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CHAPTER I

INTRODUCTION

A time series is a sequence of observations indexed by times. Time series data

can be found in many applications, for instance, forecast of daily closing prices in

stock markets, explanation of the weekly speed of wind or daily air temperature

in a specific location, and description of the annual unemployment rate. Among

different types of time series models, one common family widely used in applica-

tions is the family of the autoregressive moving average (ARMA) models. The

ARMA models have been widely applied in many forecasting problems. However,

the models have a mandatory condition of being stationary, the condition such

that mean, variance, and autocovariance do not depend on time. Therefore, in

order to apply such models, an effective tool for the stationary test is important.

The stationary test was first introduced in Dickey and Fuller in 1979 [7]. They

introduced a stationary test for the first order autoregressive model defined as

yt = ρyt−1 + et, t = 1, 2, . . . ,

where {yt}t≥1 is the sequence of observed data, ρ is the autoregressive coefficient,

and {et} is the sequence of Gaussian white noises with zero mean and variance

σ2. The absolute value of the autoregressive coefficient ρ has an effect on the

stationary condition. In particular, a time series {yt} is stationary if |ρ| < 1,

and nonstationary if |ρ| ≥ 1. Dickey and Fuller were interested in an estimator

of ρ and the test with the null hypothesis that the model is nonstationary, or

|ρ| = 1. For n observations of yt, they used the maximum likelihood method

for the estimator of ρ, denoted by ρ̂. Rubin [19] showed that ρ̂ is a consistent



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

estimator of ρ. For |ρ| < 1, Mann and Wald [16] and Anderson [1] obtained

the asymptotic distribution of
√
n(ρ̂ − ρ), which is the normal distribution with

zero mean and variance 1 − ρ2. White [25, 26] showed that when |ρ| > 1, the

asymptotic distribution of |ρ|n(ρ2 − 1)−1(ρ̂ − ρ) is the Cauchy distribution. In

addition, the asymptotic distribution of ρ̂ and the corresponding test statistic of

the stationary test when |ρ| = 1 is obtained by Dickey and Fuller [7]. Their results

can be extended to higher orders of ARMA models. For example, Dickey et al. [6]

extended the unit root test to autoregressive models of unknown order. Said and

Dickey [21] developed a unit root test on ARMA models of unknown order and

ARIMA models with order (p, 1, q).

However, many stationary tests are applied to observed data regardless of sam-

pling errors. When the studied data have sampling errors, such as the data ob-

tained by survey sampling, the results are possibly different form the results ob-

tained from the data with no sampling errors. The effects of measurement errors

could cause bias results in many works of literature. For example, in the linear

regression model, Lahiri and Suntornchost [12] showed that sampling errors could

cause bias in variable selection methods. Marhuenda et al. [15] studied a residual

likelihood ratio test for the variance component in Fay–Herriot model, the model is

composed of a sampling model and a linking model. Angkunsit and Suntornchost

[2] suggested ways to adjust variable selection statistics to reduce the biases of pa-

rameter estimates in the multivariate linear regression models subject to sampling

errors.

In this thesis, we extend the concept of including sampling errors into parameter

estimation and stationary test for the first order autoregressive models. We study

the situation where the population means are not observed but are estimated by

their sample means. We are interested in the estimator of autoregressive coefficients

and the stationary test for the first order autoregressive models subject to sampling

errors.

In our study, we first investigate the affect of sampling errors to the existing

methods, called naive methods. We then propose some adjustments to reduce



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

biases of the naive methods. Our study is divided into two main parts which are

(1) the study of the autoregressive coefficient and (2) the study of the stationary

test.

The organization of this thesis is as follows. In chapter 2, we give basic knowl-

edge in probability, statistics, and time series analysis used in our study. In chapter

3, we introduce time series models subject to sampling errors. Moreover, we obtain

a parameter estimate of the autoregressive coefficient, a test statistic for the sta-

tionary test, asymptotic properties, and simulations. Finally, we give conclusions

of this thesis in Chapter 4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we give definitions and theorems related to matrix algebra, cal-

culus, some properties of probability and statistics, and time series models which

will be used in this thesis.

2.1 Basic Knowledge in Matrix Algebra and Calculus

In this section, we introduce some notations of matrix algebra, which will be used in

Chapter 3. For example, the transpose and the inverse of matrices. Furthermore,

we discuss concepts of Taylor’s formula for a function f from Rn into R.

2.1.1 Matrix Algebra

Definition 2.1. An m × n matrix A over a field F is a rectangular array of mn

elements aij, in F, arranged in m rows and n columns as follows:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
... ... ... . . . ...

am1 am2 am3 . . . amn

 . (2.1)

Definition 2.2. The matrix obtained from a matrix A by interchanging the rows

and columns of A is called the transpose of A and denoted by A′.

Definition 2.3. Let A be an n × n matrix. A is invertible if and only if there

exists a matrix B such that

AB = In = BA,
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where In is n× n identity matrix. The matrix B is called the inverse of A and is

denoted by A−1.

Definition 2.4. The determinant of an n×n matrix A, denoted by |A| or det(A),

is a scalar function of A defined as the sum of all n! possible products of n elements

such that

1. each product contains one element from every row and every column of A,

2. the factors in each product are the written so that the column subscripts

appear in order of magnitude and each product is then preceded by a plus

or minus sign according to whether the number of inversions in the row

subscripts is even or odd.

Theorem 2.5. Let A and B be invertable n× n matrices. Then

1. (A−1)−1 = A.

2. (A′)−1 = (A−1)′.

3. (AB)−1 = B−1A−1.

2.1.2 Taylor’s Formula in Several Variables

Definition 2.6. [22] Let a1, a2, . . . , am, b1, b2, . . . , bm ∈ R. The set (a1, b1) ×

(a2, b2)× . . .× (am, bm) ⊂ Rm is called an open rectangle of Rm.

Definition 2.7. [22] A set U ⊂ Rm is called open if for each x ∈ U there is an

open rectangle A such that x ∈ A ⊂ U .

Definition 2.8. [22] A subset C of Rm is closed if Rm − C is open.

Definition 2.9. [22] Let A ⊂ Rn. A function f : A → Rm is called continuous at

a ∈ A if lim
x→a

f(x) = f(a), and f is simply called continuous if it is continuous at

each a ∈ A.

Theorem 2.10. [22] If A ⊂ Rn, a function f : A → Rm is continuous if and only if

every open set U ⊂ Rm, there is an open subset V of Rn such that f−1(U) = V ∩A.
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Definition 2.11. [22] A function f : Rn → Rm is differentiable at a ∈ Rn if there

is a linear transformation λ : Rn → Rm such that

lim
h→0

∥f(a + h)− f(a)− λ(h)∥
∥h∥ = 0. (2.2)

The linear transformation λ is denoted Df(a) and called the derivative of f at a.

Theorem 2.12. [22] If f : Rn → Rm is differentiable at a ∈ Rn, there is a unique

linear transformation λ : Rn → Rm such that

lim
h→0

∥f(a + h)− f(a)− λ(h)∥
∥h∥ = 0. (2.3)

Definition 2.13. Let f : Rn → R be a function and a = (a1, a2, . . . , an) ∈ Rn.

We say that f has the ith partial derivative at a if the limit

lim
h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)

h
(2.4)

exists and is finite. The value is denoted by Dif(a). The ith partial derivative of

f is denoted by Dif or ∂if .

Definition 2.14. [10] A function f is said to be of class Ck on an open set U if all

of its partial derivatives of orders less than or equal to k exist and are continuous

on U .

If the partial derivatives of f of all orders exist and are continuous on U , f is

said to be of class C∞ on U .

Definition 2.15. [10] A multi-index is an n-tuple of nonnegative integers. Multi-

indices are generally denoted by the Greek letters α or β:

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) (αj, βj ∈ {0, 1, 2, . . .}).

If α is a multi-index, we define

(1) |α| = α1 + α2 + · · ·+ αn,
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(2) α! = α1!α2! · · ·αn!,

(3) xα = xα1
1 xα2

2 · · ·xαn
n , where x = (x1, x2, . . . , xn) ∈ Rn,

(4) ∂αf = ∂α1
1 ∂α2

2 · · · ∂αn
n f .

Theorem 2.16 (Taylor’s Theorem in Several Variables). [10] Suppose f : Rn → R

is of class Ck on an open convex set S. If a ∈ S and a + h ∈ S, then

f(h + a) =
∑
|α|≤k

∂αf(a)
α!

hα +Ra,k(h), (2.5)

where

Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0

(1− t)k∂αf(a + th)dt. (2.6)

Corollary 2.17. [10] If f is of class Ck on S, then Ra,k(h)
|h|k → 0 as h → 0. If f is

of class Ck+1 on S and |∂αf(x)| ≤ M for x ∈ S and |α| = k + 1, then

|Ra,k(h)| ≤
M

(k + 1)!
∥h∥k+1

1 , (2.7)

where ∥h∥1 =
∑n

i=1 |hi|.

Lemma 2.18. [10] Let P (h) be a polynomial of degree less than or equal to k. If

lim
h→0

P (h)
|h|k = 0, then P ≡ 0.

Theorem 2.19. [10] Suppose f is of class Ck near a. If f(a+h) = Q(h)+E(h),

where Q is a polynomial with deg(Q) ≤ k and lim
h→0

E(h)
|h|k = 0, then Q is the Taylor

polynomial Pa,k(h) =
∑

|α|≤k

∂αf(a)
α!

hα.

Definition 2.20. Let f : Rn → R be a Ck map an open convex set S and a ∈ Rn.

Let α = (α1, . . . , αn) be a multi-index. If k ≥ 1 or ∞, the first order Taylor

approximation of f around a ∈ S is

f(x) ≈
∑
|α|≤1

∂αf(a)
α!

(x − a)α = f(a) +
n∑

i=1

∂if(a)(xi − ai). (2.8)
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If k ≥ 2 or ∞, the second order Taylor approximation of f around a ∈ S is

f(x) ≈
∑
|α|≤2

∂αf(a)
α!

(x − a)α

= f(a) +
n∑

i=1

∂if(a)(xi − ai) +
1

2

n∑
i=1

∂2
i f(a)(xi − ai)

2

+
∑

1≤i<j≤n

∂ijf(a)(xi − ai)(xj − aj). (2.9)

2.2 Basic Knowledge in Probability Theory

In this section, we review some probability concepts used in our study. For ex-

ample, important inequalities and convergence concepts of random variables. Fur-

thermore, we provide expectation approximations of random variables by using

the Taylor series.

2.2.1 Distribution and Moments

Definition 2.21. [3] The probability mass function (pmf) of a discrete random

variable X is given by

fX(x) = P (X = x)

for all x.

Definition 2.22. [3] The probability density function (pdf) of a continuous ran-

dom variable X is the function fX(·) that satisfies

P (X ≤ x) =

∫ x

−∞
fX(t)dt,

for all x.
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Definition 2.23. [3] The expected value or mean of a random variable g(X),

denoted by E (g(X)), is

E (g(X)) =


∫∞
−∞ g(x)fX(x)dx, if X is continuous,∑∞
−∞ g(x)fX(x), if X is discrete,

provided that the integral or the sum exists.

Definition 2.24. [3] For each integer n, the nth moment of a random variable X

is E(Xn), and the nth central moment of a random variable X is E(X − E(X))n.

Definition 2.25. [3] The variance of a random variable X is its second order

central moment, Var(X) = E(X − E(X))2. The positive square root of Var(X) is

the standard deviation of X.

Definition 2.26. [3] The covariance of random variables X and Y is defined by

Cov(X,Y ) = E ((X − E(X)) (Y − E(Y ))).

Theorem 2.27. [3] If X and Y are any two random variables and a and b are

any two constants, then E(aX + bY ) = aE(X) + bE(Y ).

Theorem 2.28. [3] If X and Y are any two random variables and a and b are

any two constants, then

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y ).

Theorem 2.29. [3] For any random variables X and Y , Cov(X,Y ) = E(XY )−

E(X)E(Y ).

2.2.2 Conditional Distributions

Definition 2.30. [3] Let (X,Y ) be a discrete bivariate random vector. Then the

function f(·, ·) from R2 into R defined by f(x, y) = P (X = x, Y = y) is called the

joint probability mass function of X and Y .
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Definition 2.31. [3] Let (X,Y ) be a continuous bivariate random vector. A

function f from R2 into R is called a joint probability density function of (X,Y )

if, for any A ⊂ R2,

P ((X,Y ) ∈ A) =

∫∫
A

f(x, y) dx dy.

Definition 2.32. [3] Let X and Y be discrete random variables. For any x such

that P (X = x) > 0, the conditional probability mass function of Y given that

X = x, denoted as fY |X, is the function of y defined as

fY |X(y|x) = P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
.

Definition 2.33. [3] Let X and Y be continuous random variables. For any x

such that fX(x) > 0, the conditional probability density function of Y given that

X = x, denoted as fY |X, is the function of y defined as

fY |X(y|x) =
f(x, y)

fY (y)
.

Theorem 2.34. [3] If X and Y are any two random variables, then

E(X) = E (E (X|Y )) ,

provided that the expectations exist.

Theorem 2.35 (Conditional variance identity). [3] If X and Y are any two random

variables, then

Var(X) = E (Var (X|Y )) + Var (E (X|Y )) ,

provided that the expectations exist.
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2.2.3 Independence and Identical Distribution

Definition 2.36. [17] A pair {X,Y } of random variables is (stochastically) in-

dependent if and only if for each pair of sets {M,N}, the following product rule

holds

P (X ∈ M,Y ∈ N) = P (X ∈ M)P (Y ∈ N).

Definition 2.37. [17] A class {Xt | t ∈ T} of random variables is said to be iid,

an acronym for “independent and identically distributed”, if and only if the class

is independent and all members have the same distribution.

Theorem 2.38. [3] If X and Y are independent random variables, then Cov(X,Y ) =

0.

Theorem 2.39. [3] A pair {X,Y } of random variables is uncorrelated if and only

if Cov(X,Y ) = 0.

2.2.4 Convergence in Probability

Let {Xn} and {Yn} be sequences of random variables for n ≥ 1, and let X, Y be

random variables.

Definition 2.40. [18] The sequence of random variables {Xn} converges in prob-

ability to X, written as Xn
p−→ X, if for any ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

Theorem 2.41. [18] Let g : R → R be a continuous function. If Xn
p−→ X, then

g (Xn)
p−→ g (X).

Theorem 2.42. [18] Suppose that Xn
p−→ X and Yn

p−→ Y . Then

1. Xn + Yn
p−→ X + Y .

2. XnYn
p−→ XY .
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Theorem 2.43. [11] Suppose that |Xn − Yn| converges in probability to zero. If

there exists a random variable X such that Xn
p−→ X, then Yn

p−→ X.

Definition 2.44. [18] The sequence of random variables {Xn} converges in Lp to

X, written as Xn
Lp−→ X, if

lim
n→∞

E (|Xn −X|p) = 0.

Theorem 2.45. [18] For p > 0, if Xn
Lp−→ X, then Xn

p−→ X.

Theorem 2.46. [18] For p > 0, if Xn
Lp−→ X, then E (|Xn|p) −→ E (|X|p).

Theorem 2.47. Let {Xn} be a sequence of random variables with E (Xn) = µ

and Var (Xn) ≤ C < ∞ for some C. If {Xn} are pairwise uncorrelated random

variables, then

(1) E

(∣∣∣∣ 1n n∑
t=1

Xt − µ

∣∣∣∣2
)

−→ 0,

(2) 1

n

n∑
t=1

Xt
p−→ µ.

Theorem 2.48. [11] Let {Xn} be a sequence of random variables. If µ is a constant

such that E(Xn) → µ and Var(Xn) → 0, then Xn
p−→ µ.

Theorem 2.49. [23] Ler Xn be a sequence of independent random variables with

finite second moments. If
∞∑
n=1

Var(Xn) < ∞, (2.10)

then
∞∑
n=1

(Xn − E(Xn)) converges almost surely.

Definition 2.50. [3] The sequence of random variables {Xn} converges in distri-

bution to X, written as Xn
d−→ X, if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x) ,

for every point x and FX(x) = P (X ≤ x) is continuous.
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Theorem 2.51. [11] If Xn
p−→ X, then Xn

d−→ X.

Theorem 2.52. [11] Let a be a constant. If Xn
d−→ a, then Xn

p−→ a.

Theorem 2.53. [11] Let {Xn} and {Yn} be sequences of random variables such

that Xn − Yn converges in probability to zero. If there exists a random variable X

such that Xn
d−→ X, then Yn

d−→ X.

Theorem 2.54. Let Xn, Yn, and Zn be sequences of positive random variables for

n = 1, 2, . . . . Suppose that Yn and Zn both converge in probability to a random

variable X. If Yn ≤ Xn ≤ Zn, then Xn converges in probability to the random

variable X.

Theorem 2.55 (Slutsky’s Theorem,[3]). Let {Xn} and {Yn} be sequences of ran-

dom variables. If Xn converges in distribution to a random variable X and Yn

converges in probability to a constant a, then

(1) YnXn
d−→ aX, and

(2) Xn + Yn
d−→ X + a.

2.2.5 Order in Probability

Definition 2.56. [11] Let {an} be a sequence of real numbers and {gn} be a

sequence of positive real numbers. Then, we say an is of smaller order than gn and

write an = o(gn) if lim
n→∞

g−1
n an = 0.

Definition 2.57. [11] Let {an} be a sequence of real numbers and {gn} be a

sequence of positive real numbers. Then, we say thaty an is at most of order

gn and write an = O(gn) if there exist a real numbers M and N ∈ N such that

g−1
n |an| ≤ M for all n ≥ N .
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Lemma 2.58. [11] Let {an} and {bn} be sequences of real numbers, and let {fn}

and {gn} be sequences of positive real numbers.

(1) If an = o(fn) and bn = o(gn), then

anbn = o(fngn),

|an|s = o(f s
n) for s > 0,

an + bn = o(max{fn, gn}).

(2) If an = O(fn) and bn = O(gn), then

anbn = O(fngn),

|an|s = O(f s
n) for s ≥ 0,

an + bn = O(max{fn, gn}).

(3) If an = o(fn) and bn = O(gn), then anbn = o(fngn).

Definition 2.59. [11] Let {Xn} be a sequence of random variables and {gn} be

a sequence of positive real numbers. Then, we say that Xn is of smaller order in

probability than gn and write Xn = op(gn) if g−1
n Xn converges in probability to

zero.

Definition 2.60. [11] Let {Xn} be a sequence of random variables and {gn} be

a sequence of positive real numbers. Then, we say that Xn is at most of order in

probability gn and write Xn = Op(gn) if, for every ε > 0, there exists a positive

real number M such that P (|g−1
n Xn| ≥ M) < ε for all n.

If Xn = Op(gn), we sometimes say that Xn is bounded in probability by gn.
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Lemma 2.61. [11] Let {Xn} and {Yn} be sequences of random variables, and let

{fn} and {gn} be sequences of positive real numbers.

(1) If Xn = op(fn) and Yn = op(gn), then

XnYn = op(fngn),

|Xn|s = op(f
s
n) for s > 0,

Xn + Yn = op(max{fn, gn}).

(2) If Xn = Op(fn) and Yn = Op(gn), then

XnYn = Op(fngn),

|Xn|s = Op(f
s
n) for s ≥ 0,

Xn + Yn = Op(max{fn, gn}).

(3) If Xn = op(fn) and Yn = Op(gn), then XnYn = op(fngn).

Corollary 2.62. [11] Let {Xn} be a sequence of random variables and {an} be a

sequence of positive real numbers. If E (X2
n) = O(a2n), then Xn = Op(an).

Corollary 2.63. [11] Let {Xn} be a sequence of random variables and {an} be a

sequence of positive real numbers. If Var (Xn) = O(a2n) and E (Xn) = O(an), then

Xn = Op(an).

Corollary 2.64. [11] Let {Xn} be a sequence of scalar random variables such that

Xn = a+Op(rn),

where rn → 0 as n → ∞. If g is a function with s continuous derivatives at x = a,

then

g(Xn) = g(a) + g(1)(a)(Xn − a) + · · ·+ g(s)(a)(Xn − a)s +Op(r
s
n),

where g(j)(a) is the jth derivative of g(x) evaluated at x = a.
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2.2.6 Inequalities

Theorem 2.65. [18] Let X and Y be random variables. If E(X) and E(Y ) both

exist and X ≤ Y , then E(X) ≤ E(Y ).

Theorem 2.66 (Modulus Inequality, [18]). For any random variable X, if E (|X|) <

∞, then |E(X)| ≤ E (|X|).

Theorem 2.67 (Markov’s Inequality, [18]). For any random variable X and λ > 0,

if E (|X|) < ∞, then

P (|X| ≥ λ) ≤ E (|X|)
λ

.

Theorem 2.68 (Chebychev’s Inequality, [18]). For any random variable X and

ε > 0, if E (|X|) < ∞ and Var(X) ≤ ∞, then

P (|X − E(X)| ≥ ε) ≤ Var(X)

ε
.

Theorem 2.69 (Chebychev’s Inequality, [11]). Let r > 0, and let X be a random

variable such that E (|X|r) < ∞. Then, for any ε > 0 and finite A,

P (|X − A| ≥ ε) ≤ E (|X − A|r)
εr

.

Theorem 2.70 (Cauchy-Schwarz Inequality, [3]). For any two random variables

X and Y , if E (X2) < ∞ and E (Y 2) < ∞, then

|E(XY )| ≤ E (|XY |) ≤
√

E (X2)E (Y 2).

Corollary 2.71. [3] For any two random variables X and Y , if E (X2) < ∞ and

E (Y 2) < ∞, then

|Cov (X,Y )| ≤
√

Var (X)Var (Y ).
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Theorem 2.72 (Hölder’s Inequality, [3]). Let X and Y be any two random vari-

ables, and let p and q be any positive numbers satisfying p > 1, q > 1, and 1
p
+ 1

q
= 1.

If E (|X|p) < ∞ and E (|Y |q) < ∞, then

|E(XY )| ≤ E (|XY |) ≤ E
1
p (|X|p)E

1
q (|Y |q) .

Theorem 2.73 (Minkowski’s Inequality, [3]). Let X and Y be any two random

variables. If E (|X|p) < ∞ and E (|Y |p) < ∞ for 1 ≤ p < ∞, then

E
1
p (|X + Y |p) ≤ E

1
p (|X|p) + E

1
p (|Y |p) .

Corollary 2.74. Let X and Y be any two random variables. If E (X2) < ∞ and

E (Y 2) < ∞, then

Var(X + Y ) ≤
(√

Var(X) +
√

Var(Y )
)2

≤ 2Var(X) + 2Var(Y ).

Proof. From Minkowski’s inequality with p = 2, we have

√
Var(X + Y ) =

√
E (X + Y − E(X + Y ))2

=

√
E ((X − E(X)) + (Y − E(Y )))2

≤
√

E (X − E(X))2 +

√
E (Y − E(Y ))2

=
√

Var(X) +
√

Var(Y ).

Hence, Var(X + Y ) ≤
(√

Var(X) +
√

Var(Y )
)2

.

By using the fact that (a+b)2 ≤ 2a2+2b2, we have
(√

Var(X) +
√

Var(Y )
)2

≤

2Var(X) + 2Var(Y ).

Theorem 2.75 (Jensen’s Inequality, [3]). For any random variable X, if g(·) is a

convex function, then

g (E(X)) ≤ E (g(X)) .

If g(·) is concave, the inequality reverses.
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2.2.7 Expectation Approximations of Random Variables

In many situations, we have to work with functions of random variables where the

closed-forms of expectation and variance are difficult to obtain. In the situation

where we are interested in obtaining the variance of the estimate of p
1−p

, where

p is the success probability of the Bernoulli experiment. The odds p
1−p

can be

estimated by p̂
1−p̂

, where p̂ is the estimator of the success probability p. To consider

the properties of this estimator p̂
1−p̂

, the variance of the estimator is necessary.

However, the closed-form of its variance is impossible to obtain.

One method for approximation of the mean and the variance of a function of

a random variable is to use the Taylor series. This approximation method allows

us to approximate the mean and the variance of random variables.

Let X = (X1, X2, . . . , Xn) be a vector of random variables with mean µ =

(µ1, µ2, . . . , µn). Let f : Rn → R be a differentiable function. From (2.8), the

first-order Taylor series expansion of f(X) about µ is

f(X) = (µ) +
n∑

i=1

fi(µ)(Xi − µi) +R, (2.11)

where fi =
∂f

∂xi

and R is the remainder of order smaller than the term in the

equation. For approximating the mean and the variance of f(X), we ignore the

remainder R and write

f(X) ≈ f(µ) +
n∑

i=1

fi(µ)(Xi − µi). (2.12)

We apply the expectation to all terms in (2.12) to obtain

E (f(X)) ≈ f(µ). (2.13)
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In the same way by applying the variance function to all terms in (2.12), the

approximation of the variance of f(X) is

Var (f(X)) ≈
n∑

i=1

f 2
i (µ)Var(Xi) + 2

∑
1≤i<j≤n

fi(µ)fj(µ)Cov(Xi, Xj). (2.14)

The approximation (2.12) can be extended to the higher order to reduce approxi-

mation errors, such as the second-order Taylor series approximation. From (2.9),

the second-order Taylor series approximation of f(X) about µ is

f(X) ≈ f(µ) +
n∑

i=1

fi(µ)(Xi − µi) +
1

2

n∑
i=1

f 2
ii(µ)(Xi − µi)

2

+
∑

1≤i<j≤n

f 2
ij(µ)(Xi − µi)(Xj − µj), (2.15)

where fi =
∂f

∂xi

.

Applying the expectation to the terms in (2.15), the approximation of the

expectation of f(X) is

E (f(X)) ≈ f(µ) +
1

2

n∑
i=1

f 2
ii(µ)Var(Xi) +

∑
1≤i<j≤n

f 2
ij(µ)Cov (Xi, Xj) . (2.16)

2.3 Basic Knowledge in Statistics

In this section, we introduce some concepts in statistics used in this thesis such as

the parameter estimation and the hypothesis testing.

2.3.1 Parameter Estimation

Definition 2.76. [3] A point estimator is any function W(X1, X2, . . . , Xn) of

samples X1, X2, . . . , Xn.

Definition 2.77. [3] Let f(x|θ) denote the joint pdf or pmf of the sample X =

(X1, X2, . . . , Xn) and θ denote the parameter. Then, given that X = x is observed,
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the function of θ defined by

L(θ|x) = f(x|θ)

is called the likelihood function of θ.

Definition 2.78. [3] For each sample point x, let θ̂(x) be a parameter value

at which L(θ|x) attains its maximum as a function of θ, with x held fixed. A

maximum likelihood estimator (MLE) of the parameter θ based on a sample X is

θ̂(X).

Definition 2.79. [3] The mean squared error (MSE) of an estimator W of a

parameter θ is the function of θ defined by Eθ (W − θ)2.

Definition 2.80. [3] The bias of a point estimator W of a parameter θ is is the

difference between the expected value of W and θ; that is, Biasθ(W) = Eθ(W)−θ.

Definition 2.81. [3] An estimator W whose bias is identically equal to 0 is called

unbiased and satisfies Biasθ(W) = 0 for all θ.

Definition 2.82. [3] A sequence of estimators Wn = Wn(X1, X2, . . . , Xn) is a

consistent sequence of estimators of the parameter θ if Wn converges to θ in

probability.

2.3.2 Hypothesis Testing

Definition 2.83. [3] A hypothesis is a statement about a population parameter.

Definition 2.84. [3] The two complementary hypotheses in a hypothesis testing

problem are called the null hypothesis and the alternative hypothesis. They are

denoted by H0 and H1, respectively.

Definition 2.85. [3] A hypothesis testing procedure or hypothesis test is a rule

that specifies:

1. For which sample value the decision is made to accept H0 as true.
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2. For which sample value H0 is rejected and H1 is accepted as true.

The subset of the sample space for which H0 will be rejected is called the rejection

region or the critical region. The complement of the rejection region is called the

acceptance region.

Definition 2.86 (Likelihood Ratio Tests,[3]). The likelihood ratio test statistic

for testing H0 : θ ∈ Θ0 versus H1 : θ ̸∈ Θ0 is

λ(x) =
sup
θ∈Θ0

L(θ |x)

sup
θ∈Θ

L(θ |x) .

A likelihood ratio test (LRT) is any test that has a rejection region of the form

{x |λ(x) ≤ c}, where c is any number satisfying 0 ≤ c ≤ 1.

2.4 Time Series and Stationarity

In this section, we introduce some concepts in time series and their properties

used in this thesis such as stationarity. Furthermore, we discuss some time series

models, such as an autoregressive model and a moving average model.

Definition 2.87. [11] Let T be an index set. A real valued time series, or stochastic

process, is a real valued random variable Xt, where t belongs to a time index set

T .

Definition 2.88. [11] A time series {Xt}t∈T is called strictly stationary if for any

n, h > 0 and any sets of indices t1, t2, . . . , tn and t1 + h, t2 + h, . . . , tn + h in the

index set T ,

P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn)

= P (Xt1+h ≤ x1, Xt2+h ≤ x2, . . . , Xtn+h ≤ xn),
(2.17)

where (x1, x2, . . . , xn) is in the range of the random variable Xt.
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Definition 2.89. [24] For a given real valued time series {Xt}t∈T ,

1. the mean function of the process defined by

µt = E(Xt),

2. the variance function of the process defined by

σ2
t = Var(Xt),

3. the covariance function between Xt1 and Xt2 the process defined by

γ(t1, t2) = Cov(Xt1 , Xt2),

4. the correlation function between Xt1 and Xt2 the process defined by

ρ(t1, t2) =
γ(t1, t2)√
σ2
t1

√
σ2
t2

.

Definition 2.90. [11] A time series {Xt} is weakly stationary if

1. E[Xt] is a constant for all t, and

2. For each h, γ(t, t+ h) is independent of t.

Definition 2.91. [24] A process {et} is called a white noise process if it is a

sequence of uncorrelated random variables from a fixed distribution with constant

mean E(et) = µe, usually assumed to be 0, constant variance Var(et) = σ2
e , and

γk = Cov(et, et+k) = 0 for all k ̸= 0.

Definition 2.92. The sequence {Xt} defined by

Xt =

q∑
j=0

βjet−j,
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where β0, βq ̸= 0 and {et}t≥1 are uncorrelated (0, σ2) random variables, is called a

moving average model of order q, denoted by MA(q).

Definition 2.93. The sequence {Xt} defined by

p∑
i=0

αiXt−i = et,

where α0, αq ̸= 0 and {et}t≥1 are uncorrelated (0, σ2) random variables, is called

an autoregressive model of order p, denoted by AR(p). A sequence {et}t≥1 is

sometimes called white noise process.

Definition 2.94. The sequence {Xt} defined by

Xt + a1Xt−1 + · · ·+ apXt−p = et + b1et−1 + · · ·+ bqet−q,

where ap, bq ̸= 0 and {et}t≥1 are uncorrelated (0, σ2) random variables, is called an

autoregressive moving average model of orders (p, q), denoted by ARMA(p, q).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

FIRST ORDER AUTOREGRESSIVE MODEL SUBJECT

TO SAMPLING ERRORS

In this chapter, we propose a new parameter estimation and a stationary test

for the first order autoregressive model subject to sampling errors, called AR(1)

model subject to sampling errors. The organization of this chapter is as follows.

In Section 3.1, we give introduction of the stationary test of the AR(1) model and

introduce the AR(1) model subject to sampling errors. In Section 3.2, we study the

parameter estimation of the autoregressive coefficient of the AR(1) model subject

to sampling errors. The stationary test for the AR(1) model subject to sampling

errors is provided in Section 3.3. The positive adjustments to the estimators are

discussed in Section 3.4. The simulation study is discussed in Section 3.5. The

structure of this chapter is as follows.

Figure 3.1: The structure of Chapter 3: First order autoregressive model subject
to sampling errors.
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3.1 The First Order Autoregressive Model

In this section, we first introduce some Dickey and Fuller results ([5, 7]) for the

stationary test and the asymptotic distribution of the test statistic for the first

order autoregressive model in Section 3.1.1. In Section 3.1.2, we consider the first

order autoregressive model subject to sampling errors and introduce the concept

of stationary for the model with sampling errors.

3.1.1 Introduction to Stationary Test in AR(1)

We will consider the first order autoregressive process

θt = ρθt−1 + ηt, t = 1, . . . , T, (3.1)

where {θt}t≥1 is the sequence of the variable of interest with θ0 = 0 and {ηt}t≥1

is a sequence of independent and identically distributed (iid) N(0, σ2) distributed

random variables. Notice from (3.1) that the AR(1) model can be written to linear

combination of ηt as θt =
t∑

i=1

ρt−iηi.

If the model (3.1) is stationary, the mean and variance of θt are constants µ and

γ. Then, by substituting constant variance function on the model, we know that

the AR(1) model is stationary if and only if the absolute value of autoregressive

coefficient ρ is less than 1. When |ρ| = 1, the time series θt is not stationary

and the variance of θt depends on t, which is tσ2. If |ρ| > 1, then variance of θt
increases as t increases without bound as sufficiently large t, this process is called

explosive.

Dickey and Fuller were interested in the estimator of the autoregressive coeffi-

cient ρ and the stationary test. The stationary test is to test the null hypothesis

that |ρ| = 1 or nonstationary against the alternative hypothesis |ρ| ̸= 1 or station-

ary. Dickey-Fuller stationary test is to perform the likelihood ratio test defined
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as

λ(θ) =

sup
ρ=1

L(ρ, σ2 |θ)

sup
ρ∈Θ

L(ρ, σ2 |θ)
, (3.2)

where Θ is the parameter space and L(ρ, σ2 |θ) is the likelihood function of pa-

rameter ρ, and σ2 given observations θ = (θ1, θ2, . . . , θT )
′, with the rejection region

{θ |λ(θ) ≤ c}, where 0 ≤ c ≤ 1. To evaluate the test statistic λ(θ), it is suffi-

cient to compute the maximum likelihood estimators of ρ and σ2. Notices that

the computation of the estimators is greatly simplified if θ1 is fixed and consider

conditional likelihood. It is reasonable in some situations when we know the initial

value at time 1 with θ1. Hence, the conditional log-likelihood with θ1 as fixed is

logL(ρ, σ2 |θ) = −(
T − 1

2
) log 2π − (

T − 1

2
) logσ2 − 1

2σ2

T∑
t=2

(θt − ρθt−1)
2. (3.3)

By setting the partial derivatives of logL(ρ, σ2 |θ) with respect ρ and σ2 equal to

zero:

0 =
∂l

∂ρ
=

1

σ2

T∑
t=1

(θt−1)(θt − ρθt−1),

and 0 =
∂l

∂σ2
= −T − 1

2σ2
+

1

2σ4

T∑
t=2

(θt − ρθt−1)
2,

the maximum likelihood estimators of ρ and σ2 are

ρ̂ML =

T∑
t=2

θtθt−1

T∑
t=2

θ2t−1

, (3.4)

and

σ̂2
ML =

1

T − 1

T∑
t=2

(θt − ρ̂MLθt−1)
2, (3.5)

respectively. By substituting the estimators into (3.2), the likelihood ratio test
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rejects the null hypothesis when likelihood ratio test statistic

λ(θ) =


T∑
t=2

(θt − θt−1)
2

T∑
t=2

(θt − ρ̂MLθt−1)2


−
T − 1

2

(3.6)

is less than or equal to a constant c when c ∈ [0, 1]. The constant c is determined

by the distribution of the statistic λ(θ). Notice that

T∑
t=2

(θt − θt−1)
2 =

T∑
t=2

(θt − ρ̂MLθt−1)
2 + (1− ρ̂ML)

2

T∑
t=2

θ2t−1.

Therefore, the likelihood ratio test rejects null hypothesis, ρ = 1, when

|τ | =

∣∣∣∣∣∣∣∣∣∣
(ρ̂ML − 1)

√
T∑
t=2

θ2t−1√
1

T−2

T∑
t=2

(θt − ρ̂MLθt−1)2

∣∣∣∣∣∣∣∣∣∣
≥
√

(a− 1)(T − 2), (3.7)

where a = c−
2

T−1 is a constant greater than 1.

Dickey and Fuller considered the asymptotic distribution of the test statistic τ

and the estimate of autoregressive coefficient ρ̂ML. Mann and Wald [16] showed that

ρ̂ML is a consistent estimator of ρ for |ρ| < 1. Rubin [19] showed that under certain

regularity conditions ρ̂ML is a consistent estimator of ρ for |ρ| ≥ 1. Moreover,

Dickey [5] showed that the estimator of σ2 is a consistent estimator of σ2 for

each ρ. The asymptotic distribution of ρ̂ML obtained in White [25, 26] for the

case |ρ| > 1, and Anderson [1] for case |ρ| < 1, and Dickey [5] for case |ρ| = 1,

respectively. The following theorems show some results of asymptotic distributions

for the case |ρ| ≤ 1, obtained in [1] and [5].

Theorem 3.1 ([1]). Assume the model (3.1) and |ρ| < 1. Define ρ̂ML − ρ =
AT

BT

,

where AT =
T∑
t=2

θtθt−1 − ρ
T∑
t=2

θ2t−1 and Bn =
T∑
t=2

θ2t−1. Then,
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(1) AT√
T

d−→ N

(
0,

σ4

1− ρ2

)
,

(2) BT

T

p−→ σ2

1− ρ2
,

(3)
√
T (ρ̂ML − ρ)

d−→ N(0, 1− ρ2).

Theorem 3.2 ([5]). Assume the model (3.1) and ρ = 1. Define ρ̂ML − ρ =
AT

BT

,

where AT =
T∑
t=2

θtθt−1 −
T∑
t=2

θ2t−1 and BT =
T∑
t=2

θ2t−1. Let γi = (−1)i+1 2

(2i− 1)π
.

Then,

(1) AT

T

p−→ 1

2

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2

2
, where Z ′

i
iid∼ N(0, σ2),

(2) BT

T 2

p−→
∞∑
i=1

γ2
i Z

′2
i , where Z ′

i
iid∼ N(0, σ2),

(3) ρ̂ML − 1 = Op(T
−1) and T (ρ̂ML − 1)

d−→

(
∞∑
i=1

√
2γiZi

)2

− 1

2
∞∑
i=1

γ2
i Z

2
i

,

where Zi
iid∼ N(0, 1),

(4) τ
d−→

(
∞∑
i=1

√
2γiZi

)2

− 1

2

√ ∞∑
i=1

γ2
i Z

2
i

, where Zi
iid∼ N(0, 1).

From Theorem 3.2, the terms of
∞∑
i=1

√
2γiZi and

∞∑
i=1

γ2
i Z

2
i are both infinite sums of

random variables. However, Dickey [5] showed that all of infinite sums in Theorem

3.2 are well-defined.

3.1.2 AR(1) with Sampling Errors

In this section, we introduce the first order autoregressive models subject to sam-

pling errors. In particular, we consider the autoregressive of order 1, defined as

θt = ρθt−1 + ηt, (3.8)
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subject to the sampling model

yt = θt + et, (3.9)

where {yt}t≥1 are observations with y0 = 0, {θt}t≥1 are studied variables, {et}t≥1

is a sequence of independent N(0, D2
t ) distributed random variables, and {ηt}t≥1 is

a sequence of iid N(0, σ2) distributed random variables. The model (3.8) is called

the linking model. We assume that the variables {θt} are unobserved directly,

but we can observe their direct estimators {yt}, under the model (3.9). This

situation can be found in small area estimation where the true population means

are not observed. The true variables are estimated by the corresponding sample

mean obtained from a sample. In general, the variance of sampling errors can

be estimated by many methods, such as empirical variance modeling from Fay

and Herriot [9]. Hence, many researchers studied the sampling errors under the

assumption of known sampling variances, such as Angkunsit and Suntornchost [2],

Chatterjee and Lahiri [4], and Lahiri and Suntornchost [12]. In this study, we

assume that the sampling variance D2
t is known and bounded, and et, and ηt are

independent. The model (3.8)-(3.9) can be represented as

yt =
t∑

i=1

ρt−iηi + et, (3.10)

or,

yt = ρyt−1 + at, (3.11)

where at = ηt+et−ρet−1 are dependent random variables with E(at) = 0, Var(at) =

(1+ρ2)D2
t +σ2, Cov(at, at+1) = −ρD2

t , and Cov(at, at+h) = 0 for all h ≥ 2. Notice

that E(yt) = 0, Var(yt) = σ2

1−ρ2
+ D2

t , and Cov(yt, yt+h) = Cov(θt, θt+h) = ρh σ2

1−ρ2

for each h > 0.

Under the models (3.8) and (3.9), the stationary property refers to the station-

ary property on time series process θt, not the observed variables yt, in spite of the

fact that the sampling variance D2
t depends on time t. Hence, we will consider the
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estimator of autoregressive coefficient ρ and the test of the null hypothesis that

|ρ| = 1. In particular, the test of hypothesis

H0 : |ρ| = 1 or nonstationary AR(1),

against

H1 : |ρ| < 1 or stationary AR(1),

(3.12)

under models (3.8)-(3.9).

3.2 Parameter Estimation of Autoregressive Coefficient for

the Model with Sampling Errors

In pervious section, we have introduced the first order autoregressive model subject

to sampling errors and hypothesis for the stationary test. To analyze the station-

ary test, an estimator of the autoregressive coefficient is necessary. In this section,

we study parameter estimation of the autoregressive coefficient in the model. We

consider the effect of sampling errors on the estimator of the autoregressive coef-

ficient, and investigate a good estimator to reduce sampling errors. Furthermore,

we investigate the asymptotic distribution of the obtained estimator when ρ = 1.

3.2.1 Likelihood Function

Consider the model
yt = θt + et,

θt = ρθt−1 + ηt,
(3.13)

where y0 = θ0 = 0, et’s are independent N(0, D2
t ) distributed random variables,

ηt’s are iid N(0, σ2) distributed random variables, et and ηt are independent. We

assume T variables y1, y2, . . . , yT are avaliable, but variables θ1, θ2, . . . , θT are un-

known. The variables {yt} are direct estimators of {θt} with known and bounded

sampling variances {D2
t }. One of many methods to investigate estimators of un-

known parameters ρ and σ2 is the maximum likelihood method. The log-likelihood
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function for the model (3.13) is

l
(
ρ, σ2 |y,D

)
= −1

2
T log 2π − 1

2
log |Γ| − 1

2
y′Γ−1y, (3.14)

where y = (y1, y2, . . . , yT )
′ and Γ is the T × T covariance matrix of y, and D is

covariance matrix of e = (e1, e2, . . . , eT ). Notice that Γ = σ2P + D where

P =
1

1− ρ2


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

... ... ... . . . ...

ρT−1 ρT−2 ρT−3 . . . 1

 and D =


D2

1 0 . . . 0

0 D2
2 . . . 0

... ... . . . ...

0 0 . . . D2
T

 .

The maximum likelihood estimators of ρ and σ2 can be found by solving the system

of equations from setting the partial derivatives of l(ρ, σ2 |y) with respect ρ and

σ2 equal to zero. In particular,

0 =
∂l

∂ρ
= −1

2
Tr
(
σ2Γ−1∂P

∂ρ

)
+

σ2

2
y′Γ−1∂P

∂ρ
Γ−1y, (3.15)

and 0 =
∂l

∂σ2
= −1

2
Tr
(
Γ−1P

)
+

1

2
y′Γ−1PΓ−1y, (3.16)

where Tr(A) denotes the trace of a matrix A. It is usually difficult to obtain

closed-form solutions from (3.15)-(3.16). However, the solutions can be obtained

by any available numerical methods.

3.2.2 Effect of Sampling Errors to the Estimator

If sampling variances (D2
t )t≥1 in model (3.13) are all zero, the observed variable

{yt} are the same as the unknown variables {θt}. Hence, estimator of ρ, denoted

by ρθ, is

ρθ =

T∑
t=2

θtθt−1

T∑
t=2

θ2t−1

. (3.17)
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However, sampling variances {D2
t }t≥1 are nonzero. Therefore, ignoring the sam-

pling variances will cause errors in parameter estimation and the stationary test.

In this section, we are interested in examining errors in the true estimators ρθ

caused by the naive estimators ρy, where

ρy =

T∑
t=2

ytyt−1

T∑
t=2

y2t−1

, (3.18)

in the existence of the sampling errors. In addition, we consider the effect of naive

estimator by the expectation of ρy − ρθ. However, the closed forms of the mean

and the variance are difficult to obtain. Therefore, the approximation by Taylor

series expansion will be applied in our study. To simplify notations, we define the

following terms.

U1,θ =
T∑
t=2

θtθt−1, U1,y =
T∑
t=2

ytyt−1,

U2,θ =
T∑
t=2

θ2t−1, U2,y =
T∑
t=2

y2t−1,

U3,θ = ρθ =
U1,θ

U2,θ

, U3,y = ρy =
U1,y

U2,y

,

U4,θ =
1

T − 2

T∑
t=2

(θt − ρθθt−1)
2, U4,y =

1

T − 2

T∑
t=2

(yt − ρyyt−1)
2.

(3.19)

Notice that ρθ and ρy are functions of (U1,θ, U2,θ) and (U1,y, U2,y), respectively. We

first study some properties of the estimator ρθ, and the effect of naive estimator

ρy later.

1) Some properties of the Estimator of Autoregressive Coefficient on

AR(1)

In this section, we will consider some properties of the estimator ρθ of ρ when θt’s

are observed. Under the AR(1) model, Mann and Wald [16] have shown that ρθ,
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obtained by the maximum likelihood method, is a consistent estimator for |ρ| < 1.

In addition, Rubin [19] has shown that ρθ is a consistent estimator for the case

|ρ| ≥ 1. However, we prove consistency ρθ for the case |ρ| ≤ 1 alternatively.

Lemma 3.3. The asymptotic properties of U2,θ defined in (3.19) are as follows.

(1) If |ρ| < 1, then

lim
T→∞

E(U2,θ)

T
=

σ2

1− ρ2
,

lim
T→∞

Var(U2,θ)

T
=

2σ4(1 + ρ2)

(1− ρ2)3
.

(3.20)

(2) If |ρ| = 1, then

lim
T→∞

E(U2,θ)

T 2
=

σ2

2
,

lim
T→∞

Var(U2,θ)

T 4
=

σ4

3
.

(3.21)

(3) For any positive integer k ≥ 1,

E(U−k
2,θ ) =

O(T−k), if |ρ| < 1,

O(T−2k), if |ρ| = 1.

(3.22)

Proof. (1) Notice that (θt)t≥1 satisfies AR(1) model with θ0 = 0. Then θt =
t∑

i=1

ρt−iηi where (ηi)t≥1 are independent normal distribution with mean 0 and vari-

ance σ2. Consider the case |ρ| < 1, we can transform U2,θ as

U2,θ =
T∑
t=2

θ2t−1

=
T−1∑
t=1

θ2t

=
T−1∑
t=1

(
t∑

i=1

ρt−iηi

)2

= η21 + (η2 + ρη1)
2 + (η3 + ρη2 + ρ2η1)

2 + · · ·+ (ηT−1 + · · ·+ ρT−2η1)
2

=
(
(1 + ρ2 + · · ·+ ρ2(T−2))η21 + (1 + ρ2 + · · ·+ ρ2(T−3))η22 + · · ·+ η2T−1

)
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+ 2

(
ρη2η1 +

∑
1≤i<j≤3

ρ2(3)−(i+j)ηiηj + · · ·+
∑

1≤i<j≤T−1

ρ2(T−1)−(i+j)ηiηj

)

=
(
(1 + ρ2 + · · ·+ ρ2(T−2))η21 + (1 + ρ2 + · · ·+ ρ2(T−3))η22 + · · ·+ η2T−1

)
+ 2

T−1∑
j=2

j−1∑
i=1

ρj−i(1 + ρ2 + · · ·+ ρ2(T−j−1))ηiηj

=
T−1∑
i=1

1− ρ2(T−i)

1− ρ2
η2i + 2

T−1∑
j=2

j−1∑
i=1

ρj−i1− ρ2(T−j)

1− ρ2
ηiηj. (3.23)

Let ξ1 and ξ2 be the first and the second term of (3.23), respectively. Since E(η2i ) =

σ2 and Var(η2i ) = 2σ4, the asymptotic mean of ξ1
T

can be computed as follows.

lim
T→∞

E(ξ1)
T

= lim
T→∞

1

T (1− ρ2)

T−1∑
i=1

(
1− ρ2(T−i)

)
E
(
η2i
)

= lim
T→∞

σ2

T (1− ρ2)

T−1∑
j=1

(1− ρ2j)

= lim
T→∞

σ2

T (1− ρ2)

(
(T − 1)− ρ2

1− ρ2(T−1)

1− ρ2

)
=

σ2

1− ρ2
. (3.24)

Since (ηi)i≥1 are independent and normally distributed with variance σ2,

lim
T→∞

Var(ξ1)
T

= lim
T→∞

2σ4

T (1− ρ2)2

T−1∑
i=1

(1− ρ2i)2

= lim
T→∞

2σ4

T (1− ρ2)2

T−1∑
i=1

(1− 2ρ2i + ρ4i)

= lim
T→∞

2σ4

T (1− ρ2)2

(
(T − 1)− 2ρ2

1− ρ2(T−1)

1− ρ2
+ ρ4

1− ρ4(T−1)

1− ρ4

)
=

2σ4

(1− ρ2)2
. (3.25)

For the mean and variane of ξ2, since (ηi)i≥1 are independent random variables

with zero mean,

E(ξ2) = 0. (3.26)
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To find the variance of ξ2, note that Cov(ηiηj, ηiηk) = 0 for any i, j, k such that

i ̸= j ̸= k. Then

Var(ξ2) =
4σ4

(1− ρ2)2

T−1∑
j=2

j−1∑
i=1

ρ2(j−i)(1− ρ2(T−j))2

=
4σ4

(1− ρ2)2

T−1∑
j=2

(1− ρ2(T−j))2(ρ2 + ρ4 + . . .+ ρ2(j−1))

=
4σ4

(1− ρ2)2

T−1∑
j=2

(1− ρ2(T−j))2
ρ2(1− ρ2(j−1))

1− ρ2

=
4ρ2σ4

(1− ρ2)3

T−1∑
j=2

(1− 2ρ2(T−j) + ρ4(T−j))(1− ρ2(j−1))

=
4ρ2σ4

(1− ρ2)3

T−1∑
j=2

(1− 2ρ2(T−j) + ρ4(T−j) − ρ2(j−1) + 2ρ2(T−1) − ρ4T−2j−2)

=
4ρ2σ4

(1− ρ2)3

(
(T − 1)− 2

ρ2(1− ρ2(T−2))

1− ρ2
+

ρ4(1− ρ4(T−2))

1− ρ4
− ρ2(1− ρ2(T−2))

1− ρ2

+2(T − 2)ρ2(T−1) − ρ2(T−1)ρ
2(1− ρ2(T−2))

1− ρ2

)
.

Therefore,

lim
T→∞

Var(ξ2)
T

=
4ρ2σ4

(1− ρ2)3
. (3.27)

Notice that E(U2,θ) = E(ξ1) + E(ξ2). From (3.23), (3.24), and (3.26),

lim
T→∞

E(U2,θ)

T
= lim

T→∞

E(ξ1)
T

+ lim
T→∞

E(ξ2)
T

=
σ2

1− ρ2
.

Since Cov(η2i , ηiηj) = E(η3i ηj) = 0 for any i, j such that i ̸= j, we have Var(U2,θ) =

Var(ξ1) + Var(ξ2). From (3.23), (3.25), and (3.27),

lim
T→∞

Var(U2,θ)

T
= lim

T→∞

Var(ξ1)
T

+ lim
T→∞

Var(ξ2)
T
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=
2σ4

(1− ρ2)2
+

4ρ2σ4

(1− ρ2)3

=
2σ4(1 + ρ2)

(1− ρ2)3
.

Moreover, since the limits of E(U2,θ)

T
and Var(U2,θ)

T
both exist, for any k ∈ R,

lim
T→∞

Ek(U2,θ)

T k
=

σ2k

(1− ρ2)k
, (3.28)

and lim
T→∞

Vark(U2,θ)

T k
=

2kσ4k(1 + ρ2)k

(1− ρ2)3k
. (3.29)

Therefore, we can see that

Ek(U2,θ) = O(T k), (3.30)

and Vark(U2,θ) = O(T k). (3.31)

(2) Consider the case |ρ| = 1. WLOG, we will consider only the case ρ = 1.

Notice that

U2,θ =η21 + (η2 + ρη1)
2 + (η3 + ρη2 + ρ2η1)

2 + . . .+ (ηT−1 + . . .+ ρT−2η1)
2

=
(
(T − 1)η21 + (T − 2)η22 + . . .+ η2T−1

)
+ 2
(
(T − 2)η1η2 + (T − 3)(η1 + η2)η3 + . . . (η1 + η2 + . . . ηT−2)ηT−1

)
.

Then,

lim
T→∞

E(U2,θ)

T 2
= lim

T→∞

1

T 2

T−1∑
i=1

iσ2

= lim
T→∞

σ2

T 2

(T − 1)T

2

=
σ2

2
. (3.32)

Notice that Var(η2i ) = 2σ4 and Var(ηiηj) = σ4 for i ̸= j. By using the fact that



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

Cov(η2i , ηiηj) = 0 for i ̸= j and Cov(ηiηj, ηiηk) = 0 for any i ̸= j ̸= k, we have

lim
T→∞

Var(U2,θ)

T 4
= lim

T→∞

(
2σ4

T 4

T−1∑
i=1

i2 +
4σ4

T 4

T−2∑
i=1

i2(T − 1− i)

)

= lim
T→∞

σ4

T 4

(
2(T − 1)T (2T − 1)

6
+ 4(T − 1)

(T − 2)(T − 1)(2T − 3)

6

−4(T − 2)2(T − 1)2

4

)
= lim

T→∞

σ4

T 4

(
(T − 1)T (2T − 1)

3
+

(T − 2)(T − 1)2T

3

)
= lim

T→∞

σ4

3T 4
(T − 1)(T )(T 2 − T + 1)

=
σ4

3
. (3.33)

Hence, we can conclude that, for the case |ρ| = 1, the limit of T−2 E(U2,θ) and

T−4 Var(U2,θ) both exist and converge to some positive values. Moreover, for any

k ∈ R,

lim
T→∞

Ek(U2,θ)

T k
=

σ2k

2k
, (3.34)

and lim
T→∞

Vark(U2,θ)

T k
=

σ4k

3k
. (3.35)

Therefore, we can see that

Ek(U2,θ) = O(T 2k), (3.36)

and Vark(U2,θ) = O(T 4k). (3.37)

(3) Let k be any positive integer. To compute the mean of U−k
2,θ , we will apply

the second order Taylor approximation to the function fk(x) = x−k about µ =

E(X). From (2.16), we have

E(X−k) ≈ 1

Ek(X)
+

k(k + 1)

2

1

Ek+2(X)
Var(X). (3.38)

Substituting X by U2,θ, we consider two cases: |ρ| < 1, and |ρ| = 1.
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If |ρ| < 1, from (3.30)-(3.31), we have

E(U−k
2,θ ) ≈ E−k(U2,θ) +

k(k + 1)

2
E−(k+2)(U2,θ)Var(U2,θ)

= O(T−k) +O(T−(k+2))O(T )

= O(T−k). (3.39)

If |ρ| = 1, from (3.36)-(3.37), we have

E(U−k
2,θ ) ≈ E−k(U2,θ) +

k(k + 1)

2
E−(k+2)(U2,θ)Var(U2,θ)

= O(T−2k) +O(T−2(k+2))O(T 4)

= O(T−2k). (3.40)

Lemma 3.4. Let

ρθ =
U1,θ

U2,θ

=

T∑
t=2

θtθt−1

T∑
t=2

θ2t−1

.

Then, for |ρ| ≤ 1,

(1) E(|ρθ − ρ|) converges to zero.

(2) ρθ is a consistent estimator of ρ.

(3) E(|ρθ|) is bounded by |ρ|+ C1T
−1 for some constant C1.

(4) E(ρ2θ) is bounded with some constant C2.
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Proof. (1) Notice that

ρθ − ρ =

T∑
t=2

θtθt−1

T∑
t=2

θ2t−1

− ρ

=

T∑
t=2

(ρθt−1 + ηt)θt−1

T∑
t=2

θ2t−1

− ρ

=

T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1

. (3.41)

For the numerator, since ηt and θt−1 are independent of all t, we have

E

(
T∑
t=2

ηtθt−1

)
= 0, (3.42)

and, consequently,

Var
(

T∑
t=2

ηtθt−1

)
= E

(
T∑
t=2

ηtθt−1

)2

, (3.43)

for all ρ.

To compute E(|ρθ − ρ|), we will consider two cases: |ρ| < 1 and |ρ| = 1.

Consider the case |ρ| < 1. To compute variance of the numerator term, we using the

fact that Cov(ηiηj, ηiηk) = 0 for all i, j, k such that i ̸= j ̸= k, and Var(ηiηj) = σ4.

Hence,

E

(
T∑
t=2

ηtθt−1

)2

= Var
(

T∑
t=2

ηtθt−1

)

= Var
(

T∑
t=2

ηt

(
t−1∑
i=1

ρt−iηi

))
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= Var
(

T∑
t=2

t−1∑
i=1

ρt−iηtηi

)

= σ4

T∑
t=2

t−1∑
i=1

ρ2(t−i)

= ρ2σ4

T∑
t=2

1− ρ2(t−1)

1− ρ2

=
ρ2σ4

1− ρ2

(
T∑
t=2

(1− ρ2(t−1))

)

=
ρ2σ4

1− ρ2

(
(T − 1)− ρ4(1− ρ2(T−2))

1− ρ2

)
=

ρ2σ4

1− ρ2
(T − 1)− ρ6σ4

(1− ρ2)2
(1− ρ2(T−2)). (3.44)

By using Holder inequality, (3.22) and (3.44), we have

E(|ρθ − ρ|) = E


∣∣∣∣∣∣∣∣

T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1

∣∣∣∣∣∣∣∣


≤

√√√√E

(
T∑
t=2

ηtθt−1

)2
√√√√E

(
T∑
t=2

θ2t−1

)−2

=

√(
ρ2σ4

1− ρ2
(T − 1)− ρ6σ4

(1− ρ2)2
(1− ρ2(T−2))

)√
O(T−2)

= O(T
1
2 )O(T−1)

= O(T− 1
2 ). (3.45)

In the same way, for the case |ρ| = 1, variance of the numerator term can be

compute as:

Var
(

T∑
t=2

ηtθt−1

)
= Var

(
T∑
t=2

ηt

(
t−1∑
i=1

ηi

))

= Var
(

T∑
t=2

t−1∑
i=1

ηtηi

)
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= Var
( ∑

1≤i<j≤T

ηjηi

)

=
∑

1≤i<j≤T

σ4

=
(T )(T − 1)σ4

2
. (3.46)

Consequently, by using Holder inequality, (3.22) and (3.46), we have

E(|ρθ − ρ|) = E


∣∣∣∣∣∣∣∣

T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1

∣∣∣∣∣∣∣∣


≤

√√√√E

(
T∑
t=2

ηtθt−1

)2
√√√√E

(
T∑
t=2

θ2t−1

)−2

=

√
(T )(T − 1)σ4

2

√
O(T−4)

= O(T )O(T−2)

= O(T−1). (3.47)

Hence, we can conclude that E(|ρθ−ρ|) converges to zero. In particular, E(|ρθ−ρ|)

is of order T− 1
2 for |ρ| < 1, and order T−1 for |ρ| = 1.

(2) Since E(|ρθ − ρ|) converges to zero, ρθ − ρ converges to zero in probability.

Hence, ρθ converges in probability to ρ.

(3) Consider the case |ρ| < 1. By using the fact that |x| ≤ |x − y| + |y| and

(3.45), we have

E(|ρθ|) ≤ E(|ρθ − ρ|) + |ρ| = |ρ|+O(T− 1
2 ) ≤ |ρ|+ C1√

T
, (3.48)

for some positive constant C1. Similarly for the case |ρ| = 1, from (3.47), we have

E(|ρθ|) ≤ E(|ρθ − ρ|) + |ρ| = |ρ|+O(T−1) ≤ |ρ|+ C2

T 1
, (3.49)
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for some positive constant C2. Hence, E(|ρθ|) is bounded.

(4) Notice that

E(ρ2θ) = Var(ρθ) + E2(ρθ) = Var(ρθ − ρ) + E2(ρθ). (3.50)

First, we will consider Var(ρθ − ρ). We apply the first order Taylor series approx-

imation on f(X,Y ) =
X

Y
, where X =

T∑
t=2

ηtθt−1 and Y = U2,θ =
T∑
t=2

θ2t−1. From

(2.14), we have

Var(ρθ − ρ) = Var
(
X

Y

)
≈ E−2(Y )Var(X) + E2(X)E−4(Y )Var(Y )− 2E(X)E−3(Y )Cov(X,Y )

= E−2(Y )Var(X), (3.51)

where the last two terms vanish since E(X) = E
(

T∑
t=2

ηtθt−1

)
= 0.

Consider the case |ρ| < 1. From (3.30), (3.44) and (3.51), we have

Var(ρθ − ρ) ≤ E−2 (U2,θ)Var
(

T∑
t=2

ηtθt−1

)

= O(T−2)

(
σ4

1− ρ2
(T − 1)− σ4ρ4

(1− ρ2)2
(1− ρ2(T−1))

)
= O(T−1). (3.52)

By using the fact that E2(ρθ) ≤ E2(|ρθ|), (3.50), (3.48), and (3.52), we have

E(ρ2θ) = Var(ρθ) + E2(ρθ)

= Var(ρθ − ρ) + E2(ρθ)

≤ O(T−1) +
(
|ρ|+O(T− 1

2 )
)2

= O(T−1) + ρ2 + |ρ|O(T− 1
2 ) +O(T−1)

= ρ2 +O(T− 1
2 )

= O(1). (3.53)
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Consider the case |ρ| = 1. From (3.36), (3.46) and (3.51), we have

Var(ρθ − ρ) ≤ E−2 (U2,θ)Var
(

T∑
t=2

ηtθt−1

)

= O(T−4)

(
(T )(T − 1)σ4

2

)
= O(T−2). (3.54)

Similarly, from (3.50), (3.49), and (3.54), we have

E(ρ2θ) = Var(ρθ) + E2(ρθ)

= Var(ρθ − ρ) + E2(ρθ)

≤ O(T−2) +
(
|ρ|+O(T−1)

)2
= O(T−2) + ρ2 + |ρ|O(T−1) +O(T−2)

= ρ2 +O(T−1)

= O(1). (3.55)

From (3.53) and (3.55), we can conclude that E(ρ2θ) is bounded.

2) The Effect of the Naive Estimator

From Lemma 3.4, the estimator ρθ is a consistent estimator of ρ. However, under

the model (3.13), the studied variables θt’s are unobserved. To consider the effect of

sampling errors, we first show some conditional expectation of the naive statistics

U1,y and U2,y given θ = (θ1, θ2, · · · , θT )′.

Proposition 3.5. The conditional expectation, variation, and covariation of U1,y

and U2,y given θ = (θ1, θ2, · · · , θT )′ are respectively defined as:

(1) E (U1,y |θ) = U1,θ.

(2) E (U2,y |θ) = U2,θ +
T∑
t=2

D2
t−1.

(3) Var (U1,y |θ) =
T∑
t=2

(
θ2tD

2
t−1 + θ2t−1D

2
t +D2

tD
2
t−1 + 2θtθt−2D

2
t−1

)
.
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(4) Var (U2,y |θ) =
T∑
t=2

(
2D4

t−1 + 4θ2t−1D
2
t−1

)
.

(5) Cov (U1,y, U2,y |θ) = 2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1.

Proof. (1) The conditional expectation of U1,y given θ can be computed as

E (U1,y |θ) = E

(
T∑
t=2

ytyt−1

∣∣∣∣∣θ
)

=
T∑
t=2

E ((θt + et)(θt−1 + et−1) |θ)

=
T∑
t=2

E (θtθt−1 + θtet−1 + θt−1et + etet−1|θ)

=
T∑
t=2

θtθt−1 + θt E (et−1) + θt−1 E (et) + E (etet−1)

=
T∑
t=2

θtθt−1,

where we use the fact that e′ts are independent random variables with zero mean

to obtain the last equation.

(2) The conditional expectation of U2,y given θ can be computed as

E (U2,y |θ) = E

(
T∑
t=2

y2t−1

∣∣∣∣∣θ
)

=
T∑
t=2

E
(
(θt−1 + et−1)

2
∣∣θ)

=
T∑
t=2

E
(
θ2t−1 + e2t−1 + 2θt−1et−1

∣∣θ)
=

T∑
t=2

θ2t−1 + E
(
e2t−1

)
+ 2θt−1 E (et−1)

=
T∑
t=2

θ2t−1 +D2
t−1,

where we use the fact that e′ts are independent random variables with zero mean

and variance D2
t to obtain the last equation.
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(3) The conditional variance of U1,y given θ can be computed as

Var (U1,y |θ) =Var
(

T∑
t=2

ytyt−1

∣∣∣∣∣θ
)

=Var
(

T∑
t=2

θtθt−1 + θtet−1 + θt−1et + etet−1

∣∣∣∣∣θ
)

=Var
(

T∑
t=2

θtet−1

∣∣∣∣∣θ
)

+ Var
(

T∑
t=2

θt−1et

∣∣∣∣∣θ
)

+ Var
(

T∑
t=2

etet−1

∣∣∣∣∣θ
)

+ 2Cov
(

T∑
t=2

θtet−1,

T∑
t=2

θt−1et

∣∣∣∣∣θ
)

+ 2Cov
(

T∑
t=2

θt−1et,

T∑
t=2

etet−1

∣∣∣∣∣θ
)

+ 2Cov
(

T∑
t=2

etet−1,

T∑
t=2

θtet−1

∣∣∣∣∣θ
)

=
T∑
t=2

θ2tD
2
t−1 +

T∑
t=2

θ2t−1D
2
t +

T∑
t=2

D2
tD

2
t−1 + 2

T∑
t=2

Cov (θtet−1, θt−2et−1|θ)

+ 2
T∑
t=2

Cov (θt−1et, et+1et + etet−1|θ)

+ 2
T∑
t=2

Cov (θtet−1, etet−1 + et−1et−2|θ)

=
T∑
t=2

θ2tD
2
t−1 +

T∑
t=2

θ2t−1D
2
t +

T∑
t=2

D2
tD

2
t−1 + 2

T∑
t=2

θtθt−2D
2
t−1,

where θ0 = 0 and we use the fact that Cov(et, etet+h) = E(et+he
2
t ) = 0 for h > 0.

(4) The conditional variance of U2,y given θ can be computed as

Var (U2,y |θ) =Var
(

T∑
t=2

y2t−1

∣∣∣∣∣θ
)

= Var
(

T∑
t=2

(θ2t−1 + e2t−1 + 2θt−1et−1)

∣∣∣∣∣θ
)

=
T∑
t=2

Var
(
e2t−1 + 2θt−1et−1

∣∣θ)
=

T∑
t=2

E
(
(e2t−1 + 2θt−1et−1)

2
∣∣θ)− E

(
e2t−1 + 2θt−1et−1

∣∣θ)2
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=
T∑
t=2

E
(
e4t−1 + 4θt−1e

3
t−1 + 4θ2t−1e

2
t−1

∣∣θ)−D4
t−1

=
T∑
t=2

2D4
t−1 + 4θ2t−1D

2
t−1.

(5) The conditional covariance of U1,y and U2,y given θ can be computed as

Cov (U1,y, U2,y |θ) = Cov
(

T∑
t=2

ytyt−1,

T∑
t=2

y2t−1

∣∣∣∣∣θ
)

= Cov
(

T∑
t=2

θtet−1 + θt−1et + etet−1,

T∑
s=2

2θs−1es−1 + e2s−1

∣∣∣∣∣θ
)

=
T∑
t=2

Cov
(
2θt−1et−1 + e2t−1,

T∑
s=2

θses−1 + θs−1es + eses−1

∣∣∣∣∣θ
)

=
T∑
t=2

Cov
(
2θt−1et−1 + e2t−1, θtet−1 + θt−2et−1 + etet−1 + et−1et−2

∣∣θ)
=

T∑
t=2

2θtθt−1D
2
t−1 + 2θt−1θt−2D

2
t−1

= 2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1.

Next, we will apply the results to investigate the effect of naive estimator ρy

by using Taylor’s expansion.

Proposition 3.6. Let ρy be the naive estimator of ρ defined in (3.19). Under the

condition that the sampling variance inf
t
D2

t > 0, E(ρy − ρ) does not converge to

zero when 0 < |ρ| < 1. In addition, the estimator ρy is underestimated when ρ > 0,

and overestimated when ρ < 0.

Proof. Let f(x, y) =
x

y
. From (2.13), the first order Taylor approximations of

E (f(X,Y )|θ) about (µX, µY ) = (E (X|θ) ,E (Y |θ)) is

E
(
X

Y

∣∣∣∣θ) ≈ E (X|θ)
E (Y |θ)

, (3.56)
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where θ = (θ1, θ2, · · · , θn)′, and X and Y are random variables. Substituting

(X,Y ) = (U1,y, U2,y), from Proposition 3.5 (1)-(2), we have

E (ρy|θ) ≈
E
(

T∑
t=2

ytyt−1

∣∣∣∣θ)
E
(

T∑
t=2

y2t−1

∣∣∣∣θ) =

T∑
t=2

θtθt−1

T∑
t=2

θ2t−1 +D2
t−1

.

It follows that

E(ρy − ρ) =E(E(ρy − ρ) |θ)

≈E


T∑
t=2

θtθt−1

T∑
t=2

θ2t−1 +D2
t−1

− ρ



=E


T∑
t=2

(ρθt−1 + ηt)θt−1

T∑
t=2

θ2t−1 +D2
t−1

− ρ



=E


T∑
t=2

ηtθt−1 − ρ
T∑
t=2

D2
t−1

T∑
t=2

θ2t−1 +
T∑
t=2

D2
t−1



=E


T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1 +
T∑
t=2

D2
t−1

− ρ
1

T

T∑
t=2

D2
t−1 E

 1

1
T

T∑
t=2

θ2t−1 +
1
T

T∑
t=2

D2
t−1

 .

(3.57)

For the first term of (3.57), from (3.41) and Lemma 3.4 (1), we have

∣∣∣∣∣∣∣∣E


T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1 +
T∑
t=2

D2
t−1


∣∣∣∣∣∣∣∣ ≤ E


∣∣∣∣∣∣∣∣

T∑
t=2

ηtθt−1

T∑
t=2

θ2t−1

∣∣∣∣∣∣∣∣
 = E(|ρθ − ρ|), (3.58)

converges to zero as T goes to infinity.
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For the second term of (3.57), from Lemma 3.3 (1),

lim
T→∞

1

T

T∑
t=2

E
(
θ2t−1

)
=

σ2

1− ρ2
.

Let D2
M = sup

t
D2

t and D2
m = inf

t
D2

t . By applying Jensen’s inequality and f(x) = 1
x

is convex function, and using the fact that D2
M ≥ D2

t for all t, we have

lim
T→∞

E

 1

1
T

T∑
t=2

θ2t−1 +
1
T

T∑
t=2

D2
t−1

 ≥ lim
T→∞

1

E( 1
T

T∑
t=2

θ2t−1) +
1
T

T∑
t=2

D2
t−1

=
1

lim
T→∞

E( 1
T

T∑
t=2

θ2t−1) + lim
T→∞

1
T

T∑
t=2

D2
t−1

=
1

σ2

1−ρ2
+ lim

T→∞
1
T

T∑
t=2

D2
t−1

≥ 1

σ2

1−ρ2
+ lim

T→∞
1
T

T∑
t=2

D2
M

=
1

σ2

1−ρ2
+D2

M

. (3.59)

Hence, E

 1

1
T

T∑
t=2

θ2t−1+
1
T

T∑
t=2

D2
t−1

 is bounded below by the positive value
(

σ2

1−ρ2
+D2

M

)−1

as T goes to infinity.

To show that the estimator ρy is underestimated when 0 < ρ < 1, from (3.57)-

(3.59) and D2
m ≤ D2

t for all t, we have

lim
T→∞

E(ρy − ρ) = lim
T→∞

T∑
t=2

D2
t−1ρ

1

T
E

 1

1
T

T∑
t=2

θ2t−1 +
1
T
D2

t

T∑
t=2

D2
t−1



≤ −ρD2
m lim

T→∞
E

 1

1
T

T∑
t=2

θ2t−1 +
1
T

T∑
t=2

D2
t−1
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≤ −ρD2
m

(
1

σ2

1−ρ2
+D2

M

)
< 0. (3.60)

Hence, ρy is underestimate of ρ for 0 < ρ < 1.

Similarly for −1 < ρ < 0, from (3.58)-(3.59), we have

lim
T→∞

E(ρy − ρ) = lim
T→∞

T∑
t=2

D2
t−1ρ

1

T
E

 1

1
T

T∑
t=2

θ2t−1 +
1
T
D2

t

T∑
t=2

D2
t−1



≥ −ρD2
m lim

T→∞
E

 1

1
T

T∑
t=2

θ2t−1 +
1
T

T∑
t=2

D2
t−1


≥ −ρD2

m

(
1

σ2

1−ρ2
+D2

M

)
> 0. (3.61)

Hence, ρy is overestimate of ρ for −1 < ρ < 0.

3.2.3 Estimator for Autoregressive Coefficient

In the pervious section, we have shown the effect of sampling errors on the naive

estimator. When we ignore sampling errors, there is a bias term causes the naive

estimator to be underestimate when 0 < ρ < 1. In this section, we propose a simple

adjustment of the parameter estimation of ρ alternative to the naive estimator ρy.

This adjustment can reduce bias caused from sampling errors, and depends only

on the observed variables yt’s.

Corollary 3.7. Let U1,θ =
T∑
t=2

θtθt−1 be defined in (3.19). Then

(1) E(U1,θ) = O(T ) and Var(U1,θ) = O(T ) if |ρ| < 1,

(2) E(U1,θ) = O(T 2) and Var(U1,θ) = O(T 4) if |ρ| = 1,
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Proof. Notice that

U1,θ =
T∑
t=2

θtθt−1 =
T∑
t=2

(ρθt−1 + ηt)θt−1 = ρU2,θ +
T∑
t=2

ηtθt−1.

Hence, since E
(

T∑
t=2

ηtθt−1

)
= 0, E(U1,θ) = ρE(U2,θ) for all cases of ρ. This implies

that the orders of U1,θ and U2,θ are the same.

Consider the case |ρ| < 1. By using the fact that Var(X + Y ) = Var(X) +

Var(Y ) + 2Cov(X,Y ), we have

Var(U1,θ)

T
= ρ2

Var(U2,θ)

T
+

Var
(

T∑
t=2

ηtθt−1

)
T

+ 2ρ

Cov
(
U2,θ,

T∑
t=2

ηtθt−1

)
T

. (3.62)

From Lemma 3.3 and (3.44), the sum of the first and the second terms converges

to constant C = 2σ4ρ2(1+ρ2)
(1−ρ2)3

+ σ4

1−ρ2
. Moreover, by using Chebyshev’s inequality,

lim
T→∞

∣∣∣∣∣∣∣∣
Cov

(
U2,θ,

T∑
t=2

ηtθt−1

)
T

∣∣∣∣∣∣∣∣ ≤ lim
T→∞

√√√√√Var (U2,θ)

T

Var
(

T∑
t=2

ηtθt−1

)
T

=
σ4
√

2(1 + ρ2)

(1− ρ2)2
.

(3.63)

Therefore, we can conclude that Var(U1,θ)

T
lies in [C − 2ρD,C + 2ρD] where C =

2σ4ρ2(1+ρ2)
(1−ρ2)3

+ σ4

1−ρ2
and D =

σ4
√

2(1+ρ2)

(1−ρ2)2
, and implies that Var(U1,θ) = O(T ).

Similarly, for the cases |ρ| = 1, we have

Var(U1,θ)

T 4
= ρ2

Var(U2,θ)

T 4
+

Var
(

T∑
t=2

ηtθt−1

)
T 4

+ 2ρ

Cov
(
U2,θ,

T∑
t=2

ηtθt−1

)
T 4

. (3.64)

From (3.46), the second term of (3.64) converges to zero. By using Chebyshev’s

inequality, (3.21), and (3.46) on the third term, we have
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∣∣∣∣∣∣∣∣
Cov

(
U2,θ,

T∑
t=2

ηtθt−1

)
T 4

∣∣∣∣∣∣∣∣ ≤
1

T

√√√√√Var (U2,θ)

T 4

Var
(

T∑
t=2

ηtθt−1

)
2

, (3.65)

and this term converges to zero as T goes to infinity.

Hence, by (3.21) and (3.64), Var(U1,θ)

T 4
converges to σ4ρ2

3
. Consequently,

Var(U1,θ) = O(T 4).

Lemma 3.8. Let U1,θ and U2,θ be defined as in Lemma 3.3 and Corollary 3.7,

respectively. For any positive integers m and n such that n > m,

E(Um
1,θU

−n
2,θ ) ≤

O(Tm−n) if |ρ| < 1,

O(T 2(m−n)) if |ρ| = 1.

(3.66)

Proof. Let f(X,Y ) = XmY −n where X,Y are random variables. Let µ = (µX, µY ) =

(E(X),E(Y )). The second order Taylor approximation of f about µ is

f(X,Y ) ≈ µm
Xµ

−n
Y +mµm−1

X µ−n
Y (X − µX)− nµm

Xµ
−n−1
Y (Y − µY )

+
m(m− 1)

2
µm−2

X µ−n
Y (X − µX)

2 − 2mnµm−1
X µ−n−1

Y (X − µX)(Y − µY )

+
n(n+ 1)

2
µm

Xµ
−n−2
Y (Y − µY )

2 (3.67)

By substituting X = U1,θ and Y = U2,θ into (3.67) and taking expectation, we

have

|E(Um
1,θU

−n
2,θ )| ≈

∣∣Em(U1,θ)E−n(U2,θ) +
m(m− 1)

2
Em−2(U1,θ)E−n(U2,θ)Var(U1,θ)

+
n(n+ 1)

2
Em(U1,θ)E−n−2(U2,θ)Var(U2,θ)

− 2mnEm−1(U1,θ)E−n−1(U2,θ)Cov(U1,θ, U2,θ)
∣∣
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≤ |Em(U1,θ)|E−n(U2,θ) +
m(m− 1)

2
|Em−2(U1,θ)|E−n(U2,θ)Var(U1,θ)

+
n(n+ 1)

2
|Em(U1,θ)|E−n−2(U2,θ)Var(U2,θ)

+ 2mn|Em−1(U1,θ)|E−n−1(U2,θ)
√

Var(U1,θ)
√

Var(U2,θ), (3.68)

where we use the triangle inequality and the Chebyshev’s inequality to obtain the

last inequality.

When |ρ| < 1, from Corollary 3.7 (1) and (3.30)-(3.31), we have

|E(Um
1,θU

−n
2,θ )| ≤ O(T )m−n +

m(m− 1)

2
O(T )m−2O(T )−nO(T )

+
n(n+ 1)

2
O(T )mO(T )−n−2O(T )

+ 2mnO(T )m−1O(T )−n−1O(T )
1
2O(T )

1
2

= O(Tm−n) +O(Tm−n−1) +O(Tm−n−1) +O(Tm−n−1)

= O(Tm−n). (3.69)

Similarly for the case |ρ| = 1, from Corollary 3.7 (2) and (3.36)-(3.37), we have

|E(Um
1,θU

−n
2,θ )| ≤ O(T )2m−2n +

m(m− 1)

2
O(T )2m−4O(T )−2nO(T 4)

+
n(n− 1)

2
O(T )2mO(T )−2n−4O(T 4)

+ 2mnO(T )2m−2O(T )−2n−2O(T 4)
1
2O(T 4)

1
2

= O(T 2(m−n)) +O(T 2(m−n)) +O(T 2(m−n)) +O(T 2(m−n))

= O(T 2(m−n)). (3.70)

Corollary 3.9. Let U1,θ and U2,θ be defined as in Lemma 3.3 and Corollary 3.7,

respectively. For any positive integers m and n such that n > m,

E
(
|U1,θ|m U−n

2,θ

)
≤

O(Tm−n) if |ρ| < 1,

O(T 2(m−n)) if |ρ| = 1.

(3.71)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

Proof. From Hölder’s inequality, we have

E
(
|U1,θ|m U−n

2,θ

)
≤ E

1
2

(
U2m
1,θ U

−2n
2,θ

)
. (3.72)

Consider the case |ρ| < 1. From Lemma 3.8, we have

E
(
|U1,θ|m U−n

2,θ

)
≤
√

O(T 2m−2n) = O(Tm−n). (3.73)

Similarly, for the case |ρ| < 1. From Lemma 3.8, we have

E
(
|U1,θ|m U−n

2,θ

)
≤
√

O(T 2(2m−2n)) = O(T 2(m−n)). (3.74)

Theorem 3.10. (1) The statistic

Û1,θ =
T∑
t=2

ytyt−1

is an unbiased estimator of U1,θ.

(2) The statistic

Û2,θ =
T∑
t=2

(y2t−1 −D2
t−1)

is an unbiased estimator of U2,θ.

(3) The statistic

Û3,θ =

T∑
t=2

ytyt−1

T∑
t=2

(y2t−1 −D2
t−1)

is an asymptotically unbiased estimator of U3,θ = ρθ. The statistic Û3,θ can

be denoted as ρ̂θ.
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Proof. (1) From Proposition 3.5 (1), we can show that

E(Û1,θ − U1,θ) = E
(
E
(
Û1,θ − U1,θ

∣∣∣θ)) = E(U1,θ − U1,θ) = 0. (3.75)

(2) From Proposition 3.5 (2), we can show that

E(Û2,θ−U2,θ) = E
(
E
(
Û2,θ − U2,θ

∣∣∣θ)) = E

(
U2,θ +

T∑
t=2

D2
t−1 −

T∑
t=2

D2
t−1 − U2,θ

)
= 0.

(3.76)

(3) To show that Û3,θ is an asymptotically unbiased estimator of U3,θ, we will ap-

ply the second-order Taylor approximations (2.16) of E
(
Û3,θ

∣∣∣θ) = E
(
f(Û1,θ, Û2,θ)

∣∣∣θ)
around µ = (E(Û1,θ|θ),E(Û2,θ|θ)), when f(x, y) =

x

y
as follows.

E
(
f(Û1,θ, Û2,θ)

∣∣∣θ) ≈ f(µ) +
1

2

(
f ′′
xx(µ)Var(Û1,θ|θ) + f ′′

yy(µ)Var(Û2,θ|θ)
)

+ f ′′
xy(µ)Cov(Û1,θ, Û2,θ|θ)

= f(µ) +

(
E(Û1,θ|θ)
E2(Û2,θ|θ)

Var(Û2,θ|θ)−
1

E2(Û2,θ|θ)
Cov(Û1,θ, Û2,θ|θ)

)
.

Since (Û1,θ, Û2,θ) = (U1,y, U2,y −
T∑
t=2

D2
t−1), the conditional covariance matrix

given θ of (Û1,θ, Û2,θ) are the same as (U1,y, U2,y). That is,

Var
(
Û1,θ

∣∣∣θ) =
T∑
t=2

(
θ2tD

2
t−1 + θ2t−1D

2
t +D2

tD
2
t−1 + 2θtθt−2D

2
t−1

)
, (3.77)

Var
(
Û2,θ

∣∣∣θ) =
T∑
t=2

(
2D4

t−1 + 4θ2t−1D
2
t−1

)
, (3.78)

Cov
(
Û1,θ, Û2,θ

∣∣∣θ) = 2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1. (3.79)

Hence, by Proposition 3.5 (1)-(2) and (3.78)-(3.79), we have

E
(
Û3,θ

∣∣∣θ) ≈ U1,θ

U2,θ

− Cov(Û1,θ, Û2,θ|θ)
U2
2,θ

+
U1,θ

U2,θ

Var(Û2,θ|θ)
U2
2,θ
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= U3,θ − (2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1)(U2,θ)

−2

+ U1,θU
−3
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1). (3.80)

Therefore, by using the fact that |2xy| ≤ x2 + y2 for all x, y and U2,θ > 0, we have

∣∣∣E(Û3,θ − U3,θ

∣∣∣θ)∣∣∣ = ∣∣∣∣∣−(2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1)(U2,θ)

−2

+ U1,θU
−3
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1)

∣∣∣∣∣
≤

∣∣∣∣∣−(2
T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1)(U2,θ)

−2

∣∣∣∣∣
+

∣∣∣∣∣U1,θU
−3
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1)

∣∣∣∣∣
≤ (

T∑
t=2

(
θ2t + 2θ2t−1 + θ2t−2

)
D2

t−1)

+ |U1,θ|U−3
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1)

≤ D2
MU−2

2,θ

T∑
t=2

θ2t +D2
MU−1

2,θ +D2
MU−2

2,θ

T∑
t=2

θ2t−2

+ 2D2
M(T − 1)|U1,θ|U−3

2,θ + 4D2
M |U1,θ|U−2

2,θ . (3.81)

To compute the expectation of
(
U−2
2,θ

T∑
t=2

θ2t + U−2
2,θ

T∑
t=2

θ2t−2

)
, we notice that

U−2
2,θ

T∑
t=2

θ2t = U−1
2,θ + (θ2T − θ21)U

−2
2,θ

≤ U−1
2,θ + θ2TU

−2
2,θ

= U−1
2,θ + (ρθT−1 + ηT )

2U−2
2,θ

≤ U−1
2,θ + 2(ρ2θ2T−1 + η2T )U

−2
2,θ
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≤ U−1
2,θ + 2ρ2U2,θU

−2
2,θ + 2η2T

(
T∑
t=2

θ2t−1

)−2

= (2ρ2 + 1)U−1
2,θ + 2η2TU

−2
2,θ . (3.82)

Similarly,

U−2
2,θ

T∑
t=2

θ2t−2 = U−1
2,θ − θ2T−1

(
T∑
t=2

θ2t−1

)−2

≤
∣∣U−1

2,θ

∣∣+ ∣∣θ2T−1U
−2
2,θ

∣∣
≤ U−1

2,θ + U2,θU
−2
2,θ

≤ 2U−1
2,θ . (3.83)

Since U2,θ is a function of (θ1, θ2, . . . , θT−1), U2,θ and ηT are independent. Let

M1 = max{E(U−1
2,θ ),E(U

−2
2,θ )}. From (3.82), we have

E

(
U−2
2,θ

T∑
t=2

θ2t

)
≤ (2ρ2 + 1)E(U−1

2,θ ) + 2E(η2T )E(U−2
2,θ )

≤ (2ρ2 + 1 + 2σ2)M1. (3.84)

Similarly, from (3.83), we have

E

(
U−2
2,θ

T∑
t=2

θ2t−2

)
≤ 2E

(
U−1
2,θ

)
≤ 2M1. (3.85)

Therefore, from (3.84)-(3.85), we have

E

(
U−2
2,θ

T∑
t=2

θ2t + U−2
2,θ

T∑
t=2

θ2t−2

)
≤ (2ρ2 + 3 + 2σ2)M1. (3.86)

To investigate expectations of |U1,θ|U−2
2,θ , and |U1,θ|U−3

2,θ , we apply Corollary 3.9

to find the order of expectation of |U1,θ|U−2
2,θ , |U1,θ|U−3

2,θ with (m,n) = (1, 2), and
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(1, 3), respectively. It follows that

E(|U1,θ|U−2
2,θ ) =

O(T−1) if |ρ| < 1,

O(T−2) if |ρ| = 1,

(3.87)

and E(|U1,θ|U−3
2,θ ) =

O(T−2) if |ρ| < 1,

O(T−4) if |ρ| = 1.

(3.88)

Consider the case |ρ| < 1. Since M1 = max{E(U−1
2,θ ),E(U

−2
2,θ )} ≤ E(U−1

2,θ ) +

E(U−2
2,θ ), from Corollary 2.58 (2) and (3.22) we have

M1 ≤ E(U−1
2,θ ) + E(U−2

2,θ ) = O
(
max{T−1, T−2}

)
= O(T−1). (3.89)

From (3.22), (3.81), (3.86)-(3.88), and (3.89), we have

∣∣∣E(Û3,θ − U3,θ

)∣∣∣ = ∣∣∣E(E(Û3,θ − U3,θ

∣∣∣θ))∣∣∣
≤ E

(∣∣∣E(Û3,θ − U3,θ

∣∣∣θ)∣∣∣)
≤ E

(
D2

MU−2
2,θ

T∑
t=2

θ2t +D2
MU−2

2,θ

T∑
t=2

θ2t−2

)
+ E

(
D2

MU−1
2,θ

)
+ E

(
2D2

M(T − 1)|U1,θ|U−2
2,θ

)
+ E

(
4D2

M |U1,θ|U−2
2,θ

)
≤ (2ρ2 + 3 + 2σ2)D2

MM1 +D2
M E

(
U−1
2,θ

)
+ 2D2

M E
(
(T − 1)|U1,θ|U−3

2,θ

)
+ 4D2

M E
(
|U1,θ|U−2

2,θ

)
= O(T−1) +O(T−1) +O(T )O(T−2) +O(T−1)

= O(T−1). (3.90)

Similarly for the case |ρ| = 1, from Corollary 2.58 (2) and (3.22) we have

M1 ≤ E(U−1
2,θ ) + E(U−2

2,θ ) = O
(
max{T−2, T−4}

)
= O(T−2). (3.91)
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From (3.22), (3.81), (3.86)-(3.88), and (3.91), we have

∣∣∣E(Û3,θ − U3,θ

)∣∣∣ = ∣∣∣E(E(Û3,θ − U3,θ

∣∣∣θ))∣∣∣
≤ E

(∣∣∣E(Û3,θ − U3,θ

∣∣∣θ)∣∣∣)
≤ E

(
D2

MU−2
2,θ

T∑
t=2

θ2t +D2
MU−2

2,θ

T∑
t=2

θ2t−2

)
+ E

(
D2

MU−1
2,θ

)
+ E

(
2D2

M(T − 1)|U1,θ|U−2
2,θ

)
+ E

(
4D2

M |U1,θ|U−2
2,θ

)
≤ (2ρ2 + 3 + σ2)D2

MM1 +D2
M E

(
U−1
2,θ

)
+ 2D2

M E
(
(T − 1)|U1,θ|U−3

2,θ

)
+ 4D2

M E
(
|U1,θ|U−2

2,θ

)
= O(T−2) +O(T−2) +O(T )O(T−4) +O(T−2)

= O(T−2). (3.92)

Hence, E
(
Û3,θ − U3,θ

)
converges to zero for each case of ρ and implies that Û3,θ

is asymptotically unbiased estimator of U3,θ. In particular, E
(
Û3,θ − U3,θ

)
is

bounded with CT−1 for |ρ| < 1 and CT−2 for |ρ| = 1 where C is a constant.

From Theorem 3.10, the statistic Û3,θ can reduce the bias from naive estimator

ρy when the sample size T goes to infinite. Hence, we denote the statistic Û3,θ as

ρ̂θ, the estimator of autoregressive coefficient ρ. The following theorem will show

some properties of the estimator ρ̂θ.

Theorem 3.11. Let ρ̂θ = Û3,θ be defined in Theorem 3.10. Then Var(ρ̂θ − ρθ)

converges to zero as T goes to infinite.

Proof. Notice that, from Theorem 2.35,

Var (ρ̂θ − ρθ) = E (Var(ρ̂θ − ρθ|θ)) + Var (E(ρ̂θ − ρθ|θ)) . (3.93)

To compute the first term on the right hand side, we will consider Var(ρ̂θ|θ) by ap-

plying the first-order Taylor approximations of Var (ρ̂θ|θ) = Var
(
f(Û1,θ, Û2,θ)

∣∣∣θ)
around the point µ = (E(Û1,θ|θ),E(Û2,θ|θ)), when f(x, y) =

x

y
. From (2.14), we
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have

Var
(
f(Û1,θ, Û2,θ)

∣∣∣θ) ≈ f 2
x(µ)Var

(
Û1,θ

∣∣∣θ)+ f 2
y (µ)Var

(
Û2,θ

∣∣∣θ)
+ 2fx(µ)fy(µ)Cov

(
Û1,θ, Û2,θ

∣∣∣θ) .
From (3.77)-(3.79), we can compute the conditional variance of ρ̂θ as follows.

Var
(
f(Û1,θ, Û2,θ)

∣∣∣θ) ≈ U−2
2,θ Var(Û1,θ|θ) + U2

1,θU
−4
2,θ Var(Û2,θ|θ)

− 2U1,θU
−3
2,θ Cov(Û1,θ, Û2,θ|θ)

= U−2
2,θ

T∑
t=2

(
θ2tD

2
t−1 + θ2t−1D

2
t +D2

tD
2
t−1 + 2θtθt−2D

2
t−1

)
+ U2

1,θU
−4
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1)

− U1,θU
−3
2,θ (2

T∑
t=2

(θtθt−1 + θt−1θt−2)D
2
t−1)

≤ U−2
2,θ

T∑
t=2

(
θ2tD

2
t−1 + θ2t−1D

2
t +D2

tD
2
t−1 + (θ2t + θ2t−2)D

2
t−1

)
+ U2

1,θU
−4
2,θ (2

T∑
t=2

D4
t−1 + 4

T∑
t=2

θ2t−1D
2
t−1)

+ |U1,θ|U−3
2,θ (

T∑
t=2

(
θ2t + 2θ2t−1 + θ2t−2

)
D2

t−1)

≤ D2
MU−2

2,θ

T∑
t=2

(
θ2t + θ2t−1 + θ2t + θ2t−2

)
+D4

MU−2
2,θ (T − 1)

+ 2D2
MU2

1,θU
−4
2,θ (T − 1) + 4D2

MU2
1,θU

−3
2,θ

+D2
M |U1,θ|U−3

2,θ (
T∑
t=2

(
θ2t + 2θ2t−1 + θ2t−2

)
)
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= 2D2
MU−2

2,θ

T∑
t=2

θ2t +D2
MU−1

2,θ +D2
MU−2

2,θ

T∑
t=2

θ2t−2

+D4
MU−2

2,θ (T − 1) + 2D2
MU2

1,θU
−4
2,θ (T − 1) + 4D2

MU2
1,θU

−3
2,θ

+D2
M |U1,θ|U−3

2,θ

T∑
t=2

θ2t + 2D2
M |U1,θ|U−2

2,θ

+D2
M |U1,θ|U−3

2,θ

T∑
t=2

θ2t−2, (3.94)

where D2
M = supt D

2
t . Therefore, by the fact that Var(ρ̂θ − ρθ|θ) = Var(ρ̂θ|θ), we

have

E (Var(ρ̂θ − ρθ|θ)) ≤ 2D2
M E

(
U−2
2,θ

T∑
t=2

θ2t

)
+D2

M E
(
U−1
2,θ

)
+D2

M E

(
U−2
2,θ

T∑
t=2

θ2t−2

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+D2

M E

(
|U1,θ|U−3

2,θ

T∑
t=2

θ2t

)

+ 2D2
M E

(
|U1,θ|U−2

2,θ

)
+D2

M E

(
|U1,θ|U−3

2,θ

T∑
t=2

θ2t−2

)

= 2D2
M E

(
U−2
2,θ

T∑
t=2

θ2t

)
+D2

M E

(
U−2
2,θ

T∑
t=2

θ2t−2

)

+D2
M E

(
|U1,θ|U−3

2,θ

T∑
t=2

θ2t

)
+D2

M E

(
|U1,θ|U−3

2,θ

T∑
t=2

θ2t−2

)
+D2

M E
(
U−1
2,θ

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+ 2D2

M E
(
|U1,θ|U−2

2,θ

)
≤ 2D2

M E

(
U−2
2,θ

T∑
t=2

θ2t

)
+D2

M E

(
U−2
2,θ

T∑
t=2

θ2t−2

)

+D2
M

√
E
(
U2
1,θU

−2
2,θ

)√√√√E

(
U−2
2,θ

T∑
t=2

θ2t

)2

+D2
M

√
E
(
U2
1,θU

−2
2,θ

)√√√√E

(
U−2
2,θ

T∑
t=2

θ2t−2

)2
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+D2
M E

(
U−1
2,θ

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+ 2D2

M E
(
|U1,θ|U−2

2,θ

)
(3.95)

= D2
M

(
2E

(
U−2
2,θ

T∑
t=2

θ2t

)
+ E

(
U−2
2,θ

T∑
t=2

θ2t−2

))

+D2
M

√
E (ρ2θ)


√√√√E

(
U−2
2,θ

T∑
t=2

θ2t

)2

+

√√√√E

(
U−2
2,θ

T∑
t=2

θ2t−2

)2


+D2
M E

(
U−1
2,θ

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+ 2D2

M E
(
|U1,θ|U−2

2,θ

)
, (3.96)

where we use Cauchy-Schwarz inequality to obtain (3.95).

To compute the right hand side of (3.96), we compute the first and the second

moments of U−2
2,θ

T∑
t=2

θ2t and U−2
2,θ

T∑
t=2

θ2t−2, respectively. From (3.84) and (3.85), we

have

E

(
U−2
2,θ

T∑
t=2

θ2t

)
≤ (2ρ2 + 1 + 2σ2)M1,

and E

(
U−2
2,θ

T∑
t=2

θ2t−2

)
≤ 2M1,

where M1 = max{E(U−1
2,θ ),E(U

−2
2,θ )}. Therefore

2D2
M E(U−2

2,θ

T∑
t=2

θ2t ) +D2
M E(U−2

2,θ

T∑
t=2

θ2t−2) ≤ 2D2
M(2ρ2 + 2 + 2σ2)M1. (3.97)

Next, we will find the second moment of U−2
2,θ

T∑
t=2

θ2t and U−2
2,θ

T∑
t=2

θ2t−2. Since U2,θ

is a function of (θ1, θ2, . . . , θT−1), U2,θ and ηT are independent. From (3.82), the
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second moment of U−2
2,θ

T∑
t=2

θ2t can be computed as follows.

E

(
U−2
2,θ

T∑
t=2

θ2t

)2

≤ E
(
(2ρ2 + 1)U−1

2,θ + 2η2TU
−2
2,θ

)2
≤ 2E

(
(2ρ2 + 1)U−1

2,θ

)2
+ 2E

(
2η2TU

−2
2,θ

)2
= 2(2ρ2 + 1)2 E(U−2

2,θ ) + 12σ4 E(U−4
2,θ )

≤
(
2(2ρ2 + 1)2 + 12σ4

)
M2, (3.98)

where M2 = max{E(U−2
2,θ ),E(U

−4
2,θ )}. Similarly, from (3.83), we have

E

(
U−2
2,θ

T∑
t=2

θ2t−2

)2

≤ 4E(U−2
2,θ ). (3.99)

Next, we compute the expectations of the U2
1,θU

−4
2,θ and U2

1,θU
−3
2,θ . From Lemma 3.8

with (m,n) = (2, 4) and (1, 3), we have

E(U2
1,θU

−4
2,θ ) ≤

O(T−2) if |ρ| < 1,

O(T−4) if |ρ| = 1,

(3.100)

and E(U2
1,θU

−3
2,θ ) ≤

O(T−1) if |ρ| < 1,

O(T−2) if |ρ| = 1,

(3.101)

respectively.

Consider the case |ρ| < 1. Notice from Lemma 3.4 (3) that E(ρ2θ) = O(1).

Since M2 = max{E(U−2
2,θ ),E(U

−4
2,θ )}, from Corollary 2.58 (2) and (3.22) we have

M2 ≤ E(U−2
2,θ ) + E(U−4

2,θ ) = O
(
max{T−2, T−4}

)
= O(T−2). (3.102)

From (3.22), (3.87)-(3.89) (3.96)-(3.102), we have
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E (Var(ρ̂θ − ρθ|θ)) ≤ 2D2
M(2ρ2 + 2 + 2σ2)M1

+D2
M

√
E(ρ2θ)

(√
(2(2ρ2 + 1)2 + 12σ4)M2 +

√
4E(U−2

2,θ )

)
+D2

M E
(
U−1
2,θ

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+ 2D2

M E
(
|U1,θ|U−2

2,θ

)
= O(T−1) +O(1)O(T−1) +O(T−1) +O(T )O(T−2)

+O(T )O(T−2) +O(T−1) +O(T−1)

= O(T−1). (3.103)

Similary for the case |ρ| = 1. Since M2 = max{E(U−2
2,θ ),E(U

−4
2,θ )}, from Corollary

2.58 (2) and (3.22) we have,

M2 ≤ E(U−2
2,θ ) + E(U−4

2,θ ) = O
(
max{T−4, T−8}

)
= O(T−4). (3.104)

From (3.22), (3.87)-(3.88), (3.91) (3.96)-(3.101), and (3.104), we have

E (Var(ρ̂θ − ρθ|θ)) ≤ 2D2
M(2ρ2 + 2 + 2σ2)M1

+D2
M

√
E(ρ2θ)

(√
(2(2ρ2 + 1)2 + 12σ4)M2 +

√
4E(U−2

2,θ )

)
+D2

M E
(
U−1
2,θ

)
+D4

M(T − 1)E
(
U−2
2,θ

)
+ 2D2

M(T − 1)E
(
U2
1,θU

−4
2,θ

)
+ 4D2

M E
(
U2
1,θU

−3
2,θ

)
+ 2D2

M E
(
|U1,θ|U−2

2,θ

)
= O(T−2) +O(1)O(T−2) +O(T−2) +O(T )O(T−4)

+O(T )O(T−4) +O(T−2) +O(T−2)

= O(T−2). (3.105)
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It follows that E (Var(ρ̂θ − ρθ|θ)) is of order T−1 for |ρ| < 1, and of order T−2 for

|ρ| = 1. Hence, the expected value of Var(ρ̂θ|θ) is bound as C1T
−1 for each case

of ρ. In particular,

E (Var(ρ̂θ − ρθ|θ)) =

O(T−1) if |ρ| < 1,

O(T−2) if |ρ| = 1.

(3.106)

Next, we will compute the variance of E(ρ̂θ − ρθ|θ). By applying the Cauchy-

Schwarz inequality (
∑n

i=1 xi)
2 ≤ n (

∑n
i=1 x

2
i ) to (3.81), we have

Var (|E(ρ̂θ − ρθ|θ)|) ≤ E
(
E(ρ̂θ − ρθ|θ)2

)
≤ E

(
D2

MU−2
2,θ

T∑
t=2

θ2t +D2
MU−1

2,θ +D2
MU−2

2,θ

T∑
t=2

θ2t−2

+ 2D2
M(T − 1)|U1,θ|U−3

2,θ + 4D2
M |U1,θ|U−2

2,θ

)2

≤ 5D2
M E

(
U−2
2,θ

T∑
t=2

θ2t

)2

+ 5D2
M E

(
U−2
2,θ

)
+ 5D2

M E

(
U−2
2,θ

T∑
t=2

θ2t−2

)2

+ 10D2
M(T − 1)2 E

(
U2
1,θU

−6
2,θ

)
+ 20D2

M E
(
U2
1,θU

−4
2,θ

)
. (3.107)

From Lemma 3.8 with (m,n) = (2, 6), the order of expectation of U2
1,θU

−6
2,θ can be

found as:

E(U2
1,θU

−6
2,θ )

O(T−4) if |ρ| < 1,

O(T−8) if |ρ| = 1.

(3.108)

Similarly for U2
1,θU

−4
2,θ , from Lemma 3.8 with (m,n) = (2, 4), the order of expecta-

tion of U2
1,θU

−4
2,θ is

E(U2
1,θU

−4
2,θ )

O(T−2) if |ρ| < 1,

O(T−4) if |ρ| = 1.

(3.109)
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If |ρ| < 1, then E
(
U−2
2,θ

)
= O(T−2) by Lemma 3.3 (3). From (3.98)-(3.99), and

(3.107)-(3.109), we have

Var (E(ρ̂θ − ρθ|θ)) =
(
5D2

M(2(2ρ2 + 1)2 + 12σ4
)
M2 + 5D2

M E
(
U−2
2,θ

)
+ 20D2

M E
(
U−2
2,θ

)
+ 10D2

M(T − 1)2 E
(
U2
1,θU

−6
2,θ

)
+ 20D2

M E
(
U2
1,θU

−4
2,θ

)
= O(T−2) +O(T−2) +O(T−2) +O(T 2)O(T−4) +O(T−2)

= O(T−2). (3.110)

Similarly for the case |ρ| = 1, we have E
(
U−2
2,θ

)
= O(T−4). From (3.98)-(3.99), and

(3.107)-(3.109), we have

Var (E(ρ̂θ − ρθ|θ)) =
(
5D2

M(2(2ρ2 + 1)2 + 12σ4
)
M2 + 5D2

M E
(
U−2
2,θ

)
+ 20D2

M E
(
U−2
2,θ

)
+ 10D2

M(T − 1)2 E
(
U2
1,θU

−6
2,θ

)
+ 20D2

M E
(
U2
1,θU

−4
2,θ

)
= O(T−4) +O(T−4) +O(T−4) +O(T 2)O(T−8) +O(T−4)

= O(T−4). (3.111)

Therefore, by using (3.106) and (3.110)-(3.111) in (3.93), we have

Var (ρ̂θ − ρθ) = E (Var(ρ̂θ − ρθ|θ)) + Var (E(ρ̂θ − ρθ|θ))

=

O(T−1) +O(T−2) if |ρ| < 1,

O(T−2) +O(T−4) if |ρ| = 1.

=

O(T−1) if |ρ| < 1,

O(T−2) if |ρ| = 1.

(3.112)

Hence, Var (ρ̂θ − ρθ) <
C3

T
for some constant C3, and implies that it converges to

zero for all |ρ| ≤ 1.
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Theorem 3.12. Let ρ̂θ = Û3,θ be defined in Theorem 3.10. Then, ρ̂θ is a consistent

estimator of ρ.

Proof. From Theorem 2.48, we can conclude that

ρ̂θ − ρθ
p−→ 0. (3.113)

Since ρθ is a consistent estimator of ρ, we have

ρ̂θ − ρ = (ρ̂θ − ρθ) + (ρθ − ρ)
p−→ 0.

Corollary 3.13. Let ρ̂θ = Û3,θ be defined in Theorem 3.10. Then,

(1) ρ̂θ − ρθ = Op(T
− 1

2 ) if |ρ| < 1,

(2) ρ̂θ − ρθ = Op(T
−1) if |ρ| = 1.

Proof. (1) Notice that, from (3.90) and (3.112) with |ρ| < 1,

E (ρ̂θ − ρθ)
2 = Var (ρ̂θ − ρθ) + E2 (ρ̂θ − ρθ) = O(T−1) +O(T−2) = O(T−1).

(3.114)

By Corollary 2.62, ρ̂θ − ρθ = Op(T
− 1

2 ).

(2) Similarly for the case |ρ| = 1, from (3.92) and (3.112), we have

E (ρ̂θ − ρθ)
2 = Var (ρ̂θ − ρθ) + E2 (ρ̂θ − ρθ) = O(T−2) +O(T−4) = O(T−2).

(3.115)

By Corollary 2.62, ρ̂θ − ρθ = Op(T
−1).

3.2.4 Asymptotic Distribution for Estimator of Autoregres-

sive Coefficient

In this section, we consider the asymptotic distribution of the estimator ρ̂θ with

ρ = 1. Moreover, we will show that ρ̂θ has the same asymptotic distribution as ρθ.
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Lemma 3.14. Under the assumption on the model (3.13) with ρ = 1 , Û2,θ

T 2
− U2,θ

T 2

converges to zero in probability. In particular,

Û2,θ

T 2

p−→
∞∑
i=1

γ2
i Z

′2
i , (3.116)

where γi = (−1)i+1 2
(2i−1)π

and Z ′
i
iid∼ N(0, σ2).

Proof. Notices that

Û2,θ

T 2
− U2,θ

T 2
=

1

T 2

T∑
t=2

(y2t−1 −D2
t−1)−

1

T 2

T∑
t=2

θ2t−1

=
1

T 2

T∑
t=2

2θt−1et−1 +
1

T 2

T∑
t=2

(e2t−1 −D2
t−1)

=
1

T

T∑
t=2

2

(
θt−1et−1

T

)
+

1

T 2

T∑
t=2

(e2t−1 −D2
t−1). (3.117)

For the first term, notice that E(θiei) = E(θi)E(ei) = 0 for all i, and

Cov(θiei, θjej) = E(θiθjeiej) = E(θiθj)E(eiej) = 0

for any i ̸= j. Hence, the sequence of random variables (θtet)t≥1 is pairwise uncor-

related with zero mean and

Var
(
θt−1et−1

T

)
=

1

T 2
E(θ2t−1)E(e2t−1) =

(t− 1)σ2D2
t−1

T 2
< σ2D2

M .

Hence, by Theorem 2.47 (2), we can conclude that 1
T

∑T−1
t=2 2

(
θt−1

T
et−1

)
converges

to zero in probability.

Since
(
e2t−1 −D2

t−1

)
t≥2

is a sequence of random variables with zero mean and

variance 2D4
t−1 < 2D4

M , from Theorem 2.47 (2), 1
T 2

∑T
t=2(e

2
t−1 − D2

t−1) converges

to zero in probability.

Hence,
Û2,θ

T 2
− U2,θ

T 2

p−→ 0. (3.118)
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From Theorem 3.2 (2), we have

U2,θ

T 2

p−→
∞∑
i=1

γ2
i Z

′2
i ,

where γi = (−1)i+1 2
(2i−1)π

and Z ′
i
iid∼ N(0, σ2). Hence, from Theorem 2.42, we can

conclude that

Û2,θ

T 2
=

(
Û2,θ

T 2
− U2,θ

T 2

)
+

U2,θ

T 2

p−→ 0 +
∞∑
i=1

γ2
i Z

′2
i =

∞∑
i=1

γ2
i Z

′2
i .

Theorem 3.15. Under the assumption of the model (3.13) with ρ = 1. Then

T (ρ̂θ − 1)
p−→

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2

2
∞∑
i=1

γ2
i Z

′2
i

, (3.119)

where γi = (−1)i+1 2
(2i−1)π

and Z ′
i
iid∼ N(0, σ2). In particular, the asymptotic distri-

bution of T (ρ̂θ − 1) is the same as T (ρθ − 1).

Proof. Notice that

T (ρ̂θ − 1) = T

(
T∑
t=2

(
y2t−1 −D2

t−1

))−1( T∑
t=2

(
ytyt−1 − y2t−1 +D2

t−1

))

=

(
1

T 2

T∑
t=2

(
y2t−1 −D2

t−1

))−1(
1

T

T∑
t=2

(
ytyt−1 − y2t−1 +D2

t−1

))
.

(3.120)

From (3.13), the numerator term of T (ρ̂θ − 1) can be simplified as:

1

T

T∑
t=2

(
ytyt−1 − y2t−1 +D2

t−1

)
=

1

T

T∑
t=2

(
(θt−1 + et−1)(θt + et − θt−1 − et−1) +D2

t−1

)
=

1

T

T∑
t=2

(
(θt−1 + et−1)(ηt + et − et−1) +D2

t−1

)
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=
1

T

T∑
t=2

θt−1ηt +
1

T

T∑
t=2

θt−1et −
1

T

T∑
t=2

θt−1et−1

+
1

T

T∑
t=2

ηtet−1 +
1

T

T∑
t=2

etet−1 −
1

T

T∑
t=2

(e2t−1 −D2
t−1).

(3.121)

To find the limit of the term on the left hand side in (3.121), we find limits of the

following terms.

(a) 1

T

T∑
t=2

θt−1ηt.

(b) 1

T

T∑
t=2

θt−1 (et − et−1) .

(c) 1

T

T∑
t=2

ηtet−1.

(d) 1

T

T∑
t=2

etet−1.

(e) 1

T

T∑
t=2

(e2t−1 −D2
t−1).

(a) From Theorem 3.2 (1) on the model (3.8), we can conclude that

1

T

T∑
t=2

θt−1ηt
p−→ 1

2

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2

2
, (3.122)

where γi = (−1)i+1 2
(2i−1)π

, and Z ′
i
iid∼ N(0, σ2).

(b) Notice from (3.13) with ρ = 1 that ηt = θt − θt−1 and θt =
∑t

i=1 ηt. Hence,

we have

1

T

T∑
t=2

θt−1 (et − et−1) =
1

T

T∑
t=2

θt−1et −
1

T

T−1∑
t=1

θtet

=
θT−1eT

T
− θ1e1

T
+

1

T

T−1∑
t=2

(θt−1 − θt)et

=
1

T

T−1∑
i=1

ηieT − η1e1
T

− 1

T

T−1∑
t=2

ηtet. (3.123)
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Since (ηieT )i≥1 is a sequence of uncorrelated random variables with zero mean

and variance σ2D2
T ≤ σ2D2

M for all i, from Theorem 2.47 (2), 1
T

∑T−1
i=1 ηieT con-

verges to zero in probability.

Consider η1e1
T

. Notice that E
(
η1e1
T

)
= 0, and Var

(
η1e1
T

)
=

σ2D2
1

T 2 . Since Var
(
η1e1
T

)
converges to zero, by Theorem 2.48, η1e1

T
converges to zero in probability.

Since (ηtet)t≥1 is a sequence of independent random variables with zero mean

and variance σ2D2
t < σ2D2

M for all t, from Theorem 2.47 (2), 1

T

T−1∑
t=2

ηtet converges

to zero in probability.

Hence, from (3.123), we can conclude that

1

T

T∑
t=2

θt−1 (et − et−1)
p−→ 0. (3.124)

(c) Notice that (ηtet−1)t≥2 is a sequence of independent random variables with

zero mean and variance σ2D2
t−1 ≤ σ2D2

M . From Theorem 2.47 (2), 1

T

T∑
t=2

ηtet−1

converges to zero in probability.

(d) Since (etet−1)t≥2 is a sequence of uncorrelated random variables with zero

mean and variance D2
tD

2
t−1 ≤ D4

M , from Theorem 2.47 (2), 1

T

T∑
t=2

etet−1 converges

to zero in probability.

(e) Since (e2t −D2
t )t≥1 is a sequence of independent random variables with zero

mean and variance 2D2
t ≤ 2D2

M , from Theorem 2.47 (2), 1
T

T∑
t=2

(e2t−1 − D2
t−1) con-

verges to zero in probability.

Hence, from (3.121) and (a)-(e),

1

T

T∑
t=2

(
ytyt−1 − y2t−1 +D2

t−1

) p−→ 1

2

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2

2
. (3.125)

Let g(x) =
1

x
. Since g is a continuous function, by applying Theorem 2.41 to

(3.116) with function g, we have
1

Û2,θ

T 2

p−→ 1
∞∑
i=1

γ2
i Z

′2
i

. (3.126)
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From (3.125), (3.126), and Theorem 2.42, we can conclude that

T (ρ̂θ − 1)
p−→

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2

2
∞∑
i=1

γ2
i Z

′2
i

, (3.127)

where γi = (−1)i+1 2
(2i−1)π

, and Z ′
i
iid∼ N(0, σ2). From Theorem 3.2 (4), the asymp-

totic distribution of T (ρ̂θ − 1) and T (ρθ − 1) are the same.

3.3 Test Statistic for Stationary Test

In this section, we derive a test statistic for the stationary test for the model (3.13).

However, the estimator of the variance of noise σ2 is necessary to obtain the test

statistic. Hence, we will first obtain a consistent estimator of σ2 in Section 3.3.1.

Then we use the estimate to obtain a stationary test in Section 3.3.2.

3.3.1 Estimator of Variance of Noises

In this section, we derive an estimator for the variance of noises σ2 in the model

(3.13). This estimator will be used to find the test statistic for the stationary test.

Assume that there is no sampling errors in the model (3.13). Dickey [5] showed

that the estimator for σ2 is U4,θ, defined in (3.19). In addition, the estimator U4,θ

is a consistent estimator.

Proposition 3.16 ([5], Corollary 4.2, page 43). The statistic U4,θ defined in (3.19)

is a consistent estimator of σ2 for all |ρ| ≤ 1.

However, if we ignore sampling errors and replace θt with yt, there is a bias

term in the naive estimator of σ2, denoted by U4,y. Therefore, the naive estimator

U4,y is not unbiased. In Theorem 3.17, we derive a consistent estimator of σ2. To

simplify notations, we define the following functions of a random variable P .
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Uθ(P ) =
1

T − 2

T∑
t=2

(θt − Pθt−1)
2,

Uy(P ) =
1

T − 2

T∑
t=2

(yt − Pyt−1)
2.

(3.128)

Notice that Uθ(ρθ) = U4,θ and Uy(ρy) = U4,y. The next theorem will show the

consistent estimator of σ2. Some notations are followed from (3.19).

Theorem 3.17. Define the statistic Û4,θ by

Û4,θ =
1

T − 2

T∑
t=2

(yt − ρ̂θyt−1)
2 − 1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
.

Then Û4,θ is a consistent estimator of σ2 for all |ρ| ≤ 1.

Proof. The statistic Û4,θ can be written as Uy(ρ̂θ)− 1
T−2

∑T
t=2

(
D2

t + ρ̂2θD
2
t−1

)
. From

the model (3.13), we notice that

(T − 2)Uy(ρ̂θ) =
T∑
t=2

(yt − ρ̂θyt−1)
2

=
T∑
t=2

(θt + et − ρ̂θθt−1 − ρ̂θet−1)
2

=
T∑
t=2

(θt − ρ̂θθt−1)
2 +

T∑
t=2

(et − ρ̂θet−1)
2

+ 2
T∑
t=2

(θt − ρ̂θθt−1) (et − ρ̂θet−1)

=
T∑
t=2

(θt − ρθθt−1 + (ρθ − ρ̂θ)θt−1)
2 +

T∑
t=2

(et − ρ̂θet−1)
2

+ 2
T∑
t=2

(θt − ρθt−1 + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)
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=
T∑
t=2

(θt − ρθθt−1)
2 + (ρθ − ρ̂θ)

2

T∑
t=2

θ2t−1

+ 2(ρθ − ρ̂θ)
T∑
t=2

(θt − ρθθt−1) θt−1 +
T∑
t=2

(et − ρ̂θet−1)
2

+ 2
T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)

= (T − 2)Uθ(ρθ) + (ρθ − ρ̂θ)
2

T∑
t=2

θ2t−1

+ 2(ρθ − ρ̂θ)

(
T∑
t=2

θtθt−1 − ρθ

T∑
t=2

θ2t−1

)
+

T∑
t=2

(et − ρ̂θet−1)
2

+ 2
T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)

= (T − 2)Uθ(ρθ) + (ρθ − ρ̂θ)
2U2,θ + 2(ρθ − ρ̂θ) (U1,θ − ρθU2,θ)

+
T∑
t=2

(et − ρ̂θet−1)
2 + 2

T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)

= (T − 2)Uθ(ρθ) + (ρθ − ρ̂θ)
2U2,θ +

T∑
t=2

(et − ρ̂θet−1)
2

+ 2
T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1) , (3.129)

where we apply the fact that ρθ = U1,θU
−1
2,θ to obtain (3.129).

Hence, from (3.129), we can simplify the statistic Û4,θ − U4,θ as follows.

Û4,θ − U4,θ = Uy(ρ̂θ)−
1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
− Uθ(ρθ)

=
1

T − 2
(ρθ − ρ̂θ)

2U2,θ +
1

T − 2

T∑
t=2

(et − ρ̂θet−1)
2

− 1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
+

2

T − 2

T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1) . (3.130)
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To investigate the convergence in probability of the term on the right hand side of

(3.130), we find the convergence in probability of the following terms.

(a) 1

T − 2
(ρθ − ρ̂θ)

2U2,θ,

(b) 1

T − 2

T∑
t=2

(et − ρ̂θet−1)
2 − 1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
,

(c) 2

T − 2

T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1) .

For (a), we will consider into two cases: |ρ| < 1, and |ρ| = 1. Consider the

case |ρ| < 1. From Theorem 3.1 (2), U2,θ

T
converges in probability to σ2

1− ρ2
. By

applying Theorem 2.42 (2) to (3.113), we can conclude that

1

T − 2
(ρθ − ρ̂θ)

2U2,θ =
T

T − 2
(ρθ − ρ̂θ)

2U2,θ

T

p−→ 0.

Consider the case |ρ| = 1. From Theorem 3.2 (2),

U2,θ

T 2

p−→
∞∑
i=1

γ2
i Z

′2
i ,

where Z ′
i
iid∼ N(0, σ2) and γi = (−1)i+1 2

(2i−1)π
. From Corollary 3.13 (2), T (ρθ−ρ̂θ) =

Op(1). In addition, from (3.113), ρθ − ρ̂θ = op(1). By applying Corollary 2.61 (3),

it follows that T (ρθ − ρ̂θ)
2 = Op(1)op(1) = op(1). Hence, we can conclude that

1

T − 2
(ρθ − ρ̂θ)

2U2,θ =

(
T

T − 2

)
T (ρθ − ρ̂θ)

2U2,θ

T 2
= op(1).

Therefore, 1

T − 2
(ρθ − ρ̂θ)

2U2,θ converges to zero in probability.

For (b), notice that

1

T − 2

T∑
t=2

(et − ρ̂θet−1)
2 − 1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
=

1

T − 2

T∑
t=2

(
e2t −D2

t

)
+ ρ̂2θ

1

T − 2

T∑
t=2

(
e2t−1 −D2

t−1

)
+ 2ρ̂θ

1

T − 2

T∑
t=2

etet−1.

(3.131)
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From Theorem 3.12, ρ̂θ converges in probability to ρ. Since (e2t −D2
t )t≥1 is a

sequence of independent random variables with zero mean and variance 2D4
t ≤

2D4
M , from Theorem 2.47 (2), we have

1

T − 2

T∑
t=2

(
e2t −D2

t

)
+ ρ̂2θ

1

T − 2

T∑
t=2

(
e2t−1 −D2

t−1

) p−→ 0.

Notice that (etet−1)t≥1 is a sequence of uncorrelated random variables with zero

mean and variance D2
tD

2
t−1 ≤ D4

M , from Theorem 2.47 (2), we have

2ρ̂θ
1

T − 2

T∑
t=2

etet−1
p−→ 0.

Therefore, 1

T − 2

T∑
t=2

(et − ρ̂θet−1)
2 − 1

T − 2

∑T
t=2

(
D2

t + ρ̂2θD
2
t−1

)
converges to zero

in probability.

For (c), notice that

2

T − 2

T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)

=
2

T − 2

T∑
t=2

ηtet−
2ρ̂θ

T − 2

T∑
t=2

ηtet−1+
2(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et−
2ρ̂θ(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et−1.

(3.132)

Since (ηtet)t≥1 is a sequence of independent random variables with zero mean and

variance D2
t σ

2 ≤ σ2D2
M , from Theorem 2.47 (2),

2

T − 2

T∑
t=2

ηtet
p→ 0, (3.133)

for |ρ| ≤ 1.

Similarly for the sequence of independent random variables (ηtet−1)t≥2. Since ρ̂θ is

a consistent estimator of ρ, from Theorem 2.42 and Theorem 2.47 (2),
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2ρ̂θ
T − 2

T∑
t=2

ηtet−1
p→ 0, (3.134)

for |ρ| ≤ 1.

For the last two terms in (3.132), we will consider into two cases: |ρ| < 1, and

|ρ| = 1.

Consider the case |ρ| < 1. By Theorem 3.12, ρ− ρ̂θ and ρ̂θ(ρ− ρ̂θ) both converge

to zero in probability. Recall from Section 3.1.1 that Var(θt) =
σ2

1− ρ2
for all

t ≥ 1. Since (θt)t≥1 and (et)t≥1 are pairwise independent, (θt−1et)t≥2 is a sequence

of uncorrelated random variables with zero mean and variance σ2D2
t

1− ρ2
≤ σ2D2

M

1− ρ2
.

Hence, from Theorem 2.42 and Theorem 2.47 (2),

2(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et
p−→ 0. (3.135)

Similarly, (θt−1et−1)t≥2 is a sequence of uncorrelated random variables with zero

mean and variance
σ2D2

t−1

1− ρ2
≤ σ2D2

M

1− ρ2
. Hence, from Theorem 2.42 and Theorem

2.47 (2),
2ρ̂θ(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et−1
p−→ 0. (3.136)

Consider the case |ρ| = 1. From Theorem 3.12, we notice that ρ− ρ̂θ = op(1) and

ρ̂θ(ρ− ρ̂θ) = op(1). First, we consider 1
T−2

T∑
t=2

θt−1et.

Recall from Section 3.1.1 that E(θ2t ) = 0 and Var(θt) = tσ2 for all t ≥ 1. From

(θt−1et)t≥2 is a sequence of uncorrelated random variables and θt−1, and et are

independent, we have

E

(
1

T − 2

T∑
t=2

θt−1et

)2

=
1

(T − 2)2
E

(
T∑
t=2

θ2t−1e
2
t

)

+
2

(T − 2)2
E

( ∑
2≤i<j≤T

θi−1eiθj−1ej

)

=
1

(T − 2)2

T∑
t=2

E
(
θ2t−1e

2
t

)
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=
1

(T − 2)2

T∑
t=2

E
(
θ2t−1

)
E
(
e2t
)

=
1

(T − 2)2

T∑
t=2

tσ2D2
t

≤ σ2D2
M

(T − 2)2
(T − 1)T

2

= O(1). (3.137)

Hence, from Corollary 2.62, 1

T − 2

T∑
t=2

θt−1et = Op(1). Therefore, from Lemma

2.61(3),
2(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et = op(1)Op(1) = op(1). (3.138)

Similarly for the term 1

T − 2

T∑
t=2

θt−1et−1, from (θt−1et−1)t≥2 is a sequence of uncor-

related random variables and θt−1, and et are independent, we have

E

(
1

T − 2

T∑
t=2

θt−1et−1

)2

=
1

(T − 2)2
E

(
T∑
t=2

θ2t−1e
2
t−1

)

+
2

(T − 2)2
E

( ∑
2≤i<j≤T

θi−1ei−1θj−1ej−1

)

=
1

(T − 2)2

T∑
t=2

E
(
θ2t−1e

2
t−1

)
=

1

(T − 2)2

T∑
t=2

E
(
θ2t−1

)
E
(
e2t−1

)
=

1

(T − 2)2

T∑
t=2

tσ2D2
t−1

≤ σ2D2
M

(T − 2)2
(T − 1)T

2

= O(1). (3.139)
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Hence, 1

T − 2

T∑
t=2

θt−1et−1 = Op(1). Therefore, from Lemma 2.61 (3),

2ρ̂θ(ρ− ρ̂θ)

T − 2

T∑
t=2

θt−1et−1 = op(1)Op(1) = op(1). (3.140)

Consequently, from (3.133)-(3.136), (3.138) (3.140) to (3.132), we can conclude

that
2

T − 2

T∑
t=2

(ηt + (ρ− ρ̂θ)θt−1) (et − ρ̂θet−1)
p−→ 0.

From (3.130) and (a)-(c), we can conclude that

Û4,θ − U4,θ
p−→ 0. (3.141)

Therefore, from Theorem (3.16),

Û4,θ = Û4,θ − U4,θ + U4,θ
p−→ σ2. (3.142)

3.3.2 Representation of the Test Statistic

In previous sections, we have obtained the estimators of ρ and σ2 under model

(3.13). In this section, we investigate the test statistic for stationary test τθ, under

hypothesis ρ = 1.

Recall from Section 3.1.1 that the sequence of true variables {θt}t≥1 is not

a stationary time series if |ρ| = 1. The stationary test is the test of the null

hypothesis that |ρ| = 1 against the alternative hypothesis that |ρ| < 1. That is,

H0 : |ρ| = 1 or nonstationary AR(1),

against H1 : |ρ| < 1 or stationary AR(1).
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However, Dickey [5] considers only the asymptotic distribution of ρθ and the

test statistic under the null hypothesis that ρ = 1. The asymptotic distribution for

the case ρ = 1 can be extended to ρ = −1. In addition, the asymptotic distribution

of ρθ given ρ = −1 is equal to the mirror image of the asymptotic distribution of

ρθ given ρ = 1 ([8]).

Theorem 3.18 ([5], Theorem 5.3, page 66). Let ρθ,1 and ρθ,−1 be the estimator of

ρ on the AR(1) model (3.1) with ρ = 1 and ρ = −1, respectively. Then, for any

real values a,

P (ρθ,1 − 1 > a) = P (ρθ,−1 + 1 < −a) .

In a similar way, the asymptotic distribution of test statistic τθ under ρ = −1

is identical to the mirror image of the asymptotic distribution of τθ under ρ = 1

([8]).

The t-test statistic, for the null hypothesis that ρ = 1, under the AR(1) model

(3.8) is

τθ =
ρθ − 1

Sρθ

=
(ρθ − 1)

√
U2,θ√

U4,θ

, (3.143)

where Sρθ =
√

U4,θU
−1
2,θ is the standard deviation of ρθ for ρ = 1. The null hypoth-

esis rejected if τθ is sufficient large.

From the expression of τθ, we can see that U4,θ and U2,θ are unknown because

the true variables {θt}t≥1 are unobserved. Recall from Theorem 3.10 that Û2,θ is

an unbiased estimator of U2,θ. In addition, from (3.113) and (3.141), ρ̂θ − ρθ and

Û4,θ − U4,θ both converge to zero in probability. Hence, we replace ρθ, U2,θ, and

U4,θ by their estimates. That is

τ̂θ =
(ρ̂θ − 1)

√
Û2,θ√

Û4,θ

. (3.144)

The next theorem will show that our statistic τ̂θ can be used to represent the

test statistic τθ, under the null hypothesis that ρ = 1. In addition, τ̂θ has the same

asymptotic distribution as τθ.
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Corollary 3.19. Under the conditions that Û2,θ and Û4,θ are both positive, let τ̂θ

be the statistic defined in (3.144). Then

τ̂θ
p−→

(
∞∑
i=1

√
2γiZi

)2

− 1

2

√ ∞∑
i=1

γ2
i Z

2
i

,

where γi = (−1)i+1 2
(2i−1)π

and Zi
iid∼ N(0, 1). In addition, τ̂θ has the same asymp-

totic distribution as τθ.

Proof. The test statistic τ̂θ can be simplified as follows.

τ̂θ =
(ρ̂θ − 1)

√
Û2,θ√

Û4,θ

=
T (ρ̂θ − 1)

√
Û2,θ

T 2√
Û4,θ

. (3.145)

By applying Theorem 2.41 on (3.116) with continuous function f(x) =
√
x, we

have √
Û2,θ

T 2

p−→

√√√√2
∞∑
i=1

γ2
i Z

′2
i . (3.146)

Hence, by applying Theorem 2.42 on (3.127) and (3.146), we have

T (ρ̂θ − 1)

√
Û2,θ

T 2

p−→

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2√
2

∞∑
i=1

γ2
i Z

′2
i

, (3.147)

where γi = (−1)i+1 2
(2i−1)π

, and Z ′
i
iid∼ N(0, σ2).

From Theorem 3.17, Û4,θ is a consistent estimator of σ2. By applying Theorem

(2.41) with function 1√
x
, we have

1√
Û4,θ

p−→ 1√
σ2

. (3.148)
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Hence, from (3.147), we have

τ̂θ =
(ρ̂θ − 1)

√
Û2,θ√

Û4,θ

p−→

(
∞∑
i=1

√
2γiZ

′
i

)2

− σ2√
2σ2

∞∑
i=1

γ2
i Z

′2
i

=

(
∞∑
i=1

√
2γi

Z′
i

σ2

)2

− 1√
2

∞∑
i=1

γ2
i
Z′2
i

σ2

. (3.149)

Since Z ′
i
iid∼ N(0, σ2), Z′

i

σ

iid∼ N(0, 1). Hence, τ̂θ converges in probability to

( ∞∑
i=1

√
2γiZi

)2

−1

2

√
∞∑
i=1

γ2
i Z

2
i

,

where Zi
iid∼ N(0, 1). From Theorem 3.2 (4), the asymptotic distribution of τ̂θ and

τθ are the same.

3.4 Positive Adjustments to the Estimators

In previous section, we have obtained the test statistic under the null hypothesis

ρ = 1 on the model (3.13). This test statistic is well-defined under the condition

that Û2,θ and Û4,θ are both positive. However, this condition is an unnatural setting

for general cases. Our adjusted estimator Û2,θ and Û4,θ can be negative so these

two estimators are not well-defined under a square root function. This situation

will happen if the sampling variance of D2
t ’s are extremely large. In this section, we

introduce an adjustment to the variable selection criterion by suggesting strictly

positive approximations under the specific conditions.

In 2015, Lahiri and Suntornchost [12] advised an adjustment to the variable

selection criterion by the positive approximations h-function presented in Chat-

terjee and Lahiri [4]. The h-function is a positive approximation of x − y, where

x and y are positive. Later, Angkunsit and Suntornchost [2] also introduced the

another positive approximations g-function. The constructions of the h-function

and g-function are given in the following theorem.
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Lemma 3.20 ([2, 13]). Let h : R2 → R be a function defined as

h(x, y) =
2x

1 + exp(2y
x
)
.

Then h is a positive approximation of x−y, where x, y > 0 and y < π
2
x. Moreover,

the error in approximation of h, denoted by Rh, is

Rh(x, y) = h(x, y)− (x− y) = −x
(

tanh
(y
x

)
− y

x

)
. (3.150)

Lemma 3.21 ([2]). Let g : R2 → R be a function defined as

g(x, y) = x+
2x3

(
1− exp

((
y
x

)3))
y2
(
1 + exp

((
y
x

)3)) .

Then g is a positive approximation of x − y, where 0 < y < 3
√
πx. Moreover, the

error in approximation of g, denoted by Rg, is

Rg(x, y) = g(x, y)− (x− y) = −2x3

y2

(
tanh

(
1

2

(y
x

)3)
− 1

2

(y
x

)3)
. (3.151)

The positive approximations of Û2,θ by the h-function and the g-function are

as follows.

Û2,θ,h = h

(
T∑
t=2

y2t−1,

T∑
t=2

D2
t−1

)
=

2
∑T

t=2 y
2
t−1

1 + exp
(

2
∑T

t=2 D
2
t−1∑T

t=2 y
2
t−1

) , (3.152)

and

Û2,θ,g = g

(
T∑
t=2

y2t−1,

T∑
t=2

D2
t−1

)

=

(
T∑
t=2

y2t−1

)
+

2
(∑T

t=2 y
2
t−1

)3(
1− exp

((∑T
t=2 D

2
t−1∑T

t=2 y
2
t−1

)3))
(∑T

t=2D
2
t−1

)2(
1 + exp

((∑T
t=2 D

2
t−1∑T

t=2 y
2
t−1

)3)) . (3.153)
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Similarly for the estimators Û4,θ defined in Theorem 3.17, we define the positive

approximation of Û4,θ in the following:

Û4,θ,h = h

(
1

T − 2

T∑
t=2

(yt − ρ̂θyt−1)
2,

1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

))
, (3.154)

and

Û4,θ,g = g

(
1

T − 2

T∑
t=2

(yt − ρ̂θyt−1)
2,

1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

))
. (3.155)

However, applying either one of these positive adjustments will introduce bias

to the estimates. Therefore, we suggest to apply a positive adjustment only if

the unbiased estimator is negative. Since the probability that either Û2,θ or Û4,θ

is negative approachs to zero as T goes to infinity, the new estimates are still

consistent estimates. The truncated version of estimator of U2,θ and U4,θ as follows.

Û2,θ,htrun =

Û2,θ, if Û2,θ > 0,

Û2,θ,h, otherwise.
(3.156)

Û2,θ,gtrun =

Û2,θ, if Û2,θ > 0,

Û2,θ,g, otherwise.
(3.157)

Û4,θ,htrun =

Û4,θ, if Û4,θ > 0,

Û4,θ,h, otherwise.
(3.158)

Û4,θ,gtrun =

Û4,θ, if Û4,θ > 0,

Û4,θ,g, otherwise.
(3.159)

For the test statistic τ̂θ defined in (3.144). If either Û2,θ or Û4,θ negative, we

substitute all negative estimators in τ̂θ with the positive approximation defined in

(3.156)-(3.159).
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3.5 Numerical Simulation

In this section, we investigate the performances of new estimators and test statistic

comparing to the naive estimators. Recall that the first order autoregressive model

subject to sampling errors is

yt = θt + et, et
ind∼ N(0, D2

t ),

θt = ρθt−1 + ηt, ηt
iid∼ N(0, σ2),

(3.160)

where y0 = θ0 = 0 and et, and ηt are independent normal random variables with

zero mean and variances σ2 and D2
t , respectively. For the simulation experiment,

one thousand samples of size T = 10000 were generated for different values of

ρ and variances of et in (3.160). The variance σ2 is set to be 1 throughout our

numerical study. The method for generating data is as follows.

(1) Generate the variables of interest {θt} from the model

θt = ρθt−1 + ηt,

where ηt ∼ N(0, 1).

(2) Generate the observed variables {yt} from the model

yt = θt + et,

where et ∼ N(0, D2
t ).

1.) Autoregressive Coefficient

In this section, we consider the performances of all estimators of autoregressive

coefficient ρ in two aspects (1) the asymptotic bias and (2) the relationship between

sampling variances and the variance of white noises. We consider the cases where

ρ = 0.4 and 0.7, respectively. For the values of sampling variances of et, we study

different settings of D2
t as follows.
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Case 1. The variance of {et} is a constant not depending on time t. We perform

simulation in three settings.

(1.1) D2
t = 0.5,

(1.2) D2
t = 1,

(1.3) D2
t = 1.5.

Case 2. The variance of the sequence {et} follows a uniform distribution. We perform

simulation in three settings.

(2.1) D2
t ∼ Uni(0.25, 0.75),

(2.2) D2
t ∼ Uni(0.75, 1.25),

(2.3) D2
t ∼ Uni(1.25, 1.75),

where Uni(a, b) is the continuous uniform distribution over interval (a, b).

The results shown in the following tables and figures are presented using the fol-

lowing notations, some notations are followed from Theorem 3.10, (3.19), (3.152)-

(3.153), and (3.156)-(3.157).

(1) ρtrue = U1,θU
−1
2,θ , the Dickey-Fuller estimator or estimator of ρ based on the

variables of interest {θt},

(2) ρnaive = U1,yU
−1
2,y , the estimator of ρ based on observed variables {yt} and

ignore sampling errors,

(3) ρhat = Û1,θÛ
−1
2,θ , an adjustment to naive estimator of ρ that the denominator

can be negative,

(4) ρhat,h = Û1,θÛ
−1
2,θ,h, an adjustment to naive estimator of ρ by the h-function,

(5) ρhat,g = Û1,θÛ
−1
2,θ,g, an adjustment to naive estimator of ρ by the g-function,

(6) ρhat,htrun = Û1,θÛ
−1
2,θ,htrun, a truncation version of the h-function approxima-

tion,
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(7) ρhat,gtrun = Û1,θÛ
−1
2,θ,gtrun, a truncation version of the g-function approxima-

tion.

Tables 3.1-3.4 and Figures 3.2 - 3.5 show comparisons between all estimates of

ρ in terms of sampling variances relative to the variance of white noises (σ2 = 1).

We consider two different settings of sampling variances D2
t : (1) the sampling

variances are constant, and (2) the sampling variances are generated from a uniform

distribution.
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Percentile
1 10 25 50 75 90 100

Case ρ = 0.4, D2
t = 0.5

ρtrue 0.3782 0.3873 0.3932 0.3992 0.4059 0.4117 0.4296
ρnaive 0.2566 0.2686 0.2747 0.2813 0.2883 0.2945 0.3140
ρhat 0.3658 0.3823 0.3909 0.3997 0.4088 0.4175 0.4434
ρhat,h 0.3614 0.3779 0.3863 0.3949 0.4041 0.4128 0.4384
ρhat,g 0.3658 0.3823 0.3909 0.3997 0.4088 0.4175 0.4434
ρhat,htrun 0.3658 0.3823 0.3909 0.3997 0.4088 0.4175 0.4434
ρhat,gtrun 0.3658 0.3823 0.3909 0.3997 0.4088 0.4175 0.4434

Case ρ = 0.4, D2
t = 1

ρtrue 0.3762 0.3881 0.3939 0.4000 0.4064 0.4127 0.4293
ρnaive 0.1936 0.2041 0.2101 0.2171 0.2247 0.2301 0.2467
ρhat 0.3568 0.3775 0.3875 0.3995 0.4119 0.4228 0.4541
ρhat,h 0.3383 0.3579 0.3674 0.3789 0.3917 0.4012 0.4295
ρhat,g 0.3566 0.3772 0.3872 0.3993 0.4117 0.4226 0.4538
ρhat,htrun 0.3568 0.3775 0.3875 0.3995 0.4119 0.4228 0.4541
ρhat,gtrun 0.3568 0.3775 0.3875 0.3995 0.4119 0.4228 0.4541

Case ρ = 0.4, D2
t = 1.5

ρtrue 0.3766 0.3881 0.3940 0.4004 0.4063 0.4116 0.4263
ρnaive 0.1553 0.1646 0.1699 0.1773 0.1841 0.1903 0.2106
ρhat 0.3523 0.3719 0.3844 0.3999 0.4164 0.4301 0.4692
ρhat,h 0.3150 0.3333 0.3443 0.3582 0.3730 0.3843 0.4198
ρhat,g 0.3512 0.3708 0.3832 0.3986 0.4151 0.4287 0.4675
ρhat,htrun 0.3523 0.3719 0.3844 0.3999 0.4164 0.4301 0.4692
ρhat,gtrun 0.3523 0.3719 0.3844 0.3999 0.4164 0.4301 0.4692

Table 3.1: Comparisons of different estimators of ρ varying by different values of
the constant D2

t ’s for the case ρ = 0.4, σ2 = 1, and T = 10000.
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Percentile
1 10 25 50 75 90 100

Case ρ = 0.4, D2
t ∼ Uni(0.25, 0.75)

ρtrue 0.3792 0.3884 0.3936 0.3998 0.4054 0.4103 0.4336
ρnaive 0.2589 0.2692 0.2746 0.2808 0.2876 0.2937 0.3173
ρhat 0.3691 0.3834 0.3907 0.3988 0.4078 0.4159 0.4449
ρhat,h 0.3647 0.3789 0.3861 0.3940 0.4030 0.4109 0.4402
ρhat,g 0.3691 0.3834 0.3907 0.3988 0.4078 0.4159 0.4449
ρhat,htrun 0.3691 0.3834 0.3907 0.3988 0.4078 0.4159 0.4449
ρhat,gtrun 0.3691 0.3834 0.3907 0.3988 0.4078 0.4159 0.4449

Case ρ = 0.4, D2
t ∼ Uni(0.75, 1.25)

ρtrue 0.3794 0.3886 0.3942 0.4001 0.4061 0.4110 0.4297
ρnaive 0.1942 0.2051 0.2109 0.2175 0.2246 0.2299 0.2515
ρhat 0.3606 0.3782 0.3890 0.4009 0.4126 0.4215 0.4616
ρhat,h 0.3412 0.3588 0.3689 0.3800 0.3911 0.4000 0.4383
ρhat,g 0.3604 0.3780 0.3887 0.4006 0.4123 0.4212 0.4614
ρhat,htrun 0.3606 0.3782 0.3890 0.4009 0.4126 0.4215 0.4616
ρhat,gtrun 0.3606 0.3782 0.3890 0.4009 0.4126 0.4215 0.4616

Case ρ = 0.4, D2
t ∼ Uni(1.25, 1.75)

ρtrue 0.3794 0.3877 0.3940 0.4002 0.4062 0.4113 0.4234
ρnaive 0.1513 0.1637 0.1702 0.1774 0.1836 0.1900 0.2162
ρhat 0.3441 0.3716 0.3863 0.4004 0.4138 0.4282 0.4879
ρhat,h 0.3065 0.3322 0.3457 0.3591 0.3709 0.3847 0.4373
ρhat,g 0.3431 0.3703 0.3850 0.3992 0.4125 0.4270 0.4864
ρhat,htrun 0.3441 0.3716 0.3863 0.4004 0.4138 0.4282 0.4879
ρhat,gtrun 0.3441 0.3716 0.3863 0.4004 0.4138 0.4282 0.4879

Table 3.2: Comparisons of different estimators of ρ varying by different values of
the uniformly distributed D2

t ’s for the case ρ = 0.4, σ2 = 1, and T = 10000.
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Percentile
1 10 25 50 75 90 100

Case ρ = 0.7, D2
t = 0.5

ρtrue 0.6828 0.6904 0.6953 0.6997 0.7045 0.7084 0.7216
ρnaive 0.5362 0.5458 0.5511 0.5572 0.5640 0.5693 0.5898
ρhat 0.6771 0.6883 0.6932 0.6996 0.7060 0.7118 0.7318
ρhat,h 0.6745 0.6858 0.6907 0.6972 0.7036 0.7093 0.7297
ρhat,g 0.6771 0.6883 0.6932 0.6996 0.7060 0.7118 0.7318
ρhat,htrun 0.6771 0.6883 0.6932 0.6996 0.7060 0.7118 0.7318
ρhat,gtrun 0.6771 0.6883 0.6932 0.6996 0.7060 0.7118 0.7318

Case ρ = 0.7, D2
t = 1

ρtrue 0.6835 0.6913 0.6955 0.7003 0.7052 0.7092 0.7218
ρnaive 0.4404 0.4507 0.4571 0.4644 0.4713 0.4773 0.4912
ρhat 0.6716 0.6843 0.6921 0.7002 0.7091 0.7156 0.7369
ρhat,h 0.6591 0.6714 0.6794 0.6878 0.6961 0.7028 0.7234
ρhat,g 0.6716 0.6842 0.6920 0.7002 0.7090 0.7155 0.7368
ρhat,htrun 0.6716 0.6843 0.6921 0.7002 0.7091 0.7156 0.7369
ρhat,gtrun 0.6716 0.6843 0.6921 0.7002 0.7091 0.7156 0.7369

Case ρ = 0.7, D2
t = 1.5

ρtrue 0.6843 0.6908 0.6947 0.6999 0.7050 0.7090 0.7201
ρnaive 0.3714 0.3830 0.3894 0.3967 0.4038 0.4106 0.4327
ρhat 0.6634 0.6804 0.6894 0.7007 0.7101 0.7197 0.7439
ρhat,h 0.6339 0.6508 0.6599 0.6705 0.6799 0.6894 0.7158
ρhat,g 0.6631 0.6801 0.6891 0.7004 0.7099 0.7194 0.7437
ρhat,htrun 0.6634 0.6804 0.6894 0.7007 0.7101 0.7197 0.7439
ρhat,gtrun 0.6634 0.6804 0.6894 0.7007 0.7101 0.7197 0.7439

Table 3.3: Comparisons of different estimators of ρ varying by different values of
the constant D2

t ’s for the case ρ = 0.7, σ2 = 1, and T = 10000.
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Percentile
1 10 25 50 75 90 100

Case ρ = 0.7, D2
t ∼ Uni(0.25, 0.75)

ρtrue 0.6838 0.6901 0.6948 0.7000 0.7048 0.7085 0.7224
ρnaive 0.5362 0.5449 0.5510 0.5574 0.5640 0.5697 0.5882
ρhat 0.6792 0.6873 0.6933 0.6999 0.7063 0.7117 0.7348
ρhat,h 0.6768 0.6847 0.6909 0.6975 0.7039 0.7094 0.7324
ρhat,g 0.6792 0.6873 0.6933 0.6999 0.7063 0.7117 0.7348
ρhat,htrun 0.6792 0.6873 0.6933 0.6999 0.7063 0.7117 0.7348
ρhat,gtrun 0.6792 0.6873 0.6933 0.6999 0.7063 0.7117 0.7348

Case ρ = 0.7, D2
t ∼ Uni(0.75, 1.25)

ρtrue 0.6835 0.6903 0.6952 0.6998 0.7045 0.7089 0.7242
ρnaive 0.4401 0.4500 0.4565 0.4642 0.4708 0.4760 0.4942
ρhat 0.6707 0.6832 0.6912 0.6999 0.7084 0.7154 0.7369
ρhat,h 0.6569 0.6705 0.6783 0.6875 0.6955 0.7026 0.7241
ρhat,g 0.6706 0.6831 0.6911 0.6999 0.7083 0.7154 0.7368
ρhat,htrun 0.6707 0.6832 0.6912 0.6999 0.7084 0.7154 0.7369
ρhat,gtrun 0.6707 0.6832 0.6912 0.6999 0.7084 0.7154 0.7369

Case ρ = 0.7, D2
t ∼ Uni(1.25, 1.75)

ρtrue 0.6834 0.6902 0.6953 0.7002 0.7051 0.7089 0.7204
ρnaive 0.3705 0.3812 0.3887 0.3965 0.4042 0.4111 0.4294
ρhat 0.6624 0.6790 0.6894 0.6997 0.7101 0.7206 0.7497
ρhat,h 0.6333 0.6495 0.6595 0.6700 0.6803 0.6904 0.7167
ρhat,g 0.6620 0.6787 0.6891 0.6994 0.7098 0.7203 0.7493
ρhat,htrun 0.6624 0.6790 0.6894 0.6997 0.7101 0.7206 0.7497
ρhat,gtrun 0.6624 0.6790 0.6894 0.6997 0.7101 0.7206 0.7497

Table 3.4: Comparisons of different estimators of ρ varying by different values of
the uniformly distributed D2

t ’s for the case ρ = 0.7, σ2 = 1, and T = 10000.
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(a) ρ = 0.4, D2
t = 0.5

(b) ρ = 0.4, D2
t = 1

(c) ρ = 0.4, D2
t = 1.5

Figure 3.2: Plot of all different estimator (left) and absolute relative bias (right) of ρ
for the case ρ = 0.4, σ2 = 1, T = 10000, and different values of the constant D2

t .
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(a) ρ = 0.7, D2
t = 0.5

(b) ρ = 0.7, D2
t = 1

(c) ρ = 0.7, D2
t = 1.5

Figure 3.3: Plot of all different estimator (left) and absolute relative bias (right) of ρ
for the case ρ = 0.7, σ2 = 1, T = 10000, and different values of the constant D2

t .
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(a) ρ = 0.4, D2
t ∼ Uni(0.25, 0.75)

(b) ρ = 0.4, D2
t ∼ Uni(0.75, 1.25)

(c) ρ = 0.4, D2
t ∼ Uni(1.25, 1.75)

Figure 3.4: Plot of all different estimator (left) and absolute relative bias (right) of ρ
for the case ρ = 0.4, σ2 = 1, T = 10000, and different values of the uniformly distributed
D2

t .
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(a) ρ = 0.7, D2
t ∼ Uni(0.25, 0.75)

(b) ρ = 0.7, D2
t ∼ Uni(0.75, 1.25)

(c) ρ = 0.7, D2
t ∼ Uni(1.25, 1.75)

Figure 3.5: Plot of all different estimator (left) and absolute relative bias (right) of ρ
for the case ρ = 0.7, σ2 = 1, T = 10000, and different values of the uniformly distributed
D2

t
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From Tables 3.1-3.4 and Figures 3.2-3.5, we can see that the naive estimator

ρnaive always underestimate ρtrue for all cases of sampling variances. In addition, the

differences between the true values and the naive estimates increase when sampling

variance increases.

On the other hand, other adjusted estimates of ρ can reduce the bias terms,

and their values are close to the true value estimate ρtrue for each cases of sampling

variances. However, these adjusted estimators have high variability when the sam-

pling variances are greater than the variance of noise. For example, consider the

case ρ = 0.7 form Table 3.4, the range of the values of ρhat is [0.6707, 0.7369] when

D2
t ∼ Uni(0.75, 1.25), but [0.6624, 0.7497] when D2

t ∼ Uni(1.25, 1.75).

Comparing among values of these adjusted estimators of ρ in Tables 3.1 - 3.4,

only the positive adjusted estimates ρhat,h is slightly underestimated of ρtrue when

the sampling variances are large. In contrast, the positive adjusted estimates ρhat,g

are close to the estimates ρhat even when sampling variances are large. However, we

will use the adjusted estimates only when U2,θ is negative. Hence, the truncation

under the g-function is recommended as the estimate of autoregressive coefficient

ρ.

To investigate asymptotic behavior of the estimators, we vary the length of

time T . All estimators of ρ except ρtrue are then measured via average absolute

bias (AB), average absolute relative bias (ARB), and average root mean squared

error (RMSE), defined as the following.

ABρ(ρ̂) =
1

1000

1000∑
i=1

|ρtrue,i − ρ̂i| ,

ARBρ(ρ̂) =
1

1000

1000∑
i=1

∣∣∣∣ρtrue,i − ρ̂i

ρtrue,i

∣∣∣∣ ,
RMSEρ(ρ̂) =

√√√√ 1

1000

1000∑
i=1

(ρtrue,i − ρ̂i)
2,

where ρtrue,i (for i = 1, 2, . . . , 1000) is the value ρtrue from i-th simulation and ρ̂i is

the other estimates of ρ.
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The three measures are presented in Table 3.5-3.16, where all measures are

presented in terms of percentage. The corresponding plots are presented in Figure

3.6-3.8.

Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t = 0.5

ABρ(%)

50 13.196 11.849 11.548 11.845 11.849 11.849
100 12.056 8.350 8.229 8.349 8.350 8.350
250 11.811 5.267 5.216 5.267 5.267 5.267
500 11.691 3.575 3.527 3.575 3.575 3.575

1000 11.849 2.484 2.478 2.484 2.484 2.484
2500 11.762 1.544 1.547 1.544 1.544 1.544
5000 11.805 1.123 1.160 1.123 1.123 1.123

10000 11.813 0.785 0.857 0.785 0.785 0.785

ARBρ(%)

50 39.914 41.689 40.493 41.670 41.689 41.689
100 32.044 23.572 23.198 23.570 23.572 23.572
250 30.100 13.650 13.511 13.649 13.650 13.650
500 29.474 9.118 8.989 9.117 9.118 9.118

1000 29.623 6.237 6.222 6.237 6.237 6.237
2500 29.377 3.866 3.877 3.866 3.866 3.866
5000 29.514 2.810 2.905 2.810 2.810 2.810

10000 29.569 1.966 2.146 1.966 1.966 1.966

RMSEρ(%)

50 15.820 15.403 14.934 15.393 15.403 15.403
100 13.987 10.537 10.381 10.536 10.537 10.537
250 12.773 6.696 6.621 6.696 6.696 6.696
500 12.154 4.488 4.440 4.488 4.488 4.488

1000 12.069 3.076 3.078 3.076 3.076 3.076
2500 11.846 1.936 1.943 1.936 1.936 1.936
5000 11.850 1.401 1.449 1.401 1.401 1.401

10000 11.835 0.981 1.071 0.981 0.981 0.981

Table 3.5: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t = 0.5 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t = 1

ABρ(%)

50 18.5956 20.8498 17.9551 20.2218 20.8498 20.8498
100 17.7395 13.1450 12.2057 13.1163 13.1450 13.1450
250 17.9433 7.9968 7.5951 7.9853 7.9968 7.9968
500 18.2464 5.5277 5.3720 5.5206 5.5277 5.5277

1000 18.0763 3.9679 3.9800 3.9627 3.9679 3.9679
2500 18.1836 2.4711 2.8397 2.4683 2.4711 2.4711
5000 18.2651 1.6690 2.3947 1.6684 1.6690 1.6690

10000 18.2618 1.2342 2.1541 1.2334 1.2342 1.2342

ARBρ(%)

50 57.9181 78.3299 67.9744 76.3763 78.3299 78.3299
100 46.6252 37.3658 34.6463 37.2820 37.3658 37.3658
250 45.3425 20.6605 19.6156 20.6310 20.6605 20.6605
500 45.7559 13.9702 13.5858 13.9524 13.9702 13.9702

1000 45.3763 9.9935 10.0111 9.9804 9.9935 9.9935
2500 45.4685 6.1777 7.1099 6.1708 6.1777 6.1777
5000 45.6824 4.1735 5.9967 4.1723 4.1735 4.1735

10000 45.6610 3.0898 5.3887 3.0880 3.0898 3.0898

RMSEρ(%)

50 21.9693 34.0338 23.2929 28.5757 34.0338 34.0338
100 19.8635 16.9864 15.6511 16.9376 16.9864 16.9864
250 18.8545 10.1295 9.5740 10.1133 10.1295 10.1295
500 18.6878 6.9762 6.8552 6.9686 6.9762 6.9762

1000 18.3134 5.0136 5.0305 5.0070 5.0136 5.0136
2500 18.2709 3.1385 3.5263 3.1347 3.1385 3.1385
5000 18.3065 2.1213 2.8724 2.1198 2.1213 2.1213

10000 18.2842 1.5349 2.5075 1.5338 1.5349 1.5349

Table 3.6: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t = 1 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t = 1.5

ABρ(%)

50 22.3948 33.8336 22.7192 29.4781 28.9331 30.7957
100 21.7262 20.0998 15.7475 18.4206 18.5997 18.7461
250 21.9727 11.0414 10.0456 10.9549 11.0414 11.0414
500 22.1719 7.6666 7.3880 7.6189 7.6666 7.6666

1000 22.3043 5.5020 5.9614 5.4769 5.5020 5.5020
2500 22.3447 3.3482 4.6800 3.3370 3.3482 3.3482
5000 22.3016 2.3906 4.3030 2.3782 2.3906 2.3906

10000 22.2903 1.6969 4.1503 1.6917 1.6969 1.6969

ARBρ(%)

50 62.2634 115.6101 73.4403 101.1043 94.8840 106.0011
100 56.6097 57.0189 43.4967 51.1635 51.6033 52.0998
250 56.1526 28.8708 26.2538 28.6458 28.8708 28.8708
500 56.0147 19.5958 18.8004 19.4711 19.5958 19.5958

1000 55.9563 13.8574 14.9727 13.7927 13.8574 13.8574
2500 55.9171 8.4090 11.7277 8.3810 8.4090 8.4090
5000 55.8264 5.9902 10.7698 5.9589 5.9902 5.9902

10000 55.7237 4.2445 10.3730 4.2312 4.2445 4.2445

RMSEρ(%)

50 25.9091 105.1508 29.1586 47.6093 41.6825 50.8013
100 24.0056 45.2227 19.7739 23.7619 24.2622 24.6852
250 22.8869 14.2000 12.6314 14.0401 14.2000 14.2000
500 22.6407 9.7014 9.3479 9.6335 9.7014 9.7014

1000 22.5476 6.8136 7.3548 6.7811 6.8136 6.8136
2500 22.4337 4.1727 5.6124 4.1559 4.1727 4.1727
5000 22.3501 2.9726 4.9481 2.9627 2.9726 2.9726

10000 22.3144 2.1114 4.5328 2.1030 2.1114 2.1114

Table 3.7: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t = 1.5 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t ∼ Uni(0.25, 0.75)

ABρ(%)

50 12.7601 11.3700 11.0826 11.3674 11.3700 11.3700
100 11.8462 7.7284 7.5674 7.7276 7.7284 7.7284
250 11.7228 4.9414 4.8729 4.9412 4.9414 4.9414
500 11.8107 3.5386 3.5161 3.5385 3.5386 3.5386

1000 11.8971 2.5132 2.5311 2.5132 2.5132 2.5132
2500 11.8427 1.5825 1.6005 1.5824 1.5825 1.5825
5000 11.8106 1.0951 1.1381 1.0950 1.0951 1.0951

10000 11.8483 0.7569 0.8510 0.7569 0.7569 0.7569

ARBρ(%)

50 35.2404 34.9973 33.9998 34.9868 34.9973 34.9973
100 30.4746 21.2131 20.7616 21.2107 21.2131 21.2131
250 29.6697 12.7503 12.5838 12.7497 12.7503 12.7503
500 29.7417 8.9744 8.9228 8.9742 8.9744 8.9744

1000 29.8598 6.3521 6.3945 6.3520 6.3521 6.3521
2500 29.6762 3.9760 4.0208 3.9758 3.9760 3.9760
5000 29.5983 2.7484 2.8566 2.7483 2.7484 2.7484

10000 29.6560 1.8957 2.1313 1.8958 1.8957 1.8957

RMSEρ(%)

50 15.5073 14.6545 14.2749 14.6503 14.6545 14.6545
100 13.6325 9.7061 9.5325 9.7052 9.7061 9.7061
250 12.5596 6.1814 6.0958 6.1811 6.1814 6.1814
500 12.2514 4.3911 4.3635 4.3910 4.3911 4.3911

1000 12.1271 3.1292 3.1469 3.1292 3.1292 3.1292
2500 11.9354 1.9814 2.0207 1.9813 1.9814 1.9814
5000 11.8542 1.3849 1.4397 1.3848 1.3849 1.3849

10000 11.8699 0.9527 1.0637 0.9527 0.9527 0.9527

Table 3.8: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t ∼ Uni(0.25, 0.75) varying by length of
time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t ∼ Uni(0.75, 1.25)

ABρ(%)

50 19.5712 20.1129 17.7338 20.0203 19.9907 20.2510
100 18.7165 13.0279 12.0745 12.9871 13.0279 13.0279
250 18.3246 7.8534 7.5509 7.8429 7.8534 7.8534
500 18.3933 5.4180 5.3366 5.4112 5.4180 5.4180

1000 18.3542 3.8714 4.0590 3.8680 3.8714 3.8714
2500 18.2654 2.5342 2.9100 2.5311 2.5342 2.5342
5000 18.2121 1.7378 2.3673 1.7354 1.7378 1.7378

10000 18.2328 1.2140 2.1065 1.2120 1.2140 1.2140

ARBρ(%)

50 58.1296 74.8150 64.1680 74.8425 73.7287 76.0426
100 48.0176 35.6953 32.9963 35.5796 35.6953 35.6953
250 45.9722 20.2077 19.3601 20.1793 20.2077 20.2077
500 46.0252 13.7418 13.5018 13.7237 13.7418 13.7418

1000 45.8720 9.7420 10.1947 9.7336 9.7420 9.7420
2500 45.7380 6.3670 7.3000 6.3590 6.3670 6.3670
5000 45.5669 4.3554 5.9282 4.3493 4.3554 4.3554

10000 45.5844 3.0380 5.2657 3.0328 3.0380 3.0380

RMSEρ(%)

50 22.5732 27.4523 22.6933 28.0029 26.9247 28.6702
100 20.6735 16.6150 15.2944 16.5401 16.6150 16.6150
250 19.2138 9.9221 9.5046 9.9068 9.9221 9.9221
500 18.8047 6.7938 6.6966 6.7844 6.7938 6.7938

1000 18.5782 4.9445 5.1204 4.9402 4.9445 4.9445
2500 18.3581 3.1706 3.6175 3.1674 3.1706 3.1706
5000 18.2578 2.2435 2.8695 2.2402 2.2435 2.2435

10000 18.2550 1.5402 2.4573 1.5378 1.5402 1.5402

Table 3.9: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t ∼ Uni(0.75, 1.25) varying by length of
time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.4, D2
t ∼ Uni(1.25, 1.75)

ABρ(%)

50 21.6036 32.8251 21.8282 29.8036 29.3024 31.9217
100 21.4317 17.8818 14.5661 17.4496 17.8818 17.8818
250 22.0191 10.4730 9.7439 10.4030 10.4730 10.4730
500 22.1768 7.5952 7.4512 7.5537 7.5952 7.5952

1000 22.1247 5.1817 5.6525 5.1521 5.1817 5.1817
2500 22.2159 3.2534 4.5840 3.2387 3.2534 3.2534
5000 22.2702 2.2612 4.2286 2.2485 2.2612 2.2612

10000 22.2644 1.5734 4.1258 1.5672 1.5734 1.5734

ARBρ(%)

50 60.5304 107.8606 71.8233 99.1004 96.9785 106.1050
100 55.7268 50.9047 40.9392 49.5256 50.9047 50.9047
250 56.3069 27.4730 25.5495 27.2856 27.4730 27.4730
500 56.2194 19.5283 19.0869 19.4186 19.5283 19.5283

1000 55.6842 13.1467 14.3083 13.0712 13.1467 13.1467
2500 55.6541 8.1591 11.4886 8.1223 8.1591 8.1591
5000 55.7428 5.6631 10.5860 5.6309 5.6631 5.6631

10000 55.6929 3.9386 10.3245 3.9231 3.9386 3.9386

RMSEρ(%)

50 24.9895 87.2364 28.9711 58.6614 52.6000 68.6579
100 23.4657 23.9078 18.6928 22.9033 23.9078 23.9078
250 22.8498 13.5859 12.2469 13.4530 13.5859 13.5859
500 22.6176 9.4726 9.2971 9.4171 9.4726 9.4726

1000 22.3390 6.5041 6.9564 6.4656 6.5041 6.5041
2500 22.3066 4.1054 5.4607 4.0857 4.1054 4.1054
5000 22.3136 2.8471 4.8362 2.8343 2.8471 2.8471

10000 22.2847 1.9846 4.4624 1.9750 1.9846 1.9846

Table 3.10: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.4 and D2

t ∼ Uni(1.25, 1.75) varying by length of
time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t = 0.5

ABρ(%)

50 14.7645 7.7053 7.5985 7.7050 7.7053 7.7053
100 14.5199 5.2627 5.2296 5.2626 5.2627 5.2627
250 14.3579 3.2586 3.2508 3.2586 3.2586 3.2586
500 14.2938 2.2654 2.2629 2.2654 2.2654 2.2654

1000 14.2622 1.6186 1.6228 1.6186 1.6186 1.6186
2500 14.2105 1.0240 1.0333 1.0240 1.0240 1.0240
5000 14.2173 0.7035 0.7221 0.7035 0.7035 0.7035

10000 14.2281 0.4893 0.5278 0.4893 0.4893 0.4893

ARBρ(%)

50 22.8455 12.3418 12.1646 12.3411 12.3418 12.3418
100 21.5755 7.9241 7.8739 7.9240 7.9241 7.9241
250 20.8985 4.7808 4.7695 4.7808 4.7808 4.7808
500 20.5742 3.2676 3.2649 3.2676 3.2676 3.2676

1000 20.4508 2.3258 2.3317 2.3258 2.3258 2.3258
2500 20.3473 1.4674 1.4804 1.4674 1.4674 1.4674
5000 20.3337 1.0061 1.0326 1.0061 1.0061 1.0061

10000 20.3368 0.6993 0.7544 0.6993 0.6993 0.6993

RMSEρ(%)

50 16.6124 10.1094 9.9939 10.1089 10.1094 10.1094
100 15.5048 6.7846 6.7465 6.7845 6.7846 6.7846
250 14.7688 4.1668 4.1578 4.1668 4.1668 4.1668
500 14.4962 2.8544 2.8606 2.8544 2.8544 2.8544

1000 14.3635 2.0213 2.0305 2.0213 2.0213 2.0213
2500 14.2477 1.2617 1.2720 1.2617 1.2617 1.2617
5000 14.2363 0.8857 0.9119 0.8857 0.8857 0.8857

10000 14.2372 0.6091 0.6548 0.6091 0.6091 0.6091

Table 3.11: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t = 0.5 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t = 1

ABρ(%)

50 23.8169 13.5272 12.5907 13.4735 13.5272 13.5272
100 23.6410 8.4927 8.1822 8.4854 8.4927 8.4927
250 23.6071 5.2145 5.1000 5.2128 5.2145 5.2145
500 23.6440 3.5243 3.5643 3.5237 3.5243 3.5243

1000 23.5270 2.5067 2.5780 2.5062 2.5067 2.5067
2500 23.6041 1.5810 1.8524 1.5808 1.5810 1.5810
5000 23.5998 1.1328 1.4991 1.1324 1.1328 1.1328

10000 23.6199 0.7690 1.3490 0.7689 0.7690 0.7690

ARBρ(%)

50 36.3232 21.7372 20.0888 21.6316 21.7372 21.7372
100 34.9040 12.6696 12.2061 12.6577 12.6696 12.6696
250 34.1648 7.5740 7.4108 7.5714 7.5740 7.5740
500 33.9746 5.0764 5.1350 5.0755 5.0764 5.0764

1000 33.6355 3.5889 3.6912 3.5881 3.5889 3.5889
2500 33.7075 2.2593 2.6464 2.2589 2.2593 2.2593
5000 33.7108 1.6190 2.1424 1.6185 1.6190 1.6190

10000 33.7357 1.0987 1.9273 1.0985 1.0987 1.0987

RMSEρ(%)

50 25.9306 18.7904 16.6199 18.5753 18.7904 18.7904
100 24.6636 10.9064 10.3980 10.8832 10.9064 10.9064
250 24.0422 6.6075 6.5148 6.6056 6.6075 6.6075
500 23.8531 4.4669 4.5310 4.4662 4.4669 4.4669

1000 23.6290 3.1352 3.2383 3.1344 3.1352 3.1352
2500 23.6463 1.9843 2.2831 1.9839 1.9843 1.9843
5000 23.6202 1.4118 1.8433 1.4115 1.4118 1.4118

10000 23.6297 0.9783 1.5815 0.9781 0.9783 0.9783

Table 3.12: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t = 1 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t = 1.5

ABρ(%)

50 30.6366 19.9933 16.3248 19.0284 19.9933 19.9933
100 30.4874 11.7795 10.9668 11.7016 11.7795 11.7795
250 30.2825 7.2772 6.9669 7.2625 7.2772 7.2772
500 30.4551 4.9912 5.2543 4.9843 4.9912 4.9912

1000 30.3684 3.5047 4.0670 3.4994 3.5047 3.5047
2500 30.3258 2.2014 3.3267 2.1994 2.2014 2.2014
5000 30.2916 1.5742 3.0217 1.5716 1.5742 1.5742

10000 30.3264 1.1008 2.9817 1.1006 1.1008 1.1008

ARBρ(%)

50 46.9834 33.1100 26.4462 31.2291 33.1100 33.1100
100 44.8480 17.6650 16.4189 17.5401 17.6650 17.6650
250 43.6956 10.5631 10.0991 10.5409 10.5631 10.5631
500 43.7064 7.1769 7.5563 7.1668 7.1769 7.1769

1000 43.5003 5.0261 5.8316 5.0184 5.0261 5.0261
2500 43.4070 3.1541 4.7678 3.1513 3.1541 3.1541
5000 43.3132 2.2524 4.3220 2.2486 2.2524 2.2524

10000 43.3356 1.5734 4.2618 1.5731 1.5734 1.5734

RMSEρ(%)

50 32.8568 35.0098 21.9438 28.7818 35.0098 35.0098
100 31.5662 15.7031 14.0274 15.4320 15.7031 15.7031
250 30.6875 9.0761 8.7959 9.0552 9.0761 9.0761
500 30.6649 6.3282 6.6707 6.3192 6.3282 6.3282

1000 30.4699 4.3821 5.1092 4.3772 4.3821 4.3821
2500 30.3688 2.7906 3.9745 2.7876 2.7906 2.7906
5000 30.3129 1.9886 3.4753 1.9857 1.9886 1.9886

10000 30.3367 1.3720 3.2363 1.3704 1.3720 1.3720

Table 3.13: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t = 1.5 varying by length of time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t ∼ Uni(0.25, 0.75)

ABρ(%)

50 15.0413 8.2216 8.1254 8.2211 8.2216 8.2216
100 14.6797 5.4744 5.4364 5.4743 5.4744 5.4744
250 14.6387 3.2826 3.2898 3.2826 3.2826 3.2826
500 14.4304 2.2700 2.2778 2.2700 2.2700 2.2700

1000 14.3056 1.5897 1.5973 1.5897 1.5897 1.5897
2500 14.2719 0.9956 1.0225 0.9956 0.9956 0.9956
5000 14.2568 0.6783 0.7086 0.6783 0.6783 0.6783

10000 14.2298 0.4915 0.5203 0.4915 0.4915 0.4915

ARBρ(%)

50 23.4334 13.3956 13.2277 13.3947 13.3956 13.3956
100 21.6722 8.1885 8.1326 8.1883 8.1885 8.1885
250 21.2412 4.7985 4.8091 4.7985 4.7985 4.7985
500 20.7778 3.2804 3.2916 3.2803 3.2804 3.2804

1000 20.5288 2.2838 2.2947 2.2838 2.2838 2.2838
2500 20.4382 1.4259 1.4646 1.4259 1.4259 1.4259
5000 20.3884 0.9701 1.0133 0.9701 0.9701 0.9701

10000 20.3386 0.7024 0.7437 0.7024 0.7024 0.7024

RMSEρ(%)

50 16.9678 10.6896 10.5459 10.6888 10.6896 10.6896
100 15.7017 6.9452 6.9072 6.9451 6.9452 6.9452
250 15.0627 4.1888 4.2058 4.1888 4.1888 4.1888
500 14.6330 2.8674 2.8788 2.8674 2.8674 2.8674

1000 14.4024 2.0104 2.0209 2.0104 2.0104 2.0104
2500 14.3096 1.2453 1.2702 1.2453 1.2453 1.2453
5000 14.2749 0.8619 0.9012 0.8619 0.8619 0.8619

10000 14.2391 0.6129 0.6572 0.6129 0.6129 0.6129

Table 3.14: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t ∼ Uni(0.25, 0.75) varying by length of
time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t ∼ Uni(0.75, 1.25)

ABρ(%)

50 23.6508 13.1177 12.1957 13.0673 13.1177 13.1177
100 23.7205 8.6817 8.3482 8.6755 8.6817 8.6817
250 23.5758 5.2865 5.2058 5.2851 5.2865 5.2865
500 23.7174 3.6037 3.6318 3.6031 3.6037 3.6037

1000 23.6786 2.4555 2.6209 2.4551 2.4555 2.4555
2500 23.5950 1.5691 1.8579 1.5689 1.5691 1.5691
5000 23.6215 1.1619 1.5541 1.1617 1.1619 1.1619

10000 23.6320 0.8116 1.3735 0.8115 0.8116 0.8116

ARBρ(%)

50 36.0095 20.9421 19.3673 20.8466 20.9421 20.9421
100 34.9014 13.0637 12.5413 13.0536 13.0637 13.0637
250 34.1010 7.7143 7.5869 7.7123 7.7143 7.7143
500 34.0972 5.2002 5.2406 5.1994 5.2002 5.2002

1000 33.9147 3.5214 3.7618 3.5209 3.5214 3.5214
2500 33.7293 2.2445 2.6576 2.2442 2.2445 2.2445
5000 33.7652 1.6619 2.2227 1.6616 1.6619 1.6619

10000 33.7734 1.1601 1.9633 1.1600 1.1601 1.1601

RMSEρ(%)

50 25.7863 17.6181 16.0368 17.4420 17.6181 17.6181
100 24.7938 11.2387 10.7695 11.2283 11.2387 11.2387
250 24.0086 6.6489 6.5380 6.6469 6.6489 6.6489
500 23.9220 4.5284 4.5984 4.5276 4.5284 4.5284

1000 23.7795 3.1135 3.3082 3.1131 3.1135 3.1135
2500 23.6348 1.9931 2.2972 1.9927 1.9931 1.9931
5000 23.6431 1.4594 1.8971 1.4591 1.4594 1.4594

10000 23.6421 1.0182 1.6184 1.0181 1.0182 1.0182

Table 3.15: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t ∼ Uni(0.75, 1.25) varying by length of
time T .
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Quality Size Estimator
Measure Group T ρnaive ρhat ρhat,h ρhat,g ρhtrun ρgtrun

Case ρ = 0.7, D2
t ∼ Uni(1.25, 1.75)

ABρ(%)

50 30.0685 19.8833 16.3296 18.6314 18.8088 18.9404
100 30.4052 12.0051 11.2764 11.9636 12.0051 12.0051
250 30.3175 7.3817 7.3645 7.3722 7.3817 7.3817
500 30.2480 4.9692 5.1701 4.9618 4.9692 4.9692

1000 30.2899 3.4504 4.0170 3.4459 3.4504 3.4504
2500 30.2992 2.1740 3.2174 2.1713 2.1740 2.1740
5000 30.3028 1.5134 3.0314 1.5124 1.5134 1.5134

10000 30.3567 1.1251 3.0278 1.1249 1.1251 1.1251

ARBρ(%)

50 45.3090 31.3297 25.4217 29.2347 29.5968 29.8091
100 44.5711 17.9554 16.8488 17.8886 17.9554 17.9554
250 43.7558 10.7139 10.6911 10.6998 10.7139 10.7139
500 43.4057 7.1496 7.4432 7.1389 7.1496 7.1496

1000 43.3781 4.9483 5.7659 4.9419 4.9483 4.9483
2500 43.3190 3.1080 4.6030 3.1041 3.1080 3.1080
5000 43.2873 2.1621 4.3335 2.1607 2.1621 2.1621

10000 43.3722 1.6078 4.3282 1.6076 1.6078 1.6078

RMSEρ(%)

50 32.3378 43.1538 21.5865 25.8485 26.4618 26.8042
100 31.5271 15.6459 14.5596 15.5638 15.6459 15.6459
250 30.7817 9.3743 9.2586 9.3579 9.3743 9.3743
500 30.4588 6.2049 6.4462 6.1949 6.2049 6.2049

1000 30.3965 4.3088 5.0167 4.3038 4.3088 4.3088
2500 30.3399 2.7052 3.8821 2.7016 2.7052 2.7052
5000 30.3240 1.9270 3.4593 1.9247 1.9270 1.9270

10000 30.3677 1.4034 3.2903 1.4029 1.4034 1.4034

Table 3.16: Percent average absolute bias (AB), percent average absolute relative
bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ for the case ρ = 0.7 and D2

t ∼ Uni(1.25, 1.75) varying by length of
time T .
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(a) ABρ(%), D2
t = 0.5 (b) ABρ(%), D2

t = 1.5

(c) ARBρ(%), D2
t = 0.5 (d) ARBρ(%), D2

t = 1.5

(e) RMSEρ(%), D2
t = 0.5 (f) RMSEρ(%), D2

t = 1.5

Figure 3.6: Plot of percent average absolute bias (AB), percent average absolute rela-
tive bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ varying by length of time T from 200 to 1000 for the case ρ = 0.4 and
different values of the constant D2

t .
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(a) ABρ(%), D2
t = 0.5 (b) ABρ(%), D2

t = 1.5

(c) ARBρ(%), D2
t = 0.5 (d) ARBρ(%), D2

t = 1.5

(e) RMSEρ(%), D2
t = 0.5 (f) RMSEρ(%), D2

t = 1.5

Figure 3.7: Plot of percent average absolute bias (AB), percent average absolute rela-
tive bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ varying by length of time T from 200 to 1000 for the case ρ = 0.7 and
different values of the constant D2

t .
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(a) ABρ(%), D2
t ∼ Uni(0.75, 1.25) (b) ABρ(%), D2

t ∼ Uni(1.25, 1.75)

(c) ARBρ(%), D2
t ∼ Uni(0.75, 1.25) (d) ARBρ(%), D2

t ∼ Uni(1.25, 1.75)

(e) RMSEρ(%), D2
t ∼ Uni(0.75, 1.25) (f) RMSEρ(%), D2

t ∼ Uni(1.25, 1.75)

Figure 3.8: Plot of percent average absolute bias (AB), percent average absolute rela-
tive bias (ARB), and percent average root mean squared error (RMSE) of all different
estimators of ρ varying by length of time T from 200 to 1000 for the case ρ = 0.7 and
different values of the uniformly distributed D2

t .
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From Tables 3.5-3.16 and Figures 3.6 - 3.8, three quality measures are smaller

for all adjusted estimates of ρ when T is large. The values of three quality measures

for the naive estimator ρnaive are approximately the same for all values of T and

do not go to zero even for a large value of T . The result agrees with Proposition

3.6.

In contrast, three measures for other adjusted estimates are smaller and go to

zero as T increases. Notice from the case ρ = 4 in Table 3.7 that some values of

three measures for other adjusted estimates are extremely higher than the naive

estimates when T = 50. For a small values of T , the high value of sampling

variance, compared with the variance of noise, causes the negative value of Û2,θ.

In this case, we recommend to use the positive adjusted estimator ρhat,h and ρhat,g

instead of the estimator ρhat.

However, only the positive adjusted estimator ρhat,h has large values of three

quality measures when sampling variances are large, compared with other ad-

justed estimates. For example, consider the case ρ = 0.7 and sampling variances

D2
t ∼ Uni(1.25, 1.75), the percent average absolute relative bias of ρhat,h is 3.2903

when T = 10000. However, the percent average absolute relative bias of ρhat, ρhat,g,

ρhat,htrun, and ρhat,gtrun are 1.4034, 1.4029, 1.4034, and 1.4034, respectively. Com-

paring among these quality measures in Table 3.5 and Figure 3.6, the estimator

ρhat can be represented for the estimator ρθ, when θt’s are unobserved. In spite of

the fact that the values of three measures of ρhat,g is less than ρhat, the g-function

in Lemma 3.21 is applied when U2,θ is negative. Hence, we can conclude that the

estimator ρhat,gtrun is a good estimator for represent for the estimator ρθ, when θt’s

are unobserved.
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2.) Test Statistics for the Stationary Test

In this section, we consider the performances of the test statistic for the stationary

test. The stationary test in this section is the test of the null hypothesis that

ρ = 1, against the alternative hypothesis that |ρ| < 1. That is,

H0 : ρ = 1 or nonstationary AR(1),

against H1 : |ρ| < 1 or stationary AR(1).

In this section, we consider only the case ρ = 1. For the values of sampling

variances of et, we study different values of D2
t as follows.

1. The variances of {et} are a constant not depending on time t. We perform

simulations in three settings.

(1.1) D2
t = 0.5,

(1.2) D2
t = 1,

(1.3) D2
t = 1.5.

2. The variances of {et} follow a uniform distribution. We perform simulations

in three settings.

(2.1) D2
t ∼ Uni(0.25, 0.75),

(2.2) D2
t ∼ Uni(0.75, 1.25),

(2.3) D2
t ∼ Uni(1.25, 1.75),

where Uni(a, b) is the continuous uniform distribution over interval [a, b].

The results shown in Tables 3.18-3.19 and Figures 3.9-3.10 are presented using

the following notations, some notations are followed from Theorem 3.10, Theorem

3.17, (3.19), (3.152)-(3.153), (3.154)-(3.155), and (3.156)-(3.159).

(1) τtrue = (ρtrue − 1)U
1
2
2,θU

− 1
2

4,θ , the Dickey-Fuller test statistic based on the vari-

ables of interest {θt},
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(2) τnaive = (ρnaive − 1)U
1
2
2,yU

− 1
2

4,y , the naive test statistic based on observed vari-

ables {yt} and ignore sampling errors,

(3) τhat = (ρhat − 1)Û
1
2
2,θÛ

− 1
2

4,θ , an adjustment to the naive test statistic,

(4) τhat,h = (ρhat,h−1)Û
1
2
2,θ,hÛ

− 1
2

4,θ,h, an adjustment to the naive test statistic by the

h-function,

(5) τhat,g = (ρhat,g − 1)Û
1
2
2,θ,gÛ

− 1
2

4,θ,g, an adjustment to the naive test statistic by the

g-function,

(6) τhat,htrun = (ρhat,htrun − 1)Û
1
2
2,θ,htrunÛ

− 1
2

4,θ,htrun, a truncation version of the h-

function approximation,

(7) τhat,gtrun = (ρhat,gtrun − 1)Û
1
2
2,θ,gtrunÛ

− 1
2

4,θ,gtrun, a truncation version of the g-

function approximation.

T
Probability of a Small Values

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

25 -2.66 -2.26 -1.95 -1.60 0.92 1.33 1.70 2.16
50 -2.62 -2.25 -1.95 -1.61 0.91 1.31 1.66 2.07
100 -2.60 -2.24 -1.95 -1.61 0.90 1.29 1.64 2.03
250 -2.58 -2.24 -1.95 -1.62 0.89 1.28 1.63 2.01
500 -2.58 -2.24 -1.95 -1.62 0.89 1.28 1.62 2.00
750 -2.58 -2.24 -1.95 -1.62 0.89 1.28 1.62 2.00
∞ -2.58 -2.23 -1.95 -1.62 0.89 1.28 1.62 1.99

Table 3.17: ([5], Page 58) Empirical percentiles for τ statistics.

Under the null hypothesis H0 : ρ = 1, the null hypothesis with be rejected under

the level of significance α if the test statistic τθ satisfies supPτθ(τθ ∈ R) ≤ α, where

R is the rejection region. Since this test is a two-sided test, the rejection region

R is (−∞, c1) ∪ (c2,∞), for some constants c1 and c2. The percentiles for the

distribution in Theorem 3.2 (4) were given in Table 3.17 by Dickey [5]. Hence, the

constants c1 and c2 are applied for evaluating the probability Pτθ(τθ ∈ R) when
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the level of significance α is fixed. For example, under the level of significance

α = 0.05 and T = 10000, the null hypothesis is rejected if τθ < −2.23 or τθ > 1.62.

To consider the test statistic, Tables 3.18-3.20 and Figures 3.9-3.10 show com-

parisons between all test statistics for 1000 generated data with ρ = 1, T = 10000

by varying sampling variances.

Percentile
1 10 25 50 75 90 100

Scenarios 1: ρ = 1, D2
t = 0.5

τtrue -2.6980 -1.5583 -1.0902 -0.5424 0.1810 0.8474 2.9414
τnaive -3.8615 -2.3186 -1.6834 -1.0579 -0.3845 0.2124 1.9103
τhat -2.6268 -1.5757 -1.0956 -0.5510 0.1801 0.8460 2.9826
τhat,h -2.5226 -1.5176 -1.0567 -0.5317 0.1738 0.8161 2.8694
τhat,g -2.6246 -1.5746 -1.0948 -0.5506 0.1801 0.8456 2.9808
τhat,htrun -2.6268 -1.5757 -1.0956 -0.5510 0.1801 0.8460 2.9826
τhat,gtrun -2.6268 -1.5757 -1.0956 -0.5510 0.1801 0.8460 2.9826

Scenarios 1: ρ = 1, D2
t = 1

τtrue -2.5641 -1.5681 -1.0677 -0.5306 0.2207 0.8961 3.0485
τnaive -4.5144 -3.0040 -2.1097 -1.3178 -0.6212 -0.0541 1.4246
τhat -2.5182 -1.5714 -1.0700 -0.5241 0.2227 0.8802 3.0667
τhat,h -2.2383 -1.4096 -0.9587 -0.4657 0.1996 0.7870 2.7293
τhat,g -2.4982 -1.5611 -1.0627 -0.5198 0.2212 0.8740 3.0429
τhat,htrun -2.5182 -1.5714 -1.0700 -0.5241 0.2227 0.8802 3.0667
τhat,gtrun -2.5182 -1.5714 -1.0700 -0.5241 0.2227 0.8802 3.0667

Scenarios 1: ρ = 1, D2
t = 1.5

τtrue -2.7453 -1.6867 -1.1229 -0.5550 0.1617 0.8735 2.8335
τnaive -5.5339 -3.6182 -2.6520 -1.6997 -0.8976 -0.3242 1.0637
τhat -2.6928 -1.6533 -1.1331 -0.5493 0.1594 0.8817 2.7462
τhat,h -2.2131 -1.3646 -0.9476 -0.4586 0.1303 0.7300 2.2543
τhat,g -2.6307 -1.6148 -1.1095 -0.5382 0.1556 0.8651 2.6827
τhat,htrun -2.6928 -1.6533 -1.1331 -0.5493 0.1594 0.8817 2.7462
τhat,gtrun -2.6928 -1.6533 -1.1331 -0.5493 0.1594 0.8817 2.7462

Table 3.18: Values of different estimators of all test statistics varying by different
constants D2

t ’s for the case ρ = 1, σ2 = 1, and T = 10000.
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Percentile
1 10 25 50 75 90 100

Scenarios 2: ρ = 1, D2
t ∼ Uni(0.25, 0.75)

τtrue -2.6568 -1.5909 -1.0862 -0.5133 0.2159 0.9279 2.6899
τnaive -3.7574 -2.3841 -1.7460 -1.0285 -0.3321 0.2416 1.6350
τhat -2.6396 -1.5929 -1.0930 -0.5058 0.2150 0.9077 2.6869
τhat,h -2.5470 -1.5357 -1.0521 -0.4876 0.2074 0.8764 2.5941
τhat,g -2.6380 -1.5918 -1.0923 -0.5055 0.2143 0.9072 2.6861
τhat,htrun -2.6396 -1.5929 -1.0930 -0.5058 0.2150 0.9077 2.6869
τhat,gtrun -2.6396 -1.5929 -1.0930 -0.5058 0.2150 0.9077 2.6869

Scenarios 2: ρ = 1, D2
t ∼ Uni(0.75, 1.25)

τtrue -2.5397 -1.6937 -1.1263 -0.5089 0.2005 0.8181 2.7249
τnaive -4.5551 -3.0786 -2.2070 -1.3834 -0.6500 -0.1110 1.2240
τhat -2.5515 -1.6859 -1.1107 -0.5077 0.2120 0.8190 2.7899
τhat,h -2.2993 -1.5102 -0.9916 -0.4544 0.1881 0.7266 2.4622
τhat,g -2.5359 -1.6746 -1.1012 -0.5042 0.2102 0.8123 2.7638
τhat,htrun -2.5515 -1.6859 -1.1107 -0.5077 0.2120 0.8190 2.7899
τhat,gtrun -2.5515 -1.6859 -1.1107 -0.5077 0.2120 0.8190 2.7899

Scenarios 2: ρ = 1, D2
t ∼ Uni(1.25, 1.75)

τtrue -2.7477 -1.6911 -1.1169 -0.5154 0.2418 0.9348 2.6847
τnaive -5.8113 -3.5945 -2.5950 -1.5901 -0.7971 -0.2766 0.7480
τhat -2.7648 -1.6569 -1.1080 -0.5151 0.2513 0.9222 2.6270
τhat,h -2.2963 -1.3579 -0.9173 -0.4254 0.2080 0.7531 2.1886
τhat,g -2.7084 -1.6191 -1.0860 -0.5038 0.2463 0.8994 2.5753
τhat,htrun -2.7648 -1.6569 -1.1080 -0.5151 0.2513 0.9222 2.6270
τhat,gtrun -2.7648 -1.6569 -1.1080 -0.5151 0.2513 0.9222 2.6270

Table 3.19: Values of different estimators of all test statistics varying by different
uniformly distributed D2

t ’s for the case ρ = 1, σ2 = 1, and T = 10000.
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(a) D2 = 0.5. (b) D2 = 1.

(c) D2 = 1.5

Figure 3.9: Plot of all different test statistics for the case ρ = 1, σ2 = 1, T = 10000,
and different values of the constant D2

t .
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(a) D2 ∼ Uni(0.25, 0.75). (b) D2 ∼ Uni(0.75, 1.25).

(c) D2 ∼ Uni(1.25, 1.75)

Figure 3.10: Plot of all different test statistics for the case ρ = 1, σ2 = 1, T = 10000,
and different values of ranges of the D2

t .
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Sampling Test Statistic
Variance τtrue τnaive τhat τhat,h τhat,g τhtrun τgtrun

Scenario 1
D2

t = 0.5 40 117 39 36 39 39 39
D2

t = 1 53 225 50 30 49 50 50
D2

t = 1.5 56 335 58 24 53 58 58

Scenario 2
D2

t ∼ Uni(0.25, 0.75) 46 125 45 39 45 45 45
D2

t ∼ Uni(0.75, 1.25) 62 244 63 35 62 63 63
D2

t ∼ Uni(1.25, 1.75) 56 329 54 19 50 54 54

Table 3.20: The number of errors in hypothesis testing from 1000 simulations, for
the case ρ = 1 and T = 10000, under the level of significance 0.05.

From Table 3.20, the number of times that the null hypothesis is rejected by the

test statistic τnaive is greater than 50, and increases when the sampling variance

increases. This result shows that the conclusion from test statistic τnaive is not

reliable because there are more than 5% error of the test.

On the other hand, for test statistics τtrue, there is around 5% error of the test,

which is around 50 samples from 1000 to reject the null hypothesis. In addition,

from Table 3.18, the statistic τnaive is smaller than τtrue. In contrast, the statistic

τhat provides the same conclusion as τtrue, under the level of significance 0.05. When

estimator U2,θ or U4,θ is negative, the positive adjustment by the g-function can

provide the same result as τtrue. However, if the estimator U2,θ or U4,θ are both

positive, the statistic τhat can represent test statistic τtrue when the true variables

θt’s are unobserved. Hence, from our simulation, we can conclude that τhat,gtrun is

the best test for the stationary test.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

CONCLUSION

In this thesis, we have shown the effect of sampling errors for parameter estimation

and test statistics for the first order autoregressive model. We proposed 2 new

estimators of the unknown parameters ρ and σ2 for the first order autoregressive

models subject to sampling errors (3.13).

1. The estimator of autoregressive coefficient ρ:

ρ̂θ =
Û1,θ

Û2,θ

,

where Û1,θ =
T∑
t=2

ytyt−1 and Û2,θ =
T∑
t=2

(y2t−1 −D2
t−1).

2. The estimator of variance of noise σ2:

σ̂2
θ =

1

T − 2

T∑
t=2

(yt − ρ̂θyt−1)
2 − 1

T − 2

T∑
t=2

(
D2

t + ρ̂2θD
2
t−1

)
.

Moreover, we obtain the representation of test statistic, based on the observed

data yt’s:

τ̂θ =
(ρ̂θ − 1)

√
Û2,θ√

σ̂2
θ

.

From our study, we found that our estimators ρ̂θ and σ̂2
θ can reduce the bias

due to sampling errors. In addition, our statistic τ̂θ provide the same conclusion

as the test statistic based on true variables θt’s.

However, there has a chance that Û2,θ and σ̂2
θ are negative, when the sampling

variances are extremely large. The method of positive adjustments to the estima-

tors with g-function by Angkunsit and Suntornchost [2] can solve this problems.
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From Tables 3.18-3.20 and Figures 3.9-3.10, the truncation version of positive

adjustments of estimators under g-function is better than other test statistic in

respect of the conclusion of hypothesis testing. To accommodate all situations of

estimators, the truncation of test statistic τhat,gtrun is recommended.
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