we will presume that the result will hold in any
dimension. By the usage of this argument, it is good enough to reduce the Gribov
no-pole condition into

1− σ(0, A) > 0. (3.76)

To insert this constraint into the path integral, we rewrite it into a more systematical
form, i.e. By using the Heaviside step-function. To be explicit, we can rewrite the
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partition function of the QYM to be

Z(0) =

∫
Ω

DA
∫
Dc
∫
Dc̄ e−[SY M+

∫
dDx( 1

2ξ
(∂μAa

μ)
2+ c̄a∂μDμca)]

=

∫
DA
∫
Dc
∫
Dc̄ θ(1− σ(0, A))e−[SY M+

∫
dDx( 1

2ξ
(∂μAa

μ)
2+ c̄a∂μDμca)]

=

∫
DA
∫
Dc
∫
Dc̄
∫ ∞+iε

−∞+iε

dβ

2πi

eβ(1−σ(0,A))

β
e−[SY M+

∫
dDx( 1

2ξ
(∂μAa

μ)
2+ c̄a∂μDμca)],

(3.77)

where, in the final step, instead of writing the Gribov no-pole condition in term
of the Heaviside step-function, we are decide to write it in term of its integral
representation (A.23) since it is sometime easier to be evaluated.

So far so good, it is time to compute the gluon propagator corresponding to
the new partition function. Since, in this case, the ghost sector and gluon self-
interaction terms are not useful, we will implicitly ignore them for now. Moreover,
the performance in the momentum space is more convenient. We therefore have the
momentum-space partition function of the form (see also in appendix A.3)

Zquad
gluon(J) =

∫
dβ

2πi

eβ

β

∫
DA exp

{
−
[∫

dDp

(2π)D

(
1

2
AaμΔ

ab
μνA

b
ν − AaμJaμ

)]}
, (3.78)

where we have redefined a bit from A→ −A without changing anything but the last
term in the expression and the new differential operator Δab

μν(p) ≡ δab(p2Πμν(p, ξ) +
2βg2N

VD(N2−1)

gμν
p2

). The first part of the new operator comes from the usual propagator
while the extra contribution comes from the Gribov no-pole condition. The integral
is, once again, a Gaussian integral which can be computed through the formula
(A.3). The result is then

Zquad
gluon(J) =

∫
dβ

2πi

eβ

β

1√
detΔab

μν

exp

[∫
dDp

(2π)D
Jaμ(−p)(Δab

μν)
−1J bν(−p)

]

=

∫
dβ

2πi

eβ

β

1√
detΔab

μν

(
1 +

∫
dDp

(2π)D
Jaμ(−p)(Δab

μν)
−1J bν(−p) +O(J4)

)
.

(3.79)
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After obtaining the true expression of the partition function, we can use this to
compute the gluon propagator straightforwardly as follows

〈
Aaμ(p)A

b
ν(0)
〉
=

1

Zquad
gluon(0)

∂2Zquad
gluon(J)

∂Jaμ(−p)∂J bμ(0)
∣∣∣∣
J=0

=
1

Zquad
gluon(0)

δD(p)

∫
dβ

2πi

eβ

β

1√
detΔab

μν

(Δab
μν)

−1

=
δD(p)

∫
dβ

2πi
ef(β)(Δab

μν)
−1

∫
dβ

2πi
ef(β)

,

(3.80)

where f(β) ≡ β−ln β− 1
2
Tr ln(Δab

μν). We come into the problem, the last big one, how
we can evaluate the integral over the parameter β. This is when the thermodynamics’
argument is taken into account. Recalling that the partition function Z(0) ∼ eF

where F is a free energy of the system. We have also known that the free energy is
an extensive quantity meaning it is directly proportional to the size of the system
V . Thus, no matter the result of integration will look like, in the limit V → ∞,
the configuration that extremizes the function f(β) will dominate the integral. This
method is known as the saddle point approximation widely used in, for example, the
mean-field theory of the Ising model. Suppose the value of β = β0 is the value that
extremizes the function f(β), we can then approximate (up to negligible higher-order
fluctuation) ∫

dβ

2πi
ef(β) = ef(β0)

∫
dβ

2πi
(1 + ...) ≡ ef(β0)N . (3.81)

Thus, we end up with (assume that the Δ−1 does not oscillate too strong)

〈
Aaμ(p)A

b
ν(0)
〉
= δd+1(p)(Δab

μ )
−1

∣∣∣∣
β=β0

. (3.82)

So the climax of the story is to calculate the inverse of the operator

Δab
μν(p)

∣∣∣∣
β=β0

= δab
(
p2Πμν(p, ξ) +

2β0g
2N

VD(N2 − 1)

gμν
p2

)
≡ δab

(
p2Πμν(p, ξ) + γ4

gμν
p2

)
.

(3.83)
One can check that the inverse of the operator above takes the form

(Δab
μν)

−1(p)

∣∣∣∣
β=β0

= δab
(

p2

p4 + γ4
Πμν(p) +

ξp2

ξγ4 + p4
pμpν
p2

)
. (3.84)

In the Landau gauge condition, i.e. ξ = 0, we eventually obtain the gluon propagator
of the form 〈

Aaμ(p)A
b
ν(0)
〉
= δD(p)δab

p2

p4 + γ4
Πμν(p). (3.85)
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To end this chapter, let us give remarks about the new form of the gluon propagator,
from now on, called the gluon propagator of the Gribov type. First of all, let’s start
with the most important observation that the gluon propagator now changes its
form. Strictly speaking, it effectively becomes a massive propagator with the mass
γ, called the Gribov mass from now on. Where does it come from actually? Recall
that, at the beginning, the gluon field is classically constructed to be a massless
field. The evidence is the classical YM theory, by construction, is generically scale-
less or conformal invariant. Amazingly, the effect of the quantization makes very
interesting consequence. In the quantum regime, the massless gluon gains its mass
miraculously. In particular, the generation of the mass scale is not that mysterious
at all. Tracing back into the resolution of Gribov to resolve the Gribov ambigu-
ity, Gribov has introduced the Gribov region whose horizon is bounded from every
direction (see the final property of the Gribov region). At that moment, we have
already introduced the specific length scale into the gauge space which can be trans-
lated into the mass-scale inside its Fourier world. Strictly speaking, by introducing
the Gribov region, we have also introduced the mass scale into the theory without
hesitation. If the result from Gribov is true, the QYM theory thus have the mass
gap which will be shown further in the next chapter that the presence of this mass
scale do naturally generate the confinement of the gluon.

In fact, the result is not totally quantum. Let’s remind readers that the result
is clearly obtained when the size of the system is sufficiently large or V → ∞. In
this particular limit, the finite size effect from the periodic boundary condition will
be negligible. Roughly speaking, the box quantization tells us that the momentum
mode will be quantized into the discrete value which is inversely proportional to the
size of the system. Thus, in the large volume limit, the discrete distribution of the
momentum mode will become continuous and approximately classical. Hence, the
limit is therefore called the semiclassical limit. However, the semiclassical approxi-
mated used by Gribov will make sense if and only if the f(β) ∼ V . Let’s see how it
works actually. As we have discussed in the above paragraph that the γ represents
the mass scale of the QYM theory, thus, we believe so much that the scale must be
finite and not equal to zero. The reason can be deduced intuitively if the mass scale
is infinite, it is equivalent to the fact that the radius of the Gribov region is typically
zero. This can not be solved anything since the zero radius Gribov region will forbid
any gauge orbit to exist in its own space. On the other hand, for the case that the
Gribov mass is zero, it implies that the first Gribov horizon locates at the far infinity
in the space of gauge fields. This situation will not solve any ambiguity also since
if the Gribov region has infinite radius, the Gribov region can not stop any gauge
orbit from passing into the negative eigenmodes’ zone. In fact, it can be understood
with simpler logic, if the Gribov mass is typically zero, it means that the mass gap
is not generated at all, thus, the result will merely coincide with the classical theory.
To see the behavior of the Gribov mass, let’s recall the full expression of the Gribov
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mass

γ4 =
2β0g

2N

VD(N2 − 1)
. (3.86)

Thus, to have non-zero and finite Gribov mass, the value β0 must run as β0 ∼ V .
As a result, f(β0) ∼ V as expected.

In the end, one might ask that so how we can determine the specific value of the
Gribov mass scale γ. Observe from the expression (3.86) that what we need to do is
to determine the value of β0, to be specific, the finite ratio between β0

V
. After that,

we can use the result to estimate the value of the Gribov mass (the rest of them are
just the parameters depending on the details of the theory). To compute it out, we
need to think first that what really is the β0. Right! β0 is the configuration that
makes the function f(β) become extremum. Thus, we can then simply find out the
value of β0 through the calculus 101 condition df

dβ

∣∣
β=β0

= 0 which is widely known

in literature as the gap equation. Finally, we are done.
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Chapter 4

Gluon Confinement

In this final chapter, we will use the result in the previous chapter to show that the
gluon should be confined due to the violation of the axioms of the QFT. By the
way, this topic is kind of difficult since it requires a lot of basics knowledge in both
mathematics and physics. Thus, we will take a serious discussion on the basics in
the first section and then use it in the last section.

4.1 Axioms of Quantum Field Theories

Axiomatic QFT (AQFT for short) is an effort to assign rigorous mathematical de-
scriptions to QFT. The subject begins with the first question, simple but not too
trivial, at all: which object can be used to define a “quantum field”? To answer
this simple question, let’s start our discussion with an important physical obser-
vation. Historically, what we have known as “field” was introduced to solve the
problem called the action at a distance appearing in the naive notion of the classical
force, e.g. Newtonian gravity and Coulomb’s electrostatics. Instead of mentioning
the quantity like force, we will rather focus on the quantity like a field that is dis-
tributed everywhere in the finite local region in spacetime. This motivates us to
introduce the notion of the field as the distribution instead of the naive function.
Hence, we will first study the distribution theory. Straightforwardly, the (tempered)
distribution is a continuous linear functional on a so-called space of Schwartz test
functions

S ≡ {f(x) ∈ C∞(RD)| sup
x∈RD

|xα∂βf(x)| <∞} (4.1)

where xα ≡ xα0
0 ...x

αd
d and ∂β ≡ ∂β0+...βd

(∂x0)β0 ...(∂xd)βd
[30]. In other word, the distribution

ϕ is a linear functional ϕ : S → C and we will denote the collection of the dis-
tribution as S∗. In fact, any function ϕ that grows no faster than any polynomial
(called polynomially bounded) defines a (regular) tempered distribution through the
formula

ϕ(f) ≡
∫
dDx ϕ(x)f(x). (4.2)
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The famous example of the singular type is a Dirac delta distribution δ(f) ≡ f(0).
Let us remark that even though the value at the specific point in the spacetime
of any distribution, defined as the functional, cannot be found, we can still talk
about the local value of it. Specifically, there is a very important terminology
need to be mentioned here. We will say that the distribution vanishes, ϕ = 0,
in the neighborhood of the point x0 if ϕ(f) = 0 for all test functions f(x) which
vanish outside this neighborhood. The complement of the set of points at which
a distribution ϕ vanishes with respect to the entire spacetime will be called the
support of ϕ [80].

Now we just obtain the definition of the classical field. Obviously, the next thing
we have to do is to promote the classical field into the quantum field. Recall that
Heisenberg’s uncertainty principle suggests that the c-number-valued distribution
essentially extends to the operator-valued distribution. Explicitly, the field has been
promoted into the map of the kind

ϕ : S → Lin(D,H), (4.3)

where Lin(D,H) denotes the set of all linear (Lin stands for linear) maps, formal
definition of operators, from a dense domain D to the Hilbert space H with the inner

product
〈∣∣〉 and norm || · || ≡

√〈 · ∣∣ · 〉. In particular, it is natural to expect that

the common dense domain D is contained inside the domain of the field distribution
D(ϕ(f)). In quantum theory, we mainly deal with the Hermitian, or more strictly,
self-adjoint operator since the spectral values, the generalization of the eigenvalues,
of such operators are all real. The dense domain of adjoint operator O is defined
as D(O†) ≡ {ψ ∈ H|∃ψ̃ ∈ H : ∀ψ′ ∈ D(O),

〈
ψ̃
∣∣ψ′〉 =

〈
ψ
∣∣Oψ′〉} where P(H) is

the projective Hilbert space which we shall clarify it further below. Consequently,
inside this dense domain, we can say that the operator O is a Hermitian operator
when D(O) ⊂ D(O†) and O†ψ = Oψ for all possible ψ ∈ D(O) and it will be
called the self-adjoint operator if D(O) = D(O†). For such an operator, writing as〈
ψ
∣∣Oψ′〉 = 〈ψ∣∣O∣∣ψ′〉 is sometimes acceptable.
Only operators in Hilbert space H is not enough to define QFT, not even QM.

In experiment, the measurement apparatus, i.e. initial state and final state, is
represented by an element in the projective Hilbert space P(H) defined to be an
equivalence class [ψ] = {ψ′ ∈ H|ψ′ ∼ ψ} where ψ′ is said to be equivalent with ψ,
denoted as ψ′ ∼ ψ, if there exists some non-zero constant λ ∈ C such that ψ′ = λψ.
The requirement of the equivalence relation is introduced to make all elements in
the equivalence class represent the same physical situation (all elements in the same
equivalence class will give the same probability amplitude).

Yet, this is still not the complete description of QFT since, as mentioned at the
beginning of the section that field was initially introduced to solve the action at a
distance problem, thus we necessarily further demand that our field must obey the
relativistic properties. In other words, the quantum field must transform covariantly
under the Poincaré transformation forming the group of transformation known as,
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of course, the Poincaré group P whose element is of the form (Λ, a) ∈ L � T
where L ≡ SO↑

+(1, d) and T ∼ R
D are the proper orthochronous Lorentz group and

translational group, respectively. Note that the reason why the product between
the Lorentz group and translational group must be the semi-direct product is the
fact that the double action of the Poincaré group can be expressed as follows

(Λ, a)(Λ′, a′) = (ΛΛ′,Λa′ + a) (4.4)

Following the above analysis, the theory of the relativity is strongly based on the as-
sumption that the physical system is invariant under the frame-changing or Poincaré
symmetry. In the level of state, the argument can be written shortly as∣∣〈ψ∣∣ψ′〉∣∣ = ∣∣〈u(Λ, a)ψ∣∣u(Λ, a)ψ′〉∣∣, (4.5)

where u is a representation of Poincaré group, i.e. u denotes a map of the form
u : P → GL(D,R) and the absolute symbol || is essentially inserted to eliminate the
ambiguity of phase, i.e. there is still an extra U(1) degree of freedom that makes
the projective Hilbert space non-unique depending on the choice of this phase.

In more general situation, suppose g denotes an element of the group G and
u(g) is its representation. If G is truly the symmetry of the quantum system, we
therefore have ∣∣〈ψ∣∣ψ′〉∣∣ = ∣∣〈u(g)ψ∣∣u(g)ψ′〉∣∣. (4.6)

According to the equation (4.6), we expect that the representation of the element of
that group must satisfy the unitary condition u†u = � which means the appropriate
representation must be a unitary representation. We will denote the set of all unitary
operators defined in the Hilbert space H as U(H). However, this condition is too
weak, in general, it will be stronger if we define the transition amplitude between
the elements in the projective Hilbert space P(H) as p([ψ], [ψ′]) = |<ψ|ψ′>|

<ψ|ψ><ψ′|ψ′> then

requiring that the transition probability satisfies p([ψ], [ψ′]) = p(u[ψ], u[ψ′]) is much
more stronger.

Let us note that there is an important theorem showing that the action of P on
the projective Hilbert space P(H) induces the unitary (anti-unitary) representation
of that group element. The theorem states that [69]

Theorem 1 (Wigner’s Theorem) Suppose that there are ψ, ψ′ ∈ P(H) and the
bijective map u : P(H) → P(H) which preserves the transition amplitude. Then
there exists a linear (anti-linear) map U : H → H which is unitary (anti-unitary)
such that u([ψ]) = [U(ψ)].

We will call U as a lift of u to H, denoted by U = γ̂(u).
Now the main problem turns out to be to determine the appropriate lift of the

group. The problem will be resolved by the theorem due to Bargmann stating as
follows [71]
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Theorem 2 (Bargmann’s Theorem) Suppose G be a simply-connected and finite-

dimensional Lie group with vanishing 2nd Lie algebra cohomology. Then every con-
tinuous projective representation u : G→ U(P(H)) has a lift as a unitary represen-
tation U : G→ U(H).
Unfortunately, the Poincaré group P = L � T is not the case. Even though T is
simply-connected, L is not. Thus, we need to enlarge the Lorentz group into the
bigger connected group that can cover the whole Lorentz group, i.e. its universal
covering group, in this case, the universal covering group of L is Spin(1, d).

The analysis of the relativistic properties gives us more information. Since we
have known already that the covariance property of the quantum field encodes inside
the unitary representation of the Poincaré group. With the help of the following
theorem, we can find out explicitly the specific form of that unitary representation.

Theorem 3 (Stone’s theorem) If U is a strongly continuous unitary representa-
tion of group R in the unitary group of Hilbert H, then there exists a self-adjoint
operator O in the dense domain D such that, for all t ∈ R, we have U(t)

∣∣
D
= eitO.

We call O as the infinitesimal generator of U(t). As a result, we obtain

U(ω, a) = exp(iωμνJ
μν + iaμPμ) = U(�, a)U(ω,�) (4.7)

where ωμν is the infinitesimal form of the finite angle of the Lorentz group Λμν , i.e.
Λμν ≈ gμν + ωμν . In particular, Pμ and Jμν denotes the infinitesimal generators
of the translational group T and Lorentz group L, respectively. By imposing the
physical interpretation, Pμ is treated to be the 4-momentum operator. Since all
physical systems tend to evolve to the lowest possible energy configuration, thus, to
maintain the stability of the system, we expect that the zeroth component of Pμ or
energy is, therefore, essentially bounded from below. Mathematically, we say that
it respects the so-called spectral condition.

Definition 1 1. Joint spectrum Sp(O1, ..., On) is the set of (λ1, ..., λn) such that,
for all (t1, ..., tn),

∑n
i=1 λiti is in the spectrum of

∑n
i=1 tiOi (obviously, all Oi

need to be compatible to each other since non-compatible operators cannot have
simultaneous spectral value).

2. The spectral condition is expressed as follows

Sp(P0, P1, ...Pd) ≡ {(p0, p1, ..., pd) ⊂ V +}, (4.8)

where V + is known as the closed future lightcone, all points in it are time-
like separated and evolve from present to future, defined mathematically as
{(x0,x) ∈ R

1,d|x0 ≥ 0, x20 − x2 ≥ 0}.
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Notice that there is still the problem here. Observe that the Lorentz transformation
affects inevitably the 4-momentum operator since the Lorentz transformation affects
directly to the translational group (see (4.4)). First of all, the causal structure is
preserved under such a transformation meaning that there is no need to worry about
the consistency of the spectral condition. However, the classification of the particle’s
spectrum will be difficult to do. Thus, this fact leads Wigner to use rather the
subgroup of the Lorentz group of which all elements leave the 4-momentum operator
unchanged. Such a subgroup is known as the little group or stabilizer subgroup.
Due to the use of the little group, we can construct the induced representation of
the Poincaré group that is well-behaved in the sense that the energy-momentum’s
spectra are unaffected. The resulting induced representation leads to the Wigner’s
classification of the physical particles. Wigner shows that only massm and spin J are
enough to characterize the particle (this fact, intuitively, follows from the presence of
two Casimir operators, that are mass operator p2 and Pauli-Lubanski spin operator
W 2, of the Lorentz group) which is the representation of the Lorentz group (while
the additional translational group will constrain the spectrum condition). Hence,
the types of physical spectra can be listed below

1. Massive particle is a state with positive mass m > 0, spin J , and positive
energy E > 0.

2. Massless particle is a state with zero mass m = 0 but non-zero energy E > 0
and helicity h (we cannot practically measure the spin of the massless particle
since the massless particle always travels at the speed of light that means it is
impossible to catch the massless particle then measuring its spin).

3. Vacuum is a state with vanishing mass m = 0, vanishing spin J = 0 and, of
course, vanishing energy E = 0.

Following the spectrum condition, the last type of the physical state called a vacuum
state. However, in Wigner’s theory, this is just the description used in the relativistic
QM. By the way, this motivates us to define the physical subspace of the Hilbert
space of the QFT, i.e. the vacuum state, denoted by Ω, which is interpreted to be
the ground state of the underlying QFT. In this sense, the vacuum state is believed
to be the state that contains no particle at all. Thus, it is also expected to be singlet
or completely invariant under the Poincaré transformation. Namely, we have

U(Λ, a)Ω = Ω, ∀(Λ, a) ∈ P . (4.9)

So far so good, we currently have all useful ingredients to construct the QFT.

Definition 2 The Wightman QFT [89] is a quadruple (H,U , ϕ,D), that is com-
posed of

1. Separable Hilbert space H and its projective space P(H).
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2. Strongly continuous unitary representation of the universal covering of the
Poincaré group U(H).

3. The Hermitian operator-valued distribution ϕ defined on the dense domain D
in the Hilbert space H.

4. 1-dimensional vacuum Ω subspace of the projective Hilbert space P(H) which
is unique with respect to the Poincaré symmetry.,

which satisfies all following Wightman axioms

• W1 (Covariance) Since

〈
ψ
∣∣ϕ(f)∣∣ψ′〉 = 〈(Λ,a)ψ∣∣ϕ((Λ,a)f)∣∣(Λ,a)ψ′〉

=
〈
ψ
∣∣U †(Λ, a)ϕ((Λ,a)f)U(Λ, a)

∣∣ψ′〉, (4.10)

where (Λ,a)f ≡ f(Λ−1(x− a)). Therefore,
ϕ((Λ,a)f) = U(Λ, a)ϕ(f)U †(Λ, a). (4.11)

This axiom requires that the quantum field must be relativistic.

• W2 (Locality)
[ϕ(f1), ϕ(f2)] = 0 (4.12)

if its support on the test functions f1 and f2 are spacelike separated, that is, if
f1 = f1(x1) and f2 = f2(x2), then (x1−x2)2 < 0 implying that the information
cannot be sent between two fields at different events separated by spacelike
interval. In other words, no information can travel faster than light.

• W3 (Spectral condition) The joint spectrum of the 4-momentum operator
is contained in the future lightcone. This condition is to maintain the bounded
from below property of the energy.

• W4 (Uniqueness of vacuum) All elements in P(H) which is invariant
under translation are the vacuum state multiplied by some scalar. This implies
the uniqueness of vacuum, as its name, since the scalar multiplies with vacuum
Ω looks no different to the pure Ω in the rays on Hilbert space.

Note that, in this case, we consider only the scalar field. For the more general
case, we need to include the contribution of transforming the tensor and spinor
indices into the W1 axiom also. Note further that the scalar field is a bosonic field,
however, the generalization to the fermionic field can be done by merely changing
the commutator into the super-commutator in W2.

This is very understandable why Wightman defines QFT in this way. However,
the next discussion is the unexpected one. Recall that f �→ ϕ(f) is an operator-
valued distribution defined in the Hilbert space H. Thus, the inner product on
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the Hilbert space is therefore defined appropriately. Namely, we have, for every
ψ′ ∈ D(ϕ(f)) 〈

ψ
∣∣ϕ(f)ψ′〉 ∈ C. (4.13)

Whereas, the number |〈ψ∣∣ϕ(f)ψ′〉|2 ∈ R represents the probability of finding the
value of operator ϕ(f) measured in the final state ψ out from the prepared initial
state ψ′. Let assume further that the observable is self-adjoint operator (as an
observable should be), i.e. We can write ϕ(f)† = ϕ(f), accordingly, we can introduce
a very important quantity called the Wightman function(al) or n-points correlation
function as a separatedly continuous, multi-linear map

Wn : S × S × ...× S → C (4.14)

defined explicitly as

Wn(f1, ..., fn) ≡
〈
Ω
∣∣ϕ(f1)...ϕ(fn)∣∣Ω〉, (4.15)

where Ω is a vacuum state, thus, sometimes this correlation is called the vacuum
expectation value. One can think about this quantity in the following sense: we
have known that the test function f spans the vector space S, Wn(f1, ..., fn) can be
realized as the complex-valued tensor of (0, n)-type defined on this vector space.

There are two significant remarks. First of all, the Wightman distribution
Wn(f1, ..., fn) defines a unique distribution on S(RDn), denoted again by Wn, as
follows directly from the Schwartz’s nuclear theorem [79]

Theorem 4 (Schwartz’s Nuclear Theorem) Let W be a separately continuous,
linear functional on (S(RD))n. There exists a unique distribution W ′ such that

W (f1, ..., fn) = W ′(f1...fn). (4.16)

That is there is a unique correspondence between the dual space S∗((RD)n) and
S∗(RDn).

Another remark is that the correlation function appearing here is not the same
as the correlation function in the previous chapter calculated from the variational
derivative of the partition function. Observe that the Wightman distribution does
not include the time-ordering operator into it but the chronological order of the
operator-valued quantity must be seriously concerned. One might ask that can we
modify the definition of the Wightman distribution by naively operating it with
the time-ordering operator. This answer is we can not naively do that since the
multiplication of the distribution with the discontinuous function (the definition
of the time-ordering operator can be expressed through the discontinuous Heaviside
step function) will make it loses its temperedness. However, it can be done eventually
by approximating the Heaviside step function as a smooth function.

Following from the Wightman axioms, one can prove the following theorem
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Theorem 5 The Wightman function Wn ∈ S∗(RDn) satisfies

• WD1 (Covariance) Wn(f) = Wn(
(Λ,a)f), ∀(Λ, a) ∈ P. This comes from the

Wightman’s first axiom W1 and the fact that vacuum is Poincaré invariant.

• WD2 (Locality)

Wn(f1, ..., fi, fi+1, ..., fn) = Wn(f1, ..., fi+1, fi, ..., fn), (4.17)

if the supports of fi and fi+1 are spacelike separated.

• WD3 (Spectral condition) There exists a distribution wn ∈ S∗(RD(n−1))
supported in the product (V +)n−1 of forward cones such that

Wn(f1, ..., fn) =

∫
dD(n−1)p

(2π)D(n−1)
wn(f̃(p))e

ipjξj , (4.18)

where ξj ≡ xj+1 − xj. This condition is the implicit consequence of the prop-
erty WD1 telling that the Wightman function is translational invariant, i.e.
Wn(f1(x1−a), ..., fn(xn−a)) = Wn(f1(x1), ..., fn(xn)), implying that the Wight-
man function is dependent only on the difference of the spacetime coordinates.
Thus, we can legitimately define

wn(f1(ξ1), ..., fn−1(ξn−1)) ≡ Wn(f1(x1), ..., fn(xn)). (4.19)

Finally, one can show that the Fourier transform of wn(f), i.e. wn(f̃) belongs
to the closed future lightcone.

• WD4 (Positive definiteness) For fn ∈ S(RDn), one has

k∑
m,n=0

Wm+n(f
∗
m ⊗ fn) ≥ 0, (4.20)

where f ⊗ g is defined as f ⊗ g(x1, ..., xm+n) ≡ f(x1, ..., xm)g(xm+1, ..., xm+n).
This can be shown as follows: We first construct the operator

∑k
m=1 ϕ(fm)Ω ∈

H. Since this operator belongs to the Hilbert space, thus we can compute the
norm of this operator which is, in principle, positive-definite. Explicitly, we
obtain ∣∣∣∣

∣∣∣∣
k∑

m=1

ϕ(fm)Ω

∣∣∣∣
∣∣∣∣
2

≥ 0

〈 k∑
m=1

ϕ(fm)Ω

∣∣∣∣
k∑

n=1

ϕ(fn)Ω

〉
≥ 0

〈
Ω

∣∣∣∣
k∑

m=1

ϕ†(fm)
k∑

n=1

ϕ(fn)

∣∣∣∣Ω
〉
≥ 0

∑
m,n

Wm+n(f
∗
m ⊗ fn) ≥ 0,

(4.21)
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where we have used the definition of the self-adjoint operator ϕ†(f) = ϕ(f ∗)
in the sub-sequential step.

In some place in the literature, after introducing the Wightman function, one may
assign one more axiom into the definition of the Wightman QFT known as the
cluster decomposition axiom [79] which states as follows:

lim
λ→∞

Wn(f1, ..., fi,
(�,λa) fi+1, ...,

(�,λa) fn)−Wi(f1, ..., fi)Wn−i(fi+1, ...fn) = 0, (4.22)

for any arbitrary spacelike vector a. The physical meaning of this axiom is that
two experiments performing at the far spacelike-separated events in the spacetime
can be decomposed into two separate clusters of the experiment apparatus. In the
other words, the two experiments, that are far enough (in the spacetime) so that
the information from one apparatus can not reach the other at all, will not correlate
with each other at all. This axiom might be very obvious to see but, in particular,
this axiom plays a very significant role in the perturbative QFT in the sense that it
ensures that the disconnected Feynman diagram will not contribute to the theory
[72].

Now we have seen precisely how the Wightman axioms constrain the properties
of the Wightman functional. One might ask for the converse argument which is the
most marvelous result of the Wightman QFT.

Theorem 6 (Wightman Reconstruction Theorem) For any sequence of the
tempered distributions Wn ∈ S∗(RDn) satisfying the properties WD1-WD4 (along
with the cluster decomposition principle), there exists a Wightman QFT of which
sequence of the Wightman functions coincides with the given sequence of the tem-
pered distributions above.

This theorem is extraordinary, it tells us that if we know the vacuum correlation
function of any n-points, we can reconstruct back the whole QFT. Speaking novelly,
only one sequence of the Wightman functional can rule them (QFT) all. This, in
fact, is used to give the mathematical definition of the integrable or exactly solvable
QFT. For example, a massless Thirring model, a Dirac field with the self-interaction
of the Fermi-type in (1+1)-dimensions, is said to be exactly solvable since all n-
points functions are known. We will not go through it in details because it does not
relate much to this review article.

So far we have discussed the axiomatic QFT in Minkowski spacetime, however,
several things defined on Minkowski QFT is slightly ill-defined. The reader might
have noticed that everything in all three previous chapters is constructed through
the path integral quantization. Moreover, the reader might have also noticed that
our path integration used so far has been performed in the manifold endowed with
the Euclidean metric. The main reason is that the path integral measure in the
Minkowski space is ill-defined in the sense that we even have no idea about the
underlying mathematical structure of the measure space. Additionally, even if the
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structure is well-defined, there is no guarantee that the path integral will converge.
Conversely, the path integral working on the Euclidean space is well-defined, at least
in free theory, in the sense that its measure can be realized as the Borel probability
measure (see also the Bochner-Minlos theorem, for example, theorem 2.1 of [30]).
Therefore, after axiomatizing the Minkowski QFT, we will then study how can we
use the information from the Wightman QFT to construct the Euclidean field theory.
To study this, we essentially discuss the notion of analytic continuation. The idea
begins within the context of the complex analysis by studying the analytic function.
Recall that, if U is an open set in complex plane C, the complex-valued function
F : U → C is said to be holomorphic or (complex) analytic if, for any point z0 ∈ U ,
the power series expansion of F exists and converges in an open disk B(z0, ρ) ⊂ U ,
i.e.

F (z) =
∞∑
k=0

ak(z − z0)k. (4.23)

Alternatively, by using the fact that ak can be matched with 1
k!
∂kF
∂zk

∣∣
z=z0

in Taylor’s
series, we say that the holomorphic function is the complex-valued function of which
partial derivative exists at any order. In the more abstract language of the branch
of mathematics known as the sheaf theory, F is found to be just one representative
of an equivalence class called germ of F . All analytic functions inside the same
germ will have equal value of their restriction to U , namely, F and G will be said
to belong to the same germ if F

∣∣
U
= G

∣∣
U
for all points in U . Thus, this leads to

the context of analytic continuation, that is, F can be analytically continued to G
when G

∣∣
U
= F , we will sometimes call F the boundary value of G.

In particular, we can repeat the same thing in the case of the distribution. Let’s
start with finding the appropriate domain of analytic continuation. Recall first
that our distribution obeys the causality implying that our domain is nothing more
and nothing less but the closed future lightcone V +. Then, we define a so-called
induced backward tube to be T ≡ R

D×(−V O) where V O is an open future lightcone
≡ {(x0,x) ∈ R

1,d|x0 > 0, x20 − x2 > 0}.
Theorem 7 [30] Suppose ϕ ∈ S∗(RD) whose Fourier transform is supported in V +.
There exists an analytic function F on the tube T satisfying

1. F (z) is polynomially bounded.

2. ϕ is the boundary value of the holomorphic function F in the sense that

lim
t→0

∫
dDx f(x)F (x+ ity) = ϕ(f). (4.24)

Repeating again in the Wightman function’s case. Recalling the Fourier transform
(4.18), instead of writing the test function over the coordinate chart of a real mani-
fold, we perform the complexification and write the test function as a complex-valued
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function, i.e. Replacing ξ → ζ ≡ ξ + iη ∈ C
D. We have the Wightman function’s

counterpart of the above theorem. Mathematically speaking, the distribution

wn(f(ζ)) =

∫
dD(n−1)p

(2π)D(n−1)
wn(f̃(p))e

−ipiζi , (4.25)

where ζ ∈ Tn−1 ≡ (RD × (−V O))n−1, defines an analytic function in Tn−1 such that

lim
t→0

wn(ξ + itη) = wn(ξ). (4.26)

This means that the Wightman distributions can be analytically continued into an
associated holomorphic function on its complexified tube. One down but many to
go. This is not yet the complete analytic continuation since the Wightman function
is constrained by the properties WD1-WD4. The next thing to do is to impose the
invariance under the action of the Lorentz group into the complexified tube. Since
the complexification has been already done, the Lorentz group must be complexified
accordingly.

Theorem 8 (Bargmann-Hall-Wightman Theorem) [70] If a function Wn is
holomorphic on Tn−1 and invariant under the action of the (orthochronous proper)
Lorentz group L(R), then Wn can be analytically continued to a single-valued func-
tion on a so-called extended tube

T ′
n−1 ≡

⋃
Λ∈L(C)

ΛTn−1. (4.27)

Wn on this extended tube will be invariant under the action of the complexified
Lorentz group denoted by L(C).
T ′
n−1 contains real points also is called a Jost point. We say that (ξ1, ..., ξn−1) ∈

R
D(n−1) is called a Jost point if its linear combination λ1ξ1 + ...+ λn−1ξn−1 is space-

like for λi ≥ 0. There is a lemma (Jost’s lemma [70]) stating that T ′
n−1 ∩ R

Dn

coincides with the collection of Jost points. Thus, Wn can be treated as real ana-
lytic functions on the set of Jost points, since Jost points are altogether spacelike.
Due to the property WD2 constrained on the Wightman functional, the argument
of the Wightman function in the set of Jost points is, therefore, expected to be
permutable. Finally, the tube will be further extended into the so-called permuted
extended tube

T ′σ
n−1 ≡ {σξ|ξ ∈ T ′

n−1, σ ∈ Sn−1}, (4.28)

where Sn is a discrete symmetric group or permutation group. T ′σ
n−1, in particular,

contains the so-called non-coincident Euclidean points. Namely, it contains the point
(ξ1, ..., ξn−1) ∈ C

D(n−1) that can be written as (ŵξ′1, ..., ŵξ
′
n−1) where (ξ′1, ..., ξ

′
n−1) ∈

R
D(n−1) and ŵ denotes the operation known as the Wick rotation which rotate the

real-time into the purely imaginary time. Clearly speaking, ŵ is concisely defined
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as ŵxμ = ŵ(x0, x1, ..., xd) ≡ (ix0, x1, ..., xd). In the end, we completed the analytic
continuation of the Wightman function, and we define its boundary value as follows

Sn ≡ Wn

∣∣
EDn\Δ, (4.29)

EDn ≡ (iR+×Rd)n denotes the collection of the Euclidean points and Δ ≡ {(ξ′1, ..., ξ′n−1) ∈
EDn|ξj = ξk} is the coincide point. Henceforth, we will call the analytically contin-
ued Wightman function as the Schwinger function.

Theorem 9 The Schwinger function Sn is a holomorphic function, Sn : EDn\Δ→
C, satisfying the so-called Osterwalder-Schrader axioms [63] (OS axioms for short)

• OS21 (Regularity) Sn is a tempered distribution on its domain EDn\Δ. To
require that the Schwinger function will not grow fast enough at infinity.

• OS2 (Covariance) Sn is invariant under the action of complexified Poincaré
group or the Euclidean group L(C)� T .

• OS3 (Locality) Sn(x1, ..., xn) = Sn(xσ(1),...,σ(n)). Remember that the argument
of the Schwinger function is the Jost points which are altogether spacelike at
the beginning. Thus, permutation invariance always holds.

• OS4 (Reflection positivity)∑
m,n

Sm+n(Θfm ⊗ fn) ≥ 0. (4.30)

This is the Euclidean counterpart of the WD4. The additional condition comes
from the addition operator Θ which is the action of the so-called Euclidean
time reflection mapping ix0 → −ix0. Intuitively, this axiom can be viewed as
follows: we know that the Schwinger function or n-points correlation function
has a probabilistic interpretation, and the negative probability is meaningless.

Again, the OS axioms are sufficient conditions for the OS reconstruction theorem
stating in the same sense as the Wightman reconstruction theorem above. In other
words, if the Schwinger function satisfying the OS1-OS4 is known, we can then
reconstruct the Euclidean field theory. To end this section, let us note that the
OS axioms can be also written in the language of the path integration since, as
mentioned previously, the path integral quantization of the QFT in the manifold
equipped with the Euclidean metric is well-defined measure theory (the reader is
recommended to see the reference, e.g. [30].)

4.2 Violation of Reflection Positivity

We have seen that the most powerful tool in the Euclidean QFT is the Schwinger
function. Since, in the QYM theory, it is not too easy to evaluate the Schwinger
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function of any value of n, we will, therefore, restrict ourselves only with the 2-
points correlation function or propagator G(p). To see the reflection positivity in
the explicit circumstance, we perform the Fourier transform of the propagator in the
momentum space (as computed out in the previous chapter) back to the position
space. We have

S2(x) =

∫
dDp

(2π)D
eip·xG(p). (4.31)

However, the multi-dimensional integral is still difficult to calculate out exactly.
Fortunately, following the statement of [37], the Euclidean QFT relies on only the
hyperplane subspace of the Hilbert spaceH. One might ask immediately that can we
choose the hyperplane freely? In [37], Guerra showed that we can project, through
the projection operator denoted by PU , the whole H into the subspace HU defined
by the distribution in H supported in the region U . The operation PU is proven to
be Markov or have no memory ensuring that the choice of the hyperplane can be
chosen almost freely. Let us choose the hyperplane in such a way that all spatial
momenta p = 0. The problem is thus reduced into the evaluation of

S2(t,x = 0) =

∫
dp0

2π
eip

0tG(p0)
∣∣
p=0

. (4.32)

(We will denote the Euclidean time ix0 ≡ t.) Substitute the propagator of the
Gribov type (3.85) into the projected Schwinger function (4.32). So we obtain

S2(t) =

∫ ∞

−∞

dp0

2π
eip

0t (p0)2

(p0)4 + γ4
. (4.33)

First of all, notice that the integrand contains four distinguish poles at p0 = {± 1√
2
(1+

i)γ,± 1√
2
(1−i)}. Since the integrand will be convergent when p0 → +i∞ (remember

that the Schwinger function is supported in the forward lightcone, then we choose
the value of t such that t ≥ 0), thus the coutour must be written as illustrated in
the Figure 4.1 below. Thus, only two poles involve the complex integral. We can
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Im(p0)

Figure 4.1: The contour plot of the complex integration of (4.33)
.

use the residue theorem to obtain the full expression of the Schwinger function

S2(t) =
2πi

2π

(
eip

0t

4p0

∣∣∣∣
p0= 1√

2
(−1+i)γ

+
eip

0t

4p0

∣∣∣∣
p0= 1√

2
(1+i)γ

)

=
ie

− 1√
2
γt

2
√
2

(
e
− i√

2
γt

(−1 + i)γ
+

e
i√
2
γt

(1 + i)γ

)

=
ie

− 1√
2
γt

2
√
2γ

(
−e

− i√
2
γt
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2
+
e
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2
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2
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=
ie

− 1√
2
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2
√
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[
i sin

(
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2
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)
− i cos

(
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2
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)]

=
e
− 1√

2
γt

2γ

[
cos

(
1√
2
γt

)
cos
(π
4

)
− sin

(
1√
2
γt

)
sin
(π
4

)]

=
1

2γ
e
− 1√

2
γt
cos

(
γt√
2
+
π

4

)
,

(4.34)

which can be shown in figure 4.2 below. Note also that this plot considerably agrees
with the Lattice result illustrated in the figure 4.3.
As shown explicitly from the plot, this result shows that the Schwinger function is
not positive-definite as the time parameter changes. On the other hand, this can
be seen easily by recalling that the cosine function is a periodic function. In other
words, speaking strictly, there exists t such that S2(t) < 0. In summary, the 2-
points Schwinger function of the gluon propagator restricted in the Gribov region
violates the reflection positivity axiom (OS3) of the Euclidean QFT. Thus, the
modified gluon field cannot appear as an asymptotic state. Technically speaking, it
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Figure 4.2: Plot of the Schwinger function of the Landau Gribov propagator (4.35)
where the value of the Gribov mass parameter is chosen to be γ = 0.5.

Figure 4.3: Shape of the Schwinger function plotted by lattice simulation obtained
from [21].

is confined. Intuitive picture is quite precise since, in the previous chapter, we restrict
the space of the gauge orbit into the bounded region. In other words, our gluon field
is generally confined inside the Gribov region at first glance. Eventually, after a
long journey, we have ended the analytical proof of the violation of the reflection
positivity axiom for the restricted YM theory. This shows that by restriction into
the Gribov region the gluon field behaves confined. However, this is not a unique
mechanism to understand the gluon confinement. Strictly speaking, the violation of
the reflection positivity is regarded as a sufficient condition for gluon confinement but
not a necessary condition. Note that the usage of the reflection positivity violation
is studied further by Baulieu et al, they showed that such an unphysical gluon field
can be used to constructed the physical bounded state of that fields (we will not go
through it in details, however, we recommend the reader to read further, e.g. [11]).

We will give a final remark about this behavior. One might be curious that so
what about other massive gauge fields in the presence of the spontaneous symmetry
breaking and Higgs mechanism such asW± and Z bosons in the electroweak theory?
We have known evidently from the experiment at CERN that such a gauge field can
appear as an asymptotic state. Let’s compute the Schwinger function of the massive
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gauge field gained through the Higgs mechanism. We therefore have

S2(t) =

∫
dp0

2π
eip

0t 1

(p0)2 +m2
, (4.35)

with the contour of the shape

×

×

im

−im

Re(p0)

Im(p0)

Figure 4.4: The contour plot of the complex integration of (4.35).

We end up with the 2-points Schwinger function of the form

S2(t) =
2πi

2π
eip

0t 1

2p0

∣∣∣∣
p0=im

=
1

2m
e−mt.

(4.36)

Here, the Schwinger function of the conventional massive gauge propagator is posi-
tive definite. Therefore, it is allowed to appear in our experimental apparatus. This
Schwinger function gives us the more physical interpretation. By comparing the
Schwinger function (4.36) with (4.34). We see the Schwinger function for the Gri-
bov propagator can be realized as the Schwinger function of the massive gauge field
with the complex mass (in some literature, we thus call this kind of particle as an
i-particle). The complex mass yields the tachyonic state that makes the vacuum of
the state unstable. Thus, the Schwinger function of the Gribov gluon is consequently
unphysical in this sense.
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Chapter 5

Conclusion

To summarize, in this review article, we begin by studying the basics ingredients
for understanding the Gribov ambiguity such as the path integration in Euclidean
gauge theory, BRST symmetry so on and so forth. Then, we discuss the origin of
the Gribov ambiguity and show the consequence of it. Next, we suggest a promising
procedure to resolve the Gribov problem by introducing the bounded region called
the Gribov region to restrict the functional integral over the gauge field. In the end,
we show that the introduction of the Gribov region yields the complex mass in the
gluon spectrum suggesting the sign of confinement behavior.
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Appendix A

Mathematical Identities

A.1 Path Integration Identities

When we are dealing with the path integration, we will focus on the integration
over the weight factor of form e−S where S is an action functional. Generally,
for free theory, lack of interaction term, an action functional will take only the
quadratic order in fields. Thus, the path integration of the kinetic part is normally
the Gaussian integration as we have seen already in, for example, (2.5). To evaluate
it, let us recall the normal form of the Gaussian integration, we have

I =

∫ ∞

−∞
dx e−

1
2
ax2+px =

√
2π

a
e

p2

2a . (A.1)

Now if we extend our consideration from the integration over ordinary function into
the path integration over operator-valued case. Explicitly, we will calculate the
integration of the kind

I =

∫
Dϕ e− 1

2
ϕTAϕ+Jϕ. (A.2)

Observe that we can choose the basis of ϕ such that the matrix A can be expressed
as the diagonal matrix. That means we can actually diagonalize A by performing
similarity transformation by some orthogonal matrix OT = O−1 such that A =
OAdiagO−1 and then changing the basis of ϕ → Oϕ. Since the path integration
is nothing but an infinite-dimensional generalization of the ordinary integration,
the particular factor a in the expression (A.1) will be replaced by-product of the
eigenvalue (remember that we have already diagonalize the matrix A) of A which
is actually a determinant of that matrix. Moreover, 1

a
in the exponent of (A.1)

will be represented by the inverse matrix (assume that it really exists) A−1. We,
therefore, obtain the result of the path integration counterpart of the Gaussian
integration as (up to some constant which will be of course dropped out from the
explicit calculation)∫

Dϕ e− 1
2
ϕTAϕ+Jϕ =

1

detA
exp

[
1

2
JTA−1J

]
. (A.3)
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So far, we have considered the bosonic path integration, let’s move to the fermionic
one which is useful while dealing with ghost in the section 2.2. Fermions in the
path integral can be described by using a so-called Grassmann variable which is
the Z2-graded extension of the ordinary complex number. Suppose that the set
of Grassmann variable spanned by the basis {θi} satisfying the anti-commutation
relation

{θi, θj} = 0 or (θi)
2 = 0. (A.4)

The integration over such a variable is called the Berezin integral, which is defined
such that ∫

dθ = 0,

∫
dθ θ = 1. (A.5)

Another way to look at this integral, which will be helpful in the explicit calculation,
is it is the integral that satisfies “integration=differentiation”, i.e.∫

dθ K(θ) =
∂

∂θ
K(θ). (A.6)

Consider a Gaussian integral

I =

∫
Dθ̄
∫
Dθ e−θ̄Aθ =

n∏
i

n∏
j

∫
dθ̄i

∫
dθj e

− 1
2
θ̄Aθ, (A.7)

while we have supposed that there are only n numbers of θ configuration and n or θ̄.
To evaluate this integral, we recall that such an exponential can be defined through
the Taylor series as shown below

I =

∫
dθ̄1...dθ̄n

∫
dθ1...dθn

(
1− θ̄iAijθj + 1

2
θ̄iAijθj θ̄kAklθl + ...

)
. (A.8)

Due to the attractive property of the Berezin integration (A.5), there will be only
one contribution left non-vanishing which is the contribution containing n of θ and
n of θ̄. Thus,

I =
1

n!

∑
σ

±Aσ(1)σ(2)Aσ(3)σ(4)..., (A.9)

where σ denotes the permutation operator. Finally, we can deduce that the Gaussian
path integration over two Grassmann variables yields∫

Dθ̄
∫
Dθ e−θ̄Aθ = detA. (A.10)
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A.2 BRST Transformation and Identities Among

Super Lie brackets

As being used in (2.70) and (2.71). We will verify the following BRST transformation
rules

δ(Dμc)
a = δ(∂μc

a − gfabcAbμcc)
= ∂μ

(g
2
fabccbcc

)
− gfabc(Dμc)

bcc − gfabcAbμ
(g
2
f cdecdce

)
= Dμ

(g
2
fabccbcc

)
− gfabc(Dμc)

bcc

=
g

2
fabc(Dμc)

bcc +
g

2
fabccb(Dμc)

c − gfabc(Dμc)
bcc

=
g

2
fabc(Dμc)

bcc +
g

2
fabc(Dμc)

bcc − gfabc(Dμc)
bcc

= 0,

(A.11)

where the Leibniz’s rule of the covariant derivative has been carried out in the third
step and in the fourth step, we have used the totally anti-symmetric property of
fabc = −facb and anti-commutation relation between two ghost fields.

Consider the anti-commutator between A, B and C, as appeared in (2.70), which
are fermionic, bosonic and fermionic, respectively. We can verify that

{A,BC} = ABC + BCA

= [A,B]C + BAC + BCA

= [A,B]C + B{A,C}.
(A.12)

Additionally, we will also verify the relation that is used in (2.71). Suppose A, B
and C are all fermionic

[A,BC] = ABC − BCA
= {A,B}C − BAC − BCA
= {A,B} − B{A,C}.

(A.13)

Sometime identities of the commutator between fermionic operator Q and three
operators A, B and C are useful. For (B and F stands for boson and fermion,
respectively) (A,B,C) be (B,B,B), we have

[Q,ABC] = QABC − ABCQ
= [Q,A]BC + AQBC − AB[C,Q]− ABQC
= [Q,A]BC + A[Q,B]C + AB[Q,C].

(A.14)

Whereas, for other case, if (A,B,C) be (F,B,F), we end up with the identity

[Q,ABC] = QABC − ABCQ
= {Q,A}BC − AQBC − AB{C,Q}+ ABQC

= {Q,A}BC − A[Q,B]C − AB{Q,C}.
(A.15)
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Moreover, anti-commutation relations of (B,B,F) and (F,B,B) are also useful. They
are expressed as

{Q,ABC} = [Q,A]BC + A[Q,B]C + AB{Q,C}, (A.16)

and
{Q,ABC} = {[Q,A}BC − A[Q,B]C − AB[Q,C], (A.17)

respectively.

A.3 Fourier Transformation

Our world is a very interesting world in the sense that it seems like it is constructed
to have non-trivial duality between positive-space and momentum-space. That is, it
is mysteriously suitable with the Fourier transformation. In particular, the greatest
advantage at all of the Fourier transformation is that, since the QFT is the theory of
the operator-valued distribution (as discussed in chapter 4), in many situations, we
will deal with the distribution function which is difficult to evaluate since it is the
operator-valued quantity. The Fourier transformation solves it by just performing
the transformation from the space of the operator-valued distribution into its Fourier
space that turns out to the space of the c-number-valued distribution. Thus, in
the Fourier space, the algebraic manipulation is allowed to do more conveniently.
Moreover, by using the help of the Fourier transformation, several functions can
be written in integral representation which is, once again, more convenient to deal
with. Let’s see the relevant examples. Firstly, the most used distribution is the

Dirac delta function δ(x) which is defined to be

∫
dy f(x)δ(x− y) = f(y) where

f is any function and x belongs to the domain of the integration. For simplicity,
we will start with the 1-dimensional problem and then generalize to the general
dimensional case. We can perform the Fourier transformation of the Dirac delta
function as follows

δ(p) =

∫ ∞

−∞
dx δ(x)eipx = e0 = 1. (A.18)

After that, we perform the Fourier transformation back to the position space. We
thus have

δ(x) =

∫ ∞

−∞

dp

2π
δ(p)e−ipx =

∫ ∞

−∞

dp

2π
e−ipx. (A.19)

By writing the delta function in the so-called integral representation. We can easily
check many properties of the delta function, for example, δ(x) = δ(−x) due to the

fact that the measure

∫
dp is integrated over the entire momentum-space, hence,

the re-definition from p→ −p is acceptable. In general dimensional case, d said, we
can write

δd(x− y) =
∫

ddp

(2π)d
e−ip(x−y). (A.20)
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Another useful function that can be written in the integral form is the Heaviside
step function θ(x) defined as in (2.94). We therefore obtain

θ(p) =

∫ ∞

−∞
dx θ(x)eipx =

∫ ∞

0

dx eipx =
i

p
(A.21)

and then

θ(x) =

∫ ∞

−∞

dp

2π
θ(p)e−ipx =

∫ ∞

−∞

dp

2π

ie−ipx

p
. (A.22)

Let’s redefine further that β ≡ −ip. We have

θ(x) =

∫ ∞

−∞

dβ

2πi

eβx

β
. (A.23)

Last but not least, we will work mainly in the momentum space when we are trying
to compute the propagator or derive the Feynman rule, thus we will show how to
change the action from the position-space to the momentum-space. To be specific,
let’s Fourier transform the source’s action

Ssource =

∫
dDx Aaμ(x)J

a
μ(x)

=

∫
dDx

∫
dDp

(2π)D

∫
dDq

(2π)D
Aaμ(p)J

a
μ(q)e

−i(p+q)·x

=

∫
dDp

(2π)D

∫
dDq

(2π)D
Aaμ(p)J

a
μ(q)(2π)

DδD(p+ q)

=

∫
dDp

(2π)D
Aaμ(p)J

a
μ(−p)

(A.24)

as appeared in (3.78). This particular example might not that good to demonstrate
how Fourier transformation can change the space of the operator-valued distribution
to the c-number-valued one. Let’s consider another example

SYM =

∫
dDx

(
1

2
Aaν(x)(∂μ∂ν − gμν∂ρ∂ρ)Aaμ(x)

)

=
1

2

∫
dDx

∫
dDp

(2π)D
Aaν(p)e

−ip·x(∂μ∂ν − gμν∂ρ∂ρ)
∫

dDq

(2π)D
Aaμ(q)e

−iq·x

=
1

2

∫
dDx

∫
dDp

(2π)D
Aaν(p)

∫
dDq

(2π)D
Aaμ(q)(−qμqν − gμν(−q2))e−i(p+q)·x

=
1

2

∫
dDp

(2π)D
Aaν(p)

∫
dDq

(2π)D
Aaμ(q)(q

2gμν − qμqν)(2π)DδD(p+ q)

=
1

2

∫
dDp

(2π)D
Aaν(p)(p

2gμν − pμpν)Aaν(−p).
(A.25)
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Here, in addition to change from x to p, we have effectively changed from the
operator ∂μ = ∂

∂xμ
into just some complex number −ipμ as have seen frequently in

the QM101 and QFT101.Here, in addition to change from x to p, we have effectively
changed from the operator ∂μ = ∂

∂xμ
into just some complex number −ipμ as have

seen frequently in the QM101 and QFT101.
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Appendix B

Elements of Differential Topology

To be honest, the main reference used in this topic is actually the very handy book
by Nakahara [58]. Caution! In this chapter, we will deal with the general case
of spacetime, so the position of the subscripts and superscripts will be carefully
studying.

B.1 Differential Form and Cohomology

The mathematical main tool mostly used in the language of differential topology for
describing the gauge theory is a differential form. Loosely speaking, a differential
form of degree p, alternatively called a p-form, is a tensor of type (0, p) where all
indices are totally antisymmetric under odd permutation. Let’s denote the set of
all differential p-forms defined at the specific point of the spacetime M as Ωp(M)
forming a vector space whose basis can be expressed by the help of the wedge product
defined as following

dxμ ∧ dxν ≡ −dxν ∧ dxμ. (B.1)

For any element ω ∈ Ωp(M) can be written explicitly as

ω =
1

p!
ωμ1μ2...μpdx

μ1 ∧ dxμ2 ∧ ... ∧ dxμp . (B.2)

The diffential (p+q)-form can be constructed by using the differential p-form and q-
form through the operation called exterior product ∧ : Ωq(M)×Ωp(M)→ Ωp+q(M).

It is quite useful to define a so-called exterior derivative dp mapping from Ωp(M)→
Ωp+1(M). To be specific, we define such an operation such that

dpω =
1

p!

(
∂

∂xν
ωμ1...μp

)
dxν ∧ dxμ1 ∧ ... ∧ dxμp (B.3)

By keeping track which degree of the differential form we are dealing with, we will
usually drop the subscript on dp and writing only as d for convenience. The attractive
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properties of the exterior derivative is it is nilpotent by its construction, i.e. d2 = 0.
We can check it directly by observing from

d2ω =
1

p!(p+ 1)!

∂2ωμ1...μp
∂xν∂xρ

dxν ∧ dxρ ∧ ... ∧ dxμp . (B.4)

Since the Hessian matrix
∂2ωμ1...μp

∂xν∂xρ
is symmetric under the change between ν and ρ

while the basis of the differential form is constructed in such a way that the indices
ν and ρ is anti-symmetric. Hence, the only way it can satisfy both conditions is to
be zero at the beginning. As we have discussed in the main topic, the nilpotency of
the exterior derivative can deduce the wonderful consequence that there exists the
differential form that can be constructed by the action of the exterior derivative on
the one lower differential form called an exact form. However, the set of all exact
forms is just a subset of the whole set whose element, ω said, satisfies d2ω = 0
known as a closed-form. The non-trivial class of differential p-forms is thus the
form which is closed but not exact. Such a type of class is known as the pth de
Rham cohomology Hp(M). There are two remarkable structures of the de Rham
cohomology group summarized below

1. de Rham cohomologies satisfies the so-called Poincaré duality

Hp(M) ∼= HD−p(M). (B.5)

2. Moreover, they satisfy the Künneth formula

Hp(M1 ×M2) =
⊕
q+r=p

(Hq(M1)⊗Hr(M2)). (B.6)

One more attractive fact about the closed form lies on the very powerful theorem
which people in the past called it as a lemma! The “Poincaré’s lemma” stating that

Theorem 10 (Poincaré’s lemma) If a coordinate neighborhood U of a manifold
M is contractible to a point p0 ∈M, any closed p-form on U will be exact.

(quoted from [58]). For the people who are in love with mathematics, we are so
sorry about that we are not planning to prove anything inside this review article.
However, we still can give a remark about the considering theorem. What Poincaré’s
lemma really tells us is any closed form defined on a manifold is “locally” exact since
any local coordinate neighbourhood on any kind of manifold is typically isomorphic
to a flat space R

d+1 which is generally contractible to a point. We will use this fact
later in the final discussion of the appendix B.3.

It is very important to remark that since the differential form is a totally anti-
symmetric tensor, thus, the differential form of degree greater than the dimensions
of the space where it defined on cannot be constructed. The highest degree which
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any differential form can reach is, of course, a degree D. Suppose that the manifold
is orientable, i.e. the Jacobian J ≡ det(∂xμ/∂yα) > 0 where xμ and yα are local
coordinates of the open regions Ui and Uj (under the assumption that Ui∪Uj �= Ø),
respectively. There will always exist a D-form which can be non-vanishing every-
where in the spacetime. Such a differential form is called a volume form playing a
significant role to define a making sense integration of differential forms.

If our manifold admits a metric structure where we will denote the metric with
the notation g ≡ gμνdx

μ ∧ dxν , the invariant volume form can be expressed as

ΩM ≡
√
|g| dx1 ∧ ... ∧ dxD. (B.7)

In our review, we will focus on the flat spacetime, thus, we will usually neglect |g|
which is nothing more and nothing less but one. At most, we will perform 1-point
compactification to effectively transform the flat RD into the compact version SD.
The value of |g|, in this case, is r2 sin θ which, in a practical situation, it will be
cancelled out together with the invariant factor of the Levi-Civita tensor. In the
light of such a form, we can accordingly define the integration of the function f over
the manifold by ∫

M
fΩM ≡

∫
M
dx1...dxD

√
|g|f ≡

∫
dDx

√
|g|f. (B.8)

Last but not least, we will define another linear map called the Hodge star operator
or sometimes known as the duality transformation denoted by ∗ which do a map
from Ωp(M) to ΩD−p(M). Explicitly, on the basis of the differential p-form, we
have

∗ (dxμ1 ∧ ... ∧ dxμp) ≡
√|g|

(D − p)!ε
μ1...μp

νp+1...νd+1
dxνp+1 ∧ ... ∧ dxνD . (B.9)

Consequently, we can perform the duality transformation of p-form ω (B.2) as follows

∗ ω =

√|g|
p!(D − p)!ωμ1...μpε

μ1...μp
νp+1...νDdx

νp+1 ∧ ... ∧ dxνD . (B.10)

One can show that the exterior product between two p-forms ω and η is an D-form,
expressed as

ω ∧ ∗η =
1

p!
ωμ1...μpη

μ1...μpΩM. (B.11)

The example of the expression (B.11) is what we are meant to always meet in
this field. Let’s consider the differential 2-form F ≡ Fμν dxμ ∧ dxν defined on
the 4-dimensional Euclidean spacetime. We can accordingly define its dual 2-form
F̃ ≡ F̃μνdx

μ ∧ dxν as

F̃ ≡ ∗F =
1

2
Fμνεμναβ dx

α ∧ dxβ. (B.12)
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Yes! The tensor we are referring to is the field strength tensor as mentioned at the
beginning of chapter 2 and will be discussed again in section B.3. Therefore, we can
write the differential form version of the YM action (2.3) as

SYM =

∫
M

Tr(F ∧ F̃ ) = 1

2

∫
dd+1x Tr(FμνFμν), (B.13)

where Tr is a trace over the gauge group indices which will be discussed briefly in
appendix B.3.

B.2 Homology, Euler Characteristic, and Homo-

topy

Sometimes we do not deal with the integration over a whole manifold M or topo-
logical space X which are both non-visualizable in many senses, instead, we might
integrate over more general shape, the polyhedron. To study the polyhedrons more
systematically, we introduce the notion of the so-called simplex. A p-simplex is de-
fined to be p-dimensional object demanded to be geometrical independent (of course,
since topology does not care much about geometrical structures). In fact, a set of all
oriented p-simplex generates an Abelian group called a p-chain group Cp. Parallelly
to the case of differential p-forms, we can introduce the operation which, in this
case, is regarded as a map from a p-chain group to one lower chain, the boundary
operator ∂r said. Accordingly, we can define the set containing the elements of the
p-chain group that satisfies ∂rc = 0, where c ∈ Cp as a subset known as a p-cycle
group Zp. Once again, due to the nilpotency property, which can be shown, in the
boundary operation, we can define the smaller subset called p-boundary group Bp.
Finally, we can define the class of the p-simplexes which is a p-cycle (closed) but
not p-boundary (exact) to be an equivalence class called the pth degree homology
group Hp.

Amazingly, the homology group plays a very powerful role as a tool to calculate
the topological invariance, specifically, the Euler characteristic χ(M). By defining
the Betti number bp as a dimension of the homology group, i.e. bp ≡ dimHp(M),
we can compute the Euler characteristic through the light of the Euler-Poincaré
theorem

Theorem 11 (Euler-Poincaré Theorem)

χ(M) =
∑
p

(−1)pbp. (B.14)

Note that the name of the homology group is very suggestive by leading us to think
that the homology group of simplexes is a dual vector space of the cohomology group
of differential forms. To see it relation more explicitly, we might define the inner
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product between an element of the homology group c ∈ Hp and cohomology ω ∈ Hp

group as

< c, ω >≡
∫
c

ω. (B.15)

Strictly speaking, the inner product between two vector spaces defined to be the
integration of the differential form over the simplex. One can check that such a form
of the inner product is well-defined in the sense that the definition is independent
of the representation of both equivalence classes Hp and Hp. However, to verify
this proposition, we need to know one more information that there is a traditional
theorem by Stoke in the language of the differential forms. The generalized Stoke’s
theorem can be expressed as follows∫

c

dω =

∫
∂c

ω. (B.16)

In the inner product language, we have

< c, dω >=< ∂c, ω > . (B.17)

Due to this suggestive form, we can, therefore, observe that the exterior derivative
d can be realized to be the adjoint operator of boundary operator ∂. Now we
can check the independence of the representative by, for example, picking another
representative of the cohomology such as ω + dω′. We have

< c, ω + dω′ >=< c, ω > + < c, dω′ >=< c, ω > + < ∂c, ω′ >=< c, ω >, (B.18)

where the generalized Stoke’s theorem (B.17) and the cycle property ∂c = 0 have
been used. All we have done so far also suggests that the homology and cohomology
are dual to each other. Honestly, there is the theorem that supports this idea

Theorem 12 (de Rham’s Theorem) If M is a compact manifold, Hp(M) and
Hp(M) are finite-dimensional and the inner product between them is bilinear and
non-degenerate.

In English, this implies really that Hp(M) is the dual vector space of Hp(M), thus
dimHp = dimHp implying that the Betti number can be also evaluated through
the cohomology group instead of using the homology group. Moreover, by recalling
the Künneth formula (B.6), we can eventually derive the very powerful formula to
compute the Euler characteristic of the Cartesian product space as

χ(M1 ×M2) = χ(M1)χ(M2), (B.19)

following from bp(M1 ×M2) =
∑

q+r=p b
q(M1)b

r(M2) which is, in fact, a direct
consequence of the Künneth formula.

Let’s consider the example of using the homology group. Consider the homology
group of n-sphere. Since physicist is more familiar with the differential form, we
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therefore rather evaluate the cohomology of the sphere. Firstly, consider the zeroth-
order cohomology group H0(Sn), let us remind the reader that the zeroth-order
cohomology group is just an equivalence class of zeroth degree differential form
which is nothing but an ordinary function. The (−1)-form is not defined in principle,
thus the set of corresponding exact form is an empty set consequently. The closed
condition dω = 0 implies that the considering 0-form or function must be a constant
function over space if the topological space where such a function defined on is
connected (remember that a sphere is a connected space). A set of constant real-
valued functions is isomorphic to a real line R. Finally, we end up with H0(Sn) ∼= R.
According to the Poincaré duality (B.5), we get the result

H0(Sn) ∼= Hn(Sn) ∼= R. (B.20)

One can also show that otherwise, all cohomology group is trivial. Namely,

Hp(Sn) ∼= {e}, (B.21)

for p ∈ [1, d]. As a result, the Euler characteristic of the sphere of n dimensions can
be expressed as

χ(Sn) = (−1)0b0 + (−1)nbn = 1 + (−1)n, (B.22)

where the fact that real line is 1-dimensional space implying b0 = bn = dimR = 1
has been used.

To end this section of the appendix, we will discuss one more important group
used mostly in differential topology. Since differential topology does study the struc-
ture of topological space without concerning the geometrical shape of such a space
which means that any topological space must be “continuously” deformable into
other topological space of the same topological structure. The deformation prop-
erty encodes inside the language of the homotopy group.

Let’s begin with defining the unit k-cube Ik as the product of I ≡ [0, 1] k
times. After that, we then define the k-loop α of the topological space X as a map
α : Ik → X. The loop α is said to be homotopic to another loop β, α ∼ β, if there
exists a continuous map F : Ik × I → X such that

F (s1, ..., sk; 0) = α(s1, ..., sk),

F (s1, ..., sk; 1) = β(s1, ..., sk).
(B.23)

Along with the condition that points of the boundary of the n-cube hold fixed for
any parameter t ∈ I. Intuitively, this map can be realized as the map that shows the
deformation from the loops α into β parametrized by the real parameter t ∈ I. One
can think that t is a time variable, initially, the loop begins with of the same form
as the loop α when t = 0 and then it starts to deform. Eventually, the time stopped
at t = 1, the loop becomes β at the end of the time. One can show that the relation
defines the associated equivalence class. Additionally, the set of all equivalence class
on the topological space X also forms a group called the kth order homotopy group,
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denoted by πk(X).
Since, the n-cube is topologically equivalent to an n-sphere, thus, the homotopy

group can be thought as a group of equivalence classes of the map from n-sphere
to the considering topological space. The general properties of the homotopy group
are listed down below

1. Theorem 13 (Bott Periodicity Theorem) For the case that N ≥ (k +
1)/2, we have

πk(U(N)) ∼= πk(SU(N)) ∼=
{
{e} k is even

Z k is odd
(B.24)

and for N ≥ k + 2,

πk(O(N)) ∼= πk(SO(N))

∼=

⎧⎪⎨
⎪⎩
{e} k = 2, 4, 5, 6 mod 8

Z2 k = 0, 1 mod 8

Z k = 3, 7 mod 8

(B.25)

(obtained from, of course, [58]).

2. There exists a so-called J-homomorphism that maps from πk(SO(N)) to πk+N(S
N).

However, in the case, that k = 1, such a homomorphism is instead an isomor-
phism meaning that

π1(SO(N)) ∼= πN+1(S
N). (B.26)

B.3 Fiber Bundle and Chern Character

In a differential topologist’s perspective, what we refer to “gauge theory” is a theory
described by a fibre bundle. What is it then? Let’s begin with the terminology,
suppose (and we always suppose) that we live in a so-called base space M which
is nothing but our spacetime background. Moreover, we suppose further that there
exists some set that defined on each point on the base space, we will henceforth call
it a fibre denoted by F . Finally, the fibre bundle is a disjoint union of all fibres F
over the whole region (or sometimes over subregion) of the base spaceM. We will
denote the fibre bundle by E. To visualize this structure, let’s think of a male hair
comb. The base of the comb is regarded as a base space, each tooth of such comb
is referred to the fibre that defined on each point on base space (base of comb).
Thus, all teeth comb are meant to be a fibre bundle in this perspective. To have
a well-defined fibre bundle, there needs to have a surjection (onto map) from the
total space E ontoM, known as a projection map π said, whose pre-image of this
projection will be fibre at that point. The true inverse operation of the projection
map is a section s defined conversely as a map fromM to E such that πs = �M.
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Note that the section map can be realized as picking a point on the fibre bundle
associated to each point on the base point. The realization has been used once in
section 3.1 when discussing Singer’s proof of the existence of the Gribov’s ambiguity.

There are two more important maps used when working with the fibre bundle.
The first one is a diffeomorphism (differentiable invertible map) φi : Ui × F →
π−1(Ui) where {Ui} is an open covering of M. Such a map is sometimes called a
local trivialization (we will understand why soon). The local trivialization behaves
almost the same way as a chart map on the manifold. On the intersected area on
the base space, we can define the transition function tij(p) ≡ φ−1

i (p)φj(p) : F → F
where p is a point on the intersected region. We demand that the transition function
needs to form a group since the sequential action of the transition function must
be essentially well-behaved in the sense that the transition must be closed. That
group will be from now on called a structure group G. If the transition function
is an identity globally, that is the transition function is typically trivial, the fibre
bundle is said to be a trivial bundle also. A trivial bundle can be generally written
in the form of the direct product M× F . This fact is the particular reason why
the local trivialization serves that name since the inverse of the local trivialization
do map from the fibre π−1(Ui) on the local region Ui to its trivial version F × Ui.
Note that there is, in particular, important theorem (in fact corollary of another
theorem) about the fibre bundle stating that

Theorem 14 A fibre bundle E will be trivial if the base spaceM is contractible to
a point.

This corollary is useful to explore the triviality of any bundle so it is important to
be remarked.

Let’s move to the discussion on the structure groupG. In a very general situation,
G will be very general matrix group GL(N,R) (for the real vector space). At
most, we can introduce the local coordinate with the metric structure into the fibre
bundle to change from the general linear one to the orthogonal group O(N) and then
imposing the orientability to change from O(N) to SO(N). This kind of situation
is what we found in Einstein’s theory of general relativity. However, the standard
model’s gauge theory is mainly dealing with the unitary group U(N) rather than
the SO(N). Fortunately, by using the structure group, we can re-construct back the
fibre bundle. Thus, we can always introduce the fibre bundle which has its own non-
trivial structure group known as the principal fibre bundle denoted by P (M, G). For
example, the real world (3+1-dimensional) QCD is amount to study the principal
fibre bundle P (R3,1, SU(3)). The triviality of the principal fibre bundle generally
related to the global property of the section supported by the following theorem

Theorem 15 A principal fibre bundle is trivial if and only if it admits a global
section.

The principal fibre bundle seems too abstract to physicists. However, when we
introduce a little bit more structure, this will become more familiar. Suppose
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that the principal fibre bundle admits the connection, we can then introduce a
Lie algebra-valued one form A ≡ Aaμ(x)T

adxμ, which is known to be a gauge
field, to represent the connection of this fibre bundle. This gauge field can be
used to further construct the curvature tensor which is a Lie algebra-valued 2-form
F = 1

2
F a
μν(x)T

adxμ∧dxν ≡ DA ≡ dA+A∧A (where the coupling and the imaginary
basis is neglected for simplifying the computation). Observe first that, by construc-
tion, the component of such 2-form is antisymmetric under the interchanging μ↔ ν
since the two form’s basis must satisfy (B.1).

As suggested by its name, the curvature 2-form (field strength tensor) determines
how twist the fibre bundle is. In other words, it describes the topological structure
of the fibre bundle. Unfortunately, since the curvature 2-form is not unique since
they must satisfy the gauge transformation. Thus, even though field strength is
very powerful to determine the non-triviality of the fibre bundle, but it is actually
not the global information. Therefore, we need to find out other quantities that can
be used to fulfill this blind spot of the field strength tensor. So let’s try to think
that what is that? After taking some time, we suddenly realize that no such a thing
that can be used beside the curvature tensor. Thus, the global information must
be constructed from the non-trivial combination between the field strength tensor
itself. The simplest object we can think of is a polynomial. Suppose there is a
polynomial in term of the field strength denoted as P (F ), if such a polynomial is
invariant under the gauge transformation, it is said to be the invariant polynomial.
The properties of the invariant polynomial are stated inside the theorem given by
Chern and Weil

Theorem 16 (Chern-Weil Theorem) For an invariant polynomial P (F )

1. It is closed in the sense of differential form, i.e.

dP (F ) = 0 (B.27)

2. Suppose F and F ′ are two different field strength tensors. P (F ′)−P (F ) is an
exact form.

This theorem demonstrates that the invariant polynomial defines a cohomology class
which is gauge-independent according to the second theorem of the Chern-Weil
theorem. This particular class is known as a characteristic class.

The characteristic class formally used here is the one called the Chern character
defined such that

ch(F ) ≡ Tr exp

(
F

2π

)
=
∑
n=0

1

n!
Tr

(
F

2π

)n
, (B.28)

where Tr is trace over the basis of Lie algebra g associated to the Lie group G con-
ventionally normalized to be Tr(T aT b) = δab

2
. In our spacetime, i.e. 4-dimensional
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spacetime, the series of the Chern character stops at n = 2 since the differential p-
forms of p > 4 is meaningless to be defined. The first term of the series can be also
neglected since it is a merely trivial constant. The remaining interesting terms are
only n = 1 and n = 2. However, for principal fiber bundle with the group structure
G = SU(N), the trace over single F = F aT a vanishes because of the tracelessness of
SU(N) generator T a. Thus, in the SU(2) YM in 4-dimensional spacetime case, the
Chern character boils down into only one left non-trivial term. The full expression
of this particular term is

ch(F ) =
1

8π2
Tr(F ∧ F ). (B.29)

To measure the topological charge, we consider the integration of this characteristic
class over an entire space, i.e. the topological charge can be obtained from

ν ≡
∫
M
ch(F ) =

1

16π2

∫
M
d4x Tr(FμνF̃μν) (B.30)

(here we take M, in this case, to be a 4-dimensional manifold of any kind) where
an extra 1

2
factor coming from (1/2)2 of the definition F ∧ F = (1

2
Fμνdx

μ ∧ dxν)2
multiplies by 2 from the definition εμναβFαβ = 2F̃μν .

One thing must be emphasized is, due to the Chern-Weil theorem, the Chern
character which is a characteristic class is a closed form in its construction. Recalling
also the Poincaré lemma tells us that any closed form defined on a manifold will
be locally exact meaning that we can always write any characteristic class (Chern
character in this case) as a exterior derivative of some lower degree differential form,
K said. Namely,

ch(F ) = dK, (B.31)

whereK is usually called the Chern-Simon form associated with the Chern character.
The explicit expression of this Chern-Simon form is written as follows

K =
1

8π2
Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
=

1

8π2
Tr

(
A ∧ F − 1

3
A ∧ A ∧ A

)
, (B.32)

where the definition F = dA+A∧A has been used. One can check by straightforward
computation that the Chern-Simon current (B.32) truly satisfies (B.31).

dK =
1

8π2
Tr

(
dA2 +

2

3
(dAA2 − AdAA+ A2dA)

)

=
1

8π2
Tr

(
(F − A2)2 +

2

3
((F − A2)A2 − A(F − A2)A+ A2(F − A2)

)
.

(B.33)

To evaluate this, we need to know two important identities. The first one is

Tr(A4) = Tr(εμναβAμAνAαAβ)

= Tr(εμναβAβAμAνAα)

= −Tr(εβμναAβAμAνAα)
= −Tr(A4) = 0.

(B.34)
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To explain what actually happened in (B.34), we firstly use the cyclic permutation
property of trace operation. After that, we perform three times permutations on
the Levi-Civita indices yielding the extra minus sign. Finally, we merely substitute
back the origin of the expression in the third line of (B.34). Logically, anything that
equals to its negative value is nothing but zero. So now we can get rid several term
inside the relation (B.33). The field strength dependence term can be evaluated
easily by using another identity

Tr(AFA) =
1

2
Tr(εμναβAμFναAβ)

= −1

2
Tr(εβμναAβAμFνα) = −Tr(A2F ),

= −1

2
Tr(εναβμFναAβAμ) = −Tr(FA2).

(B.35)

By the help of both identities (B.34) and (B.35). The expression of dK in the right
hand side of (B.33) clearly yields the right side of (B.29). Then, we are done. Let’s
plug in the Chern-Simon current (B.31) into the topological charge (B.30). We
obtain the alternative form of the topological charge as follows

ν =

∫
M
dK =

∫
∂M

K, (B.36)

where the generalized Stoke’s theorem (B.16) has been used in the last step. Re-
markably, the evaluation of the integration of the Chern-Simon current K on the
boundary of the considering manifold must be done carefully in the sense that one
must remind oneself that the evaluation implicitly subjected to the sufficient bound-
ary condition chosen such that the field strength tensor must vanish there to main-
tain the finiteness of the YM energy (note also that even if F = 0, F ∧ F is not
necessary). Thus, the true expression of such a topological charge, sometimes known
as the Chern-Simon number, will be

ν = − 1

24π2

∫
∂M

Tr(A3) = − 1

24π2

∫
∂M

d3x nμεμνρσTr(AνAρAσ), (B.37)

where nμ is a normal vector pointed out from the boundary surface. Nevertheless,
the vanishing of the field strength tensor implies that the corresponding gauge field
must be of the pure gauge form meaning that there exists an element of the gauge
group U ∈ G such that Aμ = U−1∂μU . Therefore, we can write

ν = − 1

24π2

∫
∂M

d3x nμεμνρσTr(U
−1∂νUU

−1∂ρUU
−1∂σU). (B.38)
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