การเลือกตัวอย่าง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2562
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

STATIONARY TEST FOR FIRST ORDER AUTOREGRESSIVE MODEL SUBJECT TO SAMPLING ERRORS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019
Copyright of Chulalongkorn University

Thesis Title

By
Field of Study
Thesis Advisor
Thesis Co-Advisor

STATIONARY TEST FOR FIRST ORDER AUTO-
REGRESSIVE MODEL SUBJECT TO SAMPLING ERRORS

Mister Weerapat Rattanachadjane
Mathematics
Assistant Professor Dr. Jiraphan Suntornchost
Professor Dr. Partha Lahiri

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman
(Professor Kritsana Neammanee, Ph.D.)
................................... Thesis Advisor
(Assistant Professor Jiraphan Suntornchost, Ph.D.)
..................................... Thesis Co-Advisor
(Professor Partha Lahiri, Ph.D.)
... Examiner
(Assistant Professor Krung Sinapiromsaran, Ph.D.)
... External Examiner
(Assistant Professor Thidaporn Supapakorn, Ph.D.)

วีรภัทร รัตนชัดเจน : การทดสอบความคงที่สำหรับตัวแบบการถดถอยในตัวอันดับหนึ่งที่ขึ้น กับความคลาดเคลื่อนจากการเลือกตัวอย่าง. (STATIONARY TEST FOR FIRST OR DER AUTOREGRESSIVE MODEL SUBJECT TO SAMPLING ERRORS) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จิราพรรณ สุนทรโชติ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ศ.ดร. พาร์ธา ลาฮีรี, 123 หน้า.

ในปี 1979 ดิกกี้และฟูลเลอร์ ได้เสนอการทดสอบความนิ่งบนตัวแบบถดถอยในตัวอันดับหนึ่ง และลิมิตการกระจายของตัวประมาณค่าของสัมประสิทธิ์ถดถอยและสถิติทดสอบ กระบวนการ ดังกล่าวได้ถูกนำไปประยุกต์ใช้ในการตรวจสอบความนิ่งของอนุกรมเวลาบนตัวแบบถดถอยเฉลี่ย เคลื่อนที่ อย่างไรก็ตาม กระบวนการดังกล่าวได้ถูกนำไปประยุกต์ใช้โดยไม่คำนึงถึงความผิดพลาด จากการเลือกตัวอย่างซึ่งโดยปกติเกิดขึ้นจากการเก็บข้อมูล ในวิทยานิพนธ์นี้เราขยายงานศึกษา ของดิกกี้และฟูลเลอร์ไปยังการประมาณค่าพารามิเตอร์และการทดสอบความนิ่งของข้อมูลบนตัว แบบถดถอยอันดับหนึ่งที่ขึ้นกับความคลาดเคลื่อนจากการเลือกตัวอย่าง
 สาขาวิชา \qquad ลายมือชื่อ อ.ที่ปรึกษาหลัก

ปีการศึกษา 2562 ลายมือชื่อ อ.ที่ปรึกษาร่วม \qquad
\# \# 6072101223: MAJOR MATHEMATICS
KEYWORDS : AUTOREGRESSIVE COEFFICIENT/ PARAMETER ESTIMATION/ SAMPLING ERRORS / STATIONARY / TIME SERIES

WEERAPAT RATTANACHADJANE : STATIONARY TEST FOR FIRST ORDER AUTOREGRESSIVE MODEL SUBJECT TO SAMPLING ERRORS. ADVISOR: ASST. PROF. JIRAPHAN SUNTORNCHOST, Ph.D. CO-ADVISOR : PROF. PARTHA LAHIRI, Ph.D., 123 pp.

In 1979, Dickey and Fuller introduced a stationary test on the first order autoregressive model, AR(1), and limitting distribution of the estimator of autoregressive coefficient and the test statistics. The method has been applied to test the stationarity of the first order autoregressive time series model. However, the method has been applied regardless of sampling errors which usually occurs in data collection. In this thesis, we extend the study of Dickey and Fuller to introduce a parameter estimator of the autoregressive coefficient and a ststionary test for the first order autoregressive model subject to sampling errors.

Department : Mathematics and Computer Science Student's Signature
\qquad
Academic Year : \qquad Co-Advisor's Signature \qquad

ACKNOWLEDGEMENTS

First, I would like to express my deep gratitude to my thesis advisor, Assistant Professor Dr. Jiraphan Suntornchost, for her insightful suggestions and constant support through the thesis process. This thesis would not have been completed without her. Next, I would like to thank my co-advisor, Professor Dr. Partha Lahiri, for my inspiration and starting point of my thesis. I am most grateful for his advice. I also would like to thank my thesis committees, Professor Dr. Kritsana Neammanee, Assistant Professor Dr. Krung Sinapiromsaran, and Assistant Professor Dr. Thidaporn Supapakorn for their suggestions and comments. Moreover, I would like to thank all teachers who have educated and improved me for valuable knowledge.

Finally, I wish to thank the Development and Promotion of Science and Technology Talents Project (DPST) for financial support throughout my graduate study.

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 4
2.1 Basic Knowledge in Matrix Algebra and Calculus 4
2.2 Basic Knowledge in Probability Theory 8
2.3 Basic Knowledge in Statistics 19
2.4 Time Series and Stationarity 21
III TIME SERIES MODEL SUBJECT TO SAMPLING ERRORS 24
3.1 The First Order Autoregressive Model 25
3.2 Parameter Estimation of Autoregressive Coefficient for the Model with Sampling Errors 30
3.3 Test Statistic for Stationary Test 71
3.4 Positive Adjustments to the Estimators 81
3.5 Numerical Simulations 84
IV CONCLUSION 119
REFERENCES 121
VITA 123

LIST OF TABLES

Table 3.1 : Comparisons of different estimators of ρ varying by different values of the constant D_{t}^{2} 's for the case $\rho=0.4, \sigma^{2}=1$, and $T=10000$.
Table 3.2 : Comparisons of different estimators of ρ varying by different values of the uniformly distributed D_{t}^{2}, s for the case $\rho=0.4$, $\sigma^{2}=1$, and $T=10000$.
Table 3.3 : Comparisons of different estimators of ρ varying by different values of the constant D_{t}^{2} 's for the case $\rho=0.7, \sigma^{2}=1$, and $T=10000$.
Table 3.4 : Comparisons of different estimators of ρ varying by different values of the uniformly distributed D_{t}^{2}, s for the case $\rho=0.7$, $\sigma^{2}=1$, and $T=10000$.
Table 3.5 : Percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=0.5$ varying by length of time T.
Table 3.6 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=1$ varying by length of time T.
Table 3.7 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=1.5$ varying by length of time T.

Table 3.8 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim U n i(0.25,0.75)$ varying by length of time T.
Table 3.9 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error $(\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim U n i(0.75,1.25)$ varying by length of time $T . \ldots \ldots \ldots .100$
Table 3.10 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error $(\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$ varying by length of time $T . \ldots \ldots \ldots . .101$
Table 3.11 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=0.5$ varying by length of time $T \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots . \ldots$
Table 3.12 : Percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\operatorname{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=1$ varying by length of time T.
Table 3.13 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=1.5$ varying by length of time T.
Table 3.14 : Percent average absolute bias ($\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$ varying by length of time T. 105

Table 3.15 : Percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$ varying by length of time T

Table 3.16 : Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error $(\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim U n i(1.25,1.75)$ varying by length of time T.107

Table 3.17: Empirical percentiles for τ statistics. 113
Table 3.18 : Values of different estimators of all test statistics varying by different constants D_{t}^{2} 's for the case $\rho=1, \sigma^{2}=1$, and $T=10000$.114

Table 3.19 : Values of different estimators of all test statistics varying by different uniformly distributed D_{t}^{2} 's for the case $\rho=1, \sigma^{2}=1$, and $T=10000$.

Table 3.20 : The number of errors in hypothesis testing from 1000 simulations, for the case $\rho=1$ and $T=10000$, under the level of significance 0.05 .

LIST OF FIGURES

page
Figure 3.1 : The structure of Chapter 3: First order autoregressive model subject to sampling errors.

Figure 3.2 : Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.4, \sigma^{2}=1, T=10000$, and different values of the constant D_{t}^{2}.

Figure 3.3 : Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.7, \sigma^{2}=1, T=10000$, and different values of the constant D_{t}^{2}.
Figure 3.4 : Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.4, \sigma^{2}=1, T=10000$, and different values of the uniformly distributed D_{t}^{2}.
Figure 3.5 : Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.7, \sigma^{2}=1, T=10000$, and different values of the uniformly distributed D_{t}^{2}.
Figure 3.6 : Plot of percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.4$ and different values of the constant D_{t}^{2}.
Figure 3.7 : Plot of percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.7$ and different values of the constant D_{t}^{2}.

Figure 3.8 : Plot of percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.7$ and different values of the uniformly distributed D_{t}^{2}.
Figure 3.9 : Plot of all different test statistics for the case $\rho=1, \sigma^{2}=1$, $T=10000$, and different values of the constant D_{t}^{2}.
Figure 3.10 : Plot of all different test statistics for the case $\rho=1, \sigma^{2}=1$,
$T=10000$, and different values of ranges of the D_{t}^{2}.

CHAPTER I
 INTRODUCTION

A time series is a sequence of observations indexed by times. Time series data can be found in many applications, for instance, forecast of daily closing prices in stock markets, explanation of the weekly speed of wind or daily air temperature in a specific location, and description of the annual unemployment rate. Among different types of time series models, one common family widely used in applications is the family of the autoregressive moving average (ARMA) models. The ARMA models have been widely applied in many forecasting problems. However, the models have a mandatory condition of being stationary, the condition such that mean, variance, and autocovariance do not depend on time. Therefore, in order to apply such models, an effective tool for the stationary test is important.

The stationary test was first introduced in Dickey and Fuller in 1979 [7]. They introduced a stationary test for the first order autoregressive model defined as

$$
y_{t}=\rho y_{t-1}+e_{t}, \quad t=1,2, \ldots,
$$

where $\left\{y_{t}\right\}_{t \geq 1}$ is the sequence of observed data, ρ is the autoregressive coefficient, and $\left\{e_{t}\right\}$ is the sequence of Gaussian white noises with zero mean and variance σ^{2}. The absolute value of the autoregressive coefficient ρ has an effect on the stationary condition. In particular, a time series $\left\{y_{t}\right\}$ is stationary if $|\rho|<1$, and nonstationary if $|\rho| \geq 1$. Dickey and Fuller were interested in an estimator of ρ and the test with the null hypothesis that the model is nonstationary, or $|\rho|=1$. For n observations of y_{t}, they used the maximum likelihood method for the estimator of ρ, denoted by $\hat{\rho}$. Rubin [19] showed that $\hat{\rho}$ is a consistent
estimator of ρ. For $|\rho|<1$, Mann and Wald [16] and Anderson [1] obtained the asymptotic distribution of $\sqrt{n}(\hat{\rho}-\rho)$, which is the normal distribution with zero mean and variance $1-\rho^{2}$. White $[25,26]$ showed that when $|\rho|>1$, the asymptotic distribution of $|\rho|^{n}\left(\rho^{2}-1\right)^{-1}(\hat{\rho}-\rho)$ is the Cauchy distribution. In addition, the asymptotic distribution of $\hat{\rho}$ and the corresponding test statistic of the stationary test when $|\rho|=1$ is obtained by Dickey and Fuller [7]. Their results can be extended to higher orders of ARMA models. For example, Dickey et al. [6] extended the unit root test to autoregressive models of unknown order. Said and Dickey [21] developed a unit root test on ARMA models of unknown order and ARIMA models with order $(p, 1, q)$.

However, many stationary tests are applied to observed data regardless of sampling errors. When the studied data have sampling errors, such as the data obtained by survey sampling, the results are possibly different form the results obtained from the data with no sampling errors. The effects of measurement errors could cause bias results in many works of literature. For example, in the linear regression model, Lahiri and Suntornchost [12] showed that sampling errors could cause bias in variable selection methods. Marhuenda et al. [15] studied a residual likelihood ratio test for the variance component in Fay-Herriot model, the model is composed of a sampling model and a linking model. Angkunsit and Suntornchost [2] suggested ways to adjust variable selection statistics to reduce the biases of parameter estimates in the multivariate linear regression models subject to sampling errors.

In this thesis, we extend the concept of including sampling errors into parameter estimation and stationary test for the first order autoregressive models. We study the situation where the population means are not observed but are estimated by their sample means. We are interested in the estimator of autoregressive coefficients and the stationary test for the first order autoregressive models subject to sampling errors.

In our study, we first investigate the affect of sampling errors to the existing methods, called naive methods. We then propose some adjustments to reduce
biases of the naive methods. Our study is divided into two main parts which are (1) the study of the autoregressive coefficient and (2) the study of the stationary test.

The organization of this thesis is as follows. In chapter 2, we give basic knowledge in probability, statistics, and time series analysis used in our study. In chapter 3, we introduce time series models subject to sampling errors. Moreover, we obtain a parameter estimate of the autoregressive coefficient, a test statistic for the stationary test, asymptotic properties, and simulations. Finally, we give conclusions of this thesis in Chapter 4.

CHAPTER II

PRELIMINARIES

In this chapter, we give definitions and theorems related to matrix algebra, calculus, some properties of probability and statistics, and time series models which will be used in this thesis.

2.1 Basic Knowledge in Matrix Algebra and Calculus

In this section, we introduce some notations of matrix algebra, which will be used in Chapter 3. For example, the transpose and the inverse of matrices. Furthermore, we discuss concepts of Taylor's formula for a function f from \mathbb{R}^{n} into \mathbb{R}.

2.1.1 Matrix Algebra

Definition 2.1. An $m \times n$ matrix \mathbf{A} over a field \mathbb{F} is a rectangular array of $m n$ elements $a_{i j}$, in \mathbb{F}, arranged in m rows and n columns as follows:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \tag{2.1}\\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

Definition 2.2. The matrix obtained from a matrix \mathbf{A} by interchanging the rows and columns of \mathbf{A} is called the transpose of \mathbf{A} and denoted by \mathbf{A}^{\prime}.

Definition 2.3. Let \mathbf{A} be an $n \times n$ matrix. A is invertible if and only if there exists a matrix \mathbf{B} such that

$$
\mathbf{A B}=I_{n}=\mathbf{B A},
$$

where I_{n} is $n \times n$ identity matrix. The matrix \mathbf{B} is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}.

Definition 2.4. The determinant of an $n \times n$ matrix \mathbf{A}, denoted by $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$, is a scalar function of \mathbf{A} defined as the sum of all n ! possible products of n elements such that

1. each product contains one element from every row and every column of \mathbf{A},
2. the factors in each product are the written so that the column subscripts appear in order of magnitude and each product is then preceded by a plus or minus sign according to whether the number of inversions in the row subscripts is even or odd.

Theorem 2.5. Let \mathbf{A} and $\overline{\mathbf{B}}$ be invertable $n \times n$ matrices. Then

1. $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$.
2. $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$.
3. $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.

2.1.2 Taylor's Formula in Several Variables

Definition 2.6. [22] Let $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$. The set $\left(a_{1}, b_{1}\right) \times$ $\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{m}, b_{m}\right) \subset \mathbb{R}^{m}$ is called an open rectangle of \mathbb{R}^{m}.

Definition 2.7. [22] A set $U \subset \mathbb{R}^{m}$ is called open if for each $\mathbf{x} \in U$ there is an open rectangle A such that $\mathbf{x} \in A \subset U$.

Definition 2.8. [22] A subset C of \mathbb{R}^{m} is closed if $\mathbb{R}^{m}-C$ is open.
Definition 2.9. [22] Let $A \subset \mathbb{R}^{n}$. A function $f: A \rightarrow \mathbb{R}^{m}$ is called continuous at $\mathbf{a} \in A$ if $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})$, and f is simply called continuous if it is continuous at each $a \in A$.

Theorem 2.10. [22] If $A \subset \mathbb{R}^{n}$, a function $f: A \rightarrow \mathbb{R}^{m}$ is continuous if and only if every open set $U \subset \mathbb{R}^{m}$, there is an open subset V of \mathbb{R}^{n} such that $f^{-1}(U)=V \cap A$.

Definition 2.11. [22] A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\mathbf{a} \in \mathbb{R}^{n}$ if there is a linear transformation $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{\mathbf{h} \rightarrow 0} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\lambda(\mathbf{h})\|}{\|\mathbf{h}\|}=0 . \tag{2.2}
\end{equation*}
$$

The linear transformation λ is denoted $D f(\mathbf{a})$ and called the derivative of f at \mathbf{a}. Theorem 2.12. [22] If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\mathbf{a} \in \mathbb{R}^{n}$, there is a unique linear transformation $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{\mathbf{h} \rightarrow 0} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\lambda(\mathbf{h})\|}{\|\mathbf{h}\|}=0 . \tag{2.3}
\end{equation*}
$$

Definition 2.13. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. We say that f has the i th partial derivative at a if the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(a_{1}, a_{2}, \ldots, a_{i}+h, \ldots, a_{n}\right)-f\left(a_{1}, a_{2}, \ldots, a_{i}, \ldots, a_{n}\right)}{h} \tag{2.4}
\end{equation*}
$$

exists and is finite. The value is denoted by $D_{i} f(\mathbf{a})$. The i th partial derivative of f is denoted by $D_{i} f$ or $\partial_{i} f$.

Definition 2.14. [10] A function f is said to be of class C^{k} on an open set U if all of its partial derivatives of orders less than or equal to k exist and are continuous on U.

If the partial derivatives of f of all orders exist and are continuous on U, f is said to be of class C^{∞} on U.

Definition 2.15. [10] A multi-index is an n-tuple of nonnegative integers. Multiindices are generally denoted by the Greek letters α or β :

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \quad \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \quad\left(\alpha_{j}, \beta_{j} \in\{0,1,2, \ldots\}\right) .
$$

If α is a multi-index, we define
(1) $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$,
(2) $\alpha!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$,
(3) $\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,
(4) $\partial^{\alpha} f=\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \cdots \partial_{n}^{\alpha_{n}} f$.

Theorem 2.16 (Taylor's Theorem in Several Variables). [10] Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of class C^{k} on an open convex set S. If $\mathbf{a} \in S$ and $\mathbf{a}+\mathbf{h} \in S$, then

$$
\begin{equation*}
f(\mathbf{h}+\mathbf{a})=\sum_{|\alpha| \leq k} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!} \mathbf{h}^{\alpha}+R_{\mathbf{a}, k}(\mathbf{h}), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\mathbf{a}, k}(\mathbf{h})=(k+1) \sum_{|\alpha|=k+1} \frac{\mathbf{h}^{\alpha}}{\alpha!} \int_{0}^{1}(1-t)^{k} \partial^{\alpha} f(\mathbf{a}+t \mathbf{h}) d t . \tag{2.6}
\end{equation*}
$$

Corollary 2.17. [10] If f is of class C^{k} on S, then $\frac{R_{\mathbf{a}, k}(\mathbf{h})}{|\mathbf{h}|^{k}} \rightarrow 0$ as $\mathbf{h} \rightarrow 0$. If f is of class C^{k+1} on S and $\left|\partial^{\alpha} f(\mathbf{x})\right| \leq M$ for $\mathbf{x} \in S$ and $|\alpha|=k+1$, then

$$
\begin{equation*}
\left|R_{\mathbf{a}, k}(\mathbf{h})\right| \leq \frac{M}{(k+1)!}\|\mathbf{h}\|_{1}^{k+1} \tag{2.7}
\end{equation*}
$$

where $\|\mathbf{h}\|_{1}=\sum_{i=1}^{n}\left|h_{i}\right|$.
Lemma 2.18. [10] Let $P(\mathbf{h})$ be a polynomial of degree less than or equal to k. If $\lim _{\mathbf{h} \rightarrow 0} \frac{P(\mathbf{h})}{|\mathbf{h}|^{k}}=0$, then $P \equiv 0$.

Theorem 2.19. [10] Suppose f is of class C^{k} near \mathbf{a}. If $f(\mathbf{a}+\mathbf{h})=Q(\mathbf{h})+E(\mathbf{h})$, where Q is a polynomial with $\operatorname{deg}(Q) \leq k$ and $\lim _{\mathbf{h} \rightarrow 0} \frac{E(\mathbf{h})}{|\mathbf{h}|^{k}}=0$, then Q is the Taylor polynomial $P_{\mathbf{a}, k}(\mathbf{h})=\sum_{|\alpha| \leq k} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!} \mathbf{h}^{\alpha}$.

Definition 2.20. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{k} map an open convex set S and $\mathbf{a} \in \mathbb{R}^{n}$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a multi-index. If $k \geq 1$ or ∞, the first order Taylor approximation of f around $\mathbf{a} \in S$ is

$$
\begin{equation*}
f(\mathbf{x}) \approx \sum_{|\alpha| \leq 1} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!}(\mathbf{x}-\mathbf{a})^{\alpha}=f(\mathbf{a})+\sum_{i=1}^{n} \partial_{i} f(\mathbf{a})\left(x_{i}-a_{i}\right) \tag{2.8}
\end{equation*}
$$

If $k \geq 2$ or ∞, the second order Taylor approximation of f around $\mathbf{a} \in S$ is

$$
\begin{align*}
f(\mathbf{x}) \approx & \sum_{|\alpha| \leq 2} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!}(\mathbf{x}-\mathbf{a})^{\alpha} \\
= & f(\mathbf{a})+\sum_{i=1}^{n} \partial_{i} f(\mathbf{a})\left(x_{i}-a_{i}\right)+\frac{1}{2} \sum_{i=1}^{n} \partial_{i}^{2} f(\mathbf{a})\left(x_{i}-a_{i}\right)^{2} \\
& +\sum_{1 \leq i<j \leq n} \partial_{i j} f(\mathbf{a})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right) . \tag{2.9}
\end{align*}
$$

2.2 Basic Knowledge in Probability Theory

In this section, we review some probability concepts used in our study. For example, important inequalities and convergence concepts of random variables. Furthermore, we provide expectation approximations of random variables by using the Taylor series.

2.2.1 Distribution and Moments

Definition 2.21. [3] The probability mass function (pmf) of a discrete random variable X is given by

for all x.

Definition 2.22. [3] The probability density function (pdf) of a continuous random variable X is the function $f_{X}(\cdot)$ that satisfies

$$
P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

for all x.

Definition 2.23. [3] The expected value or mean of a random variable $g(X)$, denoted by $\mathbb{E}(g(X))$, is

$$
\mathbb{E}(g(X))= \begin{cases}\int_{-\infty}^{\infty} g(x) f_{X}(x) d x, & \text { if } X \text { is continuous } \\ \sum_{-\infty}^{\infty} g(x) f_{X}(x), & \text { if } X \text { is discrete }\end{cases}
$$

provided that the integral or the sum exists.
Definition 2.24. [3] For each integer n, the nth moment of a random variable X is $\mathbb{E}\left(X^{n}\right)$, and the nth central moment of a random variable X is $\mathbb{E}(X-\mathbb{E}(X))^{n}$.

Definition 2.25. [3] The variance of a random variable X is its second order central moment, $\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E}(X))^{2}$. The positive square root of $\operatorname{Var}(X)$ is the standard deviation of X.

Definition 2.26. [3] The covariance of random variables X and Y is defined by $\operatorname{Cov}(X, Y)=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))$.

Theorem 2.27. [3] If X and Y are any two random variables and a and b are any two constants, then $\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y)$.

Theorem 2.28. [3] If X and Y are any two random variables and a and b are any two constants, then

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Theorem 2.29. [3] For any random variables X and $Y, \operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-$ $\mathbb{E}(X) \mathbb{E}(Y)$.

2.2.2 Conditional Distributions

Definition 2.30. [3] Let (X, Y) be a discrete bivariate random vector. Then the function $f(\cdot, \cdot)$ from \mathbb{R}^{2} into \mathbb{R} defined by $f(x, y)=P(X=x, Y=y)$ is called the joint probability mass function of X and Y.

Definition 2.31. [3] Let (X, Y) be a continuous bivariate random vector. A function f from \mathbb{R}^{2} into \mathbb{R} is called a joint probability density function of (X, Y) if, for any $A \subset \mathbb{R}^{2}$,

$$
P((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

Definition 2.32. [3] Let X and Y be discrete random variables. For any x such that $P(X=x)>0$, the conditional probability mass function of Y given that $X=x$, denoted as $f_{Y \mid X}$, is the function of y defined as

$$
f_{Y \mid X}(y \mid x)=P(Y=y \mid X=x)=\frac{P(X=x, Y=y)}{P(X=x)} .
$$

Definition 2.33. [3] Let X and Y be continuous random variables. For any x such that $f_{X}(x)>0$, the conditional probability density function of Y given that $X=x$, denoted as $f_{Y \mid X}$, is the function of y defined as

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{Y}(y)} .
$$

Theorem 2.34. [3] If X and Y are any two random variables, then

$$
\mathbb{E}(X)=\mathbb{E}(\mathbb{E}(X \mid Y)),
$$

provided that the expectations exist.

Theorem 2.35 (Conditional variance identity). [3] If X and Y are any two random variables, then

$$
\operatorname{Var}(X)=\mathbb{E}(\operatorname{Var}(X \mid Y))+\operatorname{Var}(\mathbb{E}(X \mid Y)),
$$

provided that the expectations exist.

2.2.3 Independence and Identical Distribution

Definition 2.36. [17] A pair $\{X, Y\}$ of random variables is (stochastically) independent if and only if for each pair of sets $\{M, N\}$, the following product rule holds

$$
P(X \in M, Y \in N)=P(X \in M) P(Y \in N) .
$$

Definition 2.37. [17] A class $\left\{X_{t} \mid t \in T\right\}$ of random variables is said to be iid, an acronym for "independent and identically distributed", if and only if the class is independent and all members have the same distribution.

Theorem 2.38. [3] If X and Y are independent random variables, then $\operatorname{Cov}(X, Y)=$ 0 .

Theorem 2.39. [3] A pair $\{X, Y\}$ of random variables is uncorrelated if and only if $\operatorname{Cov}(X, Y)=0$.

2.2.4 Convergence in Probability

Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be sequences of random variables for $n \geq 1$, and let X, Y be random variables.

Definition 2.40. [18] The sequence of random variables $\left\{X_{n}\right\}$ converges in probability to X, written as $X_{n} \xrightarrow{p} X$, if for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

Theorem 2.41. [18] Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. If $X_{n} \xrightarrow{p} X$, then $g\left(X_{n}\right) \xrightarrow{p} g(X)$.

Theorem 2.42. [18] Suppose that $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$. Then

1. $X_{n}+Y_{n} \xrightarrow{p} X+Y$.
2. $X_{n} Y_{n} \xrightarrow{p} X Y$.

Theorem 2.43. [11] Suppose that $\left|X_{n}-Y_{n}\right|$ converges in probability to zero. If there exists a random variable X such that $X_{n} \xrightarrow{p} X$, then $Y_{n} \xrightarrow{p} X$.

Definition 2.44. [18] The sequence of random variables $\left\{X_{n}\right\}$ converges in L_{p} to X, written as $X_{n} \xrightarrow{L_{p}} X$, if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|X_{n}-X\right|^{p}\right)=0
$$

Theorem 2.45. [18] For $p>0$, if $X_{n} \xrightarrow{L_{p}} X$, then $X_{n} \xrightarrow{p} X$.
Theorem 2.46. [18] For $p>0$, if $X_{n} \xrightarrow{L_{p}} X$, then $\mathbb{E}\left(\left|X_{n}\right|^{p}\right) \longrightarrow \mathbb{E}\left(|X|^{p}\right)$.
Theorem 2.47. Let $\left\{X_{n}\right\}$ be a sequence of random variables with $\mathbb{E}\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right) \leq C<\infty$ for some C. If $\left\{X_{n}\right\}$ are pairwise uncorrelated random variables, then
(1) $\mathbb{E}\left(\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu\right|^{2}\right) \longrightarrow 0$,
(2) $\frac{1}{n} \sum_{t=1}^{n} X_{t} \xrightarrow{p} \mu$.

Theorem 2.48. [11] Let $\left\{X_{n}\right\}$ be a sequence of random variables. If μ is a constant such that $\mathbb{E}\left(X_{n}\right) \rightarrow \mu$ and $\operatorname{Var}\left(X_{n}\right) \rightarrow 0$, then $X_{n} \xrightarrow{p} \mu$.

Theorem 2.49. [23] Ler X_{n} be a sequence of independent random variables with finite second moments. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)<\infty \tag{2.10}
\end{equation*}
$$

then $\sum_{n=1}^{\infty}\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right)$ converges almost surely.
Definition 2.50. [3] The sequence of random variables $\left\{X_{n}\right\}$ converges in distribution to X, written as $X_{n} \xrightarrow{d} X$, if

$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=P(X \leq x),
$$

for every point x and $F_{X}(x)=P(X \leq x)$ is continuous.

Theorem 2.51. [11] If $X_{n} \xrightarrow{p} X$, then $X_{n} \xrightarrow{d} X$.
Theorem 2.52. [11] Let a be a constant. If $X_{n} \xrightarrow{d} a$, then $X_{n} \xrightarrow{p} a$.
Theorem 2.53. [11] Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be sequences of random variables such that $X_{n}-Y_{n}$ converges in probability to zero. If there exists a random variable X such that $X_{n} \xrightarrow{d} X$, then $Y_{n} \xrightarrow{d} X$.

Theorem 2.54. Let X_{n}, Y_{n}, and Z_{n} be sequences of positive random variables for $n=1,2, \ldots$ Suppose that Y_{n} and Z_{n} both converge in probability to a random variable X. If $Y_{n} \leq X_{n} \leq Z_{n}$, then X_{n} converges in probability to the random variable X.

Theorem 2.55 (Slutsky's Theorem, [3]). Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be sequences of random variables. If X_{n} converges in distribution to a random variable X and Y_{n} converges in probability to a constant a, then
(1) $Y_{n} X_{n} \xrightarrow{d} a X$, and
(2) $X_{n}+Y_{n} \xrightarrow{d} X+a$.

2.2.5 Order in Probability

Definition 2.56. [11] Let $\left\{a_{n}\right\}$ be a sequence of real numbers and $\left\{g_{n}\right\}$ be a sequence of positive real numbers. Then, we say a_{n} is of smaller order than g_{n} and write $a_{n}=o\left(g_{n}\right)$ if $\lim _{n \rightarrow \infty} g_{n}^{-1} a_{n}=0$.

Definition 2.57. [11] Let $\left\{a_{n}\right\}$ be a sequence of real numbers and $\left\{g_{n}\right\}$ be a sequence of positive real numbers. Then, we say thaty a_{n} is at most of order g_{n} and write $a_{n}=O\left(g_{n}\right)$ if there exist a real numbers M and $N \in \mathbb{N}$ such that $g_{n}^{-1}\left|a_{n}\right| \leq M$ for all $n \geq N$.

Lemma 2.58. [11] Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers, and let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of positive real numbers.
(1) If $a_{n}=o\left(f_{n}\right)$ and $b_{n}=o\left(g_{n}\right)$, then

$$
\begin{aligned}
a_{n} b_{n} & =o\left(f_{n} g_{n}\right), \\
\left|a_{n}\right|^{s} & =o\left(f_{n}^{s}\right) \quad \text { for } s>0, \\
a_{n}+b_{n} & =o\left(\max \left\{f_{n}, g_{n}\right\}\right) .
\end{aligned}
$$

(2) If $a_{n}=O\left(f_{n}\right)$ and $b_{n}=O\left(g_{n}\right)$, then

$$
\begin{aligned}
a_{n} b_{n} & =O\left(f_{n} g_{n}\right) \\
\left|a_{n}\right|^{s} & =O\left(f_{n}^{s}\right) \quad \text { for } s \geq 0 \\
a_{n}+b_{n} & =O\left(\max \left\{f_{n}, g_{n}\right\}\right)
\end{aligned}
$$

(3) If $a_{n}=o\left(f_{n}\right)$ and $b_{n}=O\left(g_{n}\right)$, then $a_{n} b_{n}=o\left(f_{n} g_{n}\right)$.

Definition 2.59. [11] Let $\left\{X_{n}\right\}$ be a sequence of random variables and $\left\{g_{n}\right\}$ be a sequence of positive real numbers. Then, we say that X_{n} is of smaller order in probability than g_{n} and write $X_{n}=o_{p}\left(g_{n}\right)$ if $g_{n}^{-1} X_{n}$ converges in probability to zero.

Definition 2.60. [11] Let $\left\{X_{n}\right\}$ be a sequence of random variables and $\left\{g_{n}\right\}$ be a sequence of positive real numbers. Then, we say that X_{n} is at most of order in probability g_{n} and write $X_{n}=O_{p}\left(g_{n}\right)$ if, for every $\varepsilon>0$, there exists a positive real number M such that $P\left(\left|g_{n}^{-1} X_{n}\right| \geq M\right)<\varepsilon$ for all n.

If $X_{n}=O_{p}\left(g_{n}\right)$, we sometimes say that X_{n} is bounded in probability by g_{n}.

Lemma 2.61. [11] Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be sequences of random variables, and let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of positive real numbers.
(1) If $X_{n}=o_{p}\left(f_{n}\right)$ and $Y_{n}=o_{p}\left(g_{n}\right)$, then

$$
\begin{aligned}
X_{n} Y_{n} & =o_{p}\left(f_{n} g_{n}\right), \\
\left|X_{n}\right|^{s} & =o_{p}\left(f_{n}^{s}\right) \quad \text { for } s>0, \\
X_{n}+Y_{n} & =o_{p}\left(\max \left\{f_{n}, g_{n}\right\}\right) .
\end{aligned}
$$

(2) If $X_{n}=O_{p}\left(f_{n}\right)$ and $Y_{n}=O_{p}\left(g_{n}\right)$, then

$$
\begin{aligned}
X_{n} Y_{n} & =O_{p}\left(f_{n} g_{n}\right) \\
\left|X_{n}\right|^{s} & =O_{p}\left(f_{n}^{s}\right) \quad \text { for } s \geq 0 \\
X_{n}+Y_{n} & =O_{p}\left(\max \left\{f_{n}, g_{n}\right\}\right)
\end{aligned}
$$

(3) If $X_{n}=o_{p}\left(f_{n}\right)$ and $Y_{n}=O_{p}\left(g_{n}\right)$, then $X_{n} Y_{n}=o_{p}\left(f_{n} g_{n}\right)$.

Corollary 2.62. [11] Let $\left\{X_{n}\right\}$ be a sequence of random variables and $\left\{a_{n}\right\}$ be a sequence of positive real numbers. If $\mathbb{E}\left(X_{n}^{2}\right)=O\left(a_{n}^{2}\right)$, then $X_{n}=O_{p}\left(a_{n}\right)$.

Corollary 2.63. [11] Let $\left\{X_{n}\right\}$ be a sequence of random variables and $\left\{a_{n}\right\}$ be a sequence of positive real numbers. If $\operatorname{Var}\left(X_{n}\right)=O\left(a_{n}^{2}\right)$ and $\mathbb{E}\left(X_{n}\right)=O\left(a_{n}\right)$, then $X_{n}=O_{p}\left(a_{n}\right)$.

Corollary 2.64. [11] Let $\left\{X_{n}\right\}$ be a sequence of scalar random variables such that

$$
X_{n}=a+O_{p}\left(r_{n}\right),
$$

where $r_{n} \rightarrow 0$ as $n \rightarrow \infty$. If g is a function with s continuous derivatives at $x=a$, then

$$
g\left(X_{n}\right)=g(a)+g^{(1)}(a)\left(X_{n}-a\right)+\cdots+g^{(s)}(a)\left(X_{n}-a\right)^{s}+O_{p}\left(r_{n}^{s}\right),
$$

where $g^{(j)}(a)$ is the j th derivative of $g(x)$ evaluated at $x=a$.

2.2.6 Inequalities

Theorem 2.65. [18] Let X and Y be random variables. If $\mathbb{E}(X)$ and $\mathbb{E}(Y)$ both exist and $X \leq Y$, then $\mathbb{E}(X) \leq \mathbb{E}(Y)$.

Theorem 2.66 (Modulus Inequality, [18]). For any random variable X, if $\mathbb{E}(|X|)<$ ∞, then $|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$.

Theorem 2.67 (Markov's Inequality, [18]). For any random variable X and $\lambda>0$, if $\mathbb{E}(|X|)<\infty$, then

$$
P(|X| \geq \lambda) \leq \frac{\mathbb{E}(|X|)}{\lambda}
$$

Theorem 2.68 (Chebychev's Inequality, [18]). For any random variable X and $\varepsilon>0$, if $\mathbb{E}(|X|)<\infty$ and $\operatorname{Var}(X) \leq \infty$, then

$$
P(|X-\mathbb{E}(X)| \geq \varepsilon) \leq \frac{\operatorname{Var}(X)}{\varepsilon}
$$

Theorem 2.69 (Chebychev's Inequality, [11]). Let $r>0$, and let X be a random variable such that $\mathbb{E}\left(|X|^{r}\right)<\infty$. Then, for any $\varepsilon>0$ and finite A,

$$
P(|X-A| \geq \varepsilon) \leq \frac{\mathbb{E}\left(|X-A|^{r}\right)}{\varepsilon^{r}}
$$

Theorem 2.70 (Cauchy-Schwarz Inequality, [3]). For any two random variables X and Y, if $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$, then

$$
|\mathbb{E}(X Y)| \leq \mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

Corollary 2.71. [3] For any two random variables X and Y, if $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$, then

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

Theorem 2.72 (Hölder's Inequality, [3]). Let X and Y be any two random variables, and let p and q be any positive numbers satisfying $p>1, q>1$, and $\frac{1}{p}+\frac{1}{q}=1$. If $\mathbb{E}\left(|X|^{p}\right)<\infty$ and $\mathbb{E}\left(|Y|^{q}\right)<\infty$, then

$$
|\mathbb{E}(X Y)| \leq \mathbb{E}(|X Y|) \leq \mathbb{E}^{\frac{1}{p}}\left(|X|^{p}\right) \mathbb{E}^{\frac{1}{q}}\left(|Y|^{q}\right)
$$

Theorem 2.73 (Minkowski's Inequality, [3]). Let X and Y be any two random variables. If $\mathbb{E}\left(|X|^{p}\right)<\infty$ and $\mathbb{E}\left(|Y|^{p}\right)<\infty$ for $1 \leq p<\infty$, then

$$
\mathbb{E}^{\frac{1}{p}}\left(|X+Y|^{p}\right) \leq \mathbb{E}^{\frac{1}{p}}\left(|X|^{p}\right)+\mathbb{E}^{\frac{1}{p}}\left(|Y|^{p}\right) .
$$

Corollary 2.74. Let X and Y be any two random variables. If $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$, then

$$
\operatorname{Var}(X+Y) \leq(\sqrt{\operatorname{Var}(X)}+\sqrt{\operatorname{Var}(Y)})^{2} \leq 2 \operatorname{Var}(X)+2 \operatorname{Var}(Y)
$$

Proof. From Minkowski's inequality with $p=2$, we have

$$
\begin{aligned}
\sqrt{\operatorname{Var}(X+Y)} & =\sqrt{\mathbb{E}(X+Y-\mathbb{E}(X+Y))^{2}} \\
& =\sqrt{\mathbb{E}\left((X-\mathbb{E}(X))+(Y-\mathbb{E}(Y))^{2}\right.} \\
\text { คभา } & \leq \sqrt{\mathbb{E}(X-\mathbb{E}(X))^{2}}+\sqrt{\mathbb{E}(Y-\mathbb{E}(Y))^{2}} \\
& =\sqrt{\operatorname{Var}(X)}+\sqrt{\operatorname{Var}(Y)} .
\end{aligned}
$$

Hence, $\operatorname{Var}(X+Y) \leq(\sqrt{\operatorname{Var}(X)}+\sqrt{\operatorname{Var}(Y)})^{2}$.
By using the fact that $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, we have $(\sqrt{\operatorname{Var}(X)}+\sqrt{\operatorname{Var}(Y)})^{2} \leq$ $2 \operatorname{Var}(X)+2 \operatorname{Var}(Y)$.

Theorem 2.75 (Jensen's Inequality, [3]). For any random variable X, if $g(\cdot)$ is a convex function, then

$$
g(E(X)) \leq \mathbb{E}(g(X))
$$

If $g(\cdot)$ is concave, the inequality reverses.

2.2.7 Expectation Approximations of Random Variables

In many situations, we have to work with functions of random variables where the closed-forms of expectation and variance are difficult to obtain. In the situation where we are interested in obtaining the variance of the estimate of $\frac{p}{1-p}$, where p is the success probability of the Bernoulli experiment. The odds $\frac{p}{1-p}$ can be estimated by $\frac{\hat{p}}{1-\hat{p}}$, where \hat{p} is the estimator of the success probability p. To consider the properties of this estimator $\frac{\hat{p}}{1-\hat{p}}$, the variance of the estimator is necessary. However, the closed-form of its variance is impossible to obtain.

One method for approximation of the mean and the variance of a function of a random variable is to use the Taylor series. This approximation method allows us to approximate the mean and the variance of random variables.

Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a vector of random variables with mean $\boldsymbol{\mu}=$ $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. From (2.8), the first-order Taylor series expansion of $f(\mathbf{X})$ about $\boldsymbol{\mu}$ is

$$
\begin{equation*}
f(\mathbf{X})=(\boldsymbol{\mu})+\sum_{i=1}^{n} f_{i}(\boldsymbol{\mu})\left(X_{i}-\mu_{i}\right)+R, \tag{2.11}
\end{equation*}
$$

where $f_{i}=\frac{\partial f}{\partial x_{i}}$ and R is the remainder of order smaller than the term in the equation. For approximating the mean and the variance of $f(\mathbf{X})$, we ignore the remainder R and write

$$
\begin{equation*}
f(\mathbf{X}) \approx f(\boldsymbol{\mu})+\sum_{i=1}^{n} f_{i}(\boldsymbol{\mu})\left(X_{i}-\mu_{i}\right) \tag{2.12}
\end{equation*}
$$

We apply the expectation to all terms in (2.12) to obtain

$$
\begin{equation*}
\mathbb{E}(f(\mathbf{X})) \approx f(\boldsymbol{\mu}) \tag{2.13}
\end{equation*}
$$

In the same way by applying the variance function to all terms in (2.12), the approximation of the variance of $f(\mathbf{X})$ is

$$
\begin{equation*}
\operatorname{Var}(f(\mathbf{X})) \approx \sum_{i=1}^{n} f_{i}^{2}(\boldsymbol{\mu}) \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} f_{i}(\boldsymbol{\mu}) f_{j}(\boldsymbol{\mu}) \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{2.14}
\end{equation*}
$$

The approximation (2.12) can be extended to the higher order to reduce approximation errors, such as the second-order Taylor series approximation. From (2.9), the second-order Taylor series approximation of $f(\mathbf{X})$ about $\boldsymbol{\mu}$ is

$$
\begin{align*}
f(\mathbf{X}) \approx & f(\boldsymbol{\mu})+\sum_{i=1}^{n} f_{i}(\boldsymbol{\mu})\left(X_{i}-\mu_{i}\right)+\frac{1}{2} \sum_{i=1}^{n} f_{i i}^{2}(\boldsymbol{\mu})\left(X_{i}-\mu_{i}\right)^{2} \\
& +\sum_{1 \leq i<j \leq n} f_{i j}^{2}(\boldsymbol{\mu})\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right), \tag{2.15}
\end{align*}
$$

where $f_{i}=\frac{\partial f}{\partial x_{i}}$.
Applying the expectation to the terms in (2.15), the approximation of the expectation of $f(\mathbf{X})$ is

$$
\begin{equation*}
\mathbb{E}(f(\mathbf{X})) \approx f(\boldsymbol{\mu})+\frac{1}{2} \sum_{i=1}^{n} f_{i i}^{2}(\boldsymbol{\mu}) \operatorname{Var}\left(X_{i}\right)+\sum_{1 \leq i<j \leq n} f_{i j}^{2}(\boldsymbol{\mu}) \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{2.16}
\end{equation*}
$$

2.3 Basic Knowledge in Statistics

In this section, we introduce some concepts in statistics used in this thesis such as the parameter estimation and the hypothesis testing.

2.3.1 Parameter Estimation

Definition 2.76. [3] A point estimator is any function $\mathbf{W}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of samples $X_{1}, X_{2}, \ldots, X_{n}$.

Definition 2.77. [3] Let $f(\mathbf{x} \mid \boldsymbol{\theta})$ denote the joint pdf or pmf of the sample $\mathbf{X}=$ $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\boldsymbol{\theta}$ denote the parameter. Then, given that $\mathbf{X}=\mathbf{x}$ is observed,
the function of $\boldsymbol{\theta}$ defined by

$$
L(\boldsymbol{\theta} \mid \mathbf{x})=f(\mathbf{x} \mid \boldsymbol{\theta})
$$

is called the likelihood function of $\boldsymbol{\theta}$.
Definition 2.78. [3] For each sample point \mathbf{x}, let $\hat{\boldsymbol{\theta}}(\mathbf{x})$ be a parameter value at which $L(\boldsymbol{\theta} \mid \mathbf{x})$ attains its maximum as a function of $\boldsymbol{\theta}$, with \mathbf{x} held fixed. A maximum likelihood estimator (MLE) of the parameter $\boldsymbol{\theta}$ based on a sample \mathbf{X} is $\hat{\boldsymbol{\theta}}(\mathbf{X})$.

Definition 2.79. [3] The mean squared error (MSE) of an estimator \mathbf{W} of a parameter $\boldsymbol{\theta}$ is the function of $\boldsymbol{\theta}$ defined by $\mathbb{E}_{\boldsymbol{\theta}}(\mathbf{W}-\boldsymbol{\theta})^{2}$.

Definition 2.80. [3] The bias of a point estimator \mathbf{W} of a parameter $\boldsymbol{\theta}$ is is the difference between the expected value of \mathbf{W} and $\boldsymbol{\theta}$; that is, $\operatorname{Bias}_{\boldsymbol{\theta}}(\mathbf{W})=\mathbb{E}_{\boldsymbol{\theta}}(\mathbf{W})-\boldsymbol{\theta}$.

Definition 2.81. [3] An estimator \mathbf{W} whose bias is identically equal to 0 is called unbiased and satisfies $\operatorname{Bias}_{\boldsymbol{\theta}}(\mathbf{W})=0$ for all $\boldsymbol{\theta}$.

Definition 2.82. [3] A sequence of estimators $\mathbf{W}_{n}=\mathbf{W}_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a consistent sequence of estimators of the parameter $\boldsymbol{\theta}$ if \mathbf{W}_{n} converges to $\boldsymbol{\theta}$ in probability.

2.3.2 Hypothesis Testing

Definition 2.83. [3] A hypothesis is a statement about a population parameter.

Definition 2.84. [3] The two complementary hypotheses in a hypothesis testing problem are called the null hypothesis and the alternative hypothesis. They are denoted by H_{0} and H_{1}, respectively.

Definition 2.85. [3] A hypothesis testing procedure or hypothesis test is a rule that specifies:

1. For which sample value the decision is made to accept H_{0} as true.
2. For which sample value H_{0} is rejected and H_{1} is accepted as true.

The subset of the sample space for which H_{0} will be rejected is called the rejection region or the critical region. The complement of the rejection region is called the acceptance region.

Definition 2.86 (Likelihood Ratio Tests,[3]). The likelihood ratio test statistic for testing $H_{0}: \boldsymbol{\theta} \in \Theta_{0}$ versus $H_{1}: \boldsymbol{\theta} \notin \Theta_{0}$ is

$$
\lambda(\mathbf{x})=\frac{\sup _{\boldsymbol{\theta} \in \Theta_{0}} L(\boldsymbol{\theta} \mid \mathbf{x})}{\sup _{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta} \mid \mathbf{x})} .
$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x} \mid \lambda(\mathbf{x}) \leq c\}$, where c is any number satisfying $0 \leq c \leq 1$.

2.4 Time Series and Stationarity

In this section, we introduce some concepts in time series and their properties used in this thesis such as stationarity. Furthermore, we discuss some time series models, such as an autoregressive model and a moving average model.

Definition 2.87. [11] Let T be an index set. A real valued time series, or stochastic process, is a real valued random variable X_{t}, where t belongs to a time index set T.

Definition 2.88. [11] A time series $\left\{X_{t}\right\}_{t \in T}$ is called strictly stationary if for any $n, h>0$ and any sets of indices $t_{1}, t_{2}, \ldots, t_{n}$ and $t_{1}+h, t_{2}+h, \ldots, t_{n}+h$ in the index set T,

$$
\begin{align*}
P\left(X_{t_{1}}\right. & \left.\leq x_{1}, X_{t_{2}} \leq x_{2}, \ldots, X_{t_{n}} \leq x_{n}\right) \tag{2.17}\\
& =P\left(X_{t_{1}+h} \leq x_{1}, X_{t_{2}+h} \leq x_{2}, \ldots, X_{t_{n}+h} \leq x_{n}\right)
\end{align*}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is in the range of the random variable X_{t}.

Definition 2.89. [24] For a given real valued time series $\left\{X_{t}\right\}_{t \in T}$,

1. the mean function of the process defined by

$$
\mu_{t}=\mathbb{E}\left(X_{t}\right),
$$

2. the variance function of the process defined by

$$
\sigma_{t}^{2}=\operatorname{Var}\left(X_{t}\right),
$$

3. the covariance function between $X_{t_{1}}$ and $X_{t_{2}}$ the process defined by

$$
\gamma\left(t_{1}, t_{2}\right)=\operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right),
$$

4. the correlation function between $X_{t_{1}}$ and $X_{t_{2}}$ the process defined by

$$
\rho\left(t_{1}, t_{2}\right)=\frac{\gamma\left(t_{1}, t_{2}\right)}{\sqrt{\sigma_{t_{1}}^{2}} \sqrt{\sigma_{t_{2}}^{2}}} .
$$

Definition 2.90. [11] A time series $\left\{X_{t}\right\}$ is weakly stationary if

1. $E\left[X_{t}\right]$ is a constant for all t, and
2. For each $h, \gamma(t, t+h)$ is independent of t.

Definition 2.91. [24] A process $\left\{e_{t}\right\}$ is called a white noise process if it is a sequence of uncorrelated random variables from a fixed distribution with constant mean $\mathbb{E}\left(e_{t}\right)=\mu_{e}$, usually assumed to be 0 , constant variance $\operatorname{Var}\left(e_{t}\right)=\sigma_{e}^{2}$, and $\gamma_{k}=\operatorname{Cov}\left(e_{t}, e_{t+k}\right)=0$ for all $k \neq 0$.

Definition 2.92. The sequence $\left\{X_{t}\right\}$ defined by

$$
X_{t}=\sum_{j=0}^{q} \beta_{j} e_{t-j}
$$

where $\beta_{0}, \beta_{q} \neq 0$ and $\left\{e_{t}\right\}_{t \geq 1}$ are uncorrelated $\left(0, \sigma^{2}\right)$ random variables, is called a moving average model of order q, denoted by $\mathrm{MA}(q)$.

Definition 2.93. The sequence $\left\{X_{t}\right\}$ defined by

$$
\sum_{i=0}^{p} \alpha_{i} X_{t-i}=e_{t}
$$

where $\alpha_{0}, \alpha_{q} \neq 0$ and $\left\{e_{t}\right\}_{t \geq 1}$ are uncorrelated $\left(0, \sigma^{2}\right)$ random variables, is called an autoregressive model of order p, denoted by $\operatorname{AR}(p)$. A sequence $\left\{e_{t}\right\}_{t \geq 1}$ is sometimes called white noise process.

Definition 2.94. The sequence $\left\{X_{t}\right\}$ defined by

$$
X_{t}+a_{1} X_{t-1}+\cdots+a_{p} X_{t-p}=e_{t}+b_{1} e_{t-1}+\cdots+b_{q} e_{t-q},
$$

where $a_{p}, b_{q} \neq 0$ and $\left\{e_{t}\right\}_{t \geq 1}$ are uncorrelated $\left(0, \sigma^{2}\right)$ random variables, is called an autoregressive moving average model of orders (p, q), denoted by $\operatorname{ARMA}(p, q)$.

CHAPTER III

FIRST ORDER AUTOREGRESSIVE MODEL SUBJECT TO SAMPLING ERRORS

In this chapter, we propose a new parameter estimation and a stationary test for the first order autoregressive model subject to sampling errors, called $\operatorname{AR}(1)$ model subject to sampling errors. The organization of this chapter is as follows. In Section 3.1, we give introduction of the stationary test of the $\mathrm{AR}(1)$ model and introduce the $\mathrm{AR}(1)$ model subject to sampling errors. In Section 3.2, we study the parameter estimation of the autoregressive coefficient of the $\operatorname{AR}(1)$ model subject to sampling errors. The stationary test for the $\mathrm{AR}(1)$ model subject to sampling errors is provided in Section 3.3. The positive adjustments to the estimators are discussed in Section 3.4. The simulation study is discussed in Section 3.5. The structure of this chapter is as follows.

Figure 3.1: The structure of Chapter 3: First order autoregressive model subject to sampling errors.

3.1 The First Order Autoregressive Model

In this section, we first introduce some Dickey and Fuller results ([5, 7]) for the stationary test and the asymptotic distribution of the test statistic for the first order autoregressive model in Section 3.1.1. In Section 3.1.2, we consider the first order autoregressive model subject to sampling errors and introduce the concept of stationary for the model with sampling errors.

3.1.1 Introduction to Stationary Test in AR(1)

We will consider the first order autoregressive process

$$
\begin{equation*}
\theta_{t} \equiv \rho \theta_{t-1}+\eta_{t}, \quad t=1, \ldots, T, \tag{3.1}
\end{equation*}
$$

where $\left\{\theta_{t}\right\}_{t \geq 1}$ is the sequence of the variable of interest with $\theta_{0}=0$ and $\left\{\eta_{t}\right\}_{t \geq 1}$ is a sequence of independent and identically distributed (iid) $N\left(0, \sigma^{2}\right)$ distributed random variables. Notice from (3.1) that the $\mathrm{AR}(1)$ model can be written to linear combination of η_{t} as $\theta_{t}=\sum_{i=1}^{t} \rho^{t-i} \eta_{i}$.

If the model (3.1) is stationary, the mean and variance of θ_{t} are constants μ and γ. Then, by substituting constant variance function on the model, we know that the $\mathrm{AR}(1)$ model is stationary if and only if the absolute value of autoregressive coefficient ρ is less than 1 . When $|\rho|=1$, the time series θ_{t} is not stationary and the variance of θ_{t} depends on t, which is $t \sigma^{2}$. If $|\rho|>1$, then variance of θ_{t} increases as t increases without bound as sufficiently large t, this process is called explosive.

Dickey and Fuller were interested in the estimator of the autoregressive coefficient ρ and the stationary test. The stationary test is to test the null hypothesis that $|\rho|=1$ or nonstationary against the alternative hypothesis $|\rho| \neq 1$ or stationary. Dickey-Fuller stationary test is to perform the likelihood ratio test defined
as

$$
\begin{equation*}
\lambda(\boldsymbol{\theta})=\frac{\sup _{\rho=1} L\left(\rho, \sigma^{2} \mid \boldsymbol{\theta}\right)}{\sup _{\rho \in \Theta} L\left(\rho, \sigma^{2} \mid \boldsymbol{\theta}\right)}, \tag{3.2}
\end{equation*}
$$

where Θ is the parameter space and $L\left(\rho, \sigma^{2} \mid \boldsymbol{\theta}\right)$ is the likelihood function of parameter ρ, and σ^{2} given observations $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{T}\right)^{\prime}$, with the rejection region $\{\boldsymbol{\theta} \mid \lambda(\boldsymbol{\theta}) \leq c\}$, where $0 \leq c \leq 1$. To evaluate the test statistic $\lambda(\boldsymbol{\theta})$, it is sufficient to compute the maximum likelihood estimators of ρ and σ^{2}. Notices that the computation of the estimators is greatly simplified if θ_{1} is fixed and consider conditional likelihood. It is reasonable in some situations when we know the initial value at time 1 with θ_{1}. Hence, the conditional \log-likelihood with θ_{1} as fixed is

$$
\begin{equation*}
\log L\left(\rho, \sigma^{2} \mid \boldsymbol{\theta}\right)=-\left(\frac{T-1}{2}\right) \log 2 \pi /\left(\frac{T-1}{2}\right) \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T}\left(\theta_{t}-\rho \theta_{t-1}\right)^{2} . \tag{3.3}
\end{equation*}
$$

By setting the partial derivatives of $\log L\left(\rho, \sigma^{2} \mid \boldsymbol{\theta}\right)$ with respect ρ and σ^{2} equal to zero
and

$$
\begin{aligned}
& 0=\frac{\partial l}{\partial \rho}=\frac{1}{\sigma^{2}} \sum_{t=1}^{T}\left(\theta_{t-1}\right)\left(\theta_{t}-\rho \theta_{t-1}\right), \\
& 0=\frac{\partial l}{\partial \sigma^{2}}=-\frac{T-1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{t=2}^{T}\left(\theta_{t}-\rho \theta_{t-1}\right)^{2},
\end{aligned}
$$

the maximum likelihood estimators of ρ and σ^{2} are

$$
\begin{equation*}
\hat{\rho}_{M L}=\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\sigma}_{M L}^{2}=\frac{1}{T-1} \sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{M L} \theta_{t-1}\right)^{2}, \tag{3.5}
\end{equation*}
$$

respectively. By substituting the estimators into (3.2), the likelihood ratio test
rejects the null hypothesis when likelihood ratio test statistic

$$
\begin{equation*}
\lambda(\boldsymbol{\theta})=\left(\frac{\sum_{t=2}^{T}\left(\theta_{t}-\theta_{t-1}\right)^{2}}{\sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{M L} \theta_{t-1}\right)^{2}}\right)^{-\frac{T-1}{2}} \tag{3.6}
\end{equation*}
$$

is less than or equal to a constant c when $c \in[0,1]$. The constant c is determined by the distribution of the statistic $\lambda(\boldsymbol{\theta})$. Notice that

$$
\sum_{t=2}^{T}\left(\theta_{t}-\theta_{t-1}\right)^{2}=\sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{M L} \theta_{t-1}\right)^{2}+\left(1-\hat{\rho}_{M L}\right)^{2} \sum_{t=2}^{T} \theta_{t-1}^{2}
$$

Therefore, the likelihood ratio test rejects null hypothesis, $\rho=1$, when

$$
\begin{equation*}
|\tau|=\left|\frac{\left(\hat{\rho}_{M L}-1\right) \sqrt{\sqrt{\sum_{t=2}^{T} \theta_{t-1}^{2}}}}{\sqrt{\frac{1}{T-2} \sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{M L} \theta_{t-1}\right)^{2}}}\right| \geq \sqrt{(a-1)(T-2)}, \tag{3.7}
\end{equation*}
$$

where $a=c^{-\frac{2}{T-1}}$ is a constant greater than 1 .
Dickey and Fuller considered the asymptotic distribution of the test statistic τ and the estimate of autoregressive coefficient $\hat{\rho}_{M L}$. Mann and Wald [16] showed that $\hat{\rho}_{M L}$ is a consistent estimator of ρ for $|\rho|<1$. Rubin [19] showed that under certain regularity conditions $\hat{\rho}_{M L}$ is a consistent estimator of ρ for $|\rho| \geq 1$. Moreover, Dickey [5] showed that the estimator of σ^{2} is a consistent estimator of σ^{2} for each ρ. The asymptotic distribution of $\hat{\rho}_{M L}$ obtained in White $[25,26]$ for the case $|\rho|>1$, and Anderson [1] for case $|\rho|<1$, and Dickey [5] for case $|\rho|=1$, respectively. The following theorems show some results of asymptotic distributions for the case $|\rho| \leq 1$, obtained in [1] and [5].

Theorem 3.1 ([1]). Assume the model (3.1) and $|\rho|<1$. Define $\hat{\rho}_{M L}-\rho=\frac{A_{T}}{B_{T}}$, where $A_{T}=\sum_{t=2}^{T} \theta_{t} \theta_{t-1}-\rho \sum_{t=2}^{T} \theta_{t-1}^{2}$ and $B_{n}=\sum_{t=2}^{T} \theta_{t-1}^{2}$. Then,
(1) $\frac{A_{T}}{\sqrt{T}} \xrightarrow{d} N\left(0, \frac{\sigma^{4}}{1-\rho^{2}}\right)$,
(2) $\frac{B_{T}}{T} \xrightarrow{p} \frac{\sigma^{2}}{1-\rho^{2}}$,
(3) $\sqrt{T}\left(\hat{\rho}_{M L}-\rho\right) \xrightarrow{d} N\left(0,1-\rho^{2}\right)$.

Theorem 3.2 ([5]). Assume the model (3.1) and $\rho=1$. Define $\hat{\rho}_{M L}-\rho=\frac{A_{T}}{B_{T}}$, where $A_{T}=\sum_{t=2}^{T} \theta_{t} \theta_{t-1}-\sum_{t=2}^{T} \theta_{t-1}^{2}$ and $B_{T}=\sum_{t=2}^{T} \theta_{t-1}^{2}$. Let $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$. Then,
(1) $\frac{A_{T}}{T} \xrightarrow{p} \frac{1}{2}\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\frac{\sigma^{2}}{2}$, where $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$,
(2) $\frac{B_{T}}{T^{2}} \xrightarrow{p} \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}$, where $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$,
(3) $\hat{\rho}_{M L}-1=O_{p}\left(T^{-1}\right)$ and $T\left(\hat{\rho}_{M L}-1\right) \xrightarrow{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}\right)^{2}-1} 2_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{2} \quad$,
where $Z_{i} \stackrel{i i d}{\sim} N(0,1)$,
(4) $\tau \xrightarrow{d} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}\right)^{2}-1}{2 \sqrt{\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{2}}}$, where $Z_{i} \stackrel{i i d}{\sim} N(0,1)$.

From Theorem 3.2, the terms of $\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}$ and $\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{2}$ are both infinite sums of random variables. However, Dickey [5] showed that all of infinite sums in Theorem 3.2 are well-defined.

3.1.2 AR(1) with Sampling Errors

In this section, we introduce the first order autoregressive models subject to sampling errors. In particular, we consider the autoregressive of order 1, defined as

$$
\begin{equation*}
\theta_{t}=\rho \theta_{t-1}+\eta_{t}, \tag{3.8}
\end{equation*}
$$

subject to the sampling model

$$
\begin{equation*}
y_{t}=\theta_{t}+e_{t}, \tag{3.9}
\end{equation*}
$$

where $\left\{y_{t}\right\}_{t \geq 1}$ are observations with $y_{0}=0,\left\{\theta_{t}\right\}_{t \geq 1}$ are studied variables, $\left\{e_{t}\right\}_{t \geq 1}$ is a sequence of independent $N\left(0, D_{t}^{2}\right)$ distributed random variables, and $\left\{\eta_{t}\right\}_{t \geq 1}$ is a sequence of iid $N\left(0, \sigma^{2}\right)$ distributed random variables. The model (3.8) is called the linking model. We assume that the variables $\left\{\theta_{t}\right\}$ are unobserved directly, but we can observe their direct estimators $\left\{y_{t}\right\}$, under the model (3.9). This situation can be found in small area estimation where the true population means are not observed. The true variables are estimated by the corresponding sample mean obtained from a sample. In general, the variance of sampling errors can be estimated by many methods, such as empirical variance modeling from Fay and Herriot [9]. Hence, many researchers studied the sampling errors under the assumption of known sampling variances, such as Angkunsit and Suntornchost [2], Chatterjee and Lahiri [4], and Lahiri and Suntornchost [12]. In this study, we assume that the sampling variance D_{t}^{2} is known and bounded, and e_{t}, and η_{t} are independent. The model (3.8)-(3.9) can be represented as

$$
\begin{equation*}
y_{t}=\sum_{i=1}^{t} \rho^{t-i} \eta_{i}+e_{t} \tag{3.10}
\end{equation*}
$$

or,

$$
\begin{equation*}
y_{t}=\rho y_{t-1}+a_{t}, \tag{3.11}
\end{equation*}
$$

where $a_{t}=\eta_{t}+e_{t}-\rho e_{t-1}$ are dependent random variables with $\mathbb{E}\left(a_{t}\right)=0, \operatorname{Var}\left(a_{t}\right)=$ $\left(1+\rho^{2}\right) D_{t}^{2}+\sigma^{2}, \operatorname{Cov}\left(a_{t}, a_{t+1}\right)=-\rho D_{t}^{2}$, and $\operatorname{Cov}\left(a_{t}, a_{t+h}\right)=0$ for all $h \geq 2$. Notice that $\mathbb{E}\left(y_{t}\right)=0, \operatorname{Var}\left(y_{t}\right)=\frac{\sigma^{2}}{1-\rho^{2}}+D_{t}^{2}$, and $\operatorname{Cov}\left(y_{t}, y_{t+h}\right)=\operatorname{Cov}\left(\theta_{t}, \theta_{t+h}\right)=\rho^{h} \frac{\sigma^{2}}{1-\rho^{2}}$ for each $h>0$.

Under the models (3.8) and (3.9), the stationary property refers to the stationary property on time series process θ_{t}, not the observed variables y_{t}, in spite of the fact that the sampling variance D_{t}^{2} depends on time t. Hence, we will consider the
estimator of autoregressive coefficient ρ and the test of the null hypothesis that $|\rho|=1$. In particular, the test of hypothesis

$$
\begin{equation*}
H_{0}:|\rho|=1 \quad \text { or nonstationary } \operatorname{AR}(1) \tag{3.12}
\end{equation*}
$$

against

$$
H_{1}:|\rho|<1 \quad \text { or stationary } \operatorname{AR}(1)
$$

under models (3.8)-(3.9).

3.2 Parameter Estimation of Autoregressive Coefficient for the Model with Sampling Errors

In pervious section, we have introduced the first order autoregressive model subject to sampling errors and hypothesis for the stationary test. To analyze the stationary test, an estimator of the autoregressive coefficient is necessary. In this section, we study parameter estimation of the autoregressive coefficient in the model. We consider the effect of sampling errors on the estimator of the autoregressive coefficient, and investigate a good estimator to reduce sampling errors. Furthermore, we investigate the asymptotic distribution of the obtained estimator when $\rho=1$.

3.2.1 Likelihood Function

Consider the model

$$
\begin{align*}
& y_{t}=\theta_{t}+e_{t}, \tag{3.13}\\
& \theta_{t}=\rho \theta_{t-1}+\eta_{t},
\end{align*}
$$

where $y_{0}=\theta_{0}=0, e_{t}$'s are independent $N\left(0, D_{t}^{2}\right)$ distributed random variables, η_{t} 's are iid $N\left(0, \sigma^{2}\right)$ distributed random variables, e_{t} and η_{t} are independent. We assume T variables $y_{1}, y_{2}, \ldots, y_{T}$ are avaliable, but variables $\theta_{1}, \theta_{2}, \ldots, \theta_{T}$ are unknown. The variables $\left\{y_{t}\right\}$ are direct estimators of $\left\{\theta_{t}\right\}$ with known and bounded sampling variances $\left\{D_{t}^{2}\right\}$. One of many methods to investigate estimators of unknown parameters ρ and σ^{2} is the maximum likelihood method. The log-likelihood
function for the model (3.13) is

$$
\begin{equation*}
l\left(\rho, \sigma^{2} \mid \mathbf{y}, \mathbf{D}\right)=-\frac{1}{2} T \log 2 \pi-\frac{1}{2} \log |\boldsymbol{\Gamma}|-\frac{1}{2} \mathbf{y}^{\prime} \boldsymbol{\Gamma}^{-1} \mathbf{y} \tag{3.14}
\end{equation*}
$$

where $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{T}\right)^{\prime}$ and $\boldsymbol{\Gamma}$ is the $T \times T$ covariance matrix of \mathbf{y}, and \mathbf{D} is covariance matrix of $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{T}\right)$. Notice that $\boldsymbol{\Gamma}=\sigma^{2} \mathbf{P}+\mathbf{D}$ where

$$
\mathbf{P}=\frac{1}{1-\rho^{2}}\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \ldots & \rho^{T-1} \\
\rho & 1 & \rho & \ldots & \rho^{T-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \ldots & 1
\end{array}\right] \quad \text { and } \quad \mathbf{D}=\left[\begin{array}{cccc}
D_{1}^{2} & 0 & \ldots & 0 \\
0 & D_{2}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & D_{T}^{2}
\end{array}\right]
$$

The maximum likelihood estimators of ρ and σ^{2} can be found by solving the system of equations from setting the partial derivatives of $l\left(\rho, \sigma^{2} \mid \mathbf{y}\right)$ with respect ρ and σ^{2} equal to zero. In particular,
and

$$
\begin{align*}
& 0=\frac{\partial l}{\partial \rho}=-\frac{1}{2} \operatorname{Tr}\left(\sigma^{2} \boldsymbol{\Gamma}^{-1} \frac{\partial \boldsymbol{P}}{\partial \rho}\right)+\frac{\sigma^{2}}{2} \mathbf{y}^{\prime} \boldsymbol{\Gamma}^{-1} \frac{\partial \boldsymbol{P}}{\partial \rho} \boldsymbol{\Gamma}^{-1} \mathbf{y} \tag{3.15}\\
& 0=\frac{\partial l}{\partial \sigma^{2}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{\Gamma}^{-1} \mathbf{P}\right)+\frac{1}{2} \mathbf{y}^{\prime} \boldsymbol{\Gamma}^{-1} \mathbf{P} \boldsymbol{\Gamma}^{-1} \mathbf{y} \tag{3.16}
\end{align*}
$$

where $\operatorname{Tr}(\mathbf{A})$ denotes the trace of a matrix \mathbf{A}. It is usually difficult to obtain closed-form solutions from (3.15)-(3.16). However, the solutions can be obtained by any available numerical methods.

3.2.2 Effect of Sampling Errors to the Estimator

If sampling variances $\left(D_{t}^{2}\right)_{t \geq 1}$ in model (3.13) are all zero, the observed variable $\left\{y_{t}\right\}$ are the same as the unknown variables $\left\{\theta_{t}\right\}$. Hence, estimator of ρ, denoted by ρ_{θ}, is

$$
\begin{equation*}
\rho_{\theta}=\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}} . \tag{3.17}
\end{equation*}
$$

However, sampling variances $\left\{D_{t}^{2}\right\}_{t \geq 1}$ are nonzero. Therefore, ignoring the sampling variances will cause errors in parameter estimation and the stationary test. In this section, we are interested in examining errors in the true estimators ρ_{θ} caused by the naive estimators ρ_{y}, where

$$
\begin{equation*}
\rho_{y}=\frac{\sum_{t=2}^{T} y_{t} y_{t-1}}{\sum_{t=2}^{T} y_{t-1}^{2}} \tag{3.18}
\end{equation*}
$$

in the existence of the sampling errors. In addition, we consider the effect of naive estimator by the expectation of $\rho_{y}-\rho_{\theta}$. However, the closed forms of the mean and the variance are difficult to obtain. Therefore, the approximation by Taylor series expansion will be applied in our study. To simplify notations, we define the following terms.

$$
\begin{align*}
& U_{1, \theta}=\sum_{t=2}^{T} \theta_{t} \theta_{t-1}, \\
& U_{1, y}=\sum_{t=2}^{T} y_{t} y_{t-1}, \tag{3.19}\\
& U_{2, \theta}=\sum_{t=2}^{T} \theta_{t-1}^{2}, \\
& U_{3, y}=\sum_{t=2}^{T} y_{t-1}^{2}, \\
& U_{3}=\frac{U_{1, \theta}}{U_{2, \theta}}, U_{3, y}=\rho_{y}=\frac{U_{1, y}}{U_{2, y}}, \\
& U_{4, \theta}=\frac{1}{T-2} \sum_{t=2}^{T}\left(\theta_{t}-\rho_{\theta} \theta_{t-1}\right)^{2}, \\
& U_{4, y}=\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-\rho_{y} y_{t-1}\right)^{2} .
\end{align*}
$$

Notice that ρ_{θ} and ρ_{y} are functions of $\left(U_{1, \theta}, U_{2, \theta}\right)$ and $\left(U_{1, y}, U_{2, y}\right)$, respectively. We first study some properties of the estimator ρ_{θ}, and the effect of naive estimator ρ_{y} later.

1) Some properties of the Estimator of Autoregressive Coefficient on AR(1)

In this section, we will consider some properties of the estimator ρ_{θ} of ρ when θ_{t} 's are observed. Under the $\operatorname{AR}(1)$ model, Mann and Wald [16] have shown that ρ_{θ},
obtained by the maximum likelihood method, is a consistent estimator for $|\rho|<1$. In addition, Rubin [19] has shown that ρ_{θ} is a consistent estimator for the case $|\rho| \geq 1$. However, we prove consistency ρ_{θ} for the case $|\rho| \leq 1$ alternatively.

Lemma 3.3. The asymptotic properties of $U_{2, \theta}$ defined in (3.19) are as follows.
(1) If $|\rho|<1$, then

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(U_{2, \theta}\right)}{T} & =\frac{\sigma^{2}}{1-\rho^{2}}, \\
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T} & =\frac{2 \sigma^{4}\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{3}} . \tag{3.20}
\end{align*}
$$

(2) If $|\rho|=1$, then

$$
\begin{align*}
& \lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(U_{2, \theta}\right)}{T^{2}}=\frac{\sigma^{2}}{2}, \\
& \lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T^{4}}=\frac{\sigma^{4}}{3} . \tag{3.21}
\end{align*}
$$

(3) For any positive integer $k \geq 1$,

$$
\mathbb{E}\left(U_{2, \theta}^{-k}\right)= \begin{cases}O\left(T^{-k}\right), & \text { if }|\rho|<1 \tag{3.22}\\ O\left(T^{-2 k}\right), & \text { if }|\rho|=1\end{cases}
$$

Proof. (1) Notice that $\left(\theta_{t}\right)_{t \geq 1}$ satisfies $\operatorname{AR}(1)$ model with $\theta_{0}=0$. Then $\theta_{t}=$ $\sum_{i=1}^{t} \rho^{t-i} \eta_{i}$ where $\left(\eta_{i}\right)_{t \geq 1}$ are independent normal distribution with mean 0 and variance σ^{2}. Consider the case $|\rho|<1$, we can transform $U_{2, \theta}$ as

$$
\begin{aligned}
U_{2, \theta} & =\sum_{t=2}^{T} \theta_{t-1}^{2} \\
& =\sum_{t=1}^{T-1} \theta_{t}^{2} \\
& =\sum_{t=1}^{T-1}\left(\sum_{i=1}^{t} \rho^{t-i} \eta_{i}\right)^{2} \\
& =\eta_{1}^{2}+\left(\eta_{2}+\rho \eta_{1}\right)^{2}+\left(\eta_{3}+\rho \eta_{2}+\rho^{2} \eta_{1}\right)^{2}+\cdots+\left(\eta_{T-1}+\cdots+\rho^{T-2} \eta_{1}\right)^{2} \\
& =\left(\left(1+\rho^{2}+\cdots+\rho^{2(T-2)}\right) \eta_{1}^{2}+\left(1+\rho^{2}+\cdots+\rho^{2(T-3)}\right) \eta_{2}^{2}+\cdots+\eta_{T-1}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& +2\left(\rho \eta_{2} \eta_{1}+\sum_{1 \leq i<j \leq 3} \rho^{2(3)-(i+j)} \eta_{i} \eta_{j}+\cdots+\sum_{1 \leq i<j \leq T-1} \rho^{2(T-1)-(i+j)} \eta_{i} \eta_{j}\right) \\
= & \left(\left(1+\rho^{2}+\cdots+\rho^{2(T-2)}\right) \eta_{1}^{2}+\left(1+\rho^{2}+\cdots+\rho^{2(T-3)}\right) \eta_{2}^{2}+\cdots+\eta_{T-1}^{2}\right) \\
& +2 \sum_{j=2}^{T-1} \sum_{i=1}^{j-1} \rho^{j-i}\left(1+\rho^{2}+\cdots+\rho^{2(T-j-1)}\right) \eta_{i} \eta_{j} \\
= & \sum_{i=1}^{T-1} \frac{1-\rho^{2(T-i)}}{1-\rho^{2}} \eta_{i}^{2}+2 \sum_{j=2}^{T-1} \sum_{i=1}^{j-1} \rho^{j-i} \frac{1-\rho^{2(T-j)}}{1-\rho^{2}} \eta_{i} \eta_{j} . \tag{3.23}
\end{align*}
$$

Let ξ_{1} and ξ_{2} be the first and the second term of (3.23), respectively. Since $\mathbb{E}\left(\eta_{i}^{2}\right)=$ σ^{2} and $\operatorname{Var}\left(\eta_{i}^{2}\right)=2 \sigma^{4}$, the asymptotic mean of $\frac{\xi_{1}}{T}$ can be computed as follows.

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(\xi_{1}\right)}{T} & =\lim _{T \rightarrow \infty} \frac{1}{T\left(1-\rho^{2}\right)} \sum_{i=1}^{T-1}\left(1-\rho^{2(T-i)}\right) \mathbb{E}\left(\eta_{i}^{2}\right) \\
& =\lim _{T \rightarrow \infty} \frac{\sigma^{2}}{T\left(1-\rho^{2}\right)} \sum_{j=1}^{T-1}\left(1-\rho^{2 j}\right) \\
& =\lim _{T \rightarrow \infty} \frac{\sigma^{2}}{T\left(1-\rho^{2}\right)}\left((T-1)-\rho^{2} \frac{1-\rho^{2(T-1)}}{1-\rho^{2}}\right) \\
& =\frac{\sigma^{2}}{1-\rho^{2}} . \tag{3.24}
\end{align*}
$$

Since $\left(\eta_{i}\right)_{i \geq 1}$ are independent and normally distributed with variance σ^{2},

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(\xi_{1}\right)}{T} & =\lim _{T \rightarrow \infty} \frac{2 \sigma^{4}}{T\left(1-\rho^{2}\right)^{2}} \sum_{i=1}^{T-1}\left(1-\rho^{2 i}\right)^{2} \text { IVERSITY } \\
& =\lim _{T \rightarrow \infty} \frac{2 \sigma^{4}}{T\left(1-\rho^{2}\right)^{2}} \sum_{i=1}^{T-1}\left(1-2 \rho^{2 i}+\rho^{4 i}\right) \\
& =\lim _{T \rightarrow \infty} \frac{2 \sigma^{4}}{T\left(1-\rho^{2}\right)^{2}}\left((T-1)-2 \rho^{2} \frac{1-\rho^{2(T-1)}}{1-\rho^{2}}+\rho^{4} \frac{1-\rho^{4(T-1)}}{1-\rho^{4}}\right) \\
& =\frac{2 \sigma^{4}}{\left(1-\rho^{2}\right)^{2}} . \tag{3.25}
\end{align*}
$$

For the mean and variane of ξ_{2}, since $\left(\eta_{i}\right)_{i \geq 1}$ are independent random variables with zero mean,

$$
\begin{equation*}
\mathbb{E}\left(\xi_{2}\right)=0 \tag{3.26}
\end{equation*}
$$

To find the variance of ξ_{2}, note that $\operatorname{Cov}\left(\eta_{i} \eta_{j}, \eta_{i} \eta_{k}\right)=0$ for any i, j, k such that $i \neq j \neq k$. Then

$$
\begin{aligned}
\operatorname{Var}\left(\xi_{2}\right)= & \frac{4 \sigma^{4}}{\left(1-\rho^{2}\right)^{2}} \sum_{j=2}^{T-1} \sum_{i=1}^{j-1} \rho^{2(j-i)}\left(1-\rho^{2(T-j)}\right)^{2} \\
= & \frac{4 \sigma^{4}}{\left(1-\rho^{2}\right)^{2}} \sum_{j=2}^{T-1}\left(1-\rho^{2(T-j)}\right)^{2}\left(\rho^{2}+\rho^{4}+\ldots+\rho^{2(j-1)}\right) \\
= & \frac{4 \sigma^{4}}{\left(1-\rho^{2}\right)^{2}} \sum_{j=2}^{T-1}\left(1-\rho^{2(T-j)}\right)^{2} \frac{\rho^{2}\left(1-\rho^{2(j-1)}\right)}{1-\rho^{2}} \\
= & \frac{4 \rho^{2} \sigma^{4}}{\left(1-\rho^{2}\right)^{3}} \sum_{j=2}^{T-1}\left(1-2 \rho^{2(T-j)}+\rho^{4(T-j)}\right)\left(1-\rho^{2(j-1)}\right) \\
= & \frac{4 \rho^{2} \sigma^{4}}{\left(1-\rho^{2}\right)^{3}} \sum_{j=2}^{T-1}\left(1-2 \rho^{2(T-j)}+\rho^{4(T-j)}-\rho^{2(j-1)}+2 \rho^{2(T-1)}-\rho^{4 T-2 j-2}\right) \\
= & \frac{4 \rho^{2} \sigma^{4}}{\left(1-\rho^{2}\right)^{3}}\left((T-1)-2 \frac{\rho^{2}\left(1-\rho^{2(T-2)}\right)}{1-\rho^{2}}+\frac{\rho^{4}\left(1-\rho^{4(T-2)}\right)}{1-\rho^{4}}-\frac{\rho^{2}\left(1-\rho^{2(T-2)}\right)}{1-\rho^{2}}\right. \\
& \left.+2(T-2) \rho^{2(T-1)}-\rho^{2(T-1)} \frac{\rho^{2}\left(1-\rho^{2(T-2)}\right)}{1-\rho^{2}}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(\xi_{2}\right)}{T}=\frac{4 \rho^{2} \sigma^{4}}{\left(1-\rho^{2}\right)^{3}} \tag{3.27}
\end{equation*}
$$

Notice that $\mathbb{E}\left(U_{2, \theta}\right)=\mathbb{E}\left(\xi_{1}\right)+\mathbb{E}\left(\xi_{2}\right)$. From (3.23), (3.24), and (3.26),

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(U_{2, \theta}\right)}{T} & =\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(\xi_{1}\right)}{T}+\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(\xi_{2}\right)}{T} \\
& =\frac{\sigma^{2}}{1-\rho^{2}} .
\end{aligned}
$$

Since $\operatorname{Cov}\left(\eta_{i}^{2}, \eta_{i} \eta_{j}\right)=\mathbb{E}\left(\eta_{i}^{3} \eta_{j}\right)=0$ for any i, j such that $i \neq j$, we have $\operatorname{Var}\left(U_{2, \theta}\right)=$ $\operatorname{Var}\left(\xi_{1}\right)+\operatorname{Var}\left(\xi_{2}\right)$. From (3.23), (3.25), and (3.27),

$$
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T}=\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(\xi_{1}\right)}{T}+\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(\xi_{2}\right)}{T}
$$

$$
\begin{aligned}
& =\frac{2 \sigma^{4}}{\left(1-\rho^{2}\right)^{2}}+\frac{4 \rho^{2} \sigma^{4}}{\left(1-\rho^{2}\right)^{3}} \\
& =\frac{2 \sigma^{4}\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{3}} .
\end{aligned}
$$

Moreover, since the limits of $\frac{\mathbb{E}\left(U_{2, \theta}\right)}{T}$ and $\frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T}$ both exist, for any $k \in \mathbb{R}$,

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}^{k}\left(U_{2, \theta}\right)}{T^{k}} & =\frac{\sigma^{2 k}}{\left(1-\rho^{2}\right)^{k}}, \tag{3.28}\\
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}^{k}\left(U_{2, \theta}\right)}{T^{k}} & =\frac{2^{k} \sigma^{4 k}\left(1+\rho^{2}\right)^{k}}{\left(1-\rho^{2}\right)^{3 k}} \tag{3.29}
\end{align*}
$$

Therefore, we can see that
and

$$
\begin{align*}
\mathbb{E}^{k}\left(U_{2, \theta}\right) & =O\left(T^{k}\right) \tag{3.30}\\
\operatorname{Var}^{k}\left(U_{2, \theta}\right) & =O\left(T^{k}\right) \tag{3.31}
\end{align*}
$$

(2) Consider the case $|\rho|=1$. WLOG, we will consider only the case $\rho=1$. Notice that

$$
\begin{aligned}
U_{2, \theta}= & \eta_{1}^{2}+\left(\eta_{2}+\rho \eta_{1}\right)^{2}+\left(\eta_{3}+\rho \eta_{2}+\rho^{2} \eta_{1}\right)^{2}+\ldots+\left(\eta_{T-1}+\ldots+\rho^{T-2} \eta_{1}\right)^{2} \\
= & \left((T-1) \eta_{1}^{2}+(T-2) \eta_{2}^{2}+\ldots+\eta_{T-1}^{2}\right) \\
& +2\left((T-2) \eta_{1} \eta_{2}+(T-3)\left(\eta_{1}+\eta_{2}\right) \eta_{3}+\ldots\left(\eta_{1}+\eta_{2}+\ldots \eta_{T-2}\right) \eta_{T-1}\right) .
\end{aligned}
$$

Then,

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left(U_{2, \theta}\right)}{T^{2}} & =\lim _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{i=1}^{T-1} i \sigma^{2} \\
& =\lim _{T \rightarrow \infty} \frac{\sigma^{2}}{T^{2}} \frac{(T-1) T}{2} \\
& =\frac{\sigma^{2}}{2} \tag{3.32}
\end{align*}
$$

Notice that $\operatorname{Var}\left(\eta_{i}^{2}\right)=2 \sigma^{4}$ and $\operatorname{Var}\left(\eta_{i} \eta_{j}\right)=\sigma^{4}$ for $i \neq j$. By using the fact that
$\operatorname{Cov}\left(\eta_{i}^{2}, \eta_{i} \eta_{j}\right)=0$ for $i \neq j$ and $\operatorname{Cov}\left(\eta_{i} \eta_{j}, \eta_{i} \eta_{k}\right)=0$ for any $i \neq j \neq k$, we have

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T^{4}}= & \lim _{T \rightarrow \infty}\left(\frac{2 \sigma^{4}}{T^{4}} \sum_{i=1}^{T-1} i^{2}+\frac{4 \sigma^{4}}{T^{4}} \sum_{i=1}^{T-2} i^{2}(T-1-i)\right) \\
= & \lim _{T \rightarrow \infty} \frac{\sigma^{4}}{T^{4}}\left(\frac{2(T-1) T(2 T-1)}{6}+4(T-1) \frac{(T-2)(T-1)(2 T-3)}{6}\right. \\
& \left.-\frac{4(T-2)^{2}(T-1)^{2}}{4}\right) \\
= & \lim _{T \rightarrow \infty} \frac{\sigma^{4}}{T^{4}}\left(\frac{(T-1) T(2 T-1)}{3}+\frac{(T-2)(T-1)^{2} T}{3}\right) \\
= & \lim _{T \rightarrow \infty} \frac{\sigma^{4}}{3 T^{4}}(T-1)(T)\left(T^{2}-T+1\right) \\
= & \frac{\sigma^{4}}{3} . \tag{3.33}
\end{align*}
$$

Hence, we can conclude that, for the case $|\rho|=1$, the limit of $T^{-2} \mathbb{E}\left(U_{2, \theta}\right)$ and $T^{-4} \operatorname{Var}\left(U_{2, \theta}\right)$ both exist and converge to some positive values. Moreover, for any $k \in \mathbb{R}$,
and

$$
\begin{align*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}^{k}\left(U_{2, \theta}\right)}{T^{k}} & =\frac{\sigma^{2 k}}{2^{k}}, \tag{3.34}\\
\lim _{T \rightarrow \infty} \frac{\operatorname{Var}^{k}\left(U_{2, \theta}\right)}{T^{k}} & =\frac{\sigma^{4 k}}{3^{k}} . \tag{3.35}
\end{align*}
$$

Therefore, we can see that
and

$$
\begin{align*}
\mathbb{E}^{k}\left(U_{2, \theta}\right) & =O\left(T^{2 k}\right), \tag{3.36}\\
\operatorname{Var}^{k}\left(U_{2, \theta}\right) & =O\left(T^{4 k}\right) . \tag{3.37}
\end{align*}
$$

(3) Let k be any positive integer. To compute the mean of $U_{2, \theta}^{-k}$, we will apply the second order Taylor approximation to the function $f_{k}(x)=x^{-k}$ about $\mu=$ $\mathbb{E}(X)$. From (2.16), we have

$$
\begin{equation*}
\mathbb{E}\left(X^{-k}\right) \approx \frac{1}{\mathbb{E}^{k}(X)}+\frac{k(k+1)}{2} \frac{1}{\mathbb{E}^{k+2}(X)} \operatorname{Var}(X) \tag{3.38}
\end{equation*}
$$

Substituting X by $U_{2, \theta}$, we consider two cases: $|\rho|<1$, and $|\rho|=1$.

If $|\rho|<1$, from (3.30)-(3.31), we have

$$
\begin{align*}
\mathbb{E}\left(U_{2, \theta}^{-k}\right) & \approx \mathbb{E}^{-k}\left(U_{2, \theta}\right)+\frac{k(k+1)}{2} \mathbb{E}^{-(k+2)}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{2, \theta}\right) \\
& =O\left(T^{-k}\right)+O\left(T^{-(k+2)}\right) O(T) \\
& =O\left(T^{-k}\right) . \tag{3.39}
\end{align*}
$$

If $|\rho|=1$, from (3.36)-(3.37), we have

$$
\begin{align*}
\mathbb{E}\left(U_{2, \theta}^{-k}\right) & \approx \mathbb{E}^{-k}\left(U_{2, \theta}\right)+\frac{k(k+1)}{2} \mathbb{E}^{-(k+2)}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{2, \theta}\right) \\
& =O\left(T^{-2 k}\right)+O\left(T^{-2(k+2)}\right) O\left(T^{4}\right) \\
& =O\left(T^{-2 k}\right) . \tag{3.40}
\end{align*}
$$

Lemma 3.4. Let

$$
\rho_{\theta}=\frac{U_{1, \theta}}{U_{2, \theta}}=\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}
$$

Then, for $|\rho| \leq 1$,
(1) $\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)$ converges to zero.
(2) ρ_{θ} is a consistent estimator of ρ.
(3) $\mathbb{E}\left(\left|\rho_{\theta}\right|\right)$ is bounded by $|\rho|+C_{1} T^{-1}$ for some constant C_{1}.
(4) $\mathbb{E}\left(\rho_{\theta}^{2}\right)$ is bounded with some constant C_{2}.

Proof. (1) Notice that

$$
\begin{align*}
\rho_{\theta}-\rho & =\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}-\rho \\
& =\frac{\sum_{t=2}^{T}\left(\rho \theta_{t-1}+\eta_{t}\right) \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}-\rho \\
& =\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}} . \tag{3.41}
\end{align*}
$$

For the numerator, since η_{t} and θ_{t-1} are independent of all t, we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)=0 \tag{3.42}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)=\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)^{2} \tag{3.43}
\end{equation*}
$$

for all ρ.
To compute $\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)$, we will consider two cases: $|\rho|<1$ and $|\rho|=1$.
Consider the case $|\rho|<1$. To compute variance of the numerator term, we using the fact that $\operatorname{Cov}\left(\eta_{i} \eta_{j}, \eta_{i} \eta_{k}\right)=0$ for all i, j, k such that $i \neq j \neq k$, and $\operatorname{Var}\left(\eta_{i} \eta_{j}\right)=\sigma^{4}$. Hence,

$$
\begin{aligned}
\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)^{2} & =\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right) \\
& =\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t}\left(\sum_{i=1}^{t-1} \rho^{t-i} \eta_{i}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =\operatorname{Var}\left(\sum_{t=2}^{T} \sum_{i=1}^{t-1} \rho^{t-i} \eta_{t} \eta_{i}\right) \\
& =\sigma^{4} \sum_{t=2}^{T} \sum_{i=1}^{t-1} \rho^{2(t-i)} \\
& =\rho^{2} \sigma^{4} \sum_{t=2}^{T} \frac{1-\rho^{2(t-1)}}{1-\rho^{2}} \\
& =\frac{\rho^{2} \sigma^{4}}{1-\rho^{2}}\left(\sum_{t=2}^{T}\left(1-\rho^{2(t-1)}\right)\right) \\
& =\frac{\rho^{2} \sigma^{4}}{1-\rho^{2}}\left((T-1)-\frac{\rho^{4}\left(1-\rho^{2(T-2)}\right)}{1-\rho^{2}}\right) \\
& =\frac{\rho^{2} \sigma^{4}}{1-\rho^{2}}(T-1)-\frac{\rho^{6} \sigma^{4}}{\left(1-\rho^{2}\right)^{2}}\left(1-\rho^{2(T-2)}\right) . \tag{3.44}
\end{align*}
$$

By using Holder inequality, (3.22) and (3.44), we have

$$
\begin{align*}
\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right) & =\mathbb{E}\left(\left|\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}\right|\right) \\
& \leq \sqrt{\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)^{2} \sqrt{\mathbb{E}\left(\sum_{t=2}^{T} \theta_{t-1}^{2}\right)^{-2}}} \\
& =\sqrt{\left(\frac{\rho^{2} \sigma^{4}}{1-\rho^{2}}(T-1)-\frac{\rho^{6} \sigma^{4}}{\left(1-\rho^{2}\right)^{2}}\left(1-\rho^{2(T-2)}\right)\right)} \sqrt{O\left(T^{-2}\right)} \\
& =O\left(T^{\frac{1}{2}}\right) O\left(T^{-1}\right) \text { IKORNUNIVERSITY UNA } \\
& =O\left(T^{-\frac{1}{2}}\right) . \tag{3.45}
\end{align*}
$$

In the same way, for the case $|\rho|=1$, variance of the numerator term can be compute as:

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right) & =\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t}\left(\sum_{i=1}^{t-1} \eta_{i}\right)\right) \\
& =\operatorname{Var}\left(\sum_{t=2}^{T} \sum_{i=1}^{t-1} \eta_{t} \eta_{i}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\operatorname{Var}\left(\sum_{1 \leq i<j \leq T} \eta_{j} \eta_{i}\right) \\
& =\sum_{1 \leq i<j \leq T} \sigma^{4} \\
& =\frac{(T)(T-1) \sigma^{4}}{2} . \tag{3.46}
\end{align*}
$$

Consequently, by using Holder inequality, (3.22) and (3.46), we have

$$
\begin{align*}
\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right) & =\mathbb{E}\left(\left|\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}\right|\right) \\
& \leq \sqrt{\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)^{2}} \sqrt{\mathbb{E}\left(\sum_{t=2}^{T} \theta_{t-1}^{2}\right)^{-2}} \\
& =\sqrt{\frac{(T)(T-1) \sigma^{4}}{2}} \sqrt{O\left(T^{-4}\right)} \\
& =O(T) O\left(T^{-2}\right) \\
& =O\left(T^{-1}\right) . \tag{3.47}
\end{align*}
$$

Hence, we can conclude that $\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)$ converges to zero. In particular, $\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)$ is of order $T^{-\frac{1}{2}}$ for $|\rho|<1$, and order T^{-1} for $|\rho|=1$.
(2) Since $\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)$ converges to zero, $\rho_{\theta}-\rho$ converges to zero in probability. Hence, ρ_{θ} converges in probability to ρ.
(3) Consider the case $|\rho|<1$. By using the fact that $|x| \leq|x-y|+|y|$ and (3.45), we have

$$
\begin{equation*}
\mathbb{E}\left(\left|\rho_{\theta}\right|\right) \leq \mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)+|\rho|=|\rho|+O\left(T^{-\frac{1}{2}}\right) \leq|\rho|+\frac{C_{1}}{\sqrt{T}}, \tag{3.48}
\end{equation*}
$$

for some positive constant C_{1}. Similarly for the case $|\rho|=1$, from (3.47), we have

$$
\begin{equation*}
\mathbb{E}\left(\left|\rho_{\theta}\right|\right) \leq \mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right)+|\rho|=|\rho|+O\left(T^{-1}\right) \leq|\rho|+\frac{C_{2}}{T^{1}} \tag{3.49}
\end{equation*}
$$

for some positive constant C_{2}. Hence, $\mathbb{E}\left(\left|\rho_{\theta}\right|\right)$ is bounded.
(4) Notice that

$$
\begin{equation*}
\mathbb{E}\left(\rho_{\theta}^{2}\right)=\operatorname{Var}\left(\rho_{\theta}\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right)=\operatorname{Var}\left(\rho_{\theta}-\rho\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right) . \tag{3.50}
\end{equation*}
$$

First, we will consider $\operatorname{Var}\left(\rho_{\theta}-\rho\right)$. We apply the first order Taylor series approximation on $f(X, Y)=\frac{X}{Y}$, where $X=\sum_{t=2}^{T} \eta_{t} \theta_{t-1}$ and $Y=U_{2, \theta}=\sum_{t=2}^{T} \theta_{t-1}^{2}$. From (2.14), we have

$$
\begin{align*}
\operatorname{Var}\left(\rho_{\theta}-\rho\right) & =\operatorname{Var}\left(\frac{X}{Y}\right) \\
& \approx \mathbb{E}^{-2}(Y) \operatorname{Var}(X)+\mathbb{E}^{2}(X) \mathbb{E}^{-4}(Y) \operatorname{Var}(Y)-2 \mathbb{E}(X) \mathbb{E}^{-3}(Y) \operatorname{Cov}(X, Y) \\
& =\mathbb{E}^{-2}(Y) \operatorname{Var}(X), \tag{3.51}
\end{align*}
$$

where the last two terms vanish since $\mathbb{E}(X)=\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)=0$.
Consider the case $|\rho|<1$. From (3.30), (3.44) and (3.51), we have

$$
\begin{align*}
\operatorname{Var}\left(\rho_{\theta}-\rho\right) & \leq \mathbb{E}^{-2}\left(U_{2, \theta}\right) \operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right) \\
& =O\left(T^{-2}\right)\left(\frac{\sigma^{4}}{1-\rho^{2}}(T-1)-\frac{\sigma^{4} \rho^{4}}{\left(1-\rho^{2}\right)^{2}}\left(1-\rho^{2(T-1)}\right)\right) \\
& =O\left(T^{-1}\right) . \tag{3.52}
\end{align*}
$$

By using the fact that $\mathbb{E}^{2}\left(\rho_{\theta}\right) \leq \mathbb{E}^{2}\left(\left|\rho_{\theta}\right|\right),(3.50),(3.48)$, and (3.52), we have

$$
\begin{align*}
\mathbb{E}\left(\rho_{\theta}^{2}\right) & =\operatorname{Var}\left(\rho_{\theta}\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right) \\
& =\operatorname{Var}\left(\rho_{\theta}-\rho\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right) \\
& \leq O\left(T^{-1}\right)+\left(|\rho|+O\left(T^{-\frac{1}{2}}\right)\right)^{2} \\
& =O\left(T^{-1}\right)+\rho^{2}+|\rho| O\left(T^{-\frac{1}{2}}\right)+O\left(T^{-1}\right) \\
& =\rho^{2}+O\left(T^{-\frac{1}{2}}\right) \\
& =O(1) \tag{3.53}
\end{align*}
$$

Consider the case $|\rho|=1$. From (3.36), (3.46) and (3.51), we have

$$
\begin{align*}
\operatorname{Var}\left(\rho_{\theta}-\rho\right) & \leq \mathbb{E}^{-2}\left(U_{2, \theta}\right) \operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right) \\
& =O\left(T^{-4}\right)\left(\frac{(T)(T-1) \sigma^{4}}{2}\right) \\
& =O\left(T^{-2}\right) \tag{3.54}
\end{align*}
$$

Similarly, from (3.50), (3.49), and (3.54), we have

$$
\begin{align*}
\mathbb{E}\left(\rho_{\theta}^{2}\right) & =\operatorname{Var}\left(\rho_{\theta}\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right) \\
& =\operatorname{Var}\left(\rho_{\theta}-\rho\right)+\mathbb{E}^{2}\left(\rho_{\theta}\right) \\
& \leq O\left(T^{-2}\right)+\left(|\rho|+O\left(T^{-1}\right)\right)^{2} \\
& =O\left(T^{-2}\right)+\rho^{2}+|\rho| O\left(T^{-1}\right)+O\left(T^{-2}\right) \\
& =\rho^{2}+O\left(T^{-1}\right) \\
& =O(1) . \tag{3.55}
\end{align*}
$$

From (3.53) and (3.55), we can conclude that $\mathbb{E}\left(\rho_{\theta}^{2}\right)$ is bounded.

2) The Effect of the Naive Estimator

From Lemma 3.4, the estimator ρ_{θ} is a consistent estimator of ρ. However, under the model (3.13), the studied variables θ_{t} 's are unobserved. To consider the effect of sampling errors, we first show some conditional expectation of the naive statistics $U_{1, y}$ and $U_{2, y}$ given $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{T}\right)^{\prime}$.

Proposition 3.5. The conditional expectation, variation, and covariation of $U_{1, y}$ and $U_{2, y}$ given $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{T}\right)^{\prime}$ are respectively defined as:
(1) $\mathbb{E}\left(U_{1, y} \mid \boldsymbol{\theta}\right)=U_{1, \theta}$.
(2) $\mathbb{E}\left(U_{2, y} \mid \boldsymbol{\theta}\right)=U_{2, \theta}+\sum_{t=2}^{T} D_{t-1}^{2}$.
(3) $\operatorname{Var}\left(U_{1, y} \mid \boldsymbol{\theta}\right)=\sum_{t=2}^{T}\left(\theta_{t}^{2} D_{t-1}^{2}+\theta_{t-1}^{2} D_{t}^{2}+D_{t}^{2} D_{t-1}^{2}+2 \theta_{t} \theta_{t-2} D_{t-1}^{2}\right)$.
(4) $\operatorname{Var}\left(U_{2, y} \mid \boldsymbol{\theta}\right)=\sum_{t=2}^{T}\left(2 D_{t-1}^{4}+4 \theta_{t-1}^{2} D_{t-1}^{2}\right)$.
(5) $\operatorname{Cov}\left(U_{1, y}, U_{2, y} \mid \boldsymbol{\theta}\right)=2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2}$.

Proof. (1) The conditional expectation of $U_{1, y}$ given $\boldsymbol{\theta}$ can be computed as

$$
\begin{aligned}
\mathbb{E}\left(U_{1, y} \mid \boldsymbol{\theta}\right) & =\mathbb{E}\left(\sum_{t=2}^{T} y_{t} y_{t-1} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \mathbb{E}\left(\left(\theta_{t}+e_{t}\right)\left(\theta_{t-1}+e_{t-1}\right) \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \mathbb{E}\left(\theta_{t} \theta_{t-1}+\theta_{t} e_{t-1}+\theta_{t-1} e_{t}+e_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \theta_{t} \theta_{t-1}+\theta_{t} \mathbb{E}\left(e_{t-1}\right)+\theta_{t-1} \mathbb{E}\left(e_{t}\right)+\mathbb{E}\left(e_{t} e_{t-1}\right) \\
& =\sum_{t=2}^{T} \theta_{t} \theta_{t-1},
\end{aligned}
$$

where we use the fact that $e_{t}^{\prime} s$ are independent random variables with zero mean to obtain the last equation.
(2) The conditional expectation of $U_{2, y}$ given $\boldsymbol{\theta}$ can be computed as

$$
\begin{aligned}
\mathbb{E}\left(U_{2, y} \mid \boldsymbol{\theta}\right) & =\mathbb{E}\left(\sum_{t=2}^{T} y_{t-1}^{2} \mid \boldsymbol{\theta}\right) \text { ยาลัย } \\
& =\sum_{t=2}^{T} \mathbb{E}\left(\left(\theta_{t-1}+e_{t-1}\right)^{2} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \mathbb{E}\left(\theta_{t-1}^{2}+e_{t-1}^{2}+2 \theta_{t-1} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \theta_{t-1}^{2}+\mathbb{E}\left(e_{t-1}^{2}\right)+2 \theta_{t-1} \mathbb{E}\left(e_{t-1}\right) \\
& =\sum_{t=2}^{T} \theta_{t-1}^{2}+D_{t-1}^{2},
\end{aligned}
$$

where we use the fact that $e_{t}^{\prime} s$ are independent random variables with zero mean and variance D_{t}^{2} to obtain the last equation.
(3) The conditional variance of $U_{1, y}$ given $\boldsymbol{\theta}$ can be computed as

$$
\begin{aligned}
\operatorname{Var}\left(U_{1, y} \mid \boldsymbol{\theta}\right)= & \operatorname{Var}\left(\sum_{t=2}^{T} y_{t} y_{t-1} \mid \boldsymbol{\theta}\right) \\
= & \operatorname{Var}\left(\sum_{t=2}^{T} \theta_{t} \theta_{t-1}+\theta_{t} e_{t-1}+\theta_{t-1} e_{t}+e_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
= & \operatorname{Var}\left(\sum_{t=2}^{T} \theta_{t} e_{t-1} \mid \boldsymbol{\theta}\right)+\operatorname{Var}\left(\sum_{t=2}^{T} \theta_{t-1} e_{t} \mid \boldsymbol{\theta}\right)+\operatorname{Var}\left(\sum_{t=2}^{T} e_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& +2 \operatorname{Cov}\left(\sum_{t=2}^{T} \theta_{t} e_{t-1}, \sum_{t=2}^{T} \theta_{t-1} e_{t} \mid \boldsymbol{\theta}\right)+2 \operatorname{Cov}\left(\sum_{t=2}^{T} \theta_{t-1} e_{t}, \sum_{t=2}^{T} e_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& +2 \operatorname{Cov}\left(\sum_{t=2}^{T} e_{t} e_{t-1}, \sum_{t=2}^{T} \theta_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
= & \sum_{t=2}^{T} \theta_{t}^{2} D_{t-1}^{2}+\sum_{t=2}^{T} \theta_{t-1}^{2} D_{t}^{2}+\sum_{t=2}^{T} D_{t}^{2} D_{t-1}^{2}+2 \sum_{t=2}^{T} \operatorname{Cov}\left(\theta_{t} e_{t-1}, \theta_{t-2} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& +2 \sum_{t=2}^{T} \operatorname{Cov}\left(\theta_{t-1} e_{t}, e_{t+1} e_{t}+e_{t} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& +2 \sum_{t=2}^{T} \operatorname{Cov}\left(\theta_{t} e_{t-1}, e_{t} e_{t-1}+e_{t-1} e_{t-2} \mid \boldsymbol{\theta}\right) \\
= & \sum_{t=2}^{T} \theta_{t}^{2} D_{t-1}^{2}+\sum_{t=2}^{T} \theta_{t-1}^{2} D_{t}^{2}+\sum_{t=2}^{T} D_{t}^{2} D_{t-1}^{2}+2 \sum_{t=2}^{T} \theta_{t} \theta_{t-2} D_{t-1}^{2},
\end{aligned}
$$

where $\theta_{0}=0$ and we use the fact that $\operatorname{Cov}\left(e_{t}, e_{t} e_{t+h}\right)=\mathbb{E}\left(e_{t+h} e_{t}^{2}\right)=0$ for $h>0$.
(4) The conditional variance of $U_{2, y}$ given $\boldsymbol{\theta}$ can be computed as

$$
\begin{aligned}
\operatorname{Var}\left(U_{2, y} \mid \boldsymbol{\theta}\right)= & \operatorname{Var}\left(\sum_{t=2}^{T} y_{t-1}^{2} \mid \boldsymbol{\theta}\right) \\
& =\operatorname{Var}\left(\sum_{t=2}^{T}\left(\theta_{t-1}^{2}+e_{t-1}^{2}+2 \theta_{t-1} e_{t-1}\right) \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \operatorname{Var}\left(e_{t-1}^{2}+2 \theta_{t-1} e_{t-1} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \mathbb{E}\left(\left(e_{t-1}^{2}+2 \theta_{t-1} e_{t-1}\right)^{2} \mid \boldsymbol{\theta}\right)-\mathbb{E}\left(e_{t-1}^{2}+2 \theta_{t-1} e_{t-1} \mid \boldsymbol{\theta}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{t=2}^{T} \mathbb{E}\left(e_{t-1}^{4}+4 \theta_{t-1} e_{t-1}^{3}+4 \theta_{t-1}^{2} e_{t-1}^{2} \mid \boldsymbol{\theta}\right)-D_{t-1}^{4} \\
& =\sum_{t=2}^{T} 2 D_{t-1}^{4}+4 \theta_{t-1}^{2} D_{t-1}^{2} .
\end{aligned}
$$

(5) The conditional covariance of $U_{1, y}$ and $U_{2, y}$ given $\boldsymbol{\theta}$ can be computed as

$$
\begin{aligned}
\operatorname{Cov}\left(U_{1, y}, U_{2, y} \mid \boldsymbol{\theta}\right) & =\operatorname{Cov}\left(\sum_{t=2}^{T} y_{t} y_{t-1}, \sum_{t=2}^{T} y_{t-1}^{2} \mid \boldsymbol{\theta}\right) \\
& =\operatorname{Cov}\left(\sum_{t=2}^{T} \theta_{t} e_{t-1}+\theta_{t-1} e_{t}+e_{t} e_{t-1}, \sum_{s=2}^{T} 2 \theta_{s-1} e_{s-1}+e_{s-1}^{2} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \operatorname{Cov}\left(2 \theta_{t-1} e_{t-1}+e_{t-1}^{2}, \sum_{s=2}^{T} \theta_{s} e_{s-1}+\theta_{s-1} e_{s}+e_{s} e_{s-1} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} \operatorname{Cov}\left(2 \theta_{t-1} e_{t-1}+e_{t-1}^{2}, \theta_{t} e_{t-1}+\theta_{t-2} e_{t-1}+e_{t} e_{t-1}+e_{t-1} e_{t-2} \mid \boldsymbol{\theta}\right) \\
& =\sum_{t=2}^{T} 2 \theta_{t} \theta_{t-1} D_{t-1}^{2}+2 \theta_{t-1} \theta_{t-2} D_{t-1}^{2} \\
& =2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2} .
\end{aligned}
$$

Next, we will apply the results to investigate the effect of naive estimator ρ_{y} by using Taylor's expansion.

Proposition 3.6. Let ρ_{y} be the naive estimator of ρ defined in (3.19). Under the condition that the sampling variance $\inf _{t} D_{t}^{2}>0, \mathbb{E}\left(\rho_{y}-\rho\right)$ does not converge to zero when $0<|\rho|<1$. In addition, the estimator ρ_{y} is underestimated when $\rho>0$, and overestimated when $\rho<0$.

Proof. Let $f(x, y)=\frac{x}{y}$. From (2.13), the first order Taylor approximations of $\mathbb{E}(f(X, Y) \mid \boldsymbol{\theta})$ about $\left(\mu_{X}, \mu_{Y}\right)=(\mathbb{E}(X \mid \boldsymbol{\theta}), \mathbb{E}(Y \mid \boldsymbol{\theta}))$ is

$$
\begin{equation*}
\mathbb{E}\left(\left.\frac{X}{Y} \right\rvert\, \boldsymbol{\theta}\right) \approx \frac{\mathbb{E}(X \mid \boldsymbol{\theta})}{\mathbb{E}(Y \mid \boldsymbol{\theta})} \tag{3.56}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)^{\prime}$, and X and Y are random variables. Substituting $(X, Y)=\left(U_{1, y}, U_{2, y}\right)$, from Proposition 3.5 (1)-(2), we have

$$
\mathbb{E}\left(\rho_{y} \mid \boldsymbol{\theta}\right) \approx \frac{\mathbb{E}\left(\sum_{t=2}^{T} y_{t} y_{t-1} \mid \boldsymbol{\theta}\right)}{\mathbb{E}\left(\sum_{t=2}^{T} y_{t-1}^{2} \mid \boldsymbol{\theta}\right)}=\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+D_{t-1}^{2}}
$$

It follows that

$$
\begin{align*}
\mathbb{E}\left(\rho_{y}-\rho\right) & =\mathbb{E}\left(\mathbb{E}\left(\rho_{y}-\rho\right) \mid \boldsymbol{\theta}\right) \\
& \approx \mathbb{E}\left(\frac{\sum_{t=2}^{T} \theta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+D_{t-1}^{2}}\right) \\
& =\mathbb{E}\left(\frac{\sum_{t=2}^{T}\left(\rho \theta_{t-1}+\eta_{t}\right) \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+D_{t-1}^{2}}\right) \\
& =\mathbb{E}\left(\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}-\rho \sum_{t=2}^{T} D_{t-1}^{2}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+\sum_{t=2}^{T} D_{t-1}^{2}}\right) \\
& =\mathbb{E}\left(\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+\sum_{t=2}^{T} D_{t-1}^{2}}\right)-\rho \frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}}\right) . \tag{3.57}
\end{align*}
$$

For the first term of (3.57), from (3.41) and Lemma 3.4 (1), we have

$$
\begin{equation*}
\left|\mathbb{E}\left(\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}+\sum_{t=2}^{T} D_{t-1}^{2}}\right)\right| \leq \mathbb{E}\left(\left|\frac{\sum_{t=2}^{T} \eta_{t} \theta_{t-1}}{\sum_{t=2}^{T} \theta_{t-1}^{2}}\right|\right)=\mathbb{E}\left(\left|\rho_{\theta}-\rho\right|\right), \tag{3.58}
\end{equation*}
$$

converges to zero as T goes to infinity.

For the second term of (3.57), from Lemma 3.3 (1),

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=2}^{T} \mathbb{E}\left(\theta_{t-1}^{2}\right)=\frac{\sigma^{2}}{1-\rho^{2}}
$$

Let $D_{M}^{2}=\sup _{t} D_{t}^{2}$ and $D_{m}^{2}=\inf _{t} D_{t}^{2}$. By applying Jensen's inequality and $f(x)=\frac{1}{x}$ is convex function, and using the fact that $D_{M}^{2} \geq D_{t}^{2}$ for all t, we have

$$
\begin{align*}
\lim _{T \rightarrow \infty} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}}\right) & \geq \lim _{T \rightarrow \infty} \frac{1}{\mathbb{E}\left(\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}\right)+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}} \\
& =\frac{1}{\lim _{T \rightarrow \infty} \mathbb{E}\left(\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}\right)+\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}} \\
& =\frac{1}{\frac{\sigma^{2}}{1+\rho^{2}}+\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}} \\
& \geq \frac{1}{\frac{\sigma^{2}}{1-\rho^{2}}+\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=2}^{T} D_{M}^{2}} \\
& =\frac{1}{\frac{\sigma^{2}}{1-\rho^{2}}+D_{M}^{2}} . \tag{3.59}
\end{align*}
$$

Hence, $\mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}}\right)$ is bounded below by the positive value $\left(\frac{\sigma^{2}}{1-\rho^{2}}+D_{M}^{2}\right)^{-1}$ as T goes to infinity.

To show that the estimator ρ_{y} is underestimated when $0<\rho<1$, from (3.57)(3.59) and $D_{m}^{2} \leq D_{t}^{2}$ for all t, we have

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \mathbb{E}\left(\rho_{y}-\rho\right) & =\lim _{T \rightarrow \infty} \sum_{t=2}^{T} D_{t-1}^{2} \rho \frac{1}{T} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} D_{t}^{2} \sum_{t=2}^{T} D_{t-1}^{2}}\right) \\
& \leq-\rho D_{m}^{2} \lim _{T \rightarrow \infty} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq-\rho D_{m}^{2}\left(\frac{1}{\frac{\sigma^{2}}{1-\rho^{2}}+D_{M}^{2}}\right) \\
& <0 \tag{3.60}
\end{align*}
$$

Hence, ρ_{y} is underestimate of ρ for $0<\rho<1$.
Similarly for $-1<\rho<0$, from (3.58)-(3.59), we have

$$
\begin{align*}
\lim _{T \rightarrow \infty} \mathbb{E}\left(\rho_{y}-\rho\right) & =\lim _{T \rightarrow \infty} \sum_{t=2}^{T} D_{t-1}^{2} \rho \frac{1}{T} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} D_{t}^{2} \sum_{t=2}^{T} D_{t-1}^{2}}\right) \\
& \geq-\rho D_{m}^{2} \lim _{T \rightarrow \infty} \mathbb{E}\left(\frac{1}{\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}^{2}+\frac{1}{T} \sum_{t=2}^{T} D_{t-1}^{2}}\right) \\
& \geq-\rho D_{m}^{2}\left(\frac{1}{\frac{\sigma^{2}}{1-\rho^{2}}+D_{M}^{2}}\right) \\
& >0 . \tag{3.61}
\end{align*}
$$

Hence, ρ_{y} is overestimate of ρ for $-1<\rho<0$.

3.2.3 Estimator for Autoregressive Coefficient

In the pervious section, we have shown the effect of sampling errors on the naive estimator. When we ignore sampling errors, there is a bias term causes the naive estimator to be underestimate when $0<\rho<1$. In this section, we propose a simple adjustment of the parameter estimation of ρ alternative to the naive estimator ρ_{y}. This adjustment can reduce bias caused from sampling errors, and depends only on the observed variables y_{t} 's.

Corollary 3.7. Let $U_{1, \theta}=\sum_{t=2}^{T} \theta_{t} \theta_{t-1}$ be defined in (3.19). Then
(1) $\mathbb{E}\left(U_{1, \theta}\right)=O(T)$ and $\operatorname{Var}\left(U_{1, \theta}\right)=O(T)$ if $|\rho|<1$,
(2) $\mathbb{E}\left(U_{1, \theta}\right)=O\left(T^{2}\right)$ and $\operatorname{Var}\left(U_{1, \theta}\right)=O\left(T^{4}\right)$ if $|\rho|=1$,

Proof. Notice that

$$
U_{1, \theta}=\sum_{t=2}^{T} \theta_{t} \theta_{t-1}=\sum_{t=2}^{T}\left(\rho \theta_{t-1}+\eta_{t}\right) \theta_{t-1}=\rho U_{2, \theta}+\sum_{t=2}^{T} \eta_{t} \theta_{t-1} .
$$

Hence, since $\mathbb{E}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)=0, \mathbb{E}\left(U_{1, \theta}\right)=\rho \mathbb{E}\left(U_{2, \theta}\right)$ for all cases of ρ. This implies that the orders of $U_{1, \theta}$ and $U_{2, \theta}$ are the same.

Consider the case $|\rho|<1$. By using the fact that $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+$ $\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$, we have

$$
\begin{equation*}
\frac{\operatorname{Var}\left(U_{1, \theta}\right)}{T}=\rho^{2} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T}+\frac{\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T}+2 \rho \frac{\operatorname{Cov}\left(U_{2, \theta}, \sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T} . \tag{3.62}
\end{equation*}
$$

From Lemma 3.3 and (3.44), the sum of the first and the second terms converges to constant $C=\frac{2 \sigma^{4} \rho^{2}\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{3}}+\frac{\sigma^{4}}{1-\rho^{2}}$. Moreover, by using Chebyshev's inequality,

$$
\lim _{T \rightarrow \infty}\left|\frac{\operatorname{Cov}\left(U_{2, \theta}, \sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T}\right| \leq \lim _{T \rightarrow \infty} \sqrt{\frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T}} \frac{\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T}=\frac{\sigma^{4} \sqrt{2\left(1+\rho^{2}\right)}}{\left(1-\rho^{2}\right)^{2}} .
$$

Therefore, we can conclude that $\frac{\operatorname{Var}\left(U_{1, \theta}\right)}{T}$ lies in $[C-2 \rho D, C+2 \rho D]$ where $C=$ $\frac{2 \sigma^{4} \rho^{2}\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{3}}+\frac{\sigma^{4}}{1-\rho^{2}}$ and $D=\frac{\sigma^{4} \sqrt{2\left(1+\rho^{2}\right)}}{\left(1-\rho^{2}\right)^{2}}$, and implies that $\operatorname{Var}\left(U_{1, \theta}\right)=O(T)$.
Similarly, for the cases $|\rho|=1$, we have

$$
\begin{equation*}
\frac{\operatorname{Var}\left(U_{1, \theta}\right)}{T^{4}}=\rho^{2} \frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T^{4}}+\frac{\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T^{4}}+2 \rho \frac{\operatorname{Cov}\left(U_{2, \theta}, \sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T^{4}} \tag{3.64}
\end{equation*}
$$

From (3.46), the second term of (3.64) converges to zero. By using Chebyshev's inequality, (3.21), and (3.46) on the third term, we have

$$
\begin{equation*}
\left|\frac{\operatorname{Cov}\left(U_{2, \theta}, \sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{T^{4}}\right| \leq \frac{1}{T} \sqrt{\frac{\operatorname{Var}\left(U_{2, \theta}\right)}{T^{4}} \frac{\operatorname{Var}\left(\sum_{t=2}^{T} \eta_{t} \theta_{t-1}\right)}{2}} \tag{3.65}
\end{equation*}
$$

and this term converges to zero as T goes to infinity.
Hence, by (3.21) and (3.64), $\frac{\operatorname{Var}\left(U_{1, \theta}\right)}{T^{4}}$ converges to $\frac{\sigma^{4} \rho^{2}}{3}$. Consequently, $\operatorname{Var}\left(U_{1, \theta}\right)=O\left(T^{4}\right)$.

Lemma 3.8. Let $U_{1, \theta}$ and $U_{2, \theta}$ be defined as in Lemma 3.3 and Corollary 3.7, respectively. For any positive integers m and n such that $n>m$,

$$
\mathbb{E}\left(U_{1, \theta}^{m} U_{2, \theta}^{-n}\right) \leq \begin{cases}O\left(T^{m-n}\right) & \text { if }|\rho|<1 \tag{3.66}\\ O\left(T^{2(m-n)}\right) & \text { if }|\rho|=1\end{cases}
$$

Proof. Let $f(X, Y)=X^{m} Y^{-n}$ where X, Y are random variables. Let $\mu=\left(\mu_{X}, \mu_{Y}\right)=$ $(\mathbb{E}(X), \mathbb{E}(Y))$. The second order Taylor approximation of f about μ is

$$
\begin{align*}
f(X, Y) \approx & \mu_{X}^{m} \mu_{Y}^{-n}+m \mu_{X}^{m-1} \mu_{Y}^{-n}\left(X-\mu_{X}\right)-n \mu_{X}^{m} \mu_{Y}^{-n-1}\left(Y-\mu_{Y}\right) \\
& +\frac{m(m-1)}{2} \mu_{X}^{m-2} \mu_{Y}^{-n}\left(X-\mu_{X}\right)^{2}-2 m n \mu_{X}^{m-1} \mu_{Y}^{-n-1}\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& +\frac{n(n+1)}{2} \mu_{X}^{m} \mu_{Y}^{-n-2}\left(Y-\mu_{Y}\right)^{2} \tag{3.67}
\end{align*}
$$

By substituting $X=U_{1, \theta}$ and $Y=U_{2, \theta}$ into (3.67) and taking expectation, we have

$$
\begin{aligned}
\left|\mathbb{E}\left(U_{1, \theta}^{m} U_{2, \theta}^{-n}\right)\right| \approx & \left\lvert\, \mathbb{E}^{m}\left(U_{1, \theta}\right) \mathbb{E}^{-n}\left(U_{2, \theta}\right)+\frac{m(m-1)}{2} \mathbb{E}^{m-2}\left(U_{1, \theta}\right) \mathbb{E}^{-n}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{1, \theta}\right)\right. \\
& +\frac{n(n+1)}{2} \mathbb{E}^{m}\left(U_{1, \theta}\right) \mathbb{E}^{-n-2}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{2, \theta}\right) \\
& -2 m n \mathbb{E}^{m-1}\left(U_{1, \theta}\right) \mathbb{E}^{-n-1}\left(U_{2, \theta}\right) \operatorname{Cov}\left(U_{1, \theta}, U_{2, \theta}\right) \mid
\end{aligned}
$$

$$
\begin{align*}
\leq & \left|\mathbb{E}^{m}\left(U_{1, \theta}\right)\right| \mathbb{E}^{-n}\left(U_{2, \theta}\right)+\frac{m(m-1)}{2}\left|\mathbb{E}^{m-2}\left(U_{1, \theta}\right)\right| \mathbb{E}^{-n}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{1, \theta}\right) \\
& +\frac{n(n+1)}{2}\left|\mathbb{E}^{m}\left(U_{1, \theta}\right)\right| \mathbb{E}^{-n-2}\left(U_{2, \theta}\right) \operatorname{Var}\left(U_{2, \theta}\right) \\
& +2 m n\left|\mathbb{E}^{m-1}\left(U_{1, \theta}\right)\right| \mathbb{E}^{-n-1}\left(U_{2, \theta}\right) \sqrt{\operatorname{Var}\left(U_{1, \theta}\right)} \sqrt{\operatorname{Var}\left(U_{2, \theta}\right)}, \tag{3.68}
\end{align*}
$$

where we use the triangle inequality and the Chebyshev's inequality to obtain the last inequality.

When $|\rho|<1$, from Corollary 3.7 (1) and (3.30)-(3.31), we have

$$
\begin{align*}
\left|\mathbb{E}\left(U_{1, \theta}^{m} U_{2, \theta}^{-n}\right)\right| \leq & O(T)^{m-n}+\frac{m(m-1)}{2} O(T)^{m-2} O(T)^{-n} O(T) \\
& +\frac{n(n+1)}{2} O(T)^{m} O(T)^{-n-2} O(T) \\
& +2 m n O(T)^{m}-1 O(T)^{-n-1} O(T)^{\frac{1}{2}} O(T)^{\frac{1}{2}} \\
= & O\left(T^{m-n}\right)+O\left(T^{m-n-1}\right)+O\left(T^{m-n-1}\right)+O\left(T^{m-n-1}\right) \\
= & O\left(T^{m-n}\right) . \tag{3.69}
\end{align*}
$$

Similarly for the case $|\rho|=1$, from Corollary 3.7 (2) and (3.36)-(3.37), we have

$$
\begin{align*}
\left|\mathbb{E}\left(U_{1, \theta}^{m} U_{2, \theta}^{-n}\right)\right| \leq & O(T)^{2 m-2 n}+\frac{m(m-1)}{2} O(T)^{2 m-4} O(T)^{-2 n} O\left(T^{4}\right) \\
& +\frac{n(n-1)}{2} O(T)^{2 m} O(T)^{-2 n-4} O\left(T^{4}\right) \\
& +2 m n O(T)^{2 m-2} O(T)^{-2 n-2} O\left(T^{4}\right)^{\frac{1}{2}} O\left(T^{4}\right)^{\frac{1}{2}} \\
= & O\left(T^{2(m-n)}\right)+O\left(T^{2(m-n)}\right)+O\left(T^{2(m-n)}\right)+O\left(T^{2(m-n)}\right) \\
= & O\left(T^{2(m-n)}\right) . \tag{3.70}
\end{align*}
$$

Corollary 3.9. Let $U_{1, \theta}$ and $U_{2, \theta}$ be defined as in Lemma 3.3 and Corollary 3.7, respectively. For any positive integers m and n such that $n>m$,

$$
\mathbb{E}\left(\left|U_{1, \theta}\right|^{m} U_{2, \theta}^{-n}\right) \leq \begin{cases}O\left(T^{m-n}\right) & \text { if }|\rho|<1 \tag{3.71}\\ O\left(T^{2(m-n)}\right) & \text { if }|\rho|=1\end{cases}
$$

Proof. From Hölder's inequality, we have

$$
\begin{equation*}
\mathbb{E}\left(\left|U_{1, \theta}\right|^{m} U_{2, \theta}^{-n}\right) \leq \mathbb{E}^{\frac{1}{2}}\left(U_{1, \theta}^{2 m} U_{2, \theta}^{-2 n}\right) \tag{3.72}
\end{equation*}
$$

Consider the case $|\rho|<1$. From Lemma 3.8, we have

$$
\begin{equation*}
\mathbb{E}\left(\left|U_{1, \theta}\right|^{m} U_{2, \theta}^{-n}\right) \leq \sqrt{O\left(T^{2 m-2 n}\right)}=O\left(T^{m-n}\right) \tag{3.73}
\end{equation*}
$$

Similarly, for the case $|\rho|<1$. From Lemma 3.8, we have

$$
\begin{equation*}
\mathbb{E}\left(\left|U_{1, \theta}\right|^{m} U_{2, \theta}^{-n}\right) \leq \sqrt{O\left(T^{2(2 m-2 n)}\right)}=O\left(T^{2(m-n)}\right) \tag{3.74}
\end{equation*}
$$

Theorem 3.10. (1) The statistic

$$
\hat{U}_{1, \theta}=\sum_{t=2}^{T} y_{t} y_{t-1}
$$

is an unbiased estimator of $U_{1, \theta}$.
(2) The statistic

$$
\hat{U}_{2, \theta}=\sum_{t=2}^{T}\left(y_{t-1}^{2}-D_{t-1}^{2}\right)
$$

is an unbiased estimator of $U_{2, \theta}$.
(3) The statistic

$$
\hat{U}_{3, \theta}=\frac{\sum_{t=2}^{T} y_{t} y_{t-1}}{\sum_{t=2}^{T}\left(y_{t-1}^{2}-D_{t-1}^{2}\right)}
$$

is an asymptotically unbiased estimator of $U_{3, \theta}=\rho_{\theta}$. The statistic $\hat{U}_{3, \theta}$ can be denoted as $\hat{\rho}_{\theta}$.

Proof. (1) From Proposition 3.5 (1), we can show that

$$
\begin{equation*}
\mathbb{E}\left(\hat{U}_{1, \theta}-U_{1, \theta}\right)=\mathbb{E}\left(\mathbb{E}\left(\hat{U}_{1, \theta}-U_{1, \theta} \mid \boldsymbol{\theta}\right)\right)=\mathbb{E}\left(U_{1, \theta}-U_{1, \theta}\right)=0 \tag{3.75}
\end{equation*}
$$

(2) From Proposition 3.5 (2), we can show that

$$
\begin{equation*}
\mathbb{E}\left(\hat{U}_{2, \theta}-U_{2, \theta}\right)=\mathbb{E}\left(\mathbb{E}\left(\hat{U}_{2, \theta}-U_{2, \theta} \mid \boldsymbol{\theta}\right)\right)=\mathbb{E}\left(U_{2, \theta}+\sum_{t=2}^{T} D_{t-1}^{2}-\sum_{t=2}^{T} D_{t-1}^{2}-U_{2, \theta}\right)=0 \tag{3.76}
\end{equation*}
$$

(3) To show that $\hat{U}_{3, \theta}$ is an asymptotically unbiased estimator of $U_{3, \theta}$, we will apply the second-order Taylor approximations (2.16) of $\mathbb{E}\left(\hat{U}_{3, \theta} \mid \boldsymbol{\theta}\right)=\mathbb{E}\left(f\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right) \mid \boldsymbol{\theta}\right)$ around $\boldsymbol{\mu}=\left(\mathbb{E}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right), \mathbb{E}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)\right)$, when $f(x, y)=\frac{x}{y}$ as follows.

$$
\begin{aligned}
\mathbb{E}\left(f\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right) \mid \boldsymbol{\theta}\right) \approx & f(\boldsymbol{\mu})+\frac{1}{2}\left(f_{x x}^{\prime \prime}(\mu) \operatorname{Var}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right)+f_{y y}^{\prime \prime}(\mu) \operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)\right) \\
& +f_{x y}^{\prime \prime}(\mu) \operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) \\
= & f(\boldsymbol{\mu})+\left(\frac{\mathbb{E}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right)}{\mathbb{E}^{2}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)} \operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)-\frac{1}{\mathbb{E}^{2}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)} \operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)\right) .
\end{aligned}
$$

Since $\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right)=\left(U_{1, y}, U_{2, y}-\sum_{t=2}^{T} D_{t-1}^{2}\right)$, the conditional covariance matrix given $\boldsymbol{\theta}$ of $\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right)$ are the same as $\left(U_{1, y}, U_{2, y}\right)$. That is,

$$
\begin{align*}
\operatorname{Var}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right) & =\sum_{t=2}^{T}\left(\theta_{t}^{2} D_{t-1}^{2}+\theta_{t-1}^{2} D_{t}^{2}+D_{t}^{2} D_{t-1}^{2}+2 \theta_{t} \theta_{t-2} D_{t-1}^{2}\right), \tag{3.77}\\
\operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) & =\sum_{t=2}^{T}\left(2 D_{t-1}^{4}+4 \theta_{t-1}^{2} D_{t-1}^{2}\right), \tag{3.78}\\
\operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) & =2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2} . \tag{3.79}
\end{align*}
$$

Hence, by Proposition 3.5 (1)-(2) and (3.78)-(3.79), we have

$$
\mathbb{E}\left(\hat{U}_{3, \theta} \mid \boldsymbol{\theta}\right) \approx \frac{U_{1, \theta}}{U_{2, \theta}}-\frac{\operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)}{U_{2, \theta}^{2}}+\frac{U_{1, \theta}}{U_{2, \theta}} \frac{\operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)}{U_{2, \theta}^{2}}
$$

$$
\begin{align*}
= & U_{3, \theta}-\left(2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2}\right)\left(U_{2, \theta}\right)^{-2} \\
& +U_{1, \theta} U_{2, \theta}^{-3}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right) . \tag{3.80}
\end{align*}
$$

Therefore, by using the fact that $|2 x y| \leq x^{2}+y^{2}$ for all x, y and $U_{2, \theta}>0$, we have

$$
\begin{align*}
\left|\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta} \mid \boldsymbol{\theta}\right)\right|= & \mid-\left(2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2}\right)\left(U_{2, \theta}\right)^{-2} \\
& +U_{1, \theta} U_{2, \theta}^{-3}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right) \mid \\
\leq & \left|-\left(2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2}\right)\left(U_{2, \theta}\right)^{-2}\right| \\
& +\left|U_{1, \theta} U_{2, \theta}^{-3}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right)\right| \\
\leq & \left(\sum_{t=2}^{T}\left(\theta_{t}^{2}+2 \theta_{t-1}^{2}+\theta_{t-2}^{2}\right) D_{t-1}^{2}\right) \\
& +\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right) \\
\leq & D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+D_{M}^{2} U_{2, \theta}^{-1}+D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2} \\
\text { จง่า } & +2 D_{M}^{2}(T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-3}+4 D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-2} . \tag{3.81}
\end{align*}
$$

To compute the expectation of $\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)$, we notice that

$$
\begin{aligned}
U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2} & =U_{2, \theta}^{-1}+\left(\theta_{T}^{2}-\theta_{1}^{2}\right) U_{2, \theta}^{-2} \\
& \leq U_{2, \theta}^{-1}+\theta_{T}^{2} U_{2, \theta}^{-2} \\
& =U_{2, \theta}^{-1}+\left(\rho \theta_{T-1}+\eta_{T}\right)^{2} U_{2, \theta}^{-2} \\
& \leq U_{2, \theta}^{-1}+2\left(\rho^{2} \theta_{T-1}^{2}+\eta_{T}^{2}\right) U_{2, \theta}^{-2}
\end{aligned}
$$

$$
\begin{align*}
& \leq U_{2, \theta}^{-1}+2 \rho^{2} U_{2, \theta} U_{2, \theta}^{-2}+2 \eta_{T}^{2}\left(\sum_{t=2}^{T} \theta_{t-1}^{2}\right)^{-2} \\
& =\left(2 \rho^{2}+1\right) U_{2, \theta}^{-1}+2 \eta_{T}^{2} U_{2, \theta}^{-2} \tag{3.82}
\end{align*}
$$

Similarly,

$$
\begin{align*}
U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2} & =U_{2, \theta}^{-1}-\theta_{T-1}^{2}\left(\sum_{t=2}^{T} \theta_{t-1}^{2}\right)^{-2} \\
& \leq\left|U_{2, \theta}^{-1}\right|+\left|\theta_{T-1}^{2} U_{2, \theta}^{-2}\right| \\
& \leq U_{2, \theta}^{-1}+U_{2, \theta} U_{2, \theta}^{-2} \\
& \leq 2 U_{2, \theta}^{-1} . \tag{3.83}
\end{align*}
$$

Since $U_{2, \theta}$ is a function of $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{T-1}\right), U_{2, \theta}$ and η_{T} are independent. Let $M_{1}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-1}\right), \mathbb{E}\left(U_{2, \theta}^{-2}\right)\right\}$. From (3.82), we have

$$
\begin{align*}
\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right) & \leq\left(2 \rho^{2}+1\right) \mathbb{E}\left(U_{2, \theta}^{-1}\right)+2 \mathbb{E}\left(\eta_{T}^{2}\right) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& \leq\left(2 \rho^{2}+1+2 \sigma^{2}\right) M_{1} \tag{3.84}
\end{align*}
$$

Similarly, from (3.83), we have

$$
\begin{equation*}
\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \leq 2 \mathbb{E}\left(U_{2, \theta}^{-1}\right) \leq 2 M_{1} . \tag{3.85}
\end{equation*}
$$

Therefore, from (3.84)-(3.85), we have

$$
\begin{equation*}
\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \leq\left(2 \rho^{2}+3+2 \sigma^{2}\right) M_{1} . \tag{3.86}
\end{equation*}
$$

To investigate expectations of $\left|U_{1, \theta}\right| U_{2, \theta}^{-2}$, and $\left|U_{1, \theta}\right| U_{2, \theta}^{-3}$, we apply Corollary 3.9 to find the order of expectation of $\left|U_{1, \theta}\right| U_{2, \theta}^{-2},\left|U_{1, \theta}\right| U_{2, \theta}^{-3}$ with $(m, n)=(1,2)$, and
$(1,3)$, respectively. It follows that
and

$$
\begin{align*}
& \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right)= \begin{cases}O\left(T^{-1}\right) & \text { if }|\rho|<1, \\
O\left(T^{-2}\right) & \text { if }|\rho|=1,\end{cases} \tag{3.87}\\
& \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\right)= \begin{cases}O\left(T^{-2}\right) & \text { if }|\rho|<1, \\
O\left(T^{-4}\right) & \text { if }|\rho|=1 .\end{cases} \tag{3.88}
\end{align*}
$$

Consider the case $|\rho|<1$. Since $M_{1}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-1}\right), \mathbb{E}\left(U_{2, \theta}^{-2}\right)\right\} \leq \mathbb{E}\left(U_{2, \theta}^{-1}\right)+$ $\mathbb{E}\left(U_{2, \theta}^{-2}\right)$, from Corollary 2.58 (2) and (3.22) we have

$$
\begin{equation*}
M_{1} \leq \mathbb{E}\left(U_{2, \theta}^{-1}\right)+\mathbb{E}\left(U_{2, \theta}^{-2}\right)=O\left(\max \left\{T^{-1}, T^{-2}\right\}\right)=O\left(T^{-1}\right) \tag{3.89}
\end{equation*}
$$

From (3.22), (3.81), (3.86)-(3.88), and (3.89), we have

$$
\begin{align*}
\left|\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta}\right)\right|= & \left|\mathbb{E}\left(\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta} \mid \boldsymbol{\theta}\right)\right)\right| \\
\leq & \mathbb{E}\left(\left|\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta} \mid \boldsymbol{\theta}\right)\right|\right) \\
\leq & \mathbb{E}\left(D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)+\mathbb{E}\left(D_{M}^{2} U_{2, \theta}^{-1}\right) \\
& +\mathbb{E}\left(2 D_{M}^{2}(T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right)+\mathbb{E}\left(4 D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
\leq & \left(2 \rho^{2}+3+2 \sigma^{2}\right) D_{M}^{2} M_{1}+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left((T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\right)+4 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
= & O\left(T^{-1}\right)+O\left(T^{-1}\right)+O(T) O\left(T^{-2}\right)+O\left(T^{-1}\right) \\
= & O\left(T^{-1}\right) . \tag{3.90}
\end{align*}
$$

Similarly for the case $|\rho|=1$, from Corollary 2.58 (2) and (3.22) we have

$$
\begin{equation*}
M_{1} \leq \mathbb{E}\left(U_{2, \theta}^{-1}\right)+\mathbb{E}\left(U_{2, \theta}^{-2}\right)=O\left(\max \left\{T^{-2}, T^{-4}\right\}\right)=O\left(T^{-2}\right) \tag{3.91}
\end{equation*}
$$

From (3.22), (3.81), (3.86)-(3.88), and (3.91), we have

$$
\begin{align*}
\left|\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta}\right)\right|= & \left|\mathbb{E}\left(\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta} \mid \boldsymbol{\theta}\right)\right)\right| \\
\leq & \mathbb{E}\left(\left|\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta} \mid \boldsymbol{\theta}\right)\right|\right) \\
\leq & \mathbb{E}\left(D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)+\mathbb{E}\left(D_{M}^{2} U_{2, \theta}^{-1}\right) \\
& +\mathbb{E}\left(2 D_{M}^{2}(T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right)+\mathbb{E}\left(4 D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
\leq & \left(2 \rho^{2}+3+\sigma^{2}\right) D_{M}^{2} M_{1}+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left((T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\right)+4 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
= & O\left(T^{-2}\right)+O\left(T^{-2}\right)+O(T) O\left(T^{-4}\right)+O\left(T^{-2}\right) \\
= & O\left(T^{-2}\right) . \tag{3.92}
\end{align*}
$$

Hence, $\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta}\right)$ converges to zero for each case of ρ and implies that $\hat{U}_{3, \theta}$ is asymptotically unbiased estimator of $U_{3, \theta}$. In particular, $\mathbb{E}\left(\hat{U}_{3, \theta}-U_{3, \theta}\right)$ is bounded with $C T^{-1}$ for $|\rho|<1$ and $C T^{-2}$ for $|\rho|=1$ where C is a constant.

From Theorem 3.10, the statistic $\hat{U}_{3, \theta}$ can reduce the bias from naive estimator ρ_{y} when the sample size T goes to infinite. Hence, we denote the statistic $\hat{U}_{3, \theta}$ as $\hat{\rho}_{\theta}$, the estimator of autoregressive coefficient ρ. The following theorem will show some properties of the estimator $\hat{\rho}_{\theta}$.

Theorem 3.11. Let $\hat{\rho}_{\theta}=\hat{U}_{3, \theta}$ be defined in Theorem 3.10. Then $\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)$ converges to zero as T goes to infinite.

Proof. Notice that, from Theorem 2.35,

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)=\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)+\operatorname{Var}\left(\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right) . \tag{3.93}
\end{equation*}
$$

To compute the first term on the right hand side, we will consider $\operatorname{Var}\left(\hat{\rho}_{\theta} \mid \boldsymbol{\theta}\right)$ by applying the first-order Taylor approximations of $\operatorname{Var}\left(\hat{\rho}_{\theta} \mid \boldsymbol{\theta}\right)=\operatorname{Var}\left(f\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right) \mid \boldsymbol{\theta}\right)$ around the point $\boldsymbol{\mu}=\left(\mathbb{E}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right), \mathbb{E}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right)\right)$, when $f(x, y)=\frac{x}{y}$. From (2.14), we
have

$$
\begin{aligned}
\operatorname{Var}\left(f\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right) \mid \boldsymbol{\theta}\right) \approx & f_{x}^{2}(\boldsymbol{\mu}) \operatorname{Var}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right)+f_{y}^{2}(\boldsymbol{\mu}) \operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) \\
& +2 f_{x}(\boldsymbol{\mu}) f_{y}(\boldsymbol{\mu}) \operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) .
\end{aligned}
$$

From (3.77)-(3.79), we can compute the conditional variance of $\hat{\rho}_{\theta}$ as follows.

$$
\begin{aligned}
\operatorname{Var}\left(f\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta}\right) \mid \boldsymbol{\theta}\right) \approx & U_{2, \theta}^{-2} \operatorname{Var}\left(\hat{U}_{1, \theta} \mid \boldsymbol{\theta}\right)+U_{1, \theta}^{2} U_{2, \theta}^{-4} \operatorname{Var}\left(\hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) \\
& -2 U_{1, \theta} U_{2, \theta}^{-3} \operatorname{Cov}\left(\hat{U}_{1, \theta}, \hat{U}_{2, \theta} \mid \boldsymbol{\theta}\right) \\
= & U_{2, \theta}^{-2} \sum_{t=2}^{T}\left(\theta_{t}^{2} D_{t-1}^{2}+\theta_{t-1}^{2} D_{t}^{2}+D_{t}^{2} D_{t-1}^{2}+2 \theta_{t} \theta_{t-2} D_{t-1}^{2}\right) \\
& +U_{1, \theta}^{2} U_{2, \theta}^{-4}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right) \\
& -U_{1, \theta} U_{2, \theta}^{-3}\left(2 \sum_{t=2}^{T}\left(\theta_{t} \theta_{t-1}+\theta_{t-1} \theta_{t-2}\right) D_{t-1}^{2}\right) \\
\leq & U_{2, \theta}^{-2} \sum_{t=2}^{T}\left(\theta_{t}^{2} D_{t-1}^{2}+\theta_{t-1}^{2} D_{t}^{2}+D_{t}^{2} D_{t-1}^{2}+\left(\theta_{t}^{2}+\theta_{t-2}^{2}\right) D_{t-1}^{2}\right) \\
& +U_{1, \theta}^{2} U_{2, \theta}^{-4}\left(2 \sum_{t=2}^{T} D_{t-1}^{4}+4 \sum_{t=2}^{T} \theta_{t-1}^{2} D_{t-1}^{2}\right) \\
& +\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\left(\sum_{t=2}^{T}\left(\theta_{t}^{2}+2 \theta_{t-1}^{2}+\theta_{t-2}^{2}\right) D_{t-1}^{2}\right) \\
\mathrm{CH} & \\
\leq & D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T}\left(\theta_{t}^{2}+\theta_{t-1}^{2}+\theta_{t}^{2}+\theta_{t-2}^{2}\right)+D_{M}^{4} U_{2, \theta}^{-2}(T-1) \\
& +2 D_{M}^{2} U_{1, \theta}^{2} U_{2, \theta}^{-4}(T-1)+4 D_{M}^{2} U_{1, \theta}^{2} U_{2, \theta}^{-3} \\
& +D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-3}\left(\sum_{t=2}^{T}\left(\theta_{t}^{2}+2 \theta_{t-1}^{2}+\theta_{t-2}^{2}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
= & 2 D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+D_{M}^{2} U_{2, \theta}^{-1}+D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2} \\
& +D_{M}^{4} U_{2, \theta}^{-2}(T-1)+2 D_{M}^{2} U_{1, \theta}^{2} U_{2, \theta}^{-4}(T-1)+4 D_{M}^{2} U_{1, \theta}^{2} U_{2, \theta}^{-3} \\
& +D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t}^{2}+2 D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-2} \\
& +D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t-2}^{2}, \tag{3.94}
\end{align*}
$$

where $D_{M}^{2}=\sup _{t} D_{t}^{2}$. Therefore, by the fact that $\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)=\operatorname{Var}\left(\hat{\rho}_{\theta} \mid \boldsymbol{\theta}\right)$, we have

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right) \leq 2 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \\
& +D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right)+2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) \\
& +4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right)+D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t}^{2}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right)+D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \\
& =2 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \\
& +D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t}^{2}\right)+D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-3} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \\
& +D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right)+4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
& \leq 2 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \\
& +D_{M}^{2} \sqrt{\mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-2}\right)} \sqrt{\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)^{2}} \\
& +D_{M}^{2} \sqrt{\mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-2}\right)} \sqrt{\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)^{2}}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& +D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right)+4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
& D_{M}^{2}\left(2 \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)+\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)\right) \\
& +D_{M}^{2} \sqrt{\mathbb{E}\left(\rho_{\theta}^{2}\right)}\left(\sqrt{\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)^{2}}+\sqrt{\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)^{2}}\right) \\
& +D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right)+4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right|\right. \tag{3.96}
\end{array} U_{2, \theta}^{-2}\right),
$$

where we use Cauchy-Schwarz inequality to obtain (3.95).
To compute the right hand side of (3.96), we compute the first and the second moments of $U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}$ and $U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}$, respectively. From (3.84) and (3.85), we have
and

$$
\begin{aligned}
& \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right) \leq\left(2 \rho^{2}+1+2 \sigma^{2}\right) M_{1} \\
& \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \leq 2 M_{1}, \text { ลัย }
\end{aligned}
$$

where $M_{1}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-1}\right), \mathbb{E}\left(U_{2, \theta}^{-2}\right)\right\}$. Therefore

$$
\begin{equation*}
2 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)+D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right) \leq 2 D_{M}^{2}\left(2 \rho^{2}+2+2 \sigma^{2}\right) M_{1} . \tag{3.97}
\end{equation*}
$$

Next, we will find the second moment of $U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}$ and $U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}$. Since $U_{2, \theta}$ is a function of $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{T-1}\right), U_{2, \theta}$ and η_{T} are independent. From (3.82), the
second moment of $U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}$ can be computed as follows.

$$
\begin{align*}
\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)^{2} & \leq \mathbb{E}\left(\left(2 \rho^{2}+1\right) U_{2, \theta}^{-1}+2 \eta_{T}^{2} U_{2, \theta}^{-2}\right)^{2} \\
& \leq 2 \mathbb{E}\left(\left(2 \rho^{2}+1\right) U_{2, \theta}^{-1}\right)^{2}+2 \mathbb{E}\left(2 \eta_{T}^{2} U_{2, \theta}^{-2}\right)^{2} \\
& =2\left(2 \rho^{2}+1\right)^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right)+12 \sigma^{4} \mathbb{E}\left(U_{2, \theta}^{-4}\right) \\
& \leq\left(2\left(2 \rho^{2}+1\right)^{2}+12 \sigma^{4}\right) M_{2}, \tag{3.98}
\end{align*}
$$

where $M_{2}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-2}\right), \mathbb{E}\left(U_{2, \theta}^{-4}\right)\right\}$. Similarly, from (3.83), we have

$$
\begin{equation*}
\mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)^{2} \leq 4 \mathbb{E}\left(U_{2, \theta}^{-2}\right) \tag{3.99}
\end{equation*}
$$

Next, we compute the expectations of the $U_{1, \theta}^{2} U_{2, \theta}^{-4}$ and $U_{1, \theta}^{2} U_{2, \theta}^{-3}$. From Lemma 3.8 with $(m, n)=(2,4)$ and $(1,3)$, we have
and

$$
\begin{align*}
& \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) \leq \begin{cases}O\left(T^{-2}\right) & \text { if }|\rho|<1, \\
O\left(T^{-4}\right) & \text { if }|\rho|=1,\end{cases} \tag{3.100}\\
& \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \leq \begin{cases}O\left(T^{-1}\right) & \text { if }|\rho|<1, \\
O\left(T^{-2}\right) & \text { if }|\rho|=1,\end{cases} \tag{3.101}
\end{align*}
$$

respectively.
Consider the case $|\rho|<1$. Notice from Lemma 3.4 (3) that $\mathbb{E}\left(\rho_{\theta}^{2}\right)=O(1)$. Since $M_{2}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-2}\right), \mathbb{E}\left(U_{2, \theta}^{-4}\right)\right\}$, from Corollary 2.58 (2) and (3.22) we have

$$
\begin{equation*}
M_{2} \leq \mathbb{E}\left(U_{2, \theta}^{-2}\right)+\mathbb{E}\left(U_{2, \theta}^{-4}\right)=O\left(\max \left\{T^{-2}, T^{-4}\right\}\right)=O\left(T^{-2}\right) \tag{3.102}
\end{equation*}
$$

From (3.22), (3.87)-(3.89) (3.96)-(3.102), we have

$$
\begin{align*}
\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right) \leq & 2 D_{M}^{2}\left(2 \rho^{2}+2+2 \sigma^{2}\right) M_{1} \\
& +D_{M}^{2} \sqrt{\mathbb{E}\left(\rho_{\theta}^{2}\right)}\left(\sqrt{\left(2\left(2 \rho^{2}+1\right)^{2}+12 \sigma^{4}\right) M_{2}}+\sqrt{4 \mathbb{E}\left(U_{2, \theta}^{-2}\right.}\right) \\
& +D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right)+4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
= & O\left(T^{-1}\right)+O(1) O\left(T^{-1}\right)+O\left(T^{-1}\right)+O(T) O\left(T^{-2}\right) \\
& +O(T) O\left(T^{-2}\right)+O\left(T^{-1}\right)+O\left(T^{-1}\right) \\
= & O\left(T^{-1}\right) . \tag{3.103}
\end{align*}
$$

Similary for the case $|\rho|=1$. Since $M_{2}=\max \left\{\mathbb{E}\left(U_{2, \theta}^{-2}\right), \mathbb{E}\left(U_{2, \theta}^{-4}\right)\right\}$, from Corollary 2.58 (2) and (3.22) we have,

$$
\begin{equation*}
M_{2} \leq \mathbb{E}\left(U_{2, \theta}^{-2}\right)+\mathbb{E}\left(U_{2, \theta}^{-4}\right)=O\left(\max \left\{T^{-4}, T^{-8}\right\}\right)=O\left(T^{-4}\right) \tag{3.104}
\end{equation*}
$$

From (3.22), (3.87)-(3.88), (3.91) (3.96)-(3.101), and (3.104), we have

$$
\begin{align*}
\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right) \leq & 2 D_{M}^{2}\left(2 \rho^{2}+2+2 \sigma^{2}\right) M_{1} \text { ทยาลัย } \\
& +D_{M}^{2} \sqrt{\mathbb{E}\left(\rho_{\theta}^{2}\right)}\left(\sqrt{\left(2\left(2 \rho^{2}+1\right)^{2}+12 \sigma^{4}\right) M_{2}}+\sqrt{4 \mathbb{E}\left(U_{2, \theta}^{-2}\right)}\right) \\
& +D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-1}\right)+D_{M}^{4}(T-1) \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +2 D_{M}^{2}(T-1) \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right)+4 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-3}\right) \\
& +2 D_{M}^{2} \mathbb{E}\left(\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right) \\
= & O\left(T^{-2}\right)+O(1) O\left(T^{-2}\right)+O\left(T^{-2}\right)+O(T) O\left(T^{-4}\right) \\
& +O(T) O\left(T^{-4}\right)+O\left(T^{-2}\right)+O\left(T^{-2}\right) \\
= & O\left(T^{-2}\right) . \tag{3.105}
\end{align*}
$$

It follows that $\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)$ is of order T^{-1} for $|\rho|<1$, and of order T^{-2} for $|\rho|=1$. Hence, the expected value of $\operatorname{Var}\left(\hat{\rho}_{\theta} \mid \boldsymbol{\theta}\right)$ is bound as $C_{1} T^{-1}$ for each case of ρ. In particular,

$$
\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)= \begin{cases}O\left(T^{-1}\right) & \text { if }|\rho|<1 \tag{3.106}\\ O\left(T^{-2}\right) & \text { if }|\rho|=1\end{cases}
$$

Next, we will compute the variance of $\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)$. By applying the CauchySchwarz inequality $\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n\left(\sum_{i=1}^{n} x_{i}^{2}\right)$ to (3.81), we have

$$
\begin{align*}
\operatorname{Var}\left(\left|\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right|\right) \leq & \mathbb{E}\left(\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)^{2}\right) \\
\leq & \mathbb{E}\left(D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}+D_{M}^{2} U_{2, \theta}^{-1}+D_{M}^{2} U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right. \\
& \left.+2 D_{M}^{2}(T-1)\left|U_{1, \theta}\right| U_{2, \theta}^{-3}+4 D_{M}^{2}\left|U_{1, \theta}\right| U_{2, \theta}^{-2}\right)^{2} \\
\leq & 5 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t}^{2}\right)^{2}+5 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right) \\
& +5 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2} \sum_{t=2}^{T} \theta_{t-2}^{2}\right)^{2}+10 D_{M}^{2}(T-1)^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-6}\right) \\
& +20 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) . \tag{3.107}
\end{align*}
$$

From Lemma 3.8 with $(m, n)=(2,6)$, the order of expectation of $U_{1, \theta}^{2} U_{2, \theta}^{-6}$ can be found as:

$$
\mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-6}\right) \begin{cases}O\left(T^{-4}\right) & \text { if }|\rho|<1 \tag{3.108}\\ O\left(T^{-8}\right) & \text { if }|\rho|=1\end{cases}
$$

Similarly for $U_{1, \theta}^{2} U_{2, \theta}^{-4}$, from Lemma 3.8 with $(m, n)=(2,4)$, the order of expectation of $U_{1, \theta}^{2} U_{2, \theta}^{-4}$ is

$$
\mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) \begin{cases}O\left(T^{-2}\right) & \text { if }|\rho|<1 \tag{3.109}\\ O\left(T^{-4}\right) & \text { if }|\rho|=1\end{cases}
$$

If $|\rho|<1$, then $\mathbb{E}\left(U_{2, \theta}^{-2}\right)=O\left(T^{-2}\right)$ by Lemma 3.3 (3). From (3.98)-(3.99), and (3.107)-(3.109), we have

$$
\begin{align*}
\operatorname{Var}\left(\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)= & \left(5 D_{M}^{2}\left(2\left(2 \rho^{2}+1\right)^{2}+12 \sigma^{4}\right) M_{2}+5 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right)\right. \\
& +20 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right)+10 D_{M}^{2}(T-1)^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-6}\right) \\
& +20 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) \\
= & O\left(T^{-2}\right)+O\left(T^{-2}\right)+O\left(T^{-2}\right)+O\left(T^{2}\right) O\left(T^{-4}\right)+O\left(T^{-2}\right) \\
= & O\left(T^{-2}\right) . \tag{3.110}
\end{align*}
$$

Similarly for the case $|\rho|=1$, we have $\mathbb{E}\left(U_{2, \theta}^{-2}\right)=O\left(T^{-4}\right)$. From (3.98)-(3.99), and (3.107)-(3.109), we have

$$
\begin{align*}
\operatorname{Var}\left(\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)= & \left(5 D_{M}^{2}\left(2\left(2 \rho^{2}+1\right)^{2}+12 \sigma^{4}\right) M_{2}+5 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right)\right. \\
& +20 D_{M}^{2} \mathbb{E}\left(U_{2, \theta}^{-2}\right)+10 D_{M}^{2}(T-1)^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-6}\right) \\
& +20 D_{M}^{2} \mathbb{E}\left(U_{1, \theta}^{2} U_{2, \theta}^{-4}\right) \\
= & O\left(T^{-4}\right)+O\left(T^{-4}\right)+O\left(T^{-4}\right)+O\left(T^{2}\right) O\left(T^{-8}\right)+O\left(T^{-4}\right) \\
= & O\left(T^{-4}\right) . \tag{3.111}
\end{align*}
$$

Therefore, by using (3.106) and (3.110)-(3.111) in (3.93), we have

$$
\begin{align*}
\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right) & =\mathbb{E}\left(\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right)+\operatorname{Var}\left(\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta} \mid \boldsymbol{\theta}\right)\right) \\
& = \begin{cases}O\left(T^{-1}\right)+O\left(T^{-2}\right) & \text { if }|\rho|<1, \\
O\left(T^{-2}\right)+O\left(T^{-4}\right) & \text { if }|\rho|=1 .\end{cases} \\
& = \begin{cases}O\left(T^{-1}\right) & \text { if }|\rho|<1, \\
O\left(T^{-2}\right) & \text { if }|\rho|=1 .\end{cases} \tag{3.112}
\end{align*}
$$

Hence, $\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)<\frac{C_{3}}{T}$ for some constant C_{3}, and implies that it converges to zero for all $|\rho| \leq 1$.

Theorem 3.12. Let $\hat{\rho}_{\theta}=\hat{U}_{3, \theta}$ be defined in Theorem 3.10. Then, $\hat{\rho}_{\theta}$ is a consistent estimator of ρ.

Proof. From Theorem 2.48, we can conclude that

$$
\begin{equation*}
\hat{\rho}_{\theta}-\rho_{\theta} \xrightarrow{p} 0 . \tag{3.113}
\end{equation*}
$$

Since ρ_{θ} is a consistent estimator of ρ, we have

$$
\hat{\rho}_{\theta}-\rho=\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)+\left(\rho_{\theta}-\rho\right) \xrightarrow{p} 0 .
$$

Corollary 3.13. Let $\hat{\rho}_{\theta}=\hat{U}_{3, \theta}$ be defined in Theorem 3.10. Then,
(1) $\hat{\rho}_{\theta}-\rho_{\theta}=O_{p}\left(T^{-\frac{1}{2}}\right)$ if $|\rho|<1$,
(2) $\hat{\rho}_{\theta}-\rho_{\theta}=O_{p}\left(T^{-1}\right)$ if $|\rho|=1$.

Proof. (1) Notice that, from (3.90) and (3.112) with $|\rho|<1$,

$$
\begin{equation*}
\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)^{2}=\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)+\mathbb{E}^{2}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)=O\left(T^{-1}\right)+O\left(T^{-2}\right)=O\left(T^{-1}\right) \tag{3.114}
\end{equation*}
$$

By Corollary 2.62, $\hat{\rho}_{\theta}-\rho_{\theta}=O_{p}\left(T^{-\frac{1}{2}}\right)$.
(2) Similarly for the case $|\rho|=1$, from (3.92) and (3.112), we have

$$
\begin{equation*}
\mathbb{E}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)^{2}=\operatorname{Var}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)+\mathbb{E}^{2}\left(\hat{\rho}_{\theta}-\rho_{\theta}\right)=O\left(T^{-2}\right)+O\left(T^{-4}\right)=O\left(T^{-2}\right) . \tag{3.115}
\end{equation*}
$$

By Corollary 2.62, $\hat{\rho}_{\theta}-\rho_{\theta}=O_{p}\left(T^{-1}\right)$.

3.2.4 Asymptotic Distribution for Estimator of Autoregressive Coefficient

In this section, we consider the asymptotic distribution of the estimator $\hat{\rho}_{\theta}$ with $\rho=1$. Moreover, we will show that $\hat{\rho}_{\theta}$ has the same asymptotic distribution as ρ_{θ}.

Lemma 3.14. Under the assumption on the model (3.13) with $\rho=1, \frac{\hat{U}_{2, \theta}}{T^{2}}-\frac{U_{2, \theta}}{T^{2}}$ converges to zero in probability. In particular,

$$
\begin{equation*}
\frac{\hat{U}_{2, \theta}}{T^{2}} \xrightarrow{p} \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}, \tag{3.116}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$ and $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.
Proof. Notices that

$$
\begin{align*}
\frac{\hat{U}_{2, \theta}}{T^{2}}-\frac{U_{2, \theta}}{T^{2}} & =\frac{1}{T^{2}} \sum_{t=2}^{T}\left(y_{t-1}^{2}-D_{t-1}^{2}\right)-\frac{1}{T^{2}} \sum_{t=2}^{T} \theta_{t-1}^{2} \\
& =\frac{1}{T^{2}} \sum_{t=2}^{T} 2 \theta_{t-1} e_{t-1}+\frac{1}{T^{2}} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right) \\
& =\frac{1}{T} \sum_{t=2}^{T} 2\left(\frac{\theta_{t-1} e_{t-1}}{T}\right)+\frac{1}{T^{2}} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right) . \tag{3.117}
\end{align*}
$$

For the first term, notice that $\mathbb{E}\left(\theta_{i} e_{i}\right)=\mathbb{E}\left(\theta_{i}\right) \mathbb{E}\left(e_{i}\right)=0$ for all i, and

$$
\operatorname{Cov}\left(\theta_{i} e_{i}, \theta_{j} e_{j}\right)=\mathbb{E}\left(\theta_{i} \theta_{j} e_{i} e_{j}\right)=\mathbb{E}\left(\theta_{i} \theta_{j}\right) \mathbb{E}\left(e_{i} e_{j}\right)=0
$$

for any $i \neq j$. Hence, the sequence of random variables $\left(\theta_{t} e_{t}\right)_{t \geq 1}$ is pairwise uncorrelated with zero mean and

$$
\operatorname{Var}\left(\frac{\theta_{t-1} e_{t-1}}{T}\right)=\frac{1}{T^{2}} \mathbb{E}\left(\theta_{t-1}^{2}\right) \mathbb{E}\left(e_{t-1}^{2}\right)=\frac{(t-1) \sigma^{2} D_{t-1}^{2}}{T^{2}}<\sigma^{2} D_{M}^{2}
$$

Hence, by Theorem 2.47 (2), we can conclude that $\frac{1}{T} \sum_{t=2}^{T-1} 2\left(\frac{\theta_{t-1}}{T} e_{t-1}\right)$ converges to zero in probability.

Since $\left(e_{t-1}^{2}-D_{t-1}^{2}\right)_{t \geq 2}$ is a sequence of random variables with zero mean and variance $2 D_{t-1}^{4}<2 D_{M}^{4}$, from Theorem 2.47 (2), $\frac{1}{T^{2}} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right)$ converges to zero in probability.
Hence,

$$
\begin{equation*}
\frac{\hat{U}_{2, \theta}}{T^{2}}-\frac{U_{2, \theta}}{T^{2}} \xrightarrow{p} 0 . \tag{3.118}
\end{equation*}
$$

From Theorem 3.2 (2), we have

$$
\frac{U_{2, \theta}}{T^{2}} \xrightarrow{p} \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2},
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$ and $Z_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. Hence, from Theorem 2.42, we can conclude that

$$
\frac{\hat{U}_{2, \theta}}{T^{2}}=\left(\frac{\hat{U}_{2, \theta}}{T^{2}}-\frac{U_{2, \theta}}{T^{2}}\right)+\frac{U_{2, \theta}}{T^{2}} \xrightarrow{p} 0+\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}=\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2} .
$$

Theorem 3.15. Under the assumption of the model (3.13) with $\rho=1$. Then

$$
\begin{equation*}
T\left(\hat{\rho}_{\theta}-1\right) \xrightarrow{p} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\sigma^{2}}{2 \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}}, \tag{3.119}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$ and $Z_{i}^{\prime} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$. In particular, the asymptotic distribution of $T\left(\hat{\rho}_{\theta}-1\right)$ is the same as $T\left(\rho_{\theta}-1\right)$.

Proof. Notice that

$$
\begin{align*}
T\left(\hat{\rho}_{\theta}-1\right) & =T\left(\sum_{t=2}^{T}\left(y_{t-1}^{2}-D_{t-1}^{2}\right)\right)^{-1}\left(\sum_{t=2}^{T}\left(y_{t} y_{t-1}-y_{t-1}^{2}+D_{t-1}^{2}\right)\right) \\
& =\left(\frac{1}{T^{2}} \sum_{t=2}^{T}\left(y_{t-1}^{2}-D_{t-1}^{2}\right)\right)^{-1}\left(\frac{1}{T} \sum_{t=2}^{T}\left(y_{t} y_{t-1}-y_{t-1}^{2}+D_{t-1}^{2}\right)\right) . \tag{3.120}
\end{align*}
$$

From (3.13), the numerator term of $T\left(\hat{\rho}_{\theta}-1\right)$ can be simplified as:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=2}^{T}\left(y_{t} y_{t-1}-y_{t-1}^{2}+D_{t-1}^{2}\right) & =\frac{1}{T} \sum_{t=2}^{T}\left(\left(\theta_{t-1}+e_{t-1}\right)\left(\theta_{t}+e_{t}-\theta_{t-1}-e_{t-1}\right)+D_{t-1}^{2}\right) \\
& =\frac{1}{T} \sum_{t=2}^{T}\left(\left(\theta_{t-1}+e_{t-1}\right)\left(\eta_{t}+e_{t}-e_{t-1}\right)+D_{t-1}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} \eta_{t}+\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} e_{t}-\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} e_{t-1} \\
& +\frac{1}{T} \sum_{t=2}^{T} \eta_{t} e_{t-1}+\frac{1}{T} \sum_{t=2}^{T} e_{t} e_{t-1}-\frac{1}{T} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right) . \tag{3.121}
\end{align*}
$$

To find the limit of the term on the left hand side in (3.121), we find limits of the following terms.
(a) $\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} \eta_{t}$.
(b) $\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}\left(e_{t}-e_{t-1}\right)$.
(c) $\frac{1}{T} \sum_{t=2}^{T} \eta_{t} e_{t-1}$.
(d) $\frac{1}{T} \sum_{t=2}^{T} e_{t} e_{t-1}$.
(e) $\frac{1}{T} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right)$.
(a) From Theorem 3.2 (1) on the model (3.8), we can conclude that

$$
\begin{equation*}
\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} \eta_{t} \xrightarrow{p} \frac{1}{2}\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\frac{\sigma^{2}}{2} \tag{3.122}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$, and $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.
(b) Notice from (3.13) with $\rho=1$ that $\eta_{t}=\theta_{t}-\theta_{t-1}$ and $\theta_{t}=\sum_{i=1}^{t} \eta_{t}$. Hence, we have

$$
\begin{align*}
\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}\left(e_{t}-e_{t-1}\right) & =\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1} e_{t}-\frac{1}{T} \sum_{t=1}^{T-1} \theta_{t} e_{t} \\
& =\frac{\theta_{T-1} e_{T}}{T}-\frac{\theta_{1} e_{1}}{T}+\frac{1}{T} \sum_{t=2}^{T-1}\left(\theta_{t-1}-\theta_{t}\right) e_{t} \\
& =\frac{1}{T} \sum_{i=1}^{T-1} \eta_{i} e_{T}-\frac{\eta_{1} e_{1}}{T}-\frac{1}{T} \sum_{t=2}^{T-1} \eta_{t} e_{t} . \tag{3.123}
\end{align*}
$$

Since $\left(\eta_{i} e_{T}\right)_{i \geq 1}$ is a sequence of uncorrelated random variables with zero mean and variance $\sigma^{2} D_{T}^{2} \leq \sigma^{2} D_{M}^{2}$ for all i, from Theorem 2.47 (2), $\frac{1}{T} \sum_{i=1}^{T-1} \eta_{i} e_{T}$ converges to zero in probability.

Consider $\frac{\eta_{1} e_{1}}{T}$. Notice that $\mathbb{E}\left(\frac{\eta_{1} e_{1}}{T}\right)=0$, and $\operatorname{Var}\left(\frac{\eta_{1} e_{1}}{T}\right)=\frac{\sigma^{2} D_{1}^{2}}{T^{2}}$. Since $\operatorname{Var}\left(\frac{\eta_{1} e_{1}}{T}\right)$ converges to zero, by Theorem 2.48, $\frac{\eta_{1} e_{1}}{T}$ converges to zero in probability.

Since $\left(\eta_{t} e_{t}\right)_{t \geq 1}$ is a sequence of independent random variables with zero mean and variance $\sigma^{2} D_{t}^{2}<\sigma^{2} D_{M}^{2}$ for all t, from Theorem 2.47 (2), $\frac{1}{T} \sum_{t=2}^{T-1} \eta_{t} e_{t}$ converges to zero in probability.

Hence, from (3.123), we can conclude that

$$
\begin{equation*}
\frac{1}{T} \sum_{t=2}^{T} \theta_{t-1}\left(e_{t}-\bar{e}_{t-1}\right) \xrightarrow{p} 0 . \tag{3.124}
\end{equation*}
$$

(c) Notice that $\left(\eta_{t} e_{t-1}\right)_{t \geq 2}$ is a sequence of independent random variables with zero mean and variance $\sigma^{2} D_{t-1}^{2} \leq \sigma^{2} D_{M}^{2}$. From Theorem 2.47 (2), $\frac{1}{T} \sum_{t=2}^{T} \eta_{t} e_{t-1}$ converges to zero in probability.
(d) Since $\left(e_{t} e_{t-1}\right)_{t \geq 2}$ is a sequence of uncorrelated random variables with zero mean and variance $D_{t}^{2} D_{t-1}^{2} \leq D_{M}^{4}$, from Theorem 2.47 (2), $\frac{1}{T} \sum_{t=2}^{T} e_{t} e_{t-1}$ converges to zero in probability.
(e) Since $\left(e_{t}^{2}-D_{t}^{2}\right)_{t \geq 1}$ is a sequence of independent random variables with zero mean and variance $2 D_{t}^{2} \leq 2 D_{M}^{2}$, from Theorem 2.47 (2), $\frac{1}{T} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right)$ converges to zero in probability.

Hence, from (3.121) and (a)-(e),

$$
\begin{equation*}
\frac{1}{T} \sum_{t=2}^{T}\left(y_{t} y_{t-1}-y_{t-1}^{2}+D_{t-1}^{2}\right) \xrightarrow{p} \frac{1}{2}\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\frac{\sigma^{2}}{2} . \tag{3.125}
\end{equation*}
$$

Let $g(x)=\frac{1}{x}$. Since g is a continuous function, by applying Theorem 2.41 to (3.116) with function g, we have

$$
\begin{equation*}
\frac{1}{\frac{\hat{U}_{2, \theta}}{T^{2}}} \xrightarrow{p} \frac{1}{\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}} . \tag{3.126}
\end{equation*}
$$

From (3.125), (3.126), and Theorem 2.42, we can conclude that

$$
\begin{equation*}
T\left(\hat{\rho}_{\theta}-1\right) \xrightarrow{p} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\sigma^{2}}{2 \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}}, \tag{3.127}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$, and $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. From Theorem 3.2 (4), the asymptotic distribution of $T\left(\hat{\rho}_{\theta}-1\right)$ and $T\left(\rho_{\theta}-1\right)$ are the same.

3.3 Test Statistic for Stationary Test

In this section, we derive a test statistic for the stationary test for the model (3.13). However, the estimator of the variance of noise σ^{2} is necessary to obtain the test statistic. Hence, we will first obtain a consistent estimator of σ^{2} in Section 3.3.1. Then we use the estimate to obtain a stationary test in Section 3.3.2.

3.3.1 Estimator of Variance of Noises

In this section, we derive an estimator for the variance of noises σ^{2} in the model (3.13). This estimator will be used to find the test statistic for the stationary test.

Assume that there is no sampling errors in the model (3.13). Dickey [5] showed that the estimator for σ^{2} is $U_{4, \theta}$, defined in (3.19). In addition, the estimator $U_{4, \theta}$ is a consistent estimator.

Proposition 3.16 ([5], Corollary 4.2, page 43). The statistic $U_{4, \theta}$ defined in (3.19) is a consistent estimator of σ^{2} for all $|\rho| \leq 1$.

However, if we ignore sampling errors and replace θ_{t} with y_{t}, there is a bias term in the naive estimator of σ^{2}, denoted by $U_{4, y}$. Therefore, the naive estimator $U_{4, y}$ is not unbiased. In Theorem 3.17, we derive a consistent estimator of σ^{2}. To simplify notations, we define the following functions of a random variable P.

$$
\begin{align*}
& U_{\theta}(P)=\frac{1}{T-2} \sum_{t=2}^{T}\left(\theta_{t}-P \theta_{t-1}\right)^{2} \\
& U_{y}(P)=\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-P y_{t-1}\right)^{2} \tag{3.128}
\end{align*}
$$

Notice that $U_{\theta}\left(\rho_{\theta}\right)=U_{4, \theta}$ and $U_{y}\left(\rho_{y}\right)=U_{4, y}$. The next theorem will show the consistent estimator of σ^{2}. Some notations are followed from (3.19).

Theorem 3.17. Define the statistic $\hat{U}_{4, \theta}$ by

$$
\hat{U}_{4, \theta}=\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-\hat{\rho}_{\theta} y_{t-1}\right)^{2}-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right) .
$$

Then $\hat{U}_{4, \theta}$ is a consistent estimator of σ^{2} for all $|\rho| \leq 1$.
Proof. The statistic $\hat{U}_{4, \theta}$ can be written as $U_{y}\left(\hat{\rho}_{\theta}\right)-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)$. From the model (3.13), we notice that

$$
\begin{aligned}
(T-2) U_{y}\left(\hat{\rho}_{\theta}\right)= & \sum_{t=2}^{T}\left(y_{t}-\hat{\rho}_{\theta} y_{t-1}\right)^{2} \\
= & \sum_{t=2}^{T}\left(\theta_{t}+e_{t}-\hat{\rho}_{\theta} \theta_{t-1}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \hat{b} \\
= & \sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{\theta} \theta_{t-1}\right)^{2}+\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& +2 \sum_{t=2}^{T}\left(\theta_{t}-\hat{\rho}_{\theta} \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \\
= & \sum_{t=2}^{T}\left(\theta_{t}-\rho_{\theta} \theta_{t-1}+\left(\rho_{\theta}-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)^{2}+\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& +2 \sum_{t=2}^{T}\left(\theta_{t}-\rho \theta_{t-1}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{t=2}^{T}\left(\theta_{t}-\rho_{\theta} \theta_{t-1}\right)^{2}+\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} \sum_{t=2}^{T} \theta_{t-1}^{2} \\
& +2\left(\rho_{\theta}-\hat{\rho}_{\theta}\right) \sum_{t=2}^{T}\left(\theta_{t}-\rho_{\theta} \theta_{t-1}\right) \theta_{t-1}+\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& +2 \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \\
= & (T-2) U_{\theta}\left(\rho_{\theta}\right)+\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} \sum_{t=2}^{T} \theta_{t-1}^{2} \\
& +2\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)\left(\sum_{t=2}^{T} \theta_{t} \theta_{t-1}-\rho_{\theta} \sum_{t=2}^{T} \theta_{t-1}^{2}\right)+\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& +2 \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \\
= & (T-2) U_{\theta}\left(\rho_{\theta}\right)+\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}+2\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)\left(U_{1, \theta}-\rho_{\theta} U_{2, \theta}\right) \\
& +\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2}+2 \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \\
= & (T-2) U_{\theta}\left(\rho_{\theta}\right)+\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}+\sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& +2 \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right), \tag{3.129}
\end{align*}
$$

where we apply the fact that $\rho_{\theta}=U_{1, \theta} U_{2, \theta}^{-1}$ to obtain (3.129).
Hence, from (3.129), we can simplify the statistic $\hat{U}_{4, \theta}-U_{4, \theta}$ as follows.

$$
\begin{align*}
\hat{U}_{4, \theta}-U_{4, \theta}= & U_{y}\left(\hat{\rho}_{\theta}\right)-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)-U_{\theta}\left(\rho_{\theta}\right) \\
= & \frac{1}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}+\frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2} \\
& -\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right) \\
& +\frac{2}{T-2} \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) . \tag{3.130}
\end{align*}
$$

To investigate the convergence in probability of the term on the right hand side of (3.130), we find the convergence in probability of the following terms.
(a) $\frac{1}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}$,
(b) $\frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2}-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)$,
(c) $\frac{2}{T-2} \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)$.

For (a), we will consider into two cases: $|\rho|<1$, and $|\rho|=1$. Consider the case $|\rho|<1$. From Theorem 3.1 (2), $\frac{U_{2, \theta}}{T}$ converges in probability to $\frac{\sigma^{2}}{1-\rho^{2}}$. By applying Theorem 2.42 (2) to (3.113), we can conclude that

$$
\frac{1}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}=\frac{T}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} \frac{U_{2, \theta}}{T} \xrightarrow{p} 0 .
$$

Consider the case $|\rho|=1$. From Theorem 3.2 (2),

$$
\frac{U_{2, \theta}}{T^{2}} \xrightarrow{p} \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}
$$

where $Z_{i}^{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ and $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$. From Corollary $3.13(2), T\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)=$ $O_{p}(1)$. In addition, from (3.113), $\rho_{\theta}-\hat{\rho}_{\theta}=o_{p}(1)$. By applying Corollary 2.61 (3), it follows that $T\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2}=O_{p}(1) o_{p}(1)=o_{p}(1)$. Hence, we can conclude that

$$
\frac{1}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}=\left(\frac{T}{T-2}\right) T\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} \frac{U_{2, \theta}}{T^{2}}=o_{p}(1) \text {. }
$$

Therefore, $\frac{1}{T-2}\left(\rho_{\theta}-\hat{\rho}_{\theta}\right)^{2} U_{2, \theta}$ converges to zero in probability.
For (b), notice that

$$
\begin{align*}
& \frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2}-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right) \\
& \quad=\frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}^{2}-D_{t}^{2}\right)+\hat{\rho}_{\theta}^{2} \frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right)+2 \hat{\rho}_{\theta} \frac{1}{T-2} \sum_{t=2}^{T} e_{t} e_{t-1} . \tag{3.131}
\end{align*}
$$

From Theorem 3.12, $\hat{\rho}_{\theta}$ converges in probability to ρ. Since $\left(e_{t}^{2}-D_{t}^{2}\right)_{t \geq 1}$ is a sequence of independent random variables with zero mean and variance $2 D_{t}^{4} \leq$ $2 D_{M}^{4}$, from Theorem 2.47 (2), we have

$$
\frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}^{2}-D_{t}^{2}\right)+\hat{\rho}_{\theta}^{2} \frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t-1}^{2}-D_{t-1}^{2}\right) \xrightarrow{p} 0 .
$$

Notice that $\left(e_{t} e_{t-1}\right)_{t \geq 1}$ is a sequence of uncorrelated random variables with zero mean and variance $D_{t}^{2} D_{t-1}^{2} \leq D_{M}^{4}$, from Theorem 2.47 (2), we have

$$
2 \hat{\rho}_{\theta} \frac{1}{T-2} \sum_{t=2}^{T} e_{t} e_{t-1} \xrightarrow{p} 0
$$

Therefore, $\frac{1}{T-2} \sum_{t=2}^{T}\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right)^{2}-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)$ converges to zero in probability.

For (c), notice that

$$
\begin{align*}
& \frac{2}{T-2} \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \\
= & \frac{2}{T-2} \sum_{t=2}^{T} \eta_{t} e_{t}-\frac{2 \hat{\rho}_{\theta}}{T-2} \sum_{t=2}^{T} \eta_{t} e_{t-1}+\frac{2\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t}-\frac{2 \hat{\rho}_{\theta}\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1} . \tag{3.132}
\end{align*}
$$

Since $\left(\eta_{t} e_{t}\right)_{t \geq 1}$ is a sequence of independent random variables with zero mean and variance $D_{t}^{2} \sigma^{2} \leq \sigma^{2} D_{M}^{2}$, from Theorem 2.47 (2),

$$
\begin{equation*}
\frac{2}{T-2} \sum_{t=2}^{T} \eta_{t} e_{t} \xrightarrow{p} 0, \tag{3.133}
\end{equation*}
$$

for $|\rho| \leq 1$.
Similarly for the sequence of independent random variables $\left(\eta_{t} e_{t-1}\right)_{t \geq 2}$. Since $\hat{\rho}_{\theta}$ is a consistent estimator of ρ, from Theorem 2.42 and Theorem 2.47 (2),

$$
\begin{equation*}
\frac{2 \hat{\rho}_{\theta}}{T-2} \sum_{t=2}^{T} \eta_{t} e_{t-1} \xrightarrow{p} 0 \tag{3.134}
\end{equation*}
$$

for $|\rho| \leq 1$.
For the last two terms in (3.132), we will consider into two cases: $|\rho|<1$, and $|\rho|=1$.

Consider the case $|\rho|<1$. By Theorem 3.12, $\rho-\hat{\rho}_{\theta}$ and $\hat{\rho}_{\theta}\left(\rho-\hat{\rho}_{\theta}\right)$ both converge to zero in probability. Recall from Section 3.1.1 that $\operatorname{Var}\left(\theta_{t}\right)=\frac{\sigma^{2}}{1-\rho^{2}}$ for all $t \geq 1$. Since $\left(\theta_{t}\right)_{t \geq 1}$ and $\left(e_{t}\right)_{t \geq 1}$ are pairwise independent, $\left(\theta_{t-1} e_{t}\right)_{t \geq 2}$ is a sequence of uncorrelated random variables with zero mean and variance $\frac{\sigma^{2} D_{t}^{2}}{1-\rho^{2}} \leq \frac{\sigma^{2} D_{M}^{2}}{1-\rho^{2}}$. Hence, from Theorem 2.42 and Theorem 2.47 (2),

$$
\begin{equation*}
\frac{2\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t} \xrightarrow{p} 0 \tag{3.135}
\end{equation*}
$$

Similarly, $\left(\theta_{t-1} e_{t-1}\right)_{t \geq 2}$ is a sequence of uncorrelated random variables with zero mean and variance $\frac{\sigma^{2} D_{t-1}^{2}}{1-\rho^{2}} \leq \frac{\sigma^{2} D_{M}^{2}}{1-\rho^{2}}$. Hence, from Theorem 2.42 and Theorem 2.47 (2),

$$
\begin{equation*}
\frac{2 \hat{\rho}_{\theta}\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1} \stackrel{p}{\longrightarrow} 0 . \tag{3.136}
\end{equation*}
$$

Consider the case $|\rho|=1$. From Theorem 3.12, we notice that $\rho-\hat{\rho}_{\theta}=o_{p}(1)$ and $\hat{\rho}_{\theta}\left(\rho-\hat{\rho}_{\theta}\right)=o_{p}(1)$. First, we consider $\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t}$.
Recall from Section 3.1.1 that $\mathbb{E}\left(\theta_{t}^{2}\right)=0$ and $\operatorname{Var}\left(\theta_{t}\right)=t \sigma^{2}$ for all $t \geq 1$. From $\left(\theta_{t-1} e_{t}\right)_{t \geq 2}$ is a sequence of uncorrelated random variables and θ_{t-1}, and e_{t} are independent, we have

$$
\begin{aligned}
\mathbb{E}\left(\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t}\right)^{2}= & \frac{1}{(T-2)^{2}} \mathbb{E}\left(\sum_{t=2}^{T} \theta_{t-1}^{2} e_{t}^{2}\right) \\
& +\frac{2}{(T-2)^{2}} \mathbb{E}\left(\sum_{2 \leq i<j \leq T} \theta_{i-1} e_{i} \theta_{j-1} e_{j}\right) \\
= & \frac{1}{(T-2)^{2}} \sum_{t=2}^{T} \mathbb{E}\left(\theta_{t-1}^{2} e_{t}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{(T-2)^{2}} \sum_{t=2}^{T} \mathbb{E}\left(\theta_{t-1}^{2}\right) \mathbb{E}\left(e_{t}^{2}\right) \\
& =\frac{1}{(T-2)^{2}} \sum_{t=2}^{T} t \sigma^{2} D_{t}^{2} \\
& \leq \frac{\sigma^{2} D_{M}^{2}}{(T-2)^{2}} \frac{(T-1) T}{2} \\
& =O(1) . \tag{3.137}
\end{align*}
$$

Hence, from Corollary 2.62, $\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t}=O_{p}(1)$. Therefore, from Lemma 2.61(3),

$$
\begin{equation*}
\frac{2\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t}=o_{p}(1) O_{p}(1)=o_{p}(1) \tag{3.138}
\end{equation*}
$$

Similarly for the term $\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1}$, from $\left(\theta_{t-1} e_{t-1}\right)_{t \geq 2}$ is a sequence of uncorrelated random variables and θ_{t-1}, and e_{t} are independent, we have

$$
\begin{align*}
& \mathbb{E}\left(\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1}\right)^{2}=\frac{\frac{1}{(T-2)^{2}} \mathbb{E}\left(\sum_{t=2}^{T} \theta_{t-1}^{2} e_{t-1}^{2}\right)}{} \\
&+\frac{2}{(T-2)^{2}} \mathbb{E}\left(\sum_{2 \leq i<j \leq T} \theta_{i-1} e_{i-1} \theta_{j-1} e_{j-1}\right) \\
&=\frac{1}{(T-2)^{2}} \sum_{t=2}^{T} \mathbb{E}\left(\theta_{t-1}^{2} e_{t-1}^{2}\right) \\
&=\frac{1}{(T-2)^{2}} \sum_{t=2}^{T} t \sigma^{2} D_{t-1}^{2} \\
& \leq \frac{\sigma^{2} D_{M}^{2}}{(T-2)^{2}} \frac{(T-1) T}{2} \\
&=O(1) . \tag{3.139}
\end{align*}
$$

Hence, $\frac{1}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1}=O_{p}(1)$. Therefore, from Lemma 2.61 (3),

$$
\begin{equation*}
\frac{2 \hat{\rho}_{\theta}\left(\rho-\hat{\rho}_{\theta}\right)}{T-2} \sum_{t=2}^{T} \theta_{t-1} e_{t-1}=o_{p}(1) O_{p}(1)=o_{p}(1) \tag{3.140}
\end{equation*}
$$

Consequently, from (3.133)-(3.136), (3.138) (3.140) to (3.132), we can conclude that

$$
\frac{2}{T-2} \sum_{t=2}^{T}\left(\eta_{t}+\left(\rho-\hat{\rho}_{\theta}\right) \theta_{t-1}\right)\left(e_{t}-\hat{\rho}_{\theta} e_{t-1}\right) \xrightarrow{p} 0
$$

From (3.130) and (a)-(c), we can conclude that

$$
\begin{equation*}
\hat{U_{4, \theta}}-U_{4, \theta} \xrightarrow{p} 0 \tag{3.141}
\end{equation*}
$$

Therefore, from Theorem (3.16),

$$
\begin{equation*}
\hat{U}_{4, \theta}=\hat{U}_{4, \theta}-U_{4, \theta}+U_{4, \theta} \xrightarrow{p} \sigma^{2} . \tag{3.142}
\end{equation*}
$$

3.3.2 Representation of the Test Statistic

In previous sections, we have obtained the estimators of ρ and σ^{2} under model (3.13). In this section, we investigate the test statistic for stationary test τ_{θ}, under hypothesis $\rho=1$.

Recall from Section 3.1.1 that the sequence of true variables $\left\{\theta_{t}\right\}_{t \geq 1}$ is not a stationary time series if $|\rho|=1$. The stationary test is the test of the null hypothesis that $|\rho|=1$ against the alternative hypothesis that $|\rho|<1$. That is,

$$
\begin{array}{lll}
& H_{0}:|\rho|=1 & \text { or nonstationary } \operatorname{AR}(1), \\
\text { against } & H_{1}:|\rho|<1 & \text { or stationary } \operatorname{AR}(1) .
\end{array}
$$

However, Dickey [5] considers only the asymptotic distribution of ρ_{θ} and the test statistic under the null hypothesis that $\rho=1$. The asymptotic distribution for the case $\rho=1$ can be extended to $\rho=-1$. In addition, the asymptotic distribution of ρ_{θ} given $\rho=-1$ is equal to the mirror image of the asymptotic distribution of ρ_{θ} given $\rho=1([8])$.

Theorem 3.18 ([5], Theorem 5.3, page 66). Let $\rho_{\theta, 1}$ and $\rho_{\theta,-1}$ be the estimator of ρ on the $A R(1)$ model (3.1) with $\rho=1$ and $\rho=-1$, respectively. Then, for any real values a,

$$
P\left(\rho_{\theta, 1}-1>a\right)=P\left(\rho_{\theta,-1}+1<-a\right) .
$$

In a similar way, the asymptotic distribution of test statistic τ_{θ} under $\rho=-1$ is identical to the mirror image of the asymptotic distribution of τ_{θ} under $\rho=1$ ([8]).

The t-test statistic, for the null hypothesis that $\rho=1$, under the $\operatorname{AR}(1)$ model (3.8) is

$$
\begin{equation*}
\tau_{\theta}=\frac{\rho_{\theta}-1}{S_{\rho_{\theta}}}=\frac{\left(\rho_{\theta}-1\right) \sqrt{U_{2, \theta}}}{\sqrt{U_{4, \theta}}} \tag{3.143}
\end{equation*}
$$

where $S_{\rho_{\theta}}=\sqrt{U_{4, \theta} U_{2, \theta}^{-1}}$ is the standard deviation of ρ_{θ} for $\rho=1$. The null hypothesis rejected if τ_{θ} is sufficient large.

From the expression of τ_{θ}, we can see that $U_{4, \theta}$ and $U_{2, \theta}$ are unknown because the true variables $\left\{\theta_{t}\right\}_{t \geq 1}$ are unobserved. Recall from Theorem 3.10 that $\hat{U}_{2, \theta}$ is an unbiased estimator of $U_{2, \theta}$. In addition, from (3.113) and (3.141), $\hat{\rho}_{\theta}-\rho_{\theta}$ and $\hat{U}_{4, \theta}-U_{4, \theta}$ both converge to zero in probability. Hence, we replace $\rho_{\theta}, U_{2, \theta}$, and $U_{4, \theta}$ by their estimates. That is

$$
\begin{equation*}
\hat{\tau}_{\theta}=\frac{\left(\hat{\rho}_{\theta}-1\right) \sqrt{\hat{U}_{2, \theta}}}{\sqrt{\hat{U}_{4, \theta}}} . \tag{3.144}
\end{equation*}
$$

The next theorem will show that our statistic $\hat{\tau}_{\theta}$ can be used to represent the test statistic τ_{θ}, under the null hypothesis that $\rho=1$. In addition, $\hat{\tau}_{\theta}$ has the same asymptotic distribution as τ_{θ}.

Corollary 3.19. Under the conditions that $\hat{U}_{2, \theta}$ and $\hat{U}_{4, \theta}$ are both positive, let $\hat{\tau}_{\theta}$ be the statistic defined in (3.144). Then

$$
\hat{\tau}_{\theta} \xrightarrow{p} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}\right)^{2}-1}{2 \sqrt{\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{2}}},
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$ and $Z_{i} \stackrel{i i d}{\sim} N(0,1)$. In addition, $\hat{\tau}_{\theta}$ has the same asymptotic distribution as τ_{θ}.

Proof. The test statistic $\hat{\tau}_{\theta}$ can be simplified as follows.

$$
\begin{equation*}
\hat{\tau}_{\theta}=\frac{\left(\hat{\rho}_{\theta}-1\right) \sqrt{\hat{U}_{2, \theta}}}{\sqrt{\hat{U}_{4, \theta}}}=\frac{T\left(\hat{\rho}_{\theta}-1\right) \sqrt{\frac{\hat{U}_{2, \theta}}{T^{2}}}}{\sqrt{\hat{U}_{4, \theta}}} . \tag{3.145}
\end{equation*}
$$

By applying Theorem 2.41 on (3.116) with continuous function $f(x)=\sqrt{x}$, we have

$$
\begin{equation*}
\sqrt{\frac{\hat{U}_{2, \theta}}{T^{2}}} \stackrel{p}{\rightarrow} \sqrt{2 \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}} \tag{3.146}
\end{equation*}
$$

Hence, by applying Theorem 2.42 on (3.127) and (3.146), we have

$$
\begin{equation*}
T\left(\hat{\rho}_{\theta}-1\right) \sqrt{\frac{\hat{U}_{2, \theta}}{T^{2}}} \xrightarrow{p} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\sigma^{2}}{\sqrt{2 \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}}}, \tag{3.147}
\end{equation*}
$$

where $\gamma_{i}=(-1)^{i+1} \frac{2}{(2 i-1) \pi}$, and $Z_{i}^{i i d} \sim N\left(0, \sigma^{2}\right)$.
From Theorem 3.17, $\hat{U}_{4, \theta}$ is a consistent estimator of σ^{2}. By applying Theorem (2.41) with function $\frac{1}{\sqrt{x}}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{\hat{U}_{4, \theta}}} \xrightarrow{p} \frac{1}{\sqrt{\sigma^{2}}} . \tag{3.148}
\end{equation*}
$$

Hence, from (3.147), we have

$$
\begin{equation*}
\hat{\tau}_{\theta}=\frac{\left(\hat{\rho}_{\theta}-1\right) \sqrt{\hat{U}_{2, \theta}}}{\sqrt{\hat{U}_{4, \theta}}} \xrightarrow{p} \frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}^{\prime}\right)^{2}-\sigma^{2}}{\sqrt{2 \sigma^{2} \sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{\prime 2}}}=\frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} \frac{Z_{i}^{\prime}}{\sigma^{2}}\right)^{2}-1}{\sqrt{2 \sum_{i=1}^{\infty} \gamma_{i}^{2} \frac{Z_{i}^{\prime 2}}{\sigma^{2}}}} . \tag{3.149}
\end{equation*}
$$

Since $Z_{i}^{\prime} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right), \frac{Z_{i}^{\prime}}{\sigma} \stackrel{i i d}{\sim} N(0,1)$. Hence, $\hat{\tau}_{\theta}$ converges in probability to $\frac{\left(\sum_{i=1}^{\infty} \sqrt{2} \gamma_{i} Z_{i}\right)^{2}-1}{2 \sqrt{\sum_{i=1}^{\infty} \gamma_{i}^{2} Z_{i}^{2}}}$, where $Z_{i} \stackrel{i i d}{\sim} N(0,1)$. From Theorem $3.2(4)$, the asymptotic distribution of $\hat{\tau}_{\theta}$ and τ_{θ} are the same.

3.4 Positive Adjustments to the Estimators

In previous section, we have obtained the test statistic under the null hypothesis $\rho=1$ on the model (3.13). This test statistic is well-defined under the condition that $\hat{U}_{2, \theta}$ and $\hat{U}_{4, \theta}$ are both positive. However, this condition is an unnatural setting for general cases. Our adjusted estimator $\hat{U}_{2, \theta}$ and $\hat{U}_{4, \theta}$ can be negative so these two estimators are not well-defined under a square root function. This situation will happen if the sampling variance of D_{t}^{2} 's are extremely large. In this section, we introduce an adjustment to the variable selection criterion by suggesting strictly positive approximations under the specific conditions.

In 2015, Lahiri and Suntornchost [12] advised an adjustment to the variable selection criterion by the positive approximations h-function presented in Chatterjee and Lahiri [4]. The h-function is a positive approximation of $x-y$, where x and y are positive. Later, Angkunsit and Suntornchost [2] also introduced the another positive approximations g-function. The constructions of the h-function and g-function are given in the following theorem.

Lemma 3.20 ($[2,13])$. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined as

$$
h(x, y)=\frac{2 x}{1+\exp \left(\frac{2 y}{x}\right)} .
$$

Then h is a positive approximation of $x-y$, where $x, y>0$ and $y<\frac{\pi}{2} x$. Moreover, the error in approximation of h, denoted by R_{h}, is

$$
\begin{equation*}
R_{h}(x, y)=h(x, y)-(x-y)=-x\left(\tanh \left(\frac{y}{x}\right)-\frac{y}{x}\right) . \tag{3.150}
\end{equation*}
$$

Lemma 3.21 ([2]). Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined as

$$
g(x, y)=x+\frac{2 x^{3}\left(1-\exp \left(\left(\frac{y}{x}\right)^{3}\right)\right)}{y^{2}\left(1+\exp \left(\left(\frac{y}{x}\right)^{3}\right)\right)}
$$

Then g is a positive approximation of $x-y$, where $0<y<\sqrt[3]{\pi} x$. Moreover, the error in approximation of g, denoted by R_{g}, is

$$
\begin{equation*}
R_{g}(x, y)=g(x, y)-(x-y)=-\frac{2 x^{3}}{y^{2}}\left(\tanh \left(\frac{1}{2}\left(\frac{y}{x}\right)^{3}\right)-\frac{1}{2}\left(\frac{y}{x}\right)^{3}\right) . \tag{3.151}
\end{equation*}
$$

The positive approximations of $\hat{U}_{2, \theta}$ by the h-function and the g-function are as follows.

$$
\begin{equation*}
\hat{U}_{2, \theta, h}=h\left(\sum_{t=2}^{T} y_{t-1}^{2}, \sum_{t=2}^{T} D_{t-1}^{2}\right)=\frac{2 \sum_{t=2}^{T} y_{t-1}^{2}}{1+\exp \left(\frac{2 \sum_{t=2}^{T} D_{t-1}^{2}}{\sum_{t=2}^{T} y_{t-1}^{2}}\right)}, \tag{3.152}
\end{equation*}
$$

and

$$
\begin{align*}
\hat{U}_{2, \theta, g} & =g\left(\sum_{t=2}^{T} y_{t-1}^{2}, \sum_{t=2}^{T} D_{t-1}^{2}\right) \\
& =\left(\sum_{t=2}^{T} y_{t-1}^{2}\right)+\frac{2\left(\sum_{t=2}^{T} y_{t-1}^{2}\right)^{3}\left(1-\exp \left(\left(\frac{\sum_{t=2}^{T} D_{t-1}^{2}}{\sum_{t=2}^{T} y_{t-1}}\right)^{3}\right)\right)}{\left(\sum_{t=2}^{T} D_{t-1}^{2}\right)^{2}\left(1+\exp \left(\left(\frac{\sum_{t=2}^{T} D_{t-1}^{2}}{\sum_{t=2}^{T} y_{t-1}^{2}}\right)^{3}\right)\right)} \tag{3.153}
\end{align*}
$$

Similarly for the estimators $\hat{U}_{4, \theta}$ defined in Theorem 3.17, we define the positive approximation of $\hat{U}_{4, \theta}$ in the following:

$$
\begin{equation*}
\hat{U}_{4, \theta, h}=h\left(\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-\hat{\rho}_{\theta} y_{t-1}\right)^{2}, \frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)\right) \tag{3.154}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{U}_{4, \theta, g}=g\left(\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-\hat{\rho}_{\theta} y_{t-1}\right)^{2}, \frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right)\right) . \tag{3.155}
\end{equation*}
$$

However, applying either one of these positive adjustments will introduce bias to the estimates. Therefore, we suggest to apply a positive adjustment only if the unbiased estimator is negative. Since the probability that either $\hat{U}_{2, \theta}$ or $\hat{U}_{4, \theta}$ is negative approachs to zero as T goes to infinity, the new estimates are still consistent estimates. The truncated version of estimator of $U_{2, \theta}$ and $U_{4, \theta}$ as follows.

$$
\begin{align*}
& \hat{U}_{2, \theta, h \text { trun }}= \begin{cases}\hat{U}_{2, \theta}, & \text { if } \hat{U}_{2, \theta}>0, \\
\hat{U}_{2, \theta, h}, & \text { otherwise }\end{cases} \tag{3.156}\\
& \hat{U}_{2, \theta, \text { trun }}= \begin{cases}\hat{U}_{2, \theta}, & \text { if } \hat{U}_{2, \theta}>0, \\
\hat{U}_{2, \theta, g}, & \text { otherwise. }\end{cases} \tag{3.157}\\
& \text { HULALONG } \tag{3.158}\\
& \hat{U}_{4, \theta, \text { htrun }}= \begin{cases}\hat{U}_{4, \theta}, & \text { if } \hat{U}_{4, \theta}>0, \\
\hat{U}_{4, \theta, h}, & \text { otherwise. }\end{cases} \tag{3.159}\\
& \hat{U}_{4, \theta, g \text { trun }}= \begin{cases}\hat{U}_{4, \theta}, & \text { if } \hat{U}_{4, \theta}>0, \\
\hat{U}_{4, \theta, g}, & \text { otherwise. }\end{cases}
\end{align*}
$$

For the test statistic $\hat{\tau}_{\theta}$ defined in (3.144). If either $\hat{U}_{2, \theta}$ or $\hat{U}_{4, \theta}$ negative, we substitute all negative estimators in $\hat{\tau}_{\theta}$ with the positive approximation defined in (3.156)-(3.159).

3.5 Numerical Simulation

In this section, we investigate the performances of new estimators and test statistic comparing to the naive estimators. Recall that the first order autoregressive model subject to sampling errors is

$$
\begin{array}{ll}
y_{t}=\theta_{t}+e_{t}, & e_{t} \stackrel{i n d}{\sim} N\left(0, D_{t}^{2}\right), \\
\theta_{t}=\rho \theta_{t-1}+\eta_{t}, & \eta_{t} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right), \tag{3.160}
\end{array}
$$

where $y_{0}=\theta_{0}=0$ and e_{t}, and η_{t} are independent normal random variables with zero mean and variances σ^{2} and D_{t}^{2}, respectively. For the simulation experiment, one thousand samples of size $T=10000$ were generated for different values of ρ and variances of e_{t} in (3.160). The variance σ^{2} is set to be 1 throughout our numerical study. The method for generating data is as follows.
(1) Generate the variables of interest $\left\{\theta_{t}\right\}$ from the model

$$
\theta_{t}=\rho \theta_{t-1}+\eta_{t}
$$

where $\eta_{t} \sim N(0,1)$.
(2) Generate the observed variables $\left\{y_{t}\right\}$ from the model

$$
y_{t}=\theta_{t}+e_{t},
$$

where $e_{t} \sim N\left(0, D_{t}^{2}\right)$.

1.) Autoregressive Coefficient

In this section, we consider the performances of all estimators of autoregressive coefficient ρ in two aspects (1) the asymptotic bias and (2) the relationship between sampling variances and the variance of white noises. We consider the cases where $\rho=0.4$ and 0.7 , respectively. For the values of sampling variances of e_{t}, we study different settings of D_{t}^{2} as follows.

Case 1. The variance of $\left\{e_{t}\right\}$ is a constant not depending on time t. We perform simulation in three settings.
(1.1) $D_{t}^{2}=0.5$,
(1.2) $D_{t}^{2}=1$,
(1.3) $D_{t}^{2}=1.5$.

Case 2. The variance of the sequence $\left\{e_{t}\right\}$ follows a uniform distribution. We perform simulation in three settings.
(2.1) $D_{t}^{2} \sim U n i(0.25,0.75)$,
(2.2) $D_{t}^{2} \sim U n i(0.75,1.25)$,
(2.3) $D_{t}^{2} \sim U n i(1.25,1.75)$,
where $\operatorname{Uni}(a, b)$ is the continuous uniform distribution over interval (a, b).

The results shown in the following tables and figures are presented using the following notations, some notations are followed from Theorem 3.10, (3.19), (3.152)(3.153), and (3.156)-(3.157).
(1) $\rho_{\text {true }}=U_{1, \theta} U_{2, \theta}^{-1}$, the Dickey-Fuller estimator or estimator of ρ based on the variables of interest $\left\{\theta_{t}\right\}$,
(2) $\rho_{\text {naive }}=U_{1, y} U_{2, y}^{-1}$, the estimator of ρ based on observed variables $\left\{y_{t}\right\}$ and ignore sampling errors,
(3) $\rho_{\text {hat }}=\hat{U}_{1, \theta} \hat{U}_{2, \theta}^{-1}$, an adjustment to naive estimator of ρ that the denominator can be negative,
(4) $\rho_{h a t, h}=\hat{U}_{1, \theta} \hat{U}_{2, \theta, h}^{-1}$, an adjustment to naive estimator of ρ by the h-function,
(5) $\rho_{\text {hat }, g}=\hat{U}_{1, \theta} \hat{U}_{2, \theta, g}^{-1}$, an adjustment to naive estimator of ρ by the g-function,
(6) $\rho_{\text {hat,htrun }}=\hat{U}_{1, \theta} \hat{U}_{2, \theta, \text { htrun }}^{-1}$, a truncation version of the h-function approximation,
(7) $\rho_{\text {hat }, \text { gtrun }}=\hat{U}_{1, \theta} \hat{U}_{2, \theta, \text { gtrun }}^{-1}$, a truncation version of the g-function approximation.

Tables 3.1-3.4 and Figures 3.2-3.5 show comparisons between all estimates of ρ in terms of sampling variances relative to the variance of white noises $\left(\sigma^{2}=1\right)$. We consider two different settings of sampling variances D_{t}^{2} : (1) the sampling variances are constant, and (2) the sampling variances are generated from a uniform distribution.

	Percentile						
	1	10	25	50	75	90	100
Case $\rho=0.4, D_{t}^{2}=0.5$							
$\rho_{\text {true }}$	0.3782	0.3873	0.3932	0.3992	0.4059	0.4117	0.4296
$\rho_{\text {naive }}$	0.2566	0.2686	0.2747	0.2813	0.2883	0.2945	0.3140
$\rho_{\text {hat }}$	0.3658	0.3823	0.3909	0.3997	0.4088	0.4175	0.4434
$\rho_{\text {hat, }, \text { }}$	0.3614	0.3779	0.3863	0.3949	0.4041	0.4128	0.4384
$\rho_{\text {hat }, \text { g }}$	0.3658	0.3823	0.3909	0.3997	0.4088	0.4175	0.4434
$\rho_{\text {hat }, \text { htrun }}$	0.3658	0.3823	0.3909	0.3997	0.4088	0.4175	0.4434
$\rho_{\text {hat, }, \text { grrun }}$	0.3658	0.3823	0.3909	0.3997	0.4088	0.4175	0.4434
Case $\rho=0.4, D_{t}^{2}=1$							
$\rho_{\text {true }}$	0.3762	0.3881	0.3939	0.4000	0.4064	0.4127	0.4293
$\rho_{\text {naive }}$	0.1936	0.2041	0.2101	0.2171	0.2247	0.2301	0.2467
$\rho_{\text {hat }}$	0.3568	0.3775	0.3875	0.3995	0.4119	0.4228	0.4541
$\rho_{\text {hat }, \text { h }}$	0.3383	0.3579	0.3674	0.3789	0.3917	0.4012	0.4295
$\rho_{\text {hat }, \text { g }}$	0.3566	0.3772	0.3872	0.3993	0.4117	0.4226	0.4538
$\rho_{\text {hat }, \text { htrun }}$	0.3568	0.3775	0.3875	0.3995	0.4119	0.4228	0.4541
$\rho_{\text {hat,gtru }}$	0.3568	0.3775	0.3875	0.3995	0.4119	0.4228	0.4541
-							
Case $\rho=0.4, D_{t}^{2}=1.5$							
$\rho_{\text {true }}$	0.3766	0.3881	0.3940	0.4004	0.4063	0.4116	0.4263
$\rho_{\text {naive }}$	0.1553	0.1646	0.1699	0.1773	0.1841	0.1903	0.2106
$\rho_{\text {hat }}$	0.3523	0.3719	0.3844	0.3999	0.4164	0.4301	0.4692
$\rho_{\text {hat }, \text { h }}$	0.3150	0.3333	0.3443	0.3582	0.3730	0.3843	0.4198
$\rho_{\text {hat }, \text { g }}$	0.3512	0.3708	0.3832	0.3986	0.4151	0.4287	0.4675
$\rho_{\text {hat, } \text {,trun }}$	0.3523	0.3719	0.3844	0.3999	0.4164	0.4301	0.4692
$\rho_{\text {hat,gtru }}$	0.3523	0.3719	0.3844	0.3999	0.4164	0.4301	0.4692

Table 3.1: Comparisons of different estimators of ρ varying by different values of the constant D_{t}^{2} 's for the case $\rho=0.4, \sigma^{2}=1$, and $T=10000$.

	Percentile						
	1	10	25	50	75	90	100
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$							
$\rho_{\text {true }}$	0.3792	0.3884	0.3936	0.3998	0.4054	0.4103	0.4336
$\rho_{\text {naive }}$	0.2589	0.2692	0.2746	0.2808	0.2876	0.2937	0.3173
$\rho_{\text {hat }}$	0.3691	0.3834	0.3907	0.3988	0.4078	0.4159	0.4449
$\rho_{\text {hat }, \text { h }}$	0.3647	0.3789	0.3861	0.3940	0.4030	0.4109	0.4402
$\rho_{\text {hat }, \text { g }}$	0.3691	0.3834	0.3907	0.3988	0.4078	0.4159	0.4449
$\rho_{\text {hat, } \text {,trun }}$	0.3691	0.3834	0.3907	0.3988	0.4078	0.4159	0.4449
$\rho_{\text {hat, }, \text { grun }}$	0.3691	0.3834	0.3907	0.3988	0.4078	0.4159	0.4449
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$							
$\rho_{\text {true }}$	0.3794	0.3886	0.3942	0.4001	0.4061	0.4110	0.4297
$\rho_{\text {naive }}$	0.1942	0.2051	0.2109	0.2175	0.2246	0.2299	0.2515
$\rho_{\text {hat }}$	0.3606	0.3782	0.3890	0.4009	0.4126	0.4215	0.4616
$\rho_{\text {hat }, \text { h }}$	0.3412	0.3588	0.3689	0.3800	0.3911	0.4000	0.4383
$\rho_{\text {hat }, \text { g }}$	0.3604	0.3780	0.3887	0.4006	0.4123	0.4212	0.4614
$\rho_{\text {hat, } \text { htrun }}$	0.3606	0.3782	0.3890	0.4009	0.4126	0.4215	0.4616
$\rho_{\text {hat, }, \text { grun }}$	0.3606	0.3782	0.3890	0.4009	0.4126	0.4215	0.4616
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$							
$\rho_{\text {true }}$	0.3794	0.3877	0.3940	0.4002	0.4062	0.4113	0.4234
$\rho_{\text {naive }}$	0.1513	0.1637	0.1702	0.1774	0.1836	0.1900	0.2162
$\rho_{\text {hat }}$	0.3441	0.3716	0.3863	0.4004	0.4138	0.4282	0.4879
$\rho_{\text {hat }, \text { h }}$	0.3065	0.3322	0.3457	0.3591	0.3709	0.3847	0.4373
$\rho_{\text {hat }, \text { g }}$	0.3431	0.3703	0.3850	0.3992	0.4125	0.4270	0.4864
$\rho_{\text {hat, } \text {,htrun }}$	0.3441	0.3716	0.3863	0.4004	0.4138	0.4282	0.4879
$\rho_{\text {hat, }, \text { grun }}$	0.3441	0.3716	0.3863	0.4004	0.4138	0.4282	0.4879

Table 3.2: Comparisons of different estimators of ρ varying by different values of the uniformly distributed D_{t}^{2} 's for the case $\rho=0.4, \sigma^{2}=1$, and $T=10000$.

	Percentile						
	1	10	25	50	75	90	100
Case $\rho=0.7, D_{t}^{2}=0.5$							
$\rho_{\text {true }}$	0.6828	0.6904	0.6953	0.6997	0.7045	0.7084	0.7216
$\rho_{\text {naive }}$	0.5362	0.5458	0.5511	0.5572	0.5640	0.5693	0.5898
$\rho_{\text {hat }}$	0.6771	0.6883	0.6932	0.6996	0.7060	0.7118	0.7318
$\rho_{\text {hat }, \text { h }}$	0.6745	0.6858	0.6907	0.6972	0.7036	0.7093	0.7297
$\rho_{\text {hat }, g}$	0.6771	0.6883	0.6932	0.6996	0.7060	0.7118	0.7318
$\rho_{\text {hat, } \text {,trun }}$	0.6771	0.6883	0.6932	0.6996	0.7060	0.7118	0.7318
$\rho_{\text {hat,gtrun }}$	0.6771	0.6883	0.6932	0.6996	0.7060	0.7118	0.7318
Case $\rho=0.7, D_{t}^{2}=1$							
$\rho_{\text {true }}$	0.6835	0.6913	0.6955	0.7003	0.7052	0.7092	0.7218
$\rho_{\text {naive }}$	0.4404	0.4507	0.4571	0.4644	0.4713	0.4773	0.4912
$\rho_{\text {hat }}$	0.6716	0.6843	0.6921	0.7002	0.7091	0.7156	0.7369
$\rho_{\text {hat }, \text { h }}$	0.6591	0.6714	0.6794	0.6878	0.6961	0.7028	0.7234
$\rho_{\text {hat }, \text { g }}$	0.6716	0.6842	0.6920	0.7002	0.7090	0.7155	0.7368
$\rho_{\text {hat, } \text { htrun }}$	0.6716	0.6843	0.6921	0.7002	0.7091	0.7156	0.7369
$\rho_{\text {hat, }, \text { grun }}$	0.6716	0.6843	0.6921	0.7002	0.7091	0.7156	0.7369
2							
Case $\rho=0.7, D_{t}^{2}=1.5$							
$\rho_{\text {true }}$	0.6843	0.6908	0.6947	0.6999	0.7050	0.7090	0.7201
$\rho_{\text {naive }}$	0.3714	0.3830	0.3894	0.3967	0.4038	0.4106	0.4327
$\rho_{\text {hat }}$	0.6634	0.6804	0.6894	0.7007	0.7101	0.7197	0.7439
$\rho_{\text {hat }, \text { h }}$	0.6339	0.6508	0.6599	0.6705	0.6799	0.6894	0.7158
$\rho_{\text {hat }, \text { g }}$	0.6631	0.6801	0.6891	0.7004	0.7099	0.7194	0.7437
$\rho_{\text {hat, } \text {,htrun }}$	0.6634	0.6804	0.6894	0.7007	0.7101	0.7197	0.7439
$\rho_{\text {hat, }, \text { grun }}$	0.6634	0.6804	0.6894	0.7007	0.7101	0.7197	0.7439

Table 3.3: Comparisons of different estimators of ρ varying by different values of the constant D_{t}^{2} 's for the case $\rho=0.7, \sigma^{2}=1$, and $T=10000$.

	Percentile						
	1	10	25	50	75	90	100
Case $\rho=0.7, D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$							
$\rho_{\text {true }}$	0.6838	0.6901	0.6948	0.7000	0.7048	0.7085	0.7224
$\rho_{\text {naive }}$	0.5362	0.5449	0.5510	0.5574	0.5640	0.5697	0.5882
$\rho_{\text {hat }}$	0.6792	0.6873	0.6933	0.6999	0.7063	0.7117	0.7348
$\rho_{\text {hat }, \text { h }}$	0.6768	0.6847	0.6909	0.6975	0.7039	0.7094	0.7324
$\rho_{\text {hat }, \text { g }}$	0.6792	0.6873	0.6933	0.6999	0.7063	0.7117	0.7348
$\rho_{\text {hat }, \text { htrun }}$	0.6792	0.6873	0.6933	0.6999	0.7063	0.7117	0.7348
$\rho_{\text {hat,gtrun }}$	0.6792	0.6873	0.6933	0.6999	0.7063	0.7117	0.7348
Case $\rho=0.7, D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$							
$\rho_{\text {true }}$	0.6835	0.6903	0.6952	0.6998	0.7045	0.7089	0.7242
$\rho_{\text {naive }}$	0.4401	0.4500	0.4565	0.4642	0.4708	0.4760	0.4942
$\rho_{\text {hat }}$	0.6707	0.6832	0.6912	0.6999	0.7084	0.7154	0.7369
$\rho_{\text {hat }, \text { h }}$	0.6569	0.6705	0.6783	0.6875	0.6955	0.7026	0.7241
$\rho_{\text {hat }, g}$	0.6706	0.6831	0.6911	0.6999	0.7083	0.7154	0.7368
$\rho_{\text {hat, } \text {,htrun }}$	0.6707	0.6832	0.6912	0.6999	0.7084	0.7154	0.7369
$\rho_{\text {hat, }, \text { grun }}$	0.6707	0.6832	0.6912	0.6999	0.7084	0.7154	0.7369
Case $\rho=0.7, D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$							
$\rho_{\text {true }}$	0.6834	0.6902	0.6953	0.7002	0.7051	0.7089	0.7204
$\rho_{\text {naive }}$	0.3705	0.3812	0.3887	0.3965	0.4042	0.4111	0.4294
$\rho_{\text {hat }}$	0.6624	0.6790	0.6894	0.6997	0.7101	0.7206	0.7497
$\rho_{\text {hat }, \text { h }}$	0.6333	0.6495	0.6595	0.6700	0.6803	0.6904	0.7167
$\rho_{\text {hat }, \text { g }}$	0.6620	0.6787	0.6891	0.6994	0.7098	0.7203	0.7493
$\rho_{\text {hat, } \text { htrun }}$	0.6624	0.6790	0.6894	0.6997	0.7101	0.7206	0.7497
$\rho_{\text {hat,gtrun }}$	0.6624	0.6790	0.6894	0.6997	0.7101	0.7206	0.7497

Table 3.4: Comparisons of different estimators of ρ varying by different values of the uniformly distributed D_{t}^{2} 's for the case $\rho=0.7, \sigma^{2}=1$, and $T=10000$.

Chillalongikorn University

Figure 3.2: Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.4, \sigma^{2}=1, T=10000$, and different values of the constant D_{t}^{2}.

Chillalongkorn Dniversity

Figure 3.3: Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.7, \sigma^{2}=1, T=10000$, and different values of the constant D_{t}^{2}.

(c) $\rho=0.4, D_{t}^{2} \sim U n i(1.25,1.75)$

Figure 3.4: Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.4, \sigma^{2}=1, T=10000$, and different values of the uniformly distributed D_{t}^{2}.

Figure 3.5: Plot of all different estimator (left) and absolute relative bias (right) of ρ for the case $\rho=0.7, \sigma^{2}=1, T=10000$, and different values of the uniformly distributed D_{t}^{2}

From Tables 3.1-3.4 and Figures 3.2-3.5, we can see that the naive estimator $\rho_{\text {naive }}$ always underestimate $\rho_{\text {true }}$ for all cases of sampling variances. In addition, the differences between the true values and the naive estimates increase when sampling variance increases.

On the other hand, other adjusted estimates of ρ can reduce the bias terms, and their values are close to the true value estimate $\rho_{\text {true }}$ for each cases of sampling variances. However, these adjusted estimators have high variability when the sampling variances are greater than the variance of noise. For example, consider the case $\rho=0.7$ form Table 3.4, the range of the values of $\rho_{\text {hat }}$ is $[0.6707,0.7369]$ when $D_{t}^{2} \sim U n i(0.75,1.25)$, but $[0.6624,0.7497]$ when $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$.

Comparing among values of these adjusted estimators of ρ in Tables 3.1-3.4, only the positive adjusted estimates $\rho_{h a t, h}$ is slightly underestimated of $\rho_{\text {true }}$ when the sampling variances are large. In contrast, the positive adjusted estimates $\rho_{h a t, g}$ are close to the estimates $\rho_{\text {hat }}$ even when sampling variances are large. However, we will use the adjusted estimates only when $U_{2, \theta}$ is negative. Hence, the truncation under the g-function is recommended as the estimate of autoregressive coefficient ρ.

To investigate asymptotic behavior of the estimators, we vary the length of time T. All estimators of ρ except $\rho_{\text {true }}$ are then measured via average absolute bias $(\overline{\mathrm{AB}})$, average absolute relative bias $(\overline{\mathrm{ARB}})$, and average root mean squared error ($\overline{\mathrm{RMSE}})$, defined as the following.

$$
\begin{aligned}
\overline{\operatorname{AB}}_{\rho}(\hat{\rho}) & =\frac{1}{1000} \sum_{i=1}^{1000}\left|\rho_{\text {true }, i}-\hat{\rho}_{i}\right|, \\
\overline{\operatorname{ARB}}_{\rho}(\hat{\rho}) & =\frac{1}{1000} \sum_{i=1}^{1000}\left|\frac{\rho_{\text {true }, i}-\hat{\rho}_{i}}{\rho_{\text {true }, i}}\right|, \\
\overline{\operatorname{RMSE}}_{\rho}(\hat{\rho}) & =\sqrt{\frac{1}{1000} \sum_{i=1}^{1000}\left(\rho_{\text {true }, i}-\hat{\rho}_{i}\right)^{2}},
\end{aligned}
$$

where $\rho_{\text {true }, i}$ (for $i=1,2, \ldots, 1000$) is the value $\rho_{\text {true }}$ from i-th simulation and $\hat{\rho}_{i}$ is the other estimates of ρ.

The three measures are presented in Table 3.5-3.16, where all measures are presented in terms of percentage. The corresponding plots are presented in Figure 3.6-3.8.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, g}$	$\rho_{\text {htrun }}$	$\rho_{\text {gtrun }}$
Case $\rho=0.4, D_{t}^{2}=0.5$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	13.196	11.849	11.548	11.845	11.849	11.849
	100	12.056	8.350	8.229	8.349	8.350	8.350
	250	11.811	5.267	5.216	5.267	5.267	5.267
	500	11.691	3.575	3.527	3.575	3.575	3.575
	1000	11.849	2.484	2.478	2.484	2.484	2.484
	2500	11.762	1.544	1.547	1.544	1.544	1.544
	5000	11.805	1.123	1.160	1.123	1.123	1.123
	10000	11.813	0.785	0.857	0.785	0.785	0.785
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	39.914	41.689	40.493	41.670	41.689	41.689
	100	32.044	23.572	23.198	23.570	23.572	23.572
	250	30.100	13.650	13.511	13.649	13.650	13.650
	500	29.474	9.118	8.989	9.117	9.118	9.118
	1000	29.623	6.237	6.222	6.237	6.237	6.237
	2500	29.377	3.866	3.877	3.866	3.866	3.866
	5000	29.514	2.810	2.905	2.810	2.810	2.810
	10000	29.569	1.966	2.146	1.966	1.966	1.966
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	15.820	15.403	14.934	15.393	15.403	15.403
	100	13.987	10.537	10.381	10.536	10.537	10.537
	250	12.773	6.696	6.621	6.696	6.696	6.696
	500	12.154	4.488	4.440	4.488	4.488	4.488
	1000	12.069	3.076	3.078	3.076	3.076	3.076
	2500	11.846	1.936	1.943	1.936	1.936	1.936
	5000	11.850	1.401	1.449	1.401	1.401	1.401
	10000	11.835	0.981	1.071	0.981	0.981	0.981

Table 3.5: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=0.5$ varying by length of time T.

Quality	Size	Estimator						
Measure	Group T		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, h}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	
Case $\rho=0.4, D_{t}^{2}=1$			$\rho_{\text {gtrun }}$					
	50	18.5956	20.8498	17.9551	20.2218	20.8498	20.8498	
	100	17.7395	13.1450	12.2057	13.1163	13.1450	13.1450	
	250	17.9433	7.9968	7.5951	7.9853	7.9968	7.9968	
$\overline{\mathrm{AB}}_{\rho}(\%)$	500	18.2464	5.5277	5.3720	5.5206	5.5277	5.5277	
	1000	18.0763	3.9679	3.9800	3.9627	3.9679	3.9679	
	2500	18.1836	2.4711	2.8397	2.4683	2.4711	2.4711	
	5000	18.2651	1.6690	2.3947	1.6684	1.6690	1.6690	
	10000	18.2618	1.2342	2.1541	1.2334	1.2342	1.2342	
	50	57.9181	78.3299	67.9744	76.3763	78.3299	78.3299	
	100	46.6252	37.3658	34.6463	37.2820	37.3658	37.3658	
	250	45.3425	20.6605	19.6156	20.6310	20.6605	20.6605	
$\overline{\mathrm{ARB}}_{\rho}(\%)$	500	45.7559	13.9702	13.5858	13.9524	13.9702	13.9702	
	1000	45.3763	9.9935	10.0111	9.9804	9.9935	9.9935	
	2500	45.4685	6.1777	7.1099	6.1708	6.1777	6.1777	
	5000	45.6824	4.1735	5.9967	4.1723	4.1735	4.1735	
	10000	45.6610	3.0898	5.3887	3.0880	3.0898	3.0898	
	50	21.9693	34.0338	23.2929	28.5757	34.0338	34.0338	
	100	19.8635	16.9864	15.6511	16.9376	16.9864	16.9864	
	250	18.8545	10.1295	9.5740	10.1133	10.1295	10.1295	
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	500	18.6878	6.9762	6.8552	6.9686	6.9762	6.9762	
	1000	18.3134	5.0136	5.0305	5.0070	5.0136	5.0136	
	2500	18.2709	3.1385	3.5263	3.1347	3.1385	3.1385	
	5000	18.3065	2.1213	2.8724	2.1198	2.1213	2.1213	
	10000	18.2842	1.5349	2.5075	1.5338	1.5349	1.5349	

Table 3.6: Percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error $(\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=1$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{g t r u n}$
Case $\rho=0.4, D_{t}^{2}=1.5$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	22.3948	33.8336	22.7192	29.4781	28.9331	30.7957
	100	21.7262	20.0998	15.7475	18.4206	18.5997	18.7461
	250	21.9727	11.0414	10.0456	10.9549	11.0414	11.0414
	500	22.1719	7.6666	7.3880	7.6189	7.6666	7.6666
	1000	22.3043	5.5020	5.9614	5.4769	5.5020	5.5020
	2500	22.3447	3.3482	4.6800	3.3370	3.3482	3.3482
	5000	22.3016	2.3906	4.3030	2.3782	2.3906	2.3906
	10000	22.2903	1.6969	4.1503	1.6917	1.6969	1.6969
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	62.2634	115.6101	73.4403	101.1043	94.8840	106.0011
	100	56.6097	57.0189	43.4967	51.1635	51.6033	52.0998
	250	56.1526	28.8708	26.2538	28.6458	28.8708	28.8708
	500	56.0147	19.5958	18.8004	19.4711	19.5958	19.5958
	1000	55.9563	13.8574	14.9727	13.7927	13.8574	13.8574
	2500	55.9171	8.4090	11.7277	8.3810	8.4090	8.4090
	5000	55.8264	5.9902	10.7698	5.9589	5.9902	5.9902
	10000	55.7237	4.2445	10.3730	4.2312	4.2445	4.2445
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	25.9091	105.1508	29.1586	47.6093	41.6825	50.8013
	100	24.0056	45.2227	19.7739	23.7619	24.2622	24.6852
	250	22.8869	14.2000	12.6314	14.0401	14.2000	14.2000
	500	22.6407	9.7014	9.3479	9.6335	9.7014	9.7014
	1000	22.5476	6.8136	7.3548	6.7811	6.8136	6.8136
	2500	22.4337	4.1727	5.6124	4.1559	4.1727	4.1727
	5000	22.3501	2.9726	4.9481	2.9627	2.9726	2.9726
	10000	22.3144	2.1114	4.5328	2.1030	2.1114	2.1114

Table 3.7: Percent average absolute bias $(\overline{\mathrm{AB}})$, percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2}=1.5$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, g}$	$\rho_{\text {htrun }}$	$\rho_{g t r u n}$
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	12.7601	11.3700	11.0826	11.3674	11.3700	11.3700
	100	11.8462	7.7284	7.5674	7.7276	7.7284	7.7284
	250	11.7228	4.9414	4.8729	4.9412	4.9414	4.9414
	500	11.8107	3.5386	3.5161	3.5385	3.5386	3.5386
	1000	11.8971	2.5132	2.5311	2.5132	2.5132	2.5132
	2500	11.8427	1.5825	1.6005	1.5824	1.5825	1.5825
	5000	11.8106	1.0951	1.1381	1.0950	1.0951	1.0951
	10000	11.8483	$0.7569=$	0.8510	0.7569	0.7569	0.7569
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	35.2404	34.9973	33.9998	34.9868	34.9973	34.9973
	100	30.4746	21.2131	20.7616	21.2107	21.2131	21.2131
	250	29.6697	12.7503	12.5838	12.7497	12.7503	12.7503
	500	29.7417	8.9744	8.9228	8.9742	8.9744	8.9744
	1000	29.8598	6.3521	6.3945	6.3520	6.3521	6.3521
	2500	29.6762	3.9760	4.0208	3.9758	3.9760	3.9760
	5000	29.5983	2.7484	2.8566	2.7483	2.7484	2.7484
	10000	29.6560	1.8957	2.1313	1.8958	1.8957	1.8957
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	15.5073	14.6545	14.2749	14.6503	14.6545	14.6545
	100	13.6325	9.7061	9.5325	9.7052	9.7061	9.7061
	250	12.5596	6.1814	6.0958	6.1811	6.1814	6.1814
	500	12.2514	4.3911	4.3635	4.3910	4.3911	4.3911
	1000	12.1271	3.1292	3.1469	3.1292	3.1292	3.1292
	2500	11.9354	1.9814	2.0207	1.9813	1.9814	1.9814
	5000	11.8542	1.3849	1.4397	1.3848	1.3849	1.3849
	10000	11.8699	0.9527	1.0637	0.9527	0.9527	0.9527

Table 3.8: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{\text {gtrun }}$
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	19.5712	20.1129	17.7338	20.0203	19.9907	20.2510
	100	18.7165	13.0279	12.0745	12.9871	13.0279	13.0279
	250	18.3246	7.8534	7.5509	7.8429	7.8534	7.8534
	500	18.3933	5.4180	5.3366	5.4112	5.4180	5.4180
	1000	18.3542	3.8714	4.0590	3.8680	3.8714	3.8714
	2500	18.2654	2.5342	2.9100	2.5311	2.5342	2.5342
	5000	18.2121	1.7378	2.3673	1.7354	1.7378	1.7378
	10000	18.2328	1.2140	2.1065	1.2120	1.2140	1.2140
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	58.1296	74.8150	64.1680	74.8425	73.7287	76.0426
	100	48.0176	35.6953	32.9963	35.5796	35.6953	35.6953
	250	45.9722	20.2077	19.3601	20.1793	20.2077	20.2077
	500	46.0252	13.7418	13.5018	13.7237	13.7418	13.7418
	1000	45.8720	9.7420	10.1947	9.7336	9.7420	9.7420
	2500	45.7380	6.3670	7.3000	6.3590	6.3670	6.3670
	5000	45.5669	4.3554	5.9282	4.3493	4.3554	4.3554
	10000	45.5844	3.0380	5.2657	3.0328	3.0380	3.0380
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	22.5732	27.4523	22.6933	28.0029	26.9247	28.6702
	100	20.6735	16.6150	15.2944	16.5401	16.6150	16.6150
	250	19.2138	9.9221	9.5046	9.9068	9.9221	9.9221
	500	18.8047	6.7938	6.6966	6.7844	6.7938	6.7938
	1000	18.5782	4.9445	5.1204	4.9402	4.9445	4.9445
	2500	18.3581	3.1706	3.6175	3.1674	3.1706	3.1706
	5000	18.2578	2.2435	2.8695	2.2402	2.2435	2.2435
	10000	18.2550	1.5402	2.4573	1.5378	1.5402	1.5402

Table 3.9: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, g}$	$\rho_{\text {htrun }}$	$\rho_{g t r u n}$
Case $\rho=0.4, D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	21.6036	32.8251	21.8282	29.8036	29.3024	31.9217
	100	21.4317	17.8818	14.5661	17.4496	17.8818	17.8818
	250	22.0191	10.4730	9.7439	10.4030	10.4730	10.4730
	500	22.1768	7.5952	7.4512	7.5537	7.5952	7.5952
	1000	22.1247	5.1817	5.6525	5.1521	5.1817	5.1817
	2500	22.2159	3.2534	4.5840	3.2387	3.2534	3.2534
	5000	22.2702	2.2612	4.2286	2.2485	2.2612	2.2612
	10000	22.2644	1.5734	4.1258	1.5672	1.5734	1.5734
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	60.5304	107.8606	71.8233	99.1004	96.9785	106.1050
	100	55.7268	50.9047	40.9392	49.5256	50.9047	50.9047
	250	56.3069	27.4730	25.5495	27.2856	27.4730	27.4730
	500	56.2194	19.5283	19.0869	19.4186	19.5283	19.5283
	1000	55.6842	13.1467	14.3083	13.0712	13.1467	13.1467
	2500	55.6541	8.1591	11.4886	8.1223	8.1591	8.1591
	5000	55.7428	5.6631	10.5860	5.6309	5.6631	5.6631
	10000	55.6929	3.9386	10.3245	3.9231	3.9386	3.9386
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	24.9895	87.2364	28.9711	58.6614	52.6000	68.6579
	100	23.4657	23.9078	18.6928	22.9033	23.9078	23.9078
	250	22.8498	13.5859	12.2469	13.4530	13.5859	13.5859
	500	22.6176	9.4726	9.2971	9.4171	9.4726	9.4726
	1000	22.3390	6.5041	6.9564	6.4656	6.5041	6.5041
	2500	22.3066	4.1054	5.4607	4.0857	4.1054	4.1054
	5000	22.3136	2.8471	4.8362	2.8343	2.8471	2.8471
	10000	22.2847	1.9846	4.4624	1.9750	1.9846	1.9846

Table 3.10: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.4$ and $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{g t r u n}$
Case $\rho=0.7, D_{t}^{2}=0.5$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	14.7645	7.7053	7.5985	7.7050	7.7053	7.7053
	100	14.5199	5.2627	5.2296	5.2626	5.2627	5.2627
	250	14.3579	3.2586	3.2508	3.2586	3.2586	3.2586
	500	14.2938	2.2654	2.2629	2.2654	2.2654	2.2654
	1000	14.2622	1.6186	1.6228	1.6186	1.6186	1.6186
	2500	14.2105	1.0240	1.0333	1.0240	1.0240	1.0240
	5000	14.2173	0.7035	0.7221	0.7035	0.7035	0.7035
	10000	14.2281	0.4893	0.5278	0.4893	0.4893	0.4893
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	22.8455	12.3418	12.1646	12.3411	12.3418	12.3418
	100	21.5755	7.9241	7.8739	7.9240	7.9241	7.9241
	250	20.8985	4.7808	4.7695	4.7808	4.7808	4.7808
	500	20.5742	3.2676	3.2649	3.2676	3.2676	3.2676
	1000	20.4508	2.3258	2.3317	2.3258	2.3258	2.3258
	2500	20.3473	1.4674	1.4804	1.4674	1.4674	1.4674
	5000	20.3337	1.0061	1.0326	1.0061	1.0061	1.0061
	10000	20.3368	0.6993	0.7544	0.6993	0.6993	0.6993
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	16.6124	10.1094	9.9939	10.1089	10.1094	10.1094
	100	15.5048	6.7846	6.7465	6.7845	6.7846	6.7846
	250	14.7688	4.1668	4.1578	4.1668	4.1668	4.1668
	500	14.4962	2.8544	2.8606	2.8544	2.8544	2.8544
	1000	14.3635	2.0213	2.0305	2.0213	2.0213	2.0213
	2500	14.2477	1.2617	1.2720	1.2617	1.2617	1.2617
	5000	14.2363	0.8857	0.9119	0.8857	0.8857	0.8857
	10000	14.2372	0.6091	0.6548	0.6091	0.6091	0.6091

Table 3.11: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=0.5$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{g t r u n}$
Case $\rho=0.7, D_{t}^{2}=1$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	23.8169	13.5272	12.5907	13.4735	13.5272	13.5272
	100	23.6410	8.4927	8.1822	8.4854	8.4927	8.4927
	250	23.6071	5.2145	5.1000	5.2128	5.2145	5.2145
	500	23.6440	3.5243	3.5643	3.5237	3.5243	3.5243
	1000	23.5270	2.5067	2.5780	2.5062	2.5067	2.5067
	2500	23.6041	1.5810	1.8524	1.5808	1.5810	1.5810
	5000	23.5998	1.1328	1.4991	1.1324	1.1328	1.1328
	10000	23.6199	0.7690	1.3490	0.7689	0.7690	0.7690
$\overline{\operatorname{ARB}}_{\rho}(\%)$							
	50	36.3232	21.7372	20.0888	21.6316	21.7372	21.7372
	100	34.9040	12.6696	12.2061	12.6577	12.6696	12.6696
	250	34.1648	7.5740	7.4108	7.5714	7.5740	7.5740
	500	33.9746	5.0764	5.1350	5.0755	5.0764	5.0764
	1000	33.6355	3.5889	3.6912	3.5881	3.5889	3.5889
	2500	33.7075	2.2593	2.6464	2.2589	2.2593	2.2593
	5000	33.7108	1.6190	2.1424	1.6185	1.6190	1.6190
	10000	33.7357	1.0987	1.9273	1.0985	1.0987	1.0987
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	25.9306	18.7904	16.6199	18.5753	18.7904	18.7904
	100	24.6636	10.9064	10.3980	10.8832	10.9064	10.9064
	250	24.0422	6.6075	6.5148	6.6056	6.6075	6.6075
	500	23.8531	4.4669	4.5310	4.4662	4.4669	4.4669
	1000	23.6290	3.1352	3.2383	3.1344	3.1352	3.1352
	2500	23.6463	1.9843	2.2831	1.9839	1.9843	1.9843
	5000	23.6202	1.4118	1.8433	1.4115	1.4118	1.4118
	10000	23.6297	0.9783	1.5815	0.9781	0.9783	0.9783

Table 3.12: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=1$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{g \text { gtrun }}$
Case $\rho=0.7, D_{t}^{2}=1.5$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	30.6366	19.9933	16.3248	19.0284	19.9933	19.9933
	100	30.4874	11.7795	10.9668	11.7016	11.7795	11.7795
	250	30.2825	7.2772	6.9669	7.2625	7.2772	7.2772
	500	30.4551	4.9912	5.2543	4.9843	4.9912	4.9912
	1000	30.3684	3.5047	4.0670	3.4994	3.5047	3.5047
	2500	30.3258	2.2014	3.3267	2.1994	2.2014	2.2014
	5000	30.2916	1.5742	3.0217	1.5716	1.5742	1.5742
	10000	30.3264	1.1008	2.9817	1.1006	1.1008	1.1008
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	46.9834	33.1100	26.4462	31.2291	33.1100	33.1100
	100	44.8480	17.6650	16.4189	17.5401	17.6650	17.6650
	250	43.6956	10.5631	10.0991	10.5409	10.5631	10.5631
	500	43.7064	7.1769	7.5563	7.1668	7.1769	7.1769
	1000	43.5003	5.0261	5.8316	5.0184	5.0261	5.0261
	2500	43.4070	3.1541	4.7678	3.1513	3.1541	3.1541
	5000	43.3132	2.2524	4.3220	2.2486	2.2524	2.2524
	10000	43.3356	1.5734	4.2618	1.5731	1.5734	1.5734
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	32.8568	35.0098	21.9438	28.7818	35.0098	35.0098
	100	31.5662	15.7031	14.0274	15.4320	15.7031	15.7031
	250	30.6875	9.0761	8.7959	9.0552	9.0761	9.0761
	500	30.6649	6.3282	6.6707	6.3192	6.3282	6.3282
	1000	30.4699	4.3821	5.1092	4.3772	4.3821	4.3821
	2500	30.3688	2.7906	3.9745	2.7876	2.7906	2.7906
	5000	30.3129	1.9886	3.4753	1.9857	1.9886	1.9886
	10000	30.3367	1.3720	3.2363	1.3704	1.3720	1.3720

Table 3.13: Percent average absolute bias ($\overline{\mathrm{AB}})$, percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2}=1.5$ varying by length of time T.

Quality	Size	Estimator													
Measure	Group T	$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text {, }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{\text {gtrun }}$								
Case $\rho=0.7, D_{t}^{2} \sim U n i(0.25,0.75)$															
									50	15.0413	8.2216	8.1254	8.2211	8.2216	8.2216
	100	14.6797	5.4744	5.4364	5.4743	5.4744	5.4744								
	250	14.6387	3.2826	3.2898	3.2826	3.2826	3.2826								
$\overline{\mathrm{AB}}_{\rho}(\%)$	500	14.4304	2.2700	2.2778	2.2700	2.2700	2.2700								
	1000	14.3056	1.5897	1.5973	1.5897	1.5897	1.5897								
	2500	14.2719	0.9956	1.0225	0.9956	0.9956	0.9956								
	5000	14.2568	0.6783	0.7086	0.6783	0.6783	0.6783								
	10000	14.2298	0.4915	0.5203	0.4915	0.4915	0.4915								
	50	23.4334	13.3956	13.2277	13.3947	13.3956	13.3956								
	100	21.6722	8.1885	8.1326	8.1883	8.1885	8.1885								
$\overline{\mathrm{ARB}}_{\rho}(\%)$	250	21.2412	4.7985	4.8091	4.7985	4.7985	4.7985								
	500	20.7778	3.2804	3.2916	3.2803	3.2804	3.2804								
	1000	20.5288	2.2838	2.2947	2.2838	2.2838	2.2838								
	2500	20.4382	1.4259	1.4646	1.4259	1.4259	1.4259								
	5000	20.3884	0.9701	1.0133	0.9701	0.9701	0.9701								
	10000	20.3386	0.7024	0.7437	0.7024	0.7024	0.7024								
	50	16.9678	10.6896	10.5459	10.6888	10.6896	10.6896								
	100	15.7017	6.9452	6.9072	6.9451	6.9452	6.9452								
	250	15.0627	4.1888	4.2058	4.1888	4.1888	4.1888								
	500	14.6330	2.8674	2.8788	2.8674	2.8674	2.8674								
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	1000	14.4024	2.0104	2.0209	2.0104	2.0104	2.0104								
	2500	14.3096	1.2453	1.2702	1.2453	1.2453	1.2453								
	5000	14.2749	0.8619	0.9012	0.8619	0.8619	0.8619								
	10000	14.2391	0.6129	0.6572	0.6129	0.6129	0.6129								

Table 3.14: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, g}$	$\rho_{\text {htrun }}$	$\rho_{\text {gtrun }}$
Case $\rho=0.7, D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	23.6508	13.1177	12.1957	13.0673	13.1177	13.1177
	100	23.7205	8.6817	8.3482	8.6755	8.6817	8.6817
	250	23.5758	5.2865	5.2058	5.2851	5.2865	5.2865
	500	23.7174	3.6037	3.6318	3.6031	3.6037	3.6037
	1000	23.6786	2.4555	2.6209	2.4551	2.4555	2.4555
	2500	23.5950	1.5691	1.8579	1.5689	1.5691	1.5691
	5000	23.6215	1.1619	1.5541	1.1617	1.1619	1.1619
	10000	23.6320	0.8116	1.3735	0.8115	0.8116	0.8116
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	36.0095	20.9421	19.3673	20.8466	20.9421	20.9421
	100	34.9014	13.0637	12.5413	13.0536	13.0637	13.0637
	250	34.1010	7.7143	7.5869	7.7123	7.7143	7.7143
	500	34.0972	5.2002	5.2406	5.1994	5.2002	5.2002
	1000	33.9147	3.5214	3.7618	3.5209	3.5214	3.5214
	2500	33.7293	2.2445	2.6576	2.2442	2.2445	2.2445
	5000	33.7652	1.6619	2.2227	1.6616	1.6619	1.6619
	10000	33.7734	1.1601	1.9633	1.1600	1.1601	1.1601
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	25.7863	17.6181	16.0368	17.4420	17.6181	17.6181
	100	24.7938	11.2387	10.7695	11.2283	11.2387	11.2387
	250	24.0086	6.6489	6.5380	6.6469	6.6489	6.6489
	500	23.9220	4.5284	4.5984	4.5276	4.5284	4.5284
	1000	23.7795	3.1135	3.3082	3.1131	3.1135	3.1135
	2500	23.6348	1.9931	2.2972	1.9927	1.9931	1.9931
	5000	23.6431	1.4594	1.8971	1.4591	1.4594	1.4594
	10000	23.6421	1.0182	1.6184	1.0181	1.0182	1.0182

Table 3.15: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$ varying by length of time T.

Quality Measure	Size Group T	Estimator					
		$\rho_{\text {naive }}$	$\rho_{\text {hat }}$	$\rho_{\text {hat }, \text { h }}$	$\rho_{\text {hat }, \text { g }}$	$\rho_{\text {htrun }}$	$\rho_{\text {gtrun }}$
Case $\rho=0.7, D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$							
$\overline{\mathrm{AB}}_{\rho}(\%)$	50	30.0685	19.8833	16.3296	18.6314	18.8088	18.9404
	100	30.4052	12.0051	11.2764	11.9636	12.0051	12.0051
	250	30.3175	7.3817	7.3645	7.3722	7.3817	7.3817
	500	30.2480	4.9692	5.1701	4.9618	4.9692	4.9692
	1000	30.2899	3.4504	4.0170	3.4459	3.4504	3.4504
	2500	30.2992	2.1740	3.2174	2.1713	2.1740	2.1740
	5000	30.3028	1.5134	3.0314	1.5124	1.5134	1.5134
	10000	30.3567	1.1251	3.0278	1.1249	1.1251	1.1251
$\overline{\operatorname{ARB}}_{\rho}(\%)$	50	45.3090	31.3297	25.4217	29.2347	29.5968	29.8091
	100	44.5711	17.9554	16.8488	17.8886	17.9554	17.9554
	250	43.7558	10.7139	10.6911	10.6998	10.7139	10.7139
	500	43.4057	7.1496	7.4432	7.1389	7.1496	7.1496
	1000	43.3781	4.9483	5.7659	4.9419	4.9483	4.9483
	2500	43.3190	3.1080	4.6030	3.1041	3.1080	3.1080
	5000	43.2873	2.1621	4.3335	2.1607	2.1621	2.1621
	10000	43.3722	1.6078	4.3282	1.6076	1.6078	1.6078
$\overline{\operatorname{RMSE}}_{\rho}(\%)$	50	32.3378	43.1538	21.5865	25.8485	26.4618	26.8042
	100	31.5271	15.6459	14.5596	15.5638	15.6459	15.6459
	250	30.7817	9.3743	9.2586	9.3579	9.3743	9.3743
	500	30.4588	6.2049	6.4462	6.1949	6.2049	6.2049
	1000	30.3965	4.3088	5.0167	4.3038	4.3088	4.3088
	2500	30.3399	2.7052	3.8821	2.7016	2.7052	2.7052
	5000	30.3240	1.9270	3.4593	1.9247	1.9270	1.9270
	10000	30.3677	1.4034	3.2903	1.4029	1.4034	1.4034

Table 3.16: Percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}})$ of all different estimators of ρ for the case $\rho=0.7$ and $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$ varying by length of time T.

Figure 3.6: Plot of percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.4$ and different values of the constant D_{t}^{2}.

Figure 3.7: Plot of percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias $(\overline{\mathrm{ARB}})$, and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.7$ and different values of the constant D_{t}^{2}.

Figure 3.8: Plot of percent average absolute bias ($\overline{\mathrm{AB}}$), percent average absolute relative bias ($\overline{\mathrm{ARB}}$), and percent average root mean squared error ($\overline{\mathrm{RMSE}}$) of all different estimators of ρ varying by length of time T from 200 to 1000 for the case $\rho=0.7$ and different values of the uniformly distributed D_{t}^{2}.

From Tables 3.5-3.16 and Figures 3.6-3.8, three quality measures are smaller for all adjusted estimates of ρ when T is large. The values of three quality measures for the naive estimator $\rho_{\text {naive }}$ are approximately the same for all values of T and do not go to zero even for a large value of T. The result agrees with Proposition 3.6.

In contrast, three measures for other adjusted estimates are smaller and go to zero as T increases. Notice from the case $\rho=4$ in Table 3.7 that some values of three measures for other adjusted estimates are extremely higher than the naive estimates when $T=50$. For a small values of T, the high value of sampling variance, compared with the variance of noise, causes the negative value of $\hat{U}_{2, \theta}$. In this case, we recommend to use the positive adjusted estimator $\rho_{h a t, h}$ and $\rho_{h a t, g}$ instead of the estimator $\rho_{\text {hat }}$.

However, only the positive adjusted estimator $\rho_{h a t, h}$ has large values of three quality measures when sampling variances are large, compared with other adjusted estimates. For example, consider the case $\rho=0.7$ and sampling variances $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$, the percent average absolute relative bias of $\rho_{\text {hat }, h}$ is 3.2903 when $T=10000$. However, the percent average absolute relative bias of $\rho_{\text {hat }}, \rho_{\text {hat }, g}$, $\rho_{\text {hat }, \text { htrun }}$, and $\rho_{\text {hat }, \text { gtrun }}$ are $1.4034,1.4029,1.4034$, and 1.4034 , respectively. Comparing among these quality measures in Table 3.5 and Figure 3.6, the estimator $\rho_{\text {hat }}$ can be represented for the estimator ρ_{θ}, when θ_{t} 's are unobserved. In spite of the fact that the values of three measures of $\rho_{h a t, g}$ is less than $\rho_{h a t}$, the g-function in Lemma 3.21 is applied when $U_{2, \theta}$ is negative. Hence, we can conclude that the estimator $\rho_{\text {hat,gtrun }}$ is a good estimator for represent for the estimator ρ_{θ}, when θ_{t} 's are unobserved.

2.) Test Statistics for the Stationary Test

In this section, we consider the performances of the test statistic for the stationary test. The stationary test in this section is the test of the null hypothesis that $\rho=1$, against the alternative hypothesis that $|\rho|<1$. That is,

$$
\begin{aligned}
& H_{0}: \rho=1 \quad \text { or nonstationary } \operatorname{AR}(1) \\
& H_{1}:|\rho|<1 \quad \text { or stationary } \operatorname{AR}(1)
\end{aligned}
$$

against

In this section, we consider only the case $\rho=1$. For the values of sampling variances of e_{t}, we study different values of D_{t}^{2} as follows.

1. The variances of $\left\{e_{t}\right\}$ are a constant not depending on time t. We perform simulations in three settings.
(1.1) $D_{t}^{2}=0.5$,
(1.2) $D_{t}^{2}=1$,
(1.3) $D_{t}^{2}=1.5$.
2. The variances of $\left\{e_{t}\right\}$ follow a uniform distribution. We perform simulations in three settings.
(2.1) $D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$,
(2.2) $D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$,
(2.3) $D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$,
where $\operatorname{Uni}(a, b)$ is the continuous uniform distribution over interval $[a, b]$.
The results shown in Tables 3.18-3.19 and Figures 3.9-3.10 are presented using the following notations, some notations are followed from Theorem 3.10, Theorem 3.17 , (3.19), (3.152)-(3.153), (3.154)-(3.155), and (3.156)-(3.159).
(1) $\tau_{\text {true }}=\left(\rho_{\text {true }}-1\right) U_{2, \theta}^{\frac{1}{2}} U_{4, \theta}^{-\frac{1}{2}}$, the Dickey-Fuller test statistic based on the variables of interest $\left\{\theta_{t}\right\}$,
(2) $\tau_{\text {naive }}=\left(\rho_{\text {naive }}-1\right) U_{2, y}^{\frac{1}{2}} U_{4, y}^{-\frac{1}{2}}$, the naive test statistic based on observed variables $\left\{y_{t}\right\}$ and ignore sampling errors,
(3) $\tau_{\text {hat }}=\left(\rho_{\text {hat }}-1\right) \hat{U}_{2, \theta}^{\frac{1}{2}} \hat{U}_{4, \theta}^{-\frac{1}{2}}$, an adjustment to the naive test statistic,
(4) $\tau_{\text {hat }, h}=\left(\rho_{h a t, h}-1\right) \hat{U}_{2, \theta, h}^{\frac{1}{2}} \hat{U}_{4, \theta, h}^{-\frac{1}{2}}$, an adjustment to the naive test statistic by the h-function,
(5) $\tau_{\text {hat }, g}=\left(\rho_{h a t, g}-1\right) \hat{U}_{2, \theta, g}^{\frac{1}{2}} \hat{U}_{4, \theta, g}^{-\frac{1}{2}}$, an adjustment to the naive test statistic by the g-function,
(6) $\tau_{\text {hat }, \text { htrun }}=\left(\rho_{\text {hat }, \text { htrun }}-1\right) \hat{U}_{2, \theta, \text { htrun }}^{\frac{1}{2}} \hat{U}_{4, \theta, \text { htrun }}^{-\frac{1}{2}}$, a truncation version of the h function approximation,
(7) $\tau_{\text {hat }, \text { gtrun }}=\left(\rho_{\text {hat }, \text { gtrun }}-1\right) \hat{U}_{2, \theta, g t r u n}^{1} \quad \hat{U}_{4, \theta, g \text { trun }}^{-\frac{1}{2}}$, a truncation version of the g function approximation.

T	Probability of a Small Values							
	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.07
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03
250	-2.58	-2.24	-1.95	-1.62	0.89	1.28	1.63	2.01
500	-2.58	-2.24	-1.95	-1.62	0.89	1.28	1.62	2.00
750	-2.58	-2.24	-1.95	-1.62	0.89	1.28	1.62	2.00
∞	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	1.99

Table 3.17: ([5], Page 58) Empirical percentiles for τ statistics.

Under the null hypothesis $H_{0}: \rho=1$, the null hypothesis with be rejected under the level of significance α if the test statistic τ_{θ} satisfies sup $P_{\tau_{\theta}}\left(\tau_{\theta} \in R\right) \leq \alpha$, where R is the rejection region. Since this test is a two-sided test, the rejection region R is $\left(-\infty, c_{1}\right) \cup\left(c_{2}, \infty\right)$, for some constants c_{1} and c_{2}. The percentiles for the distribution in Theorem 3.2 (4) were given in Table 3.17 by Dickey [5]. Hence, the constants c_{1} and c_{2} are applied for evaluating the probability $P_{\tau_{\theta}}\left(\tau_{\theta} \in R\right)$ when
the level of significance α is fixed. For example, under the level of significance $\alpha=0.05$ and $T=10000$, the null hypothesis is rejected if $\tau_{\theta}<-2.23$ or $\tau_{\theta}>1.62$.

To consider the test statistic, Tables 3.18-3.20 and Figures 3.9-3.10 show comparisons between all test statistics for 1000 generated data with $\rho=1, T=10000$ by varying sampling variances.

	Percentile						
	1	10	25	50	75	90	100
Scenarios 1: $\rho=1, D_{t}^{2}=0.5$							
$\tau_{\text {true }}$	-2.6980	-1.5583	-1.0902	-0.5424	0.1810	0.8474	2.9414
$\tau_{\text {naive }}$	-3.8615	-2.3186	-1.6834	-1.0579	-0.3845	0.2124	1.9103
$\tau_{\text {hat }}$	-2.6268	-1.5757	-1.0956	-0.5510	0.1801	0.8460	2.9826
$\tau_{\text {hat, }, \text { }}$	-2.5226	-1.5176	-1.0567	-0.5317	0.1738	0.8161	2.8694
$\tau_{\text {hat,g }}$	-2.6246	-1.5746	-1.0948	-0.5506	0.1801	0.8456	2.9808
$\tau_{\text {hat, htrun }}$	-2.6268	-1.5757	-1.0956	-0.5510	0.1801	0.8460	2.9826
$\tau_{\text {hat, }, \text { grua }}$	-2.6268	-1.5757	-1.0956	-0.5510	0.1801	0.8460	2.9826
Scenarios 1: $\rho=1, D_{t}^{2}=1$							
$\tau_{\text {true }}$	-2.5641	-1.5681	-1.0677	-0.5306	0.2207	0.8961	3.0485
$\tau_{\text {naive }}$	-4.5144	-3.0040	-2.1097	-1.3178	-0.6212	-0.0541	1.4246
$\tau_{\text {hat }}$	-2.5182	-1.5714	-1.0700	-0.5241	0.2227	0.8802	3.0667
$\tau_{\text {hat, },}$	-2.2383	-1.4096	-0.9587	-0.4657	0.1996	0.7870	2.7293
$\tau_{\text {hat }, \text { g }}$	-2.4982	-1.5611	-1.0627	-0.5198	0.2212	0.8740	3.0429
$\tau_{\text {hat, } \text { htrun }}$	-2.5182	-1.5714	-1.0700	-0.5241	0.2227	0.8802	3.0667
$\tau_{\text {hat,gtrun }}$	-2.5182	-1.5714	-1.0700	-0.5241	0.2227	0.8802	3.0667
Scenarios 1: $\rho=1, D_{t}^{2}=1.5$ GITURINTIVERSTIY							
$\tau_{\text {true }}$	-2.7453	-1.6867	-1.1229	-0.5550	0.1617	0.8735	2.8335
$\tau_{\text {naive }}$	-5.5339	-3.6182	-2.6520	-1.6997	-0.8976	-0.3242	1.0637
$\tau_{\text {hat }}$	-2.6928	-1.6533	-1.1331	-0.5493	0.1594	0.8817	2.7462
$\tau_{\text {hat, }, ~}$	-2.2131	-1.3646	-0.9476	-0.4586	0.1303	0.7300	2.2543
$\tau_{\text {hat,g }}$	-2.6307	-1.6148	-1.1095	-0.5382	0.1556	0.8651	2.6827
$\tau_{\text {hat, } \text { htrun }}$	-2.6928	-1.6533	-1.1331	-0.5493	0.1594	0.8817	2.7462
$\tau_{\text {hat,gtrun }}$	-2.6928	-1.6533	-1.1331	-0.5493	0.1594	0.8817	2.7462

Table 3.18: Values of different estimators of all test statistics varying by different constants D_{t}^{2} 's for the case $\rho=1, \sigma^{2}=1$, and $T=10000$.

	Percentile						
	1	10	25	50	75	90	100
Scenarios 2: $\rho=1, D_{t}^{2} \sim \operatorname{Uni}(0.25,0.75)$							
$\tau_{\text {true }}$	-2.6568	-1.5909	-1.0862	-0.5133	0.2159	0.9279	2.6899
$\tau_{\text {naive }}$	-3.7574	-2.3841	-1.7460	-1.0285	-0.3321	0.2416	1.6350
$\tau_{\text {hat }}$	-2.6396	-1.5929	-1.0930	-0.5058	0.2150	0.9077	2.6869
$\tau_{\text {hat }, \text { h }}$	-2.5470	-1.5357	-1.0521	-0.4876	0.2074	0.8764	2.5941
$\tau_{\text {hat }, \text { g }}$	-2.6380	-1.5918	-1.0923	-0.5055	0.2143	0.9072	2.6861
$\tau_{\text {hat,htrun }}$	-2.6396	-1.5929	-1.0930	-0.5058	0.2150	0.9077	2.6869
$\tau_{\text {hat,gtrun }}$	-2.6396	-1.5929	-1.0930	-0.5058	0.2150	0.9077	2.6869
Scenarios 2: $\rho=1, D_{t}^{2} \sim \operatorname{Uni}(0.75,1.25)$							
$\tau_{\text {true }}$	-2.5397	-1.6937	-1.1263	-0.5089	0.2005	0.8181	2.7249
$\tau_{\text {naive }}$	-4.5551	-3.0786	-2.2070	-1.3834	-0.6500	-0.1110	1.2240
$\tau_{\text {hat }}$	-2.5515	-1.6859	-1.1107	-0.5077	0.2120	0.8190	2.7899
$\tau_{\text {hat }, \text { h }}$	-2.2993	-1.5102	-0.9916	-0.4544	0.1881	0.7266	2.4622
$\tau_{\text {hat }, \text { g }}$	-2.5359	-1.6746	-1.1012	-0.5042	0.2102	0.8123	2.7638
$\tau_{\text {hat,htrun }}$	-2.5515	-1.6859	-1.1107	-0.5077	0.2120	0.8190	2.7899
$\tau_{\text {hat,gtrun }}$	-2.5515	-1.6859	-1.1107	-0.5077	0.2120	0.8190	2.7899
-							
Scenarios 2: $\rho=1, D_{t}^{2} \sim \operatorname{Uni}(1.25,1.75)$							
$\tau_{\text {true }}$	-2.7477	-1.6911	-1.1169	-0.5154	0.2418	0.9348	2.6847
$\tau_{\text {naive }}$	-5.8113	-3.5945	-2.5950	-1.5901	-0.7971	-0.2766	0.7480
$\tau_{\text {hat }}$	-2.7648	-1.6569	-1.1080	-0.5151	0.2513	0.9222	2.6270
$\tau_{\text {hat }, \text { h }}$	-2.2963	-1.3579	-0.9173	-0.4254	0.2080	0.7531	2.1886
$\tau_{\text {hat }, \text { g }}$	-2.7084	-1.6191	-1.0860	-0.5038	0.2463	0.8994	2.5753
$\tau_{\text {hat,htrun }}$	-2.7648	-1.6569	-1.1080	-0.5151	0.2513	0.9222	2.6270
$\tau_{\text {hat,gtrun }}$	-2.7648	-1.6569	-1.1080	-0.5151	0.2513	0.9222	2.6270

Table 3.19: Values of different estimators of all test statistics varying by different uniformly distributed D_{t}^{2} 's for the case $\rho=1, \sigma^{2}=1$, and $T=10000$.

Figure 3.9: Plot of all different test statistics for the case $\rho=1, \sigma^{2}=1, T=10000$, and different values of the constant D_{t}^{2}.

Figure 3.10: Plot of all different test statistics for the case $\rho=1, \sigma^{2}=1, T=10000$, and different values of ranges of the D_{t}^{2}.

Sampling Variance	Test Statistic						
	$\tau_{\text {true }}$	$\tau_{\text {naive }}$	$\tau_{\text {hat }}$	$\tau_{\text {hat }, \text { h }}$	$\tau_{\text {hat }, \text { g }}$	$\tau_{\text {htrun }}$	$\tau_{g t r u n}$
Scenario 1							
$D_{t}^{2}=0.5$	40	117	39	36	39	39	39
$D_{t}^{2}=1$	53	225	50	30	49	50	50
$D_{t}^{2}=1.5$	56	335	58	24	53	58	58
Scenario 2							
$D_{t}^{2} \sim U n i(0.25,0.75)$	46	125	45	39	45	45	45
$D_{t}^{2} \sim U n i(0.75,1.25)$	62	244	63	35	62	63	63
$D_{t}^{2} \sim U n i(1.25,1.75)$	56	329	54	19	50	54	54

Table 3.20: The number of errors in hypothesis testing from 1000 simulations, for the case $\rho=1$ and $T=10000$, under the level of significance 0.05 .

From Table 3.20, the number of times that the null hypothesis is rejected by the test statistic $\tau_{\text {naive }}$ is greater than 50 , and increases when the sampling variance increases. This result shows that the conclusion from test statistic $\tau_{\text {naive }}$ is not reliable because there are more than 5% error of the test.

On the other hand, for test statistics $\tau_{\text {true }}$, there is around 5% error of the test, which is around 50 samples from 1000 to reject the null hypothesis. In addition, from Table 3.18, the statistic $\tau_{\text {naive }}$ is smaller than $\tau_{\text {true }}$. In contrast, the statistic $\tau_{\text {hat }}$ provides the same conclusion as $\tau_{\text {true }}$, under the level of significance 0.05 . When estimator $U_{2, \theta}$ or $U_{4, \theta}$ is negative, the positive adjustment by the g-function can provide the same result as $\tau_{\text {true }}$. However, if the estimator $U_{2, \theta}$ or $U_{4, \theta}$ are both positive, the statistic $\tau_{\text {hat }}$ can represent test statistic $\tau_{\text {true }}$ when the true variables θ_{t} 's are unobserved. Hence, from our simulation, we can conclude that $\tau_{\text {hat,gtrun }}$ is the best test for the stationary test.

CHAPTER IV

CONCLUSION

In this thesis, we have shown the effect of sampling errors for parameter estimation and test statistics for the first order autoregressive model. We proposed 2 new estimators of the unknown parameters ρ and σ^{2} for the first order autoregressive models subject to sampling errors (3.13).

1. The estimator of autoregressive coefficient ρ :

$$
\text { where } \hat{U}_{1, \theta}=\sum_{t=2}^{T} y_{t} y_{t-1} \text { and } \hat{U}_{2, \theta}=\sum_{t=2}^{T}\left(y_{t-1}^{2}-\hat{\rho}_{t-1}^{2}\right) .
$$

2. The estimator of variance of noise σ^{2} :

$$
\hat{\sigma}_{\theta}^{2}=\frac{1}{T-2} \sum_{t=2}^{T}\left(y_{t}-\hat{\rho}_{\theta} y_{t-1}\right)^{2}-\frac{1}{T-2} \sum_{t=2}^{T}\left(D_{t}^{2}+\hat{\rho}_{\theta}^{2} D_{t-1}^{2}\right) .
$$

Moreover, we obtain the representation of test statistic, based on the observed data y_{t} 's:

$$
\hat{\tau}_{\theta}=\frac{\left(\hat{\rho}_{\theta}-1\right) \sqrt{\hat{U}_{2, \theta}}}{\sqrt{\hat{\sigma}_{\theta}^{2}}}
$$

From our study, we found that our estimators $\hat{\rho}_{\theta}$ and $\hat{\sigma}_{\theta}^{2}$ can reduce the bias due to sampling errors. In addition, our statistic $\hat{\tau}_{\theta}$ provide the same conclusion as the test statistic based on true variables θ_{t} 's.

However, there has a chance that $\hat{U}_{2, \theta}$ and $\hat{\sigma}_{\theta}^{2}$ are negative, when the sampling variances are extremely large. The method of positive adjustments to the estimators with g-function by Angkunsit and Suntornchost [2] can solve this problems.

From Tables 3.18-3.20 and Figures 3.9-3.10, the truncation version of positive adjustments of estimators under g-function is better than other test statistic in respect of the conclusion of hypothesis testing. To accommodate all situations of estimators, the truncation of test statistic $\tau_{\text {hat,gtrun }}$ is recommended.

REFERENCES

[1] Anderson, T.W.: On asymptotic distributions of estimates of parameters of stochastic difference equations. The annals of mathematical statistics, 30, 676-687 (1959).
[2] Angkunsit, A., Suntornchost, J.: Variable selection in multivariate linear regression models subject to sampling errors. Chamchuri Journal of Mathematics, 10, 28-52 (2018).
[3] Casella G., Berger R.L.: Statistical Inference, 2nd ed. Duxbury Press, California, 2002.
[4] Chatterjee, S., Lahiri, P.: A Simple Computational Method for Estimating Mean Squared Prediction Error in General Small-Area Model. JSM Proceedings, 3486-3493 (2007).
[5] Dickey, D. A.: Estimation and hypothesis testing in nonstationary time series. Ph.D. dissertation, Department of Statistics, Iowa State university, 1976.
[6] Dickey, D. A., Bell, W. R., Miller, R. B.: Unit roots in time series models: tests and implications. The american statistician, 40, 12-26 (1986).
[7] Dickey, D. A., Fuller, W.: Distribution of the estimators for autoregressive time series with a unit root. J. American Statistical Association, 74, 427-431 (1979).
[8] Dickey, D. A., Fuller, W:: Likelihood ratio statistics for autoregressive time series with a unit root. J. Econometrica, 49, 1057-1072 (1981).
[9] Fay, R.E., Herriot, R. A.: Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data. J. American Statistical Association, 74, 269-277 (1979).
[10] Folland, G. B.: Advanced Calculus. Pearson Prentice Hall: Upper Saddle River, New Jersey, 2002.
[11] Fuller, W.: Introduction to statistical time series, 2nd ed. John Wiley \& Sons, Inc., New York, 1976.
[12] Lahiri, P., Suntornchost, J.: Variable selection for linear mixed models with applications in small area estimation. The Indian Journal of Statistics, 77, 312-320 (2015).
[13] Lenghoe, N., Suntornchost, J.: Variable selection for linear regression model with general variance. Journal of Applied Statistics and Information Technology, 2, 15-24 (2017).
[14] Li, Y., Lahiri, P.: A Simple Adaptation of Variable Selection Software for Regression Models to Select Variables in Nested Error Regression models. Sankhya: The Indian Journal of Statistics, -B, 312-317 (2019).
[15] Marhuenda, Y., Morales, D., Pardo, M. C.: Tests for the variance parameter in the Fay-Herriot model. J. theoretical and applied statistics, 50, 27-42 (2016).
[16] Mann, H. B., Wald A.: On the statistical treatment of linear stochastic difference equations. J. Econometrica, 11, 173-220 (1943).
[17] Pfeiffer, P.E.: Probability for Applications. Springer-Verlag 1990.
[18] Resnick, S. I.: A probability path. Birkhäuser Basel, New York, 2014.
[19] Rubin, H.: Consistency of maximum-likelihood estimates in the explosive case. Cowles commission monograph, 10, 356-364 (1950).
[20] Said, S. E., Dickey, D. A.: Testing for unit roots in autoregressive-moving average models of unknown order. J. Biometrika, 71, 599-607 (1984).
[21] Said, S. E., Dickey, D. A.: Hypothesis testing in ARIMA(p, 1, q) models. J. American Statistical Association, 80, 369-374 (1985).
[22] Spivak, M.: Calculus on Manifolds. W.A. Benjamin, New York, 1965.
[23] Tucker, H. G.: A graduate course in probability. Academic Press, New York, 1967.
[24] Wei, W.W.S.: Time series analysis univariate and multivariate methods, 2nd ed. Pearson Addison Wesley, California, 2005.
[25] White, J. S.: The limiting distribution of the serial correlation coefficient in the explosive case. The annals of mathematical statistics, 29, 1188-1197 (1958).
[26] White, J. S.: The limiting distribution of the serial correlation coefficient in the explosive case II. The annals of mathematical statistics, 30, 831-834 (1959).

VITA

Name	$:$ Mister Weerapat Rattanachadjane
Date of Birth	$:$
Place of Birth	: Yala, Thailand 1995
Education	$:$ B.Sc. (Mathematics), (First Class Honors),
	Prince of Songkla University, 2017
Scholarship	$:$ Development and Promotion of Science and Technology
	Talents Project (DPST)

