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GitHub’s pull-based development model is widely used by software develop-

ment teams to manage software complexity. Contributors create pull requests for

merging changes into the main codebase, and integrators review these requests to

maintain quality and stability. However, a high volume of pull requests can over-

burden integrators, causing feedback delays. Previous studies have used machine

learning and statistical techniques with tabular data as features, but these may lose

meaningful information. Additionally, acceptance and latency may not be sufficient

for the pull request evaluation. Moreover, reopened pull requests can add main-

tenance costs and burden already-busy developers. This thesis proposes a novel

multi-output deep learning-based approach that early predicts acceptance, latency,

and reopening of pull requests, handling various data sources, including tabular and

textual data, effectively. Our approach also applies SMOTE and VAE techniques to

address the highly imbalanced nature of the pull request reopening. We evaluate our

approach on 143,886 pull requests from 54 well-known projects across four popular

programming languages. The experimental results show that our approach signif-

icantly outperforms the randomized baseline. Moreover, our approach improves

Accuracy by 8.68% and F1-Score by 6.77% in acceptance prediction, and MMAE

by 6.07% in latency prediction, while improving Balanced Accuracy by 9.43% and

AUC by 9.37% in reopening prediction over the existing approach.
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CHAPTER I

INTRODUCTION

In modern software development, developer teams usually deal with the com-

plexity of software using isolated development and branching (Bird and Zimmer-

mann, 2012). Thus, several open-source software projects employ the pull-based

model (Bird et al., 2009), an emerging paradigm for distributed software develop-

ment, enabled by GitHub1 (Gousios et al., 2014). It allows contributors to make

contributions (e.g., software changes) flexibly and efficiently (Gousios et al., 2016).

Unlike classical distributed development, GitHub enables developers to fork the

main repository that they want to contribute to and make their changes indepen-

dently and locally (Yu et al., 2015). When a set of changes is ready, they require to

create a requesting event, called a pull request, to ask for merging the changes with

the main repository. Then, the project’s integrators are responsible for evaluating

the pull request and deciding whether to accept or reject the changes. The role of

integrators in the pull-based model is crucial (Dabbish et al., 2013) because they

must not only make important decisions but also ensure that pull requests are eval-

uated in a timely matter. In popular projects, the volume of incoming pull requests

is too large (Tsay et al., 2014). Therefore, it may increase the burden on already-

busy integrators (Gousios et al., 2015) and cause contributors to experience delayed

feedback (Gousios et al., 2016).

Thus, several studies using Machine Learning, statistical techniques, and sur-

vey have been proposed to explore and support the pull-based development model,

especially integrators. There have been two main ways to study the pull request

evaluation, consisting of the decision to merge (i.e., acceptance) and the merging

time (i.e., latency). Most works investigated factors influencing the pull request ac-

ceptance (Gousios et al., 2014; Tsay et al., 2014; Gousios et al., 2015; Soares et al.,

2015; Ortu et al., 2020; Zhang et al., 2021a) and latency (Gousios et al., 2014; Yu
1https://github.com/
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et al., 2015; Gousios et al., 2015; Zhang et al., 2021b), while a few works focused

on building a prediction model for acceptance (Chen et al., 2019; Nikhil Khadke,

2012; Jiang et al., 2020) and latency (de Lima Júnior et al., 2021) There are some

previous studies working on other fields of pull request aside from the evaluation,

for example, pull request prioritization (Van Der Veen et al., 2015; Azeem et al.,

2020), pull request overdue acceleration system (Maddila et al., 2022), and integra-

tor assignment to pull requests (de Lima Júnior et al., 2018).

Acceptance and latency seem to be insufficient for the pull request evaluation.

After a pull request is closed by an integrator, in some cases, it may be opened again

for further modification and code review (Mohamed et al., 2018). This pull request

is called a reopened pull request. Even though reopened pull requests rarely happen

(Jiang et al., 2019), they may create conflicts with newly submitted pull requests

(McKee et al., 2017), add software maintenance costs, and increase the burden for

already-busy developers (Mohamed et al., 2018). Two studies (Mohamed et al.,

2018, 2020) have developed models for predicting reopened pull requests, but they

make predictions at the first decision, which may be too late. Integrators would

benefit from earlier prediction results to identify pull requests more likely to be

reopened and come up with timely solutions. However, early prediction is very

challenging due to limited available information. If only common tabular features

that are available, similar to existing approaches, are used, it may not be sufficient

to create accurate predictions.

In this research, we introduce a novel multi-output deep learning-based ap-

proach that predicts acceptance, latency, and reopening of pull requests at the time

of submission. Specifically, the predictions can be generated and provided to inte-

grators as feedback immediately after the pull request is created. We make use of

deep learning to focus on automating and enhancing performance while overcom-

ing the limited information available at submission time and the highly imbalanced

nature of reopened pull requests. In particular, to tackle the limited information, we

incorporate both tabular data and text data from the pull request description as a new
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source of information and handle the nature of the text by using pre-trained models

(e.g., Word2vec, FastText, and BERTs). To overcome the highly imbalanced nature,

we employ SMOTE and VAE techniques.

Additionally, we address the relationship between pull request outputs, as pre-

vious research has shown that reopened pull requests have lower acceptance rates

and longer evaluation times than non-reopened ones (Soares et al., 2015; Jiang et al.,

2019) by sharing learning between outputs. Regarding the methodologies, we ad-

dress a gap in pull request prediction research by using a programming language-

specific experimental setting that balances specificity and generalization. It avoids

the cold-start problem for new projects and overly generalized models, which has

been a limitation in prior research that evaluated models at the project or all-in-one

level. Also, previous studies have highlighted the significance of programming lan-

guage in pull request evaluation (Rahman and Roy, 2014; Soares et al., 2015). For

example, the projects from R language made more accepted pull requests on aver-

age than rejected ones while the projects written by Python, Java, and Ruby made

the opposite. In addition, Ruby-based projects are often found with an increasing

number of rejected pull requests per month.

We performed extensive experiments on four well-known programming lan-

guages including, Python, R, Java, and Ruby, along with popular representatives

of open-source software projects that use the pull-based development model on

GitHub. Our approach outperformed the randomized baseline with an Accuracy

of 0.762, a Precision of 0.878, a Recall of 0.791, and an F1-Score of 0.832 in ac-

ceptance prediction, an MMAE of 1.163 in latency prediction, and a Balanced Ac-

curacy of 0.618, an AUC of 0.689, and a TPR of 0.694. in reopening prediction, on

average. Compared to an existing approach, our approach improved Accuracy, Pre-

cision, Recall, F1-Score, MMAE, Balanced Accuracy, AUC, and TPR by 8.68%,

1.01%, 11.49%, 6.77%, 6.07%, 9.43%, 9.37%, and 30.07%, respectively.

The main contribution of this research is that we aim to propose a novel ap-
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proach that combines tabular features and textual features learned from pre-trained

word embeddings and leverages SMOTE along with VAE and shared learning deep

neural network to have the ability to predict pull request acceptance, latency, and

reopening at the time of submission.

1.1 Problem Statements

We conclude the introduction into the problems and gaps that we aim to ad-

dress in this study listed as followings:

• The emergence of pull-based development increases the burden on already-

busy developers which can cause low productivity, especially in large projects.

• Pull request reopening is not of interest to most existing studies, but it is crucial

aside from other main evaluations (i.e., acceptance and latency) because it can

cause conflict and increase costs.

• The highly imbalanced nature of reopened pull requests presents a challenge

for machine learning-based prediction models.

• Most existing studies had more focus on investigating factors influencing the

pull request evaluation, than prediction.

• Existing prediction approaches did not address the nature of pull request tex-

tual description, usually requiring advanced feature extraction techniques.

• Early prediction of reopened pull requests is challenging due to limited avail-

able information at submission time.

1.2 Objectives

We aim to address the mentioned problem statements by developing the fol-

lowing research objectives:
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• To design an architecture of an approach, that can capture the relationships

between the outcomes, for predicting pull request acceptance, latency, and

reopening.

• To handle the highly imbalanced nature of pull request reopening with a proper

oversampling technique.

• To construct the rich features by handling textual data effectively through ex-

ploring advanced texutal feature extraction techniques that can address limited

available information.

1.3 Our Solution

We propose a novel deep-learning-based multi-output (shared learning) clas-

sification approach that is generalized for predicting three pull request outcomes

which are acceptance, latency, and reopening early at the time of pull request sub-

mission. The approach incorporates the following techniques:

• SMOTE combined with Variational Autoencoder (VAE) to address the highly

imbalanced nature of pull request reopening.

• Various pre-trained embeddings to address textual description of pull requests

and handle limited information available at the pull request submission.

• Implementation of a shared learning deep learning architecture to handle the

relationships between pull request outputs and perform classifications.

1.4 Research Questions

In this study, our empirical evaluation aims to answer the following research

questions:

• RQ1: Is the proposed approach suitable to predict the pull request evaluation

and pull request reopening? - This is a sanity check that allows us to check on
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the suitability of our proposed approach in predicting pull request evaluation

and reopening by comparing it with the randomized baseline. We hypothe-

size that our approach will outperform the baseline, demonstrating its ability

to accurately predict pull request acceptance, latency, and reopening at pull

request submission.

• RQ2: Does the proposed approach outperform the existing approach? - This

aims to compare our proposed approach, which incorporates tabular and tex-

tual features, oversampling, shared learning, and a deep learning classifier,

with the existing approach. We anticipate that our approach will enhance the

predictive performance in predicting pull request evaluation and reopening,

surpassing the existing approach.

The details of the research questions are elaborated more in Section 6.1.

1.5 Scopes of Work

To do the experiment, we have a list of the scopes as followings:

• We conduct a study on data from Aug 2010 to Aug 2022, analyzing four well-

known programming languages: Python, R, Java, and Ruby, and popular rep-

resentatives of open-source software projects utilizing the GitHub pull-based

development for each programming language.

• Our evaluation focuses on the predictive performance achieved by our ap-

proach based on our empirical study. We, however, acknowledge that user

evaluation and feedback are important to the adoption of the approach which

we plan to address in future work.

1.6 Expected Benefit

Our approach is intended to enhance GitHub pull request management, par-

ticularly for large software open-source projects, by offering predictive results in
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the form of pull request evaluations and reopening, enabling integrators to make

informed decisions regarding the risk involved in handling a particular pull request.

This will streamline the review process by facilitating efficient and systematic pri-

oritization, ultimately improving the overall efficiency of pull request management.

1.7 Organization of the Document

This document consists of seven chapters, plus one appendix:

1. Introduction – Presentation of reasons for doing this study including short

background, motivations, problem statements, objectives, our solution,

scopes of this project, and expected benefit

2. Background – Review of concept and theoretical background along with lit-

erature

3. Dataset – Overview of the data and processes of data collection and data la-

beling we apply to perform the experiment in this project

4. Proposed Approach – Explanation of proposed approaches with design and

methodologies

5. Implementation - Detailed description of the implementation of the proposed

approaches, including any relevant software tools or frameworks utilized.

6. Evaluation and Results – Statements of research questions, experimental set-

ting, performance measures, experimental results, further discussion, and any

threats to validity

7. Conclusions - Summary of the study and discussion about future works

8. Appendix A - Comprehensive detail of the model configuration of our ap-

proach.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND

This chapter provides the conceptual and theoretical background of the re-

search, followed by a comprehensive literature review on the topic of pull request

evaluation and reopening prediction. In the first section, we present the key concepts

and theories related to the research, including an overview of the pull-based software

development model, the significance of prediction in software development, and

machine learning. The literature review section presents a critical analysis of exist-

ing studies on pull request evaluation and reopening prediction, identifying gaps in

knowledge and areas that require further investigation.

2.1 Concept and Theoretical Background

In this section, we provide background information about the pull-based soft-

ware development model along with the pull request life cycle and the machine

learning techniques that we aim to employ in this study.

2.1.1 Pull-Based Software Development Model

To have a better understanding of the pull-based model, this section consists

of the pull request workflow and the pull request life cycle.

Pull Request Workflow

With the emergence of Git, the way distributed software development (DSD) is

carried out has been revolutionized (Gousios et al., 2014). Git enables open-source

projects to deploy a recent paradigm of DSD, named pull-based development. Git is

the fastest growing compared to others. Stack Overflow’s annual developer survey

report that Git was the overwhelming favorite of responding developers, showing

as high as 93.9% in 2022. It draws ahead of the second place, like Subversion,

which dominates developers only 5.2% (Stack Overflow, 2022). In the pull-based
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software development model, developers pull software changes (e.g., usually source

code files) from other repositories and merge them locally, instead of pushing the

changes to a project’s main repository directly by patch submission and acceptance

through mailing lists or Bugzilla2, like traditional distributed development (Yu et al.,

2015).

Figure 2.1 is an overview of the pull-based development workflow. When

developers want to make some contributions to an open-source project, GitHub

pull-based development provides a chance that contributors to the project need not

share access to the main repository anymore. Instead, contributors can create forks

and make their changes (e.g., deletions and additions to the source code) locally

without having to worry about breaking the overall software product. Once the

contributors have completed their code changes, they push the changes back to their

forked repository. When a set of changes is ready to be submitted to the main repos-

itory, they require to create an event, called a pull request, to request for discussing

and merging new code changes with the main repository. An integrator will inspect

and review the changes in the contributor’s forked repository. If any discussion is

required, the integrator and the contributor can provide comments (i.e., including

in-line comments) under the pull request. Moreover, external developers who are

not directly involved can view and join the discussion. The contributor needs to

create additional commits if further improvements or edits are required from the in-

tegrator before an approval. With approved the pull request, the new updates from

the contributor are merged into the main project. It is, however, up to the integrator’s

decision to accept or reject the incoming pull requests. The risk of consequences,

therefore, depends on the integrator’s experience. So, although developing software

via pull requests will help in the matter of flexibility and efficiency of distributions,

it also increases the workload for software developers because of the large volume

of incoming pull requests, especially in the case of the popular projects (Gousios

et al., 2015).
2https://www.bugzilla.org/
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Figure 2.1: An overview of the pull-based development workflow

Pull Request Lifecycle

There are three states of pull requests on GitHub as shown in Figure 2.2 in-

cluding:

• Open: the pull request has been proposed by the contributor and it is dur-

ing discussions or waiting for the integrator’s decision on whether it will be

accepted or rejected.

• Merged: the integrator satisfies the changes in the pull request. The integra-

tor, thus, approves closing it by merging them with the main branch.

• Closed: the integrator is not satisfied with the changes. The integrator, thus,

closes it by rejecting the pull request.

Figure 2.2: Pull request lifecycle on GitHub
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Pull requests, however, sometimes remain open forever because the integra-

tors are too busy to tackle the pull requests, or it is simply because the integrators do

not want to discourage the contributor by explicitly rejecting the pull request. Apart

from the states above, the pull requests can be reopened after their close when the

decision is changed, or further code review is required. The contributor can attempt

further updates to reopen the reviewing process, this may lead to a new decision

from the integrator. These pull requests are called reopened pull requests. Reopen-

ing a pull request is considered as a bad risk because it can cause the integrator to

take more effort (e.g., add software maintenance costs and increase the burden for

an already busy integrator) (Jiang et al., 2019). Moreover, it may cause conflicts

with newly submitted pull requests if pull requests are reopened a long time after

their close (McKee et al., 2017). For example, changes from a current pull request

create a bug caused by not accepting a previous pull request. This can happen due to

integrator evaluation glitches. Therefore, in order to fix the current bug, reworking

the previous pull request is required for the integrator.

Therefore, identifying the quality of pull requests is important and this is called

pull request evaluation. Evaluating pull requests is a complex iterative process in-

volving many stakeholders. Currently, there are two main ways of evaluation that

researchers use to investigate the pull request workflow which are acceptance and

latency (Yu et al., 2015). The researchers focusing on the pull request acceptance

study about the factors influencing the decision of integrators on whether accept-

ing or rejecting pull requests. The researchers focusing on the pull request latency

explore the factors influencing the lifetime of pull requests. Moreover, the relation-

ship between both aspects is studied in (Soares et al., 2015). They found that an

increase in the evaluation time for a pull request reduces the chances of its accep-

tance. There are also the relationships between both pull request evaluation aspects

and reopening, for example, reopened pull requests have lower acceptance rates and

longer evaluation time than non-reopened pull requests (Jiang et al., 2019). There-

fore, the pull request evaluation and the pull request reopening notification have

benefits to the integrators by encouraging their decisions, prioritizing the pull re-
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quests, and speeding up the review process which can lead to accelerating software

product development.

2.1.2 Developing a Predictive Model

A predictive model is a statistical process of using data to forecast outcomes

(Geisser, 1993), usually in the future. Developing a predictive model can be repre-

sented as

Y = f (X) (2.1)

where f(·) is a function for an algorithm and X is a set of features whereas Y is

a set of prediction outcomes. There are several approaches to the predictive model

including Machine Learning and Deep Learning. However, we focus on using Deep

Learning, especially in the classification task. Deep Learning is a subset of Machine

Learning that utilizes a hierarchical level of artificial neural networks, inspired by

the biological brain, to the process of learning. The most common reasons that Deep

Learning is preferred to traditional Machine Learning are a large amount of data,

no requirement for hard-core feature engineering and domain experts (automation),

and higher performance (Janiesch et al., 2021). This section consists of classifi-

cation with deep learning, classification evaluation metrics, multi-output learning,

text feature extraction, and handling imbalanced data techniques.

Classification with Deep Learning

• Binary Classification: Binary classification is the task of classifying the el-

ements of a set into two groups. Common applications are spam detection,

credit card fraud detection, medical testing, and sentiment analysis. To per-

form binary classification with Deep Learning, Sigmoid is an activation func-

tion that is mostly used in the output layer as it maps any input to an output

ranging from 0 to 1 representing a probability. The formula of the Sigmoid
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function is defined as in Equation 2.2. However, this is similar to the SoftMax

function with two classes.

σ (z) =
1

1 + e−z
(2.2)

For loss function, binary cross-entropy, also known as log loss, is purpose-

built for binary classifiers. During training, the cross-entropy loss function

exponentially increases the penalty for wrong predictions to drive the learning

parameters (e.g., weights and biases) more aggressively in the right direction.

Suppose that a sample belongs to the positive class (1), and the model predicts

that the probability of being a positive class is 0.9. The log loss is –log(0.9)

or 0.04. But if the model outputs a probability of 0.1 for the same sample,

the error is –log(0.1) or 1. This is obvious that if the predicted output is more

wrong, the penalty is much higher. Binary cross entropy is calculated as in

Equation 2.3.

− (ylog(p) + (1− y) log(1− p)) (2.3)

• Multi-Class Classification: Multi-class classification is the task of classify-

ing the elements of a set into more than two groups. With Deep Learning, the

most common activation function for an output node is SoftMax. SoftMax

converts a real vector to a vector of categorical probabilities. The elements of

the output vector are in the range (0, 1) and sum to 1. Each vector is handled

independently. The result could be interpreted as a probability distribution.

The formula of the Sigmoid function is defined as in Equation 2.4.

σ (zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (2.4)

In the matter of loss function, there are two functions that are usually used

which are categorical cross-entropy and sparse categorical cross-entropy.

Both are the loss computation between the labels and predictions. However,
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if labels are provided in a one-hot representation, categorical cross entropy is

required. On the other hand, if labels are provided as integers, sparse categor-

ical cross entropy is needed. The formula is similar to the binary one, but we

need to calculate a separate loss for each class label per observation and sum

the result as shown in Equation 2.5.

−
M∑
c=1

yo,c log (po,c) (2.5)

Where M is number of classes whereas y is a binary indicator (0 or 1) if

class label c is the correct classification for observation o and p is predicted

probability observation o is of class c.

Classification Evaluation Metrics

There are several common evaluation metrics for classification models such

as Accuracy, Precision, Recall, F1-Score, AUC, TPR, FPR, and MMAE.

• Accuracy: Accuracy is a commonly used metric for evaluating the perfor-

mance of classification models. It measures the proportion of correct predic-

tions made by the model among all predictions made.

– Binary-Class Accuracy is the accuracy used in the binary classification

which is calculated by dividing the sum of True Positive (TP) and True

Negative (TN) results by the total number of observations examined as

shown in Equation 2.6.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2.6)

– Multi-Class Accuracy is defined as the average number of correct pre-

dictions across all classes. Equation 2.7 shows the formula of accuracy

for multi-class classification whereN is the total number of observations,

|G| is the number of classes, g(x) is the predicted label, ĝ(x) is the ground
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truth label, and I is the indicator function, which returns 1 if the classes

match and 0 otherwise.

Accuracy =
1

N

|G|∑
k=1

∑
x:g(x)=k

I(g(x) = ĝ(x)) (2.7)

– Balanced Accuracy (BA) is a performance metric that measures the aver-

age accuracy of a binary classifier over two classes with imbalanced class

distribution. In other words, Balanced Accuracy is the average of the two

proportions of correct predictions for each class, and it ranges from 0 to

1, where a score of 1 indicates perfect classification performance, and a

score of 0 indicates random performance. It is a useful metric to evaluate

classifiers on imbalanced datasets, where the distribution of the classes

is not equal, and the accuracy alone can be misleading. By taking into

account both True Positive Rate (TPR) and True Negative Rate (TNR)

(see Equation 2.8), Balanced Accuracy provides a more comprehensive

view of the classifier’s performance and can help to identify the trade-

offs between false positives and false negatives.

BA =
TPR+ TNR

2
(2.8)

• Precision: Precision measures the proportion of True Positive (TP) predic-

tions among all positive predictions made by the model as shown in Equation

2.9. In other words, Precision represents the accuracy of the positive predic-

tions made by the model.

Precision =
TP

TP + FP
(2.9)

• Recall: Recall also known as Sensitivity or True Positive Rate (TPR), is a

performance metric used to evaluate the effectiveness of a classification model

in identifying positive instances. It measures the proportion of True Positive

(TP) predictions among all actual positive instances in the dataset as stated in
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Equation 2.10.

Recall =
TP

TP + FN
(2.10)

• F1-Score: F1-Score is a widely used performance metric that combines Pre-

cision and Recall into a single number. It is defined as the harmonic mean of

Precision and Recall as shown in Equation 2.11.

F1 = 2× Precision×Recall

Precision+Recall
(2.11)

• AUC: Area Under the Curve or AUC is commonly used in the context of ROC

or Receiver Operating Characteristic. It measures of the total area under the

ROC curve to indicate the performance of a binary classification model that

addresses the trade-off between True Positive Rate (TPR) and False Positive

Rate (FPR) across different classification thresholds. It ranges from 0 to 1,

with higher values indicating better performance.

• FPR: FPR or Fall-Out is the proportion of actual negative instances that are

incorrectly classified as positive by the model. Equation 2.12 is the formula

of FPR.

FPR =
FP

FP + TN
(2.12)

AUC, TPR, and FPR have been used in several works (Kale et al., 2022; Trauer

et al., 2021) to handle the classification with highly imbalanced data (i.e.,

anomaly detection). TPR can reflect the probability of detection or hit rate

while FPR can represent the probability of false alarm.

• MMAE: MMAE is a performance measure that the ability to address the or-

dinal property of classes. Specifically, it can assess the distance between an

actual class and a predicted one. It can also apply to the imbalanced multi-

class classification because of the macro-averaged mean technique. MMAE

has been used in many works (Baccianella et al., 2009; Choetkiertikul et al.,
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2015, 2018; Wattanakriengkrai et al., 2019) to tackle the ordinal multi-class

classification problem. The formula of MMAE is defined in Equation 2.13

where K is a set of classes, |K| is the number of classes, k is a class within K,

yi is the true class, and nk is the number of true classes with class k. σ is the

indicator function.

MMAE =
1

|K|

K∑
k=1

1

nk

n∑
i=1

|ŷi − k|σ|yi = k| (2.13)

Multi-Output Learning

Multi-output learning is to learn and simultaneously predict multiple related

outputs given an input. It is an important learning problem for decision-making

since making decisions in the real world often involves multiple complex factors

(Xu et al., 2020). The outputs can be of various types and structures, for example,

real-valued vector (regression) and binary vector (binary classification). However,

we will focus on multi-output learning for classification. Let X = Rd denote the d-

dimensional input (i.e., feature) space and Y = Y 1×Y 2×•••×Y n denote the output

space which contains n class variables (i.e., outputs) in which output space Y i has ki
possible classes (i.e., Y i = Ci

1, . . . , C
i
ki
). Giving a training dataset, D = {xj , yj}Mj=1

where xj =
[
xj1, x

j
2, . . . , x

j
d

]
∈ X and yj =

[
yj1, y

j
2, . . . , y

j
n

]
∈ Y . Thus, the task of

multi-output classification is to learn a mapping function, f : X → Y , from the

dataset D that can predict a proper output vector, f (x) ∈ Y , for unseen input x (see

Figure 2.3). Multi-output classification is sometimes called multi-label classifica-

tion when all outputs have two possible classes but when some outputs have more

than two possible classes, it is called multi-class multi-output classification, also

known as, multi-dimensional classification, instead where our work falls into this

type of problem.

In Deep Learning, there are three common ways to design an architecture of

multi-output classification which are hard parameter sharing, partial parameter shar-

ing, and soft parameter sharing. In hard parameter sharing, it is generally applied
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Figure 2.3: An illustration of a multi-output learning classification

by sharing the hidden layers between all outputs, while separating nodes for specific

outputs in the output layer. Therefore, every output learning shares the same set of

parameters and optimizes mean or weighted loss function of the same parameters.

An example of the existing works employing this architecture is a multi-output clas-

sification for predicting human emotion, age, gender, and race (Saroop et al., 2021)

and a multi-modal multi-output model for automatic assessment of voice patholo-

gies on the GRB scale (Arias-Londoño et al., 2019). In partial parameter sharing,

there is weight sharing on the first parts of hidden layers while the rest layers are

trained independently for each output with their own loss function and optimizer.

On the other hand, there are separated training paths for each output in every hid-

den layer in soft parameter sharing. Also, each output variable has its own set of

parameters and loss. The work example of partial parameter sharing and soft param-

eter sharing is a multi-output learning framework for solar atmospheric parameters

inferring from stokes profiles (Knyazeva et al., 2022).

Text Feature Extraction

To deal with Machine Learning, the input requires to be in the form of a nu-

merical vector. As we aim to include text in our approach, textual information needs

some technique to represent as numbers. There are several approaches to implement

text feature extraction, such as, BoW (Harris, 1954), N-Gram (Broder et al., 1997),
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and TF-IDF (Salton and Buckley, 1988). However, these approaches destroy the

sequential nature of the text and cause the sparsity problem. There are also highly

advanced techniques with deep learning approaches such as state-of-the-art pre-

trained word embeddings (e.g., Word2vec (Mikolov and Others, 2013), FastText

(Bojanowski et al., 2016), and BERT (Devlin et al., 2018)) which have the purpose

to handle sequential data with complex dependencies (e.g., phrases and multi-word

expressions). The below followings will describe the pre-trained word embeddings

that we aim to apply in our project.

• Word2Vec: Word2vec is one of the most popular state-of-the-art pre-trained

word embeddings developed by Google. It was pre-trained on about 100 bil-

lion words from the Google News dataset. The Word2vec models are shallow,

two-layer neural networks that take text as their input and provide a vector

space with each unique word in the corpus being assigned a corresponding

vector in the space as their input. Similar words locate near each other in the

space. The output vectors, therefore, have the ability to capture the seman-

tic and syntactic qualities of words. There are two ways to utilize Word2vec

which are continuous bag-of-words (CBOW) and continuous skip-gram. In

the continuous bag-of-words architecture, the model has the objective to pre-

dict the current word from the surrounding context words. In the continuous

skip-gram architecture, the model aims to use the current word for predict-

ing the surrounding context words. CBOW is faster while skip-gram does

a better job for infrequent words. However, the Word2vec embeddings are

context-independent because it maintains a look-up table that maps a single

vector representation for each word. This means that they cannot capture the

difference of the same word when being between two different sentences.

• FastText: FastText is a popular pre-trained word embedding technique de-

veloped by Facebook Research. It extends the concept of Word2Vec by rep-

resenting words as n-gram character sequences, rather than individual words.

This allows FastText to capture the morphological variations of words, making
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it particularly effective for handling out-of-vocabulary words and rare words.

FastText uses a skip-gram architecture for training, similar to Word2Vec, but

also includes additional information from the character n-grams. FastText em-

beddings are context-independent and can be used for a variety of natural lan-

guage processing tasks, such as text classification, named entity recognition,

and sentiment analysis. FastText is known for its efficiency and ability to han-

dle large vocabularies, making it a popular choice for applications that require

fast and accurate text representations.

• BERT: BERT is a recent pre-trained transformer-based technique for Nat-

ural Language Processing (NLP) developed by Google. It was pre-trained

from BookCorpus (Zhu et al., 2015) and English Wikipedia3 on two tasks

which are masked language modeling (MLM) and next sentence prediction

(NSP). BERT achieved state-of-the-art performance on several recent natu-

ral language understanding tasks (e.g., GLUE (Wang et al., 2018), SQuAD

(Rajpurkar et al., 2016), and SWAG (Zellers et al., 2018)). Currently, there

are numerous variants of BERT that are trained in variable ways for differ-

ing purposes (e.g., fewer computation resources and outstanding performance

for specific tasks), such as, RoBERTa (Liu et al., 2019), ELECTRA (Clark

et al., 2020), and DistilBERT (Sanh et al., 2019). In addition, there are sev-

eral BERT-based models that are fine-tuned by developers in the Hugging

Face community4 for the specific domain and specific downstream tasks (e.g.,

Wav2vec 2.0 (Baevski et al., 2020) for speech representation task, BERTOver-

flow (Tabassum et al., 2020) for software development domain, and PEGA-

SUS (Zhang et al., 2019) for news summarization task). However, unlike

Word2vec, the BERT embeddings are context-dependent because they allow

us to have multiple numerical vector representations for the same word, based

on the context in which the word is used.
3https://en.wikipedia.org
4https://huggingface.co/
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Handling Imbalanced Data Techniques

• SMOTE: Synthetic Minority Over-sampling Technique (SMOTE) (Chawla

et al., 2002) is a widely used algorithm for dealing with imbalanced datasets in

machine learning. The main goal of SMOTE is to generate synthetic samples

of the minority class to balance the class distribution, thereby improving the

performance of the classifier. The algorithm works by selecting a minority

class sample and creating new synthetic samples by interpolating between

that sample and its k nearest neighbors. This results in a dataset with an equal

number of samples for each class, which can be used to train a classifier that is

less biased towards the majority class. A simplified pseudocode for SMOTE

algorithm is stated in Algorithm 1. SMOTE has been used in the software

engineering domain, for example, the work (Khan, 2020) used SMOTE to

oversample defective modules in their software defect prediction study.

• VAE: Variational Autoencoder (VAE) is an artificial neural network archi-

tecture introduced by Diederik P. Kingma and Max Welling (Kingma and

Welling, 2014). VAE can learn the underlying distribution of input data and

generate new samples that are similar to the original data. VAE consists of two

components: an encoder that maps input data to a latent space and a decoder

that maps samples from the latent space back to the original data space (refer

to Figure 2.4). During training, VAE minimizes a loss function that consists

of two terms: a reconstruction loss that measures how well the decoder can re-

construct the input data, and a regularization term that ensures the latent space

follows a certain prior distribution. In the context of oversampling, VAE can

be used to generate synthetic data points that are similar to the original data.

By sampling from the learned latent space of VAE and decoding the samples

back to the data space by its decoder, synthetic data points can be created that

can be used to augment the original data. This can be useful in situations

where the original data is imbalanced and additional data points are needed

for training classifiers or other machine learning models.
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Algorithm 1 : A simplified pseudocode for SMOTE algorithm
Input: minority class samples Xmin, number of synthetic samples to

generate k
Output: synthetic samples Xsyn

1: Compute nneighbors based on minority class size
2: Compute distance between minority class samples and all other samples
3: for each minority class sample xi in Xmin do
4: Find the k nearest neighbors of xi, excluding xi itself
5: for each nearest neighbor xj do
6: Compute the difference between the feature vectors of xi and xj

7: Multiply the difference by a random number between 0 and 1
8: Add the result to the feature vector of xi to create a new synthetic

sample xnew

9: Add xnew to the synthetic samples Xsyn

10: end for
11: end for
12: return Xsyn

One weakness of using SMOTE over VAE for oversampling is that it is a heuristic-

based method that generates synthetic samples by interpolating between existing

minority class samples, which may result in oversampling of noisy samples or out-

liers. VAE can generate synthetic samples that are more diverse and representative

of the original data. Additionally, SMOTE may not be able to capture the underly-

ing structure of the data and may lead to overfitting (Dai et al., 2019). On the other

hand, VAE learns the underlying distribution of the data and can better capture the

true underlying structure of the data. However, VAE requires a larger amount of

data to train effectively and can be computationally expensive.

2.2 Literature Review

As we address three prediction outputs, the related work of this paper is mainly

divided into three parts, including: pull request acceptance, pull request latency, and

pull request reopening.
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Figure 2.4: An architecture of VAE

2.2.1 Pull Request Acceptance

There are a number of previous works that focus on studying pull request eval-

uation, especially acceptance. Most of them leverage machine learning and statis-

tical techniques to investigate factors influencing the pull request acceptance. The

work in (Gousios et al., 2014) interpreted the relationship between characteristics

(e.g., pull request, project, and contributor) and the acceptance through their best-

performance classifier (i.e., Random Forest). They found that the decision to merge

is mainly affected by whether the pull request modifies recently modified code. With

the multidimensional association rule, the work in (Soares et al., 2015) shows that

pull requests in projects written by different programming languages have different

characteristics of merge decisions. For example, Java, JavaScript, and C++ have

the merged probability reduced, whereas C#, C, and Scala increase the chances of

the occurrence of a merge. Apart from the programming language, they found that

number of commits, files added, external developer, and first pull request also affect

the acceptance.

In addition to common sources of features as in stated works, social and tech-

nical factors were explored in (Tsay et al., 2014) through a multi-level mixed ef-

fects logistic regression model. Their main finding is that a pull request with test

cases and less discussion submitted by strong social-connection contributors is more

likely to be accepted. Moreover, the work in (Ortu et al., 2020) applied Logistic
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Regression to observe that affect metrics (e.g., emotions, moods, and sentiment) of

comment as well as experience and politeness of contributor influence the merge

decision of an integrator because the model with these factors achieved higher per-

formance than the one without them. Differing from other existing works, the work

in (Zhang et al., 2021a) presented a comprehensive analysis of the factors influenc-

ing pull request decisions through statistical methods, such as, Spearman correlation

coefficient, Cramér’s V, and mixed-effects logistic regression models. Their list of

factors was identified by conducting a systematic literature review.

Aside from the works focusing on the influencing factors, a few studies con-

centrate on building a high-quality predictive model. The work in (Nikhil Khadke,

2012) built a predictive model to tackle the pull request acceptance problem using

Logistic Regression, Decision Trees, Random Forest, and Support Vector Machine

along with a parameter tuning technique through learning common features. Their

evaluation showed that the Random Forest-based model achieved the highest ac-

curacy. Another work is (Chen et al., 2019) that derived new features to build the

predictive model from crowdsourcing. From their experiment, the quantitative fea-

tures extracted from dozens of recent papers outperformed the selected qualitative

features they studied. The acceptance task, moreover, has been studied by (Gousios

et al., 2014) and (Jiang et al., 2020). With their pull-request-based experiment,

Gousios et al. (Gousios et al., 2014) also found that the Random Forest algorithm

achieved the highest performance in the merging task. The work in (Jiang et al.,

2020) proposed the project-based prediction approach, called CTCPPre, which is

composed of an XGBoost classifier and four sources of features (i.e., code, text, con-

tributor, and project). They, however, claimed that their approach outperformed the

previous approach, by (Gousios et al., 2014), which employed Random Forest as

their best classifier.

2.2.2 Pull Request Latency

Another aspect of pull request evaluation is latency. Most of the works related

to this aspect introduce approaches to explore the influence of factors in the latency
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of pull requests in the GitHub projects and estimate the pull request lifetime by

developing the prediction model. Apart from the study of pull request merging,

Gousios et al. (Gousios et al., 2014) also leveraged the Random Forest model with

a similar set of features to tackle the latency problem. The authors evaluated their

models by discretizing the pull request lifetime into three classes (i.e., one hour, one

day, and more than one day). They discovered that the time to merge is influenced

by the developer’s previous track record, the size of the project and its test coverage,

and the project’s openness to external contributions. Also, they found that the higher

the contributor’s merge percentage was, the lower would be the time taken for the

pull requests to be integrated.

Other than treating the problem as a classification problem, variants of logis-

tic regression were also used in (Yu et al., 2015) to model pull request latency on

the GitHub open-source projects which employ a continuous integration service.

The author performed comparisons between three linear regression approaches to

identify that the contribution of their new features could make better performance

than the previous work. The first model was solely built using the features listed

in (Gousios et al., 2014). The second one included features associated with pull

request review and integration processes. The last one was developed by adding

features related to the use of continuous integration in the process. With the ex-

periment, the third model achieved the best determination coefficient. The linear

model was also used in the recent work by Zhang et al. (Zhang et al., 2021b). Their

objective was to discuss the differences and variations in the influence of factors on

pull request latency in varied scenarios and contexts using statistical modeling (e.g.,

the mixed-effect linear regression models). Their findings showed that the relative

importance of the factors in different scenarios or varied contexts was distinctive.

For example, the process-related factors were more important than the pull request

description when the pull request was closed.

Another recent work by Júnior et al. (de Lima Júnior et al., 2021) handled

this pull request evaluation problem with both the regression (i.e., estimating the
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numeric values of pull request lifetimes) and classification techniques. For the re-

gression problem, they did project-specific experiments on four types of algorithms,

including, the linear regression model, the regression trees model (i.e., M5Prime),

the ensemble model (i.e., Random Forest), and the support vector machine model

(i.e., SMOReg). In the classification task, they used the k-NN model (i.e., IBk), the

decision tree model (i.e., J48), the Bayesian model (i.e., Naive Bayes), the ensem-

ble model (i.e., Random Forest), and support vector machine (i.e., SMO). With their

project-specific evaluation, they found that the linear model obtained the best per-

formance in the regression task and Random Forest featured the best performance

in the classification task.

2.2.3 Pull Request Reopening

To our best knowledge, there are only a few works related to reopening pull

requests. Mohamed et al. (Mohamed et al., 2018) designed their approach named

DTPre to predict the reopened pull requests after their first close using three sources

of features, consisting of, code, review, and contributor. Due to an imbalanced

dataset, the author dealt with it using an oversampling technique. In the evalua-

tion phase, they ran the project-specific experiments on seven open-source GitHub

projects through four various common classifiers and also compared the prediction

performance with and without the oversampling technique. They found that Deci-

sion Tree with oversampling was the best approach. The recent work (Mohamed

et al., 2020) by the same research team, Mohamed et al. extended their work by

performing further cross-project experiments on the reopened pull request predic-

tion through the same dataset. Their objective was to handle the cold-start problem

for the new software project that has a limited number of pull requests. Reopening

in pull requests was also studied in (Jiang et al., 2019). The author conducted a case

study to understand reopened pull requests over seven popular projects in GitHub.

Unlike the previous work that focused on prediction, they mainly aimed to inves-

tigate the impacts of reopened pull requests on code review, the root causes of a

reopened pull request, and the differences between pull requests caused by different
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reasons. The main finding of this paper was that reopened pull requests had lower

acceptance rates, longer evaluation time, and more comments than non-reopened

ones.

2.2.4 Gaps in Literature

The existing literature on pull request evaluation has primarily focused on fac-

tors influencing acceptance and latency. The studies have examined various techni-

cal and social factors using traditional machine learning methods to build predictive

models. However, there is limited research on the topic of pull request reopening,

which can have a negative impact on software teams. Additionally, there is a lack

of models that provide timely predictions for integrators immediately after a pull

request is created. Another gap is that text data from the pull request description

and the imbalanced nature of reopened pull requests have not been effectively han-

dled. The relationship between pull request outputs, such as acceptance, latency,

and reopening, also needs to be addressed. Furthermore, prior research on pull re-

quest prediction has typically evaluated models at either the project or all-in-one

level, which can result in a cold-start problem for new projects or overly general-

ized models. Therefore, there is a gap in the literature in terms of using a program-

ming language-specific experimental setting to balance specificity and generaliza-

tion, which can improve the applicability and relevance of the models in real-world

software development scenarios.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

DATASET

In this chapter, we provide an overview of the dataset used in this study, in-

cluding details on data collection, sampling, filtering, and labeling.

3.1 Overview of Dataset

We used GitHub data from well-known open-source projects developed under

popular programming languages. To collect the data and build our dataset, GitHub

REST APIs and a tool for web scraping were employed. Finally, we did data filtering

to derive the final set of data, consisting of 143,886 pull requests (samples) from

54 open-source projects across four programming languages (i.e., Python, R, Java,

and Ruby). The pull requests that we collected were created from Aug 2010 to

Aug 2022. Table 3.1 illustrates our dataset including the overview of programming

language characteristics and summarizes the statistical characteristics of the dataset

for each language in terms of the number of pull requests per project in values of

minimum, median, maximum, mean, and standard deviation. For example, in the

Python language, there are 11 projects and 9,773 pull requests while the average

number of pull requests per project is 888.45. As can be seen from the table, it

seems that there are two groups of languages which are a small community and

big community. Python and R are the small community programming language

whereas the rest are the big ones.

3.2 Data Collection

Our data were collected from two sources which are the GitHub server and

the GitHub Website (see Figure 3.1). To interact with the GitHub server (the left

part), programs were developed using Python programming language. We used

the GitHub REST APIs to access the data on the repositories of an open-source

project written by popular programming languages and retrieve them. The whole



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

Figure 3.1: Overview of the data collection process

procedure started with sending a request and receiving a response in the form of

JSON. We collected the required data of three information components consisting of

project, pull request, and contributors. We then extracted only attributes of data that

are necessary for our project, such as, pull request submission date, events in pull

request, and commits in pull request. Since some data did not meet our requirements

(e.g., documentation projects and pull requests without a body (i.e., no description)),

we then had some processes to filter those out. Moreover, we considered only pull

requests with closed status to at least ensure that they have been made the decision

on. We will discuss more data filtering and sampling in the next section (3.3). The

database that we used to store the data is MySQL. For the second part, GitHub

Website (the right part), there were some data that we required to update (e.g., pull

request body) so we developed the Selenium-based programs to scrape and update

them on our database.

3.3 Data Sampling and Filtering

At first, we selected well-known programming languages which are Python,

R, Java, and Ruby. We then collected 100 of the most starred open-source projects

written by each programming language. Stargazer counts are routinely used by re-
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searchers as a proxy for project popularity (Papamichail et al., 2016). To ensure

that our dataset was composed of relevant projects, we employed a second filter

considering number of stars and other metrics which are number of open issues,

fork status, number of forks, number of total commits, number of contributors, and

number of pull requests. The projects that were included in our dataset required to

meet the following programming language-specific criteria:

• not a fork version of another project,

• not a documentation project,

• and more than or equal to the median of number of open issues, number of

total commits, number of contributors, and number of pull requests.

However, we were aware of bias caused by the projects with overcrowding pull

requests. A model will be overfitting with this kind of project only. Therefore, we

decided to not include these projects in our dataset.

3.4 Data Labeling

To illustrate our contributions, Figure 3.2 shows an example of the pull request

ID 2702 in the Ruby project written by the Ruby programming language. Due to the

purpose of the demonstration, the figure has been edited and we mainly show some

important parts of the pull request. The title and body indicate that the contributor

(Mr.A) would like to propose his changes to fix the issue related to the load error. At

first, the integrator (Mr.B) from the core team decided to reject his pull request be-

cause it sounds unrelated to Ruby. At the next time, the integrator changed his mind

because some parts are reasonable to associate with Ruby. The integrator, there-

fore, reopened the pull request and let another integrator (Mr.C) review it. With the

changes reviewed, the integrator Mr.C changed the decision made by the integrator

Mr.B and accepted this pull request. As an example, there are always reopening

risks when the integrator’s initial decision is impaired due to various factors, for ex-
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Figure 3.2: An example of a pull request on GitHub

ample, misunderstanding the description and change of the pull request. Therefore,

the integrators’ decision would be more effective if they could early recognize the

risks involved in the pull requests, they are responsible for.

To formulate our predictive problem, we denote tpred as the reference point to

the pull request submission time at which a prediction is made for a pull request

(i.e., prediction time). We would like to develop a classification approach that
can predict three outputs: 1) acceptance, 2) latency, and 3) reopening for a pull
request at time tpred. To be more specific, the prediction outcomes would be made



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

using only information available at tpred.

1) Acceptance: this reflects the decision of an integrator on whether a pull re-

quest is accepted or rejected in the final close. There are two nominal classes

for acceptance which are:

• Accepted: a pull request is accepted to merge into the main branch

• Rejected: a pull request is rejected to merge into the main branch.

2) Latency: this reflects the time difference between the pull request submission

and the final close (i.e., lifetime). We employ the way to discretize the lifetime

from (de Lima Júnior et al., 2021) where the magnitude is maintained (i.e.,

minutes, hours, days, weeks, or months). We classify latency into five ordinal

classes which are:

• Hour: a pull request that has lifetime less than or equal to 60 mins

• Day: a pull request that has lifetime greater than 60 mins but less than

or equal to 24 hours

• Week: a pull request that has lifetime greater than 24 hours but less than

or equal to 7 days

• Month: a pull request that has lifetime greater than 7 days but less than

or equal to 4 weeks

• GTMonth: a pull request that has lifetime greater than 4 weeks (greater

than 1 month).

3) Reopening: this reflects the reopening status of a pull request showing

whether it has been reopened. The reopening task can be consider a prob-

lem of anomaly detection due to the highly imbalanced nature of the data. In

this context, the number of instances in the positive class (i.e., pull requests

that are likely to be reopened) is much smaller than the number of instances in

the negative class (i.e., pull requests that are likely to be closed). This makes

the task of accurately identifying positive instances more challenging, as the
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model needs to effectively distinguish between a small number of anomalies

and a large number of normal instances. There are two nominal classes for

the reopening output which are:

• Reopened: a pull request has been reopened for one time or more than

• NonReopened: a pull request has never been reopened.

Table 3.2 shows the class distribution for the acceptance, latency, and re-

opening outputs. Following the same notations given in Section 2.1.2, our clas-

sification task is to learn a predictive function, f : X → Y , from the dataset

D = {xj , yj}Mj=1 that can predict an output vector, f (x) ∈ Y , for unseen input x

where we can represent our input (i.e., pull request features) as X = Rd and our out-

put as Y = Y 1×Y 2×Y 3 in which Y 1 denotes the Acceptance output, Y 2 denotes the

Latency output, and Y 3 denotes the Reopening output. Y 1 has two possible classes

(i.e., C1
1 and C1

2 ) while Y 2 has five possible classes (i.e., C2
1 , C2

2 , C2
3 , C2

4 , and C2
5 ) and

Y 3 has two possible classes (i.e., C3
1 and C3

2 ).
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Table 3.1: Descriptive statistical information of our pull request dataset

Language
Overview # Pull Requests / Project

# Projects # Pull Requests Min Med Max Mean SD

Python 11 9,773 173.00 764.00 2,574.00 888.45 693.12

R 12 8,310 150.00 456.00 1,706.00 755.45 557.19

Java 12 29,202 504.00 1,247.00 6,636.00 2,433.50 2,055.49

Ruby 19 96,601 662.00 3,760.00 13,431.00 5,084.26 3,864.15

TOTAL 54 143,886

Table 3.2: The number of samples (pull requests) in each class for the acceptance, latency, and reopening outcomes

Language
Acceptance Latency Reopening

Accepted Rejected Hour Day Week Month GTMonth Reopened NonReopened

Python 7,061 2,712 1,428 3,023 2,541 1,392 1,389 188 9,585

R 6,858 1,452 1,224 2,585 1,808 1,275 1,418 85 8,225

Java 12,644 16,558 5,512 9,401 7,546 3,500 3,243 700 28,502

Ruby 72,853 23,748 17,839 35,062 22,871 10,848 9,981 1,414 95,187
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In the case of the pull request ID 2702, tpred is 2:36 PM, 27 Nov 2019. The

information available at 2:36 PM, 27 Nov 2019 is used to predict three outcomes

of this pull request which are Accepted for the acceptance output, GTMonth for the

latency output, and Reopened for the reopening output (see Figure 3.3). From the

fact that reopening always occurs before pull request evaluation and may affect the

other outcomes, the model will predict the reopening output first and use it as a

feature to predict the other outputs.

Figure 3.3: A user scenario for the pull request ID 2702



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

PROPOSED APPROACH

This chapter presents the proposed approach for predicting pull request evalu-

ation and reopening. Our approach combines tabular and textual features, employs

oversampling techniques, utilizes shared learning, and incorporates deep learning

classifiers. Within this chapter, we provide a comprehensive overview of the frame-

work of our approach, including feature extraction and model architecture.

4.1 Overview Framework

Our proposed approach is a deep learning-based classification approach for

predicting acceptance, latency, and reopening of pull requests. Figure 4.1 shows an

overview of our approach, which is divided into two phases: the training phase and

the execution phase. The training phase involves using historical pull requests to

build predictive models. To extract features, we categorize the information of a pull

request into two groups: tabular data (represented in blue color) and textual data

(represented in green color). Tabular data is structured data that can be extracted

using common feature extraction techniques, resulting in numerical or categorical

features. Textual data is unstructured data that require advanced learning techniques

to extract meaningful features. Then, oversampling is performed to handle the im-

balanced data in the reopening task. Our approach utilizes both types of data (X)

along with their corresponding outcomes (Y ) to train predictive models using deep

learning techniques. The execution phase involves employing the trained models

from the training phase to predict three outcomes: acceptance, latency, and reopen-

ing, for a new pull request. From the fact that reopening always occurs before pull

request evaluation and may affect the other outcomes, our approach will predict the

reopening output first and use it as a feature to predict the other outputs.
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Figure 4.1: An overview framework of our proposed approach

4.2 Feature Extraction

There are two types of feature extraction which are tabular feature extraction

and textual feature extraction.

4.2.1 Tabular Feature Extraction

A project repository and a pull request contain many attributes that we can

extract and use as a feature to characterize the pull request. To do feature extrac-

tion, we define three characteristics describing a pull request including pull request,

project, and contributor. Our tabular features are derived from the set of the most

frequently used features by the previous works related to the prediction (Gousios

et al., 2014; Jiang et al., 2020; Mohamed et al., 2018, 2020; de Lima Júnior et al.,

2021). It is important to note that the features we extract for our analysis are ob-

tained at the time of pull request submission (tpred). As a result, certain features

related to discussion, such as the number of comments and the number of partici-

pants, may not be available during this stage. Table 4.1 provides a comprehensive

list of the extracted features, along with their descriptions. Common feature extrac-

tion techniques are deployed such as counting, summation, subtraction, and ratio

calculations based on the attributes of the pull request.

4.2.2 Textual Feature Extraction

A pull request usually contains two textual pieces of information which are title

and body. Contributors use them to summarize and describe the proposed changes.
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Table 4.1: List of our tabular features used in our approach
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For example, the pull request ID 2702 in Figure 3.2 has “Fix load error” as the title

and “This is a fix related to the following issue. rails/rails#33464 My solution is to

wait a monument if the required relative file is busy” as the body. Title and body can

reflect the nature of a pull request (e.g., detail of a review task and complexity of the

task). Therefore, a good title and body can reduce the integrator’s effort to execute

the review task. However, they haven’t been taken seriously to use as a pull request

predictor once. We, thus, use the text as one of our features to characterize our pull

request. To do so, specific text feature extraction is required. We employ various

state-of-the-art pre-trained word embeddings (e.g., Word2vec, FastText, BERT, and

BERTOverflow) to tackle this task (see Figure 4.2). The average pooling is used to

derive a final vector representation for the entire text. It is important to note that in

order to increase the importance of the title, we assign an additional weight to the

title compared to the body (i.e., Text = Title + Title + Body).

Figure 4.2: An architecture of feature extraction for textual description

4.3 Model Architecture

To simulate the real situation and address the relationship between pull request

reopening and evaluation, we separate modeling into two main stages: the reopening
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stage and the evaluation stage. More precisely, the reopening output is predicted

first, and it is used as one of the features to predict the pull request evaluation.

4.3.1 Pull Request Reopening Stage

In the reopening stage, we follow a three-stage process of feature extraction,

oversampling, and classification (see Figure 4.3). We begin by combining tabu-

lar features extracted from common attributes and textual features learned by pre-

trained word embedding, as detailed in the previous section (Section 4.2.2). How-

ever, since the data is highly imbalanced, with a majority of non-reopening samples

and a minority of reopening samples, we use the Variational Autoencoder (VAE)

to generate additional reopening samples in order to achieve balance with the non-

reopening samples. The architecture of our VAE can be found in Section 2.1.2.

Figure 4.3: A model architecture of the reopening stage of our approach

Figure 4.4 shows the processes that we went through to perform oversampling

on the reopening samples using SMOTE and VAE. VAE is a generative model that

can learn to approximate a probability distribution of input data by encoding them
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into a lower-dimensional latent space and then decoding them back to the origi-

nal data space. By sampling from the learned latent space, VAE can generate new

data points that are similar to the original data, effectively increasing the size of the

dataset. To ensure that we have enough reopening samples for training the VAE, we

first use the Synthetic Minority Over-sampling Technique (SMOTE) to oversample

the positive class (i.e., Reopened class). Next, we train our VAE exclusively on pull

requests with the Reopened class. We use the decoder part of the trained VAE to

generate reopening samples by introducing random noise from a normal distribu-

tion. These generated samples are first combined with the original ones and then

shuffled to create a training dataset for a deep neural network (DNN). The DNN

is trained using this shuffled dataset to predict the probability of reopening as the

output. Note that we only balance the number of samples in the training set. To

conclude, there are two models that we need to train in this stage, which are the

VAE for oversampling and the DNN for the reopening classification.

Figure 4.4: An oversampling process through SMOTE and VAE for the re-
opening samples
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4.3.2 Pull Request Evaluation Stage

During the evaluation stage, we extract features from the pull request descrip-

tion and other relevant data, similar to the feature extraction process used in the

reopening stage (without oversampling). We combine these features with the re-

opening probability obtained from the reopening stage. A deep neural network is

then trained to predict two outputs: acceptance and latency of the pull request. The

approach used in the evaluation stage is depicted in Figure 4.5.

Figure 4.5: A model architecture of the evaluation stage of our approach

The architecture utilized for the deep neural networks is a very common feed-

forward neural network, consisting of an input layer, a normalization layer, followed

by multiple blocks of dense layers and dropout layers, and an output layer (refer to

Figure 4.6). The normalization layer helps to scale the input features to a standard

range, making it easier for the neural network to process them effectively. The dense

layers are used to learn complex representations of the input data, while the dropout

layers help to prevent overfitting by randomly dropping out some of the neurons dur-

ing training. This architecture is used for downstream prediction in both stages. In

the evaluation stage, there is only one model, which is the multi-output DNN for

predicting the acceptance and latency outputs. Specifically, the DNN in the eval-
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uation stage shares input features, hidden layers, and weights, and loss while the

output layer has 2 output nodes for acceptance and latency.

Figure 4.6: An architecture of a deep neural network for downstream tasks



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

IMPLEMENTATION

This chapter focuses on the implementation of the proposed approach for pre-

dicting pull request evaluation and reopening. Overview of implementation pro-

cesses, data preparation process, and modeling process are stated along with exam-

ples of source code.

5.1 Overview of implementation

The implementation for this project is divided into two phases: data prepara-

tion and modeling. The data preparation phase comprises four stages, namely data

collection, data extraction, data filtering, and feature and label construction. On the

other hand, the modeling phase also includes four stages, namely data splitting, data

preprocessing, model training, and model evaluation (see Figure 5.1). The Python

3.10.2 environment was used for all the processes, and the implementation was car-

ried out on a Macbook Pro with macOS Monterey Version 12.4, an Apple M1 Pro

chip with 8-core CPU and 14-core GPU, 16GB RAM, and 1TB SSD storage.

Figure 5.1: Overview of implementation

5.2 Data Preparation

The primary procedure in this phase involves collecting and processing data

in order to prepare the dataset for modeling purposes. Our data were collected from
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two sources: the GitHub server and the GitHub website. Fortunately, GitHub pro-

vides GitHub REST APIs5 to allow users to interact with the server. We used the

Python library named requests to create and send an HTTP request to the server

and receive a response back in JSON format. The data were extracted and stored

in our MySQL database, offering ease of reading and writing the data. An example

of interacting with the GitHub server is shown in Figure 5.2. This code was used

to collect a list of 100 project repositories with the highest number of stargazers

among a specific programming language. An example of the JSON response from

the GitHub server is demonstrated in Figure 5.3. The response shows the infor-

mation of the Django Debug Toolbar project written in Python. Moreover, all APIs

used are stated in Table 5.1, which will be used from now on when referring to those

APIs. In this study, there are three information sources that we need to collect for

modeling: project repository, pull request, and contributor.

5.2.1 Project Repository

We began collecting a list of 100 project repositories with the highest stargaz-

ers for each programming language using the first API, as shown in the API table.

We then looped over the list to collect their information using the second API and

saved them as a JSON file. After that, a set of workable data was extracted and

stored in our database using the Python library named pymysql. The extracted data

included id, name, full name, URL, creation date, stargazer count, and other social

attributes.

5.2.2 Pull Request

With the projects collected, we used the third API to retrieve a list of pull

requests under each project. We then looped over the list to collect their information

using the fourth API. We also applied the fifth and seventh APIs to collect a list of

commits and events under each pull request, respectively. After that, we used the

sixth and eighth APIs to gather the details of the commits and events. We extracted a
5https://docs.github.com/en/rest
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1 import requests
2 def prepare_proj_request(database, token, page):
3 url = ”https://api.github.com/search/repositories”
4 headers = CaseInsensitiveDict()
5 headers[”Accept”] = ”application/vnd.github.v3+json”
6 headers[”Authorization”] = ”token {}”.format(token)
7 params = {
8 ”q”: ”language:{}”.format(database),
9 ”sort”: ”stars”,

10 ”order”: ”desc”,
11 ”per_page”: ”100”,
12 ”page”: str(page)
13 }
14 return url, headers, params
15
16 def send_request(url, token=None, headers=None, params=None):
17 while True:
18 print(”\nsend request to {} ...”.format(url))
19 try:
20 resp = requests.get(url, headers=headers, params=

params, timeout=30 )
21 resp_json = resp.json()
22 except:
23 print(”\nrequest failed, retrying ...”)
24 if is_connected_to_internet():
25 continue
26 time.sleep(60)
27 return resp_json

Figure 5.2: An example of interacting with the GitHub server using requests

set of workable data and stored it in our database. The data extracted from the pull

request information consisted of id, pull request number, URL, state, title, body,

creation date, latest update date, close date, merge date, contributor id, contributor

name, and others. For the commit information, the extracted data included sha,

URL, committer name, committer id, commit date, changed file count, number of

changes, number of added lines, number of deleted lines, and others. The event

information included id, creator id, creator name, creation date, event, and others.

At this point, we also performed data filtering (see Section 3.3) on both the project

and pull request data in order to ensure relevance and quality of our dataset.

Since our approach predicts pull request evaluation and reopening at the time

of submission, we needed to update the data back to the submission time. Some

attributes were updated using a log of events, such as the title, while the body could
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1 {
2 ”id”: 46939,
3 ”node_id”: ”MDEwOlJlcG9zaXRvcnk0NjkzOQ==”,
4 ”name”: ”django-debug-toolbar”,
5 ”full_name”: ”jazzband/django-debug-toolbar”,
6 ”owner”: {
7 ”login”: ”xxxxxxxx”,
8 ”id”: 9999999,
9 ...

10 },
11 ”html_url”: ”https://github.com/jazzband/django-debug-

toolbar”,
12 ”description”: ”A configurable set of panels that display

various debug information about the current request/
response.”,

13 ”fork”: false,
14 ”url”: ”https://api.github.com/repos/jazzband/django-debug

-toolbar”,
15 ...
16 ”size”: 7418,
17 ”stargazers_count”: 7097,
18 ”language”: ”Python”,
19 ”open_issues”: 93,
20 ...
21 ”network_count”: 979,
22 ”subscribers_count”: 107
23 }

Figure 5.3: An example of the JSON response from the GitHub server

not be updated. Fortunately, the GitHub website has a list of change logs for pull

request bodies, as shown in Figure 5.4. Therefore, we used selenium to scrape the

body originally created at the submission time. After scraping, we update them on

the database. Some parts of the Python script in which we used selenium to scrape

and update the pull request bodies are demonstrated in Figure 5.5.

5.2.3 Contributor

Once we had collected the pull request data and extracted the contributor IDs,

we used the ninth API to retrieve detailed information about each contributor. We

extracted workable attributes such as ID, name, URL, and creation date, and stored

this data in our database.

After obtaining all the relevant information from our data sources (i.e., project
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Figure 5.4: An example of change logs of pull request body

repository, pull request, and contributor), we needed to transform them into a set

of tabular features that we could use for modeling. These features are summarized

in Table 4.1. To derive these features, we used a combination of data manipulation

and calculation. For example, to calculate the number of commits in a pull request,

we simply counted the number of commits associated with that pull request. Sim-

ilarly, to compute the number of merged pull requests, we counted the number of

previously merged pull requests in the latest 10 pull requests. In addition, we com-

puted the age of a contributor by subtracting their creation date from the date the

pull request was submitted. Aside from the tabular features, we also had two textual

features which are title and description that required further data preprocessing in

the modeling stage. It is essential to note that all information that we used to form

the features were extracted at the pull request submission (tpred). The final step in

the data preparation phase was to create labels for pull requests. Each pull request

was given three labels: the acceptance label, the latency label, and the reopening

label, as described in Section 3.4. The output of this phase was the dataset that was

ready for the modeling phase.
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Table 5.1: List of all used the GitHub REST APIs

GitHub REST APIs Purpose
1 https://api.github.com/search/repositories Collect a list of project reprositories

2 https://api.github.com/repos/<project-full_name> Collect a project reprository information

3 https://api.github.com/repos/<project-full_name>/pulls Collect a list of pull requests under the project reprository

4 https://api.github.com/repos/<project-full_name>/pulls/
<pull_request-number>

Collect a pull request information

5 https://api.github.com/repos/<project-full_name>/pulls/
<pull_request-number>/commits

Collect a list of commits under the pull request

6 https://api.github.com/repos/<project-full_name>/
commits/<commit-sha>

Collect a commit information

7 https://api.github.com/repos/<project-full_name>/issues/
<pull_request-number>/events

Collect a list of events under the pull request

8 https://api.github.com/repos/<project-full_name>/issues/
events/<event-id>

Collect a event information

9 https://api.github.com/users/<contributor-login> Collect a contributor information
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1 from selenium import webdriver
2 from selenium.webdriver.common.keys import Keys
3 from selenium.webdriver.common.by import By
4 from selenium.webdriver.support.ui import WebDriverWait
5 from selenium.webdriver.support import expected_conditions as

EC
6 current_path = os.getcwd()
7 web_driver_file = os.path.join(current_path, ”geckodriver”)
8 driver = webdriver.Firefox(executable_path=web_driver_file)
9 pull_id = row[’id’]

10 html_url = row[’html_url’]
11 driver.get(html_url)
12 body_div = WebDriverWait(driver, 5).until(EC.

presence_of_element_located((By.ID, ”pullrequest-{}”.format
(pull_id))))

13 body_status = ””
14 try:
15 WebDriverWait(body_div, 1).until(EC.

element_to_be_clickable((By.CSS_SELECTOR, ”svg.octicon-
triangle-down:nth-child(2)”))).click()

16 except:
17 body_status = ”no update”
18 if body_status == ””:
19 WebDriverWait(body_div, 10).until(EC.

element_to_be_clickable((By.XPATH, ”(//ul[contains(@class,’
lh-condensed text-small’)]/li)[last()]”))).click()

20 try:
21 body = WebDriverWait(driver, 20).until(EC.

presence_of_element_located((By.CSS_SELECTOR, ”.markdown-
body.entry-content.comment-body.p-0”))).get_attribute(’
innerHTML’)

22 body_status = ”updated”
23 except:
24 body_status = ”deleted”
25 ”””
26 update ‘body‘ on database
27 ”””

Figure 5.5: Some parts of the Selenium-based script used to scrape the pull
request bodies

5.3 Modeling

The modeling phase consists of four stages which are data splitting, data pre-

processing, model training, and model evaluation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

5.3.1 Data Splitting

We began with loading the dataset from our database as a CSV file. To ensure

that our model learned only from past data available during training, we sorted the

pull requests in the dataset by their closing date. In particular, pull requests in the

training and validation sets were closed before those in the testing set. Furthermore,

the pull requests in the training set were terminated before those in the validation

set. Next, we performed data splitting using a 60/20/20 split for small programming

languages and a 80/10/10 split for big programming languages. Once we completed

the data splitting, we saved the train, validation, and test sets separately into three

CSV files. This was done to facilitate further processing and analysis of each set

independently.

5.3.2 Data Preprocessing

The data preprocessing stage involves three sub-steps. The first sub-step is

preprocessing for tabular features, which involves standardizing the tabular data to a

format suitable for model training. The second sub-step is preprocessing for textual

features, which includes text cleaning, tokenization, and vectorization of textual

data. The third sub-step is preprocessing for labels, which involves encoding the

labels in a suitable format for use in the model training phase. This includes label

encoding or one-hot encoding, depending on the type of labels.

Tabular Features

We encountered two types of tabular features: numerical features and cate-

gorical features. For numerical features (e.g., # of commits, # of modified files, and

contributor age), we performed standardization to normalize the data and bring it

to a common scale. We employed StandardScaler from the sklearn library to han-

dle this task. However, for categorical features (e.g., has test, hast body, and has

link), we only had binary features with values of 0 or 1, so no preprocessing was

necessary.
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1 import csv
2 data_path = ”dataset/{}.csv”.format(language)
3 # train/valid/test
4 # small
5 if language in [”python”, ”r”]:
6 split_ratio = (60,20,20)
7 # large
8 else:
9 split_ratio = (80,10,10)

10
11 # read the data
12 with open(data_path, ’r’) as f:
13 reader = csv.reader((line.replace(’\0’, ’’) for line in f)

)
14 csv_list = list(reader)
15 header = csv_list[0]
16 data = csv_list[1:]
17
18 # split the data
19 train_len = len(data) * split_ratio[0] // 100
20 valid_len = len(data) * split_ratio[1] // 100
21 test_len = len(data) * split_ratio[2] // 100
22 remainder = len(data) - train_len - valid_len - test_len
23 if remainder > 0:
24 train_len += remainder
25 train_data = data[:train_len]
26 valid_data = data[train_len:train_len + valid_len]
27 test_data = data[train_len + valid_len:]
28
29 # write the data
30 with open(”dataset/{}_train.csv”.format(language), ’w’) as f:
31 writer = csv.writer(f)
32 writer.writerow(header)
33 writer.writerows(train_data)
34 with open(”dataset/{}_valid.csv”.format(language), ’w’) as f:
35 writer = csv.writer(f)
36 writer.writerow(header)
37 writer.writerows(valid_data)
38 with open(”dataset/{}_test.csv”.format(language), ’w’) as f:
39 writer = csv.writer(f)
40 writer.writerow(header)
41 writer.writerows(test_data)

Figure 5.6: A Python script for data spliting

Textual Features

Initially, we created text data by concatenating two titles and one body. Next,

we transformed the text data to lower case and performed cleaning. The cleaning

process involved removing any code snippets, HTML tags, stop words, andpunctu-
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ation marks. We also replaced multiple spaces with a single space and performed

tokenization to break the text into individual tokens. For most of processes, the nltk

library was applied. Figure 5.7 the piece of code used to preprocess the text.

After the text was cleaned and tokenized, it was passed through pre-trained

embedding models to learn low-dimensional semantic representation vectors of the

text, without fine-tuning. If the learned vectors were already available, we used

them directly instead of feeding the text data into the model for re-embedding. It

is important to note that if a vector was not available for a specific token, we used

a vector of zeros instead. After that, the average pooling technique is employed to

derive a final vector representation for the whole text. As mentioned earlier, we

considered several pre-trained models, including, Word2vec, FastText, and BERTs

(e.g., BERTBASE_UNCASED and BERTOverflow). Word2vec and FastText were im-

plemented through the Python library, named gensim while BERTs were devel-

oped via the transformers library. The example of learning embeddings for text

is shown in Figure 5.8. The output dimension that we used for BERTs was 768

while Word2vec was 200 and FastText was 300.

Labels

We used different methods to preprocess each of the labels. Specifically, one-

hot encoding was applied for encoding the classified acceptance (i.e., 0 for Rejected

and 1 for Accepted) and the classified reopening (i.e., 0 for NonReopened and 1 for

Reopened) while label encoding was used for the classified latency (i.e., 0 for Hour,

1 for Day, 2 for Week, 3 for Month, and 4 for GTMonth) because the latency contains

the values that have an ordinal relationship between each other.

5.3.3 Model Training

This phase was related to training deep learning-based models, including VAE

and deep neural networks. With training and validation dataset prepared, the tabular

features and textual features were concatenated into a single vector for each sample.
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1 import nltk
2 from nltk.corpus import stopwords
3
4 tokenizer = nltk.tokenize.ToktokTokenizer()
5 punctuations = string.punctuation + string.digits + ’”” + ”””
6 stop_words = set(nltk.corpus.stopwords.words(’english’))
7 alphabet_string = string.ascii_lowercase
8 alphabet_list = list(alphabet_string)
9 def strip_list_noempty(lst):

10 new_list = (item.strip() if hasattr(item, ’strip’) else
item for item in lst)

11 return [item for item in new_list if item != ’’]
12
13 def clean_punctuation(text):
14 tokens = tokenizer.tokenize(text)
15 punctuation_filtered = []
16 regex = re.compile(’[%s]’ % re.escape(punctuations))
17 for token in tokens:
18 punctuation_filtered.append(regex.sub(’’, token))
19 filtered_list = strip_list_noempty(punctuation_filtered)
20 return ’ ’.join(map(str, filtered_list))
21
22 def clean_text(text):
23 # lower
24 text = text.lower()
25 # use single space to replace multiple spaces
26 text = re.sub(re.compile(’[\n\r\t]’), ’ ’, text)
27 # remove ’!”#$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~’
28 text = clean_punctuation(text)
29 # replace any sequence of 2 or more spaces with a single

space
30 text = re.sub(re.compile(’\s{2,}’), ’ ’, text)
31 # remove stop words and remove single character
32 text = ’ ’.join([token for token in tokenizer.tokenize(

text) if token not in stop_words and token not in
alphabet_list])

33 return text
34
35 for df in [train_df, valid_df, test_df]:
36 # create text column by concatenating title and body but

if body is empty or null, just use title
37 df[’text’] = df.apply(lambda row: row[’title’] + ’ ’ + row

[’title’] if row[’body’] == ’’ or pd.isnull(row[’body’])
else row[’title’] + ’ ’ + row[’title’] + ’ ’ + row[’body’],
axis=1)

38 df[’text’] = df[’text’].apply(lambda x: re.sub(r’<code
>(.*?)</code>’, ’’, x, flags=re.MULTILINE|re.DOTALL))

39 df[’text’] = df[’text’].apply(lambda x: re.sub(re.compile
(’<.*?>’), ’’, x))

40 df[’text’] = df[’text’].apply(lambda x: clean_text(x))

Figure 5.7: A piece of Python code used to preprocess the text
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1 from gensim.models.keyedvectors import KeyedVectors
2 pretrained_model = ”word2vec_models/SO_vectors_200.bin”
3 word_vect = KeyedVectors.load_word2vec_format(pretrained_model

, binary=True)
4 def embed_text(text):
5 tokens = text.split()
6 if text == ’’:
7 return np.zeros(default_dim)
8 vectors = []
9 for token in tokens:

10 try:
11 vectors.append(word_vect[token])
12 except:
13 vectors.append(np.zeros(default_dim))
14 vectors = np.array(vectors)
15 vectors = np.mean(vectors, axis=0)
16 return vectors
17 for df in [train_df, valid_df, test_df]:
18 df[’text’] = df[’text’].apply(lambda x: embed_text(x))

Figure 5.8: A piece of Python code used to represent the text by learned
vectors from Word2vec

Variational Autoencoder (VAE)

The aim of using VAE was to handle highly imbalanced data in reopening

output by increasing the number of positive samples (i.e., reopening samples). To

train a VAE model, we began by performing oversampling on the positive samples

in the training dataset using SMOTE from the imblearn library (see Figure 5.9).

This was done to ensure that we had a sufficient number of positive samples to

train the model. The VAE model was trained using keras and hyperparameter-tuned

using keras_tuner with 30-iterations randomized algorithm (refer to Figure 5.10).

The model was trained and validated using early stopping technique, a learning

rate scheduler, and model checkpoint. The loss function for the VAE model was

defined by combining the reconstruction loss and KL loss (refer to Figure 5.11). The

validation set’s loss was used as the stopping criterion during the tuning process.

After training and fine-tuning the VAE model, the best model was selected

and saved to disk. The decoder layer of the best model was used to generate new

postive samples by randomly sampling from the latent space of the VAE model. The

generated samples were concatenated with the original training data to create a new
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1 from imblearn.over_sampling import SMOTE
2
3 sm = SMOTE(random_state=SEED, sampling_strategy=’auto’)
4 X_train_resamp, y_train_resamp = sm.fit_resample(X_train,

y_train[label])
5 print(”shape of X_train_resamp: {}”.format(X_train_resamp.

shape))
6 print(”shape of y_train_resamp: {}”.format(y_train_resamp.

shape))
7
8 # filter only positive samples
9 X_train_1_resamp = X_train_resamp[y_train_resamp == 1]

Figure 5.9: A piece of Python code used to upsample the reopening samples
using SMOTE

dataset with balanced classes, where the positive class had been upsampled using

the best VAE model. Finally, the new dataset was shuffled randomly to ensure that

the order of the data does not affect the training of the classification model for the

reopening task. It is important to note that the newly generated training dataset was

exclusively used for training the classification model for the reopening task and was

not used for training the acceptance and latency task models.

Deep Neural Networks

We implemented two deep neural network-based classification models - one

for the reopening output and another for the acceptance and latency output. Al-

though both models were quite similar, they differed in the training dataset used and

their outputs. The classifier for the reopening output was trained using the gener-

ated training set, which was obtained through a combination of the original training

set and the samples generated by the VAE model. On the other hand, the classi-

fier for the acceptance and latency output was trained using the original training

set only. Specifically, the second model was a multi-output classifier that predicted

both the acceptance and latency outputs. Both models were implemented using the

keras library, and we used keras_tuner to perform hyperparameter tuning with a

30-iteration randomized algorithm utilizing the validation set. The hyperparame-

ters we tuned included various aspects of the model architecture, such as, whether
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1 class VaeModel(kt.HyperModel):
2 def __init__(self, input_dim):
3 self.input_dim = input_dim
4
5 def build(self, hp):
6 set_seeds(SEED)
7 encoder_inputs = Input(shape=(self.input_dim,))
8 x = BatchNormalization()(x)
9 x = Dropout(dropout_rate)(x)

10 x = Dense(layer_2, activation=act_2)(x)
11 x = BatchNormalization()(x)
12 x = Dropout(dropout_rate)(x)
13 x = Dense(layer_3, activation=act_3)(x)
14 x = BatchNormalization()(x)
15 x = Dropout(dropout_rate)(x)
16 z_mean = Dense(latent_dim, name=”z_mean”)(x)
17 z_log_var = Dense(latent_dim, name=”z_log_var”)(x)
18 z = Sampling()([z_mean, z_log_var])
19 encoder = Model(encoder_inputs, [z_mean, z_log_var, z

], name=”encoder”)
20 latent_inputs = Input(shape=(latent_dim,))
21 x = Dense(layer_3, activation=act_3)(latent_inputs)
22 x = BatchNormalization()(x)
23 x = Dropout(dropout_rate)(x)
24 x = Dense(layer_2, activation=act_2)(x)
25 x = BatchNormalization()(x)
26 x = Dropout(dropout_rate)(x)
27 x = Dense(layer_1, activation=act_1)(x)
28 x = BatchNormalization()(x)
29 x = Dropout(dropout_rate)(x)
30 decoder_outputs = Dense(self.input_dim, activation=”

linear”)(x)
31 decoder = Model(latent_inputs, decoder_outputs, name=”

decoder”)
32 outputs = decoder(encoder(encoder_inputs)[2])
33 vae = Model(encoder_inputs, outputs, name=”vae”)
34 vae.compile(optimizer=Adam(hp.Choice(’learning_rate’,

[1e-2, 1e-3, 1e-4])),
35 metrics=[tf.keras.metrics.MeanSquaredError

()])
36
37 return vae

Figure 5.10: A piece of Python code used for training and tuning an VAE
model

to include batch normalization layers, the number of dense layers, the number of

hidden nodes in each dense layer, and the dropout percentage.

Figure 5.12 shows a piece of code that we used to balance the class weights
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1 reconstruction_loss = losses.mean_squared_error(encoder_inputs
, outputs)

2 reconstruction_loss *= self.input_dim
3 kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var

)
4 kl_loss = tf.reduce_mean(kl_loss) * -0.5
5 vae_loss = reconstruction_loss + kl_loss
6 vae.add_loss(vae_loss)

Figure 5.11: A code for defining loss for an VAE model

for the outputs. We also employed model checkpoint and learning rate scheduler

techniques to improve the training process. In terms of architecture, both models

comprised an input layer, a batch normalization layer, a dense layer with the ReLU

activation function, a dropout layer, and an output layer (see Figure 5.13 and Figure

5.14). For the reopening and acceptance outputs, we used binary cross-entropy as

the loss function, while for the latency output, we used categorical cross-entropy.

However, we did shared loss learning for the second classifier by giving an equal

weight to each output in order to balance their importance during the training pro-

cess. This helped to ensure that the model was not overly biased towards one output

over the other. By equally weighting the acceptance and latency outputs, we en-

sured that the model gave each output the same level of attention and consideration

during the training process. This resulted in a more balanced and accurate model

that was capable of accurately predicting both acceptance and latency outputs. To

select the best model, we employed the validation set’s AUC for the reopening and

acceptance outputs, while we used MMAE for the latency output. After obtaining

the best models, we dumped them into the disk to prepare for model evaluation with

the test set.

5.3.4 Model Evaluation

As we stated in the previous section, we used different evaluation metrics for

each output to choose the best-performing approach. For the reopening and accep-

tance outputs, we employed the validation set’s AUC. For the latency output, we

used MMAE, After training, we selected the models with the highest AUC or low-
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1 class_weights = compute_class_weight(
2 class_weight = ”balanced”,
3 classes = np.unique(y_train[label]),
4 y = y_train[label]
5 )
6 class_weights = dict(zip(np.unique(y_train[label]),

class_weights))
7 print(”class_weights: {}”.format(class_weights))
8
9 model_checkpoint = tf.keras.callbacks.ModelCheckpoint(

10 filepath=’our_model/{}/best_weight_{}_{}’.format(language,
label, text_type), monitor=’val_loss’, verbose=0,
save_best_only=True,

11 save_weights_only=True, mode=’auto’, save_freq=’epoch’,
options=None

12 )
13 reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(
14 monitor=’val_loss’, factor=0.2, patience=5, verbose=0,

mode=’auto’,
15 min_delta=0.0001, cooldown=0, min_lr=0
16 )

Figure 5.12: A piece of code for defining class weights, model checkpoint
and learning rate scheduler for a classifier for predicting the reopening output

est MMAE on the validation set. Specifically, this process started by choosing the

pre-trained embedding model (e.g., Word2vec, FastText, BERT, and BERTOver-

flow) for both pull request reopening and evaluation classifiers. The selection of the

best pre-trained model was based on its performance on the validation set, measured

by AUC for the reopening output and acceptance output, and MMAE for the latency

output. The best-performing pre-trained model was then chosen for each classifier,

and they were not necessarily the same. For example, we could have BERT for

the reopening classifier but Word2vec for the evaluation classifier, based on their

respective evaluation performances.

Ultimately, we performed the final evaluation of our best approach on the test

set, which was crucial in assessing the model’s effectiveness in real-world scenarios.

We evaluated the models based on various metrics, including accuracy, precision,

recall, f1-score, and AUC for the acceptance output, while MMAE was used for

the latency output. For the reopening output, we used metrics such as Balanced

Accuracy, AUC, TPR, and FPR. Most of the metrics were available in the sklearn
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1 ____________________________________________________________
2 Layer (type) Output Shape Param #
3 ============================================================
4 input_1 (InputLayer) [(None, 801)] 0
5
6 normalization (Normalization) (None, 801) 1605
7 dense (Dense) (None, 32) 25664
8
9 re_lu (ReLU) (None, 32) 0

10
11 dropout (Dropout) (None, 32) 0
12
13 dense_1 (Dense) (None, 16) 528
14
15 re_lu_1 (ReLU) (None, 16) 0
16
17 dropout_1 (Dropout) (None, 16) 0
18
19 dense_2 (Dense) (None, 1) 17
20
21 classification_head_1 (Acti (None, 1) 0
22 vation)
23 ============================================================
24 Total params: 26,209
25 Trainable params: 26,209
26 Non-trainable params: 0
27 ____________________________________________________________

Figure 5.13: An example of a model architecture of the pull request reopen-
ing classifier

library while MMAE was from the imblearn library. Additionally, we compared the

model’s performance with a randomized baseline and the existing approach to un-

derstand its effectiveness. This comparative analysis helped us identify the strengths

and weaknesses of our approach and the scope for further improvements. We will

discuss the evaluation and results in the next chapter.
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1 ______________________________________________________________
2 Layer (type) Output Shape Param #
3 ==============================================================
4 input_1 (InputLayer) [(None, 802)] 0
5
6 normalization (Normalization) (None, 802) 1605
7
8 dense (Dense) (None, 32) 25696
9

10 re_lu (ReLU) (None, 32) 0
11
12 dense_1 (Dense) (None, 64) 2112
13
14 re_lu_1 (ReLU) (None, 64) 0
15
16 dense_2 (Dense) (None, 32) 2080
17
18 re_lu_2 (ReLU) (None, 32) 0
19
20 dropout (Dropout) (None, 32) 0
21
22 dense_3 (Dense) (None, 1) 33
23
24 dense_4 (Dense) (None, 5) 165
25
26 classification_head_1 (Activat (None, 1) 0
27 ion)
28 classification_head_2 (Softmax (None, 5) 0
29 )
30 =============================================================
31 Total params: 31,691
32 Trainable params: 30,086
33 Non-trainable params: 1,605
34 _____________________________________________________________

Figure 5.14: An example of a model architecture of the pull request evalua-
tion classifier



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

EVALUATION AND RESULTS

In this chapter, we cover the research questions, experimental setting, perfor-

mance measures, experimental results, further discussion of the findings, and threats

to validity.

6.1 Research Questions

In this study, our empirical evaluation aims to answer the following research

questions.

RQ1: Sanity Check (Is the proposed approach suitable to predict the pull

request evaluation and pull request reopening?)

This aims to perform a sanity check on the suitability of our proposed approach

in predicting pull request evaluation and reopening at the submission time. To ad-

dress this, we compare the performance of our approach against a randomized algo-

rithm. Conducting a sanity check using a rule-based model is a common practice in

software engineering research (Al-Zubaidi et al., 2018; Shepperd and MacDonell,

2012; Sarro et al., 2016). We repeat the random guessing process 5000 times and

take the average performance to ensure statistical significance. Our approach should

surpass the baseline, which relies on random guessing, to demonstrate its suitability

for the early prediction of pull request evaluation and pull request reopening.

RQ2: Does the proposed approach outperform the existing approach?

The objective of this research question is to compare the predictive perfor-

mance between the existing approach and our approach. This aims to measure the

feasibility of 3 components, according to research objectives, that encourage the

predictive performance of pull request acceptance, latency, and reopening. This

allows us to evaluate whether:
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• The designed architecture of our approach is proper to capture the relation-

ships that allows shared learning for predicting pull request acceptance, la-

tency, and reopening.

• Our proposed oversampling technique is proper for handling the highly im-

balanced nature of the reopening pull requests.

• Our proposed texture features extracted by employed feature extraction tech-

niques can compensate the limit of available information of early prediction.

Currently, there exists no approach that predicts in the same manner as our

proposed approach. Specifically, our approach predicts three pull request outputs

(i.e., acceptance, latency, and reopening) at the time of pull request submission. As

such, we will use the approach that employs tabular features, feature selection, and

traditional machine learning-based single-output classifiers, such as, Decision Tree,

Random Forest, and XGBoost, which have been reported as the best classifiers in

previous studies (Gousios et al., 2014; Jiang et al., 2020; Mohamed et al., 2018,

2020; de Lima Júnior et al., 2021), to represent the existing approaches. Particu-

larly, each outcome will have a separate classifier. The performance of our approach

should be better than the existing approach to indicate that the combination of tab-

ular features and textual features extracted from the pre-trained model, our over-

sampling technique (i.e., SMOTE combined with VAE), shared learning, and deep

learning classifier can overcome the challenges, posed by the limited information

available at the time of submission and highly imbalanced data, as well as improve

the performance for the prediction of pull request evaluation and pull request re-

opening.

6.2 Experimental Setting

We used a hold-out technique to split data into three sets including a training

set, validation set, and testing set. We sorted pull requests based on their close date

to mimic deployment in a real situation. This was to make sure that our model
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will learn from only the past data available at the training time. In detail, the pull

requests in the training set and the validation set were closed before the pull requests

in the testing set, and the pull requests in the training set were also terminated before

the pull requests in the validation set. Our experiment was programming language

specific, so we trained an approach for each language. The programming language-

specific experimental setting balances specificity and generalization. It avoids the

cold-start problem for new projects and overly generalized models, which has been

a limitation in prior research that evaluated models at the project or all-in-one level.

The small community programming languages used a 60/20/20 split while the big

ones used an 80/10/10 split. In our study, the training dataset was used to train our

model and we used the validation dataset to choose the best techniques and the best

models as well as to tune hyperparameters. Lastly, the testing dataset was applied

to evaluate the performance of our model.

To ensure a fair comparison of performance, the approaches were trained and

validated on the same experimental environment using the identical dataset with

the shared data splitting. The set of tabular features were also shared between both

the existing approach and our approach. Moreover, both approaches employed the

same tuning hyperparameter technique, which involved using a randomized algo-

rithm with 30 iterations and the shared random seed. Also, the classifiers in both

approaches were trained with balanced class weights to avoid bias towards the ma-

jority class. Additionally, we used the same performance metrics to select the best

model and hyperparameter set. Specifically, we used AUC for the acceptance and

reopening output, and MMAE for the latency output.

6.3 Performance Measures

We used common binary classification metrics, such as, Accuracy, Precision,

Recall, F1-Score, and AUC for the acceptance task. However, we applied Macro-

Averaged Absolute Error (MMAE) for the latency task because it can assess the

distance between an actual class and a predicted one. It can also be applied to
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the imbalanced multi-class classification because of the macro-averaged technique.

MMAE has been used in many works (Baccianella et al., 2009; Choetkiertikul et al.,

2018; Wattanakriengkrai et al., 2019) to tackle the ordinal multi-class classification

problem. Note that for the MMAE metric, lower values indicate better performance.

In addition, we used metrics that can handle highly imbalanced data and enable

accurate anomaly detection, such as, Balanced Accuracy (BA), AUC, True Positive

Rate (TPR), and False Negative Rate (FPR) (Kale et al., 2022; Trauer et al., 2021)

for the reopening task (see Section 2.1.2 for details of each measure).

6.4 Experimental Results

In this section, we report the evaluation results to answer the research ques-

tions. Table 6.1 and Table 6.2 show the evaluation results for pull request evalu-

ation and reopening achieved by randomized baseline, existing approach, and our

approach in four programming languages. The evaluation metrics for acceptance

include Accuracy (Acc), Precision (P), Recall (R), F1-Score (F1), and area under

the receiver operating characteristic curve (AUC). The evaluation metric for latency

is Macro-Averaged Mean Absolute Error (MMAE) while the evaluation metrics for

reopening include Balanced Accuracy (BA), AUC, True Positive Rate (TPR), and

False Positive Rate (FPR). In addition, we also report the results with percentage

improvement (Percent Imp) and the performance scores on average.

6.4.1 Results for RQ1

For the pull request evaluation, the analysis of all measures (i.e., Accuracy,

Precision, Recall, F1-Score, AUC, and MMAE) shown in Table 6.1 suggests that the

predictive results obtained with our approach (Our), are better than those achieved

by using the randomized baseline (Randomized) in all cases (24/24) consistently.

Our approach improves between 43.74% (in Python) to 65.21% (in Java) in terms

of Accuracy, 4.71% (in Ruby) to 60.44% (in Java) in terms of Precision, 48.31%

(in Python) to 65.17% (in Java) in terms of Recall, 31.57% (in R) to 62.83% (in

Java) in terms of F1-Score, 29.75% (in R) to 81.85% (in Java) in terms of AUC,
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and 24.79% (in R) to 28.84% (in Java) in terms of MMAE over the baseline.

For the pull request reopening task, our approach outperforms the randomized

baseline in most cases (14/16) in terms of Balanced Accuracy, AUC, TPR, and FPR.

Our approach improves over the baseline between 17.92% (in Java) to 28.21% (in

Ruby) in terms of Balanced Accuracy, 24.71% (in Java) to 46.39% (in Python) in

terms of AUC, and 27.15% (in Ruby) to 52.75% (in R) in terms of TPR, while

the results for FPR are mixed, with some cases showing improvement and others

showing a decline compared to the baseline. Specifically, our approach improves

FPR by 19.96% (in Python) and 29.27% (in Ruby) over the baseline, while it is

unable to improve in R and Java. Our approach achieves the best performance in

Ruby, as it consistently outperforms the baseline in all evaluation measures.

On average, our approach has significantly better performance than the base-

lines in all measures. For the pull request acceptance task, our approach obtains

0.762 Accuracy, 0.878 Precision, 0.791 Recall, 0.832 F1-Score, and 0.749 AUC,

while for the latency task, it gains 1.163 MMAE. For the pull request reopening

task, our approach achieves 0.618 Balanced Accuracy, 0.689 AUC, 0.694 TPR,

and 0.458 FPR, compared to the baselines which achieve 0.500 Accuracy, 0.753

Precision, 0.500 Recall, 0.595 F1-Score, and 0.500 AUC for the acceptance task,

and 1.600 MMAE for the latency task while it gains 0.500 Balanced Accuracy,

0.500 AUC, 0.500 TPR, and 0.500 FPR for the reopening task.

Our proposed approach outperforms the randomized baseline in all four program-

ming languages, thus our approach is suitable for predicting pull request evaluation

and reopening at the submission time.
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Table 6.1: Performance comparison between our approach (Our) and the randomized baseline (Randomized) for predicting
the pull request evaluation and reopening, reported as Accuracy (Acc), Precision (P), Recall (R), F1-Score (F1), AUC,
Macro-Averaged Absolute Error (MMAE), Balanced Accuracy (BA), True Positive Rate (TPR), and False Positive Rate
(FPR) along with percentage improvement (Percent Imp)

Language Approach Acceptance Latency Reopening
Acc P R F1 AUC MMAE BA AUC TPR FPR

Python
Randomized 0.500 0.771 0.500 0.607 0.500 1.599 0.500 0.500 0.500 0.500
Our 0.719 0.874 0.742 0.803 0.716 1.171 0.639 0.732 0.679 0.400
Percent Imp 43.74 13.40 48.31 32.30 43.18 26.80 27.81 46.39 35.66 19.96

R
Randomized 0.500 0.835 0.500 0.625 0.500 1.600 0.500 0.500 0.501 0.500
Our 0.721 0.874 0.777 0.823 0.649 1.204 0.600 0.715 0.765 0.564
Percent Imp 44.11 04.75 55.38 31.57 29.75 24.79 20.00 42.94 52.75 -12.79

Java
Randomized 0.500 0.523 0.500 0.511 0.500 1.600 0.500 0.500 0.501 0.500
Our 0.826 0.839 0.826 0.832 0.909 1.139 0.590 0.624 0.700 0.515
Percent Imp 65.21 60.44 65.17 62.83 81.85 28.84 17.92 24.71 38.87 -03.06

Ruby
Randomized 0.500 0.883 0.500 0.638 0.500 1.600 0.500 0.500 0.500 0.500
Our 0.781 0.925 0.819 0.868 0.720 1.141 0.641 0.684 0.635 0.354
Percent Imp 56.15 04.71 63.70 36.00 44.01 28.69 28.21 36.90 27.15 29.27

AVERAGE
Randomized 0.500 0.753 0.500 0.595 0.500 1.600 0.500 0.500 0.500 0.500
Our 0.762 0.878 0.791 0.832 0.749 1.163 0.618 0.689 0.694 0.458
Percent Imp 52.30 20.83 58.14 40.68 49.70 27.28 23.49 37.74 38.60 08.34
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6.4.2 Results for RQ2

We compare the performance achieved from our approach (Our) against the

existing approach (Existing) as shown in Table 6.2. For the pull request evaluation

task, the analysis of all measures (i.e., Accuracy, Precision, Recall, F1-Score, AUC,

and MMAE) suggests that our approach achieves better performance in most cases

(23/24) compared to the existing approach. Our approach improves between 4.33%

(in Java) to 21.36% (in R) in terms of Accuracy, 0.41% (declining in Python) to

3.01% (in Java) in terms of Precision, 5.97% (in Java) to 27.73% (in R) in terms of

Recall, 3.68% (in Java) to 15.20% (in R) in terms of F1-Score, 1.13% (in Python)

to 10.20% (in R) in terms of AUC, and 1.69% (in R) to 9.62% (in Ruby) in terms

of MMAE.

For the pull request reopening task, our approach outperforms the existing ap-

proach in most cases (13/16) in terms of Balanced Accuracy, AUC, TPR, and FPR.

Our approach improves over the baseline between 3.40% (in Python) to 15.00% (in

Ruby) in terms of Balanced Accuracy, 3.89% (in Python) to 17.45% (in Ruby) in

terms of AUC, and 0.00% (in R) to 92.00% (in Java) in terms of TPR, while the

results for FPR are mixed, with some cases showing improvement and others show-

ing a decline compared to the existing approach. Explicitly, our approach improves

FPR by 9.63% (in Ruby) and 20.41% (in R) over the existing approach, while show-

ing a decline in Python and Java. Ruby is also the programming language where

our approach achieves the highest performance, as it consistently outperforms the

existing approach in all evaluation measures.

On average, our approach obtains better performance in all measures, except

FPR. The existing approach achieves an Accuracy of 0.701, Precision of 0.869,

Recall of 0.709, F1-Score of 0.779, AUC of 0.713 for the acceptance task, while it

gains an MMAE of 1.239 for the latency task and it obtains a Balanced Accuracy

of 0.564, AUC of 0.630, TPR of 0.533, and FPR of 0.404. Overall, our approach

shows better performance than the existing approach.
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Our proposed approach outperforms the existing approach in all four programming

languages. We can, thus, conclude that textual features extracted from the pre-

trained models, our oversampling technique, shared learning, and deep learning

classifiers improve the performance for prediction of pull request evaluation and

pull request reopening.

It is worth noting that in our reopening experiments, we observed the FPR

improvement in 14 out of 16 cases over the baseline, while we were unable to im-

prove in two cases. Moreover, we observed the FPR improvement in 13 out of 16

cases over the existing approach, while we were unable to improve in three cases.

However, it is crucial to consider that the importance of TPR or FPR may vary de-

pending on the specific application and cost associated with each project. In our

study, we have used AUC as the main evaluation metric, which provides a balanced

measure between TPR and FPR. This approach allows us to account for the trade-off

between sensitivity and specificity, and strike a balance in our analysis. Based on

AUC, our results excel in all cases.

Apart from evaluating our approach’s performance using standard measures,

we conducted further experiments to assess the advantages of each proposed com-

ponent compared to the existing approach. Our additional findings revealed the im-

portance of textual features extracted from pre-trained embeddings for both pull re-

quest evaluation and pull request reopening predictions (see Section 6.5.3 for more

details). Furthermore, our oversampling approach which combines SMOTE with

VAE, proved to generate synthetic samples more effectively by mitigating outliers

and noise compared to using SMOTE alone (see Section 6.5.2 for a comprehensive

analysis). This effectively reduced the problem of overfitting during model training.

Additionally, we ensured that our designed architecture was suitable for capturing

the relationships between pull request outcomes. The results of a Chi-squared test

of independence indicated the presence of relationships, enabling shared learning

and validating our architecture (see Section 6.5.1 for detailed insights). The fea-

ture importance analysis also highlighted the inclusion of the reopening output as
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one of the most important features for the pull request evaluation stage. This find-

ing reinforces the notion that the reopening output serves as a valuable predictor

for evaluating pull requests and confirms the appropriateness of our architecture,

where reopening prediction precedes evaluation prediction (see Section 6.5.3 for

more information).

Finally, it is inevitable that our designed deep learning-based architecture

played a main role to improve the predictive performance over the existing approach

because it offered flexibility in designing complex architectures that capture out-

come relationships and enable multi-output prediction. More precisely, the archi-

tectures for predicting reopening and evaluation are separated, with the reopening

prediction being conducted before the evaluation prediction. Before finalizing this

design, we explored several other designs, such as a single model architecture with

shared learning among all three outputs, but found it to be insufficiently general-

izable. Furthermore, our designed architecture offered an opportunity to address

the issue of data imbalance specifically for reopening data, with our well-defined

approach, SMOTE with VAE. The deep learning-based approach also presented fea-

ture learning abilities, allowing for intricate feature engineering tasks, for example,

automatic feature engineering and textual feature extraction by pre-trained embed-

ding models. Therefore, we can confidently conclude that our deep learning-based

architecture significantly contributes to the improved predictive performance of pull

request evaluation and reopening against the existing approach. Nevertheless, con-

sidering the aforementioned reasons, it is undeniable that all of our proposed com-

ponents also play a vital role in encouraging the better predictive performance.
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Table 6.2: Performance comparison between our approach (Our) and the existing approach (Existing) for predicting the
pull request evaluation and reopening, reported as Accuracy (Acc), Precision (P), Recall (R), F1-Score (F1), AUC, Macro-
Averaged Absolute Error (MMAE), Balanced Accuracy (BA), True Positive Rate (TPR), and False Positive Rate (FPR)
along with percentage improvement (Percent Imp)

Language Approach Acceptance Latency Reopening
Acc P R F1 AUC MMAE BA AUC TPR FPR

Python
Existing 0.681 0.878 0.681 0.767 0.708 1.270 0.618 0.705 0.500 0.264
Our 0.719 0.874 0.742 0.803 0.716 1.171 0.639 0.732 0.679 0.400
Percent Imp 05.56 -00.41 08.97 04.66 01.13 07.82 03.40 03.89 35.71 -51.77

R
Existing 0.594 0.865 0.609 0.714 0.589 1.224 0.527 0.649 0.765 0.709
Our 0.721 0.874 0.777 0.823 0.649 1.204 0.600 0.715 0.765 0.564
Percent Imp 21.38 01.10 27.73 15.20 10.20 01.69 13.70 10.25 00.00 20.41

Java
Existing 0.792 0.815 0.779 0.797 0.872 1.198 0.554 0.584 0.362 0.254
Our 0.826 0.839 0.826 0.832 0.909 1.139 0.590 0.624 0.700 0.515
Percent Imp 04.33 03.01 05.97 04.50 04.31 04.96 06.50 06.94 92.00 -102.90

Ruby
Existing 0.737 0.920 0.769 0.838 0.682 1.262 0.557 0.583 0.506 0.391
Our 0.781 0.925 0.819 0.868 0.720 1.141 0.641 0.684 0.635 0.354
Percent Imp 06.00 00.53 06.47 03.68 05.49 09.62 15.00 17.45 25.58 09.63

AVERAGE
Existing 0.701 0.869 0.709 0.779 0.713 1.239 0.564 0.630 0.533 0.404
Our 0.762 0.878 0.791 0.832 0.749 1.163 0.618 0.689 0.694 0.458
Percent Imp 08.68 01.01 11.49 06.77 05.02 06.07 09.43 09.37 30.07 -13.32
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6.5 Further Discussion of the Findings

The preceding section presented the results obtained from the research study

based on the performance measures. In this section, we provide a more in-depth

analysis and discussion of the findings. Through this analysis, we explore the impli-

cations of the results and their significance for the broader research question. Firstly,

we explore relationships between the pull request outcomes. Furthermore, we state

the advantage of oversampling using SMOTE combined with VAE compared to us-

ing only SMOTE. Additionally, we investigate the importance of features. Finally,

we discuss the best configurations of our approach and the representative classifiers

for the existing approach in each prediction task.

6.5.1 Relationships between the Pull Request Outcomes

As our approach utilized shared learning techniques for modeling, we tested

the relationship between three different pull request outcomes: acceptance, latency,

and reopening using the Chi-squared test of independence (Mchugh, 2013). The

Chi-square test is a useful non-parametric statistic for testing hypotheses with nom-

inal variables. The table reports the p-values for each combination of programming

language and pull request outcome. A Chi-square test statistic (χ2) is calculated as

shown in Equation 6.1:

χ2 =
∑ (O − E)2

E
(6.1)

where O is the observed frequency and E represents the expected frequency for each

cell while ∑ denotes the summation over all cells.

A significance level of 0.05 was used to determine statistical significance. The

null hypothesis (H0) states that there is no relationship between the pull request

outcomes, while the alternative hypothesis (H1) states that there is a relationship.

To ensure reliable results, we applied certain criteria regarding the assumption about

the sample size. More precisely, we required that the expected value in each cell is
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five or more in at least 80% of the cells, and no cell has an expected value less than

three. Additionally, to ensure an adequate sample size, the sample size is at least

equal to the number of cells multiplied by five (Mchugh, 2013) but not excessively

large, as a large sample size can make the test overly sensitive to minor differences

(Lin et al., 2013).

Table 6.3 shows the results of a Chi-squared test of independence between

the pull request outcomes for different programming languages. The table provides

evidences regarding the statistical significance, including p-values and significance

codes, of the relationships observed. In this analysis, all combinations of pull re-

quest outcomes, including acceptance, latency, and reopening, were found to be

statistically significant with a p-value less than 0.05. Consequently, we reject the

null hypothesis, indicating that there are indeed relationships between pull request

outcomes and programming languages. These findings further support previous

studies and existing literature that have reported associations between pull request

acceptance, latency, and reopening.

Table 6.3: Chi-Square Test of Independence between the pull request out-
comes, reported as p-values and significance codes

Language Acceptance Latency Reopening

Python Acceptance - <0.001 (***) 0.042 (*)
Latency <0.001 (***) - <0.001 (***)

R Acceptance - <0.001 (***) <0.001 (***)
Latency <0.001 (***) - <0.001 (***)

Java Acceptance - <0.001 (***) <0.001 (***)
Latency <0.001 (***) - <0.001 (***)

Ruby Acceptance - <0.001 (***) <0.001 (***)
Latency <0.001 (***) - <0.001 (***)

Sig. codes: <0.001 (***) 0.01 (**) 0.05 (*) 0.1 (.) 1 (_)
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6.5.2 Comparison between the Oversampling Techniques

In the matter of the oversampling techniques, we will state the advantage of

oversampling using SMOTE combined with VAE compared to using only SMOTE.

To illustrate the effectiveness of these techniques, we present example cases utiliz-

ing PCA plot. Figure 6.1 and Figure 6.2 show 2-dimensional PCA plots of original

reopening samples and synthetic reopening samples by SMOTE and SMOTE com-

bined with VAE in the Python and Ruby languages. When comparing the synthetic

samples generated by SMOTE (shown in orange) and SMOTE combined with VAE

(shown in green) in Figure 6.1 (b) and Figure 6.2 (b), we can observe a clear dif-

ference in their distribution. While both methods generate synthetic samples, it is

evident that SMOTE generates some noise and also synthesizes samples by consid-

ering outliers much. The problem that is most likely to occur is overfitting. This is

because the model will try to fit the noise and outliers in the training data, which

can lead to poor generalization performance on unseen data. On the other hand,

the synthetic samples generated by SMOTE combined with VAE are much more

evenly distributed and closely resemble the distribution of the original samples with-

out considering the outliers. Therefore, we can conclude that oversampling using

SMOTE combined with VAE is a better approach compared to using only SMOTE.

6.5.3 Feature Importance

We investigated which features serve as good predictors for our approach in

both the pull request reopening stage and the pull request evaluation stage. To de-

termine the importance of features, we employed a sensitivity analysis, one of the

gradient-based attribution methods (Ancona et al., 2018, 2019; Nielsen et al., 2022).

This method involves analyzing the gradients of the loss function with respect to the

input features. It measures the extent to which the loss function changes when the

input features are perturbed. The underlying idea is that if a feature is highly im-

portant, perturbing that feature should result in a significant change in the model’s

predictions and, consequently, in the gradients of the loss function. Conversely, if

a feature has low importance, perturbing it should have minimal effect on the gradi-
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(a) Original reopening samples (b) Synthetic reopening samples

Figure 6.1: PCA plots of original reopening samples and synthetic reopen-
ing samples by SMOTE and SMOTE combined with VAE in the Python
language

(a) Original reopening samples (b) Synthetic reopening samples

Figure 6.2: PCA plots of original reopening samples and synthetic reopening
samples by SMOTE and SMOTE combined with VAE in the Ruby language
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ents. In short, the gradient-based method determines the contribution of each input

feature to the output based on the gradients.

Formally, let’s consider a deep neural network (DNN) that takes an input vec-

tor x = [x1, ..., xN ] ∈ RN and produces an output vector S(x) = [S1(x), ..., SC(x)],

where C represents the total number of output neurons. Given a specific tar-

get neuron c, the goal of an attribution method is to determine the contribution

Rc = [Rc
1, ..., R

c
N ] ∈ RN of each input feature xi to the output Sc. In the sensitiv-

ity analysis, attributions are constructed by taking the absolute value of the partial

derivative of the target output Sc with respect to the inputs xi as defined below:

Rc
i (x) =

∣∣∣∣∂Sc(x)

∂xi

∣∣∣∣ (6.2)

The sensitivity analysis method, within the broader gradient-based approach,

comprised several steps. Firstly, we created a new model using the trained weights,

which captured the learned relationships between the input features and the model’s

predictions. Secondly, we defined the loss function to focus solely on the activa-

tions of the output layer. Lastly, we performed the sensitivity analysis by calculating

and analyzing the gradients of the loss function with respect to the input features.

These gradients quantified the sensitivity of the model’s predictions to changes in

each input feature. Taking the absolute values of these gradients, we estimated the

importance of each feature. A larger absolute gradient magnitude for a particular

feature indicated a higher sensitivity and, consequently, a greater importance in in-

fluencing the model’s predictions. To obtain a comprehensive measure of feature

importance, we calculated the average absolute gradient magnitude across the train-

ing data for each feature.

Table 6.4, Table 6.5, Table 6.6, and Table 6.7 present the top 10 most signif-

icant features and their corresponding normalized weights (Imp) for the reopening

and evaluation stages of specific programming language. The weights were nor-

malized to range from 0 (least important) to 1 (most important) to provide a relative
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measure of importance for each feature. In the Python and Java languages, textual

features appear to be crucial in the reopening stage as they dominate in more than

half of the features (refer to Table 6.4 and Table 6.6). For the R and Ruby languages,

textual features play a primary role in both the reopening and evaluation stages (re-

fer to Table 6.5 and Table 6.7). Across all four programming languages, it is evident

that textual features constitute over half of the total top 10 features (45 out of 80).

This leads to the conclusion that our proposed textual features are reliable predictors

for both pull request reopening and pull request evaluation. Apart from the textual

features, we can observe that the reopening probability, which is the output from

the reopening stage and is utilized as one of the predictors for pull request evalua-

tion, appears in the top-10 feature list for three languages which are Python, Java,

and Ruby. This further signifies the importance of the reopening output in predict-

ing pull request evaluation. It also validates the suitability of the architecture we

designed, where we first predict pull request reopening and subsequently predict

evaluation outputs.

Table 6.4: List of top 10 most important features with their normalized
weight (Imp) in the reopening and evaluation stages for the Python language

Reopening Evaluation
Feature Imp Feature Imp
reputation 1.00 contributor age 1.00
text 425 0.95 file rejected proportion 0.21
text 117 0.86 % of commits made by pull

requests
0.14

# of events in pr 0.82 reopening probability 0.08
text 570 0.79 reputation 0.07
text 687 0.77 file rejected proportion 0.05
text 582 0.77 is assignee 0.05
text 563 0.75 text 117 0.05
text 128 0.73 text 160 0.05
text 111 0.69 text 66 0.05
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Table 6.5: List of top 10 most important features with their normalized
weight (Imp) in the reopening and evaluation stages for the R language

Reopening Evaluation
Feature Imp Feature Imp
contributor age 1.00 text 52 1.00
has pr link 0.15 text 257 0.80
% commits by pulls 0.12 text 282 0.79
text 44 0.07 text 299 0.78
is core team 0.07 text 249 0.75
text 62 0.06 text 273 0.74
text 18 0.06 contributor age 0.73
text 99 0.06 text 212 0.73
is recent pr rejected 0.06 text 21 0.71
text 181 0.05 text 261 0.71

Table 6.6: List of top 10 most important features with their normalized
weight (Imp) in the reopening and evaluation stages for the Java language

Reopening Evaluation
Feature Imp Feature Imp
text 63 1.00 contributor age 1.00
text 67 0.94 % of commits made by pull

requests
0.47

text 38 0.90 file rejected proportion 0.40
text 182 0.89 text 10 0.35
text 12 0.88 reopening probability 0.29
text 72 0.87 reputation 0.27
text 181 0.87 # of merged pr 0.20
text 73 0.85 # of rejected pr 0.19
text 262 0.74 has test 0.17
text 221 0.74 # of contributor commits 0.16

6.5.4 The Best Model Configuration of Our Approach

In this section, we provide an overview of the best model configuration for our

approach, which is detailed in Appendix A. The configuration includes the utiliza-

tion of pre-trained embeddings, Variational Autoencoder (VAE), and Deep Neural

Network (DNN) components. To present the configuration clearly, we introduce
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Table 6.7: List of top 10 most important features with their normalized
weight (Imp) in the reopening and evaluation stages for the Ruby language

Reopening Evaluation
Feature Imp Feature Imp
is assignee 1.00 file rejected proportion 1.00
% of commits made by pull
requests

0.91 contributor age 0.65

has pr link 0.90 % of commits made by pull
requests

0.63

has test 0.85 reputation 0.46
text 9 0.79 text 299 0.42
# of commits 0.78 text 732 0.41
text 23 0.77 reopening probability 0.32
# of deleted lines 0.75 text 342 0.29
text 35 0.74 text 105 0.29
text 48 0.73 text 676 0.26

Table A.1, Table A.3, Table A.5, and Table A.7 for the pull request reopening stage,

and Table A.2, Table A.4, Table A.6, and Table A.8 for the pull request evaluation

stage. These tables summarize the best configuration settings with detailed infor-

mation such as the number of hidden units, activation functions, dropout rates, and

normalization employed in each layer.

By presenting this comprehensive model configuration, we aim to provide a

clear understanding of the key components and settings used in our approach for

both the pull request reopening and evaluation stages. This information serves as

a reference for replicating and further analyzing our approach, and also offers in-

sights into the design choices made to achieve optimal predictive performance. For

example, The tables indicate that the Linear activation function is predominantly

used in the VAEs, while the ReLU activation function is primarily employed in the

DNNs. Furthermore, the results show that BERT is the best pre-trained model for

the reopening stage, while Word2vec is the best for the evaluation stage in Python.

However, it is worth noting that while Word2vec and FastText were found to be the

best pre-trained models for different stages of the approach in multiple program-
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ming languages, the pattern is not consistent across all languages. These varia-

tions suggest that the choice of the best pre-trained model depends on the specific

programming language and the stage of the approach. Therefore, researchers and

practitioners should carefully evaluate different models before deciding on the most

suitable one for their specific use case.

6.5.5 The Best Classifiers for the Existing Approach

Table 6.8 presents the representative classifiers for the existing approach in

each programming language. These classifiers were selected based on their perfor-

mance in three distinct prediction tasks: acceptance, latency, and reopening, which

were used as benchmarks for comparison with our approach. For example, in the

Python cases, Random Forest (RF) emerged as the representative classifier for the

acceptance task, while XGBoost (XGB) took the lead in both the latency and re-

opening tasks. Analyzing the results, it is evident that XGBoost showcased the best

performance in both the acceptance and reopening tasks across multiple program-

ming languages. On the other hand, Random Forest demonstrated favorable results

in the majority of cases for the latency tasks. Interestingly, Decision Tree did not

make it to the list of representative classifiers.

Table 6.8: List of the representative classifiers for the existing approach

Language Acceptance Latency Reopening
Python RF XGB XGB
R XGB RF XGB
Java XGB RF XGB
Ruby XGB RF XGB

6.6 Threats to Validity

In this section, we will outline threats to external, internal, construct, and con-

clusion validity, and detail the steps taken to minimize their impact on our results.
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6.6.1 External Validity

Our study provides a broad range of perspectives by analyzing 54 real-world

well-known open-source projects across four popular programming languages on

GitHub. However, our findings may not be representative of all programming lan-

guages and all kinds of software projects, especially in commercial settings. To

address this limitation, we plan to expand our experiment to a more diverse range

of projects and languages in the future.

6.6.2 Internal Validity

In order to ensure internal validity, we have taken several measures to mini-

mize bias and errors throughout our study. One crucial aspect is the utilization of

actual pull request outputs from real integrators, which provides us with authentic

and reliable data. By incorporating real-world data, we aim to capture the prac-

tical aspects and challenges associated with pull request acceptance, latency, and

reopening in open-source projects on GitHub. Furthermore, we have meticulously

processed and analyzed only the information that was available at the time of the

pull request submission. This was achieved by scraping the GitHub website, which

allowed us to extract relevant features and avoid any potential information leakage.

By strictly adhering to the information available during the pull request submission

process, we maintain the integrity and accuracy of our predictions.

6.6.3 Construct Validity

We adopt standard evaluation metrics commonly used in classification tasks.

These metrics have also been employed in prior software engineering research to

assess the effectiveness of different approaches, enabling us to compare and vali-

date our results. However, evaluating the reopening prediction presents a challenge

due to highly imbalanced data, and there is limited prior work that addresses this

issue. Therefore, we employ common evaluation metrics that have been used in

other domains to assess our approach’s performance on this task.
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6.6.4 Conclusion Validity

We take a meticulous and cautious approach when drawing conclusions based

on the extracted features from the studied project repositories. However, it should be

noted that the latency may not always reflect the actual review and integration time

of a pull request, as there may be other factors beyond the integration process such

as the integrator having a heavy workload or lack of interaction with the contributor

(de Lima Júnior et al., 2021). Additionally, the pull request reopening may not

always indicate the actual reopening because it can occur due to accidental closure

(Jiang et al., 2019).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII

CONCLUSIONS

This chapter presents the conclusions of this research by providing a summary

of the motivation, objectives, proposed approach, evaluation results, key findings,

and potential avenues for future research.

7.1 Summary

Open-source software projects have adopted GitHub’s pull-based model to al-

low contributors to make software changes in a flexible and efficient manner through

a pull request. Contributors create pull requests for merging changes into the main

project repository, and integrators review these requests to maintain quality and sta-

bility. However, the emergence of pull-based development increases the workload

for integrators, particularly in large projects. Current studies have examined vari-

ous factors and built predictive models using traditional machine learning for pull

request acceptance and latency, with limited research on reopening prediction and

timely integrator support. Reopened pull requests can introduce additional mainte-

nance costs and create a burden for developers who are already busy. Furthermore,

the challenges posed by text data and the imbalanced nature of reopened pull re-

quests have not been adequately addressed. Additionally, there is a notable absence

of models that offer timely predictions for integrators right after a pull request is

submitted.

In this thesis, we propose a novel deep learning-based approach to early predict

pull request acceptance, latency, and reopening in open-source projects hosted on

GitHub. Our prediction is delivered at the time of pull request submission to enable

integrators to plan their work more effectively. We design separate architectures

for predicting reopening and evaluation, with the reopening prediction conducted

prior to the evaluation prediction. Our approach makes use of both tabular features

and textual features. We also leverage the state-of-the-art pre-trained models, the
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SMOTE combined with VAE as the oversampling technique, shared learning be-

tween outputs, and deep neural networks to address the gaps and the challenges,

and to improve the predictive performance for prediction of pull request evaluation

and pull request reopening.

We conducted an extensive evaluation on several popular GitHub open-source

software projects across four well-known programming languages, which revealed

the superiority of our approach over random guessing and existing methods. On

average, we achieved an Accuracy of 0.762, a Precision of 0.878, a Recall of 0.791,

and an F1-Score of 0.832 in acceptance prediction, while we obtained an MMAE

of 1.163 in latency prediction. For reopening prediction, we yielded a balanced ac-

curacy of 0.618, an AUC of 0.689, and a TPR of 0.694. Our approach achieved sig-

nificant improvements in Accuracy, Precision, Recall, F1-Score, MMAE, Balanced

Accuracy, AUC, and TPR outperforming the existing method by 8.68%, 1.01%,

11.49%, 6.77%, 6.07%, 9.43%, 9.37%, and 30.07% on average. We can, thus,

conclude that our proposed approach which incorporates combination of textual

features extracted from the pre-trained model, the oversampling technique, shared

learning, and deep learning classifier had an advantage for the prediction of pull

request evaluation and pull request reopening.

7.2 Future work

In addition to our current findings, we believe that there is still room for im-

provement and further exploration in the area of pull request evaluation and reopen-

ing prediction. As such, we plan to validate our approach with a wider range of

programming languages and larger projects, especially those in industrial settings.

This will help us determine the generalizability of our approach and its suitability

for use in real-world scenarios.

Furthermore, we aim to explore new sources of information that can better

characterize pull requests. For instance, we plan to investigate the use of code

changes as a source of information for enhancing the predictive performance of our
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approach, particularly for the reopening task. By incorporating code changes into

our feature extraction process, we hope to capture more nuanced and relevant infor-

mation that can help to better inform the prediction of pull request evaluation and

reopening. Additionally, we will conduct a thorough investigation of the oversam-

pling techniques for the reopening task. We will compare each technique in detail

and analyze their in-depth effectiveness.

Finally, we plan to take the next step in the development of our approach by

integrating it as a tool within the GitHub platform. This will allow us to gather

feedback from real users and enable future analysis and refinement of the approach.

By making our approach available to a wider audience, we hope to increase its

impact and encourage further research in this area. We believe that our work has the

potential to contribute to the development of more effective and efficient software

engineering practices, which can ultimately lead to higher-quality software products

and better outcomes for end users.
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APPENDIX A

THE MODEL CONFIGURATION
Table A.1: Model configuration of our approach in the reopening stage for the
Python language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained BERT - 768 - - -

VAE

Encoder

Input 801 - - No

Dense 128 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 64 Linear 0.1 Yes

Dutput 32 Linear - No

Decoder

Input 32 - - No

Dense 64 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 128 Linear 0.1 Yes

Output 801 Linear - No

DNN -

Input 801 - - No

Dense 32 ReLU 0.5 No

Dense 16 ReLU 0.5 No

Output 1 Softmax - No
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Table A.2: Model configuration of our approach in the evaluation stage for
the Python language, reported with their model name, layers, number of units
(# Units), activation function (Act), dropout rate (Dropout), and normaliza-
tion (Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained Word2Vec - 200 - - -

DNN -

Input 234 - - Yes

Dense 512 ReLU 0.5 No

Dense 1024 ReLU 0.5,
0.5

No

Output 1, 5 SM,
SM

- No

Note that the output layer has two nodes for acceptance and latency, SM denotes
the Softmax activation, and multiple numbers in the Dropput column represent
stacked dropout layers.
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Table A.3: Model configuration of our approach in the reopening stage for
the R language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained Word2Vec - 200 - - -

VAE

Encoder

Input 233 - - No

Dense 128 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 64 Linear 0.1 Yes

Output 32 Linear - No

Decoder

Input 32 - - No

Dense 32 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 128 Linear 0.1 Yes

Output 233 Linear - No

DNN
-

Input 233 - - Yes

Dense 256 ReLU - No

Dense 128 ReLU - No

Dense 32 ReLU - No

Output 1 Softmax - No
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Table A.4: Model configuration of our approach in the evaluation stage for
the R language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained FastText - 300 - - -

DNN -

Input 334 - - Yes

Dense 32 ReLU - No

Dense 64 ReLU - No

Dense 32 ReLU 0.25 No

Output 1, 5 SM,
SM

- No

Note that the output layer has two nodes for acceptance and latency and SM
denotes the Softmax activation.
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Table A.5: Model configuration of our approach in the reopening stage for
the Java language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained Word2Vec - 200 - - -

VAE

Encoder

Input 333 - - No

Dense 256 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 32 Linear 0.1 Yes

Output 64 Linear - No

Decoder

Input 64 - - No

Dense 32 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 256 Linear 0.1 Yes

Output 333 Linear - No

DNN -

Input 333 - - No

Dense 128 ReLU - No

Dense 256 ReLU 0.25 No

Output 1 Softmax - No
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Table A.6: Model configuration of our approach in the evaluation stage for
the Java language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained W2V - 200 - - -

DNN -

Input 234 - - Yes

Dense 128 ReLU 0.25,
0.25,
0.5

Yes

Output 1, 5 SM, SM - No

Note that the output layer has two nodes for acceptance and latency, SM denotes
the Softmax activation, and multiple numbers in the Dropput column represent
stacked dropout layers
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Table A.7: Model configuration of our approach in the reopening stage for the
Ruby language, reported with their model name, layers, number of units (#
Units), activation function (Act), dropout rate (Dropout), and normalization
(Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained Word2Vec - 200 - - -

VAE

Encoder

Input 233 - - No

Dense 128 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 64 Linear 0.1 Yes

Output 32 Linear - No

Decoder

Input 32 - - No

Dense 32 Linear 0.1 Yes

Dense 128 ReLU 0.1 Yes

Dense 128 Linear 0.1 Yes

Output 233 Linear - No

DNN -

Input 233 - - No

Dense 128 ReLU 0.25 No

Dense 128 ReLU 0.25 No

Dense 512 ReLU 0.25 No

Output 1 Softmax - No
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Table A.8: Model configuration of our approach in the evaluation stage for
the Ruby language, reported with their model name, layers, number of units
(# Units), activation function (Act), dropout rate (Dropout), and normaliza-
tion (Norm?)

Model Name Layer
#

Units
Act

Drop

out
Norm?

Pre-trained BERT - 768 - - -

DNN -

Input 802 - - Yes

Dense 128 ReLU 0.25 Yes

Dense 1024 ReLU 0.25 Yes

Dense 512 ReLU 0.25,
0.5, 0.5

Yes

Output 1, 5 SM, SM - No

Note that the output layer has two nodes for acceptance and latency, SM denotes
the Softmax activation, and multiple numbers in the Dropput column represent
stacked dropout layers.
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