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Modern cities heavily rely on complex transportation, making accurate traffic
speed prediction crucial for traffic management authorities. Classical methods, in-
cluding statistical techniques and traditional machine learning techniques, fail to
capture complex relationships, while deep learning approaches may have weak-
nesses such as error accumulation, difficulty in handling long sequences, and over-
looking spatial correlations. Graph neural networks (GNNs) have shown promise
in extracting spatial features from non-Euclidean graph structures, but they usu-
ally initialize the adjacency matrix based on distance and may fail to detect hidden
statistical correlations. The choice of correlation measure can have a significant im-
pact on the resulting adjacency matrix and the effectiveness of graph-based models.
This thesis proposes a novel approach for accurately forecasting traffic patterns by
utilizing a multi-view spatio-temporal graph neural network that captures data from
both realistic and statistical domains. Unlike traditional correlation measures such
as Pearson correlation, copula models are utilized to extract hidden statistical cor-
relations and construct multivariate distribution functions to obtain the correlation
relationship among traffic nodes. A two-step approach is adopted, which involves
selecting and testing different types of bivariate copulas to identify the ones that
best fit the traffic data, and utilizing these copulas to create multi-weight adjacency
matrices. The second step involves utilizing a graph convolutional network to ex-

tract spatial information and capturing temporal trends using dilated causal convolu-
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tions. The proposed ST-CopulaGNN model outperforms previous approaches such
as DCRNN and Graph WaveNet, indicating the effectiveness of incorporating cop-
ulas in traffic forecasting. Experiments on the METR-LA and PEMS-BAY datasets

show that the proposed model outperforms previous approaches with a slight im-

provement.
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Academic Year: 2022
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Chapter I

BACKGROUND

1.1 Background and Problem Review

Urbanization and population growth have led to increasingly complex trans-
portation networks. These networks have become a crucial component of modern
cities infrastructure ?, with millions of people relying on them for daily commuting
and travel. To improve the quality of transportation systems, intelligent transporta-
tion systems (ITS) have emerged as an effective approach. ITS incorporates modern
wireless, electronic, and automated technologies to integrate users, infrastructure,
and vehicles into a seamless and efficient system ?. Many countries have made
significant commitments to developing ITS, which leverage vast amounts of urban
traffic data collected from various sources, including road sensors, taxi and private

car trajectories, and public transportation transaction records ?.

Accurate prediction of traffic speed is essential for traffic management author-
ities to direct vehicles more effectively, improving the smooth operation of the high-
way network. In the domain of traffic forecasting, numerous studies have been con-
ducted, which can be generally classified into two methodologies: classical methods
and deep learning methods. Classical methods include statistical techniques such as
Historical Averages (HA), Auto-Regressive Integrated Moving Average (ARIMA),
and Vector Auto-Regressive (VAR), and traditional machine learning techniques
such as Support Vector Regression (SVR), Random Forest Regression (RFR), and
K-Nearest Neighbor (KNN). These models are limited in their ability to capture
complex, nonlinear patterns in traffic data. On the other hand, deep learning ap-
proaches such as Recurrent Neural Networks (RNNs), Convolutional Neural Net-
works (CNNs) and their variants have shown promise in capturing complex non-

linear relationships in traffic forecasting. However, RNN-based methodologies can



exhibit limitations, including the accumulation of errors, slow training, and chal-
lenges in effectively processing long sequences, while CNNs interpret traffic data
as Euclidean data, which limits the amount of spatial correlation they can capture.
Several studies have utilized CNNs to capture the spatial-correlation of traffic data,
but these algorithms may not be able to fully capture all the spatial correlations
present in the data due to the non-Euclidean nature of traffic data and its own topol-
ogy. In recent years, graph neural networks (GNNs) have been widely employed in
traffic speed forecasting due to their efficiency in extracting spatial features repre-
sented by non-Euclidean graph structures. For example, a network of roads naturally
forms a graph, with intersections serving as nodes and connections as edges. The
GNN-based methodology has been expanded to transportation field, making use of
different graph formulations and models like the diffusion convolutional recurrent

neural network (DCRNN) ? and Graph WaveNet ? model.

However, these models usually initialize the adjacency matrix based on dis-
tance, which fails to detect hidden statistical correlation. As a result, the choice of
correlation measure can have a significant impact on the resulting adjacency matrix,
and hence the effectiveness of the graph-based models. In Figure ??, we show the
adjacency matrix from different correlation measures, while Figure ?? represents
the linkage between pairs of nodes that are not connected but have a correlation
in the statistical domain. These figures demonstrate that a number of correlation
measures have been proposed to compute the adjacency matrix, such as Pearson
correlation coeflicient, Spearman’s rank correlation, and Kendall’s tau correlation.
These methods construct multivariate distribution functions to obtain the correla-

tion relationship among traffic nodes.

The challenge in modeling the dependence between links in a stochastic trans-
portation network is that it requires specifying a complex dependence structure that
accurately captures the statistical relationships between the variables, which is cru-
cial for effective learning, inference, and representation of the joint distribution of

several links’ travel time. To address this challenge, copula models are utilized in
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Figure 1.1: Different adjacency matrices from METR-LA (with absolute cor-
relation coefficient > 0.75).

this research. Figure ?? shows the Pearson correlation between sample nodes and
scatter plots. Pearson correlation is a measure of the linear association between two
variables. It is used to determine how closely related two variables are and the di-
rection of the relationship, but it cannot capture the dependence structure between
variables. Unlike traditional correlation measures, copulas provide a modern ap-
proach with a rigid structure that can describe not only the relationship between
random variables but also any other properties relevant to the entire structure ?
This becomes feasible since any multivariate joint distribution can be expressed
using individual marginal distribution functions and a copula, which characterizes
the interdependence between variables, as indicated by Sklar’s theorem. By using

copula models, hidden statistical correlations can be extracted, and multivariate dis-
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Figure 1.2: Adjacency matrix displays pairs of nodes that exhibit strong cor-
relation despite not being directly connected from METR-LA.

tribution functions can be constructed to obtain the correlation relationship among
traffic nodes, leading to more accurate modeling of the stochastic transportation

network.

In this thesis, we propose a novel method that employs a multi-view spatio-
temporal graph neural network model to capture data from both realistic and statis-
tical domains. In this study, we adopt a two-step approach to address the challenge
of capturing real-world scenarios using copulas and designing a copula-based ad-
jacency matrix architecture. The first step involves selecting and testing different
types of bivariate copulas (i.e., Gaussian, Clayton, Gumbel, Frank) to identify the
ones that best fit the traffic data. We then use these copulas to create multi-weight
adjacency matrices that capture the statistical correlations between traffic nodes.

The second step involves utilizing a graph convolutional network to extract spatial
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Figure 1.3: Plots showing pairwise comparisons of randomly selected nodes
from METR-LA. Scatter plots [lower-left], Histograms [diagonal], Pearson
Correlation [upper-right]

information from the preprocessed data and adjacency matrices, and capturing tem-
poral trends using dilated causal convolutions as temporal convolution layer. This
approach enables us to train a multi-view spatio-temporal graph neural network

model that can accurately forecast traffic patterns.

1.2 Statement of Problem

Traffic forecasting is a time series prediction challenge. The initial adjacency

matrix created to serves as the prior knowledge. We can define it as a graph G
G = (V,E, A)

where:

V is the set of nodes, where each node corresponds to an observation point (such



as a sensor or road segment).

E is the set of edges. In graph G, the edges represent the connections between the
nodes, while the edge weights denote the distances between the respective

nodes.

A € R™™™ is adjacency matrix of graph G

The objective of traffic forecasting is to predict the upcoming traffic sequence.

XgH) Xg+2), e Xg+T,) using a historical data Xg_TH), Xg_T+2), . ,Xg)

)

where:

X g) € RVXC g the the observation of graph G at time step ¢
C' is the number of features
T is the length of window to capture historical data and

T' is the prediction length

We can defined the problem for traffic forecast as:
(X(t—T+1) X(t—T+2) X(t)) i} <X(t+1) X(t+2) X(t-i-T/))
Py X e X5 o LXg L Xg

where:
f is the learning function

From the above equation, the adjacency matrix can be used to define the struc-
ture of the road network by determining which roads are connected to each other.
However, using distance-based approaches alone to create the initial adjacency ma-

trix can overlook hidden statistical correlations between traffic nodes on the road



network. To address this gap in the literature, our proposed solution utilizes Bi-
variate Copula to create multi-weight adjacency matrices that can capture not only
the correlation between random variables, but also any other significant attributes

pertaining to the entire structure of the road network.

1.3 Objectives

This research aims to enhance spatio-temporal model in term of adjacency

relation.



Chapter 11

RELATED WORK

2.1 Traffic forecast

Numerous studies have been conducted in the field of traffic forecasting, which
can be broadly categorized into two methodologies: classical methods and deep

learning methods.

Classical methodologies for traffic forecasting include classical statistics and
traditional machine learning techniques. Examples of early statistical techniques
used for traffic forecasting include Historical Averages (HA) ?, Auto-Regressive In-
tegrated Moving Average (ARIMA) ?, and Vector Auto-Regressive (VAR) ?. These
models are limited in their ability to accurately forecast traffic due to their reliance
on static assumptions based on linear time series approaches. As a result, they
may not be able to capture the complex, nonlinear patterns that are often present
in traffic data. In contrast, machine learning-based approaches have shown better

performance as they can capture the nonlinear complexity of traffic data.

To capture complex nonlinear relationships, traditional machine learning tech-
niques such as Support Vector Regression (SVR) ?, Random Forest Regression
(RFR) ?, and K-Nearest Neighbor (KNN) ? have been applied to traffic forecast-
ing. Although effective, designing manual features for traditional machine learning
techniques requires expertise and domain knowledge, and may not capture all rele-

vant information in the data, leading to suboptimal performance.

Deep learning approaches have shown promise in capturing complex nonlin-
ear relationships in traffic forecasting. For example, Recurrent Neural Networks

(RNNs), including LSTM and GRU models, have been successfully used to capture



suffer from weaknesses such as error accumulation, slow training, and difficulty
in handling long sequences. Convolutional Neural Networks (CNNs) have gained
significant popularity as a favored option for processing data in parallel with low
memory overhead. In the domain of time series forecasting, CNN-based techniques
such as WaveNet ? and Temporal Convolutional Neural Network (TCN) ? have
been widely used. However, the above-mentioned approaches overlook the spa-
tial correlation of traffic data as a comprehensive reflection of the spatial-temporal

dependence.

Several studies have utilized CNNs to capture the spatial-correlation of traffic
data. Zhang et al. presented ST-ResNet ?, which used a CNN structure to forecast
urban pedestrian traffic. Similarly, Yao et al. developed a spatial-temporal dy-
namic network using CNN and LSTM to forecast New York taxi and cycling data
?. However, CNNss interpret traffic data as Euclidean data, which limits the amount
of spatial correlation they can capture. Since traffic data fundamentally exhibits a
non-Euclidean nature and the road network has its own topology, CNN-based algo-

rithms may not be able to capture all the spatial correlations present in the data.

To address this limitation, Graph Neural Networks (GNNs) have been increas-
ingly used to model non-Euclidean data, proven effective in capturing spatial corre-
lations, particularly in spatial-temporal data. In such modelling techniques, spatio-
temporal correlation is usually captured through the use of RNNs, CNNs, and atten-
tion mechanisms ?. For example, DCRNN ? uses GRU along with diffusion GCN
to represent the spatial correlation of traffic by considering it as a diffusion pro-
cess on directed graphs. On the other hand, urban traffic is a system that undergoes
dynamic changes, representing such dynamics using a fixed graph structure with a
static adjacency matrix is not feasible. To address this limitation and capture dy-
namic spatial correlation, Wu et al. proposed Graph WaveNet ?, which uses GCN

to create an adaptive adjacency matrix.

The adjacency matrix in Graph WaveNet and DCRNN is established using a
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distance-based approach, but statistical methods can also capture correlations be-
tween disconnected nodes, as shown in Figure ??, to extract semantic information.
In our proposed model, we differ from Graph WaveNet by utilizing multi-weight
adjacency matrices obtained from Bivariate Copula which can capture not only the
correlation between random variables but also any other significant attributes per-

taining to the entire structure.

2.2 Adjacency Matrix

Adjacency matrix A = (a;;) € R™*" records the linkage between each node
pair. If node v; and node v; belong to V, and they are connected (e;; € E), then

a;; = 1, otherwise a;; = 0

Distance-based Adjacency Matrix

Previous works ?? defined adjacency matrix from distance-based using

thresholded Gaussian kernel as follow:

i AL
exp (—dlSt(g;’U])> ; if dist(v;,v5) <k

(2.1)

aij =
0 ; otherwise

where:

dist(v;,v;) represents the distance within the road network from detector v; to de-

tector Vj.
o 1is the standard deviation of distances.

% 1is the threshold.
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Self-adaptive Adjacency Matrix

Graph WaveNet propose a self-adaptive adjacency matrix A,q,which does not
necessitate any preexisting knowledge and is learned end-to-end through stochastic
gradient descent. The model discovers hidden spatial dependencies by itself, which
is accomplished by randomly initializing two node embedding dictionaries with

adjustable parameters.
Augp = SoftMax(ReLU(L, L1)) (2.2)

where:

L, is the source node embedding

L, is the target node embedding

Pearson correlation-based Adjacency Matrix

The Pearson correlation coefficient can be utilized as an adjacency matrix
since it measures node correlation. TGANet ? improve Graph Wavenet by applying
the Pearson correlation coeflicient between each node pair by utilizing their histori-
cal data to show hidden correlation between each pair of nodes. Given nodes v; and
v; for instance, the Pearson correlation coeflicient between the historical data £; and
E; from v; and v; can be obtained using Eq. ??, where cov(E;, E;) is the covariance
between E; and Ej, og, and op, are the standard deviations of E; and Ej, up, and

g, are the mean values of E; and Ej, respectively.

The following is a description of the adjacency matrix with correalation-

based:

cov(E;, E;)  E[(Ei — up,)(Ej — pg,)]
I By _ : : 23
CL’L,,] pEz,E] O‘E,; . O-Ej O‘E% . O-Ej ( )
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Gaps in literature

The literature on graph-based models such as Graph WaveNet has focused on
using distance-based approaches to establish adjacency matrices. However, these
methods fail to capture hidden statistical correlations between disconnected nodes,
which can provide valuable semantic information. As shown in Figure ??, statis-
tical methods can be used to extract this information. While Pearson Correlation
is a commonly used measure of correlation, it has limitations, such as only being
applicable to linear regression models. In contrast, our proposed model utilizes
multi-weight adjacency matrices obtained from Bivariate Copula, which can cap-
ture not only correlation but also other significant attributes of the entire structure.
By doing so, our model addresses the gap in the literature by improving upon exist-

ing methods and providing a more complete representation of the data.



Chapter 111

RESEARCH METHODOLOGY

3.1 Hypotheses

Copula functions have been extensively employed across various fields, in-
cluding hydrology, asset pricing, and credit risk management in finance ?. Which,
similar to numerous transportation models that emphasize reliability, this approach
also includes the ranking of random variables, taking into account complex corre-
lations. Simply speaking, Pearson correlation is a measure of the linear association
between two variables. It is used to determine how closely related two variables
are and the direction of the relationship. Pearson correlation ranges from -1 to +1,
where a value of -1 indicates a perfect negative linear relationship, +1 indicates a
perfect positive linear relationship, and O indicates no linear relationship between

the two variables.

On the other hand, Copula is a statistical tool that measures the dependence
structure between two variables. It is used to analyze the relationship between two
variables beyond the linear relationship captured by the Pearson correlation coef-
ficient. Copula allows for a more flexible modeling of the relationship between

variables, as it does not require the variables to follow a particular distribution.

While Pearson correlation measures the linear relationship between variables,
Copula captures the dependence structure between variables, which can be non-
linear or complex. Copula can be especially useful in analyzing complex relation-
ships between variables, such as those that involve multiple variables or variables

that follow non-normal distributions.

Thus, the way to improve better understand in correlation we purpose Cop-

ulas which provide a broader perspective than correlation and are supported by a
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rigorous theoretical foundation. From ? leads us to the conclusion that copulas of-
fer significant advantages over ordinary correlation, as they provide a superior and
more adaptable framework. Additionally, copulas exhibit greater flexibility due to
their lack of restrictions, leading to enhanced computational capabilities. Overall,

copulas represent a more comprehensive form of modeling compared to correlation.

3.2 Concept of Copula

In probability theory, a Copula is a function that describes the dependence
structure between multiple random variables. More specifically, a Copula is a mul-
tivariate distribution function that links the marginal distributions of each variable

to the joint distribution of all the variables.

The Copula function has the important property of being able to separate
the dependence structure between variables from their individual marginal distri-
butions. This means that we can model the joint distribution of variables using a
Copula that takes into account the dependence structure between them, while al-

lowing each variable to have its own marginal distribution.

In other words, a Copula is a way to model the joint distribution of vari-
ables that captures their dependence structure in a way that is independent of their
marginal distributions. Copulas are useful for a variety of applications, including
risk management, finance, insurance, and weather forecasting, to name a few. Sklar
? introduced the concept of copula as a means to model the dependence among

multiple random variables. The concept of copula is described in ? .

Definition 1 (A d-dimensional copula). C : [0,1]¢ — [0, 1] is a cumulative distribu-

tion function (CDF) with uniform mar-ginals.

Given C(u) = C(uy,us,...,uq) for a generic copula and immediately have the

following properties.
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1. C(uy,us, ..., uqg) is non-decreasing in each component, w;.

2. The " marginal distribution is obtained by setting u; = 1 for j # i and

since it it is uniformly distributed

C(l, ceey 1,11,2', 1, ieey 1) = Uy

3. For a; < b, P(Ur € [a1,b1],...,Uq € |ag,bg)) must be non-negative. This

implies the rectangle inequality

2 2
Z . Z (_1)i1+i2+‘..+id g C(u1,i17 ceny U’d,’id) Z 0

i1=1 tq=1

where Uj1 = aj and Uj2 = bj

Likewise, every function that meets properties 1 through 3 is a copula. It is
also simple to prove that C(1,u4,...,us_1) is a (d — 1)-dimension copula and, more
generally that all £-dimensional marginals with 2 < k < d are copulas.We now
recall the definition of the quantile function or generalized inverse: for a CDF, F,

the generalized inverse, F*, is defined as
F(z) :=1inf{v: F(v) >z}

We then have the following well-known result:

Proposition 1. If U ~ U|0,1] and Fy is a CDF, then
P(F(U) <z) = Fx(x)
In the opposite direction, if X has a continuous CDF, Fx, then
Fx(z) ~U[0,1]

Now let X = (Xj, ..., X4) be a multivariate random vector with CDF Fx and

with continuous and increasing marginals. Then by Proposition 1 it follows that



16

the joint distribution of Fx, (X31),..., Fx,(X4) is a copula, Cx say. We can find an

expression for C'y by noting that
Cx(u1, .-y uq) = P(Fx,(X1) < uy, ..., Fix,(Xq) < uq)
= P(X1 < Fx!(u), ..., Xg < Fx ! (uq)) (3.1)

= Fx(Fx!(w), .., Fx ()

If we now let u; := Fx,(z;) then Eq. ?? yields
Fx(l’l, ...,:L’d) oy OX(FX1 (Xl), ceey FXd(Xd))

This is one side of the famous Sklar’s Theorem which we now state formally

Theorem 1 (Sklar’s Theorem 1959). Consider a d-dimensional CDF, F, with

marginals F, . . . , F;. Then there exists a copula, C, such that
F(z1,...,2q) = C(Fx,(X1),..., Fx,(Xy)) 3.2)
forall z; € [~oc0,00] and i = 1, ..., d

If F; is continuous for all i = 1, ..., d, then C' is unique; otherwise C is uniquely
determined only on Ran(F}) x - - - x Ran(F,;) where Ran(F;) denotes the range of the
CDF, F;

In the opposite direction, consider a copula, C, and univariate CDF’s Fi,..., Fp.

Then F as defined Eq. ?? is a multivariate C DF with marginals Fi, ..., Fp. []

3.3 Research Direction

The challenges of this research include which copulas are most suitable for
capturinge real-world scenarios and determining the architecture for cupula-based
adjacency matrix. To address these challenges, we explore different types of bi-
variate copulas to find the best fit for our data. We then use a graph convolutional

network to extract spatial information from the adjacency matrix.
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Types of Bivariate Copula

Bivariate Copula is adapt to show the linkage between random variables es-
pecially, in financial market ?. In general, the theory is employed to merge the
joint probability distribution functions of two arbitrary marginal distributions. The
cumulative distribution functions of two continuous random variables, denoted as
X; and X, are represented by Fy(z1) and Fy(z2). From Eq. ??, a joint bivariate

cumulative distribution function F(x1,x2) is given by:

F(x1,72) = Cp (ur = Fi(z1),u2 = Fa(x2)) (3.3)

Various copula families that have been suggested are described in ??. The two
most commonly employed types are Elliptical copulas and Archimedean copulas.
Archimedean copulas are created from the ground up whereas, Elliptical copulas
borrow the correlation structure from existing multivariate distributions. In par-
ticular, Clayton, Gumbel, Frank are Archimedean copulas. Whearas, Gaussian is

elliptical copula 2.

Different types of bivariate copula functions exhibit varying tail correlation
structures. For instance, the bivariate Gaussian copula demonstrates a symmetric
property, limiting its ability to capture asymmetric dependence structures between
variables. Conversely, the bivariate Gumbel copula is highly responsive to changes
in the upper tail of variable distributions and can quickly capture the upper tailre-
lated changes. The bivariate Frank copula is well-suited for strong central correla-
tion and weak tail correlation. In contrast, the bivariate Clayton copula can capture
lower tail dependence structures in two variables. Consequently, selecting a cop-
ula function that better aligns with the data’s dependence characteristics results in

improved fitting ?.

®,(-) denotes the standard bivariate normal distribution function whose correlation

coefficient matrix is p

®~1(.) is the inverse CDF of the standard normal &(-)
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Name of copula Bivariate copula Parameter 6
Gaussian (D (), (uy)) -
Clayton (up® +uy? —1)7s [—1,00)\{0}
Gumbel exp (— ((=Inuy)? + (—In u2)9)§> [1,00)
1 (e7fur —1)(e7 %2 — 1)
Frank -3 In <1 + ] ) R\{0}

Table 3.1: The characteristics of different bivariate copula functions.

u1,uz denote two arbitrary marginal cumulative distribution functions, with the

copula function’s dependence parameter ranging between [—1, 1]

6 is dependency coefficients

Bivariate Gaussian Copula

The following is a description of the bivariate normal distribution function:
O (ur, uz) = Dp(@" (ur), @ (u2)) (3.4)

where:

®,(-) denotes the standard bivariate normal distribution function whose correlation

coefficient matrix is p
®~1(.) is the inverse CDF of the standard normal &(-)

u1,us denote two arbitrary marginal cumulative distribution functions, with the

copula function’s dependence parameter ranging between [—1, 1]

Due to its symmetrical nature, the Gaussian copula is commonly employed. It
is capable of achieving Fréchet lower and upper bounds and capturing a wide range
of dependence (-1, 1) between multidimensional variables. However, as the extreme
values are approached, the left and right tails tend to zero, making it incapable of

capturing asymmetric correlations between variables.
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Bivariate Clayton Copula

The generator of the copula is ¢(t) = 5(t7% — 1), the joint cumulative distribu-

tion function constructed by Clayton copula can be expressed as:

O (ur,ug) = (up? 4 uy? — 1)"3 (3.5)

The Clayton copula exhibits an asymmetrical density function, forming an L
shape. It is particularly sensitive to left-tail changes and can quickly capture left-
tail-related changes. If the dependence structure between two random variables can
be characterized by the Clayton copula, it signifies a stronger correlation at the left
tail of the distribution. Conversely, at the right tail of the distribution, the variables
approach asymptotic independence. As a result, the Clayton copula demonstrates
limited sensitivity to changes at the right tail and struggles to capture such vari-
ations. The dependency coeflicient range for the Clayton copula function lies in
(0,00). As 0 approaches 0, the random variables u; and us tend towards indepen-
dence. On the other hand, as # tends towards oo, u; and us become completely

correlated.

Bivariate Gumbel Copula

As an instance of an Archimedean copula, the copula’s generator is given by

¢(t) = (= Int)?. The associated Gumbel copula function is defined as follows:

CS" (uy, us) = exp <— ((—mul)@ + (—1an)9)é> (3.6)

The Gumbel copula exhibits an asymmetrical density function, forming a ’J’
shape. It is particularly sensitive to right tail dependence of the variables and can
quickly capture the changes associated with right tail dependence. Specifically, if
the dependence structure between two random variables can be described by the

Gumbel copula, it implies a stronger correlation between the variables at the right
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tail. In the right tail of the distribution, where the variables approach asymptotic
independence, the Gumbel copula demonstrates limited sensitivity to tail changes
and struggles to capture variations in the left tail. The range of the dependency

coefficient lies within (1, co).

Bivariate Frank Copula

When the generator of the Copula is defined as ¢(t) = —In (%), the

resulting Archimedean copula is known as the Frank copula. It can be expressed as

follows:

—0Ou; __ —Ous
CFrank () = _g in (1 L (e ”) 3.7)

The Frank copula exhibits a symmetrical density function, enabling analy-
sis of both positive and negative dependence structures without limitations on the
degree of correlation. It is well-suited for strong central correlation and weak tail
correlation scenarios. The range of the dependency parameter extends from —oo
to oo, while the range of Kendall tau lies within (—1,1). Consequently, the Frank

copula facilitates positive or negative correlation between two variables.

the Graph Convolution Network

From Appendix I, GCN is defined as
Z =AXW (3.8)

where:

A e RVN*N i the normalized adjacency matrix with self-loop
X € R¥*P g the input signal

W € RPXM jg the model parameter matrix
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Z € RV*M js the output

By leveraging the diffusion convolution layer ?, which enables the processing
of graph signals with K finite steps. We generalize its diffusion convolution layer

into the form (??), which results in,
K

Z =Y PFXW; (3.9)

k=0

where:

Pk ¢ RV*N s the power series of the transition matrix

A

in the case an undirected graph P = R A)

in the case an directed graph the diffusion have two directions, forward and

A
backward for the forward transition matrix Py = ————————, the backward
rowsum(A)
AT
transition matrix P, = ———————.
™ rowsum(AT)

By incorporating both the forward and backward transition matrices, the dif-

fusion graph convolution layer can be expressed as follows:
K

7 = (P}“XWM + PkaWkQ) (3.10)
k=0
By integrating predefined spatial dependencies and self-learned hidden graph

dependencies (??), we introduce the following formulation for the graph convolu-

tion layer:
K ~
z=%" (P]’EXWM + PEX Wi + A’;dpxwkg) 3.11)
-0
When the graph structure is unknown and we rely solely on the self-adaptive
adjacency matrix to capture hidden spatial connections, the equation can be ex-

pressed as follows:

K
Z =Y Ak, XW, (3.12)
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Temporal Convolution Layer

To capture the temporal trends of a node, Graph WaveNet use the dilated
causal convolution ? as temporal convolution layer (TCN). By extending the layer
depth, dilated causal convolution networks enable an exponentially huge recep-
tive field. Dilated Casual Convolution Networks are able to handle long-range se-
quences effectively in a non-recursive way, which allows parallel processing and
mitigating the gradient explosion problem, in contrast to RNN-based techniques.
The dilated causal convolution maintains the temporal causal order by padding the
inputs with zeros, ensuring that predictions generated for the current time step only
involve historical data. As a specific instance of the standard 1D-Convolution, the
dilated causal convolution operation involves sliding over the inputs while selec-

tively skipping values at a certain interval.

Figure 3.1: Dilated casual convolution with kernel size 2. With a dilation
factor k.

Given a 1-D sequence input X € R” and a filter f € R, the dilated convolution

operation of X with f at step ¢ can be represented as

=
{7

Xoo () =3 £(0)- X(t—d-i) (3.13)

i
o

where:

d is the dilation factor which controls the skipping distance.

k is the size of the filter.

The receptive field of a model increases exponentially when stacked dilated
causal convolution layers with increasing numbers of dilation factors as shown in
figure (??). This conserves processing resources by allowing dilated causal convo-

lution networks to capture longer sequences with fewer layers.
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Gated TCN: Gating mechanisms are critical in recurrent neural networks. It
has been demonstrated that they are effective in controlling how information moves
between layers in temporal convolution networks as well ?. To understand complex
temporal connections, WaveNet uses Gated TCN in the model. A simple Gated

TCN only contains an output gate. Given the input X € RV*P*5jt takes the form

h=¢g©,*X+b) 000X +¢) (3.14)

where:

©1,02,b,c are model parameters.
© is the element-wise product.
g is an activation function of the outputs.

o is sigmoid function which determines the ratio of information passed to the next

layer.



Chapter 1V

RESEARCH METHODS

METR-LA and PEMS-BAY Datasets

Fit Bivariate
Copulas
Preprocessing
Y
Create

- Graph Structure
(Adjacency Matrix)

ST-CopulaGNN
(Multi-view > Evaluate result
Spatio-Temporal GNN)

Figure 4.1: Flowchart of the framework.

The first step involves preprocessing the raw data and identifying the best-
fitted bivariate copulas for each node pair. The next step is to generate an adjacency
matrix for each family of copulas. The preprocessed data and adjacency matrices
are then used to train a multi-view spatio-temporal graph neural network model.
Finally, the performance of this model is evaluated and compared against previous

methods.

4.1 Fit Copula to Traflic Dataset

In particular, Clayton, Gumbel, Frank are Archimedean copulas. Whereas,
Gaussian is elliptical copulas. Bivariate copulas tend to need just 1 parameter to
specify the shape. In particular Clayton, Gumbel, Frank, Gaussian are 1-parameter

COPUIaS, Whereby eClayton € [_]-7 OO)\{O}, HGumbel S [17 OO), eFrank € R\{O}a PGaussian €
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~1,1].

Bivariate copulas can be thought of as a surface over a square grid, with
u € [0,1] value on the horizontal axis and v € [0,1] value on the vertical axis).
From there, one can distinguish between unidirectional copulas that only depict
positive dependence (generalised from notion of positive Pearson correlation) vs.
bidirectional copulas that can depict negative dependence (generalised from notion
of negative Pearson correlation) as well. For the unidirectional copulas, negative de-
pendence can be accommodated by "flipping” the « value, i.e. working with (—u,v)
instead of the original (u,v) coordinate pair, otherwise designated as making a 90°

rotation.

One can also distinguish between symmetric copulas (upside pattern same as
downside) vs. asymmetric copulas (upside pattern different from downside). For
the asymmetric copulas, different result (better or worse fit) may be achieved by
“flipping” both the u and the v values, i.e. working with (—u,—v) instead of the

original (u,v) coordinate pair, otherwise designated as making a 180° rotation.

Finally for asymmetric and unidirectional copulas, negative dependence can
also be accommodated by "flipping” the v value, i.e. working with (u, —v) instead
of the original (u,v) coordinate pair, otherwise designated as making a 270° rota-
tion, achieving different result (better or worse fit) as compared with making the 90°
rotation. Note also that 180° rotation version of a copula is also/often referred to as

survival copula.

In order to fit the copulas, we must first specify the univariate (marginal) dis-
tribution for each of our n random variables in order to turn data samples into ones
of uniform distribution. Here, the “cleanest” approach is to use the (inverse of)
empirical cdf throughout. Effectively, the original n time series of each detector
become “uniformised”, each resembling a set of Uniform(0, 1) random variates. We
are interested in analysing pair-wise linkages, of which there are @ unique pair-

ings.
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In Figure ??, show empirical cdf between node 80 and node 195 on the top left

then fitted with bivariate copulas (Gaussian, Clayton, Gumbel, Frank) and the best

fitted is Clayton. Then we collect copula parameter 6 to create adjacency matrix.

Node 195

Node 195

Node 195

L I T T T ————
02 04 0.6 08 1

Node 80

Simulation (Clayton) **Best Fitted
. A1,

Node 80

Node 195

Node 195

Node 195

Simulation (Gaussian)

L

0.6

0.4

0.2

% 0.2 04 058 0.8 1
Node 80

Simulation (Gumbel)

0.5

0.6

0.4]

0.2

04 0.8

Node 80

Best Fitted

Node 80

Figure 4.2: Fit copula to nodes 80 and 195 from METR-LA dataset and sim-
ulate to find the best fit.
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4.2 Model Architecture

The ST-CopulaGNN model uses the Graph WaveNet framework as a stacked
spatio-temporal layers, as depicted in Figure ??. The architecture has been modi-
fied by increasing the size of certain internal convolutional layers and adding a skip
connection. To extract data in both realistic and statistical domains, our model con-
sists of two parallel stacked spatial-temporal layers, as shown in Figure ??. Each
spatial-temporal layer, illustrated in Figure ??, comprises a graph convolution layer
(GCN) and a gated temporal convolution layer (Gated TCN) that includes two par-
allel temporal convolution layers (TCN-a and TCN-b).

Time Series
Data

Distance-based C _| Stacked Spatio-Temporal Layers
Adjacency Matrix (Realistic Correlation)

\/

Gaussian Copula
Adjacency Matrix

output

/AR
U

A%'J.Zf;’]‘cgi/‘l’:t'ﬁ‘x 1.4 Stacked Spatio-Temporal Layers
(Statistics Correlation)

Gumbel Copula
Adjacency Matrix

ST-CopulaGNN

Frank Copula
Adjacency Matrix

Figure 4.3: Multi-view model that can capture data from both the realistic
and statistical domains.
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output
N b N LT
) \J k11 \uw) ConviD
ConviD Conv1D ConviD Conv1D
ConviD > Spatio-Temporal _| Spatio-Temporal - _| Spatio-Temporal
f Layer 1 Layer 2 Layer N
input
Stacked Spatio-Temporal Layers
Adjacency
% Matrix
Time Series
Data
Figure 4.4: Stacked Spatio-Temporal layers.
Residual
8
Layer -y ) Layer
input =9 ® > G N output
Gated TCN
Spatio-Temporal Layer

Figure 4.5: Spatio-Temporal layer.
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4.3 Experiment Setting

Baselines

We compare our model with the following models.

* ARIMA: Auto-Regressive Integrated Moving Average model with Kalman
filter.

* SVR: Support Vector Regression. It is a variant method of the support vector
machine model. In this thesis, we use the linear kernel function for traffic

prediction.

* FNN: Feedforward Neural Network is a simple neural network model con-

taining two hidden layers and L2 regularization.

* FCN-LSTM: FCN-LSTM applies LSTM to extract temporal in-formation,

and outputs final prediction using two full-connected layers.

e DCRNN: Diffusion Convolutional Recurrent Neural Network combines re-
current neural networks with diffusion convolution, modeling both inflow and

outflow relationships.

* Graph WaveNet: Graph WaveNet is a convolution network architecture, which
introduces a self-adaptive graph to capture the hidden spatial dependency, and

uses dilated convolution to capture the temporal dependency.

Datasets

Our study employs the traffic dataset that is commonly used in related works

such as Graph WaveNet and DCRNN.

The dataset used in our study, METR-LA, is collected from sensors installed
along the highways in Los Angeles County. These sensors capture the velocity of

passing vehicles, which are then averaged over 5-minute intervals. Our experiments



Table 4.1: Summary statistics of datasets.

Dataset | Nodes Edges Time Range
METR-LA 207 1515 2012/03/01 - 2012/06/27
PEMS-BAY 325 2369  2017/01/01 - 2017/06/30

were conducted on the METR-LA dataset, and we also evaluated the performance
of our modifications on a larger dataset, PEMS-BAY, which consists of 6 months of
data from the Bay Area and have a similar structure to METR-LA. For the informa-

tion of the datasets shown in Table ?? and the geographical location for METR-LA
and PEMS-BAY shown in Figure ?? and Figure ?? respectively.

West
Hollywood
Beverly Hills

Figure 4.6: Map showing the distribution and location of sensors in METR-
LA dataset.
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Figure 4.7: Map showing the distribution and location of sensors in PEMS-
BAY dataset.
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Evaluation Metrics
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Three commonly used metrics in traffic forecasting are used in this thesis,

including

1. Mean Absolute Error (MAE)

1o, .
MAE:nZ;|yi_yi|
1=

2. Root Mean Squared Error (RMSE)

1 n
RMSE = | = i — )2
\l”¢21y Yil

3. Mean Absolute Percentage Error (MAPE)

Ui — Yi
Yi

100% —
MAPE =
O

=1

where:

y; is actual target value.
g; is prediction value.

n is number of datapoints.

(4.1)

(4.2)

4.3)



Chapter V

RESULTS

5.1 Experiment Results

Similar to DCRNN and Graph WaveNet, we divided the data into three sets
for training, validation, and testing, with a ratio of 70%, 10%, and 20% respectively.
The division was based on the chronological order of the data, where the training
set came before the validation set, which in turn preceded the test set. For model
selection and early stopping, we used the MAE on the validation set, but we also

reported the MAE on the test set.

Table 5.1: Comparing the performance of ST-CopulaGNN against other
baseline models.

15 minutes 30 minutes 1 hour
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
METR-LA
ARIMA 4.01  9.64% 8.22 515 12.72% 10.47 691  17.40% 13.20
Support Vector Regression 352 8.79% 7.94 446  11.61% 10.04 5.64 15.88% 12.02
Feedforward Neural Network 3.85  9.49% 7.72 493 12.65% 9.65 6.44  17.06% 11.39
FCN-LSTM 3.49  9.60% 6.32 381 10.97% 7.37 445  13.72% 8.93
DCRNN (Reported) 277  7.30% 5.38 3.15 8.80% 6.45 3.60 10.50% 7.60
Graph WaveNet 243 6.02% 4.44 2.68 7.00% 5.14 3.03 8.18% 6.07
ST-CopulaGNN 239  5.73% 4.40 2.65 6.70% 5.14 3.02 7.88% 6.07
PEMS-BAY
ARIMA 1.65  3.55% 3.40 2.32 5.41% 4.94 3.38 8.30% 6.50
Support Vector Regression 1.53  3.35% 3.35 2.08 4.89% 4.82 2.73 7.06% 6.26
Feedforward Neural Network 1.54 3.27% 3.13 2.10 4.81% 4.43 2.73 6.55% 5.60
FCN-LSTM 2.11  4.86% 4.32 2.25 5.31% 4.62 2.47 5.93% 5.02
DCRNN (Reported) 1.38  2.90% 2.95 1.74 3.90% 3.97 2.07 4.90% 4.74
Graph WaveNet 113 2.33% 2.23 1.39 3.02% 2.93 1.66 3.90% 3.68
ST-CopulaGNN 1.14  2.32% 223 1.38 3.04% 2.87 1.65 3.81% 3.64

Table ?? compares the performance of ST-CopulaGNN and baseline models
for 15 minutes, 30 minutes and 1 hour ahead prediction on METR-LA and PEMS-
BAY datasets. In comparison to other models, ARIMA and SVR (Support Vec-
tor Regression) perform decently but have higher MAE, MAPE, and RMSE values
than ST-CopulaGNN. The Feedforward Neural Network and FCN-LSTM models
also have higher MAE, MAPE, and RMSE values compared to ST-CopulaGNN
for all prediction ranges. When compared to other spatial-temporal models, ST-

CopulaGNN performed better than the previous recurrent-based approach DCRNN
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and the graph neural network approach Graph WaveNet with a slight improvement.
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Figure 5.1: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 15 minutes ahead prediction.
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Figure 5.2: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 30 minutes ahead prediction.



35

7
6
5
4
g
3
2
1
0
o o \ <

>
o W5

175

15.0

MAPE (%)

5.0

25

0.0

10

RMSE

Figure 5.3: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 1 hour ahead prediction.
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Figure 5.4: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 15 minutes ahead prediction.
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Figure 5.5: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 30 minutes ahead prediction.
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Figure 5.6: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 1 hour ahead prediction.
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Starting with the METR-LA dataset, for 15 minutes ahead prediction, ST-
CopulaGNN outperforms all other models, including Graph WaveNet, which was
the previous best performer. ST-CopulaGNN achieves an MAE of 2.39, which is
better than Graph WaveNet’s MAE of 2.43. Similarly, for 30 minutes ahead pre-
diction, our model outperforms all other models, including Graph WaveNet, with
an MAE of 2.65, which is better than Graph WaveNet’'s MAE of 2.68. For 1 hour
ahead prediction, ST-CopulaGNN is again the best performer with an MAE of 3.02,
which is slightly lower than the second-best performing model Graph WaveNet with
an MAE of 3.03. For the PEMS-BAY dataset, ST-CopulaGNN again achieves the
lowest MAE of 1.38 and 1.65 for 30 minutes and 1 hour ahead predictions respec-
tively, which is lower than the previously DCRNN and Graph WaveNet models. The
model also achieves the lowest MAPE of 2.32% and an RMSE of 2.23 for 15 min-
utes ahead prediction, which are both lower than the previously reported models.
Overall, the results suggest that the proposed ST-CopulaGNN model is a promis-
ing method for spatio-temporal traffic forecasting, outperforming several existing

models in terms of accuracy metrics.

This is due to our architecture being designed to effectively detect spatial de-
pendencies across different domains, including realistic and statistical correlations.
Figure ?? displays a comparison of 1-hour-ahead predicted values versus real values
of ST-CopulaGNN and Graph WaveNet on a snapshot of the test data. The results
show that ST-CopulaGNN provides more stable predictions and does not overesti-

mate the values.
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Figure 5.7: Comparison of the prediction curves for a 1-hour-ahead predic-
tion on a snapshot of the METR-LA test data, between ST-CopulaGNN and
Graph WaveNet.

5.2 Effect of Different Adjacency Matrices

Table 5.2: Experimental results of different adjacency matrices (with and
without time lag) configurations on METR-LA dataset for one hour ahead
prediction.

w/o time lag w/ time lag
MAE MAPE RMSE MAE MAPE RMSE
Gaussian  3.016 7.9% 6.047 3.016 8.0% 6.096
Clayton  2.988 7.8% 5.979 2.999 7.8% 6.037
Gumbel 3.019 7.8% 6.055 3.022 7.9% 6.062
Frank  2.992 7.8% 6.019 3.030 8.0% 6.083
Gaussian, Clayton ~ 3.028 7.9% 6.066 3.017 8.0% 6.087
Gaussian, Gumbel  3.000 8.0% 6.055 3.016 8.0% 6.099
Gaussian, Frank  3.001 8.0% 6.052 3.000 7.9% 5.991
Clayton, Gumbel  3.019 7.9% 6.067 2.984 7.8% 5.999
Clayton, Frank  3.016 7.9% 6.085 2.997 7.8% 6.054
Gumbel, Frank  3.047 7.9% 6.158 2.988 7.8% 6.024
Gaussian, Clayton, Gumbel  2.992 7.9% 6.014 3.000 7.9% 6.020
Gaussian, Clayton, Frank ~ 3.027 7.9% 6.091 3.004 7.9% 6.032
Gaussian, Gumbel, Frank  3.018 8.0% 6.122 2.989 7.9% 5.981
Clayton, Gumbel, Frank  3.001 7.9% 6.030 3.019 7.9% 6.067
Gaussian, Clayton, Gumbel, Frank  3.018 7.9% 6.069 2.987 7.8% 6.010

The performance of our proposed ST-CopulaGNN model was evaluated using
different copula adjacency matrices for one hour ahead prediction on METR-LA
dataset. The results are presented in Table ??, which summarizes the mean absolute

error (MAE), mean absolute percentage error (MAPE), and root mean squared error
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(RMSE) for each copula configuration.

Overall, the results indicate that the choice of copula function has a significant
impact on the performance of the model. Among the individual copulas, the Clayton
copula achieved the best results in terms of both MAE (2.988) and RMSE (5.979).
The Frank copula also performed well, achieving an MAE of 2.992 and an RMSE
of 6.019. When using multiple copulas, the combination of Gaussian and Clayton
copulas resulted in an MAE of 3.028 and an RMSE of 6.066, which is slightly
worse than using the Clayton copula alone. The combination of Gaussian and Frank
copulas also performed worse than using the Frank copula alone, with an MAE
of 3.001 and an RMSE of 6.052. The combination of all four copulas (Gaussian,
Clayton, Gumbel, and Frank) resulted in an MAE of 3.018 and an RMSE of 6.069,
which is comparable to using the Clayton copula alone. In summary, the results
suggest that the Clayton copula is the most effective for our ST-CopulaGNN model
when used on METR-LA dataset. However, using multiple copulas can also provide
good results, with the combination of all four copulas performing comparably to

using the Clayton copula alone.

In addition, by staggering paired time-series with time lag on one of the pairs,
the resulting copula relationship is suggestive of information flow. The results show
that the (Clayton, Gumbel), and (Gaussian, Gumbel, Frank) adjacency matrix con-
figurations outperform the other configurations, with the lowest MAE and RMSE
values of 2.984 and 5.999, and 2.989 and 5.981, respectively. These results suggest
that using copula-based adjacency matrix configurations, particularly those that in-
clude Clayton and Gumbel copulas, can improve traffic forecasting accuracy. Ad-
ditionally, the use of paired time-series with time lag may reveal information flow

relationships between the nodes in the network.



Chapter VI

DISCUSSION

6.1 Conclusion

This thesis discusses the application of statistical terms in graph neural net-
works. We present a multi-view spatio-temporal model capable of capturing both
the realistic and statistical domains. By combining graph convolution with dilated
causal convolution, our model effectively and efficiently captures spatial-temporal
dependencies. We also propose an effective method to measure linkage correlation
between pair of nodes involves utilizing Copula, which provides a modern approach
with a rigid structure capable of describing not only the relationship between ran-
dom variables, but also any other properties relevant to the entire structure. We
conducted experiments to determine the best fit copula, both with and without time
lag, and found that the optimal copula varied across time in the METR-LA dataset.
Specifically, we discovered that the Clayton Copula performed best without time
lag. In contrast, with time lag, the combination of Clayton and Gumbel copulas

produced the best results.

6.2 Future Work

In our future research, we aim to investigate scalable techniques for imple-
menting ST-CopulaGNN on large datasets. Additionally, we plan to explore other
statistical approaches, such as Granger causality and different Copula families, to

define the linkage between traffic nodes.



Appendix I

SPECTRAL GRAPH CONVOLUTION

The history of Spectral Graph Convolution is described in ??.

A.1 Overview

In the Fourier domain, the convolution operator on graph - is defined as
9(a)f=F  (Fl@oF(f)=UUTgoU"f) =Ug(MU"f=g(L)f (A.])

where (-) is convolution operator defined on graph, @ is Hadamard product. It
follows that a signal f is filtered by g € R", and denotes gy(A) = diag(U* g) which

the diagonal corresponds to spectral filter coeflicients.

For details,

90 (-c) f=go(L)f = go(UAUT) f = Ugpg(M)U" f

r -

g(A1)

I 9(n)

g(A1)

. (A.2)

U g(AQ) f

i 90 |

[3(\) 1170w
. §(%) f(&)

i g | [ )]
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=17 e | (A3)

Spectral-based GCN all follow this definition of Ugy(A)U? f, the main differ-

ence between different version of Spectral-based GCN lies in the choice of the filter

go(A) 2.

A.2 Spectral CNN

Bruna et al. propose the first spectral convolutional neural network ?. A graph
can be associated with node signal f € R"*C* is a feature matrix with f; € R
representing the feature vector of node i. A construction where each layer £ =
1,2,..., K transforms an input vector f* of size n x C} into an output f**! of size

n X Ck_|_1.

7 =0 (Uzgeg?v”f’“) 4 (Uzges?ff’”) A9
n=1

n=1
where ggl(-?,i =1,2,...,nand j = 1,2,...,C} is a diagonal matrix with trainable
parameters Hﬁ,’f),m € (1,n), o is activation function. ggz(’;) is given by
61"
|
g0\ = , (A.5)

Z?]

A.3 ChebNet

ChebNet ? uses Chebyshev polynomials instead of convolutions in spectral

domain. Furthermore, it was demonstrated that that gy(A) can be approximated by
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a truncated expansion in terms of Chebyshev polynomials.

Thi1(x) = 22T, (x) — Tp—1(x),n € NT, (A.6)
2A

max

where Ty(z) = 1,T1(z) = z. Here, we make A =

— I, € [—1,1], Aoz is the
biggest eigenvalue from £

K-1 _
go(A) = > 0,Ti(A) (A.7)
k=1

where the parameter § € RX Tp(A) € R**". The filtering operator can also be

written as =
g(L)f = Ok Te(L)f (A.8)
k=1

where T (£) € R"*" is the Chebyshev polinomial of order % evaluated at the scaled
2L

max

Laplacian £ = — I,,. Accordingly, spectral filters represented by K** h-order
polynomials of the Laplacian are exactly K-localized, i.e. it depends only on nodes

that are at maximum K steps away from the central node.

Lemma. Let G be a weighted graph, with adjacency matrix A. Let B equal the
adjacency matrix of the binarized graph, i.e. B,,, = 0if 4,,,, = 0 and B,,,, = 1 if
Apn > 0. Let B be the adjacency matrix with unit loops added on every vertex, e.g.

By = B form #n and B,,,, = 1 form = n

Then for each s > 0, (B*),, ,, equals the number of paths of length s connecting
m and n, and (B*),,, equals the numebr of all paths of length » < s connecting m

and n.

The Lemma can be used to demonstrate that matrix elements of low powers of
the graph Laplacian corresponding to sufficiently separated vertices must be zero.
Therefore, dist(v;,v;) > K implies (£X);; = 0, and the spectral filters of ChebNet

are exactly K-localized.
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Accordingly,

g(M)

go(A) =

- - (A9)

i >t O Te(An),

where 6, is a vector of Chebyshev coefficients, which is trainable parameter. Fur-

thermore, Eq. ?? can be deduced as following

K—-1 K-1
F(c)go=goUAUT)F =T 0T (MUT f =Y UGT(A)UT f
k=1 k=1

K-1

k K—-1 k
U6 (Z akcf\k> Utr=> 6 (Z ako]XkUT> f
c=0 k=1 c=0

B
Il
—

= ) . (A.10)
B - _
— Z 0, <Z Qe (UAUT) ) P Z 0Ty (U[\UT) f
k=1 c=0 k=1
K-1
_ 0, T (L) f
k=1

After using Chebyshev polynomial instead of the convolution kernel of the spectral
domain, ChebNet does not need the Laplace matrix is to be eigendecomposed. The

most time-consuming steps are omitted

A.4 Comparison between Spectral CNN and
ChebNet

Assuming that n is the number of nodes.

* The parameter complexity of the SCNN model is very large, and the learning

complexity is O(n), which is easy to overfit when there are many nodes. When
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dealing with large-scale graph data which usually has more than millions of

nodes, it will face great challenges.

* Computing the eigenvalue decomposition of the Laplace matrix is very time-

consuming.

* The convolution kernel of ChebNet has only K learnable parameters 6;,, and
K < n, hence their learning complexity is O(K), the complexity of learnable

parameters is greatly reduced.

* ChebNet does not need the Laplace matrix to be eigendecomposed, instead it
approximate go(£) with a truncated expansion in term of Chebyshev polyno-

mials Ty (z) of K" order.

A5 GCN

GCN ? can be regarded as a further simplification of ChebNet. To reduce
the computational complexity, only the first order Chebyshev polynomials are con-
sidered, consequently each convolution kernel has only one trainable parameter.

Combining with Eq. ??, we have

1
go(A) = Z 0k T (A) (A.11)
k=1
Hence,
Ellczl Qk’Tk(S\l)
S et OkTi(Aa)

9o(A) = _ (A.12)

L leczl eka(S‘n)_
In this linear formulation of a GCN we further approximate )., ~ 2 Under
such approximations, this can simplifies to:

2

E:A L—1I,=L—1, (A.13)
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where £ is normalized graph Laplacian £ = I — D=2 ADz Then,
1 ~ ~ ~
F(6)g =Y OTi(L)f = 0To(L)f + 1 Ti(L) f (A.14)
k=1
where A is an adjacency matrix of the graph. Accordingly,

Fla)g=(0+0(L—1)f = (d—0:(D3ADH)) F (ALS)

Furthermore, to reduce the number of trainable parameters each kernel has only one

trainable parameter, we set 6, = —6, = 6, then we have

J(a)g= (00+01(L ~ 1)) f = (60— 0:(D72AD™H)) f = (6(D7AD™E + 1)) f
(A.16)
where D=2 AD™: + I, now has eigenvalues in the range [0,2]. Then, only one pa-
rameter in convolution kernel can be learned. The number of parameters is greatly

reduced, which can reduce the number of parameters to prevent overfitting.

However, repeated application of this operator can therefore lead to numerical
instabilities and exploding or vanishing gradients. To alleviate this problem, the

following re-normalization trick is introduced.

We add self-loop to A,
A=A+1, (A.17)
Correspondingly,
Dii= zzlz‘,j (A.18)
j=1
Finally,
f(c)g=0D"2AD i f (A.19)

Usually, we write model parameter 6 as W, input signal f as X, A = D :AD s,
then we have

fla)g=Afw

=AXW

(A.20)



Appendix 11

SCRIPTS

B.1 Visualization

1|import pandas as pd

2| import numpy as np

3

4|def create_df correlation (df: pd.DataFrame, method = '
pearson’) :

5 df_pivot_corr = df.corr (method = method)

6 df_corr = pd.melt (df_pivot_corr, ignore_index=False)
.reset_index () .rename (columns = {’index’:’'nodel’, '
variable’ :'node2’})

7

8 # df_corr = df_corr[df_corr[’'nodel’] != df_corr[’
node2’]].copy ()

9 df_corr = df_corr.sort_values ([’'value’, ’'nodel’, '
node2’], ascending=[False, True, True], ignore_index=
True)

10 df_corr[’'nodel’] = df_corr[’'nodel’].astype (int)
11 df_corr['node2’] = df_corr[’'node2’].astype (int)

12

13 return df_corr

14

15

16|def filter_df_correlation(df_corr: pd.DataFrame,
threshold = 0.8):




17

18

19

20

21
22

23

24
25

10

df _corr x = df corr[df _corr[’value’].abs () >

threshold] .copy ()

df_network2 = df_corr.drop(columns = [’'value’]).
merge (df_corr_x, on = ['nodel’, ’'node2’], how = ’'left
")

df_network2[’'value’] = df_network2[’'value’] .where (
df_network2[’value’].isna (), 1) .fillna(0)
df_network2[’'value’] = df_network2[’value’] .where (
df_network2[’'nodel’] != df_network2[’'node2’], 0)

df_pivot_corr2 = pd.pivot_table (df_network2, index=][
"nodel’], columns=['node2’])
df_pivot_corr2.columns = [e[l] for e in

df_pivot_corr2.columns]

return df_pivot_corr2
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Listing B.1: Calculate correlation functions

import matplotlib.pyplot as plt

import seaborn as sns

def plot_corr_heatmap (list_df: list, list_names: list,
ncols = 2, figsize=(32, 24)):

nrows = int (np.ceil(len(list_df)/ncols))

fig, axs = plt.subplots (nrows=nrows, ncols=ncols,

figsize=figsize, squeeze=False)

for i, df in enumerate (list_df) :

sns.heatmap (
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df,
ax = axs[i//ncols] [i%ncols],
vmin=-1, vmax=1l, center=0,
cmap=sns.diverging palette (20, 220, n=300),
square=True,
yticklabels = False,
xticklabels = False
)
axs[i//ncols] [i%ncols] .set (xlabel="Node”, ylabel

="Node")

axs[i//ncols] [i%ncols] .set_title(list_names[i],

fontsize = 36)

fig.tight_layout ()

return fig
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Listing B.2: Plot correlation heatmap

import matplotlib.pyplot as plt

import seaborn as sns

def corrdot (*args, **kwargs) :
corr_r = args[0].corr(args[l], 'pearson’)
corr_text = f"{corr_r:2.2f}" .replace(”0.”, ".")
ax = plt.gca()
ax.set _axis_off()
marker_ size = abs(corr_r) * 10000
ax.scatter ([.5], [.5], marker_size, [corr_r], alpha

=0.6, cmap="coolwarm”,
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vmin=0.4, vmax=1l, transform=ax.transAxes)

# font_size = abs(corr_r) * 40 + 5
font_size = 50
ax.annotate (corr_text, [.5, .5,]1, xycoords="axes
fraction”,
ha='center’, va=’center’, fontsize=

font size)

def plot_corr(df) :
sns.set (style='white’, font_scale=1.6)
g = sns.PairGrid(df, aspect=1.4, diag_sharey=False)
g.map_lower (sns.regplot, lowess=True, ci=False,
line kws={'color’: ’'black’})
g.map_diag(sns.distplot, kde_kws={'color’: ’'black’})

g.map_upper (corrdot)

52

Listing B.3: Plot pairwise correlarion

Copula

library (VineCopula)
library(data.table)

library (readxl)

readFile<— function (PATH) {
data <—- read.csv (PATH)
# Remove NA
data <- data[complete.cases (data), ]

data
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35
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37

continue_job_pair <- function (output_file,
if (!is.null (output_file)) {
if (file.exists (output_file)) {
dfx <- read.csv(output_file)

done at = dim(dfx) [1]

pair) {

final pair = dim(pair) [2] - done_at

output_pair <- pair([, c(done_at+l:final pair)

} else {
output_pair <- pair
}
}
else {
output_pair <- pair
}
output_pair
}
uniformiseRandomVariate<—- function (data, index_col ="
Date”) {
index_data <- data[index_col]
# uData <- data.frame (apply(datal[,c(-1)], MARGIN=2,
FUN=pobs) )
uData <- datal[ , ! (names(data) %in% c(index_col)) ]

uData <- data.frame (apply (uData, 2, function(c) ecdf (c

) (¢)))

uniformData <- cbind(index_data, uData)
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55
56
57
58
59
60
61
62
63
64
65

uniformData

preprocess_row_col_lag <- function(data, coll, col2,

rowlag=NULL, collag=NULL) {

if (!is.null (rowlag) & !is.null (collaqg)) {
print (paste ("Error occurs in collag/rowlag
argument”))
break
}else if (!is.null (rowlag)) {

df_temp <- datal[, c(coll, col2)]
df_temp[col2] <- shift (df_temp[col2], rowlagqg)
df_temp <- tail (df_temp, -rowlag)

df_temp <— na.omit (df_temp)

ul <- df_temp[[coll]]

u2 <— df_temp[[col2]]

}else if (is.null (rowlag) & is.null (collag)) {

df_temp <- datal[, c(coll, col2)]

df_temp <- na.omit (df_temp)

ul <— df_temp[[coll]]

u2 <— df_temp[[col2]]

}else if (!is.null(collag)) {
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77
78
79

80

81

82

83
84

85

86

87

df_temp <- datal[, c(coll, col2)]
df_temp[coll] <- shift(df_temp[coll], collaq)
df_temp <- tail(df_temp, -collag)

df_temp <— na.omit (df_temp)

ul <- df_temp[[coll]]
u2 <— df_temp[[col2]]

}

list (ul, u2)

export_to_dataframe <- function(coll, col2, familyname,
p_indep, AIC, BIC, par, par2, all numid,
goftest=FALSE, p_value=
NULL, stat=NULL, statCvM=NULL,
statKS=NULL, p_valueCvM=
NULL, p_valueKS=NULL,
rowlag=NULL, collag=NULL
) {
if (!is.null (rowlagqg)) {
Cop<—-data.frame (numid=all_numid, ColVariable=
coll, RowLagVariable=col2, CopulaBest=familyname,
CopulaBestPvalueIndep=p_indep,
CopulaBestAIC=AIC,
CopulaBestBIC=BIC,
CopulaBestParaml=par, CopulaBestParamZ=par2)

}else if (is.null (rowlag) & is.null (collaqg)) {
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Cop<—-data.frame (numid=all_numid, ColVariable=
coll, RowVariable=col2, CopulaBest=familyname,
CopulaBestPvalueIndep=p_indep,
CopulaBestAIC=AIC,
CopulaBestBIC=BIC,
CopulaBestParaml=par, CopulaBestParamZ=par?2)
}else if (!is.null(collaqg)) {
Cop<—-data.frame (numid=all_ numid, ColLagVariable=
coll, RowVariable=col2, CopulaBest=familyname,
CopulaBestPvalueIndep=p_indep,
CopulaBestAIC=AIC,
CopulaBestBIC=BIC,
CopulaBestParaml=par, CopulaBestParam2=par?2)

}

if (goftest==TRUE) {
add<—-data.frame (CopulaBestPvalueCvM=p_valueCvl,
CopulaBestPvalue=p_value,
CopulaBestPvalueKS=p_ valueKsS,
statCvM=statCvM, statKS=statKS, stat=stat)

Cop<-cbind (Cop, add)

Cop

fitBiCopula <- function(data, pair, goftest=FALSE,
indeptest=FALSE,
family_ list = c

(1:5,13,14,23,24,33,34),
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rowlag=NULL, collag=NULL,

start_index=NULL, end_index=NULL

index_col="Date”, index_date=
TRUE,
num_saved = 5, output_file ="

output.csv”, num_task = 0) {

# This function fit bivariate copula

# Parameters

# ,,,,,,,,,,

# data: Input data

# start_index: start index

# end_index: end index

# goftest: True=run gof test

# rowlag: number of day lag by row

# collag: number of day lag by column
Cop <= c{()

AIC <— c ()

BIC <- c ()

emptau <— c ()
p_indep <— c()
family <— c ()

par <— c()

par2 <— c()
familyname <- c ()
tau <— c()

beta <- c ()

coll <— c ()

57




135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
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156
157
158
159
160
161
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col2 <— c()

all numid <- c ()

#GoF
p_value<-c ()
stat<—-c ()
p_valueCvM<-c ()
p_valueKS<-c ()
statCvM<—-c ()

statKS<—c ()

#indep

indep_test <- c{()

if (is.null (start_index)) {

start_index <- min (input_data[index_col])

if (is.null (end_index)) {

end_index <- max (input_datal[index_col])

if (index_ date==TRUE) {
start_index<—-as.Date (start_index)
end_index<—as.Date (end_index)
data[index_col] <- as.Date(data[[index col]])
data<—-data[ (data[[index_col]] >= start_ index)
data[[index_col]] <= end_index), ]

} else {

&

(
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164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183

184
185
186
187
188
189

data<—-data[ (data[index_col] >= start_ index) & (datal

index_col] <= end_index), ]

data <- uniformiseRandomVariate (data,

index_col)

data <- data[ , ! (names(data) %in% c(index_col))]

num_pair <- dim(pair) [2]

for (i in c(l:num pair)) {
vli<-pair[l,i]

v2<-pair[2,1i]

numid <— pair[5,1i]

all_numid <- c(all_numid, numid)

u <— preprocess_row_col_lag(data = data, coll = vl,

col2 = v2, rowlag=rowlag, collag=collagqg)

ul <-— ul[l]]

uz2 <-— ul[2]]

set.seed (1234)

PwCop<—-BiCopSelect (ul, u2, family =

family_ list,

selectioncrit = ”"BIC”, indeptest=

indeptest,
rotations = TRUE,
coll<-c(coll,vl)
col2<-c(col2,v2)
AIC<—-c (AIC, PwCopSAIC)
BIC<-c (BIC, PwCop$BIC)

emptau<-c (emptau, PwCopSemptau)

method = "mle’”)
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p_indep<-c (p_indep, PwCopSp.value.indeptest)
family<-c(family, PwCop$Sfamily)
par<-c (par, PwCop$par)
par2<-c (par2, PwCopSpar?2)

familyname<-c (familyname, PwCop$Sfamilyname)
tau<-c (tau, PwCopStau)

beta<-c (beta, PwCopS$Sbeta)

if (goftest==TRUE) {
if (any (PwCopS$family==c
(2,104,114,124,134,204,214,224,234))) {

set.seed (1234)

gof<— BiCopGofTest ( ul, u2, family=PwCopS$Sfamily,

par=PwCopSpar, par2=PwCopSpar2, method = "white”)
p_value<—append (p_value, gofSp.value)
stat<—append (stat, gofS$statistic)
p_valueCvM<—append (p_valueCvM, "NA')
p_valueKS<—append (p_valueKsS, 'NA')
statCvM<—-append (statCvM, 'NA')
statKS<—-append (statKS, '"NA')
}
else if (any (PwCopS$family==c
(7:10,17:20,27:30,37:40))) {

set.seed (1234)

gof<— BiCopGofTest ( ul, u2, family=PwCopS$family,

par=PwCopS$par, par2=PwCopSpar2, method = "kendall”)

p_valueCvM<—-append (p_valueCvM, gofsSp.value.CvM)
p_valueKS<-append (p_valueKS, gofSp.value.KS)
statCvM<—-append (statCvM, gofSstatistic.CvM)

statKS<—append (statKS, gofSstatistic.KS)
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227
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233

234

235

236

237

238

239

p_value<—append (p_value, 'NA')
stat<—append (stat, '"NA')

}

else({
set.seed (1234)
gof<— BiCopGofTest ( ul, u2, family=PwCopS$Sfamily,

par=PwCopS$par, method = "kendall”)

p_valueCvM<-append (p_valueCvM, gofsSp.value.CvM)
p_valueKS<-append (p_valueKS, gofSp.value.KS)
statCvM<—-append (statCvM, gofSstatistic.CvM)
statKS<—-append (statKS, gof$Sstatistic.KS)
p_value<—append(p_value, 'NA')

stat<—append (stat, '"NA')

if (i%%num_saved == 0) {

msg = sprintf (” job%d | %$d/%d”, num_task, i, dim(
pair) [2])

line_task_notify(msg = msq)

if (goftest==TRUE) {
Cop <- export_to_dataframe (coll=coll, col2=
col2, familyname=familyname,
p_indep=p_indep, AIC=AIC, BIC
=BIC, par=par, par2=par2, all numid=all_numid,
goftest=goftest, p_value=p_

value, stat=stat, statCvM=statCvM,
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statKS=statKS, p_valueCvM=p__
valueCvM, p_valueKS=p_ valueKsS,

rowlag=rowlag, collag=collag)

} else {
Cop <- export_to_dataframe (coll=coll, col2=

col2, familyname=familyname,

p_indep=p_indep, AIC=AIC, BIC
=BIC, par=par, par2=par2, all numid=all_numid,

goftest=goftest)

write.csv (Cop, output_file, row.names=FALSE)

if (goftest==TRUE) {
Cop <— export_to _dataframe (coll=coll, col2=col2,
familyname=familyname,
p_indep=p_indep, AIC=AIC, BIC=BIC
, par=par, parZ2=par2, all numid=all_ numid,
goftest=goftest, p_value=p_value,
stat=stat, statCvM=statCvl,
statKS=statKS, p_valueCvM=p__
valueCvM, p_valueKS=p_ valueKsS,
rowlag=rowlag, collag=collag)
} else {
Cop <—- export_to_dataframe(coll=coll, col2=col2,

familyname=familyname,
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p_indep=p_indep, AIC=AIC,
, par=par, parZ2=par2, all_numid=all_numid,
goftest=goftest)
}
write.csv (Cop, output_file, row.names=FALSE)
line task_notify(msg = sprintf (”job %d Done”,

))

Cop

BIC=BIC

num_task
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Listing B.4: Fit Copula script

install.packages ("VineCopula”)

library (VineCopula)

Listing B.5: petanque.R

import rpy2.robjects as ro

import rpy2.robjects as robjects

import numpy as np
import pandas as pd

import itertools

path="/content/petanque.R”
r=ro.r

r.source (path)

Listing B.6: Import ‘petanque.R* to run in Python

def convertlecdf(x: list) —-> np.array:

X = robjects.FloatVector (x)
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fn = r.ecdf (x)
output = fn (x)
output = np.array (output)

return output
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Listing B.7: Normalized data using ecdf

import math
def rotate_points_origin(x, y, angle):
X = np.array (x)
y = np.array(y)
rad = math.radians (angle)
x2 = x*math.cos(rad) - y*math.sin(rad)
y2 = x*math.sin(rad) + y*math.cos (rad)
return x2, y2
def rotate_points(x, y, angle, center = (1/2, 1/2)):
x0 = center[0]
y0 = center[1]
X = np.array (x)
y = np.array (y)
rad = math.radians (angle)
x2 = x0 + (x - x0)*math.cos(rad) - (y - y0)*math.sin(
rad)
y2 = y0 + (y - y0)*math.cos(rad) + (x - x0)*math.sin(
rad)
return x2, y2

Listing B.8: Rotation points in euclidean domain

l|def py_BiCopEst (ul: list, u2: list, family: int):

2

ul = robjects.FloatVector (ul)
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u2 = robjects.FloatVector (u2)
cop = r.BiCopEst (ul, u2, family
d = {key cop.rx2(key) [0]

key != 'call’}

d[’'taildep’] = d[’'taildep’][0]

return cop, d

def py_BiCopGofTest (ul: list, u2: list, family: int, par
= 0, par2 = 0, method = 'white’):
ul = robjects.FloatVector (ul)
u2 = robjects.FloatVector (u2)
gof = r.BiCopGofTest (ul, u2, family = family, par =
par, par2 = par2, method = method)
if method == ’'white’:
try:
d = {e:float (gof.rx2(e) [0]) for e in ['statistic’,
"p.value’]}
except:
d = {e:float (gof.rx2(e)) for e in [’'statistic’, 'p.
value’]}
elif method == ’'kendall’:
try:
d = {e:float (gof.rx2(e) [0]) for e in ['p.value.CvM’

, 'p.value.KS'’, ’'statistic.CvM’,

except:

for e

d {e:float (gof.rx2 (e))

p.value.KS’, ’'statistic.CvM’,

family)

for key in cop.names if

"statistic.KS’]}

in ['p.value.CvM’,

"statistic.KS’]}

!
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return gof, d

def py_BiCopSim(N: int, family: int, par: float, par2:

float = 0) :
simdata = r.BiCopSim (N, family, par, par2)
simdata = np.array(simdata)

return simdata

def py_BiCopSelect (ul: list, u2: list, familyset: list,

selectioncrit = "AIC”,
indeptest = False, level = 0.05,
weights = None, rotations = True,
se = False, presel = True, method = "
mle”) :
ul = robjects.FloatVector (ul)
u2 = robjects.FloatVector (u2)
familyset = robjects.IntVector (familyset)
indeptest = robjects.r ("TRUE”) if indeptest else

robjects.r ("FALSE")

weights = robjects.r ("NA”) if weights is None else
weights
rotations = robjects.r ("TRUE”) if rotations else

robjects.r ("FALSE")

se = robjects.r ("TRUE”) if se else robjects.r ("FALSE
")

presel = robjects.r ("TRUE”) if presel else robjects.

r ("FALSE")
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cop_select = r.BiCopSelect (ul = ul, u2 = u2,

familyset = familyset,

selectioncrit =

selectioncrit,

indeptest = indeptest,

level = level,

weights = weights,

rotations = rotations,
se = se,

presel = presel,
method = method

d = {key : cop_select.rx2(key) [0] for key in
cop_select.names if key != 'call’}

d[’'taildep’] = d[’'taildep’][0]

return cop_select, d

Listing B.9: Call R funtions in Python

import plotly.graph_objects as go

from plotly.subplots import make_subplots

def go_subplot_rotate(x, y, angle_list = [0, 90, 180,
270], coll = None, col2 = None, title = None):
fig = make_subplots (rows=2, cols=2,
subplot_titles = [f”rotation
°” for e in angle_list],
vertical_spacing = 0.15)
for i, angle in enumerate (angle_list):




10
11
12
13

14
15
16
17
18

19
20
21
22

23
24
25

26
27
28

29
30
31

X2, y2 = rotate_points(x, y, angle, center = (1/2,
1/2))
fig.add_trace (go.Scatter (x = x2,

y = v2,

mode = ’'markers’,

showlegend = False,

marker=dict (color='rgba (31,

row = i//2 + 1, col = i%2 + 1)
fig.update_xaxes (title = coll, range = [0, 1])
fig.update_yaxes (title = col2, range = [0, 1])

fig.update_layout (title = title, width = 500*2, height
= 500%*2)
# fig.show ()

return fig

def go_subplot_sim(x, y, family, par, par2, coll = None,

col?2 = None, title = None):

N = len (x)
simdata = py_BiCopSim(N, family = family, par = par,

par2 = par2)

fig = make_subplots (rows=1, cols=2,
subplot_titles = [”"<b>Actual</b>",
"<pb>Simulation</b>"1,

vertical_spacing = 0.15)

fig.add_trace (go.Scatter(x = x,
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fig.add_trace (go.S

fig.update_xaxes (t

fig.update_yaxes (t

Y = Yy
mode = ’'markers’,
showlegend = False,

marker=dict (color='rgba (31,

catter(x = simdatal:, 0],
y = simdatal:, 1],
mode = ’'markers’,
showlegend = False,

marker=dict (color='rgba (31,

=1, col = 2)
itle = coll, range = [0, 1])
itle = col2, range = [0, 1])

fig.update_layout (title = title, width = 500*2, height

= 500*1)
# fig.show ()

return fig
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Listing B.10: Plot simulation data (from copula) and actual data

AN N kW

def go_subplot_sim__

2, coll = None,

fam dict = {1:

set (ul, u2, familyset: list, ncols =

col2 = None, title = None):

"Gaussian’,
"Student t’,
"Clayton’,

"Gumbel’,
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5: '"Frank'’,

6: "Joe'}
N = len (ul)
d_cop = {}
cop_select, d_best = py_BiCopSelect (ul = ul, u2 = u2
, familyset = familyset, rotations = False)
d_cop[”best”] = d_best
subplot_titles = ["<b>Actual</b>"] + [f"<b>
Simulation ({fam_dictle]})</b>" if e !'= d_best][’
family’] else f”<b>Simulation ({fam_dict[e]}) **Best
Fitted</b>" for e in familyset] + [”<b>Best Fitted</b
>Il]
nrows = int (np.ceil((len(familyset) + 2)/ncols))

fig =

make_subplots (rows=nrows,

cols=ncols,

subplot_titles = subplot_titles,

vertical_spacing = 0.08,
# horizontal_spacing = 0.1
)
fig.add_trace (go.Scatter (x = ul,
y = uz,
mode = ’'markers’,
showlegend = False,

marker=dict (color='rgba (149,

63,
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for idx, family in enumerate (familyset) :
idx = idx + 1
cop, d = py_BiCopEst (ul = ul, u2 = u2, family =

family)

simdata = py_BiCopSim (N, family = family, par

d['par’], par2 = d[’'par2’'])

d_coplfamily] = d

fig.add_trace(go.Scatter (x = simdatal[:, 0],
y = simdatal[:, 1],
mode = ’'markers’,

showlegend = False,

marker=dict (color='rgba

row = idx//ncols + 1, col = 1idx%

ncols + 1)

idx = idx + 1

sim_best = py_BiCopSim(N, family = d_best[’'family’],

par = d_best[’'par’], par2 = d_best['par2’])

fig.add_trace (go.Scatter(x = sim _best[:, 0],
y = sim _best[:, 17,
mode = ’'markers’,
showlegend = False,

marker=dict (color='rgba (209,

row = idx//ncols + 1, col = idx%ncols +
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fig.update_xaxes (title coll, range = [0, 1])

fig.update_yaxes (title col2, range = [0, 17])
fig.update_layout (title = title, width = 500*ncols,

height = 500*nrows)

return fig, d_cop
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Listing B.11: Plot simulation data (from all copulas) and actual data

B.3 ST-CopulaGNN

The scripts uploaded to https://github.com/pitikorn32/ST-CopulaGNN.


https://github.com/pitikorn32/ST-CopulaGNN
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