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ประสาทเทียมแบบกราฟสวนมากนิยามแมทริกซประชิดจากระยะหางระหวางจุดของกราฟ
ซึ่งไมสามารถตรวจจับความสัมพันธในเชิงสถิติได การเลือกวัดความสัมพันธระหวางจุดของ
กราฟจึงมีความสำคัญในการทำโมเดลเชิงกราฟ วิทยานิพนธเลมนี้นำเสนอ โครงขายประสาท
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คอปปูลาสามารถแยกความสัมพันธทางสถิติที่ซอนอยูและสรางฟงกชันการแจกแจงหลาย
ตัวแปรเพื่อใหไดความสัมพันธระหวางจุดของการจราจร มีการนำวิธีการสองขั้นตอนมาใช
ประกอบดวยการทดสอบคอปปูลาของสองตัวแปรเพื่อหาคอปปูลาที่เหมาะสมในการนิยาม
ความสัมพันธระหวางคูจุดใด ๆ ในกราฟของการจราจร และนำพารามิเตอรของคอปปูลานั้น
ๆ มาสรางเปนแมทริกซประชิด ขั้นตอนตอมาจะเปนการใชโมเดลโครงขายประสาทเทียมเชิง
กราฟแบบคอนโวลูชันในการสกัดขอมูลเชิงพื้นที่และตรวจจับขอมูลเชิงเวลาดวยไดเลตเต็ดคอ
ซอลคอนโวลูชัน โมเดล ST-CopulaGNN ที่ทางผูจัดทำไดนำเสนอใหประสิทธิภาพที่ดีกวา
โมเดลกอนหนาอยาง DCRNN และ Graph WaveNet ชี้ใหเห็นถึงผลลัพธของการนำคอปปู
ลามาใชในการวิเคราะหการจราจรโดยทดลองบนชุดขอมูล METR-LA และ PEMS-BAY
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SOR : Asst. Prof. SURONAPEE PHOOMVUTHISARN, Ph.D., 0 pp.

Modern cities heavily rely on complex transportation, making accurate traffic

speed prediction crucial for traffic management authorities. Classical methods, in-

cluding statistical techniques and traditional machine learning techniques, fail to

capture complex relationships, while deep learning approaches may have weak-

nesses such as error accumulation, difficulty in handling long sequences, and over-

looking spatial correlations. Graph neural networks (GNNs) have shown promise

in extracting spatial features from non-Euclidean graph structures, but they usu-

ally initialize the adjacency matrix based on distance and may fail to detect hidden

statistical correlations. The choice of correlation measure can have a significant im-

pact on the resulting adjacency matrix and the effectiveness of graph-based models.

This thesis proposes a novel approach for accurately forecasting traffic patterns by

utilizing a multi-view spatio-temporal graph neural network that captures data from

both realistic and statistical domains. Unlike traditional correlation measures such

as Pearson correlation, copula models are utilized to extract hidden statistical cor-

relations and construct multivariate distribution functions to obtain the correlation

relationship among traffic nodes. A two-step approach is adopted, which involves

selecting and testing different types of bivariate copulas to identify the ones that

best fit the traffic data, and utilizing these copulas to create multi-weight adjacency

matrices. The second step involves utilizing a graph convolutional network to ex-

tract spatial information and capturing temporal trends using dilated causal convolu-
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tions. The proposed ST-CopulaGNN model outperforms previous approaches such

as DCRNN and Graph WaveNet, indicating the effectiveness of incorporating cop-

ulas in traffic forecasting. Experiments on the METR-LA and PEMS-BAY datasets

show that the proposed model outperforms previous approaches with a slight im-

provement.
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Chapter I

BACKGROUND

1.1 Background and Problem Review
Urbanization and population growth have led to increasingly complex trans-

portation networks. These networks have become a crucial component of modern

cities infrastructure ?, with millions of people relying on them for daily commuting

and travel. To improve the quality of transportation systems, intelligent transporta-

tion systems (ITS) have emerged as an effective approach. ITS incorporates modern

wireless, electronic, and automated technologies to integrate users, infrastructure,

and vehicles into a seamless and efficient system ?. Many countries have made

significant commitments to developing ITS, which leverage vast amounts of urban

traffic data collected from various sources, including road sensors, taxi and private

car trajectories, and public transportation transaction records ?.

Accurate prediction of traffic speed is essential for traffic management author-

ities to direct vehicles more effectively, improving the smooth operation of the high-

way network. In the domain of traffic forecasting, numerous studies have been con-

ducted, which can be generally classified into two methodologies: classical methods

and deep learning methods. Classical methods include statistical techniques such as

Historical Averages (HA), Auto-Regressive Integrated Moving Average (ARIMA),

and Vector Auto-Regressive (VAR), and traditional machine learning techniques

such as Support Vector Regression (SVR), Random Forest Regression (RFR), and

K-Nearest Neighbor (KNN). These models are limited in their ability to capture

complex, nonlinear patterns in traffic data. On the other hand, deep learning ap-

proaches such as Recurrent Neural Networks (RNNs), Convolutional Neural Net-

works (CNNs) and their variants have shown promise in capturing complex non-

linear relationships in traffic forecasting. However, RNN-based methodologies can



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

exhibit limitations, including the accumulation of errors, slow training, and chal-

lenges in effectively processing long sequences, while CNNs interpret traffic data

as Euclidean data, which limits the amount of spatial correlation they can capture.

Several studies have utilized CNNs to capture the spatial-correlation of traffic data,

but these algorithms may not be able to fully capture all the spatial correlations

present in the data due to the non-Euclidean nature of traffic data and its own topol-

ogy. In recent years, graph neural networks (GNNs) have been widely employed in

traffic speed forecasting due to their efficiency in extracting spatial features repre-

sented by non-Euclidean graph structures. For example, a network of roads naturally

forms a graph, with intersections serving as nodes and connections as edges. The

GNN-based methodology has been expanded to transportation field, making use of

different graph formulations and models like the diffusion convolutional recurrent

neural network (DCRNN) ? and Graph WaveNet ? model.

However, these models usually initialize the adjacency matrix based on dis-

tance, which fails to detect hidden statistical correlation. As a result, the choice of

correlation measure can have a significant impact on the resulting adjacency matrix,

and hence the effectiveness of the graph-based models. In Figure ??, we show the

adjacency matrix from different correlation measures, while Figure ?? represents

the linkage between pairs of nodes that are not connected but have a correlation

in the statistical domain. These figures demonstrate that a number of correlation

measures have been proposed to compute the adjacency matrix, such as Pearson

correlation coefficient, Spearman’s rank correlation, and Kendall’s tau correlation.

These methods construct multivariate distribution functions to obtain the correla-

tion relationship among traffic nodes.

The challenge in modeling the dependence between links in a stochastic trans-

portation network is that it requires specifying a complex dependence structure that

accurately captures the statistical relationships between the variables, which is cru-

cial for effective learning, inference, and representation of the joint distribution of

several links’ travel time. To address this challenge, copula models are utilized in



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Figure 1.1: Different adjacency matrices from METR-LA (with absolute cor-
relation coefficient > 0.75).

this research. Figure ?? shows the Pearson correlation between sample nodes and

scatter plots. Pearson correlation is a measure of the linear association between two

variables. It is used to determine how closely related two variables are and the di-

rection of the relationship, but it cannot capture the dependence structure between

variables. Unlike traditional correlation measures, copulas provide a modern ap-

proach with a rigid structure that can describe not only the relationship between

random variables but also any other properties relevant to the entire structure ?.

This becomes feasible since any multivariate joint distribution can be expressed

using individual marginal distribution functions and a copula, which characterizes

the interdependence between variables, as indicated by Sklar’s theorem. By using

copula models, hidden statistical correlations can be extracted, and multivariate dis-
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Figure 1.2: Adjacency matrix displays pairs of nodes that exhibit strong cor-
relation despite not being directly connected from METR-LA.

tribution functions can be constructed to obtain the correlation relationship among

traffic nodes, leading to more accurate modeling of the stochastic transportation

network.

In this thesis, we propose a novel method that employs a multi-view spatio-

temporal graph neural network model to capture data from both realistic and statis-

tical domains. In this study, we adopt a two-step approach to address the challenge

of capturing real-world scenarios using copulas and designing a copula-based ad-

jacency matrix architecture. The first step involves selecting and testing different

types of bivariate copulas (i.e., Gaussian, Clayton, Gumbel, Frank) to identify the

ones that best fit the traffic data. We then use these copulas to create multi-weight

adjacency matrices that capture the statistical correlations between traffic nodes.

The second step involves utilizing a graph convolutional network to extract spatial
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Figure 1.3: Plots showing pairwise comparisons of randomly selected nodes
from METR-LA. Scatter plots [lower-left], Histograms [diagonal], Pearson
Correlation [upper-right]

information from the preprocessed data and adjacency matrices, and capturing tem-

poral trends using dilated causal convolutions as temporal convolution layer. This

approach enables us to train a multi-view spatio-temporal graph neural network

model that can accurately forecast traffic patterns.

1.2 Statement of Problem
Traffic forecasting is a time series prediction challenge. The initial adjacency

matrix created to serves as the prior knowledge. We can define it as a graph G

G = (V,E,A)

where:

V is the set of nodes, where each node corresponds to an observation point (such
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as a sensor or road segment).

E is the set of edges. In graph G, the edges represent the connections between the

nodes, while the edge weights denote the distances between the respective

nodes.

A ∈ Rn×n is adjacency matrix of graph G

The objective of traffic forecasting is to predict the upcoming traffic sequence.

X
(t+1)
G , X

(t+2)
G , . . . , X

(t+T ′)
G using a historical data X

(t−T+1)
G , X

(t−T+2)
G , . . . , X

(t)
G

where:

X
(t)
G ∈ RN×C is the the observation of graph G at time step t

C is the number of features

T is the length of window to capture historical data and

T ′ is the prediction length

We can defined the problem for traffic forecast as:

(
X

(t−T+1)
G , X

(t−T+2)
G , . . . , X

(t)
G

)
f−→
(
X

(t+1)
G , X

(t+2)
G , . . . , X

(t+T ′)
G

)
where:

f is the learning function

From the above equation, the adjacency matrix can be used to define the struc-

ture of the road network by determining which roads are connected to each other.

However, using distance-based approaches alone to create the initial adjacency ma-

trix can overlook hidden statistical correlations between traffic nodes on the road
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network. To address this gap in the literature, our proposed solution utilizes Bi-

variate Copula to create multi-weight adjacency matrices that can capture not only

the correlation between random variables, but also any other significant attributes

pertaining to the entire structure of the road network.

1.3 Objectives
This research aims to enhance spatio-temporal model in term of adjacency

relation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

RELATED WORK

2.1 Traffic forecast
Numerous studies have been conducted in the field of traffic forecasting, which

can be broadly categorized into two methodologies: classical methods and deep

learning methods.

Classical methodologies for traffic forecasting include classical statistics and

traditional machine learning techniques. Examples of early statistical techniques

used for traffic forecasting include Historical Averages (HA) ?, Auto-Regressive In-

tegrated Moving Average (ARIMA) ?, and Vector Auto-Regressive (VAR) ?. These

models are limited in their ability to accurately forecast traffic due to their reliance

on static assumptions based on linear time series approaches. As a result, they

may not be able to capture the complex, nonlinear patterns that are often present

in traffic data. In contrast, machine learning-based approaches have shown better

performance as they can capture the nonlinear complexity of traffic data.

To capture complex nonlinear relationships, traditional machine learning tech-

niques such as Support Vector Regression (SVR) ?, Random Forest Regression

(RFR) ?, and K-Nearest Neighbor (KNN) ? have been applied to traffic forecast-

ing. Although effective, designing manual features for traditional machine learning

techniques requires expertise and domain knowledge, and may not capture all rele-

vant information in the data, leading to suboptimal performance.

Deep learning approaches have shown promise in capturing complex nonlin-

ear relationships in traffic forecasting. For example, Recurrent Neural Networks

(RNNs), including LSTM and GRU models, have been successfully used to capture

the temporal features of traffic data ????. However, RNN-based approaches may



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

suffer from weaknesses such as error accumulation, slow training, and difficulty

in handling long sequences. Convolutional Neural Networks (CNNs) have gained

significant popularity as a favored option for processing data in parallel with low

memory overhead. In the domain of time series forecasting, CNN-based techniques

such as WaveNet ? and Temporal Convolutional Neural Network (TCN) ? have

been widely used. However, the above-mentioned approaches overlook the spa-

tial correlation of traffic data as a comprehensive reflection of the spatial-temporal

dependence.

Several studies have utilized CNNs to capture the spatial-correlation of traffic

data. Zhang et al. presented ST-ResNet ?, which used a CNN structure to forecast

urban pedestrian traffic. Similarly, Yao et al. developed a spatial-temporal dy-

namic network using CNN and LSTM to forecast New York taxi and cycling data

?. However, CNNs interpret traffic data as Euclidean data, which limits the amount

of spatial correlation they can capture. Since traffic data fundamentally exhibits a

non-Euclidean nature and the road network has its own topology, CNN-based algo-

rithms may not be able to capture all the spatial correlations present in the data.

To address this limitation, Graph Neural Networks (GNNs) have been increas-

ingly used to model non-Euclidean data, proven effective in capturing spatial corre-

lations, particularly in spatial-temporal data. In such modelling techniques, spatio-

temporal correlation is usually captured through the use of RNNs, CNNs, and atten-

tion mechanisms ?. For example, DCRNN ? uses GRU along with diffusion GCN

to represent the spatial correlation of traffic by considering it as a diffusion pro-

cess on directed graphs. On the other hand, urban traffic is a system that undergoes

dynamic changes, representing such dynamics using a fixed graph structure with a

static adjacency matrix is not feasible. To address this limitation and capture dy-

namic spatial correlation, Wu et al. proposed Graph WaveNet ?, which uses GCN

to create an adaptive adjacency matrix.

The adjacency matrix in Graph WaveNet and DCRNN is established using a
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distance-based approach, but statistical methods can also capture correlations be-

tween disconnected nodes, as shown in Figure ??, to extract semantic information.

In our proposed model, we differ from Graph WaveNet by utilizing multi-weight

adjacency matrices obtained from Bivariate Copula which can capture not only the

correlation between random variables but also any other significant attributes per-

taining to the entire structure.

2.2 Adjacency Matrix
Adjacency matrix A = (aij) ∈ Rn×n records the linkage between each node

pair. If node vi and node vj belong to V , and they are connected (eij ∈ E), then

aij = 1, otherwise aij = 0

Distance-based Adjacency Matrix
Previous works ?? defined adjacency matrix from distance-based using

thresholded Gaussian kernel as follow:

aij =


exp

(
−dist(vi, vj)2

σ2

)
; if dist(vi, vj) ≤ κ

0 ; otherwise
(2.1)

where:

dist(vi, vj) represents the distance within the road network from detector vi to de-

tector vj .

σ is the standard deviation of distances.

κ is the threshold.
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Self-adaptive Adjacency Matrix
Graph WaveNet propose a self-adaptive adjacency matrix Ãadpwhich does not

necessitate any preexisting knowledge and is learned end-to-end through stochastic

gradient descent. The model discovers hidden spatial dependencies by itself, which

is accomplished by randomly initializing two node embedding dictionaries with

adjustable parameters.

Ãadp = SoftMax(ReLU(L1L
T
2 )) (2.2)

where:

L1 is the source node embedding

L2 is the target node embedding

Pearson correlation-based Adjacency Matrix
The Pearson correlation coefficient can be utilized as an adjacency matrix

since it measures node correlation. TGANet ? improve Graph Wavenet by applying

the Pearson correlation coefficient between each node pair by utilizing their histori-

cal data to show hidden correlation between each pair of nodes. Given nodes vi and

vj for instance, the Pearson correlation coefficient between the historical data Ei and

Ej from vi and vj can be obtained using Eq. ??, where cov(Ei, Ej) is the covariance

between Ei and Ej , σEi
and σEj

are the standard deviations of Ei and Ej , µEi
and

µEj
are the mean values of Ei and Ej , respectively.

The following is a description of the adjacency matrix with correalation-

based:

ai,j = ρEi,Ej
=

cov(Ei, Ej)

σEi
· σEj

=
E
[
(Ei − µEi

)(Ej − µEj
)
]

σEi
· σEj

(2.3)
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Gaps in literature
The literature on graph-based models such as Graph WaveNet has focused on

using distance-based approaches to establish adjacency matrices. However, these

methods fail to capture hidden statistical correlations between disconnected nodes,

which can provide valuable semantic information. As shown in Figure ??, statis-

tical methods can be used to extract this information. While Pearson Correlation

is a commonly used measure of correlation, it has limitations, such as only being

applicable to linear regression models. In contrast, our proposed model utilizes

multi-weight adjacency matrices obtained from Bivariate Copula, which can cap-

ture not only correlation but also other significant attributes of the entire structure.

By doing so, our model addresses the gap in the literature by improving upon exist-

ing methods and providing a more complete representation of the data.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

RESEARCH METHODOLOGY

3.1 Hypotheses
Copula functions have been extensively employed across various fields, in-

cluding hydrology, asset pricing, and credit risk management in finance ?. Which,

similar to numerous transportation models that emphasize reliability, this approach

also includes the ranking of random variables, taking into account complex corre-

lations. Simply speaking, Pearson correlation is a measure of the linear association

between two variables. It is used to determine how closely related two variables

are and the direction of the relationship. Pearson correlation ranges from -1 to +1,

where a value of -1 indicates a perfect negative linear relationship, +1 indicates a

perfect positive linear relationship, and 0 indicates no linear relationship between

the two variables.

On the other hand, Copula is a statistical tool that measures the dependence

structure between two variables. It is used to analyze the relationship between two

variables beyond the linear relationship captured by the Pearson correlation coef-

ficient. Copula allows for a more flexible modeling of the relationship between

variables, as it does not require the variables to follow a particular distribution.

While Pearson correlation measures the linear relationship between variables,

Copula captures the dependence structure between variables, which can be non-

linear or complex. Copula can be especially useful in analyzing complex relation-

ships between variables, such as those that involve multiple variables or variables

that follow non-normal distributions.

Thus, the way to improve better understand in correlation we purpose Cop-

ulas which provide a broader perspective than correlation and are supported by a



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

rigorous theoretical foundation. From ? leads us to the conclusion that copulas of-

fer significant advantages over ordinary correlation, as they provide a superior and

more adaptable framework. Additionally, copulas exhibit greater flexibility due to

their lack of restrictions, leading to enhanced computational capabilities. Overall,

copulas represent a more comprehensive form of modeling compared to correlation.

3.2 Concept of Copula
In probability theory, a Copula is a function that describes the dependence

structure between multiple random variables. More specifically, a Copula is a mul-

tivariate distribution function that links the marginal distributions of each variable

to the joint distribution of all the variables.

The Copula function has the important property of being able to separate

the dependence structure between variables from their individual marginal distri-

butions. This means that we can model the joint distribution of variables using a

Copula that takes into account the dependence structure between them, while al-

lowing each variable to have its own marginal distribution.

In other words, a Copula is a way to model the joint distribution of vari-

ables that captures their dependence structure in a way that is independent of their

marginal distributions. Copulas are useful for a variety of applications, including

risk management, finance, insurance, and weather forecasting, to name a few. Sklar

? introduced the concept of copula as a means to model the dependence among

multiple random variables. The concept of copula is described in ? .

Definition 1 (A d-dimensional copula). C : [0, 1]d → [0, 1] is a cumulative distribu-

tion function (CDF ) with uniform mar-ginals.

Given C(u) = C(u1, u2, ..., ud) for a generic copula and immediately have the

following properties.
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1. C(u1, u2, ..., ud) is non-decreasing in each component, ui.

2. The ith marginal distribution is obtained by setting uj = 1 for j ̸= i and

since it it is uniformly distributed

C(1, ..., 1, ui, 1, ..., 1) = ui

3. For ai ≤ bi, Pi(U1 ∈ [a1, b1], ..., Ud ∈ [ad, bd]) must be non-negative. This

implies the rectangle inequality

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+i2+...+id · C(u1,i1 , ..., ud,id) ≥ 0

where uj,1 = aj and uj,2 = bj

Likewise, every function that meets properties 1 through 3 is a copula. It is

also simple to prove that C(1, u1, ..., ud−1) is a (d − 1)-dimension copula and, more

generally that all k-dimensional marginals with 2 ≤ k ≤ d are copulas.We now

recall the definition of the quantile function or generalized inverse: for a CDF , F ,

the generalized inverse, F←, is defined as

F←(x) := inf{v : F (v) ≥ x}

We then have the following well-known result:

Proposition 1. If U ∼ U [0, 1] and FX is a CDF , then

P (F←(U) ≤ x) = FX(x)

In the opposite direction, if X has a continuous CDF , FX , then

FX(x) ∼ U [0, 1]

Now let X = (X1, ..., Xd) be a multivariate random vector with CDF FX and

with continuous and increasing marginals. Then by Proposition 1 it follows that
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the joint distribution of FX1
(X1), ..., FXd

(Xd) is a copula, CX say. We can find an

expression for CX by noting that

CX(u1, ..., ud) = P (FX1
(X1) ≤ u1, ..., FXd

(Xd) ≤ ud)

= P (X1 ≤ F−1X1
(u1), ..., Xd ≤ F−1Xd

(ud))

= FX(F−1X1
(u1), ..., F

−1
Xd

(ud))

(3.1)

If we now let uj := FXj
(xj) then Eq. ?? yields

FX(x1, ..., xd) = CX(FX1
(X1), ..., FXd

(Xd))

This is one side of the famous Sklar’s Theorem which we now state formally

Theorem 1 (Sklar’s Theorem 1959). Consider a d-dimensional CDF , F , with

marginals F1, . . . , Fd. Then there exists a copula, C, such that

F (x1, ..., xd) = C(FX1
(X1), ..., FXd

(Xd)) (3.2)

for all xi ∈ [−∞,∞] and i = 1, ..., d

If Fi is continuous for all i = 1, ..., d, then C is unique; otherwise C is uniquely

determined only on Ran(F1)×· · ·×Ran(Fd) where Ran(Fi) denotes the range of the

CDF , Fi

In the opposite direction, consider a copula, C, and univariate CDF ’s F1, ..., FD.

Then F as defined Eq. ?? is a multivariate CDF with marginals F1, ..., FD.

3.3 Research Direction
The challenges of this research include which copulas are most suitable for

capturinge real-world scenarios and determining the architecture for cupula-based

adjacency matrix. To address these challenges, we explore different types of bi-

variate copulas to find the best fit for our data. We then use a graph convolutional

network to extract spatial information from the adjacency matrix.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

Types of Bivariate Copula
Bivariate Copula is adapt to show the linkage between random variables es-

pecially, in financial market ?. In general, the theory is employed to merge the

joint probability distribution functions of two arbitrary marginal distributions. The

cumulative distribution functions of two continuous random variables, denoted as

X1 and X2, are represented by F1(x1) and F2(x2). From Eq. ??, a joint bivariate

cumulative distribution function F (x1, x2) is given by:

F (x1, x2) = Cθ (u1 = F1(x1), u2 = F2(x2)) (3.3)

Various copula families that have been suggested are described in ??. The two

most commonly employed types are Elliptical copulas and Archimedean copulas.

Archimedean copulas are created from the ground up whereas, Elliptical copulas

borrow the correlation structure from existing multivariate distributions. In par-

ticular, Clayton, Gumbel, Frank are Archimedean copulas. Whearas, Gaussian is

elliptical copula ?.

Different types of bivariate copula functions exhibit varying tail correlation

structures. For instance, the bivariate Gaussian copula demonstrates a symmetric

property, limiting its ability to capture asymmetric dependence structures between

variables. Conversely, the bivariate Gumbel copula is highly responsive to changes

in the upper tail of variable distributions and can quickly capture the upper tailre-

lated changes. The bivariate Frank copula is well-suited for strong central correla-

tion and weak tail correlation. In contrast, the bivariate Clayton copula can capture

lower tail dependence structures in two variables. Consequently, selecting a cop-

ula function that better aligns with the data’s dependence characteristics results in

improved fitting ?.

Φρ(·) denotes the standard bivariate normal distribution function whose correlation

coefficient matrix is ρ

Φ−1(·) is the inverse CDF of the standard normal Φ(·)
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Name of copula Bivariate copula Parameter θ
Gaussian Φρ(Φ

−1(u1),Φ
−1(u2)) -

Clayton (u−θ1 + u−θ2 − 1)−
1
θ [−1,∞)\{0}

Gumbel exp
(
−
(
(− lnu1)

θ + (− lnu2)
θ
) 1

θ

)
[1,∞)

Frank −1

θ
ln
(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
R\{0}

Table 3.1: The characteristics of different bivariate copula functions.

u1, u2 denote two arbitrary marginal cumulative distribution functions, with the

copula function’s dependence parameter ranging between [−1, 1]

θ is dependency coefficients

Bivariate Gaussian Copula

The following is a description of the bivariate normal distribution function:

CGauss
ρ (u1, u2) = Φρ(Φ

−1(u1),Φ
−1(u2)) (3.4)

where:

Φρ(·) denotes the standard bivariate normal distribution function whose correlation

coefficient matrix is ρ

Φ−1(·) is the inverse CDF of the standard normal Φ(·)

u1, u2 denote two arbitrary marginal cumulative distribution functions, with the

copula function’s dependence parameter ranging between [−1, 1]

Due to its symmetrical nature, the Gaussian copula is commonly employed. It

is capable of achieving Fréchet lower and upper bounds and capturing a wide range

of dependence (−1, 1) between multidimensional variables. However, as the extreme

values are approached, the left and right tails tend to zero, making it incapable of

capturing asymmetric correlations between variables.
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Bivariate Clayton Copula

The generator of the copula is φ(t) = 1
θ (t
−θ − 1), the joint cumulative distribu-

tion function constructed by Clayton copula can be expressed as:

CCl
θ (u1, u2) = (u−θ1 + u−θ2 − 1)−

1

θ (3.5)

The Clayton copula exhibits an asymmetrical density function, forming an ”L”

shape. It is particularly sensitive to left-tail changes and can quickly capture left-

tail-related changes. If the dependence structure between two random variables can

be characterized by the Clayton copula, it signifies a stronger correlation at the left

tail of the distribution. Conversely, at the right tail of the distribution, the variables

approach asymptotic independence. As a result, the Clayton copula demonstrates

limited sensitivity to changes at the right tail and struggles to capture such vari-

ations. The dependency coefficient range for the Clayton copula function lies in

(0,∞). As θ approaches 0, the random variables u1 and u2 tend towards indepen-

dence. On the other hand, as θ tends towards ∞, u1 and u2 become completely

correlated.

Bivariate Gumbel Copula

As an instance of an Archimedean copula, the copula’s generator is given by

φ(t) = (− ln t)θ. The associated Gumbel copula function is defined as follows:

CGu
θ (u1, u2) = exp

(
−
(
(− lnu1)

θ + (− lnu2)
θ
) 1

θ

)
(3.6)

The Gumbel copula exhibits an asymmetrical density function, forming a ’J’

shape. It is particularly sensitive to right tail dependence of the variables and can

quickly capture the changes associated with right tail dependence. Specifically, if

the dependence structure between two random variables can be described by the

Gumbel copula, it implies a stronger correlation between the variables at the right
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tail. In the right tail of the distribution, where the variables approach asymptotic

independence, the Gumbel copula demonstrates limited sensitivity to tail changes

and struggles to capture variations in the left tail. The range of the dependency

coefficient lies within (1,∞).

Bivariate Frank Copula

When the generator of the Copula is defined as φ(t) = − ln
(

exp (−θt)−1
exp (−θ)−1

)
, the

resulting Archimedean copula is known as the Frank copula. It can be expressed as

follows:

CFrank
θ (u1, u2) = −1

θ
ln
(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
(3.7)

The Frank copula exhibits a symmetrical density function, enabling analy-

sis of both positive and negative dependence structures without limitations on the

degree of correlation. It is well-suited for strong central correlation and weak tail

correlation scenarios. The range of the dependency parameter extends from −∞

to ∞, while the range of Kendall tau lies within (−1, 1). Consequently, the Frank

copula facilitates positive or negative correlation between two variables.

the Graph Convolution Network
From Appendix I, GCN is defined as

Z = ÂXW (3.8)

where:

Â ∈ RN×N is the normalized adjacency matrix with self-loop

X ∈ RN×D is the input signal

W ∈ RD×M is the model parameter matrix
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Z ∈ RN×M is the output

By leveraging the diffusion convolution layer ?, which enables the processing

of graph signals with K finite steps. We generalize its diffusion convolution layer

into the form (??), which results in,

Z =

K∑
k=0

P kXWk (3.9)

where:

P k ∈ RN×N is the power series of the transition matrix

in the case an undirected graph P =
A

rowsum(A)
.

in the case an directed graph the diffusion have two directions, forward and

backward for the forward transition matrix Pf =
A

rowsum(A)
, the backward

transition matrix Pb =
AT

rowsum(AT )
.

By incorporating both the forward and backward transition matrices, the dif-

fusion graph convolution layer can be expressed as follows:

Z =

K∑
k=0

(
P k
f XWk1 + P k

b XWk2

)
(3.10)

By integrating predefined spatial dependencies and self-learned hidden graph

dependencies (??), we introduce the following formulation for the graph convolu-

tion layer:

Z =

K∑
k=0

(
P k
f XWk1 + P k

b XWk2 + Ãk
adpXWk3

)
(3.11)

When the graph structure is unknown and we rely solely on the self-adaptive

adjacency matrix to capture hidden spatial connections, the equation can be ex-

pressed as follows:

Z =

K∑
k=0

Ãk
adpXWk (3.12)
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Temporal Convolution Layer
To capture the temporal trends of a node, Graph WaveNet use the dilated

causal convolution ? as temporal convolution layer (TCN). By extending the layer

depth, dilated causal convolution networks enable an exponentially huge recep-

tive field. Dilated Casual Convolution Networks are able to handle long-range se-

quences effectively in a non-recursive way, which allows parallel processing and

mitigating the gradient explosion problem, in contrast to RNN-based techniques.

The dilated causal convolution maintains the temporal causal order by padding the

inputs with zeros, ensuring that predictions generated for the current time step only

involve historical data. As a specific instance of the standard 1D-Convolution, the

dilated causal convolution operation involves sliding over the inputs while selec-

tively skipping values at a certain interval.

Figure 3.1: Dilated casual convolution with kernel size 2. With a dilation
factor k.

Given a 1-D sequence input X ∈ RT and a filter f ∈ Rk, the dilated convolution

operation of X with f at step t can be represented as

X ∗ f(t) =
k−1∑
i=0

f(i) ·X(t− d · i) (3.13)

where:

d is the dilation factor which controls the skipping distance.

k is the size of the filter.

The receptive field of a model increases exponentially when stacked dilated

causal convolution layers with increasing numbers of dilation factors as shown in

figure (??). This conserves processing resources by allowing dilated causal convo-

lution networks to capture longer sequences with fewer layers.
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Gated TCN: Gating mechanisms are critical in recurrent neural networks. It

has been demonstrated that they are effective in controlling how information moves

between layers in temporal convolution networks as well ?. To understand complex

temporal connections, WaveNet uses Gated TCN in the model. A simple Gated

TCN only contains an output gate. Given the input X ∈ RN×D×S , it takes the form

h = g(Θ1 ∗X + b)⊙ σ(Θ1 ∗X + c) (3.14)

where:

Θ1,Θ2, b, c are model parameters.

⊙ is the element-wise product.

g is an activation function of the outputs.

σ is sigmoid function which determines the ratio of information passed to the next

layer.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

RESEARCH METHODS

Figure 4.1: Flowchart of the framework.

The first step involves preprocessing the raw data and identifying the best-

fitted bivariate copulas for each node pair. The next step is to generate an adjacency

matrix for each family of copulas. The preprocessed data and adjacency matrices

are then used to train a multi-view spatio-temporal graph neural network model.

Finally, the performance of this model is evaluated and compared against previous

methods.

4.1 Fit Copula to Traffic Dataset
In particular, Clayton, Gumbel, Frank are Archimedean copulas. Whereas,

Gaussian is elliptical copulas. Bivariate copulas tend to need just 1 parameter to

specify the shape. In particular Clayton, Gumbel, Frank, Gaussian are 1-parameter

copulas, whereby θClayton ∈ [−1,∞)\{0}, θGumbel ∈ [1,∞), θFrank ∈ R\{0}, ρGaussian ∈
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[−1, 1].

Bivariate copulas can be thought of as a surface over a square grid, with

u ∈ [0, 1] value on the horizontal axis and v ∈ [0, 1] value on the vertical axis).

From there, one can distinguish between unidirectional copulas that only depict

positive dependence (generalised from notion of positive Pearson correlation) vs.

bidirectional copulas that can depict negative dependence (generalised from notion

of negative Pearson correlation) as well. For the unidirectional copulas, negative de-

pendence can be accommodated by ”flipping” the u value, i.e. working with (−u, v)

instead of the original (u, v) coordinate pair, otherwise designated as making a 90◦

rotation.

One can also distinguish between symmetric copulas (upside pattern same as

downside) vs. asymmetric copulas (upside pattern different from downside). For

the asymmetric copulas, different result (better or worse fit) may be achieved by

”flipping” both the u and the v values, i.e. working with (−u,−v) instead of the

original (u, v) coordinate pair, otherwise designated as making a 180◦ rotation.

Finally for asymmetric and unidirectional copulas, negative dependence can

also be accommodated by ”flipping” the v value, i.e. working with (u,−v) instead

of the original (u, v) coordinate pair, otherwise designated as making a 270◦ rota-

tion, achieving different result (better or worse fit) as compared with making the 90◦

rotation. Note also that 180◦ rotation version of a copula is also/often referred to as

survival copula.

In order to fit the copulas, we must first specify the univariate (marginal) dis-

tribution for each of our n random variables in order to turn data samples into ones

of uniform distribution. Here, the ”cleanest” approach is to use the (inverse of)

empirical cdf throughout. Effectively, the original n time series of each detector

become “uniformised”, each resembling a set of Uniform(0, 1) random variates. We

are interested in analysing pair-wise linkages, of which there are n(n−1)
2 unique pair-

ings.
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In Figure ??, show empirical cdf between node 80 and node 195 on the top left

then fitted with bivariate copulas (Gaussian, Clayton, Gumbel, Frank) and the best

fitted is Clayton. Then we collect copula parameter θ to create adjacency matrix.

Figure 4.2: Fit copula to nodes 80 and 195 from METR-LA dataset and sim-
ulate to find the best fit.
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4.2 Model Architecture
The ST-CopulaGNN model uses the Graph WaveNet framework as a stacked

spatio-temporal layers, as depicted in Figure ??. The architecture has been modi-

fied by increasing the size of certain internal convolutional layers and adding a skip

connection. To extract data in both realistic and statistical domains, our model con-

sists of two parallel stacked spatial-temporal layers, as shown in Figure ??. Each

spatial-temporal layer, illustrated in Figure ??, comprises a graph convolution layer

(GCN) and a gated temporal convolution layer (Gated TCN) that includes two par-

allel temporal convolution layers (TCN-a and TCN-b).

Figure 4.3: Multi-view model that can capture data from both the realistic
and statistical domains.
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Figure 4.4: Stacked Spatio-Temporal layers.

Figure 4.5: Spatio-Temporal layer.
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4.3 Experiment Setting

Baselines
We compare our model with the following models.

• ARIMA: Auto-Regressive Integrated Moving Average model with Kalman

filter.

• SVR: Support Vector Regression. It is a variant method of the support vector

machine model. In this thesis, we use the linear kernel function for traffic

prediction.

• FNN: Feedforward Neural Network is a simple neural network model con-

taining two hidden layers and L2 regularization.

• FCN-LSTM: FCN-LSTM applies LSTM to extract temporal in-formation,

and outputs final prediction using two full-connected layers.

• DCRNN: Diffusion Convolutional Recurrent Neural Network combines re-

current neural networks with diffusion convolution, modeling both inflow and

outflow relationships.

• Graph WaveNet: Graph WaveNet is a convolution network architecture, which

introduces a self-adaptive graph to capture the hidden spatial dependency, and

uses dilated convolution to capture the temporal dependency.

Datasets
Our study employs the traffic dataset that is commonly used in related works

such as Graph WaveNet and DCRNN.

The dataset used in our study, METR-LA, is collected from sensors installed

along the highways in Los Angeles County. These sensors capture the velocity of

passing vehicles, which are then averaged over 5-minute intervals. Our experiments
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Table 4.1: Summary statistics of datasets.

Dataset Nodes Edges Time Range
METR-LA 207 1515 2012/03/01 - 2012/06/27
PEMS-BAY 325 2369 2017/01/01 - 2017/06/30

were conducted on the METR-LA dataset, and we also evaluated the performance

of our modifications on a larger dataset, PEMS-BAY, which consists of 6 months of

data from the Bay Area and have a similar structure to METR-LA. For the informa-

tion of the datasets shown in Table ?? and the geographical location for METR-LA

and PEMS-BAY shown in Figure ?? and Figure ?? respectively.

Figure 4.6: Map showing the distribution and location of sensors in METR-
LA dataset.

Figure 4.7: Map showing the distribution and location of sensors in PEMS-
BAY dataset.
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Evaluation Metrics
Three commonly used metrics in traffic forecasting are used in this thesis,

including

1. Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|ŷi − yi| (4.1)

2. Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

|ŷi − yi|2 (4.2)

3. Mean Absolute Percentage Error (MAPE)

MAPE =
100%
n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (4.3)

where:

yi is actual target value.

ŷi is prediction value.

n is number of datapoints.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

RESULTS

5.1 Experiment Results
Similar to DCRNN and Graph WaveNet, we divided the data into three sets

for training, validation, and testing, with a ratio of 70%, 10%, and 20% respectively.

The division was based on the chronological order of the data, where the training

set came before the validation set, which in turn preceded the test set. For model

selection and early stopping, we used the MAE on the validation set, but we also

reported the MAE on the test set.

Table 5.1: Comparing the performance of ST-CopulaGNN against other
baseline models.

15 minutes 30 minutes 1 hour
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

METR-LA
ARIMA 4.01 9.64% 8.22 5.15 12.72% 10.47 6.91 17.40% 13.20

Support Vector Regression 3.52 8.79% 7.94 4.46 11.61% 10.04 5.64 15.88% 12.02
Feedforward Neural Network 3.85 9.49% 7.72 4.93 12.65% 9.65 6.44 17.06% 11.39

FCN-LSTM 3.49 9.60% 6.32 3.81 10.97% 7.37 4.45 13.72% 8.93
DCRNN (Reported) 2.77 7.30% 5.38 3.15 8.80% 6.45 3.60 10.50% 7.60

Graph WaveNet 2.43 6.02% 4.44 2.68 7.00% 5.14 3.03 8.18% 6.07
ST-CopulaGNN 2.39 5.73% 4.40 2.65 6.70% 5.14 3.02 7.88% 6.07

PEMS-BAY
ARIMA 1.65 3.55% 3.40 2.32 5.41% 4.94 3.38 8.30% 6.50

Support Vector Regression 1.53 3.35% 3.35 2.08 4.89% 4.82 2.73 7.06% 6.26
Feedforward Neural Network 1.54 3.27% 3.13 2.10 4.81% 4.43 2.73 6.55% 5.60

FCN-LSTM 2.11 4.86% 4.32 2.25 5.31% 4.62 2.47 5.93% 5.02
DCRNN (Reported) 1.38 2.90% 2.95 1.74 3.90% 3.97 2.07 4.90% 4.74

Graph WaveNet 1.13 2.33% 2.23 1.39 3.02% 2.93 1.66 3.90% 3.68
ST-CopulaGNN 1.14 2.32% 2.23 1.38 3.04% 2.87 1.65 3.81% 3.64

Table ?? compares the performance of ST-CopulaGNN and baseline models

for 15 minutes, 30 minutes and 1 hour ahead prediction on METR-LA and PEMS-

BAY datasets. In comparison to other models, ARIMA and SVR (Support Vec-

tor Regression) perform decently but have higher MAE, MAPE, and RMSE values

than ST-CopulaGNN. The Feedforward Neural Network and FCN-LSTM models

also have higher MAE, MAPE, and RMSE values compared to ST-CopulaGNN

for all prediction ranges. When compared to other spatial-temporal models, ST-

CopulaGNN performed better than the previous recurrent-based approach DCRNN
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and the graph neural network approach Graph WaveNet with a slight improvement.

Figure 5.1: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 15 minutes ahead prediction.
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Figure 5.2: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 30 minutes ahead prediction.
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Figure 5.3: Comparing the performance of ST-CopulaGNN against other
baseline models on METR-LA dataset for 1 hour ahead prediction.
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Figure 5.4: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 15 minutes ahead prediction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

Figure 5.5: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 30 minutes ahead prediction.
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Figure 5.6: Comparing the performance of ST-CopulaGNN against other
baseline models on PEMS-BAY dataset for 1 hour ahead prediction.
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Starting with the METR-LA dataset, for 15 minutes ahead prediction, ST-

CopulaGNN outperforms all other models, including Graph WaveNet, which was

the previous best performer. ST-CopulaGNN achieves an MAE of 2.39, which is

better than Graph WaveNet’s MAE of 2.43. Similarly, for 30 minutes ahead pre-

diction, our model outperforms all other models, including Graph WaveNet, with

an MAE of 2.65, which is better than Graph WaveNet’s MAE of 2.68. For 1 hour

ahead prediction, ST-CopulaGNN is again the best performer with an MAE of 3.02,

which is slightly lower than the second-best performing model Graph WaveNet with

an MAE of 3.03. For the PEMS-BAY dataset, ST-CopulaGNN again achieves the

lowest MAE of 1.38 and 1.65 for 30 minutes and 1 hour ahead predictions respec-

tively, which is lower than the previously DCRNN and Graph WaveNet models. The

model also achieves the lowest MAPE of 2.32% and an RMSE of 2.23 for 15 min-

utes ahead prediction, which are both lower than the previously reported models.

Overall, the results suggest that the proposed ST-CopulaGNN model is a promis-

ing method for spatio-temporal traffic forecasting, outperforming several existing

models in terms of accuracy metrics.

This is due to our architecture being designed to effectively detect spatial de-

pendencies across different domains, including realistic and statistical correlations.

Figure ?? displays a comparison of 1-hour-ahead predicted values versus real values

of ST-CopulaGNN and Graph WaveNet on a snapshot of the test data. The results

show that ST-CopulaGNN provides more stable predictions and does not overesti-

mate the values.
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Figure 5.7: Comparison of the prediction curves for a 1-hour-ahead predic-
tion on a snapshot of the METR-LA test data, between ST-CopulaGNN and
Graph WaveNet.

5.2 Effect of Different Adjacency Matrices
Table 5.2: Experimental results of different adjacency matrices (with and
without time lag) configurations on METR-LA dataset for one hour ahead
prediction.

w/o time lag w/ time lag
MAE MAPE RMSE MAE MAPE RMSE

Gaussian 3.016 7.9% 6.047 3.016 8.0% 6.096
Clayton 2.988 7.8% 5.979 2.999 7.8% 6.037
Gumbel 3.019 7.8% 6.055 3.022 7.9% 6.062

Frank 2.992 7.8% 6.019 3.030 8.0% 6.083
Gaussian, Clayton 3.028 7.9% 6.066 3.017 8.0% 6.087
Gaussian, Gumbel 3.000 8.0% 6.055 3.016 8.0% 6.099

Gaussian, Frank 3.001 8.0% 6.052 3.000 7.9% 5.991
Clayton, Gumbel 3.019 7.9% 6.067 2.984 7.8% 5.999

Clayton, Frank 3.016 7.9% 6.085 2.997 7.8% 6.054
Gumbel, Frank 3.047 7.9% 6.158 2.988 7.8% 6.024

Gaussian, Clayton, Gumbel 2.992 7.9% 6.014 3.000 7.9% 6.020
Gaussian, Clayton, Frank 3.027 7.9% 6.091 3.004 7.9% 6.032
Gaussian, Gumbel, Frank 3.018 8.0% 6.122 2.989 7.9% 5.981
Clayton, Gumbel, Frank 3.001 7.9% 6.030 3.019 7.9% 6.067

Gaussian, Clayton, Gumbel, Frank 3.018 7.9% 6.069 2.987 7.8% 6.010

The performance of our proposed ST-CopulaGNN model was evaluated using

different copula adjacency matrices for one hour ahead prediction on METR-LA

dataset. The results are presented in Table ??, which summarizes the mean absolute

error (MAE), mean absolute percentage error (MAPE), and root mean squared error
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(RMSE) for each copula configuration.

Overall, the results indicate that the choice of copula function has a significant

impact on the performance of the model. Among the individual copulas, the Clayton

copula achieved the best results in terms of both MAE (2.988) and RMSE (5.979).

The Frank copula also performed well, achieving an MAE of 2.992 and an RMSE

of 6.019. When using multiple copulas, the combination of Gaussian and Clayton

copulas resulted in an MAE of 3.028 and an RMSE of 6.066, which is slightly

worse than using the Clayton copula alone. The combination of Gaussian and Frank

copulas also performed worse than using the Frank copula alone, with an MAE

of 3.001 and an RMSE of 6.052. The combination of all four copulas (Gaussian,

Clayton, Gumbel, and Frank) resulted in an MAE of 3.018 and an RMSE of 6.069,

which is comparable to using the Clayton copula alone. In summary, the results

suggest that the Clayton copula is the most effective for our ST-CopulaGNN model

when used on METR-LA dataset. However, using multiple copulas can also provide

good results, with the combination of all four copulas performing comparably to

using the Clayton copula alone.

In addition, by staggering paired time-series with time lag on one of the pairs,

the resulting copula relationship is suggestive of information flow. The results show

that the (Clayton, Gumbel), and (Gaussian, Gumbel, Frank) adjacency matrix con-

figurations outperform the other configurations, with the lowest MAE and RMSE

values of 2.984 and 5.999, and 2.989 and 5.981, respectively. These results suggest

that using copula-based adjacency matrix configurations, particularly those that in-

clude Clayton and Gumbel copulas, can improve traffic forecasting accuracy. Ad-

ditionally, the use of paired time-series with time lag may reveal information flow

relationships between the nodes in the network.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

DISCUSSION

6.1 Conclusion
This thesis discusses the application of statistical terms in graph neural net-

works. We present a multi-view spatio-temporal model capable of capturing both

the realistic and statistical domains. By combining graph convolution with dilated

causal convolution, our model effectively and efficiently captures spatial-temporal

dependencies. We also propose an effective method to measure linkage correlation

between pair of nodes involves utilizing Copula, which provides a modern approach

with a rigid structure capable of describing not only the relationship between ran-

dom variables, but also any other properties relevant to the entire structure. We

conducted experiments to determine the best fit copula, both with and without time

lag, and found that the optimal copula varied across time in the METR-LA dataset.

Specifically, we discovered that the Clayton Copula performed best without time

lag. In contrast, with time lag, the combination of Clayton and Gumbel copulas

produced the best results.

6.2 Future Work
In our future research, we aim to investigate scalable techniques for imple-

menting ST-CopulaGNN on large datasets. Additionally, we plan to explore other

statistical approaches, such as Granger causality and different Copula families, to

define the linkage between traffic nodes.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix I

SPECTRAL GRAPH CONVOLUTION
The history of Spectral Graph Convolution is described in ??.

A.1 Overview
In the Fourier domain, the convolution operator on graph ·G is defined as

g (·G) f = F−1 (F(g)⊙F(f)) = U
(
UT g ⊙ UT f

)
= Ugθ(Λ)U

T f = gθ(L)f (A.1)

where (·G) is convolution operator defined on graph, ⊙ is Hadamard product. It

follows that a signal f is filtered by g ∈ Rn, and denotes gθ(Λ) = diag(UT g) which

the diagonal corresponds to spectral filter coefficients.

For details,

gθ (·G) f = gθ(L)f = gθ(UΛUT )f = Ugθ(Λ)U
T f

= U



ĝ(λ1)

ĝ(λ2)

. . .

ĝ(λn)


UT f

= U



ĝ(λ1)

ĝ(λ2)

. . .

ĝ(λn)


f̂

= U



ĝ(λ1)

ĝ(λ2)

. . .

ĝ(λn)





f̂(λ1)

f̂(λ2)

...

f̂(λn)



(A.2)
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=



ĝ(λ1)

ĝ(λ2)

...

ĝ(λn)


⊙



f̂(λ1)

f̂(λ2)

...

f̂(λn)


(A.3)

Spectral-based GCN all follow this definition of Ugθ(Λ)U
T f , the main differ-

ence between different version of Spectral-based GCN lies in the choice of the filter

gθ(Λ) ?.

A.2 Spectral CNN
Bruna et al. propose the first spectral convolutional neural network ?. A graph

can be associated with node signal f ∈ Rn×Ck is a feature matrix with fi ∈ RCk

representing the feature vector of node i. A construction where each layer k =

1, 2, . . . ,K transforms an input vector fk of size n × Ck into an output fk+1 of size

n× Ck+1.

f
(k+1)
j = σ

(
U

Ck∑
n=1

gθ
(k)
i,j U

T f
(k)
i

)
= σ

(
U

Ck∑
n=1

gθ
(k)
i,j f̂

(k)
i

)
(A.4)

where gθ
(k)
i,j , i = 1, 2, . . . , n and j = 1, 2, . . . , Ck is a diagonal matrix with trainable

parameters θ
(k)
m ,m ∈ (1, n), σ is activation function. gθ(k)i,j is given by

gθ
(k)
i,j =



θ
(k)
1

θ
(k)
2

. . .

θ
(k)
n


(A.5)

A.3 ChebNet
ChebNet ? uses Chebyshev polynomials instead of convolutions in spectral

domain. Furthermore, it was demonstrated that that gθ(Λ) can be approximated by
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a truncated expansion in terms of Chebyshev polynomials.

Tn+1(x) = 2xTn(x)− Tn−1(x), n ∈ N+, (A.6)

where T0(x) = 1, T1(x) = x. Here, we make Λ̃ =
2Λ

λmax
− In ∈ [−1, 1], λmax is the

biggest eigenvalue from L

gθ(Λ) =

K−1∑
k=1

θkTk(Λ̃) (A.7)

where the parameter θ ∈ RK , Tk(Λ̃) ∈ Rn×n. The filtering operator can also be

written as

gθ(L)f =

K−1∑
k=1

θkTk(L̃)f (A.8)

where Tk(L̃) ∈ Rn×n is the Chebyshev polinomial of order k evaluated at the scaled

Laplacian L̃ =
2L
λmax

− In. Accordingly, spectral filters represented by Kth h-order

polynomials of the Laplacian are exactly K-localized, i.e. it depends only on nodes

that are at maximum K steps away from the central node.

Lemma. Let G be a weighted graph, with adjacency matrix A. Let B equal the

adjacency matrix of the binarized graph, i.e. Bm,n = 0 if Am,n = 0 and Bm,n = 1 if

Am,n > 0. Let B̃ be the adjacency matrix with unit loops added on every vertex, e.g.

B̃m,n = Bm,n for m ̸= n and B̃m,n = 1 for m = n

Then for each s > 0, (Bs)m,n equals the number of paths of length s connecting

m and n, and (B̃s)m,n equals the numebr of all paths of length r ≤ s connecting m

and n.

The Lemma can be used to demonstrate that matrix elements of low powers of

the graph Laplacian corresponding to sufficiently separated vertices must be zero.

Therefore, dist(vi, vj) > K implies (LK)i,j = 0, and the spectral filters of ChebNet

are exactly K-localized.
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Accordingly,

gθ(Λ) =



ĝ(λ1)

ĝ(λ2)

. . .

ĝ(λn)



=



∑K−1
k=1 θkTk(λ̂1) ∑K−1

k=1 θkTk(λ̂2)

. . . ∑K−1
k=1 θkTk(λ̂n)



(A.9)

where θk is a vector of Chebyshev coefficients, which is trainable parameter. Fur-

thermore, Eq. ?? can be deduced as following

f (·G) gθ = gθ(UΛUT )f = U

K−1∑
k=1

θkTk(Λ̃)U
T f =

K−1∑
k=1

UθkTk(Λ̃)U
T f

=

K−1∑
k=1

Uθk

(
k∑

c=0

αkcΛ̃
k

)
UT f =

K−1∑
k=1

θk

(
k∑

c=0

αkcU Λ̃kUT

)
f

=

K−1∑
k=1

θk

(
k∑

c=0

αkc

(
U Λ̃UT

)k)
f =

K−1∑
k=1

θkTk

(
U Λ̃UT

)
f

=

K−1∑
k=1

θkTk(L̃)f

(A.10)

After using Chebyshev polynomial instead of the convolution kernel of the spectral

domain, ChebNet does not need the Laplace matrix is to be eigendecomposed. The

most time-consuming steps are omitted

A.4 Comparison between Spectral CNN and

ChebNet
Assuming that n is the number of nodes.

• The parameter complexity of the SCNN model is very large, and the learning

complexity is O(n), which is easy to overfit when there are many nodes. When
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dealing with large-scale graph data which usually has more than millions of

nodes, it will face great challenges.

• Computing the eigenvalue decomposition of the Laplace matrix is very time-

consuming.

• The convolution kernel of ChebNet has only K learnable parameters θk, and

K ≪ n, hence their learning complexity is O(K), the complexity of learnable

parameters is greatly reduced.

• ChebNet does not need the Laplace matrix to be eigendecomposed, instead it

approximate gθ(L) with a truncated expansion in term of Chebyshev polyno-

mials Tk(x) of Kth order.

A.5 GCN
GCN ? can be regarded as a further simplification of ChebNet. To reduce

the computational complexity, only the first order Chebyshev polynomials are con-

sidered, consequently each convolution kernel has only one trainable parameter.

Combining with Eq. ??, we have

gθ(Λ) =

1∑
k=1

θkTk(Λ̃) (A.11)

Hence,

gθ(Λ) =



∑1
k=1 θkTk(λ̂1) ∑1

k=1 θkTk(λ̂2)

. . . ∑1
k=1 θkTk(λ̂n)


(A.12)

In this linear formulation of a GCN we further approximate λmax ≈ 2 Under

such approximations, this can simplifies to:

L̃ =
2

λmax
L − In = L − In (A.13)
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where L is normalized graph Laplacian L = I −D−
1

2AD−
1

2 Then,

f (·G) g =

1∑
k=1

θkTk(L̃)f = θ0T0(L̃)f + θ1T1(L̃)f (A.14)

where A is an adjacency matrix of the graph. Accordingly,

f (·G) g = (θ0 + θ1(L − In)) f =
(
θ0 − θ1(D

− 1

2AD−
1

2 )
)
f (A.15)

Furthermore, to reduce the number of trainable parameters each kernel has only one

trainable parameter, we set θ0 = −θ1 = θ, then we have

f (·G) g ≈ (θ0 + θ1(L − In)) f =
(
θ0 − θ1(D

− 1

2AD−
1

2 )
)
f =

(
θ(D−

1

2AD−
1

2 + In)
)
f

(A.16)

where D−
1

2AD−
1

2 + In now has eigenvalues in the range [0, 2]. Then, only one pa-

rameter in convolution kernel can be learned. The number of parameters is greatly

reduced, which can reduce the number of parameters to prevent overfitting.

However, repeated application of this operator can therefore lead to numerical

instabilities and exploding or vanishing gradients. To alleviate this problem, the

following re-normalization trick is introduced.

We add self-loop to A,

Ã = A+ In (A.17)

Correspondingly,

D̃i,i =

n∑
j=1

Ãi,j (A.18)

Finally,

f (·G) g = θD̃−
1

2 ÃD̃−
1

2 f (A.19)

Usually, we write model parameter θ as W , input signal f as X, Â = D̃−
1

2 ÃD̃−
1

2 ,

then we have

f (·G) g = ÂfW

= ÂXW

(A.20)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix II

SCRIPTS

B.1 Visualization
1 import pandas as pd

2 import numpy as np

3

4 def create_df_correlation(df: pd.DataFrame, method = ’

pearson’):

5 df_pivot_corr = df.corr(method = method)

6 df_corr = pd.melt(df_pivot_corr, ignore_index=False)

.reset_index().rename(columns = {’index’:’node1’, ’

variable’:’node2’})

7

8 # df_corr = df_corr[df_corr[’node1’] != df_corr[’

node2’]].copy()

9 df_corr = df_corr.sort_values([’value’, ’node1’, ’

node2’], ascending=[False, True, True], ignore_index=

True)

10 df_corr[’node1’] = df_corr[’node1’].astype(int)

11 df_corr[’node2’] = df_corr[’node2’].astype(int)

12

13 return df_corr

14

15

16 def filter_df_correlation(df_corr: pd.DataFrame,

threshold = 0.8):
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17 df_corr_x = df_corr[df_corr[’value’].abs() >

threshold].copy()

18 df_network2 = df_corr.drop(columns = [’value’]).

merge(df_corr_x, on = [’node1’, ’node2’], how = ’left

’)

19 df_network2[’value’] = df_network2[’value’].where(

df_network2[’value’].isna(), 1).fillna(0)

20 df_network2[’value’] = df_network2[’value’].where(

df_network2[’node1’] != df_network2[’node2’], 0)

21

22 df_pivot_corr2 = pd.pivot_table(df_network2, index=[

’node1’], columns=[’node2’])

23 df_pivot_corr2.columns = [e[1] for e in

df_pivot_corr2.columns]

24

25 return df_pivot_corr2

Listing B.1: Calculate correlation functions

1 import matplotlib.pyplot as plt

2 import seaborn as sns

3

4 def plot_corr_heatmap(list_df: list, list_names: list,

ncols = 2, figsize=(32, 24)):

5 nrows = int(np.ceil(len(list_df)/ncols))

6

7 fig, axs = plt.subplots(nrows=nrows, ncols=ncols,

figsize=figsize, squeeze=False)

8

9 for i, df in enumerate(list_df):

10 sns.heatmap(
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11 df,

12 ax = axs[i//ncols][i%ncols],

13 vmin=-1, vmax=1, center=0,

14 cmap=sns.diverging_palette(20, 220, n=300),

15 square=True,

16 yticklabels = False,

17 xticklabels = False

18 )

19

20 axs[i//ncols][i%ncols].set(xlabel=”Node”, ylabel

=”Node”)

21 axs[i//ncols][i%ncols].set_title(list_names[i],

fontsize = 36)

22

23 fig.tight_layout()

24

25 return fig

Listing B.2: Plot correlation heatmap

1 import matplotlib.pyplot as plt

2 import seaborn as sns

3

4 def corrdot(*args, **kwargs):

5 corr_r = args[0].corr(args[1], ’pearson’)

6 corr_text = f”{corr_r:2.2f}”.replace(”0.”, ”.”)

7 ax = plt.gca()

8 ax.set_axis_off()

9 marker_size = abs(corr_r) * 10000

10 ax.scatter([.5], [.5], marker_size, [corr_r], alpha

=0.6, cmap=”coolwarm”,
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11 vmin=0.4, vmax=1, transform=ax.transAxes)

12 # font_size = abs(corr_r) * 40 + 5

13 font_size = 50

14 ax.annotate(corr_text, [.5, .5,], xycoords=”axes

fraction”,

15 ha=’center’, va=’center’, fontsize=

font_size)

16

17 def plot_corr(df):

18 sns.set(style=’white’, font_scale=1.6)

19 g = sns.PairGrid(df, aspect=1.4, diag_sharey=False)

20 g.map_lower(sns.regplot, lowess=True, ci=False,

line_kws={’color’: ’black’})

21 g.map_diag(sns.distplot, kde_kws={’color’: ’black’})

22 g.map_upper(corrdot)

Listing B.3: Plot pairwise correlarion

B.2 Copula
1 library(VineCopula)

2 library(data.table)

3 library(readxl)

4

5

6 readFile<- function(PATH){

7 data <- read.csv(PATH)

8 # Remove NA

9 data <- data[complete.cases(data),]

10 data

11 }
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12

13

14 continue_job_pair <- function(output_file, pair){

15 if (!is.null(output_file)){

16 if (file.exists(output_file)){

17 dfx <- read.csv(output_file)

18 done_at = dim(dfx)[1]

19 final_pair = dim(pair)[2] - done_at

20 output_pair <- pair[, c(done_at+1:final_pair)

]

21 } else {

22 output_pair <- pair

23 }

24 }

25 else {

26 output_pair <- pair

27 }

28 output_pair

29 }

30

31

32 uniformiseRandomVariate<- function(data, index_col = ”

Date”){

33 index_data <- data[index_col]

34 # uData <- data.frame(apply(data[,c(-1)], MARGIN=2,

FUN=pobs))

35 uData <- data[ , !(names(data) %in% c(index_col))]

36 uData <- data.frame(apply(uData, 2, function(c) ecdf(c

)(c)))

37 uniformData <- cbind(index_data,uData)
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38 uniformData

39 }

40

41

42 preprocess_row_col_lag <- function(data, col1, col2,

rowlag=NULL, collag=NULL){

43 if (!is.null(rowlag) & !is.null(collag)){

44 print(paste(”Error occurs in collag/rowlag

argument”))

45 break

46

47 }else if (!is.null(rowlag)){

48

49 df_temp <- data[, c(col1, col2)]

50 df_temp[col2] <- shift(df_temp[col2], rowlag)

51 df_temp <- tail(df_temp, -rowlag)

52 df_temp <- na.omit(df_temp)

53

54 u1 <- df_temp[[col1]]

55 u2 <- df_temp[[col2]]

56

57 }else if (is.null(rowlag) & is.null(collag)){

58

59 df_temp <- data[, c(col1, col2)]

60 df_temp <- na.omit(df_temp)

61

62 u1 <- df_temp[[col1]]

63 u2 <- df_temp[[col2]]

64

65 }else if (!is.null(collag)){
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66

67 df_temp <- data[, c(col1, col2)]

68 df_temp[col1] <- shift(df_temp[col1], collag)

69 df_temp <- tail(df_temp, -collag)

70 df_temp <- na.omit(df_temp)

71

72 u1 <- df_temp[[col1]]

73 u2 <- df_temp[[col2]]

74 }

75 list(u1, u2)

76 }

77

78

79 export_to_dataframe <- function(col1, col2, familyname,

p_indep, AIC, BIC, par, par2, all_numid,

80 goftest=FALSE, p_value=

NULL, stat=NULL, statCvM=NULL,

81 statKS=NULL, p_valueCvM=

NULL, p_valueKS=NULL,

82 rowlag=NULL, collag=NULL

){

83 if (!is.null(rowlag)){

84 Cop<-data.frame(numid=all_numid, ColVariable=

col1,RowLagVariable=col2,CopulaBest=familyname,

85 CopulaBestPvalueIndep=p_indep,

CopulaBestAIC=AIC,

86 CopulaBestBIC=BIC,

CopulaBestParam1=par, CopulaBestParam2=par2)

87 }else if (is.null(rowlag) & is.null(collag)){
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88 Cop<-data.frame(numid=all_numid, ColVariable=

col1,RowVariable=col2,CopulaBest=familyname,

89 CopulaBestPvalueIndep=p_indep,

CopulaBestAIC=AIC,

90 CopulaBestBIC=BIC,

CopulaBestParam1=par, CopulaBestParam2=par2)

91 }else if (!is.null(collag)){

92 Cop<-data.frame(numid=all_numid, ColLagVariable=

col1,RowVariable=col2,CopulaBest=familyname,

93 CopulaBestPvalueIndep=p_indep,

CopulaBestAIC=AIC,

94 CopulaBestBIC=BIC,

CopulaBestParam1=par, CopulaBestParam2=par2)

95 }

96

97 if(goftest==TRUE){

98 add<-data.frame(CopulaBestPvalueCvM=p_valueCvM,

CopulaBestPvalue=p_value,

99 CopulaBestPvalueKS=p_valueKS,

statCvM=statCvM, statKS=statKS, stat=stat)

100 Cop<-cbind(Cop,add)

101 }

102 Cop

103 }

104

105

106 fitBiCopula <- function(data, pair, goftest=FALSE,

indeptest=FALSE,

107 family_list = c

(1:5,13,14,23,24,33,34),
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108 rowlag=NULL, collag=NULL,

109 start_index=NULL, end_index=NULL

,

110 index_col=”Date”, index_date=

TRUE,

111 num_saved = 5, output_file = ”

output.csv”, num_task = 0){

112

113 # This function fit bivariate copula

114 # Parameters

115 # ----------

116 # data: Input data

117 # start_index: start index

118 # end_index: end index

119 # goftest: True=run gof test

120 # rowlag: number of day lag by row

121 # collag: number of day lag by column

122

123 Cop <- c()

124 AIC <- c()

125 BIC <- c()

126 emptau <- c()

127 p_indep <- c()

128 family <- c()

129 par <- c()

130 par2 <- c()

131 familyname <- c()

132 tau <- c()

133 beta <- c()

134 col1 <- c()
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135 col2 <- c()

136 all_numid <- c()

137

138 #GoF

139 p_value<-c()

140 stat<-c()

141 p_valueCvM<-c()

142 p_valueKS<-c()

143 statCvM<-c()

144 statKS<-c()

145

146 #indep

147 indep_test <- c()

148

149 if (is.null(start_index)){

150 start_index <- min(input_data[index_col])

151 }

152

153 if (is.null(end_index)){

154 end_index <- max(input_data[index_col])

155 }

156

157 if (index_date==TRUE){

158 start_index<-as.Date(start_index)

159 end_index<-as.Date(end_index)

160 data[index_col] <- as.Date(data[[index_col]])

161 data<-data[(data[[index_col]] >= start_index) & (

data[[index_col]] <= end_index),]

162 } else {
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163 data<-data[(data[index_col] >= start_index) & (data[

index_col] <= end_index),]

164 }

165

166 data <- uniformiseRandomVariate(data, index_col)

167 data <- data[ , !(names(data) %in% c(index_col))]

168 num_pair <- dim(pair)[2]

169

170 for (i in c(1:num_pair)){

171 v1<-pair[1,i]

172 v2<-pair[2,i]

173

174 numid <- pair[5,i]

175 all_numid <- c(all_numid, numid)

176

177 u <- preprocess_row_col_lag(data = data, col1 = v1,

col2 = v2, rowlag=rowlag, collag=collag)

178 u1 <- u[[1]]

179 u2 <- u[[2]]

180

181 set.seed(1234)

182 PwCop<-BiCopSelect(u1, u2, family = family_list,

183 selectioncrit = ”BIC”, indeptest=

indeptest,

184 rotations = TRUE, method = ”mle”)

185 col1<-c(col1,v1)

186 col2<-c(col2,v2)

187 AIC<-c(AIC, PwCop$AIC)

188 BIC<-c(BIC, PwCop$BIC)

189 emptau<-c(emptau, PwCop$emptau)
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190 p_indep<-c(p_indep, PwCop$p.value.indeptest)

191 family<-c(family,PwCop$family)

192 par<-c(par,PwCop$par)

193 par2<-c(par2,PwCop$par2)

194 familyname<-c(familyname,PwCop$familyname)

195 tau<-c(tau,PwCop$tau)

196 beta<-c(beta,PwCop$beta)

197

198 if (goftest==TRUE){

199 if (any(PwCop$family==c

(2,104,114,124,134,204,214,224,234))){

200 set.seed(1234)

201 gof<- BiCopGofTest( u1, u2, family=PwCop$family,

par=PwCop$par, par2=PwCop$par2, method = ”white”)

202 p_value<-append(p_value, gof$p.value)

203 stat<-append(stat, gof$statistic)

204 p_valueCvM<-append(p_valueCvM,’NA’)

205 p_valueKS<-append(p_valueKS,’NA’)

206 statCvM<-append(statCvM,’NA’)

207 statKS<-append(statKS,’NA’)

208 }

209 else if (any(PwCop$family==c

(7:10,17:20,27:30,37:40))){

210 set.seed(1234)

211 gof<- BiCopGofTest( u1, u2, family=PwCop$family,

par=PwCop$par, par2=PwCop$par2, method = ”kendall”)

212 p_valueCvM<-append(p_valueCvM,gof$p.value.CvM)

213 p_valueKS<-append(p_valueKS,gof$p.value.KS)

214 statCvM<-append(statCvM,gof$statistic.CvM)

215 statKS<-append(statKS,gof$statistic.KS)
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216 p_value<-append(p_value,’NA’)

217 stat<-append(stat,’NA’)

218 }

219 else{

220 set.seed(1234)

221 gof<- BiCopGofTest( u1, u2, family=PwCop$family,

par=PwCop$par,method = ”kendall”)

222 p_valueCvM<-append(p_valueCvM,gof$p.value.CvM)

223 p_valueKS<-append(p_valueKS,gof$p.value.KS)

224 statCvM<-append(statCvM,gof$statistic.CvM)

225 statKS<-append(statKS,gof$statistic.KS)

226 p_value<-append(p_value,’NA’)

227 stat<-append(stat,’NA’)

228 }

229 }

230

231 if (i%%num_saved == 0){

232

233 msg = sprintf(”job%d | %d/%d”, num_task, i, dim(

pair)[2])

234 # line_task_notify(msg = msg)

235

236 if (goftest==TRUE){

237 Cop <- export_to_dataframe(col1=col1, col2=

col2, familyname=familyname,

238 p_indep=p_indep, AIC=AIC, BIC

=BIC, par=par, par2=par2, all_numid=all_numid,

239 goftest=goftest, p_value=p_

value, stat=stat, statCvM=statCvM,
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240 statKS=statKS, p_valueCvM=p_

valueCvM, p_valueKS=p_valueKS,

241 rowlag=rowlag, collag=collag)

242 } else {

243 Cop <- export_to_dataframe(col1=col1, col2=

col2, familyname=familyname,

244 p_indep=p_indep, AIC=AIC, BIC

=BIC, par=par, par2=par2, all_numid=all_numid,

245 goftest=goftest)

246 }

247

248 write.csv(Cop, output_file, row.names=FALSE)

249

250 }

251

252 }

253

254 if (goftest==TRUE){

255 Cop <- export_to_dataframe(col1=col1, col2=col2,

familyname=familyname,

256 p_indep=p_indep, AIC=AIC, BIC=BIC

, par=par, par2=par2, all_numid=all_numid,

257 goftest=goftest, p_value=p_value,

stat=stat, statCvM=statCvM,

258 statKS=statKS, p_valueCvM=p_

valueCvM, p_valueKS=p_valueKS,

259 rowlag=rowlag, collag=collag)

260 } else {

261 Cop <- export_to_dataframe(col1=col1, col2=col2,

familyname=familyname,
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262 p_indep=p_indep, AIC=AIC, BIC=BIC

, par=par, par2=par2, all_numid=all_numid,

263 goftest=goftest)

264 }

265 write.csv(Cop, output_file, row.names=FALSE)

266 line_task_notify(msg = sprintf(”job %d Done”, num_task

))

267

268 Cop

269 }

Listing B.4: Fit Copula script

1 install.packages(”VineCopula”)

2 library(VineCopula)

Listing B.5: petanque.R

1 import rpy2.robjects as ro

2 import rpy2.robjects as robjects

3

4 import numpy as np

5 import pandas as pd

6 import itertools

7

8 path=”/content/petanque.R”

9 r=ro.r

10 r.source(path)

Listing B.6: Import ‘petanque.R‘ to run in Python

1 def convert2ecdf(x: list) -> np.array:

2 x = robjects.FloatVector(x)
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3 fn = r.ecdf(x)

4 output = fn(x)

5 output = np.array(output)

6 return output

Listing B.7: Normalized data using ecdf

1 import math

2 def rotate_points_origin(x, y, angle):

3 x = np.array(x)

4 y = np.array(y)

5 rad = math.radians(angle)

6 x2 = x*math.cos(rad) - y*math.sin(rad)

7 y2 = x*math.sin(rad) + y*math.cos(rad)

8 return x2, y2

9

10 def rotate_points(x, y, angle, center = (1/2, 1/2)):

11 x0 = center[0]

12 y0 = center[1]

13 x = np.array(x)

14 y = np.array(y)

15 rad = math.radians(angle)

16 x2 = x0 + (x - x0)*math.cos(rad) - (y - y0)*math.sin(

rad)

17 y2 = y0 + (y - y0)*math.cos(rad) + (x - x0)*math.sin(

rad)

18 return x2, y2

Listing B.8: Rotation points in euclidean domain

1 def py_BiCopEst(u1: list, u2: list, family: int):

2 u1 = robjects.FloatVector(u1)
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3 u2 = robjects.FloatVector(u2)

4 cop = r.BiCopEst(u1, u2, family = family)

5

6 d = {key : cop.rx2(key)[0] for key in cop.names if

key != ’call’}

7 d[’taildep’] = d[’taildep’][0]

8

9 return cop, d

10

11 def py_BiCopGofTest(u1: list, u2: list, family: int, par

= 0, par2 = 0, method = ’white’):

12 u1 = robjects.FloatVector(u1)

13 u2 = robjects.FloatVector(u2)

14 gof = r.BiCopGofTest(u1, u2, family = family, par =

par, par2 = par2, method = method)

15

16 if method == ’white’:

17 try:

18 d = {e:float(gof.rx2(e)[0]) for e in [’statistic’,

’p.value’]}

19 except:

20 d = {e:float(gof.rx2(e)) for e in [’statistic’, ’p.

value’]}

21 elif method == ’kendall’:

22 try:

23 d = {e:float(gof.rx2(e)[0]) for e in [’p.value.CvM’

, ’p.value.KS’, ’statistic.CvM’, ’statistic.KS’]}

24 except:

25 d = {e:float(gof.rx2(e)) for e in [’p.value.CvM’, ’

p.value.KS’, ’statistic.CvM’, ’statistic.KS’]}
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26

27 return gof, d

28

29 def py_BiCopSim(N: int, family: int, par: float, par2:

float = 0):

30 simdata = r.BiCopSim(N, family, par, par2)

31 simdata = np.array(simdata)

32 return simdata

33

34 def py_BiCopSelect(u1: list, u2: list, familyset: list,

selectioncrit = ”AIC”,

35 indeptest = False, level = 0.05,

weights = None, rotations = True,

36 se = False, presel = True, method = ”

mle”):

37

38 u1 = robjects.FloatVector(u1)

39 u2 = robjects.FloatVector(u2)

40 familyset = robjects.IntVector(familyset)

41

42 indeptest = robjects.r(”TRUE”) if indeptest else

robjects.r(”FALSE”)

43 weights = robjects.r(”NA”) if weights is None else

weights

44 rotations = robjects.r(”TRUE”) if rotations else

robjects.r(”FALSE”)

45 se = robjects.r(”TRUE”) if se else robjects.r(”FALSE

”)

46 presel = robjects.r(”TRUE”) if presel else robjects.

r(”FALSE”)
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47

48 cop_select = r.BiCopSelect(u1 = u1, u2 = u2,

49 familyset = familyset,

50 selectioncrit =

selectioncrit,

51 indeptest = indeptest,

52 level = level,

53 weights = weights,

54 rotations = rotations,

55 se = se,

56 presel = presel,

57 method = method

58 )

59

60 d = {key : cop_select.rx2(key)[0] for key in

cop_select.names if key != ’call’}

61 d[’taildep’] = d[’taildep’][0]

62

63 return cop_select, d

Listing B.9: Call R funtions in Python

1 import plotly.graph_objects as go

2 from plotly.subplots import make_subplots

3 def go_subplot_rotate(x, y, angle_list = [0, 90, 180,

270], col1 = None, col2 = None, title = None):

4 fig = make_subplots(rows=2, cols=2,

5 subplot_titles = [f”rotation = {e}

°” for e in angle_list],

6 vertical_spacing = 0.15)

7 for i, angle in enumerate(angle_list):
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8 x2, y2 = rotate_points(x, y, angle, center = (1/2,

1/2))

9 fig.add_trace(go.Scatter(x = x2,

10 y = y2,

11 mode = ’markers’,

12 showlegend = False,

13 marker=dict(color=’rgba(31,

119, 180, 1)’)),

14 row = i//2 + 1, col = i%2 + 1)

15

16 fig.update_xaxes(title = col1, range = [0, 1])

17 fig.update_yaxes(title = col2, range = [0, 1])

18 fig.update_layout(title = title, width = 500*2, height

= 500*2)

19 # fig.show()

20 return fig

21

22 def go_subplot_sim(x, y, family, par, par2, col1 = None,

col2 = None, title = None):

23

24 N = len(x)

25 simdata = py_BiCopSim(N, family = family, par = par,

par2 = par2)

26

27 fig = make_subplots(rows=1, cols=2,

28 subplot_titles = [”<b>Actual</b>”,

”<b>Simulation</b>”],

29 vertical_spacing = 0.15)

30

31 fig.add_trace(go.Scatter(x = x,
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32 y = y,

33 mode = ’markers’,

34 showlegend = False,

35 marker=dict(color=’rgba(31,

119, 180, 1)’)),

36 row = 1, col = 1)

37

38 fig.add_trace(go.Scatter(x = simdata[:, 0],

39 y = simdata[:, 1],

40 mode = ’markers’,

41 showlegend = False,

42 marker=dict(color=’rgba(31,

119, 180, 1)’)),

43 row = 1, col = 2)

44

45 fig.update_xaxes(title = col1, range = [0, 1])

46 fig.update_yaxes(title = col2, range = [0, 1])

47 fig.update_layout(title = title, width = 500*2, height

= 500*1)

48 # fig.show()

49 return fig

Listing B.10: Plot simulation data (from copula) and actual data

1 def go_subplot_sim_set(u1, u2, familyset: list, ncols =

2, col1 = None, col2 = None, title = None):

2

3 fam_dict = {1: ’Gaussian’,

4 2: ’Student t’,

5 3: ’Clayton’,

6 4: ’Gumbel’,
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7 5: ’Frank’,

8 6: ’Joe’}

9

10 N = len(u1)

11 d_cop = {}

12

13 cop_select, d_best = py_BiCopSelect(u1 = u1, u2 = u2

, familyset = familyset, rotations = False)

14 d_cop[”best”] = d_best

15

16 subplot_titles = [”<b>Actual</b>”] + [f”<b>

Simulation ({fam_dict[e]})</b>” if e != d_best[’

family’] else f”<b>Simulation ({fam_dict[e]}) **Best

Fitted</b>” for e in familyset] + [”<b>Best Fitted</b

>”]

17

18 nrows = int(np.ceil((len(familyset) + 2)/ncols))

19

20 fig = make_subplots(rows=nrows, cols=ncols,

21 subplot_titles = subplot_titles,

22 vertical_spacing = 0.08,

23 # horizontal_spacing = 0.1

24 )

25

26 fig.add_trace(go.Scatter(x = u1,

27 y = u2,

28 mode = ’markers’,

29 showlegend = False,

30 marker=dict(color=’rgba(149,

63, 181, 1)’)),
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31 row = 1, col = 1)

32

33 for idx, family in enumerate(familyset):

34 idx = idx + 1

35 cop, d = py_BiCopEst(u1 = u1, u2 = u2, family =

family)

36 simdata = py_BiCopSim(N, family = family, par =

d[’par’], par2 = d[’par2’])

37

38 d_cop[family] = d

39

40 fig.add_trace(go.Scatter(x = simdata[:, 0],

41 y = simdata[:, 1],

42 mode = ’markers’,

43 showlegend = False,

44 marker=dict(color=’rgba

(31, 119, 180, 1)’)),

45 row = idx//ncols + 1, col = idx%

ncols + 1)

46

47 idx = idx + 1

48 sim_best = py_BiCopSim(N, family = d_best[’family’],

par = d_best[’par’], par2 = d_best[’par2’])

49 fig.add_trace(go.Scatter(x = sim_best[:, 0],

50 y = sim_best[:, 1],

51 mode = ’markers’,

52 showlegend = False,

53 marker=dict(color=’rgba(209,

77, 139, 1)’)),

54 row = idx//ncols + 1, col = idx%ncols +
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1)

55

56 fig.update_xaxes(title = col1, range = [0, 1])

57 fig.update_yaxes(title = col2, range = [0, 1])

58 fig.update_layout(title = title, width = 500*ncols,

height = 500*nrows)

59

60 return fig, d_cop

Listing B.11: Plot simulation data (from all copulas) and actual data

B.3 ST-CopulaGNN
The scripts uploaded to https://github.com/pitikorn32/ST-CopulaGNN.

https://github.com/pitikorn32/ST-CopulaGNN
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