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ABSTRACT (THAI)  ศภุิสรา ไกรฤกษ ์: ปัญหาการบรรทกุสินคา้และก าหนดเสน้ทางของยานพาหนะ

ส าหรบัการขนสง่ผกัและผลไมส้ดแบบหลายวตัถปุระสงค.์ ( Multi-Objective Vehicle 
Loading and Routing Problem for Fresh Fruit and Vegetable Transportation) 
อ.ที่ปรกึษาหลกั : รศ. ดร.พิศิษฎ ์จารุมณีโรจน ์

  
ปัจจุบนั รถหอ้งเย็นแบบหลายช่อง (Multi-Compartment Vehicle) ไดถู้กน ามาใชใ้น

อุตสาหกรรมการขนส่งแบบควบคุมอุณหภูมิอย่างแพร่หลาย  เนื่องจากความสามารถในการ
ปรบัเปลี่ยนความจทุี่อณุหภมูิแตกต่างกนัในแต่ละช่องได ้เพื่อศกึษาความสมัพนัธร์ะหวา่งตน้ทนุ
การขนส่งและประโยชนจ์ากการใชร้ถหอ้งเย็นแบบหลายช่อง  (Multi-Compartment Vehicle) 
ในการขนส่งผกัและผลไมส้ด ผูว้ิจัยจึงไดท้  าการออกแบบสรา้งจ าลองปัญหาการบรรทุกสินคา้
และการก าหนดเสน้ทางของยานพาหนะส าหรบัการขนส่งผักและผลไมส้ด  (MCVRLP) โดยมี
วตัถุประสงคห์ลกัสามประการ ไดแ้ก่ (1) ลดตน้ทุนการขนส่งโดยรวมใหน้อ้ยที่สุด (2) ลดการ
ปลอ่ยก๊าซคารบ์อนไดออกไซดใ์หน้อ้ยที่สดุ และ (3) ลดการสญูเสียน า้หนกัของผกัและผลไมส้ด
ใหไ้ดน้อ้ยที่สดุ ผูว้ิจยัยงัไดอ้อกแบบแกปั้ญหาดงักล่าวผ่านแบบจ าลองทางคณิตศาสตร์ และวิธี
วิวฒันาการเชิงพนัธุกรรม (Genetic-based Evolutionary Algorithm) จากผลการทดลอง ผูว้ิจยั
พบว่า CPLEX ไม่สามารถค านวนหาค าตอบที่ดีที่สดุส  าหรบัปัญหาขนาดใหญ่ที่มีความซบัซอ้น
ได ้เนื่องจากประสบปัญหาความจ าไม่เพียงพอ ตรงกันขา้ม ฮิวริสติกสท์ี่ถูกพัฒนาขึน้กลับมี
ประสิทธิภาพเป็นที่น่าพึงพอใจในทุกขนาดปัญหา  กล่าวคือ วิธีการฮิวริสติกสส์ามารถคน้หา
ค าตอบที่มีคณุภาพดีเทียบเท่ากบัค าตอบที่เหมาะสมที่สดุจาก CPLEX ส าหรบัปัญหาขนาดเล็ก 
และค าตอบที่มีคณุภาพดีกวา่ CPLEX ส าหรบัปัญหาขนาดใหญ่ นอกจากนี ้ผูว้ิจยัยงัพบว่า การ
เลือกเสน้ทางการขนส่งและการจดัสรรผกัและผลไมส้ดในแต่ละคนัรถเป็นปัจจยัส าคญัที่ส่งผล
ต่อคณุภาพของค าตอบ โดยค าตอบที่ใชจ้  านวนยานพาหนะนอ้ย อาจมีตน้ทนุที่สงูกว่าค าตอบที่
ใชจ้  านวนยานพาหนะที่มากกว่า เนื่องจากตน้ทุนส่วนหนึ่งเป็นผลมาจากการจัดสรรผักและ
ผลไมใ้นแต่ละคนัรถ 
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ABSTRACT (ENGLISH) # # 6370288421 : MAJOR INDUSTRIAL ENGINEERING 
KEYWORD: multi-compartment vehicle, Many-objective optimization, NSGA-III, bin 

packing problem, hybrid-heuristic 
 Supisara Krairiksh : Multi-Objective Vehicle Loading and Routing Problem for 

Fresh Fruit and Vegetable Transportation. Advisor: Assoc. Prof. PISIT 
JARUMANEEROJ, Ph.D. 

  
Multi-compartment refrigerated vehicles are recently utilized in the cold chain 

industry, due largely to their flexibility in storage capacities with different temperature 
settings. To better comprehend the costs and benefits of this vehicle type in fresh 
fruits and vegetable transportation, a multi-compartment vehicle routing and loading 
problem (MCVRLP) with three different objectives – namely (i) minimizing total 
transportation cost, (ii) minimizing CO2 emissions, and (iii) minimizing weight loss of 
fresh fruits and vegetable – is herein explored and solved by mathematical formulation 
and genetic-based evolutionary algorithm approaches. Based on our computational 
results, we find that large and complicated MCVRLP instances are less likely to be 
solved to optimality by CPLEX solver within a reasonable computational time period, 
due to its complexity. However, the proposed genetic-based evolutionary algorithm 
seems to work well under all MCVRLP settings, as it could provide solutions that 
match the optimal solutions to small MCVRLP instances and those that outperform 
CPLEX solutions in larger ones. We also find that, with the same input information, 
slight differences in loading and routing may lead to solutions with totally different 
quality; and, interestingly, solutions with fewer vehicles might be worse off in terms of 
cost under the same routing, due to different temperature settings, which are results 
from loading decisions. 
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CHAPTER1 
INTRODUCTION 

1.1 Introduction  
With the increased popularity of global trade, transportation has become a vital 

component in modern supply chain management for most businesses. It is the process 
of coordinating and moving products from one location to the desired destination in a 
timely, safe, and effective way. Considering the importance of transportation planning, 
well-planned transportation improves the supply chain by reducing product and time 
waste and generating cost-effective delivery routes (Li, 2014). Transportation accounts 
for approximately one-third of the company's total production costs. The method of 
transportation is a significant consideration when planning the delivery under a specific 
time and product quality concerns. Furthermore, road transport is the most popular 
means of transportation due to its ability to distribute products across the country, 
particularly trucks, which can reach any region worldwide (Sarder, 2021). Hence, 
transportation cost has become a primary concern for decision-making in supply chain 
management as the effectiveness of transportation often leads to positive business 
results. 

Regarding the continuous improvement in people living standards and an instant 
increase in fresh produce demand, cold chain logistics are widely used for preservation 
and transportation to slow down microbial growth by maintaining the optimum 
temperature inside the container (Maiorino et al., 2021). The temperature-controlled 
transportation is known as refrigerated vehicles. Refrigerated vehicles are commonly 
used in perishable commodities distribution to control their internal temperature using 
cooling equipment. However, refrigerated vehicles have a cost concern due to their high 
operating costs (Song and Ko, 2016). Nonetheless, despite its expensive cost, with the 
ability to control temperature, it is possible to maintain the spoilage rate of perishable 
products during long transportation (Lawton, 2016). Due to technological advancement, 
refrigerated-type vehicles are categorized into single-compartment vehicles (SCV) and 
multi-compartment vehicles (MCV). The multi-compartment vehicles were originally used 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

in gasoline supply chain networks and waste collection but are now utilized for 
perishable product distribution and grocery delivery. Because each compartment can 
be set to a specific temperature zone, distributors can consolidate the shipment with 
multiple types of products within one vehicle. In addition, the compartment size can be 
efficiently adjusted so that the goods can be loaded with no loss of capacity. However, 
there are trade-offs between single-compartment vehicles (SCV) and multi-compartment 
vehicles (MCV). First, multi-compartment vehicles (MCV) cost more in procurement 
costs. Second, the number of stops at customer locations and vehicles used is fewer 
when using multi-compartment vehicles (MCV). Lastly, the overall transportation time is 
lesser with multi-compartment vehicles (MCV) (Ostermeier and Wäscher, 2021). As a 
result, effective temperature-controlled transportation planning is required for 
businesses to thrive in the modern economy. 

Over the years, global warming has become a primary interest worldwide as it 
increases a threat to human beings and other creatures on earth (Chen et al., 2019). 
Considering the rapid growth in refrigerated vehicle usage, a lack of appropriate 
transportation management has become a significant concern in the cold chain logistic, 
resulting in higher energy consumption and carbon emissions. The refrigeration system 
relies on the diesel engine to operate the cooling system, which emits up to 40% of the 
vehicle’s carbon dioxide emissions. Even though a refrigeration system is necessary for 
maintaining the safety and quality of many perishable commodities, such as fresh fruits 
and vegetables, about 15% of the world’s fossil fuels are used in refrigerated 
transportation (Stellingwerf et al., 2018 ). Consequently, adopting energy efficiency has 
become an essential strategy for reducing energy consumption, particularly in the 
transportation sector, due to its heavy reliance on fossil fuels.  

Regarding the healthy dietary lifestyle trend, the demand for fresh fruits and 
vegetables has increased dramatically and is expected to grow continuously (Qin et al., 
2019). The freshness of the fresh fruits and vegetables delivered at the destination is a 
primary concern as it directly impacts customer satisfaction. Fresh fruits and vegetables 
typically have a short life cycle and deteriorate instantly (Wang and Zhan, 2016). The 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

common challenge for fresh fruits and vegetable transportation is to balance the quality 
standard and transportation cost (Nakandala et al., 2016 ). The mismanagement of 
decision-making at each supply chain stage results in a significant quality loss of fresh 
fruits and vegetables, negatively impacting the saleable quantity, commercial value, and 
customer satisfaction (Surucu-Balci and Tuna, 2021). For example, freshness loss 
(known as water loss) is the cause of revenue reduction as the commodities are sold by 
weight (Damrongpol and Pradorn, 2016). Fresh fruits and vegetables are considered 
highly perishable products, so their freshness is a crucial indicator of their value in the 
market (Chen and Shi, 2019). In addition, fresh commodities have relatively thin 
margins; efficient management and decision-making are necessary for maintaining 
product market value, consumer acceptability, food safety, and long-term business 
reputation (Soto-Silva et al., 2016).  

Despite the fact that Thai fruits are popular in the market and have comparative 
advantages, Thailand faces some challenges in exporting fresh fruits. The nature of 
fresh fruit production in Thailand, for example, is heavily influenced by nature and 
climate. Because fresh fruit quality and output are difficult to control, harvesting and 
exporting fresh fruits that meet market standards is challenging. The reliance on nature 
affects the production and prices of fruits as the seasons change. Furthermore, 
Thailand's fruits have encountered difficulties with international trade barriers. The tax 
rate of global trade barriers, in particular, has caused Thailand's fruit prices to be higher 
in the international market than its competitors. The activities such as production and 
distribution have become keys to competitiveness in the global market trade. Therefore, 
careful transportation planning is potentially an important factor in the success of Thai 
exporters (Pongpanich and Phitya-Isarakul, 2008). Due to varied shipping amounts and 
temperature requirements, utilizing multi-compartment vehicles is expected to be 
beneficial for consolidating different fruit types throughout the offseason within the same 
vehicle. In addition, consumers are willing to pay higher prices for exotic and off-season 
fruits.  
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In summary, the research on the cold chain considers cost, global warming issues, 

and fresh produce freshness at the same time is still scarce. This thesis aims to propose 
a decision-making and problem-solving strategy to obtain a highly cost-effective solution 
for fresh fruits and vegetable transportation with consideration of transportation cost, the 
freshness of fresh fruits and vegetables, and carbon emissions in cold chain 
transportation.   

 
1.2 Objectives 

The objective of this study is to investigate the impact of multi-compartment 
vehicle layout and loading decisions on the multi-compartment vehicle routing and 
loading problem (MCVRLP) in relation to three distinct objectives: (1) minimizing 
transportation expenses, (2) reduction of overall carbon emissions, and (3) preservation 
of product quality. To attain this goal, mathematical models and genetic-based 
algorithms are employed to identify Pareto optimal solutions. 

 
1.3  Scope of Research 

• This study only includes the situation where all vehicles are homogeneous fleets 
with the same capacity with a limited number of compartments. 

• This study focuses on the case of Thai fresh fruit exportation, which starts from 
the distribution center to other countries’ wholesale markets as the destinations.  

• This study only considers transporting fresh fruits at the optimal temperature and 
relative humidity, without taking temperature fluctuations into account. As a 
result, the decision model is limited to temperature-controlled road transportation 
at a constant temperature. 

• The study investigates the situation in which fresh fruits are sold at the 
destination by weight (saleable weight). And the remaining weight was used to 
quantify the quality of fresh fruits. 
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• The data collection is not carried out in this study; instead, all required numerical 
data was gathered from pieces of literature as instances to validate the model. 

 
1.4  Expected Outcome 

• The mathematical model and the effective algorithm for solving multi-
compartment vehicle loading and routing problem with multiple objectives are 
achieved. 

• Decision-making and problem-solving strategy to obtain a highly-cost effective 
solution which included (1) the number of vehicles used each day after 
consolidating different fresh commodities within a single vehicle, (2) the type of 
refrigerated multi-compartment vehicle, and (3) the quantity of fresh fruit 
assigned to the compartments and vehicles (4) the amount of diesel fuel 
consumed to reduce carbon emissions 

 
1.5 Benefits of the Thesis 

• To help Thailand further strengthen the competitive status of Thai fruits in terms 
of transportation cost. 

• Able to transport fresh fruits to their destination before their end shelf life while 
minimizing the cost. 

• Lessen carbon emission emits from operating refrigerated vehicles based on the 
developed model.  

• The multi-compartment vehicles are effectively utilized in cold chain 
transportation. 
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CHAPTER2 

LITERATURE REVIEW 
 

This chapter summarizes the research in the field of distribution network design 
for perishable products. Food loss occurs in every stage of the food supply chain, such 
as production, postharvest, and processing, caused by a small investment in food 
production technologies and insufficient knowledge. Many papers have investigated the 
fresh produce supply chain from several perspectives, such as production and 
distribution planning, logistic model optimization, and refrigerated vehicle routing 
problem for perishable goods (Paam et al., 2016). A vast amount of ongoing work is 
being carried out to develop efficient models that integrate vehicle routing problems with 
the deterioration rate of perishable products to minimize food loss and total production 
costs. Furthermore, a significant amount of ongoing work focused on reducing energy 
consumption and carbon emission. Carbon emissions have become a critical issue 
worldwide and have increased sharply in the last 50 years. According to global carbon 
emissions data, the transportation industry accounts for 14% of total carbon emissions, 
with road transport accounting for more than 70% of total transportation emissions (Qin 
et al., 2019 ). Hence, the related literature about fresh fruits and vegetable quality loss, 
multi-compartment refrigerated vehicles and its attribute, carbon emission from 
refrigerated trucks, and optimization models are represented in this section. 
2.1 Quality Loss in Fresh fruits and Vegetables 

In food supply chain management, predicting fresh produce quality is a 
challenging task. The primary concern in decision-making is the product's freshness, 
which frequently represents the remaining shelf life. Customers typically choose the 
freshest items on the shelf first; in other words, freshness has a significant impact on 
customer decisions (Wang and Li, 2012). In the fresh fruit supply chain, quality loss 
occurs between the orchards and the customer. The major challenge of fresh fruit and 
vegetable exportation is to deal with the quality changes depending on surrounding 
environments and the nature of fresh fruits and vegetables.  
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Aside from the remaining shelf-life prediction, the quality loss can be determined 
by the water loss from fruit transpiration. In the case of products sold by weight, water 
loss due to transpiration during transportation has an economic impact on the saleable 
weight at the destination (Damrongpol and Pradorn, 2016). A pallet of durian weighing 
500 kg, for example, accounts for a 15 kg loss during transportation. If durians are worth 
$10 per kilogram, the weight loss results in a $150 loss per pallet at retail. 

As fresh fruits and vegetables’ quality can be viewed from various perspectives, 
scholars have proposed numerous methods for predicting the remaining quality under 
temperature variation conditions, such as the Arrhenius, Davey, square root, linear, and 
exponential (Fu and Labuza, 1993). The Arrhenius equation, on the other hand, has 
been widely used in mathematical models for predicting shelf life or spoiling rate for 
transportation optimization purposes (Damrongpol and Pradorn, 2016). The Arrhenius 
equation is a broad model of temperature's effects on chemical reactions in foods or a 
kinetic model; thus, for shelf-life estimation, a time-temperature dependence is 
integrated into the Arrhenius equation. With constant humidity, the remaining shelf life is 
inversely proportional to the exponential rate of deterioration (Peleg et al., 2012). In most 

cases, the quality change for a time interval (𝑡), a chemical reaction (𝑛), and a constant 

rate of reaction (𝑘) can be expressed as follows (Wang and Li, 2012) : 

               𝑑𝑞

𝑑𝑡
=  −𝑘𝑞𝑛             (2-1) 

 The temperature is a crucial factor in calculating the rate of a chemical reaction 
(𝑘). 𝐾𝑎 is a constant reaction rate, 𝐸𝑎 is the activation energy that controls quality loss, 
𝑇(𝑡) is an absolute temperature at some reference temperature (𝑇𝑟𝑒𝑓) and 𝑅𝑔𝑎𝑠 is the 
ideal gas constant. The chemical reaction rate equation is shown as follows (Wang and 
Li, 2012): 

𝑘 =  𝐾𝑎𝑒
−[

𝐸𝑎
𝑅𝑔𝑎𝑠∗𝑇(𝑡)

]
             (2-2) 
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The Arrhenius equation with a zero-order reaction is used in mathematical 
models to predict shelf life (Damrongpol and Pradorn, 2016). According to equation (2-
3), the quality changes for the time interval (𝑡) at temperature (𝑇(𝑡𝑖)) can be calculated 
based on the initial quality (𝑞0) during periods {𝑖 =  1, … , 𝑚} (Wang and Li, 2012): 

                 𝑞(𝑡) =  𝑞0 −  ∑ 𝑘𝐴𝑡𝑖𝑒
−[

𝐸𝐴
𝑅𝑔𝑎𝑠∗𝑇(𝑡𝑖)

]𝑚
𝑖=1                      (2-3) 

 The water loss from transpiration during transportation is an alternative factor for 
the quality of fresh fruits and vegetables at the desired destination of products sold by 
weight. Hence, the remaining weight is used to quantify the quality of fresh fruits and 
vegetables at the destination. The rate of water loss (𝑊𝐿) can be calculated from the 
chemical reaction rate (𝑘) and Vapour-pressure deficit at temperature (𝑇) with humidity 
(ℎ), 𝑉𝑃𝐷𝑇,ℎ. The 𝑉𝑃𝐷𝑇,ℎ can be obtained from the psychrometric chart, while the 
chemical reaction rate (𝑘) can be obtained from Eq.(2-2) and (2-3) (Damrongpol and 
Pradorn,2016). 

𝑊𝐿 = 𝑘 ∙  𝑉𝑃𝐷𝑇,ℎ                         (2-4) 

However, how quality affects the cost is difficult to predict accurately. A 
framework to reduce the total cost of intermodal transport mode selection associated 
with the perishable product deterioration rate. The remaining quality of perishable 
products at the destination of shipment ‘𝑃’, 𝑄𝑃

𝑇, can be predicted by using the following 
equation (Dulebenets and B. Ulak ,2016): 

𝑄𝑃
𝑇 =  𝑄𝑃

0𝑒−𝜑𝑝𝑇𝑝              (2-5) 
The decay function is approximated by utilizing a piecewise linear approximation 

for the non-linear decay function where 𝜑𝑝 is the decay rate of a perishable product of 
shipment ‘𝑝’ and 𝑇𝑝 is the total transportation time of shipment ‘𝑝’. The typical decay 
rate for meat and fresh vegetables are 0.0067 hour-1 and 0.0216 hour-1, respectively. 
Nevertheless, the decay rate of perishable that transported in a refrigerated container is 
assumed to be 𝜑𝑝 = 0.0012. This model has been tested on importing seafood products 
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to the United States. As a result, an increased product decay significantly impacts the 
change in intermodal network design (Dulebenets and B. Ulak, 2016).  

A simple linear model was applied to estimate the decreasing rate of fresh 
vegetable quality for distributing fresh vegetables. The initial quality of fresh vegetables 
is assumed to be 100% initially. The quality loss time function is divided into the 
undamaged condition stage and quality condition-stage changes. In Figure 1, the stable 
period for a fresh vegetable starts from the harvested period (0) to time ‘A’. The changes 
begin from the period ‘A’ onwards; however, only in-between periods ‘A’ and’ B’ is 
acceptable. Beyond period ‘B,’ the products are rejected as unqualified. For instance, 
the acceptable quality loss percentage is between 8% and 23% of initial quality in the 
Slovenian market (Osvald and Stirn, 2008). 

Table 1 shows the shelf life and water loss rates for different fresh fruit types 
during various storage conditions calculated using the above equation (Lufu et al.,2020 
). However, information on Thai fresh fruits and vegetables is still scarce.  

 

Figure  1:  The simple linear model in quality loss  
(Osvald and Stirn, 2008) 
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Fruit Types 

 
Storage conditions, ℃ 

 
Shelf – life (days) 

Related-Humidity 
(RH,%) 

Water Loss (% per 
day) 

Tangarine citrus (cv. 
Siam Banjar) 

25℃ 35 days 85-90 % 1.39 

Strawberries 5℃ 5 days 70% 1.65 

Pomegranate 20℃ 30 days 95% 0.19 

Apples 20℃ 18 days 95% 0.06 

Plum 2℃ 35 days 90% 0.17-0.31 

Peach 2℃ 28 days 90% 0.77 

Pear 0℃ 8 days 80% 0.18 

Banana 15℃ 11 days 89% 0.10 

Cantaloupe 9℃ 18 days 85-90% 0.25 

Mangoes 5℃ 15-20 days 90-95% 0.18 

Oranges (cv. Valencia) 4℃ 56 days 80% 0.19 

Melon 2℃ 18 days 85-90% 0.13 

Table grapes 1.2℃ 72 days 89% 0.10 

Table  1:  Example of Fruit shelf life and its water loss rate 
(Lufu et al., 2020 2020) 

2.2 Refrigerated Multi-Compartment Vehicles 
The challenge of loading and unloading goods from multi-compartment vehicles 

is acknowledged. Horizontally loaded multi-compartment containers are commonly used 
in fuel distribution and waste collection. In the transportation of perishable commodities 
with multiple temperature zones, the compartment walls of a horizon layout may interfere 
with the product loading and unloading procedure (Fig. 2). To make loading and 
unloading perishable goods easier, a vertical layout, as shown in Fig 3, is 
recommended. To generate transportation routing adjustments, a minor loading layout 
modification is suggested (Ostermeier and Hübner ,2018).  
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Figure  2:  Loading layout of one MCV with four product segments, horizontally 

(illustrative example) 
(Ostermeier and Hübner, 2018) 

 

Figure  3:  Examples of the layout of MCVs and an SCV for the temperature zone 
(Ostermeier and Hübner, 2018) 
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With compartment-related aspects, there are three characteristics of vertical 
compartment layout. First, the compartment size can be fixed or variable for vertical 
layout. The number of compartments in each vehicle is based on selecting fixed or 
flexible compartment sizes. The compartment capacity is predetermined when using a 
fixed number of compartments. On the other hand, the capacity can flexibly split up to 
the vehicle’s maximum capacity if adjustable compartment sizes are utilized. Second, 
product type assignments can be fixed (a particular product is assigned to a specific 
compartment) or flexible (all product types are assigned to any compartment based on 
problem criteria). Finally, the compartment can contain one product type and serve 
multiple customers or a single customer with various product types (Ostermeier and 
Wäscher, 2021). Furthermore, each distribution tour can change the partition structure 
based on the client and product segment delivery sequence (Ostermeier and Hübner, 
2018). Each compartment’s capacity limitation is a constraint for each delivery tour from 
the depot to several customers (Yahyaoui and Dekdouk, 2018). 
2.3  Carbon Emission from Refrigeration Transportation  

Recently, environmental issues have gained increasing attention worldwide, and 
numerous studies on the cold chain, energy consumption, carbon emissions, and cost 
have emerged and been conducted by many researchers. The carbon emission 
calculation and analysis of the cold chain are mainly divided into three phases which are 
1.) the production process 2.) the pre-cooling process 3.) refrigerated vehicle 
transportation (Bin et al., 2022). However, refrigerated transport tends to be the critical 
phase of the cold chain due to its most negative impact on energy consumption and 
greenhouse gas emissions. In the refrigerated transportation phase, the vapor 
compression refrigeration (VCR) units are the most used systems in refrigerated 
transport. VCR systems consume approximately 15% of the world's electrical energy 
and contribute approximately 10% of greenhouse gas emissions. The VCR system 
operates on the vapor compression refrigeration cycle (Fig.4) and consists of the 
evaporator, compressor, condenser, and expansion. 
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Figure  4:  Vapor compression transport refrigeration unit driven by a diesel engine 
diagram 

(Maiorino et al., 2021 2021) 
There are several standard options for the VCR systems regarding the 

compressor power supply: direct belt drive, auxiliary diesel unit, auxiliary alternator unit, 
and vehicle alternator unit. The additional diesel unit is utilized for most heavy 
refrigerated vehicles. In other words, the compressor is powered by an auxiliary diesel 
engine (Maiorino et al., 2021). In diesel-driven vapor compression, diesel chemical 
energy is converted to electrical energy. The electrical energy is then utilized to power 
the heat transport from the truck’s interior to the exterior. The Coefficient of Performance 
(COP) illustrates the heat conversion performance. It expresses the ratio of the heat 
removed as a function of energy supplied (Stellingwerf et al., 2018). The refrigerated 
transport systems are dependent on a wide range of operating conditions such as 
weather, the orientation of insulated walls, and loading/unloading operations frequency. 
As a result, the COP is generally lower than in static systems. The COP of the 
refrigerated vehicle with vapor compression refrigeration systems is generally between 
0.5 and 1.5. In addition, the total heat load is also composed of thermal energy sources 
inside the compartment, such as transmission load depending on vehicle body size, 
infiltration load, and respiration heat load from fruits and vegetables (Maiorino et al.,  
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2021). In addition, the different weight of products shipped affects the total heat load 
through its respiratory heat rate, which, as a result, requires more energy to maintain the 
low-temperature environment (Stellingwerf et al., 2018). 

The carbon emissions calculation model is proposed as related to the loading of 
vehicles and driving distance. The model for carbon emission calculation from driving 
and refrigerant unit are shown as follows (Bin et al., 2022):   
Carbon emissions from the refrigerated truck: 

𝐶ℎ =  
𝐹ℎ𝐶𝑓

𝑇ℎ
                (2-6)

  
𝐶ℎ is carbon emission produced by the heavy truck transporting one kilogram of 

fresh fruits and vegetables for one kilometer, kgCO2/(kg/km). 𝐹ℎ is the fuel consumption 
of a heavy truck driving one liter per kilometer (L/Km), while the diesel consumption for 
heavy refrigerated trucks is 0.2854 L/km. 𝐶𝑓 is the carbon dioxide produced by burning 
1L of fuel (kg/L). In this case, 1 L of burning diesel emits 2.630 kilograms of carbon 
dioxide (2.630 Kg/L). 𝑇ℎ is the capacity of the container. 

 
Carbon emissions from refrigerant unit: 

The refrigerated unit consists of an independent refrigeration unit that relies on 
its diesel engine to operate the cooling chamber. The carbon emission from the 
refrigerant unit is calculated from fuel consumption and cooling capacity depending on 
the thermal efficiency of the diesel engine and cooling system. The heat load from the 
refrigerated vehicle is analyzed to maintain the low-temperature environment for fresh 
fruits and vegetable transportation. The heat load of the refrigerated vehicles (𝐻) is 
defined by the containers’ body size and can be calculated by Eq. (2-7). 

𝐻 =  
𝑆

𝑉
                (2-7) 

where 
𝐻 : heat gain per unit volume of refrigerated vehicle, 𝑚−1 
𝑆: surface area of the refrigerated vehicle,𝑚2 
 𝑉: the volume of refrigerated vehicles,  𝑚3 
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With the assumption that the temperature of fresh fruits and vegetables remains 
constant during transportation, the energy balance equation is applied, and the fuel 
consumption can be calculated by Eq. (2-9).  

       𝑚 ⋅  𝑞 ⋅  𝜂 ⋅ 𝐶𝑂𝑃 = [𝐻 ⋅ (𝑇0 − 𝑇) ⋅
𝜆

𝛿
+ 𝑚𝑣 ⋅ 𝑞0]𝑑𝜏            (2-8) 

where 
𝐻 : heat gain per unit volume of refrigerated vehicle ( 𝑚−1) 
𝑇0: ambient temperature (℃)  
𝑇: fruits and vegetable temperature (℃) 
𝑚𝑣 : fruits and vegetable mass (stack density) per unit volume (𝑘𝑔/𝑚3)  
𝜆 : thermal conductivity of thermal insulation materials (𝑊/𝑚 ⋅ 𝐾)  
𝛿: the thickness of the insulation layer of a refrigerated vehicle (𝑚)  
𝑞0: respiratory heat of fruit and vegetables per unit mass ( 𝐽/𝑘𝑔 ⋅ 𝑠) 
𝑑𝜏 : transportation time (𝑠) 
𝑚:  Fuel consumption, 𝑘𝑔     
𝜂: The engine's thermal efficiency   
𝑞: Calorific value of fuel, 𝐾𝐽/𝑘𝑔 
𝐶𝑂𝑃: Coefficient of performance of the refrigerated vehicle 

The engine thermal efficiency of the diesel engine is generally 40%, and the unit 
of calorific value of diesel is 43.2 KJ/Kg. The calorific value (𝑞) is the total energy 
released as heat when a substance entirely burns with oxygen under normal conditions.  
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2.4 Shortest Path Problem 
This section discusses some basic definitions of the shortest path problem. 

Generally, the route selection approaches are primarily based on shortest-path 
algorithms, which intend to lower the cost of travel from one point to another. 
Transportation is often seen as the shortest path problem from origin to destination in 
freight logistic management. The shortest path problem has been applied to many 
applications based on decision criteria such as time, cost, and distance. Dijkstra’s 
method is a well-known algorithm to find the optimal path. The algorithm enables 
calculating all shortest paths from a single point to all other points in a network where 
each edge requires a non-negative weight (Kien Hua and Abdullah, 2018). Dijkstra’s 
algorithm begins with searching the nearest node from the source node that is 
connecting to the source node during the first iteration. In the second iteration, it finds 
the next node that is closest to the current node. The node must be a neighbor of the 
current node or the nearest node discovered for the next iteration. The iteration will end 
when the nth finds the first ‘n’ nodes closest to the source node (Rosita et al., 2019). For 
better demonstration, Fig 5 shows a simplified network diagram where edges connect 
nodes with non-negative weight. The line segments constrain different attribute values 
such as cost and time, determining the different costs of feasible paths. The shortest 
path function connects the source and destination nodes. The outcome is the optimal 
route out of all possible paths, which displays the total weight required by the Dijkstra 
algorithm for an optimal route (Kien Hua and Abdullah, 2018). 

Figure  5:  The illustration of the shortest path 
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However, a single-goal problem with a single unique optimal solution is 
impractical in real life. Dijkstra’s algorithm was generalized to the Multi-Objective 
Shortest Path (MOSP) Problem. There are different sorts of multi-objective problems, 
which can be found in many fields such as finance, economics, robotics, manufacturing, 
logistics, and many others (Gunantara, 2018). In practice, multiple objective functions 
are considered while determining the best solution to satisfy the stakeholders. The multi-
objective shortest path (MOSP) problem generally involves two objective functions 
known as bi-objective functions (Paixão and Santos, 2012). 

This section introduces the terminology and the basic theory of bi-objective 
shortest path problems. Let 𝐺 = (𝑁, 𝐴) be a connected network with a set of nodes 
𝑁 =  { 1, . . . , 𝑛} and a set of arcs 𝐴 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈  𝑁, 𝑖 ≠  𝑗}. Two positive cost 

functions are denoted as ‘𝑐𝑖𝑗 ’ associated with each arc (𝑖, 𝑗). The cost functions can 
represent time, distance, cost, or criteria for traversing arc (𝑖, 𝑗), respectively. 𝑋𝑖𝑗 is a 
binary decision variable if there is a flow from node ‘𝑖’ to node ‘𝑗 ‘. The bi-objective 
shortest path (BSP) problem with origin node {𝑜} ∈ 𝑁 and destination node {𝑑}  ∈  𝑁 

can be formulated as a network flow problem as follow (Raith and Ehrgott, 2009) : 
        Z1(x)   =    ∑ 𝐶𝑖𝑗

1
(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗 

Objective:    Min/Max                 (2-9)
        Z2(x)   =  ∑ 𝐶𝑖𝑗

2
(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

      1 if   𝑖 = {𝑜} 
 ∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 −  ∑ 𝑥𝑖𝑗  (𝑗,𝑖)∈𝐴         =  0 if   𝑖 ≠ {𝑜, 𝑑}           (2-10) 
                -1 if   𝑖 = {𝑑} 

𝑋𝑖𝑗     ∈            {0,1}                          ∀(𝑖, 𝑗) ∈ 𝐴          (2-11) 
The objective functions (2-9) are maximum or minimum cost functions. 

Constraint (2-10) represents the flow balance at the different nodes, and it provides that 
just one edge is chosen from the origin ‘o’ to the intermediate node. The constraint also 
ensures that the total inflow and outflow are equal at any node and enforces that just one 
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edge links the intermediate node to a destination node. Due to its complications, several 
algorithms are proposed to solve multi-objective shortest path problems. 

Martin’s algorithm is initially employed to solve the multi-objective shortest path 
problem utilizing Dijkstra’s label setting approach (Paixão and Santos, 2012). The 
algorithm searches for a Pareto front from node to node in a network (Gräbener et al., 
2010). The primary goal is to reduce the total cost and time spent traveling between the 
origin and destination. The main concept of martin’s algorithm is straightforward. There 
are two different sets of labels, known as temporary labels and permanent labels. A 
temporary label is considered a dominated path, whereas a permanent label is marked 
as a non-dominated path (Domuta et al., 2012). Labeling and evolutionary algorithms 
are commonly employed to solve multi-objective shortest-path problems and arrive at a 
Pareto optimal set (Mofaddel and Hamed, 2018).  

Several academic papers have used Martin’s technique and metaheuristics 
such as NSGA, ant colony algorithms, and swarm particle algorithms to solve the bi-
objective shortest path issue in recent years. A non-dominated sorting genetic algorithm 
(NSGA) is more often employed and better suited for addressing multi-objective 
problems with more than two objective functions and uncertain decision-makers' 
preferences. In practice, the multi-objective problem seeks to produce a set of solutions 
that satisfy an acceptable degree of quality while not being dominated by other answers 
(Konak et al., 2006).  

For example, a non-dominated sorting genetic algorithm (NSGA) is employed to 
solve the bi-objective shortest path problem while considering the overall cost and delay 
time. As a result, in a single simulation run, NSGA effectively solves the Pareto optimal 
solution set (Chitra and Subbaraj, 2012). A combination of Martin’s algorithm and 
metaheuristic (NSGA II) is utilized to solve time-dependent shortest-path problems. 
However, due to too many non-dominated solutions, a lack of diversity, a problematic 
representation of the trade-off surface, and other factors, NSGA-II has difficulty handling 
many objectives (Ayed et al., 2011). To alleviate these difficulties, NSGA-III is proposed 
as an improved algorithm of NSGA II (Cui et al., 2019). NSGA-III preserves the diversity 
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of non-dominant solutions and has performed well in testing and other problems with 3–
15 objectives (Shao et al., 2022). Hence, NSGA III is a viable alternative for solving an 
efficient Pareto optimal solution set.  
 

2.5 Bin Packing Problem 
The bin packing problem is one of the most well-known problems in 

combinatorial optimization (Lodi et al., 2013). It has been applied to several applications 
in various fields. The bin packing problem (BPP) involves packing items into the bin 
where the objective is to minimize the number of bins that will hold all items. The number 
of bins is generally assumed to be large enough to contain all the items with various 
weights, noting that all bins are identical with the same capacity (Borges and Xavier, 
2020). The bin packing problem (BPP) concept is integrated into the multi-compartment 
vehicle assignment and loading problem. In this section, terminology and the basic 
theory of BPP are introduced. Let ‘𝑖’ is a set of items where 𝑖 =  { 1, … , 𝑛} with weight 
(𝑤𝑖) and an unlimited number of identical bins ’ 𝑗’ with identical capacity ‘𝑐’. Let ‘𝑢’ be 
any upper bound on the minimum number of bins needed where 𝑗 =  {1, … , 𝑢}. The 
integer linear program (ILP) for bin packing is formulated as follows (Lodi et al., 2013): 
Decision Variables 
 𝑦𝑖 is a binary variable: 1 if bin ‘𝑗’ is used; 0 otherwise 
𝑥𝑖𝑗   is a binary variable: 1 if item ‘𝑖’ is assigned to bin ‘𝑗’; 0 otherwise 
Objective:  Min ∑ 𝑦𝑗

𝑢
𝑗=1              (2-12) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑤𝑗𝑥𝑖𝑗
𝑛
𝑖=1   ≤ 𝑐𝑦𝑖   ∀𝑗 ∈ { 1, … , 𝑢}                 (2-13) 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1   =  1  ∀𝑖 ∈ {1, … , 𝑛}            (2-14) 

𝑦𝑖 , 𝑥𝑖𝑗   ∈   {0,1}  ∀𝑖 ∈ {1, … , 𝑛}, ∀𝑗 ∈ { 1, … , 𝑢}                     (2-15) 
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The objective function (2-12) minimizes the number of bins used. Constraint (2-
13) ensures that the weight of items ’𝑖’ assigned to bin ‘𝑗’ does not exceed the bin 
capacity. And constraint (2-14) provides that only one item ‘i’ is assigned to a different 
bin. However, several algorithms are adopted to solve the bin packing problem with a 
different logical sequence. There are two common bin packing problem (BPP) 
algorithms: online and offline. The online algorithm is the method that sequentially 
assigns items to bins without knowing the amount in advance, often known as Next-Fit 
(NF), First-Fit (FF), and Best-Fit (BF) algorithm. In contrast, offline algorithms are applied 
when all items are known and available for sorting in decreasing order. This algorithm is 
commonly known as Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD), and Best-Fit 
Decreasing (BFD). 

Even though there are several algorithms related to the bin packing problem, 
only First-fit (FF) will be discussed in this section. The first-fit algorithm is the simplest 
technique to allocate items into a bin. The algorithm considers the items according to 
the order from the input set, then assigned them to the lowest indexed initialized bin into 
which it fits. The new bin is initialized only when the current item cannot fit into any 
initialized bin (Junkermeier, 2015).  

However, to increase the efficiency of exploring more in the search space, the 
minimum bin slack (MBS) heuristic is introduced by Gupta and Ho (1999). MBS heuristic 
is defined as a bin-oriented heuristic. It generated an optimal solution only when the sum 
of requirements of items is less than or equal to twice the bin capacity (Gupta and Ho, 
1999). For each iteration, the algorithm attempts to assign the item to the bin with 
minimum slack. The assigned item to the new bin is removed from the list of items, all 
unassigned items are then considered for the next selection that will yield the minimum 
slack in the current bin (Dokeroglu and Cosar, 2014). 
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2.6 Transformation and Linearization Techniques 
 In this part, the transformation and linearization approaches for non-linear 
optimization models are discussed. In real-world optimization problems, in most cases, 
the problems have been formulated in the non-linear programming form such as the 
non-linear objective functions and non-linear constraints (Bazaraa et al., 2013). 
Nonlinearities are influenced by a fair number of equations such as the multiplication of 
decision variables (i.e., binary variables and continuous variables), maximum/minimum 
operators, absolute function, floor and ceiling function, and multiple breakpoint function. 
The exact transformation and linearization techniques are crucial to reducing the model 
complexity and computational time of the original non-linear optimization model The 
exact transformation and linearization techniques are essential to reducing the original 
non-linear optimization model's model complexity and computational time (Asghari et 
al., 2022). However, only the linearization of continuous variable multiplication is 
presented in this section. 
 Multiplication of Two Continuous Variables 
 The linearization of the multiplication of continuous is complex and extremely 
difficult to solve. Transforming the product of two continuous variables into an LP model 
requires specific transformations and substitutions in the original non-linear model. First, 
the two new continuous variables are defined with a valid equalities constraint in order to 
transform the product of two continuous variables into a separable function. For 
instance, consider 𝑥1 and 𝑥2 to be decision variables from a given feasible region. To 
convert 𝑥1 ∙ 𝑥2 into separable functions, 𝑦1and 𝑦2 are defined as two new continuous 
variables and two equalities constraints are introduced as follows (Asghari et al., 2022): 

𝑦1    =   
1

2
(𝑥1 + 𝑥2)            (2-16) 

𝑦2    =   
1

2
(𝑥1 − 𝑥2)             (2-17) 

𝑦1
2 −  𝑦2

2 : =     𝑥1 ∙ 𝑥2               (2-18) 

 

As a result, the product of 𝑥1 ∙ 𝑥2 can be replaced in a separable function shown 
below which then can be linearized by using the piecewise approximation as stated in 
the next section. 
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Piecewise Linear Approximation 
Piecewise approximation approaches have been widely used in recent decades 

to convert non-linear linear programming models into linear forms to obtain an 
approximate global optimal value. In general, the piecewise linear approximation 
techniques are applied after the transformation process in which the non-linear function 
is viewed as 𝑓(𝑥) of a given value 𝑥. The non-linear function  𝑓(𝑥) is divided into 𝑛 
separate segments where 𝑎𝑖 = {𝑎0, … , 𝑎𝑛} is the breakpoints of 𝑓(𝑥), 𝑎0 <  𝑎1 < ⋯ <

𝑎𝑛   which shown in Figure 7 (Asghari et al., 2022) 

Figure  6: Piecewise Linearization of f(x) 
(Asghari et al., 2022) 

The extra binary variables 𝑡0, 𝑡1, … , 𝑡𝑛−1 are defined to force the given value 𝑥 
to be associated with the proper pair of consecutive breakpoints. The slope of each line 
between 𝑎𝑖 and 𝑎𝑖+1 , denoted as 𝑆𝑖. In addition, the approximation will be more 
accurate with more linear segments, but at the cost of higher computational complexity. 
Concerning all the components stated above, the piecewise approximating function is 
formulated as follows (Asghari et al., 2022): 
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𝐿(𝑓(𝑥)) = ∑ 𝑓(𝑎𝑖)𝑛

𝑖=0  
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

𝑥  ≥ 𝑎𝑖 − (𝑎𝑛 − 𝑎0)(1 − 𝑡𝑖) ∀𝑖 ∈ {0,1, . . , 𝑛 − 1}           (2-19) 
𝑥  ≤ 𝑎𝑖+1 + (𝑎𝑛 − 𝑎0)(1 − 𝑡𝑖) ∀𝑖 ∈ {0,1, . . , 𝑛 − 1}           (2-20) 
𝑓(𝑥)  ≥ 𝑓(𝑎𝑖) + 𝑆𝑖(𝑥 − 𝑎𝑖) − 𝑚(1 − 𝑡𝑖)∀𝑖 ∈ {0,1, . . , 𝑛 − 1}        (2-21) 
 

𝑓(𝑥)  ≤ 𝑓(𝑎𝑖) + 𝑆𝑖(𝑥 − 𝑎𝑖) + 𝑚(1 − 𝑡𝑖)∀𝑖 ∈ {0,1, . . , 𝑛 − 1}        (2-22) 
𝑆𝑖    = 

𝑓(𝑎𝑖+1−𝑎𝑖)

𝑎𝑖+1−𝑎𝑖
    ∀𝑖 ∈ {0,1, . . , 𝑛 − 1}           (2-23) 

∑ 𝑡𝑖
𝑛−1
𝑖=0   = 1  𝑡𝑖  ∈ {0,1},  ∀𝑖 ∈ {0,1, . . , 𝑛 − 1}            (2-24) 

 
2.7 Multi-Objective Optimization 
 In this section, multi-objective optimization and its relevant methods are 
discussed. The goal of solving multi-objective optimization problems is to find all 
possible trade-offs among conflicting objective functions (Murata and Ishibuchi, 1995). 
There are two general approaches for solving the multi-objective optimization problem. 
The first approach is to combine the multi-objective function into a single composite 
function using several methods such as the weight sum approach or moving the 
objectives to the constraint and leaving one function as an objective function. The 
second approach is to determine the Pareto front. A set of Pareto optimal solutions is a 
set of non-dominated solutions with respect to each other. As it is difficult to find one 
optimal solution, hence, a set of Pareto optimal solutions is known as a general 
approach to represent the solution to decision-makers depending on their preferences 
(Konak et al., 2006). According to numerous studies on multi-optimization problems, 
there are two common characteristics of the solutions. First, some decision variables 
have the same values in all Pareto-optimal solutions. Hence, this property of the decision 
variables indicates that the solution is optimal. Second, other decision variables take 
different values, resulting in a trade-off in the objective values of the solutions. 
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Furthermore, determining the Pareto front has two distinct goals: convergence to the 
Pareto-optimal solution and maintaining the diversity of the solution set (Deb, 2013).  

The general form of multi-objective optimization (vector optimization) is 
presented as follows (Marler and Arora, 2004): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) =  [𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑘(𝑥)]𝑇              (2-25) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     

            𝑔𝑗(𝑥)  ≤    0,      𝑗 = 1,2, … 𝑚               (2-26) 

ℎ𝑙(𝑥) = 0, 𝑙 = 1,2, … , 𝑒                                            (2-27) 

where  
𝑘 is a number of objective functions. 
𝑚 in the number of inequality constraints 
𝑥 is a vector of decision variables 
𝐹(𝑥) is a vector of the objective function 

Concept of dominance: 
 Most multi-objective optimization algorithms use the concept of dominance. Two 
solutions in objective space are compared to see if one outperforms the other. A 
dominance check has three possible outcomes to define the dominance relationship 
between two solutions: (1) solution 1 outperforms solution 2, (2) solution 1 is 
outperformed by solution 2, and (3) solutions 1 and 2 do not outperform each other 
(Deb, 2013). 
Pareto Optimality: 

When it is impossible to conclude that one solution dominates the other, the two 
solutions are said to be non-dominated. None of the solutions could be said that one is 
better than another. The non-dominated set is expected as a result of the dominance 
relationship process. Suppose there is a set of solution 𝑃, the non-dominated set of 
solution ‘𝑃’ is the solution that is not dominated by any member of the set 𝑃. Hence, the 
non-dominated set is known as the ‘Pareto-optimal set’ (Deb, 2013). 
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Numerous evolutionary algorithms (EAs) have been proposed in the last decade 
to solve multi-objective problems. The genetic algorithm (GA) is a well-known meta-
heuristic, and its framework is commonly used as the main body for multi-objective 
design and optimization problems due to its population-based approach. The concept 
of genetic algorithm (GA) is based on natural evolution theory, which states that stronger 
species are more likely to pass on their genes to succeeding generations through 
reproduction. As a result, the species with the correct gene combination become 
dominant in their population, and the unsuccessful combination is thus eliminated by 
natural selection (Konak et al., 2006).  

The genetic algorithm (GA) requires three essential components. The 
'Population' is a collection of solutions or individuals. Each solution is composed of a 
'Chromosome’, which is mainly comprised of a series of elements. Each element is 
known as a 'Gene,' and it contains an individual's inherited traits. During the algorithm 
implementation, encoding the problem must be taken into account. The genetic 
algorithm encodes the problem by mapping the mechanism between the solution space 
and the chromosomes, where the chromosomes correspond to the unique solution in 
general. Selection, crossover, and mutation are the three main genetic operations in the 
genetic algorithm. The standard procedures are illustrated below (Konak et al., 2006): 

Step1. Population: The initial population is generated at random 
Step2. Fitness Function: Evaluate how good the solution to the problem. 
Step3. Selection: Parental selection for reproduction and replacement 
Step4. Crossover: Combining two pieces of information from two individuals (or 

parents) 
Step5. Mutation:  A small random chromosome change to obtain a new solution 
Step6. Repeat until stop criteria are reached 
The initial population is generated at random. Then, the fitness value is evaluated. 

The fitness function is a function that characterizes how well the solution is to the 
problem (i.e. how good the solution is concerning the problem in consideration). The 
selection operator, a parental selection, selects the fitter individuals for reproduction and 
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replacement in the next generation after determining the fitness value. The crossover 
operator then combines the information from two individuals to diversify the population 
and expand the search space. A mutation operation is a minor random change in the 
chromosome that produces a new solution. It is used to keep and introduce genetic 
diversity into populations, ensuring that the algorithm does not become trapped in the 
local minima. The process is repeated throughout the generations until the stop criteria 
are met (Konak et al., 2006). 

Figure  7:   Flowchart of the optimization procedure based on a genetic algorithm. 
(Gharsalli, 2022) 

However, because the multi-compartment assignment problem in this study is 
related to bin-packing, the Exon shuffling crossover approach is adapted for the 
crossover operator and is discussed as follows: 

Exon Shuffling Approach: 
 Because of the varying lengths of the chromosomes, an exon shuffling 
crossover is commonly used in genetic algorithms for bin-packing problems. It is 
a molecular genetics technique that involves the manipulation of genetic 
information within and between chromosomes using recombinant techniques. 
Exon shuffling, as opposed to traditional crossover, uses a two-phase crossover 
to generate offspring. During the crossover process, two parents are chosen, 
sorted, and combined to produce offspring (Dokeroglu and Cosar, 2014). To 
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simply explain, each parent chromosome represents the bin with the two sub-
string of remaining space and the weight of the assigned item to each bin 
(Figure 8). To begin the operation, say, with a bin size of 100, two parents are 
chosen from the population. The chromosomes of two parents are then 
combined, and the chromosome is sorted in increment order based on the 
remaining space. In phase 1, each gene in the combined chromosome contains 
sub-strings containing the assigned item and an unassigned item, which are 
referred to as the remaining items (Figure 9). In phase 2, the current gene on the 
chromosome is evaluated and chosen based on the fitness value (the least 
amount of remaining space), and the bin is then added to the offspring, with the 
next gene chosen only if all items in its sub-string have not been assigned to any 
bin in the offspring. The process is repeated until the last gene of the combined 
chromosome is reached.  The new bin is activated for the remaining item, and 
the items are assigned to the bin using any bin packing algorithm, such as First-
fit (FF) and Best-fit (BF), before adding the bin to the offspring. This procedure is 
repeated until all of the items have been assigned (Rohlfshagen and Bullinaria, 
2007).  

Figure  8: Example of 2 parent Chromosome in Bin packing 
(Rohlfshagen and Bullinaria, 2007). 
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Figure  9: Example – Two-Phase Exon Shuffling crossover 
                    (Rohlfshagen and Bullinaria, 2007). 
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Accordingly, numerous multi-objective evolutionary algorithms have been 
developed based on genetic algorithms such as MOGA proposed by Fonseca and 
Fleming (1993), NPGA by Horn et al. (1994), and NSGA suggested by Srinivas and Deb 
(1995). These three algorithms shared two common features which are the selection 
process and diversity preservation among the solutions of the same Pareto front. In the 
selection process, the fitness value is assigned to the population member based on a 
non-dominated sorting operation (Deb et al., 2002). 

The non-dominated sorting operation is primarily used to sort solutions in the 
population using the Pareto dominance concept, which is essential for selection 
operations and reflects the population's solution quality. To simply explain, in non-
dominated sorting, solution A is said to dominate solution B in population only if there is 
no objective value of solution A is worse than solution B and there is at least one 
objective of solution A is better than objective B. Suppose there are solutions of 
population. 𝑃, and is assigned to 𝐾 Pareto fronts 𝐹𝑖  where 𝐼 =  {1 … 𝐾}. All non-
dominated solutions are first selected from population 𝑃 and assigns to 𝐹1 before being 
temporarily excluded from the population. The non-dominate sorting process then 
selects a second set of non-dominated solutions from the remaining solution and 
assigns them to 𝐹2. The process repeats until all individuals are assigned to each front 
set (𝐹𝑖) (Bao et al., 2017).  

The non-dominated sorting genetic algorithm II (NSGA II) is proposed by Deb et 
al. (2002) to alleviate the difficulty that occurs in the prior study such as the complexity 
of computational time, non-elite selection approach, and maintaining the spread of 
solution in the search space. The original NSGA employed a sharing function approach 
to maintaining the diversity of the solution in the Pareto front. The sharing parameter is 
preselected by the user which directly impacts the performance of the algorithm in 
terms of preserving the diversity of the solution (Deb et al., 2002). In NSGA II, three 
major operations make NSGA II outperform other MOGA. First, the non-dominated 
sorting approach is improved by using the ranking approach, called a fast non-
dominated sorting approach. The rank is assigned to each group of non-dominated 
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individuals, and the process is repeated until the entire population has been assigned. 
Following that, the fitness value is assigned.  A fast non-dominated sorting approach 
results in reducing the sorting computation complexity. Following that, a crowded-
comparison operation is proposed to preserve the spread of solutions on the Pareto 
front. When the two solutions from different non-dominated ranks are compared, the 
solution from the lower rank is selected. On the other hand, if both solutions come from 
the same rank, the solution from a less crowded region is simply preferred. Lastly, the 
Elitism selection procedure is proposed to generate the next population from the given 
population and its offspring. The combination (𝑅𝑡) of the current parent population (𝑃𝑡) 
and its offspring (𝑄𝑡) are sorted based on the non-dominated sorting approach. With 2𝑁 

population size, the set of 𝐹1 is a non-dominated set containing all non-dominated 
individuals. All individuals from 𝐹1 are selected if the size of 𝐹1  less than or equal to 𝑁. 

Else, the individuals from other sets of sorted non-dominated ranks (i.e.  𝐹1, 𝐹2 …  𝐹𝑙) 
are chosen using the crowded-comparison operator in descending order. This 
procedure continues until the solution fills the empty slot in the new population set and 
the size of the new population equals 𝑁 as shown in Figure 10 (Benyoucef and Xie, 
2011).  
Fast Nondominated Sorting Approach: 

Fast non-dominated sorting requires the calculation of two entities for each 
solution, which are described below (Deb et al., 2002) and illustrated in Figure 11: 

1. Domination count (𝑛𝑝): the number of solutions that dominate solution 𝑝. 
2. Set of solutions that 𝑝 dominates (𝑆𝑝) 
Suppose population 𝑃 has 𝑘 Pareto fronts (𝑓1, 𝑓2, … , 𝑓𝑘), the following steps 

are used to identify Pareto fronts from 1 to 𝑘 : 
Step 1: 𝑛𝑝= 0 for all solutions 𝑝 in the first nondominated front 
Step 2: Visiting each member (𝑞) of its set 𝑆𝑝and reduce its dominant  
count by one (i.e. 𝑛𝑝 ≔  𝑛𝑝 − 1 for any 𝑞 ∈  𝑆𝑝) 
Step 3: Repeat steps 1 and 2 until all solutions in 𝑃 are assigned. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

 
Figure  10 : Non-dominated sorting process of solutions in a population 

(Bao et al., 2017) 

 

Figure  11 : Fast Nondominated sorting Algorithm 
(Deb et al., 2002) 
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Later, Deb and Jain proposed NSGAIII, an improved non-dominated sorting 
genetic algorithm II (NSGA II), in which the solution diversity is preserved through the 
use of a reference points-based approach, with one individual associated with one 
reference point (Cui et al., 2019). Accordingly, NSGA III is chosen and used in this 
study, which will be discussed in greater detail in the following section. 
2.8 The non-dominated sorting Genetic Algorithm III (NSGA-III) 

Non-dominated sorting Genetic Algorithm (NSGA-III) is an evolutionary multi-
objective optimization (EMO) methodology using reference-based points to find a set of 
well-converged and well-diversified non-dominated solutions. The algorithm is adapted 
from the basic framework of NSGA-II with a notable change. In contrast to NSGA-II, 
maintaining diversity among population members in NSGA-III is facilitated by providing 
and iteratively updating a number of widely distributed reference points. In contrast to 
NSGA-II, maintaining diversity among population members in NSGA-III is facilitated by 
providing and iteratively updating a number of widely distributed reference points. To 
encapsulate the NSGA-III general framework (Figure 12), the set of 𝐾 reference points is 
first generated, and the initial population is generated at random. Consider the 
population of the ‘t’ generation denoted as 𝑃𝑡 with size 𝑁 and the offspring (𝑄𝑟) are 
obtained by two parent selections through crossover and mutation operations. The 
combination of the current population and off-spring denote as (𝑃𝑡 ∪ 𝑄𝑟, with size 2𝑁). 
To choose the best 𝑁 population, the parents and off-spring are combined, then sorted 
according to different non-dominated levels (i.e., 𝐹1, 𝐹2 …  𝐹𝑙). Each non-domination 
rank is then selected one at a time to construct a new population. Instead of selecting 
from crowding distance, predefined the set of reference points is used to ensure 
diversity in obtained solutions in NSGA-III and the selected new population is denoted 
as 𝑆𝑡 (Cui et al., 2019).  
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Figure  12: General framework for NSGA-III 
(Deb and Jain, 2013) 

The detailed procedure of NSGA III is discussed as follows (Deb and Jain, 2013): 
a. Population Classification to Non-dominated level 

Classified the combination of population and offspring into Non-Dominated 
Levels. After a non-dominated sorting procedure, if all new population members   
(|𝑆𝑡| ≤ 𝑁), there are no further operations required. On the other hand, only 

members from (𝐹1, 𝐹2 …   𝐹𝑙−1) is added to the new population if |𝑆𝑡| ≥ 𝑁, some 
members from 𝐹𝑙  are then selected to fulfill the remaining slot (𝐾 =  𝑁 − 𝑆𝑡). 

 
b. Reference Point Generation 

The set of reference points on a hyperplane is predetermined to ensure 
the diversity of the obtained solutions. Das and Dennis’s systematic approach is 
employed to predefine the reference point for the normalized hyperplane.  A 
reference direction is composed of a vector that starts at the origin and connects 
to each of them. The total number of reference points (𝐻) for 𝑀 – objectives 
problem is calculated by:  
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   𝐻 =  (𝑀+𝑝−1
𝑝

)    (2-28) 
where  

𝑝   is the divisions considered along each objective. 
𝑀  is the number of objectives 

For example, in figure 13, in a three-objective problem where 𝑀 = 3, the 
triangle is created on the hyperplane with x-,y-,z- coordinates of (1,0,0),(0,1,0) 
and (0,0,1) as the apex. The number of divisions is recommended to be more 
than the number of objective problems. In this case, with four divisions (𝑝 = 4) 
chosen, 𝐻 =  (3+4−1

4
) = 15 or 15 reference points. For further clarification, the 

supplied set of reference points is purposely generated to find the near Pareto-
optimal solutions corresponding to the reference points ensuring the 
diversification of the solutions. 

 
Figure  13: 15-reference points on a normalized reference plane for three objective 

problems with p =4 
(Deb and Jain, 2013) 

c. Adaptive Normalization 
The normalization procedure is used to scalarize the fitness value of 

each objective (Bi and Wang, 2017). To normalize the values, the ideal point of 
the population (𝑆𝑡)  is first determined by identifying the smallest value of each 
objective function 𝑖 = {1, … , 𝑀} which results in a set of ideal points for each 
population, denoted as 𝑍 = (𝑍1

𝑚𝑖𝑛, 𝑍2
𝑚𝑖𝑛, … , 𝑍𝑀

𝑚𝑖𝑛). Next, the translated 
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objective (𝑓𝑖
′(x)) is introduced. The translated objective is calculated by 

subtracting each objective value 𝑓𝑖(𝑥) by the minimum value of each objective 
(𝑍𝑖

𝑚𝑖𝑛).  
𝑓𝑖

′(x) =  𝑓𝑖(𝑥) − 𝑍𝑖
𝑚𝑖𝑛        (2-29) 

 
The extreme 𝑀 points on 𝑀 objectives axis are then obtained from the 

achievement scalarization function (ASF) with minimum weight vector (𝑤) where 
the value is a small number of 10−6 and the equation is determined as followed.  
In addition, the weight vector 𝑤 denotes the axis direction. 

 

   (2-30) 𝐴𝑆𝐹(𝑥, 𝑤) = 

 
The normalized objective can be obtained from the following equation: 

𝑓𝑖
𝑛(𝑥) =  

𝑓𝑖
′(x)

𝑎𝑖−𝑍𝑖
𝑚𝑖𝑛           (2-31) 

 

where 𝑎𝑖 denote as the intercept of the hyperplane with axis directions 
and (𝑎1, 𝑎2, … , 𝑎𝑖) is simply set to (𝑍1

𝑚𝑎𝑥, 𝑍2
𝑚𝑎𝑥 , … , 𝑍𝑖

𝑚𝑎𝑥). 
 

d. The Association Operation 
In association operation, with normalized objective value, each point in 

the objective space is connected to the reference point through the reference 
line. The reference line is constructed by connecting each reference point to the 
origin of the hyperplane. The perpendicular distance of each population member 
in objective space to each reference line is then calculated. This operation is 
illustrated in Figure 14. 
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 After perpendicular distances are calculated, the reference point with 
the closest reference line to the population member is associated with the 
population member.  In the other words, the minimum distance between 
reference points and population member point are determined in normalized 
objective space.  

 
Figure  14:  Illustration of population members associated with the      

reference points 
                 (Deb and Jain, 2013) 

The projection distance on the reference line (𝑑𝑗,1) and the 
perpendicular distance between the reference points and the perpendicular 
point (𝑑𝑗,2) are calculated as follows (Bi and Wang, 2017): 

 

𝑑𝑗,1(𝑥) =  
‖𝑓𝑛(𝑥)𝑇𝑤𝑗‖

‖𝑤𝑗‖
                                        (2-32) 

  𝑑𝑗,2(𝑥) =  ‖(𝑓𝑛(𝑥) − 𝑑𝑗, 1(𝑥))
𝑤𝑗

‖𝑤𝑗‖
‖          (2-33) 

 
where 
𝑑𝑗,1(𝑥):  The projection distance on the reference line from the origin 
point to the intersection point of the reference line that is associated with 
the objective value in the objective space. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37 

𝑑𝑗,2(𝑥) : The perpendicular distance between the objective value in the 
objective space and the reference line 
𝑓𝑛(𝑥) :     The normalized objective vector for individual 𝑥 
𝑓𝑛(𝑥)𝑇 :   The transposition of a normalized objective vector 
𝑤𝑗  :             Reference points 
‖     ‖  :      The size of a vector 

Figure  15: Illustration of distances d1 and distance d2 in 2-dimensional space 
(Bi and Wang, 2017) 

e. Niche Preservation Operation 
The niche preservation operation counts the reference points that are associated 

with the population member is called ‘Niche Operation’. All members from the 
(𝐹1, 𝐹2 …   𝐹𝑙−1) are automatically added to the new population (𝑃𝑡+1). 

• Let niche count be denoted as 𝜌𝑗  for the j-th sub-region. Niche count is 
firstly counted from current  (𝑃𝑡+1)  for each reference point. The remaining 
slots are filled by selecting members from 𝐹𝑙 

• Next, the set of the reference point with minimum niche count (𝜌𝑗) are sorted 
and listed. If there are multiple reference points with the same niche count, 
one reference point is randomly selected. 
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o If 𝜌𝑗 = 0, there can be two scenarios.  
▪ Scenario 1: There are members from 𝐹𝑙 associate with the 

selected reference point. Hence, the nearest perpendicular 
distance is added to 𝑃𝑡+1 . 

▪ Scenario 2: There is no member from 𝐹𝑙 associate with the 
selected reference point. Hence, the member from 𝐹𝑙 is 
chosen at random and added to 𝑃𝑡+1 

o If 𝜌𝑗 ≥ 1, this means that the reference points already associate with 
population members. In this case, the member from 𝐹𝑙 is chosen at 
random and added to 𝑃𝑡+1 

• Niche counts are updated and repeated for a total of 𝐾 times to fill the 
remaining slot. 

• 𝑃𝑡+1 is completely updated for a generation ‘𝑡’ th 
 
2.9 Performance Metrics of Multi-Objective Optimization 

One prominent issue in algorithms development for multi-objective optimization 
is the algorithm’s quality assessment. In multi-objective optimization problems, 
numerous evolutionary algorithms (EAs) are proposed to search for a solution set that is 
an approximation to the Pareto-optimal front. Accordingly, the techniques that give the 
best approximation value for a given problem are concerned. To identify the most 
promising techniques, performance metrics are taken into account. The conception of 
performances is divided into two perspectives which are the quality of the outcome and 
the computational time in generating the outcome (Zitzler et al., 2003). 

In terms of computational time, tracking either the total run time or the number of 
fitness evaluations is a general procedure on a particular computer. As an outcome, 
there is no difference in computational time between single and multi-objective 
optimization. However, there is a distinction between single-objective optimization and 
multi-objective optimization in terms of quality. In a single objective problem, the solution 
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quality is simply generated by comparing the value whether it is larger or smaller 
regards the objective function (Zitzler et al., 2003). 

In multi-objective problems, even though Pareto-optimality may be sufficient to 
conclude that one approximation front is superior to another in some cases, the most 
common case is that fronts are mutually incomparable. As a result, a quality assessment 
is required to quantitatively evaluate the outcome. It is, however, difficult to define the 
appropriate quality measurement for the Pareto optimal set. Quality measurement is 
introduced to quantitatively compare the outcomes of multi-objective optimization. 
Quality metrics are commonly used to describe quality measurement. Convergence, 
spread, and distribution are three common features that indicate the algorithm's quality. 
Over the last few decades, many quality metrics have been proposed in the literature, 
and multiple quality metrics are frequently used concurrently because each metric 
assigns different importance to these three features. And each feature is described in 
detail below (Bezerra et al., 2017): 

1. Convergence: refers to the optimality of the solutions. To be said, the 
solutions in the Pareto front are concluded to be converged.  

2. Spread: refers to the distance between the optimal point in the Pareto front 
3. Distribution: refers to the evenness of the Pareto front. Describe the 

uniformity of the distance between pairs of solutions.  
There are several common quality metrics such as generational distance (GD), 

inverted generational distance (IGD), hypervolume (HV), Spread (∆), Averaged 
Hausdorff distance (∆p), and R2-indicator (Santos and Xavier, 2018). Inverted 
Generational Distance (IGD) will be discussed further in this section because it is widely 
recognized as a reliable performance for concurrently quantifying the convergence and 
diversity of many-objective evolutionary algorithms (EMOs) (Sun et al., 2019). 
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Inverted Generational Distance (IGD): 
The Inverted Generational Distance (IGD) is viewed as an approximate distance 

between the Pareto front and the solution set in objective space (Santos and Xavier, 
2018). The IGD is an improvement of Generational Distance (GD) which had been 
proposed two decades ago. The GD is the average Euclidean distance between each 
solution point of individual 𝑎 in a given approximation Pareto front 𝐴 (or non-dominated 
solutions generated by MOEAs) and the reference point 𝑟 in a reference front 𝑅 and is 
calculated as follows (Bezerra et al., 2017): 

𝐺𝐷(𝐴, 𝑅)           =             
1

|𝐴|
(∑ 𝑚𝑖𝑛𝑟∈𝑅 𝑑(𝑎, 𝑟)𝑝 𝑎∈𝐴 )

1

𝑝           (2-34) 

𝑑(𝑎, 𝑟)  =       √∑ (𝑎𝑘 − 𝑟𝑘)2𝑀
𝑘=1                 (2-35) 

 where 
 𝐴 : a set of approximation Pareto front (solution set) 
 𝑎 : an individual in the set of approximation Pareto front  
 𝑅 : a set of reference point 
 𝑟  : an individual in the set of reference points 
              𝑑(𝑎, 𝑟) : Euclidean distance between each solution point ‘𝑎’ to each 

reference point ‘𝑟’ 
It should be noted that p = 2 was used in the original proposal, but this was later 

replaced by p = 1 for ease of interpretation and computation. However, the GD is 
claimed to be sensitive to the size of obtained solution (or Pareto Front). Hence, the IGD 
was proposed and is discussed as follows (Bezerra et al., 2017): 

      𝐼𝐺𝐷(𝑅, 𝐴)           =             
1

|𝑅|
(∑ 𝑚𝑖𝑛𝑟∈𝑅 𝑑(𝑟, 𝑎)𝑝 𝑎∈𝐴 )

1

𝑝           (2-36) 

        𝑑(𝑟, 𝑎)          =          √∑ (𝑟𝑘 − 𝑎𝑘)2𝑀
𝑘=1                 (2-37) 

 where 
 𝐴 : a set of non-dominated solutions generated by the algorithm. 
 𝑎 : an individual in the set of approximation Pareto front  
 𝑅 : a set of reference point 
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 𝑟  : an individual in the set of reference points 
𝑑(𝑟, 𝑎) : Euclidean distance between each reference point ‘𝑟’ to each solution 
point ‘𝑎’. 
In comparison to the GD, the IGD is not sensitive to the size of the approximation 

Pareto Optimal Front and It provides a ranking that subjectively best fits the desired 
convergence, spread, and distribution more accurately. The IGD then becomes the 
common metric for assessing the quality of multi-objective EMO algorithms (Bezerra et 
al., 2017). To quantify the quality of algorithms, a smaller value of IGD implies how better 
the approximation of the Pareto Front convergence toward the Pareto-optimal front 
(reference points) is and indicates how uniform of solution distribution is (Zhang et al., 
2008). It is not, however, necessary to imply that lower IGD is preferable. The IGD value 
will be high if no solution associated with a reference point is found (Deb and Jain, 
2013). 

Apart from the three common quality measurements, counting the number of 
solutions is known as a direct performance measurement of a non-dominated sorting 
algorithm (Fang et al., 2008). The variation in population size has a significant impact on 
the algorithm's performance. Small populations have poor convergence, whereas large 
populations have high computational complexity in finding high-quality solutions. 
Selection of an appropriate population size for the algorithm to obtain a good 
performance is therefore challenging (Rosenthal and Borschbach, 2014). To set a 
proper initial population size, Reed et al. (2003) proposed using the empirical rule of 
thumb to estimate the population size given in equations 2-38. 

𝑁0 ≈ 2𝑅𝑁𝐷     (2-38) 
where 
𝑁0 : initial population size 
𝑅𝑁𝐷: Approximated number of nondominated solution 
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The approximated number of non-dominated solutions (𝑅𝑁𝐷) is normally equal to 
30, which is approximately half of the theoretical maximum number of nondominated 
solutions that could exist. The first population size normally starts with 𝑁0 and the 
population size is then doubled for the next run (Reed et al., 2003). According to Reed 
et al. (2003), in the experiment, the population size started at 60 and then doubled to 
120, 240, and 480 respectively. As a result, the number of solutions improved at a 
decrement rate as the population size increased. For example, at the population size of 
480, the number of non-dominated solutions is reported to be increased by one solution 
which represents only a 3% change. While the number of the non-dominated solution 
increased by 26% when doubled the population size from 60 to 120. 
 

2.10 Related Literature 
Various models and policies for exporting perishables commodities from 

Thailand are studied. For example, the time-cost model and qualitative decisions were 
employed to examine six alternative international routes from Thailand to China, 
collecting data from surveys and in-depth interviews and all information-related routes 
from port/border to port/border (Krebs and Panichakarn, 2019). As a result, the optimal 
path is determined by stakeholders’ decision criteria and conditions. In general, sea 
routes are much less expensive than road transportation. However, in addition to the 
shipping time, numerous other issues must be considered, such as long customs 
processes and the possibility of product quality degradation. 

Furthermore, the beverage transportation model from Thailand to Cambodia has 
been studied to minimize cost, time, and risk. The time-cost model was applied to 
determine the duration and expense of each route. In addition, the qualitative technique 
is utilized for risk assessment by interviewing specialists or logistic service providers. 
The in-depth systemic analysis and prioritization of decision criteria have been 
conducted by identifying risk variables and giving a weight scale. A zero-one-goal 
programming strategy is applied to solve the optimal path selection problem (Kaewfak 
et al., 2021 ). 
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In addition, various researchers have developed mathematical models and 
algorithms to solve logistic problems in an agricultural setting. For example, a multi-
objective model has been developed for the Thai sugar industry (Jarumaneeroj et al., 
2021). The model utilizes multi-objective mixed integer programming to optimize 
stakeholders’ objectives (e.g., economic objectives and environmental impact). In 
addition, Particle Swarm Optimization (PSO) is applied to find an optimal solution. 
Results show that maximizing sugar production volume may not optimize the entire 
sugar supply chain objectives. On the other hand, scarifying some sugar production 
volume may improve the profitability for all stakeholders.  

Many quantitative model approaches have been developed concerning fresh 
fruit degradation, such as the optimization model for freshness loss for managing fresh 
fruit exportation (Damrongpol and Pradorn, 2016). For instance, a linear programming 
method is proposed to enhance agricultural-produced transportation efficiency with 
customer satisfaction  (Ali and VanOudheusden, 2009). The LP model with a single 
objective considering total revenue, logistic cost, and freshness losses cost is 
constructed to solve the optimal route for fruit exportation under different circumstances, 
such as temperature and transportation time. And the freshness loss is determined in 
terms of weight loss cost. As a result, the approach enables the fruit exporters to plan 
and operate the fruit exportation in production and distribution planning. However, this 
method can only apply to single-product distribution (Nakandala et al., 2016). 
  The multi-product food transportation cost function is generated to examine the 
situation in which a truck collected a specific product from multiple farm locations. The 
goal is to investigate the effects of different initial quality levels of various food product 
types with varying rates of quality deterioration stored in a single trip. The approaches, 
including a genetic algorithm (GA), fuzzy genetic algorithm (FGA), and improved 
simulated annealing (SA) are adopted, and all performances are evaluated. As a result, 
the fuzzy genetic algorithm (FGA) is more likely to produce better results than the other 
two approaches (Nakandala et al., 2016). 
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In addition, several works have applied the vehicle routing problem (VRP) to 
perishable product distribution. For instance, The spoilage rate of perishable 
commodities for cold chain distribution is studied, and a vehicle routing optimization 
model considering spoilage time was proposed (Verbic, 2006). The refrigerated and 
general-type vehicles are explored and compared in a vehicle routing problem for 
perishable food product delivery. The non-linear mathematical model and heuristic 
approaches are designed to generate efficient vehicle routings to increase customer 
satisfaction based on food’s freshness (Song and Ko, 2016). The bi-objective with 
mixed-integer linear programming (MILP) is constructed to solve vehicle routing 
problems (VRP) for perishable products under uncertainty. The study aims to analyze 
the effects of transportation time variability and shelf-life on optimality and feasibility. The 
model’s objectives are to minimize the total cost and maximize the total weighted 
freshness of the delivered products. The findings indicate that ignoring the perishability 
of the products results in an unfavorable situation regarding the freshness of delivered 
products (Rahbari et al., 2019).  

The model for vehicle routing problems with time windows and time-dependent 
travel times (VRPTW-TD) considering the impact of perishability is developed. The 
model aims to minimize the total distribution cost where the quality loss is included as a 
part of the objective function. The loss of quality is time-dependent and represented in 
quantity loads (kgs). The heuristic approach based on tabu search is applied to solve 
the problem. The Slovenian vegetable market distribution network is used for algorithm 
performance validation. Compared to the traditional model, where the loss of quality is 
not considered, the proposed model results in a 27.9% reduction in quality loss (Osvald 
and Stirn, 2008).  

The freshness of products has also been viewed as customer satisfaction. The 
multi-objective vehicle routing problem with time windows dealing with the time-
sensitivity spoilage rate of perishable products is proposed. The goals are to minimize 
total costs, including fixed, transportation, penalty, and damaged costs, and to 
maximize the average freshness of the products’ remaining shelf life. The problem is 
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solved using a two-phase heuristic algorithm based on the Pareto variable 
neighborhood search genetic algorithm with temporal-spatial distance (STVNS-GA). 
Computation results demonstrate the algorithm’s effectiveness and feasibility; it 
significantly improves solution quality and accelerates algorithm convergence 
compared to a genetic algorithm (Wang and Zhan, 2016).  

However, work related to multi-compartment vehicles in perishable distribution is 
quite scarce. A flexible multi-compartment truck with vertical loading is recommended 
for grocery delivery. The problem is defined as two-dimensional loading and multi-
compartment vehicle routing (2L-MCVRP). The objectives are to find an effective multi-
compartment loading with appropriate distribution pathways. A branch-and-cut (B&C) 
method and a large neighborhood search (LNS) heuristic are employed to produce 
optimal routing for a multi-compartment truck with multiple product segments 
(Ostermeier and Hübner, 2018). 

In addition, vehicle selection in multi-compartment vehicle routing problems 
(MCVRP) for a refrigerated vehicle is studied in grocery distribution. Transportation, 
loading, and unloading costs are vehicle-dependent based on vehicle type. The 
objective is to reduce the total cost by selecting the tour, selecting a vehicle for each 
trip, and assigning products to each compartment. The saving algorithm is adopted to 
construct an initial solution. The large neighborhood search, Shaw removal, and regret-k 
insertion approaches are employed as improvement methods. They conclude that 
operating a mixed fleet is preferable to perform a single-compartment or a multi-
compartment to deliver goods. As a result, transportation costs can be lowered by 30%, 
maximum, by using a diverse fleet (Ostermeier and Hübner, 2018). 

With the advantages of multi-compartment vehicles, numerous studies have 
focused on grocery delivery tours using a multi-compartment refrigerated truck under 
the fixed or flexible area size for each product segment. The multi-compartment vehicle 
problem (MCVRP) is either generally viewed as the integration of capacitated vehicle 
routing (CVRP) (Yahyaoui and Dekdouk, 2018). MCVRP is renowned as a multi-
compartment vehicle problem with a time window (MCVRP-TW). However, there is no 
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general algorithm for the optimal global solution in multi-compartment vehicle problems 
with a time window. Hence, several heuristics approaches such as Lagrangian 
relaxation, memetic algorithm, colony algorithm, tabu search, large neighborhood 
search (LNS), 2-opt, and Clarke wright have been employed to solve a feasible solution 
(Chen and Shi, 2019). 

The most popular modeling approaches for the optimization of distribution in 
agricultural products are mixed-integer linear programming (MILP), followed by multi-
objective linear programming (MOLP), and stochastic programming (SP). However, not 
all research has concentrated on reducing food loss due to deterioration during 
shipment (Paam et al., 2016). The literature is divided into single-objective and multi-
objective functions shown in Table 2. 

Table  2:  Literature survey in agricultural product distribution  
(Paam et al., 2016) 

Author Objective function Product Type 
Single  Objective Multi-objective 

Lu et al. (2006) Maximize profit for perishable  Perishable 

Cholette (2017) Maximize the weighted volume 
of all wine 

 Wine/USA 

Osvald and Stirn (2008)  Minimize distance, time 
traveled, delay cost, and 

perishability cost 

Vegetable/ 
Slovenia 

Arnaout and Maatouk 
(2010) 

Minimize the operational costs 
and the loss of quality 

 Grape / Lebanon 

Ahumada and 
Villalobos(2011) 

Maximize the revenues of the 
grower 

 Tomato/USA 

Paksay et al. (2012)  Minimize transportation costs 
between suppliers and soils 
and minimize transportation 
costs between suppliers and 

warehouses 

Vegetable oil / 
turkey 

Zanoni and 
Zavanella(2012) 

Minimize total cost  Frozen fried potato 

Ampatzidis et al. (2014) Maximize production output 
and fruit quality 

 Grape, Cherry/ 
Greece, USA 
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Table  2:  Literature survey in agricultural product distribution  
(Paam et al., 2016) (Cont.) 

In several studies, carbon emissions have become a primary concern regarding 
global warming. For example, the optimization model is constructed to solve refrigerated 
trucks’ load-dependent vehicle routing problem. The fuel consumption and carbon 
emission related to vehicle load are considered for model development (Stellingwerf et 
al., 2018 ). A hybrid genetic algorithm with heuristics algorithms to solve fresh food 
distribution problems is developed considering a low-carbon point of view. The 
algorithm effectively provides an environmentally friendly route for cold chain distribution 
(Wang et al., 2018). The cyclic evolutionary genetic algorithm (CEGA) is employed to 
solve cold chain vehicle routing problems to minimize customer satisfaction and total 
operation cost, including carbon emission costs. The results obtained from numerical 
experiments are cost-effective. The experimental results show that as carbon prices rise, 
total costs follow two opposing trends, depending on whether a carbon quota is 
sufficient. Increasing the price of carbon within a specific range can effectively reduce 
carbon emissions, but it will also reduce average customer satisfaction to some extent 
(Qin et al., 2019 ).  

Additionally, the non-dominated sorting genetic algorithm III (NSGA-III) has 
become a popular multi-objective optimization algorithm to solve complex optimization 
problems in various fields such as engineering design, and transportation. For example, 

Author Objective function Product Type 
Single  Objective Multi-objective 

 
Govindan et al. (2014) 

 Minimize logistic cost and 
minimize environmental 

impacts of CO2 emissions 

 
Perishable 

Amorim and Almada-
Lobo(2014) 

 Minimize the distribution costs 
and maximize the freshness 

state if the delivered products 

perishable 

Soysal et al.(2015) Minimize total cost  Tomato/turkey 

Botoloni et al. (2016)  Minimize the operating cost, 
minimize the carbon foot print 

and minimize delivery time 

Fruits and 
vegetable / Italy 
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it has been used to solve several problems in the airforce industry such as solving the 
many-objective cockpit crew pairing problem of the low-cost airline (Krisanaphan, 2019) 
and the multi-objective airport gate assignment problem (AGAP) for Suvarnabhumi 
airport (Khaowong, 2021). Furthermore, the non-dominated sorting genetic algorithm III 
(NSGA-III) was also applied to solve the problem related to workers in production line 
allocation such as the worker allocation problem on multiple cellular u-shaped under 
many objectives  (Chimrakhang,2019). 

Hence, this chapter summarizes the previous works and theories related to 
distribution network design, perishable products’ decay rate, and carbon emission from 
refrigerated trucks. This thesis applies the shortest path, bin packing, and vehicle 
loading problems to construct the mathematical model and heuristic approach to solve 
the multi-compartment vehicle loading with route selection problem.  
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CHAPTER 3 

METHODOLOGY 
3.1  Problem Description 
 A multi-compartment vehicle loading, and transportation routing problem 
(MCVRLP) is an integration of the shortest path and bin packing problem. This study 
considers the transportation of fresh fruits and vegetables as a case regarding their 
varied harvesting period and diverse characteristics. The various characteristics 
necessitate different requirements to extend their shelf life and slow the rate of spoilage. 
Because of the large volume of fresh fruit shipped across the continent, fresh fruit is 
frequently placed in a refrigerated container with a single temperature for shipping 
(Chen et al., 2019 2018). As fresh fruits and vegetables are considered seasonal 
products, shipment consolidation with different temperatures is expected to be more 
cost-effective than splitting the delivery into several vehicles during the low season. 

In multi-compartment vehicle loading, and transportation routing problems, 
suppose there are a set of identical vehicles (𝑣 ∈ 𝑉) with up to three vertical 
compartments (𝑐) and set of the types of fresh fruits and vegetables(𝑓 ∈ 𝐹), the layout 
type of vehicle (𝑡) is selected for fresh fruits and vegetable assignment. The weight of 
fresh fruits and vegetables (𝑦𝑣𝑡𝑐𝑓), in kgs, are determined and assigned to the selected 
compartment on the activated vehicle with layout type (𝑎𝑣𝑡). In addition, the assigned 
weight of fresh fruits and vegetables on each activated vehicle (𝑦𝑣𝑡𝑐𝑓) cannot exceed 
the vehicle compartment capacity (𝑐𝑎𝑝𝑐𝑡).  While one type of fresh fruit and vegetables 
can be assigned to more than one vehicle, no two or more types of fresh fruits and 
vegetables can be mixed in the same compartment. The selection of compartment 
layout and the allocation of fresh fruits and vegetables in each vehicle is related to 
decision-making because it affects the route selection of each vehicle. Finally, the 
allowable transportation time is determined by sorting the shelf-life of fresh fruits and 
vegetables (𝑆𝐿𝑓)  in each vehicle. 
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With a given 𝐺 = (𝑁, 𝐸) where 𝑁 is the set of transit cities and 𝐸 is the set of 
edges connecting different cities associated with transportation time (𝑡𝑡𝑖𝑗), handling 
time (ℎ𝑡𝑗), transportation cost (𝑡𝑐𝑖𝑗), handling cost (ℎ𝑐𝑗) and distance (𝑑𝑖𝑗), the 
transportation route is selected under the restriction of quality loss. In this study, the 
shipment quality is assumed to be 100% at the beginning of the distribution and the 
quality starts to decay as the distribution begins. The quality loss percentage of the 
shipment is set not to exceed 23%, where the maximum allowable time is derived from 
equation (2-5) with a constant decay rate (𝜑𝑝) of 0.0012 hour. Hence, the set of 
maximum allowable times, 𝑇𝑚𝑎𝑥𝐾  where 𝐾 =  {1,2, … 𝑘} is an index number for the 
quality and time set. The set of permissible transportation times is calculated and shown 
in table 3. However, the desire for overall shipment quality selection is restricted by the 
actual fresh fruits and vegetable shelf-life of each vehicle (𝑆𝐿𝑓). Consequently, the 
maximum allowable time does not exceed the product's shelf life within the vehicle. 
 
 
 
 
 
 
 
 
 
 

Table  3:  Set of maximum allowable time 
 
The heavy refrigerated vehicle is used for transportation in this study, and diesel 

fuel is used. Only carbon emissions from vehicle operation and refrigerator cooling units 
are considered when calculating carbon emissions. According to Bin et al. (Bin et al.), 
the fuel consumption and carbon emissions factors are shown in Table 4.  

K Quality (%)  Maximum allowable total time 
(hours)(𝑻𝒎𝒂𝒙𝒌) 

1 92 69.5 
2 90 87.8 
3 88 106.5 
4 86 125.7 
5 84 145.3 
6 82 165.4 
7 80 186.0 
8 78 207.1 
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Mode Type Data Data Type 
Transportation Heavy truck 0.2857 L/Km The driving fuel 

consumption 
Carbon emission 
factor 

Diesel 3060g/kg (per kg 
diesel fuel emits 
3060g) 

CO2 emission 

  2630g/L (per L 
diesel fuel emits 
2630g) 

CO2 emission 

 
Table  4:  Fuel consumption and carbon emission data  

(Bin et al., 2022) 
 
Due to the nonlinearity of the multi-compartment vehicle loading and 

transportation routing problem, the transformation and piecewise linear approximation 
approaches are adopted in this study to approximate the optimal value of the 
mathematical model. The main decisions to be made are the allocation of fresh fruits 
and vegetables and the selection of transportation routes, intending to optimize the 
three objectives listed below: 

1) Minimize the total transportation cost 
2) Minimize the total carbon emission from driving and thermal energy  
3) Minimize the total weight loss of fresh fruits and vegetables 
Hence, this thesis aims to solve the non-linear optimization problem of fresh fruits 

and vegetable transportation by effectively finding the optimal distribution route under 
three conflicting objectives.  
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3.2  Problem Scope and Assumptions 
The problem is formulated under assumptions to obtain the optimal route 

selection in relation to the proposed mathematical model, and all notation and elements 
are determined in this section. 
For the simplification of the model, several assumptions are made as follows: 

1) The number of vehicles available for transportation is assumed to be sufficiently 
large and identical (same size and capacity). 

2) The total vehicle capacity is predefined, and the type of layout is limited to three 
different types. 

3) The partition that separates each chamber is adjustable.  
4) The quality of fresh fruits and vegetables is assumed to be in an acceptable 

condition in the warehouse. 
5) The quantity shipped is sold by weight (kgs), so the quality of fresh fruits and 

vegetables is mixed. 
6) The total quantity of each fresh fruit can be split and shipped in a different 

vehicle. 
7) Different types of fruit cannot be mixed in the same compartment due to their 

specific requirement but can be assigned to any compartment for transportation.  
8) Fresh fruits in each shipment are assumed to be transported at specific optimal 

temperature points. 
9) The weight loss rate represents the actual quality loss of each fresh fruit and 

vegetable in the shipment. 
10) The respiration heat rate from fresh fruits and vegetables is constant. 
11) The temperature of the air surrounding the vehicle (temperature ambient) during 

the transportation is constant. 
12) The vehicle capacity, fresh fruits, and vegetables are preselected, and the total 

shipping quantity is randomly generated at random for the mathematical model 
and heuristic approach validation.  
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3.3 Mathematical Model Formulation For Multi-compartment Vehicle Loading, and 
Transportation Routing Problem (MCVLRP) 

The proposed mathematical model is non-linear programming that mainly 
employed the concept of shortest path and bin packing in solving multi-compartment 
vehicle loading and transportation routing problem (MCVRLP). In this section, the 
discussion is divided into two main parts which are the mathematical model, and the 
linearized mathematical model as follows: 
3.3.1  Mathematical Model Formulation 

3.3.1a  Sets and Parameters 
Network Elements 

• Let 𝐺 =  (𝑁, 𝐸) be a graph of the transportation route.  

• Let 𝑁 =  {0,1,2, … , 𝑛} be a set of nodes; nodes represent the transit cities while 
{𝑜} is the origin city and {𝑑} is the destination city. 

• Let 𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 } be the set of edges connecting different cities is 
associated with transportation time (𝑡𝑡𝑖𝑗), handling time (ℎ𝑡𝑗), transportation cost 
(𝑡𝑐𝑖𝑗), handling cost (ℎ𝑐𝑗) and distance (𝑑𝑖𝑗).  
Vehicle Types and Their Compartment 

• Let  𝑉 =  {1,2, … , 𝑣} be the set of identical vehicles with a total capacity ‘𝑃’. 

• Let 𝑇 =  {1, … , 𝑡} be the set of vehicle layout types (compartments utilization). 

• Let  𝐶 =  {1, … , |𝑇|} be the set of available compartments. 

• 𝐴𝑐𝑡 is a binary parameter indicating whether compartment ‘𝑐’ exists in layout ‘𝑡’ 
(e.g., 𝐴12 = 0) 

• 𝑐𝑎𝑝𝑐𝑡 represents the capacity of compartment ‘𝑐’ in layout type ‘𝑡’ 

- Type I (𝑇 = 1): A single compartment is utilized for one product type. 
(𝑐𝑎𝑝11 = 𝑃).  

- Type II (𝑇 = 2): Two compartments are used when shipping two 
different types of fresh fruit in one shipment. (𝑐𝑎𝑝21 =

𝑃

3
 and 𝑐𝑎𝑝22 =

2𝑃

3
).  

- Type III (𝑇 = 3): If the container is utilized in up to three compartments, 
the capacity of the container is split equally. (𝑐𝑎𝑝31 = 𝑐𝑎𝑝32 = 𝑐𝑎𝑝33 =

𝑃

3
) 
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- Type IV (𝑇 = 4): An inactivated type of vehicle where all capacity is 
zero. 

Figure  16:  Vehicle Compartment Layout (2D) 

• Cost-related to utilizing multi-compartment refrigerated vehicles consist of 
partition adjustment costs (𝐴𝐷𝐽𝑣𝑡) and fixed cost of operating a vehicle ‘𝑣’ (𝐹𝐼𝑋𝑣) 
Carbon Emissions from Refrigerated Vehicles 

The total carbon emissions consist of carbon emissions from driving and the 
refrigeration cooling unit.  

1. Carbon emissions from driving are precalculated as follows: 
The carbon emission from the driving factor is calculated from 

fuel consumption and the carbon emission from burning 1 L of diesel. 
𝐶𝐷 =  𝐹𝑅 ∗ 𝐶 

where 
𝐶𝐷: the carbon emissions emit from driving one kilometer (kgCo2/km) 
𝐹𝑅:  Fuel consumption of refrigerated truck (L/km) 

    𝐶:  Carbon emission emits from burning 1L of diesel (kg/L)
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2. Carbon emissions from the refrigerated cooling unit 
The total carbon emissions of the refrigerated cooling unit come 

from the calculation of fuel consumption and cooling capacity depending 
on the thermal efficiency (𝜂) of the diesel engine, the calorific value of 
fuel (𝑞), and the 𝐶𝑂𝑃 of a refrigeration system. Contrasting the carbon 
emission from driving, the carbon emission from the refrigerated cooling 
unit is a constant rate and is denoted as 𝐶𝑅. The value is obtained from 
Table 4 which is per kilogram of diesel consumption emits 3.06 kilograms 
of carbon dioxide (3.06 CO2kg/kg) 

The fuel consumption (or fuel mass, kg per hour) is calculated 
from the thermal energy generated by the temperature ambient and the 
respiration heat from fresh fruits and vegetables, and the variables are 
defined below:  

• Fuel mass from thermal energy generated by respiration heat of fresh 
fruits and vegetables. The thermal energy is influenced by the load 
mass of fresh fruits and the respiration rate of the fresh fruits where 

𝑟𝑓  is the respiratory heat of fruit and vegetables per unit mass 

(J/kg⋅s) 

•  Fuel Mass from the thermal energy generated by the temperature 
ambient and the parameters are defined as follows: 

- 𝜆  is the thermal conductivity of thermal insulation materials 
(J/m⋅ ℃) 
- 𝛿 is the thickness of the insulation layer of a refrigerated vehicle 
(m) 
- 𝑇0 is an ambient temperature, ℃  (Temperature outside the 
truck). 
- 𝑇𝑓 is the optimal temperature based on fresh fruits and 
vegetables inside the truck, ℃  
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- 𝐻𝐺𝑡𝑐 is a heat gain per unit of compartment 𝑐 in layout type 𝑡 
calculated as follows: 

𝐻𝐺𝑡𝑐 =
𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑐

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑡𝑐
 

where 
𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑐 is the volume of compartment 𝑐 in layout type 𝑡 (𝑚3)  

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑡𝑐 is denoted as the surface of compartment 𝑐 in 
layout type 𝑡 (𝑚2). 

 𝐿 is the length of the refrigerated container (𝑚) 
 𝐻 is the height of the refrigerated container (𝑚)  
 𝑊𝑡𝑐 is the width of existing compartment 𝑐 in layout type 𝑡 (𝑚) 

 
Figure  17:   Vehicle Compartment Layout (3D) 

 Fresh Fruits, Shelf life, and Weight Loss 

• Let 𝐹 =  {1,2, … 𝑓} be a set of fresh fruits and vegetable types.  

• 𝑊𝑓 is denoted as the total weight of fresh fruits required to be shipped 
on a given day. 

• 𝑆𝐿𝑓
  is the shelf life of fresh fruit 𝑓 stored at optimal temperature after 

harvested.  
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•  𝑊𝐿𝑓 is a rate of water loss or weight loss (% per hour) of fresh fruit 𝑓. 

• Let 𝐾 =  {1,2, … 𝑘} be the index set of allowable maximum 
transportation time based on the acceptance range of overall shipment quality.  

• 𝑄𝐾  is the set of acceptable quality range 

•  𝑇𝑚𝑎𝑥𝐾 is the set of maximum allowable transportation time at a set of 
specific quality levels (𝑄𝐾). 

• 𝑀 is the sufficiently large constant. 
 

3.3.1b  Decision Variables 

• Decision variable on activating vehicles 
      𝑎𝑣𝑡  is a binary variable.  

  𝑎𝑣𝑡 =  {    
1, If layout type 𝑡 is selected on vehicle 𝑣 .
0,  otherwise

  

• Decision variable on fruits assignment on each vehicle 
      𝑥𝑣𝑡𝑐𝑓 is a binary variable.    

   𝑥𝑣𝑡𝑐𝑓 =  {    
1, If fresh fruit and vegetable 𝑓 is assigned to compartment 𝑐

  on vehicle 𝑣  with type 𝑡 
0,  otherwise

 

• Decision variable on the amount of fruit to be assigned on each vehicle. 
𝑦𝑣𝑡𝑐𝑓 is a variable indicating the quantity (in kgs) of fresh fruit 𝑓 is assigned to  
compartment 𝑐 on vehicle 𝑣 with type 𝑡 

• Decision variable on path selection 
 𝑧𝑣𝑖𝑗  is a binary variable.   

  𝑧𝑣𝑖𝑗 =  {    
1, If vehicle ‘𝑣’ is traveling from node ‘𝑖’ to ‘𝑗.
0,  otherwise

  

• Decision variable on selecting the maximum allowable time to set the 
 transportation time constraint from the transportation time set in table 5 for each  

vehicle. 
𝑡𝑠𝑣𝑘  is a binary variable.  

𝑡𝑠𝑣𝑘 =  {    
1, If ′𝑡𝑚𝑎𝑥 𝑘′ is selected for vehicle ′𝑣’.
0,  otherwise
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3.3.1c   Auxiliary Decision Variables 

• Decision variable indicating the existence of fresh fruits and vegetables in each 
vehicle. 

𝑓𝑠𝑣𝑓 ∈ {0,1}  

𝑓𝑠𝑣𝑓  =  {    
1, if  fresh fruit ‘𝑓’ exist in vehicle ‘𝑣’
0,  otherwise

  

• Decision variable on the set of available transportation time based on the shelf 
life of fresh fruits and vegetable. 
          𝑠𝑒𝑡𝑆𝐿𝑣𝑓  Shelf life of assigned fresh fruit and vegetables 𝑓 in vehicle 𝑣. 

• Decision variable on total transportation time on each vehicle. 
    𝑇𝑇𝑣 The total transportation time on each vehicle 𝑣. 

• Decision variable on diesel fuel used to maintain the optimal temperature inside 
the vehicle. 
   𝐻𝑊𝑣 The diesel fuel usage for thermal energy (kg/hour) from heat  
    entering through the truck wall 
   𝐻𝐹𝑣 The diesel fuel usage for thermal energy (kg/hour) from fresh  
    fruits and vegetable respiration heat load per unit volume.  

• Decision variable on mass density of loaded fresh fruits and vegetables 
converted from the fresh fruits and vegetable amount assigned to each 
compartment to calculate the respiration heat per unit volume. 
   𝑚𝑣𝑡𝑐𝑓 Fresh fruits and vegetable mass (stack density) per unit volume  
    (𝑘𝑔/𝑚3) of fresh fruit 𝑓 in compartment 𝑐 on vehicle 𝑣 with  
    type 𝑡 

• Decision variable on quantity loss (in kg) based on weight loss rate (%/hour) 
                  𝑞𝑤𝑙𝑣𝑓 The quantity loss (in kg) of fresh fruits and vegetables 𝑓  

    of vehicle 𝑣 
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3.3.1d  Objective Function Descriptions 
 
Objective function 1: 
 This objective function aims to select the specific route for each vehicle to 
minimize the total transportation cost considering transportation cost, handling cost, 
the fixed cost of operating vehicles, and compartment adjustment cost.  
Minimize Objective1 :   𝑍1 =  ∑ ∑ ∑ ((𝑡𝑐𝑖𝑗 + ℎ𝑐𝑗𝑗𝑖 ) ∙ 𝑧𝑣𝑖𝑗)𝑣  + ∑ ∑ (𝐹𝐼𝑋𝑣 ∙𝑡𝑣 𝑎𝑣𝑡) + 

         ∑ ∑ ∑ (𝐴𝐷𝐽𝑡𝑐 ∙𝑐𝑡 𝑎𝑣𝑡𝑣 )                   
Objective function 2: 
 This objective goal is to minimize the total carbon emission from the driving 
distance and the refrigerant cooling unit which is defined as follows: 

1. Carbon emissions from driving (𝐶𝐷) are obtained from the precalculated 
carbon emission (CO2kg/km) and the total carbon emission emitted is calculated 
from the multiplication of carbon emissions from driving and total distance  
( 𝐶𝐷 ∙ ∑ ∑ ∑ (𝑑𝑖𝑗𝑗𝑖 ∙ 𝑧𝑣𝑖𝑗))𝑣 . 

 

2. In contrast, the carbon emissions factor from the refrigerated cooling unit 
is constant (𝐶𝑅). The total carbon emissions are calculated from the 
multiplication of the carbon emissions factor and total fuel consumption in 
maintaining the optimal temperature inside the vehicle (𝐶𝑅 ∙ ∑ (𝑇𝑇𝑣 ∙ (𝐻𝑊𝑣 +𝑣

𝐻𝐹𝑣)). 
Hence, the total carbon emissions are calculated based on total 

transportation distance and time. 
Minimize Objective2:  𝑍2 =  𝐶𝐷 ⋅ ∑ ∑ ∑ (𝑑𝑖𝑗𝑗𝑖 ∙ 𝑧𝑣𝑖𝑗)𝑣 + 

𝐶𝑅 ⋅ ∑(𝑇𝑇𝑣 ∙ (𝐻𝑊𝑣 + 𝐻𝐹𝑣))

𝑣
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Objective function 3:  
This objective function aims to minimize the actual weight obtained from the 

multiplication of the fruit weight loss rate (kg per hour) and transportation time on 
each vehicle. This thesis uses the weight loss rate to approximate the remaining total 
weight at the destination due to a linear relationship with time. 
Minimize Objective 3      𝑍3 =  ∑ (𝑞𝑤𝑙𝑣 ∙  𝑇𝑇𝑣)𝑣   
 

3.3.1e  Mathematical Model and Constraints     
                Minimize Objective   𝒁𝑨𝒍𝒍 (𝑍1, 𝑍3, 𝑍3)                      (3-1) 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

∑ 𝑎𝑣𝑡𝑡   ≤       1          ∀𝑣 ∈ 𝑉              (3-2) 

∑ 𝑥𝑣𝑡𝑐𝑓𝑓  ≤ 𝐴𝑡𝑐 ∙ 𝑎𝑣𝑡  ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑐 ∈ 𝐶               (3-3)  

𝑦𝑣𝑡𝑐𝑓   ≤ 𝑐𝑎𝑝𝑡𝑐 ∙ 𝑥𝑣𝑡𝑐𝑓          ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑐 ∈ 𝐶, ∀𝑓 ∈ 𝐹            (3-4) 

∑ ∑ ∑ 𝑦𝑣𝑡𝑐𝑓𝑐𝑡𝑣       =         𝑊𝑓           ∀𝑓 ∈ 𝐹                                (3-5) 

∑ 𝑧𝑣𝑜𝑗
𝑛
𝑗       = ∑ 𝑎𝑣𝑡𝑡                ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇                          (3-6) 

∑ 𝑧𝑣𝑖𝑘
𝑛
𝑖   = ∑ 𝑧𝑣𝑘𝑗

𝑛
𝑗           ∀𝑣 ∈ 𝑉, 𝑘 ∈ 𝑁 ∖ {𝑜, 𝑑}               (3-7) 

∑ 𝑧𝑣𝑖𝑑
𝑛
𝑖   =  ∑ 𝑎𝑣𝑡𝑡       ∀𝑣 ∈ 𝑉                     (3-8) 

∑ 𝑡𝑠𝑣𝑘𝑘  ≤ ∑ 𝑎𝑣𝑡𝑡         ∀𝑣 ∈ 𝑉              (3-9) 

∑ ∑ ((𝑡𝑡𝑖𝑗 + ℎ𝑡𝑗𝑗𝑖 ) ∙  𝑧𝑣𝑖𝑗) ≤ ∑ ( 𝑡𝑠𝑣𝑘 ∙ 𝑇𝑚𝑎𝑥𝑘 
 )𝑘          ∀𝑣 ∈ 𝑉          (3-10) 

∑ (𝑡𝑠𝑣𝑘 ∙ 𝑇𝑚𝑎𝑥𝑘 
 )𝑘   ≤ 𝑚𝑖𝑛𝑓{𝑠𝑒𝑡𝑆𝐿𝑣𝑓

 }       ∀𝑣 ∈ 𝑉          (3-11) 

𝑓𝑠𝑣𝑓    =  ∑ ∑ 𝑥𝑣𝑡𝑐𝑓𝑐𝑡                            ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹          (3-12)      

 𝑠𝑒𝑡𝑆𝐿𝑣𝑓
  =    {

𝑀, 𝑓𝑠𝑣𝑓  ∙  𝑆𝐿𝑓          ≤ 0

𝑓𝑠𝑣𝑓  ∙  𝑆𝐿𝑓,  𝑓𝑠𝑣𝑓 ∙   𝑆𝐿𝑓 ≥ 0
     ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹          (3-13) 

𝑇𝑇𝑣    =   ∑ ∑ ((𝑡𝑡𝑖𝑗 + ℎ𝑡𝑗𝑗𝑖 ) ∙  𝑧𝑣𝑖𝑗)                        ∀𝑣 ∈ 𝑉             (3-14) 

𝐻𝑊𝑣    =      ∑ ∑ ∑
[𝑥𝑣𝑡𝑐𝑓∙𝐻𝐺𝑡𝑐∙(𝑇0−𝑇𝑓)∙

𝜆

𝛿
)

𝑞∙𝜂∙𝐶𝑂𝑃𝑓𝑐𝑡            ∀𝑣 ∈ 𝑉                     (3-15) 

𝐻𝐹𝑣   =   ∑ ∑ ∑
𝑚𝑣𝑡𝑐𝑓∙𝑟𝑓

𝑞∙𝜂∙𝐶𝑂𝑃𝑓𝑐𝑡                ∀𝑣 ∈ 𝑉                     (3-16) 
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𝑚𝑣𝑡𝑐𝑓   =    
𝑦𝑣𝑡𝑐𝑓

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑐
                 ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑐 ∈ 𝐶, ∀𝑓 ∈ 𝐹       (3-17) 

𝑞𝑤𝑙𝑣𝑓    =  ∑ ∑ 𝑦𝑣𝑡𝑐𝑓 ∙ 𝑊𝐿𝑓𝑐𝑡    ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹          (3-18) 

𝑦𝑣𝑡𝑐𝑓,𝐻𝑊𝑣, 𝐻𝐹𝑣 , 𝑞𝑤𝑙𝑣𝑓, 𝑇𝑇𝑣  ≥ 0                  ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑐 ∈ 𝐶, ∀𝑓 ∈ 𝐹  (3-19) 

𝑎𝑣𝑡 , 𝑥𝑣𝑡𝑐𝑓, 𝑧𝑣𝑖𝑗 , 𝑡𝑠𝑣𝑘 , 𝑓𝑠𝑣𝑓   ∈ {0,1}           ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑐 ∈ 𝐶, ∀𝑓 ∈ 𝐹, ∀𝑣 ∈ 𝑉 (3-20) 

 
Vehicle Selection Constraint: 

Constraint (3-2) represents vehicle layout decisions which indicate that only one 
type of compartment layout can be utilized on each vehicle ‘𝑣’; hence, vehicle ‘𝑣’ is 
active. 
Fruit Assignment Constraints: 

Constraint (3-3) – (3-5) defines the assignment of fresh fruits on each vehicle. 
Constraint (3-3) ensures that a compartment of any layout could be used only for one 
fresh fruit type, and the compartment exists. Constraint (3-4) specifies that the assigned 
amount must not exceed the selected compartment capacity. Constraint (3-5) restricts 
that the total assigned amount must meet the total shipping requirement. 
Route Selection Constraints: 
 Constraints (3-6) – (3-8) represent route selection constraints. Constraint (3-6) 
provides that just one edge is chosen from the origin to the transit node if the vehicle ′𝑣′ 

is activated. At the same time, Constraint (3-7) specifies that the total inflow and total 
outflow are equal at any transit city. Constraint (3-8) enforces that just one edge links to 
a destination node for the activated vehicle. 
Transportation time Constraint: 

Constraints (3-9) – (3-14) represent total transportation time constraints. 
Constraint (3-9) ensures that only one maximum allowable time is selected from the set 
of maximum allowable times for the activated vehicle. Constraint (3-10) specifies that 
each vehicle’s transportation time must not exceed the selected maximum allowable 
total time. Meanwhile, Constraint (3-11) ensures that the selected maximum allowable 
time does not exceed the least fresh fruit shelf-life on vehicle 𝑣. Constraints (3-12) – (3-
13) determine the existence of fresh fruit type in each vehicle and assign the shelf life 
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set for each vehicle. Each shelf-life set is varied depending on the existence of fresh fruit 
type in each vehicle. For the non-existence of fresh fruits and vegetables, the shelf-life is 
equal to the sufficiently large number (𝑀). Constraints (3-14) determine the total 
transportation time of each vehicle. 
Equality Constraints: 
 Constraints (3-15) - (3-18) are the equalities constraint that defines the value of 
fuel consumption from maintaining the optimal temperature inside the activated vehicle 
and the quality loss of the assigned fresh fruits and vegetables on each activated 
vehicle. 
Non-negativity: 
 Constraints (3-19) - (3-20) define the model's decision variables. 
3.3.2 Linearized Mathematical Model Formulation 
 The objective functions mentioned above, objectives 2 and 3, are non-linear 
equations containing the multiplication of two continuous decision variables. It is 
complex to directly solve the multiplication of two continuous decision variables 
employing the piecewise approximation method. To reduce the complexity, in this 
section, the new continuous variables and constraints are introduced to transform the 
multiplication of two continuous decision variables into separable non-linear functions. 
The simplified non-linear functions are then approximated by using the piecewise linear 
approximation approach through the breakpoints to coordinate the selection and its 
slope value.  
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3.3.2a  Set and Parameter 
  To linearize the non-linear function, the piecewise linear approximation is 
associated with the number of breakpoint segments which is denoted as 𝑛𝑏1, 
𝑛𝑏2and 𝑛𝑏3 and more explanations are defined below: 
Number of segments 

𝑛𝑏1 is the number of segments for piecewise linear approximation 
related to the product of diesel fuel used for thermal energy from 
heat entering through the truck wall and the total transportation 
time. 

 
𝑛𝑏2 is the number of segments for piecewise linear approximation 

related to the product of diesel fuel used for thermal energy from 
fresh fruits and respiration heat loads per unit volume and the 
total transportation time. 

𝑛𝑏3 is the number of segments for piecewise linear approximation 
related to the product of total fresh fruits and vegetable quantity 
loss and the total transportation time 

After defining the number of the coordinates breakpoints segments, the 
range of breakpoints is then defined as follows: 
Breakpoints  

𝑠    The set of index numbers for nonlinear function where 𝑠 = {1, . . , 𝑆}  
𝑙    The index value of breakpoints where 𝑙  = {0, . . , 𝑛𝑏1} 

𝑚        The index value of breakpoints where 𝑚  =  {0, . . , 𝑛𝑏2} 

𝑛    The index value of breakpoints where 𝑛  =  {0, . . , 𝑛𝑏3} 
𝑎𝑙       The value of breakpoints within the interval [𝑎0, 𝑎𝑛𝑏1]  
𝑏𝑚     The value of breakpoints within the interval [𝑏0, 𝑏𝑛𝑏2] 

              𝑐𝑛     The value of breakpoints within the interval [𝑐0, 𝑐𝑛𝑏3] 
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3.3.2b  Decision Variables 
As mentioned above, the objective function transformation into a separable 

equation is required to employ the piecewise linear approximation approach. 
New continuous variables 

𝑡1𝑣 , 𝑡2𝑣    are two new continuous variables for transforming the product of  
diesel fuel used for thermal energy from heat entering through 
the truck wall and the total transportation time of vehicle 𝑣 into a 
separable form. 

𝐹𝐻𝑣  is an approximate value of the product of diesel fuel used for 
thermal energy from heat entering through the truck wall and the 
total transportation time of vehicle 𝑣. 

𝑚1𝑣 , 𝑚2𝑣    Two new continuous variables for transforming the product of  
diesel fuel used for thermal energy from fresh fruits and 
vegetable respiration heat loads per unit volume and the total 
transportation time of vehicle 𝑣 into a separable form. 

𝐹𝐹𝑣  An approximate value of the product of diesel fuel used for 
thermal energy fresh fruits and vegetable respiration heat loads 
per unit volume and the total transportation time of vehicle 𝑣. 

𝑤1𝑣 , 𝑤2𝑣  Two new continuous variables for transforming the product of 
total fresh fruits and vegetable quantity loss on vehicle and the 
total transportation time of vehicle 𝑣 into a separable form. 

𝑄𝐿𝑣 An approximate value of the product of total fresh fruits and 
vegetable quantity loss on vehicle and the total transportation 
time of vehicle 𝑣. 

New Non-linear Functions   
𝑓s(𝑥𝑣) where 𝑠 = {1,2,3,4,5,6} denoted as new non-linear functions and is 

defined as follows: 

- Let  𝑓1(𝑡1𝑣) = 𝑡1𝑣 ∙ 𝑡1𝑣 be a non-linear function of a single variable 𝑡1𝑣  
 of vehicle 𝑣 
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- Let   𝑓2(𝑡2𝑣) = 𝑡2𝑣 ∙ 𝑡2𝑣   be a non-linear function of a single variable 𝑡2𝑣  
of vehicle 𝑣 

- Let  𝑓3(𝑚1𝑣) = 𝑚1𝑣 ∙ 𝑚1𝑣  be a non-linear function of a single variable 𝑚1𝑣 
of vehicle 𝑣 

- Let   𝑓4(𝑚2𝑣) = 𝑚2𝑣 ∙ 𝑚2𝑣 be a non-linear function of a single variable 𝑚2𝑣  
 of vehicle 𝑣 

- Let 𝑓5(𝑤1𝑣) = 𝑤1𝑣 ∙ 𝑤1𝑣   be a non-linear function of a single variable 𝑤1𝑣   
of vehicle 𝑣 

- Let 𝑓6(𝑤2𝑣) = 𝑤2𝑣 ∙ 𝑤2𝑣  be a non-linear function of a single variable 𝑤2𝑣  
of vehicle 𝑣 

Breakpoint Decision Variables 
The extra binary variables are introduced to force the new values 

(𝑡1𝑣, 𝑡2𝑣, 𝑚1𝑣, 𝑚2𝑣, 𝑤1𝑣, 𝑤2𝑣)  to associate with the proper pair of consecutive 
breakpoints. 

- 𝑡𝑣𝑙
𝑠  is a binary variable of vehicle 𝑣 for 𝑓𝑠𝜖{1,2}(𝑥𝑣)  

    𝑡𝑣𝑙
𝑠 =  {

1, 𝐼𝑓  𝑏𝑟𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 ′𝑙′ 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

- ℎ𝑣𝑚
𝑠 is a binary variable of vehicle 𝑣 for 𝑓𝑠𝜖{3,4}(𝑥𝑣) 

    ℎ𝑣𝑚
𝑠  = {

1, 𝐼𝑓  𝑏𝑟𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 ′𝑚′ 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

- 𝑢𝑣𝑛
𝑠  is a binary variable of vehicle 𝑣 for 𝑓𝑠𝜖{5,6}(𝑥𝑣)  

 𝑢𝑣𝑛
𝑠   = {

1, 𝐼𝑓  𝑏𝑟𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 ′𝑛′ 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

3.3.2c  Objective Function Description 
Objective Function 4:       

This objective aims to minimize the total carbon emission by using 
piecewise linear approximation, the multiplication of total transportation time and 
fuel consumption from the refrigerant cooling unit are substituted by new 
continuous variables (𝐶𝑅 ∙  ∑ (𝐹𝐻𝑣 + 𝐹𝐹𝑣)𝑣 ). 
Minimize Objective4     𝑍4 =  𝐶𝐷 ∙ ∑ ∑ ∑ (𝑑𝑖𝑗𝑗𝑖 ∙  𝑧𝑣𝑖𝑗)𝑣 + 𝐶𝑅 ∙ ∑ (𝐹𝐻𝑣 + 𝐹𝐹𝑣)𝑣
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Objective Function 5:  
 The approximated optimal value of the total quality loss is approximated by 
substituting the multiplication of total weight loss and total time with a new 
continuous variable into the objective function ∑ (𝑄𝐿𝑣)𝑣 .  
Minimize Objective 5     𝑍5 =  ∑ 𝑄𝐿𝑣𝑣               
   

3.3.2d  Mathematical Model and Constraints 
  Minimize   𝒁𝑨𝑳𝑳 = (𝒁𝟏, 𝒁𝟒, 𝒁𝟓)                                        (3-21) 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

𝑡1𝑣    = 
1

2
(𝑇𝑇𝑣 + 𝐻𝑊𝑣)   ∀𝑣 ∈ 𝑉           (3-22) 

𝑡2𝑣    = 
1

2
(𝑇𝑇𝑣 − 𝐻𝑊𝑣)   ∀𝑣 ∈ 𝑉           (3-23) 

𝐹𝐻𝑣  = 𝑡1𝑣
2 −  𝑡2𝑣

2    ∀𝑣 ∈ 𝑉           (3-24) 

𝑚1𝑣   = 
1

2
(𝑇𝑇𝑣 + 𝐻𝐹𝑣)    ∀𝑣 ∈ 𝑉           (3-25) 

𝑚2𝑣   = 
1

2
(𝑇𝑇𝑣 − 𝐻𝐹𝑣)    ∀𝑣 ∈ 𝑉           (3-26) 

𝐹𝐹𝑣  = 𝑚1𝑣
2 −  𝑚2𝑣

2   ∀𝑣 ∈ 𝑉           (3-27) 

𝑤1𝑣   = 
1

2
(𝑇𝑇𝑣 + ∑ 𝑞𝑤𝑙𝑣𝑓𝑓 )   ∀𝑣 ∈ 𝑉           (3-28) 

𝑤2𝑣   = 
1

2
(𝑇𝑇𝑣 − ∑ 𝑞𝑤𝑙𝑣𝑓𝑓 )   ∀𝑣 ∈ 𝑉            (3-29) 

𝑄𝐿𝑣   = 𝑤1𝑣
2 −  𝑤2𝑣

2    ∀𝑣 ∈ 𝑉           (3-30) 

𝐿(𝑓1(𝑡1𝑣))    = ∑ 𝑓1(𝑎𝑙)𝑙   ∀𝑣 ∈ 𝑉, ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1}        (3-31) 

𝐿(𝑓2(𝑡2𝑣))      = ∑ 𝑓2(𝑎𝑙)𝑙   ∀𝑣 ∈ 𝑉, ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1}        (3-32) 

𝐿(𝑓3(𝑚1𝑣))    = ∑ 𝑓3(𝑏𝑚)𝑚   ∀𝑣 ∈ 𝑉,∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1}        (3-33) 

𝐿(𝑓4(𝑚1𝑣))    =          ∑ 𝑓4(𝑏𝑚)𝑚   ∀𝑣 ∈ 𝑉,∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1}        (3-34) 

𝐿(𝑓5(𝑤1𝑣)) = ∑ 𝑓5(𝑐𝑛)𝑛   ∀𝑣 ∈ 𝑉,∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1}        (3-35) 

𝐿(𝑓6(𝑤2𝑣)) = ∑ 𝑓6(𝑐𝑛)𝑛   ∀𝑣 ∈ 𝑉, ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1}        (3-36) 

𝑡1𝑣   ≥ 𝑎𝑙 − (𝑎𝑛𝑏1 − 𝑎0)(1 − 𝑡𝑣𝑙
𝑠) ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1}  ,∀𝑣 ∈ 𝑉,𝑠 ∈ {1}          (3-37) 
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𝑡1𝑣  ≤  𝑎𝑙+1 + (𝑎𝑛𝑏1 − 𝑎0)(1 − 𝑡𝑣𝑙
𝑠)  ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1}, ∀𝑣 ∈ 𝑉 𝑠 ∈ {1}         (3-38) 

𝑡2𝑣  ≥  𝑎𝑙 − (𝑎𝑛𝑏1 − 𝑎0)(1 − 𝑡𝑣𝑙
𝑠) ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {2}          (3-39) 

𝑡2𝑣  ≤  𝑎𝑙+1 + (𝑎𝑛𝑏1 − 𝑎0)(1 − 𝑡𝑣𝑙
𝑠)   ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉,𝑠 ∈ {2}          (3-40) 

𝑚1𝑣  ≥  𝑏𝑚 − (𝑏𝑛𝑏2 − 𝑏0)(1 − ℎ𝑣𝑚
𝑠)  ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {3}     (3-41) 

𝑚1𝑣 ≤  𝑏𝑚+1 + (𝑏𝑛𝑏2 − 𝑏0)(1 − ℎ𝑣𝑚
𝑠)  ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {3} (3-42) 

𝑚2𝑣 ≥  𝑏𝑚 − (𝑏𝑛𝑏2 − 𝑏0)(1 − ℎ𝑣𝑚
𝑠)    ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {4}   (3-43) 

𝑚2𝑣 ≤ 𝑏𝑚+1 + (𝑏𝑛𝑏2 − 𝑏0)(1 − ℎ𝑣𝑚
𝑠)  ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {4}   (3-44) 

𝑤1𝑣  ≥  𝑐𝑛 − (𝑐𝑛𝑏3 − 𝑐0)(1 − 𝑢𝑣𝑛
𝑠)        ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {5}      (3-45) 

𝑤1𝑣  ≤  𝑐𝑛+1 + (𝑐𝑛𝑏3 − 𝑐0)(1 − 𝑢𝑣𝑛
𝑠)   ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉,  𝑠 ∈ {5}   (3-46) 

𝑤2𝑣  ≥  𝑐𝑛 − (𝑐𝑛𝑏3 − 𝑐0)(1 − 𝑢𝑣𝑛
𝑠)   ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {6}          (3-47) 

𝑤2𝑣 ≤  𝑐𝑛+1 + (𝑐𝑛𝑏3 − 𝑐0)(1 − 𝑢𝑣𝑛
𝑠)  ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉,  𝑠 ∈ {6}       (3-48) 

𝑓1(𝑡1𝑣)  ≥  𝑓(𝑎𝑙) +
𝑓(𝑎𝑙+1)−𝑓(𝑎𝑙)

𝑎𝑙+1−𝑎𝑖
(𝑥 − 𝑎𝑙) − 𝑀(1 − 𝑡𝑣𝑙

𝑠)  

        ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {1}     (3-49) 

𝑓1(𝑡1𝑣)  ≤  𝑓(𝑎𝑙) +
𝑓(𝑎𝑙+1)−𝑓(𝑎𝑙)

𝑎𝑙+1−𝑎𝑙
(𝑥 − 𝑎𝑙) + 𝑀(1 − 𝑡𝑣𝑙

𝑠)   

        ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉 , 𝑠 ∈ {1}   (3-50) 

𝑓2(𝑡2𝑣) ≥  𝑓(𝑎𝑙) +
𝑓(𝑎𝑙+1)−𝑓(𝑎𝑙)

𝑎𝑙+1−𝑎𝑙
(𝑥 − 𝑎𝑙) − 𝑀(1 − 𝑡𝑣𝑙

𝑠)  

       ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {2}     (3-51) 

𝑓2(𝑡2𝑣) ≤  𝑓(𝑎𝑙) +
𝑓(𝑎𝑖+1)−𝑓(𝑎𝑖)

𝑎𝑖+1−𝑎𝑖
(𝑥 − 𝑎𝑙) + 𝑀(1 − 𝑡𝑣𝑙

𝑠)     

         ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {2}    (3-52) 

 

𝑓3(𝑚1𝑣) ≥  𝑓(𝑏𝑚) +
𝑓(𝑏𝑚+1)−𝑓(𝑏𝑚)

𝑏𝑚+1−𝑏𝑚
(𝑥 − 𝑏𝑚) − 𝑀(1 − ℎ𝑣𝑚

𝑠)  

        ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {3}  (3-53) 

𝑓3(𝑚1𝑣)  ≤  𝑓(𝑏𝑚) +
𝑓(𝑏𝑚+1)−𝑓(𝑏𝑚)

𝑏𝑚+1−𝑏𝑚
(𝑥 − 𝑏𝑚) + 𝑀(1 − ℎ𝑣𝑚

𝑠)  

       ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 ∈ {3}   (3-54) 

 𝑓4(𝑚2𝑣)  ≥  𝑓(𝑏𝑚) +
𝑓(𝑏𝑚+1)−𝑓(𝑏𝑚)

𝑏𝑚+1−𝑏𝑚
(𝑥 − 𝑏𝑚) − 𝑀(1 − ℎ𝑣𝑚

𝑠)    

      ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {4}   (3-55) 
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 𝑓4(𝑚2𝑣)  ≤    𝑓(𝑏𝑚) +
𝑓(𝑏𝑚+1)−𝑓(𝑏𝑚)

𝑏𝑚+1−𝑏𝑚
(𝑥 − 𝑏𝑚) + 𝑀(1 − ℎ𝑣𝑚

𝑠)  

      ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {4}   (3-56) 

 𝑓5(𝑤1𝑣)  ≥    𝑓(𝑐𝑛) +
𝑓(𝑐𝑛+1)−𝑓(𝑐𝑛)

𝑐𝑛+1−𝑐𝑛
(𝑥 − 𝑐𝑛) − 𝑀(1 − 𝑢𝑣𝑛

𝑠)  

     ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {5}     (3-57) 

𝑓5(𝑤1𝑣)   ≤   𝑓(𝑐𝑛) +
𝑓(𝑐𝑛+1)−𝑓(𝑐𝑛)

𝑐𝑛+1−𝑐𝑚
(𝑥 − 𝑐𝑛) + 𝑀(1 − 𝑢𝑣𝑛

𝑠)  

     ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {5}     (3-58) 

𝑓6(𝑤2𝑣)   ≥   𝑓(𝑐𝑛) +
𝑓(𝑐𝑛+1)−𝑓(𝑐𝑛)

𝑐𝑛+1−𝑐𝑛
(𝑥 − 𝑐𝑛) − 𝑀(1 − 𝑢𝑣𝑛

𝑠)  

     ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {6}     (3-59) 

𝑓6(𝑤2𝑣)   ≤   𝑓(𝑐𝑛) +
𝑓(𝑐𝑛+1)−𝑓(𝑐𝑛)

𝑐𝑛+1−𝑐𝑚
(𝑥 − 𝑐𝑛) + 𝑀(1 − 𝑢𝑣𝑛

𝑠) 

      ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1},∀𝑣 ∈ 𝑉, 𝑠 = {6}     (3-60) 

∑ 𝑡𝑣𝑙
𝑠𝑛𝑏1−1

𝑙=1  = 1  ∀𝑙 𝜖 {0, … , 𝑛𝑏1 − 1},∀𝑣 ∈ 𝑉, ∀𝑠 ∈ {1,2}    (3-61) 

∑ ℎ𝑣𝑚
𝑠𝑛𝑏2−1

𝑚=1   = 1  ∀𝑚 𝜖 {0, … , 𝑛𝑏2 − 1}, ∀𝑣 ∈ 𝑉, ∀𝑠 ∈ {3,4} (3-62) 

∑ 𝑢𝑣𝑛
𝑠𝑛𝑏3−1

𝑚=1   = 1   ∀𝑛 𝜖 {0, … , 𝑛𝑏3 − 1}, ∀𝑣 ∈ 𝑉, ∀𝑠 ∈ {5,6}  (3-63) 

 
Transformation Constraints: 
 Constraints (3-22) – (3-23) transformed the term of 𝑇𝑇𝑣 ⋅ 𝐻𝑊𝑣 into a separable 
form. In constraints (3-24), 𝑇𝑇𝑣 ⋅ 𝐻𝑊𝑣  is replaced with 𝐹𝐻𝑣 which is equal to the 
summation of the square of two separable terms. Meanwhile, constraints (3-25) – (3-26) 
transformed the term of 𝑇𝑇𝑣 ⋅ 𝐻𝐹𝑣 into a separable form. In constraints (3-27), 𝑇𝑇𝑣 ⋅ 𝐻𝐹𝑣  
is replaced with 𝐹𝐹𝑣 which is equal to the summation of the square of two separable 
terms. Similarly, constraints (3-28) – (3-29) transformed the term of 𝑇𝑇𝑣 ⋅ ∑ 𝑞𝑤𝑙𝑣𝑓𝑓  into a 
separable form. In constraints (3-30), likewise, 𝑇𝑇𝑣 ⋅ ∑ 𝑞𝑤𝑙𝑣𝑓𝑓 is replaced with 𝑄𝐿𝑣 
which is equal to the summation of the square of two separable terms. 
Piecewise Linear Approximation Constraints: 

Constraints (3-31) – (3-36) represent an approximate linearize the non-linear 
function over the interval  [𝑎0, 𝑎𝑙], [𝑏0, 𝑏𝑚]and [𝑐0, 𝑐𝑛] consecutively. Constraints (3-
37) -(3-48) force the values to be associated with the proper pair of consecutive 
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breakpoints. It results in a more accurate approximation with less deviation. Constraints 
(3-49) – (3-60) reformulate the non-linear function into the equivalent piecewise linear 
forms integrating with the slope of the interpolating function. Constraint (3-61)-(3-63) 
ensures that only one pair of consecutive breakpoints of each function is selected. 

 
3.4 Hybrid NSGA-III for multi-compartment vehicle loading, and transportation 
routing problem (MCVLRP) 

In this study, NSGA III is used as the main algorithm framework. And the 
adapted exon crossover and mutation operation are customized designed and 
proposed to generate offspring individuals for the multi-compartment vehicle loading 
and routing problem (MCVLRP). Further details are provided below. 
3.4.1  The Framework of the proposed hybrid NSGA-III 

The general framework of the proposed hybrid NSGA-III for the multi-
compartment vehicle loading and routing problem (MCVLRP) is illustrated. The initial 
population (𝑃𝑡) with size ‘𝑁’ is first generated for each iteration. The reference points are 
then constructed. The pair of parents are selected from the current population to 
generate the offspring (𝑄𝑡) through the adapted Exon shuffling crossover operation (or 
hybrid Exon shuffling). The parent chromosomes from the current population are then 
mutated using the proposed mutation operation. After performing crossover and 
mutation operations, the mutated parents (𝑃𝑡

∗)  and offspring (𝑄𝑡) with the size of  𝑁
2
   are 

combined and represented as (𝑅𝑡) and is ranked to each Pareto front level from 1 to 𝑙 
by non-dominated sorted operation. If the size of Pareto front 1 (𝐹1) equals to ‘𝑁’ then 
the new population (𝑃𝑡+1) equals to Pareto Front 1 (𝐹1) and the procedure continues for 
‘𝑡’ generation. After ‘𝑡’ generation the process stops, and the Pareto optimal front is 
identified. On the other hand, If the size of Pareto front 1 (𝐹1) less than ‘𝑁’, the individual 
from Pareto Front 1 (𝐹1) is first added to the new population (𝑃𝑡+1), then the remaining 
value (𝐾) is calculated (𝐾 = 𝑁 - |𝐹1|). The ‘𝐾’ members are selected from the next Pareto 
front set (𝐹𝑙). The fitness values of each member from every Pareto front set are 
normalized. Each individual is associated with a reference point on the reference line. 
Niche count is performed by selecting the individual with the closest distance to the 
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reference point on the reference line. The ‘𝐾‘ members are selected and added to the 
new population set (𝑃𝑡+1). The process is repeated until '𝑡' generation stops, at which 
point the Pareto optimal front is reported. 

 
Figure  18: The general framework of the proposed algorithm 
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3.4.2  Parameter Setting for proposed hybrid NSGA-III 
 To employ the hybrid NSGA-III heuristic, several parameters need to be defined 
Some of the concepts in this section are from the original NSGA-III, while others are 
distinctive to the original NSGA-III, such as the initial population, crossover, and 
mutation operations. 
Population Size (N): 
 The population size denotes the number of solutions generated by the initial 
population algorithm as well as the improvement algorithm. According to Reed et al. 
(2003), the lower bound of population size (𝑁0) equals two times the ideal number of 
non-dominated solutions (𝑅𝑁𝐷). The number of non-dominated solutions (𝑅𝑁𝐷) is can 
be set to 30, which is roughly half of the theoretical maximum number of nondominated 
solutions that could exist. Hence, the lower bound of the initial population is 60 and the 
population size is then doubled for the next population size. 
Crossover rate (Pc): 

According to Goldberg (1989), the probability of crossover (Pc) is the likelihood 
that the pair of parents will be chosen from the population, implying that not all mating 
pairs must reproduce through crossover, but Pc=1.0 could be chosen. The crossover 
selection probability is set to one in this study (Pc=1.0). In contrast to normal crossover, 
only half of the population is produced as offspring because two parents are combined 
to produce the offspring. 
Parent mutation rate (Pm):  
 The mutation probability is used in the solution improvement procedure to 
expand the solution in the search space, resulting in the avoidance of the local optimal. 
In contrast to the original NSGA-III, the mutation probability indicates the likelihood of 
the individual (or parent) being mutated. Following that, the mutation operation options 
are therefore chosen. In this study, the mutation rate was set to 0.25. 
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Gene mutation rate (Pmg):  
 After assigning the mutation probability to the parents in the initial population, to 
improve the solution in the search space, the gene mutation probability is introduced in 
this hybrid NSGA-III algorithm. This gene mutation probability only applies when not 
every bit in each chromosome is chosen to be mutated. Similarly, the gene mutation rate 
was set to 0.25. The method details are discussed further in the following section for 
clarification. 
Generation (t): 
 The iterations of improvement algorithms used to search for better solutions in 
search spaces are defined by generations. The optimal solution may not be found if the 
number of iterations is too small. On the other hand, an excessive number of iterations 
will be time-consuming in real life. According to Yuan et al. (2015), the number of 
generations is set to 1000 at the maximum. 
 
3.4.3  Chromosome Coding 

 Encoding 

 The decision variables chromosome is made up of four sub-strings that 
correspond to the vehicle layout type, the assigned amount, the fresh fruit and 
vegetable type, and route selection. The first sub-string represents the selected 
vehicle layout with a varied length of ‘𝑛’ and each gene contains an integer decision 
variable that indicates vehicle layout type. The second substring represents the 
assigned amounts of fresh fruit and vegetables. Each gene is composed of a sub-
string with a fixed length of three that represents the compartment of each vehicle 
with available capacity and contains continuous decision variables that indicate the 
amount of fresh fruit and vegetables assigned to each compartment. The third sub-
string represents the set of fresh fruit and vegetable types. Each gene also has one 
three-bit of sub-string that represents an integer decision variable of vegetables and 
fresh fruits type in each compartment. It is relevant to note that the genes in the 
second and third sub-strings correspond to the layout type in the first sub-string, as 
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the layout type limits the capacity of each compartment. Because the assigned 
amount and vegetable fresh fruit type is chosen at the same time, sub-strings 2 and 
3 are related. Finally, the fourth sub-string with length '𝑛' represents the selected 
route, and each gene contains an integer decision variable that indicates the route 
selection decision. Furthermore, sub-string 4 is the same length as sub-string 1 and 
corresponds to sub-string 3 (Figure 19).   
 For example, there are three types of fresh fruit where 𝑓 =  {1,2,3} with a given 
requirement amount (kgs) and eight transportation routes from origin to destination. 
As shown in Figure 20, the sub-string1 indicates that three vehicles are used with 
different layout types.  The sub-string 2 represents the weight (kgs) of fresh fruits 
assigned to each compartment on each vehicle constrained by specific capacity 
while sub-string 3 defines the type of fresh fruits assigned to each compartment. 
Lastly, sub-string 4 specifies the selected route for each vehicle. 

 

Figure  19: Decision Variables in Chromosome for the multi-compartment vehicle 
loading and routing problem (MCVLRP) 
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Figure  20: Description of a coding example  
(Noted that the unit in substring 3 is in thousand kilograms.) 

Decoding  

 The data decoding array structure is depicted in Figure 21. The data such as 
compartments’ capacity of each vehicle, heat gain through wall per unit volume, 
and average mass of each compartment on the activated vehicle can be extracted 
from each gene in sub-string 1. While fresh fruit's specific requirements, such as 
optimal temperature, shelf-life, and water loss rate, can be decoded from a gene in 
sub-string 3 of fresh fruit and vegetable types. Lastly, each gene in sub-string 4 
contains route-specific information such as transportation time, transportation costs, 
and transportation distances while the operation cost is obtained from the 
adjustment cost from sub-string 1 (the vehicle layout type). 

Vehicle Compartment ‘C’ 

Capacity Average Mass Heat Gain Optimal Temp Shelf life Weight Loss Rate  

1                   

2                   

.                   

V                   

 
Vehicle Operation Cost Transportation Cost Transportation Time Transportation 

Distance 

1     

2     

.     

V     

Figure  21:  Decoding the chromosome for the multi-compartment vehicle loading and 
routing problem (MCVLRP) 
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3.4.4  Input Data for Multi-compartment vehicle loading, and transportation routing 
problem (MCVLRP) 

In this study, the mathematical model and the proposed heuristic are applied to 
fresh fruit exportation data from Talaad-Thai (Thailand) to Nanning (China) as an 
example of a real-life case. China is one of the main destinations for Thai fruit exporters. 
The Chinese market has emerged as a popular destination for Southeast Asian fruit 
export markets regarding the China-ASEAN free trade zone. Road and sea freight are 
popular modes of transporting fresh fruits from Thailand to China. The products are 
exported by crossing ASEAN borders or shipping from port to port with varying 
distances, circumstances, and customs clearance processes. Even though sea routes 
usually are less expensive than land routes, the ideal route from Thailand to China is 
heavily influenced by other factors such as stakeholders' circumstances and types of 
fruit. In addition, a continuous improvement in transportation infrastructure increases 
route links between Thailand and China, making transportation via trucks more efficient 
(Krebs and Panichakarn, 2019). Accordingly, this study examines and analyzes the 
optimal route for transporting Thai fresh fruits to China. With a significant increase in 
export growth rate and an expansion of connecting routes from Thailand to China, an 
appropriate distribution network design is critical for market competitiveness and 
profitability. 

3.4.4a  Fresh Fruits and Vegetable Data  
Tropical Thai fruits have various harvesting seasons and various transport 

temperature requirements. For example, the highly popular fruits, Durian, Mangosteen, 
and Longan, all have different harvesting seasons. According to the Thai Office of 
Agricultural Economics exporting statistics (Fig. 22), Durian and Mangosteen usually 
ship in May, whereas Logan has the highest in the fourth quarter of the year. From July 
through September, the export volume of three types of fruit was distributed evenly. Due 
to varied shipping amounts and temperature requirements, utilizing multi-compartment 
vehicles could be beneficial for consolidating different fruit types throughout the 
offseason within the same vehicle. Accordingly, Durian, Logan, and Mangosteen are 
chosen as small instances of this problem. 
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However, more fresh fruit types are chosen based on their popularity for medium 
and large instances to further investigate the model and heuristic performance. Five 
types of fresh fruits are used for medium instances while eight types of fresh fruits are 
applied for large instances. In a report by Bangkok Post, Phusit Ratanakul Sereroengrit, 
director-general of the Trade Policy and Strategy Office, said that among other important 
export products, the country's fruit exports will continue to grow significantly. Thailand's 
fresh fruit exports increased by 42.21 percent in the first half of 2021, led by durian, 
longan, mangoes, banana, pineapple, citrus, and lychee (Arunmas, 2021). Therefore, 
exporting mangoes, bananas, pineapple, citrus, and lychee are included in this study.  

 
Figure  22 : Export quantity (kgs) of Durian, Mangosteen, and Longan in 2020 

 

In addition, according to the Division of Agriculture and Natural Resources, 
University of California (n.d.) and Lufu et. Al. (2020), the optimal temperature, shelf-life, 
and weight loss data are presented in Table 5.  
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Fruit Optimal Temperature Shelf-life Weight loss (%per day) 
Durian 14 ± 1 °C 3 - 5 weeks 1.5 
Longan 5 ± 1 °C 2 - 4 weeks 0.77 

Mangosteen 13 ± 1 °C 2 - 4 weeks 1 
Mangoes 5 ± 1 °C 2 - 3 weeks 0.4 
Bananas 13± 1 °C 4 - 6 weeks 0.10 
Pineapple 10 ± 1 °C 4 - 6 weeks 0.67 

Citrus 13 ± 1 °C 3 - 4 weeks 0.19 
Lychee 5 ± 1 °C 3 - 4 weeks 0.66 

 
Table  5: Optimal Temperature and Shelf life for the Selected Fruit 

 
To process further steps in finding the optimal solution set, the obtained data are 

converted to the appropriate units for the fitness calculation of each objective. The shelf-
life and weight loss rate (%) from Table 5 are converted into hours and kilogram per 
hour (kg/hour) consecutively and are shown in Table 6.  

 
Fruit Optimal Temperature Shelf-life (hours) Weight loss rate (kg/hour) 

Durian 14 ± 1 °C 336  1.5 
Longan 5 ± 1 °C 672 0.77 

Mangosteen 13 ± 1 °C 672 1 
Mangoes 5 ± 1 °C 504 0.4 
Bananas 13± 1 °C 1008 0.10 
Pineapple 10 ± 1 °C 1008 0.67 

Citrus 13 ± 1 °C 672 0.19 
Lychee 5 ± 1 °C 672 0.66 

 
Table  6:  Converted data of Selected Fruits 
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3.4.4b  Route Data from Thailand to China 
There are 19 route segments with 14 cities connecting Talaad-Thai to Nanning. 

The relevant data, obtained from Krebs and Panichakarn (2019), are shown in Table 7 
and Table 8. 

Segment From To Modes 
1 Talaad Thai Beungkan Road 
2 Talaad Thai Mukdahan Road 
3 Talaad Thai Nakhonpathom Road 
4 Talaad Thai Laemchabang Port Road 
5 Beungkan Paksan Road 
6 Mukdahan Suvannakhet Road 
7 Nakhonpathom Khommuan Road 
8 Laemchabang Port Haiphong Port Sea 
9 Laemchabang Port Qinzhou Port Sea 
10 Laemchabang Port Guangzhou Port Sea 
11 Laemchabang Port Fangchenggang Port Sea 
12 Paksan Hanoi Road 
13 Suvannakhet Hanoi Road 
14 Khommuan Hanoi Road 
15 Haiphong Port Hanoi Sea 
16 Hanoi Nanning Road 
17 Qinzhou Port Nanning Road 
18 Guangzhou Port Nanning Road 
19 Fangchenggang Port Nanning Road 

 
Table  7:  The Available Cities and Segment 
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Table  8:  Associate Cost and Time 
 

 
 
 

Segment 
Cost ($) Time (hours) 

Transportation Handling Transportation Handling 
1 700 0 12 0 
2 800 0 10 0 
3 1,300 0 11 0 
4 290 0 2.5 0 
5 540 220 6 4 
6 580 220 5 2.5 
7 350 220 3.5 3.5 
8 1,300 120 90 24 
9 1,495 120 144 24 

10 1,700 120 168 24 
11 1,210 120 144 24 
12 1,510 760 13 4 
13 2,070 750 18 3 
14 1,430 820 12.5 4 
15 720 210 8 24 
16 520 1,400 3 2.5 
17 380 110 2.5 15 
18 1,500 210 8.5 24 
19 375 210 4 27 
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To lessen the complexity of the route selection tested in the proposed heuristic, 
the route options are first rearranged into 7 routes with total distance, total time, and total 
cost which are shown in Table 9.  

 
Table  9: Route Options with total distance, total time, and total cost 

 

3.4.4c  Vehicle Data 
Suppose a 40-foot container (12.19m (L) x 2.44m (W) x 2.56 m(H)) is used and 

the capacity can have up to 30,000 kg. All vehicles have identical attributes with varied 
adjustment costs (Table 10). Based on the previous assumption, with the 30,000 kgs 
size of the container, the volume and surface of each compartment for each layout type 
are precalculated as shown in Tables 11 and 12. The heat gain through wall per unit 
volume (𝑚−1) for each compartment is precalculated from the division of the surface 
area of the refrigerated vehicle,𝑚2 and the volume of refrigerated vehicles,  𝑚3  (𝐻 =

 
𝑆

𝑉
)  which results are shown in Table 13.    

      
Layout type 1 2 3 

Fixed Cost ($) 125 125 125 
Adjustment Cost ($) 0 40 60 

 
Table  10: Associated Vehicle Cost 

 

Route Total Distance Total Time Total Cost 
1 1797 44.5 6250 
2 1959 44 10910 
3 1694 40 6040 
4 3400 208 4560 
5 3200 194 2395 
6 4000 227 3820 
7 3300 201.5 2205 
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Volume, 𝑚3 1 2 3 
1 76.14 0 0 
2 25.38 50.76 0 
3 25.38 25.38 25.38 

 
Table  11:  Volume of each compartment for each layout type. 

 

Surface, 𝑚2 1 2 3 
1 1.765169425 0 0 
2 2.347952367 2.028228673 0 
3 2.347952367 2.347952367 2.347952367 

 
Table  12: Surface area of each compartment for each layout type 

 

Heat Gain 𝑚−1 1 2 3 

1 1.765169425 0 0 

2 2.347952367 2.028228673 0 

3 2.347952367 2.347952367 2.347952367 

 
Table  13: Heat Gain through truck wall per unit volume 

 

3.4.5 Data Processing 
 The fitness value of each objective function calculation is reviewed in this 
section. First, the total cost is calculated from transportation cost, partition adjustment 
cost, and vehicle operation cost (fixed cost). Next, in this study, total carbon emissions 
are calculated from vehicle fuel consumption generated from a vehicle driving regards 
the travel distance and vehicle vapor compression cooling unit and are illustrated as 
follows: 
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Carbon Emissions from vehicle driving (kgCO2/km) 
 

𝐶𝐷 =  𝐹𝑅 ∗ 𝐶 
where  
𝐶𝐷: carbon emission produced by the heavy truck transporting per kilometer 
(kgCO2/km) 
𝐹𝑅:  Fuel consumption of refrigerated truck (= 0.2854  L/Km) 
   𝐶:  Carbon emission emits from burning 1L of diesel (=2.630 kg/L) 
 
 Hence, the total carbon emissions generated from vehicle driving are equal to 
the multiplication of total distance and carbon emission produced by the heavy truck 
transporting per kilometer (𝐶𝐷). The carbon emissions from the refrigerant cooling unit 
are caused by keeping the temperature inside the container steady. To elaborate, the 
temperature fluctuation inside the chamber is caused by two major factors: heat 
entering from outside and respiration heat from fresh fruits and vegetables. The carbon 
emissions of the refrigerant cooling unit are calculated from diesel fuel consumption for 
thermal energy from heat entering through the truck wall and fresh fruits respiration ( 
kg/hour). 
Total fuel consumption from refrigerant unit: 

  Total Fuel consumption = 
[𝐻⋅(𝑇0−𝑇)⋅

𝜆

𝛿
+𝑚𝑣⋅𝑞0]𝑑𝜏

𝑞⋅ 𝜂⋅𝐶𝑂𝑃
 

where  
𝐻:  heat gain per unit volume of refrigerated vehicle ( 𝑚−1) from table13 
𝑇0: ambient temperature (= 30 ℃)  
𝑇: fruits and vegetable optimal temperature (℃), from table 6 
𝑚𝑣 : assigned fruits and vegetable mass (stack density) per unit volume (𝑘𝑔/𝑚3)  
𝜆 : thermal conductivity of thermal insulation materials (= 0.08 𝑊/𝑚 ⋅ 𝐾)  
𝛿: the thickness of the insulation layer of a refrigerated vehicle (= 0.06𝑚)  
𝑞0: respiratory heat of fruit and vegetables per unit mass ( = 324 𝐽/𝑘𝑔 ⋅ 𝑠) 
𝑑𝜏 : transportation time (𝑠) 
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𝜂: The engine thermal efficiency  (= 0.40) 
𝑞: Calorific value of fuel, (= 43.2 𝐾𝐽/𝑘𝑔) 
𝐶𝑂𝑃: Coefficient of performance of the refrigerated vehicle (=  1) 

 

 The carbon emission from the refrigerated cooling unit is at a constant rate 
which one kilogram of diesel consumption emits 3.06 kilograms of carbon dioxide (3.06 
CO2kg/kg). After obtaining the total fuel consumption (kg/hour), the carbon emissions 
rate is then multiplied by the total fuel consumption to obtain the total carbon emissions. 
As a result, the total emission from vehicle driving and the refrigerant unit is added 
together to calculate the fitness value of objective 2. 
 Finally, the total weight loss from fresh fruits and vegetables is calculated by 
multiplying the weight loss rate from Table 6 by the assigned weight of each fresh fruit 
and vegetable, as well as the total transportation time. 
 
3.4.6 Proposed Heuristic Approach  

This section will go over the proposed heuristic in full depth and the NSGA III 
algorithm framework. The problem of this study is divided into two phases, the first 
phase deals with the vehicle loading and layout selection problem. In phase 2, the 
available route is selected and assigned to each population member. Noted that the 
selected route must not exceed the least shelf life in each vehicle.  

To illustrate the concept of the problem, in this problem, several fresh fruits and 
vegetables must be assigned to vehicles and transported to the destination. To avoid 
mixing different product types transported in the same vehicle, the vehicle layout can be 
divided into a limited number of compartments. The size of each compartment can be 
chosen at random based on the remaining requirements items within the constraints of 
the vehicle's layout. The route is chosen based on the least shelf-life of assigned fresh 
fruits and vegetables in each vehicle. 
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3.4.6a Initial Population 
  The initial population is generated at random which represent in 
Algorithm 1. The vehicle layout is randomly selected for the activated vehicle 
and the capacity of each compartment is stored in a separate sub-array. The 
fresh fruits and vegetables are selected at random and assigned to each 
available compartment and the assigned amount must not exceed the maximum 
capacity of each compartment. The items' attributes are then stored in a 
separate sub-array to select a transportation route and compute the fitness 
value. For transportation route selection, the route is randomly selected under 
the least shelf-life criteria of each vehicle. The least shelf life of each vehicle is 
varied based on the attribute of fresh fruits and vegetable type assigned to each 
vehicle. After storing the required data, the fitness value is calculated. The 
process repeats for ‘𝑛’ replications (number of initial population). 

Algorithm 1: Initial Population Generation at random for the multi-compartment vehicle loading and 
routing problem (MCVLRP) 

Input:  
𝑉: a set of vehicle capacity 
𝐹: a set of fruit types ‘𝑖’ with requirement amount (2D-array) 
𝑅: a set of the route from the selected origin to the selected destination 
𝑃: number of populations 
𝑝: population index 
Output: Set of Chromosomes generated at random 
Procedure: 
 1: WHILE  𝑝 <  𝑃 
 2:      WHILE  |𝐹| > 0  (Length of a set of unassigned items) 
 3:  randomly selected the vehicle layout 
 4:             assigned requirement weight of the item to each compartment 
 5:  store fresh fruits and vegetable data attribute 
 6:   calculate the least shelf-life of the set of assigned fresh fruits and vegetable  
 7:  randomly select the route  
 8:             IF    total transportation time > the least shelf life THEN 
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 9:   randomly select the route 
 10:          ELSE  
  assign the selected route to activate the vehicle 
  store route data in sub-array  
 11: ENDDIF 
 12:  calculate fitness value  
 13:  update remaining weight  
 14:   IF      remaining weight of each item equals 0  THEN 
 15:           remove F[ i ] from the fruits set 
 16:  IF      compartment of activated is available   THEN 
 17:            assigned requirement weight of the item to each compartment 
 18:          ELSE: 
 19:               repeat 
 20:          ENDIF 
 20:     ENDWHILE 
 21:   p= p+1 
 22:   repeat     
 23:  ENDWHILE 

3.4.6b Reference Point Generation 
In this study, the set of reference points on a hyperplane is 

predetermined using Das and Dennis’s systematic approach. A reference 
direction is composed of a vector that starts at the origin and connects to each 
of them. The total number of reference points (𝐻) for 𝑀 – objectives problem is 
calculated by:  

 

𝐻 =  (𝑀+𝑝−1
𝑝

)          (3-64) 
where  

𝑝   is the divisions considered along each objective. 
𝑀  is the number of objectives 
In a three-objective problem where 𝑀 = 3, the triangle is created on the 

hyperplane with x-,y-,z- coordinates of (1,0,0),(0,1,0), and (0,0,1) as the apex. 
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The number of divisions is recommended to be more than the number of 
objective problems. In this case, with four divisions (𝑝 = 4) chosen, 𝐻 =

 (3+4−1
4

) = 15 or 15 reference points. For further clarification, the supplied set of 
reference points is purposely generated to find the near Pareto-optimal solutions 
corresponding to the reference points ensuring the diversification of the 
solutions. The set of references points are shown as follows (Table 14 ): 

 

 f1 f2 f3 

1 0 0 1 

2 0 0.25 0.75 

3 0 0.5 0.5 

4 0 0.75 0.25 

5 0 1 0 

6 0.25 0 0.75 

7 0.25 0.25 0.5 

8 0.25 0.5 0.25 

9 0.25 0.75 0 

10 0.5 0 0.5 

11 0.5 0.25 0.25 

12 0.5 0.5 0 

13 0.75 0 0.25 

14 0.75 0.25 0 

15 1 0 0 

Table  14:  Reference Points 
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3.4.6c Parent Selection and its offspring 
 Crossover and mutation are operations to generate new solutions for new 
populations (𝑃𝑡+1). In crossover operation, the pair of chromosomes are 
selected to produce offspring. A crossover probability (𝑃𝑐) is generated to 
indicate the probability of selection which is set to 1, indicating that all of the 
chromosomes chosen are used in reproduction  (𝑃𝑐=1.0). The probability of 
crossover selection is assigned to each parent at random from a uniform 
distribution (or chromosome). This study proposed an adapted crossover 
algorithm to generate offspring in the crossover operator, which is shown in 
Algorithm 2. The algorithm is based on the Exon shuffling crossover operation. 
The operation for proposed crossover operation is divided into two phases: 
combining the parent pair and reassigning the item to each activated vehicle 
using the First-Fit algorithm concept (FF). In phase 1, different from the 
traditional Exon shuffling, only the sub-string 1, vehicle layout type, the sub-
string 1 of a pair of chromosomes are combined into one string as a current 
chromosome while other sub-strings are set to be empty. In phase 2, all fresh 
fruits and vegetable requirements and types are reassigned to the empty sub-
string 2 and sub-string 3. If the required amount meets the existing layout 
capacity, under the first-fit concept, the fresh fruits and vegetables are then 
reassigned to the activated vehicle with the existing layout type. If the 
appropriate layout type is not found in the parent combination list, the available 
layout type (gene) is mutated to a more appropriate layout. The route is then 
reassigned to each gene of sub-string 4 under the shelf-life constraints. The 
required information data are decoded from each sub-string reassigning 
process, the fitness value is then calculated and stored. The procedure is 
repeated until all of the items have been assigned. There is also an additional 
string with two substrings called an unassigned string. It is used to keep the 
remaining item and the remaining weight. An example of data structure is shown 
in  Figure 23. The layout type string is made up of two parents, and the assigned 
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string is made up of three substrings: assigned weight, fruit types, and 
transportation route. The unassigned string is used to temporarily store the 
remaining item and is deleted once all items have been assigned. And the 
following section will go over the detailed algorithm for the reassigning process. 

 
Figure  23 : Example of proposed crossover operation 

 

Algorithm 2: Hybrid Exon Crossover for the multi-compartment vehicle loading and routing problem 
(MCVLRP) 

Input:  Population (𝑃𝑡), crossover probability (𝑃𝑐) 

Output: Set of Offspring (𝑄𝑡) 
Procedure: 
  1:  Parent Selection 
  2:  Assign selection probability to each chromosome (𝑝𝑟𝑜𝑏) 

  3:  FOR   each chromosome in the population 

  4:         IF    𝑝𝑟𝑜𝑏  ≤   𝑃𝑐   THEN 

  5:                add each chromosome  to the selected parent set (𝑝𝑎𝑟𝑒𝑛𝑡) 

  6:         ELSE  
  7:                continue 
  8:         ENDIF 
  9:  ENDFOR 
  10:  Combined pair of chromosome (vehicle sub-string) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 89 

 11: FOR   index = 0 to the size of the selected parent set (𝑝𝑎𝑟𝑒𝑛𝑡) 

 12:      IF  index  is an odd number 
  13:        𝑝𝑎𝑟𝑒𝑛𝑡 1 =  𝑝𝑎𝑟𝑒𝑛𝑡 [index]  
  14:      IF index is even number 
  15:        𝑝𝑎𝑟𝑒𝑛𝑡 2 =  𝑝𝑎𝑟𝑒𝑛𝑡 [index] 
  16:      combined parent = 𝑝𝑎𝑟𝑒𝑛𝑡 1 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡 2 
  17:       ENDIF 
  18:  ENDFOR 
  19:  FOR index = 0 to the size of the combined parent set 
  20:     Reassigned fresh fruits and vegetables to the activated vehicle (Algorithm 3 and 4) 
  21:     Generate new transportation routes at random under shelf-life constraint 
  22:     Calculate fitness 
  23:   ENDFOR 

 

3.4.6d  Reassignment Operation 
 To explain briefly, the First-fist bin packing algorithm is adapted into this 
operation, instead of randomly select the vehicle layout and assigned to the 
vehicle, the vehicle with the current vehicle layout is chosen if its capacity 
structure meets the algorithm conditions. In case of none of the current vehicle, 
layout meets the condition, the vehicle layout is automatically changed (or 
mutated) to the more suitable vehicle layout regards the remaining weight of 
vegetable and fresh fruits requirements. The reassignment operation is divided 
into two phases as follows: 

1 Select the most suitable vehicle layout and update the gene in sub-
string 1. 

2 Reassign the weight and type of fresh fruits and vegetables to each 
compartment of each vehicle and update the gene in sub-string 2 and 
sub-string 3. 

 Algorithm 3 gives the details of the vehicle layout type selection 
procedure in the reassignment operation. The vehicle layout type is selected 
based on the largest value of the remaining weight of vegetable and fresh fruit 
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requirements. After each assignment, the remaining weight of vegetable and 
fresh fruits requirements is then updated and sorted in descending order. The 
problems are categorized into four cases and are defined as follows: 
Case 1: The largest value is more than or equal to the compartment 1 capacity 
of vehicle layout 1 
Case 2: The largest value is more than the compartment 2 capacity of vehicle 
layout 2 and less than the compartment 1 capacity of vehicle layout 1 
Case 3: The largest value is more than or equal to the compartment 1 capacity 
of vehicle layout 2 and less than or equal to the compartment 2 capacity of 
vehicle layout 2 
Case  4: The largest value is less than or equal to the compartment 1 capacity of 
vehicle layout 3 
 Accordingly, if the remaining weight of fresh fruits and vegetable falls in 
case 1 or case 2, the process is simple. If vehicle layout type 1 exists in the 
current combination substring 1, the gene with vehicle layout type 1 is added to 
the offspring and removed from the current vehicle sub-string. Otherwise, if no 
vehicle layout type 1 exists in the current vehicle sub-string, the current vehicle 
layout is automatically changed to type 1, and the current gene is removed from 
the current vehicle substring. The fresh fruits and vegetable weights and types 
are then assigned using Algorithm 4 which will be discussed further in the next 
section. Following that, the fresh fruit and vegetable types are simultaneously 
added to the gene in sub-strings 2 and 3. The remaining weight of fresh fruits 
and vegetables is then updated. 
 In Case 3, regards the current vehicle sub-string, if either vehicle layout 
type 1 or type 2 exists in the current combination substring 1, the gene with 
vehicle layout type 1 or type 2 is added to the offspring and removed from the 
current vehicle sub-string. On the other hand, if only a vehicle layout type 3 
exists, the current vehicle layout is automatically changed to either type 1 at 
type 2 at random and added to the offspring. After that, the current gene is 
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removed from the current vehicle substring. Algorithm 4 is then employed to 
assign the weight of fresh fruits and vegetables to each compartment. And the 
obtained fresh fruit and vegetable types are assigned to the gene in sub-strings 
2 and 3. Then, the remaining weight of fresh fruits and vegetables is updated.  
 Eventually, in case 4, if vehicle layout type 3 is present in the current 
combination substring 1, the vehicle layout type 3 gene is added to the 
offspring and removed from the current vehicle substring. Otherwise, if no 
vehicle layout type 3 exists in the current vehicle substring, the current vehicle 
layout is modified to type 3, and the current gene is removed. Again, the weight 
assignment and item type selection are carried out by Algorithm 4 and added 
to the gene in sub-string2 and sub-string3. 
  However, there is one special condition, if the remaining weight is equal 
to the compartment 1 capacity of either layout type 2 or type 3, any existing 
layout type in the current vehicle sub-string can be added to the offspring. The 
process repeats until all weights are assigned to the vehicle. 

 
Algorithm3: Vehicle Layout Type Selection 

Input:  
  𝐶:  A combined parent (vehicle-layout substring)   

  𝑉 : Vehicle Type; = {1,2,3} 

   𝑐𝑜𝑚𝑝𝑖𝑗 : Set of layout type ‘𝑖’ compartment ‘𝑗’ ;  𝑖 =  {1,2,3} and 𝑗 =  {1,2,3} 

   𝐹: a set of fresh fruits and vegetable type =  {0, … , 𝑓} 

  𝑅 : The set of the remaining weight of item (= { 𝑟0𝑓 , 𝑟1𝑓 , … 𝑟𝑘𝑓} ) 
  𝑘: index number {0,1,2, … , |𝐹|} 

  𝑊𝑓: Fresh fruits, and vegetable weight requirements  
Output:  individual off-spring 𝑄𝑘 
Procedure: 
1:  count = 0 
2: WHILE     count  <   |𝐹| 
3:       remaining set (𝑅) is sorted in descending order        

4:       IF   𝑟0𝑓   ≥  𝑐𝑜𝑚𝑝11    or    𝑐𝑜𝑚𝑝
22

< 𝑟0𝑓  <  𝑐𝑜𝑚𝑝11      THEN 
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5:                 IF     layout type 1 exists in  𝐶    THEN 
6:       a select current gene with layout type one is added to the vehicle substring 
7:                             current gene is added to vehicle substring 
8:                             current gene is removed from 𝐶 

9:                 IF     layout type1 is not in    𝐶    THEN 
10:                           select any current gene and mutated to type 1 
11:                           the gene with new vehicle layout type is added to vehicle-substring 
12:                           the selected current gene is removed from 𝐶 

13:                         ENDIF 

 14:                   assign items according to Algorithm 4 
15:                   add updated compartment sub-string containing weight assignment to sub-string 2 
16:                   add updated compartment sub-string containing item type to sub-string 3 
17:                   updated the remaining weight of fresh fruits and vegetables (𝑅) and sorted 
           in descending order 
18:                     IF       the updated remaining weight of the selected item  equals 0     THEN 
19:                                count = count + 1  
20:       IF    𝑐𝑜𝑚𝑝21 < 𝑟0𝑓   <  𝑐𝑜𝑚𝑝22    THEN 
21:                IF     layout type 1 or type 2 exists   in   𝐶    THEN 
22:                           select layout type between type 1 or type 2 at random 
23:                          IF   Type 1 is chosen    THEN 
24:               a select current gene with layout type 1 is added to the vehicle substring 
25:                                  current gene is added to vehicle substring 
26:                                  current gene is removed from 𝐶 

27:               assign items according to Algorithm 4 
28:                            IF   Type 2 is selected  THEN 
29:               a select current gene with layout type 2 is added to the vehicle substring 
30:                                  current gene is added to vehicle substring 
31:                                  current gene is removed from 𝐶 

32:               assign items according to Algorithm 4 
33:        ENDIF 
34:                IF     layout type 1 and type 2 not exist in   𝐶    THEN 
35:                           select any current gene and mutated to type 1 or type2 at random 
36:                           the mutated current gene is added to vehicle substring 
37:                           the selected current gene is removed from 𝐶 
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38:                          IF   Type 1 is chosen  THEN 
39:              select current gene with layout type 1 is added to the vehicle substring 
40:                                  current gene is added to vehicle substring 
41:                                  current gene is removed from 𝐶 

42:               assign items according to Algorithm 4 
43:                            IF   Type 2 is selected  THEN 
44:              select current gene with layout type 2 is added to the vehicle substring 
45:                                  current gene is added to vehicle substring 
46:                                  current gene is removed from 𝐶 

47:               assign items according to Algorithm 4 
48:          ENDIF 

49:                         ENDIF     

50:                     add updated compartment sub-string containing weight assignment to sub-string 2 
51:                     add updated compartment sub-string containing item type to sub-string 3 
52:                     updated remaining weight of fresh fruits and vegetables and sorted in descending  
  order 
53:                     IF       Type 1 is selected and the updated remaining weight equals to 0           THEN 
54:                                count = count + 1  
55:                     IF       Type 2 is selected and the only one updated remaining weight               THEN 
           equals to 0    THEN 
56:                                count = count + 1  
57:                     IF       Type 2 is selected and the two updated remaining weight equals to 0    THEN 
58:                                count = count + 2  
59:                     ENDIF 

60:       IF    0 < 𝑟0𝑓     <  𝑐𝑜𝑚𝑝31      THEN 
61:                 IF     layout type 3  exists in  𝐶    THEN 
62:        select current gene with layout type 3 is added to the vehicle substring 
63:                           current gene is added to vehicle substring 
64:                           current gene is removed from 𝐶 

65:                 IF     layout type 3  is not in    𝐶    THEN 
66:                           select any current gene and mutated to type 3 
67:                           the gene with new vehicle layout type is added to vehicle-substring 
68:                           the selected current gene is removed from 𝐶 

69:                     ENDIF 
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70:         assign items according to Algorithm 4 
71:                  add updated compartment sub-string containing weight assignment to sub-string 2 
72:                  add updated compartment sub-string containing item type to sub-string 3 
73:                  updated remaining weight of fresh fruits and vegetables and sorted in descending  
          order 
74:                  IF       only one updated remaining weight equals to 0    THEN 
75:                            count = count + 1  
76:                  IF       two updated remaining weight equals to 0    THEN 
77:                            count = count + 2  
78:                  IF       three updated remaining weight equals to 0    THEN 
79:                            count = count + 3  
80:                   ENDIF 

81:       IF     𝑟0𝑓     =  𝑐𝑜𝑚𝑝31     or    𝑟0𝑓   =  𝑐𝑜𝑚𝑝21         THEN 
82:                IF     layout type 2 or type 3 exists   in   𝐶    THEN 
83:                           select layout type between type 2 or type 3 at random 
84:                          IF   Type 2 is chosen                  THEN 
85:              select current gene with layout type 2 is added to the vehicle substring 
86:                                  current gene is added to vehicle substring 
87:                                  current gene is removed from 𝐶 

88:               assign items according to Algorithm 4 
89:                            IF   Type 3 is selected   THEN 
90:              select current gene with layout type 1 is added to the vehicle substring 
91:                                 current gene is added to vehicle substring 
92:                                 current gene is removed from 𝐶 

93:              assign items according to Algorithm 4 
94:        ENDIF 
95:               IF     layout type 2 and type 3 not exist in   𝐶    THEN 
96:                          select any current gene and mutated to type 2 or type 3 at random 
97:                          the mutated current gene is added to vehicle substring 
98:                          the selected current gene is removed from 𝐶 

99:                          IF   Type 2 is chosen       THEN 
100:              select current gene with layout type 2 is added to the vehicle substring 
101:                               current gene is added to vehicle substring 
102:                               current gene is removed from 𝐶 
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103:              assign items according to Algorithm 4 
104:                          IF   Type 3 is selected      THEN 
105:                select current gene with layout type 3 is added to the vehicle substring 
106:                                 current gene is added to vehicle substring 
107:                                  current gene is removed from 𝐶 

108:                assign items according to Algorithm 4 
109:          ENDIF 

110:                      ENDIF     

111:                   add updated compartment sub-string containing weight assignment to sub-string 2 
112:                   add updated compartment sub-string containing item type to sub-string 3 
113:                   updated remaining weight of fresh fruits and vegetables and sorted in descending  
  order 
114:                   IF       only one updated remaining weight equals to 0    THEN 
115:                             count = count + 1  
116:                   IF       two updated remaining weight equals to 0    THEN 
117:                             count = count + 2  
118:                   IF       three updated remaining weight equals to 0    THEN 
119:                             count = count + 3  
120:                  ENDIF 
121:        ENDIF 
122:   ENDWHILE 

 

 

 Algorithm 4 describes the decision-making procedure for fresh fruits and 
vegetable assignment in the reassignment operation. For vehicle layout type 1, 
the assignment pattern is straightforward; any selected item is assigned to 
compartment 1 since only compartment 1 is activated. There are mutual 
conditions between layout types 2 and 3, which are as follows: 
Condition 1: There are at least two types of fresh fruits and vegetables 
remaining in the set of the remaining weight of fresh fruits and vegetable 
requirement. 
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Condition 2: Fewer than two types of fresh fruits and vegetables left in the set of 
the remaining weight of fresh fruits and vegetable requirement.  
Condition 3: There is only one type of remaining weight of fresh fruits and 
vegetable requirement left. 
 Next, if vehicle layout type 2 is selected, the decision-making in fresh 
fruits and vegetable assignment is not only based on the remaining item in the 
list but also the fresh fruits and vegetable type selection criteria. Different from 
vehicle layout type 1, there are three decision-making criteria for fresh fruits and 
vegetable assignment which are the remaining weight, the difference in optimal 
temperature, and the difference in shelf life. In layout type 2, the greatest value 
𝑟0𝑓  is first assigned to compartment 2 of vehicle layout type 2. The procedure of 
fresh fruits and vegetable type selection for compartment 1 begins afterward.  
 For the case of more than two items contained in the list (condition 1), all 
mentioned criteria are applied and selected at random when more than two 
items are remaining on the list. The first criterion is very straightforward; the 
least remaining amount is selected and assigned to compartment 1. For criteria 
2, the difference of optimal temperature requirement, the difference in optimal 
temperature is the absolute number obtained by subtracting the optimal 
temperature of the item type assigned to compartment 2 from the optimal 
temperature of each individual in the item list. The item type with the least 
difference in optimal temperature is selected and assigned to compartment 1. If 
the remaining weight is less than the capacity of compartment 1, the remaining 
weight is assigned. If the remaining weight is greater than or equal to the 
compartment 1 capacity, the weight of an assigned item is assigned full 
compartment 1 capacity. In the particular circumstances where the greatest 
value is less than or equal to compartment 1, the item is assigned to 
compartment 1. In Criteria 1, instead of selecting the item with the least 
remaining weight, the item with the second greatest remaining weight is 
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chosen. For criteria 3, the difference in shelf life is calculated instead of optimal 
temperature requirements, as in the criteria 2 procedure.  
 Conversely, when fewer than two items are remaining on the list 
(Condition 2), none of the criteria are applied because the item with the highest 
weight remaining on the list is assigned to compartment 2 and another to 
compartment 1. After items are assigned to compartments 1 and 2, the weight 
and type of the selected item are added to sub-strings 2 and 3, and the 
remaining weights are sorted in descending order.  
 Similarly, if only one item remains (Condition 3), there are two possible 
ways. If the remaining weight of the last item is less than or equal to the 
capacity of compartment 1, the item is assigned to compartment 1, otherwise, it 
is assigned to compartment 2. 
 At last, the decision-making process of vehicle layout type three is similar 
to type 2. The fresh fruits and vegetable assignment for layout type 3 are 
differentiated into three patterns regards three different conditions. For 
condition 1, the largest value is assigned to compartment 1 and any two items 
are assigned to compartments 2 and 3 based on criteria selection, with the 
assigned weight not exceeding the capacity of each compartment. Different 
from type 2, the difference in optimal temperature and the difference in shelf life 
is chosen as criteria set for type 3. Again, the criterion is selected at random, 
the two least values are determined, and the selected items are then add 
assigned to compartments 2 and 3. Condition 2 assigns the largest value to 
compartment 1 again, and the second item in the remaining list (in descending 
order) to compartment 2 with a weight no greater than the compartment 
capacity. If only one item remains unassigned, condition 1, the unassigned item 
with remaining weight is assigned to compartment 1. 
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Algorithm4: Fruit Assignment for Each Type of Vehicle layout 
Input:  
𝑉 : Vehicle Type; = {1,2,3} 

𝑐𝑜𝑚𝑝𝑖𝑗 : Set of layout type ‘𝑖’ compartment ‘𝑗’ ;  𝑖 =  {1,2,3} and 𝑗 =  {1,2,3} 

𝐹: a set of fresh fruits and vegetable type =  {0, … , 𝑓} 

𝑅 : The set of the remaining weight of item (= { 𝑟0𝑓 , 𝑟1𝑓 , … 𝑟𝑘𝑓} ) 
𝑘: index number {0,1,2, … , |𝐹|} 

𝑊𝑓: Fresh fruits, and vegetable weight requirements  
𝑂𝑓: Fresh fruits, and vegetables optimal temperature requirements  
𝑆𝐿𝑓: Fresh fruits, and vegetable weight requirements  

𝐶𝑟: the set of selection criteria; = {1,2,3} 

Output: Items assignment  
Procedure: 

 1:  𝑤𝑓𝑚𝑎𝑥 =  𝑟0𝑓  

 2:  IF   𝑉 = 1  THEN 
 3:   Assign  𝑤𝑓𝑚𝑎𝑥    to compartment 1  and a select item is 𝑓 = 𝑓𝑚𝑎𝑥 
 4:  IF  𝑉 = 2  THEN 
 5:  IF  more than two items remain  THEN 
 6:  Assign 𝑤𝑓𝑚𝑎𝑥 to compartment 2  and a select item is 𝑓 = 𝑓𝑚𝑎𝑥 
 7:  Select selection criteria at random 
 8:  IF   𝐶𝑟 = 1  THEN 

 9:   𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑 =  𝑚𝑖 𝑛{𝑤𝑓| 𝑓 ≠ 𝑓𝑚𝑎𝑥}    
 10:    𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑓   
 11:  IF   𝐶𝑟 = 2  THEN 
 12:   𝑑𝑖𝑓𝑓_𝑇 =  𝑚𝑖 𝑛{|𝑂𝑓𝑚𝑎𝑥 − 𝑂𝑓|}   
 13:   𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑓   
 14:   IF  𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  exceed 𝑐𝑜𝑚𝑝21 capacity THEN 
 15:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑 equals to  𝑐𝑜𝑚𝑝21 capacity 
 16:   IF 𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  less than 𝑐𝑜𝑚𝑝21 capacity THEN 
 17:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑 equals to  𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

 18:   ENDIF 
 19:  IF   𝐶𝑟 = 3  THEN 
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 20:   𝑑𝑖𝑓𝑓_𝑆𝐿 =  𝑚𝑖 𝑛{|𝑆𝐿𝑓𝑚𝑎𝑥 − 𝑆𝐿𝑓|}   
 21:   𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑓   
 22:   IF  𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  exceed 𝑐𝑜𝑚𝑝21 capacity THEN 
 23:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑 equals to  𝑐𝑜𝑚𝑝21 capacity 
 24:   IF 𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  less than 𝑐𝑜𝑚𝑝21 capacity THEN 
 25:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑 equals to  𝑤𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

 26:   ENDIF 
 27:  ENDIF   
 28:  IF  less than two items remain  THEN 
 29:  Assign 𝑤𝑓𝑚𝑎𝑥 to compartment 2  and a select item is 𝑓 = 𝑓𝑚𝑎𝑥 

 30:  Assign 𝑤𝑓 | 𝑓 ≠ 𝑚𝑎𝑥 to compartment 1  and a select item is 𝑓 

 31:  IF  only one remains   THEN 
 32:  Assign 𝑤𝑓 to compartment 2  and a select item is 𝑓  

 33:  ENDIF   

 34:  IF  𝑉 = 3  THEN 

 Assign 𝑤𝑚𝑎𝑥 to compartment 1 and a select item is 𝑓 = 𝑓𝑚𝑎𝑥 
 35:  IF  more than two items remain  THEN 

 36:  Select selection criteria at random 
 37:  IF   𝐶𝑟 = 1  THEN 
 38:         FOR   each fruit in fruit remaining 
 39:               set   𝑑𝑖𝑓𝑓_𝑇 = [|𝑂𝑓𝑚𝑎𝑥 − 𝑂𝑓|]  
 40:                              ENDFOR 
 41:          Sorted in increasing order and select the first two value (two least value) 
 42:           𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = [𝑓𝑠𝑜𝑟𝑡𝑒𝑑1, 𝑓𝑠𝑜𝑟𝑡𝑒𝑑2]   
 43:           IF  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 exceed 𝑐𝑜𝑚𝑝32 capacity THEN 
 44:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑1  equals to  𝑐𝑜𝑚𝑝32 capacity 
 45:           IF 𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 less 𝑐𝑜𝑚𝑝32 capacity THEN 
 46:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑1 equals to  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 

 47:           IF  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2
 exceed 𝑐𝑜𝑚𝑝33 capacity THEN 

 48:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑2  equals to  𝑐𝑜𝑚𝑝32 capacity 
 49:           IF 𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2

 less 𝑐𝑜𝑚𝑝33 capacity THEN 
 50:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑2 equals to  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2
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 51:            ENDIF 
 52:  IF   𝐶𝑟 = 2  THEN 
 53:         FOR   each fruit in fruit remaining 
 54:   set 𝑑𝑖𝑓𝑓𝑆𝐿 = [|𝑆𝐿𝑓𝑚𝑎𝑥 − 𝑆𝐿𝑓|]   
                       ENDFOR 
 55:          Sorted in increasing order and select the first two value (two least value) 
 56:           𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = [𝑓𝑠𝑜𝑟𝑡𝑒𝑑1, 𝑓𝑠𝑜𝑟𝑡𝑒𝑑2]   
 57:           IF  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 exceed 𝑐𝑜𝑚𝑝32 capacity THEN 
 58:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑1  equals to  𝑐𝑜𝑚𝑝32 capacity 
 59:           IF 𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 less 𝑐𝑜𝑚𝑝32 capacity THEN 
 60:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑1 equals to  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑1

 

 61:           IF  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2
 exceed 𝑐𝑜𝑚𝑝33 capacity THEN 

 62:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑2  equals to  𝑐𝑜𝑚𝑝32 capacity 
 63:           IF 𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2

 less 𝑐𝑜𝑚𝑝33 capacity THEN 
 64:    𝑤𝑎𝑠𝑠𝑔𝑖𝑛𝑒𝑑2 equals to  𝑤𝑓𝑠𝑜𝑟𝑡𝑒𝑑2

 

 65:            ENDIF 
 66:  ENDIF   
 67:  IF  less than two items remain  THEN 
 68:     Assign the next two remaining items ( i.e. 𝑟1 ) to compartments 2 and the  
  assigned weight not exceeding the capacity of each compartment 
  and a select item is 𝑓 
 69:  IF  only one remains   THEN 
 70:  Assign 𝑤𝑓 to compartment 1  and a select item is 𝑓 

 71:  ENDIF   

 72:  ENDIF   
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3.4.6e Parent Mutation Operation 
 To escape from local optimal, the parent mutation operation is divided 
into two phases (Algorithm5). In the first phase, only the parents with a 
chromosome length that exceeds the minimum number of vehicles used 
(chromosome length) are selected. The vehicle layout selection and item 
reassignment procedures are repeated using the aforementioned proposed 
reassignment operation. The route chromosome is then generated at random 
for each vehicle. In Phase 2, after randomly selecting a transportation route, the 
mutation operation on the route chromosome of the parent population (𝑃𝑡) is 
proposed to expand the search space. A random number between and one are 
generated and assigned to the route chromosome for a possibility of mutation. 
The route chromosome is mutated if the number is lower than or equal to the 
specified mutation probability (e.g. 0.25). The proposed mutation operations 
are divided into five cases and the gene mutates based on three different 
factors which are total time, total distance, and total cost. The choice of 
mutation operation and factor selection is randomly selected. The mentioned 
five cases are described as follows: 

1.) Reassign all routes to the selected chromosome. 
 The gene of the route sub-string in a particular chromosome is 
reassigned based on a factor. The mutation factor is chosen at random, and 
then the route is selected. If the route is reassigned based on transportation 
time, the existing route with a transportation time less than the route in the 
current gene is recorded and randomly selected. Each gene is then replaced 
by a new route. Similar to the procedures above, instead of transportation time, 
the current route is replaced based on either total transportation distance or 
cost. 
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2.) Mutate some genes on the selected chromosome. 
 Some genes in sub-string 4 of each chromosome are mutated in this 
case. Each gene is assigned a mutation probability, and if the probability is less 
than the gene permutation probability (𝑃𝑚𝑔), the gene is mutated. Again, the 
mutation factor is chosen at random, and the specific gene in sub-string 4 is 
mutated as explained above. 

3.) Reassign all routes to the route with the least total time to the selected 
chromosome. 

4.) Reassign all routes to the route with the shortest distance to the selected 
chromosome. 

5.) Reassign all routes to the route with the lowest total cost to the selected 
chromosome. 

Algorithm 5: Mutation Operation for the multi-compartment vehicle loading and routing problem 
(MCVLRP) 

Input:  
𝑃𝑡: Population 
𝑅𝑜𝑢𝑡𝑒: a set of the transportation route 
𝐶𝑜𝑛𝑑: a set of conditions = {1,2,3,4} 
𝑓𝑎𝑐𝑡𝑜𝑟: a set of factors= {1,2,3} 

𝑃𝑚: Mutation probability 
𝑃𝑚𝑔: Gene mutation probability 

Ouput: Mutated parent population (𝑃𝑡
∗) 

Procedure: 
 1:   Count the number of the vehicle used in each chromosome and define the  
 2:   FOR   each chromosome in the population 

 3:         IF      the length of the chromosome is more than the minimum vehicle used     THEN 
 4:        reassign using the reassignment operator (Algorithm 3 and Algorithm 4) 
 5:  randomly generated transportation route  

 6:                 updated the chromosome in 𝑃𝑡  
 7:          ENDIF 
 8:   ENDFOR 
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  9:   Assign selection probability to each chromosome at random (𝑝𝑟𝑜𝑏) 
 10:   FOR   each chromosome in population 
 11:    IF  𝑝𝑟𝑜𝑏 ≥  𝑃𝑚    THEN   
 12:       select the condition at random ( 𝐶𝑜𝑛𝑑) 
 13:       select the factors for mutation at random (𝑓𝑎𝑐𝑡𝑜𝑟)  
 14:        IF    𝐶𝑜𝑛𝑑  =  1 THEN 
 15:  FOR  each gene of chosen chromosome 
 16:          IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 1 
 17:                Randomly select the route that contains less total transportation time than  
   the  current route  
 18:   Update route gene 
 19:           IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 2 
 20:                Randomly select the route that contains less total transportation distance  
                than the current route  
 21:   Update route gene 
 22:           IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 3 
 23:                Randomly select the route that contains less total transportation cost than  
                the current route  
 24:   Update route gene 
 25:           ENDIF 
 26:                         ENDFOR 
 27:        IF    𝐶𝑜𝑛𝑑  =  2 THEN 
 28:                assign probability to each gene ( 𝑝𝑟𝑜𝑏_𝑔) of chosen chromosome 
 29:                        FOR  each gene of chosen chromosome 
 30:             IF  𝑝𝑟𝑜𝑏_𝑔   ≥    𝑃𝑚𝑔     THEN 
 31:                     select the factors for mutation at random 
 32:                     IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 1 
 33:                          Randomly select the route that contains less total transportation time  
             than the current route  
 34:             Update route gene 
 35:           IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 2 
 36:                           Randomly select the route that contains less total transportation  
              distance than the current route  
 37:              Update route gene 
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 38:                       IF   𝑓𝑎𝑐𝑡𝑜𝑟  = 3 
 39:                           Randomly select the route that contains less total transportation  
              cost than the current route  
  40:              Update route gene 
  41:            ENDIF 
  42:            ENDIF   
  43:                        ENDFOR   
  44:        IF    𝐶𝑜𝑛𝑑  =  3 THEN 
  45:  define least total transportation time from routing data set 
  46:  FOR  each gene of chosen chromosome 
  47:          mutate all the transportation route to route with least total transportation time 
  48:                       Update route gene 
  49:  ENDFOR   
  50:        IF    𝐶𝑜𝑛𝑑  =  4 THEN 
  51:  define least total transportation distance from routing data set 
  52:  FOR  each gene of chosen chromosome 
  53:          mutate all the transportation route to route with least total transportation  
          distance 
  54:                       Update route gene 
  55:  ENDFOR   
  56:        IF    𝐶𝑜𝑛𝑑  =  5 THEN 
  57:  define the least total transportation cost from the routing data set 
  58:  FOR  each gene of chosen chromosome 
  59:          mutate all the transportation routes to the route with the least total  
           transportation cost 
  60:                       Update route gene 
  61:  ENDFOR   
  62:        ENDIF     
  63:   ENDFOR    

  64:   Return updated population (mutated population, 𝑃𝑡
∗) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 105 

3.4.6f  Fast Non-dominated Sorting 
The mutated population 𝑃𝑡

∗ with size, 𝑁 is combined with the offspring 
𝑄𝑘 with size 𝑁

2
 as a current population size of 𝑁+𝑁

2
 solutions. Individuals are 

sorted into different non-dominance levels using the fast non-dominated sorting 
approach proposed by Deb et al. (2002) and illustrated in Algorithm 6. The set of 
solutions for the first non-dominated front is identified by comparing each 
solution in the population to determine if it is dominated. Accordingly, to obtain 
another set of solutions for the next non-dominated front, the solutions from the 
first front are temporarily excluded and the procedure described above is 
repeated. 
 For a more detailed explanation, non-dominated fronts are obtained one 
after the other, beginning with the one with the highest rank and ending with the 
one with the lowest rank. The following is the procedure for generating the 
Pareto front set of a population of 𝑁+𝑁

2
  solutions: 

1. Combine the parent and offspring populations to form a new population 𝑃′. 

2. Create an empty front 𝐹𝑖 . Remove the current solution 𝑠𝑖  from 𝑃′ and 

add 𝑠𝑖  into 𝐹𝑖 . 

3. Compare 𝑠𝑖  with all solutions (𝑠𝑗 ) in 𝑃′ with where 𝑖, 𝑗 ∈ {1, … , 𝑁 +
𝑁

2
} and 𝑖 ≠

𝑗  

- If 𝑠𝑖 dominates 𝑠𝑗 , 𝑠𝑗 remains in 𝑃′ and proceed to the next step.  

- If  𝑠𝑗 is non-dominated by𝑠𝑖 , 𝑠𝑗  is removed from 𝑃′  and added into 𝐹𝑖 .  

- If 𝑠𝑖  is dominated by 𝑠𝑖 , remove 𝑠𝑖  from 𝐹𝑖  and include into to 𝑃′. 

- If 𝑠𝑖  and 𝑠𝑗  are non-dominated, exclude from 𝑃′ and add to 𝐹𝑖  
4. When all the comparisons in the preceding procedure have been 

completed, the solutions in 𝐹𝑖  form the non-dominated front. The remaining 
solutions in the population (𝑃′) are used to generate the next fronts with the 
same procedure until all individuals are assigned to the fronts. 
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Algorithm 6: Fast Non-Dominated Sorting proposed by Deb et al. (2002) 

 

3.4.6g  Adaptive Normalization 
 After a set of solutions are obtained from non-dominated sorting, the 
fitness value from the three objectives is normalized using the adaptive 
normalization method. The normalization procedure is used to scalarize the 
fitness value of each objective. To normalize the values, the ideal point of the 
population (𝑆𝑡)  is first determined by identifying the smallest value of each 
objective function 𝑖 = {1,2,3}  which results in a set of ideal points for each 
population, denoted as 𝑍 = (𝑍1

𝑚𝑖𝑛, 𝑍2
𝑚𝑖𝑛, 𝑍3

𝑚𝑖𝑛). Next, the translated objective 
(𝑓𝑖

′(x)) is introduced. The translated objective is calculated by subtracting each 
objective value 𝑓𝑖(𝑥) by the minimum value of each objective (𝑍𝑖

𝑚𝑖𝑛) where 
𝑓𝑖

′(x) =  𝑓𝑖(𝑥) − 𝑍𝑖
𝑚𝑖𝑛 .  
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The three extreme points on the three objectives axis are then obtained 
from the achievement scalarization function (ASF) with minimum weight vector 
(𝑤) where the value is a small number of 10−6. The normalized objective 

(𝑓𝑖
𝑛(𝑥)) is then equal to  

𝑓𝑖
′(x)

𝑎𝑖−𝑍𝑖
𝑚𝑖𝑛 where 𝑎𝑖 denote as the intercept of the 

hyperplane with axis directions and (𝑎1, 𝑎2, … , 𝑎𝑖) is simply set to 
(𝑍1

𝑚𝑎𝑥, 𝑍2
𝑚𝑎𝑥, 𝑍3

𝑚𝑎𝑥). 
 

Algorithm 7: Adaptive normalization 
Input: 
𝑀: number of the objective function  

𝑓𝑖(𝑥): fitness value of the objective function  
Output: 𝑓𝑖

𝑛(𝑥) normalized fitness value 
Procedure: 
1:  FOR i =1 to M 
2:       Compute the minimum value of each fitness value (𝑍𝑖

𝑚𝑖𝑛) 

3:       Compute the extreme point of each fitness value (𝑍𝑖
𝑚𝑎𝑥) 

4:       Normalize the fitness value of each objective 
𝑓𝑖(𝑥)− 𝑍𝑖

𝑚𝑖𝑛

𝑎𝑖−𝑍𝑖
𝑚𝑖𝑛  

5:  ENDFOR 

3.4.6h  Association Operation 
In association operation, with normalized objective value, each point in 

the objective space is connected to the reference point through the reference 
line. The reference line is constructed by connecting each reference point to the 
origin of the hyperplane. The projection distance on the reference line (𝑑𝑗,1) and 
the perpendicular distance between the reference points and the perpendicular 
point (𝑑𝑗,2) are calculated. The reference point where the reference line is 
closest to the population member in the normalized objective space is 
considered associated with the population member.  
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Algorithm 8: Associate Operation 
Input: 
𝑆𝑡 : individuals in each front  
𝑡 : number of the front set 
𝑓𝑖

𝑛(𝑥) normalized fitness value 
𝑤𝑗: Reference points 
𝑗: number of reference points 

Output: closet reference point to each population 𝜋(𝑠), minimum distance 𝑑(𝑠) where 𝑠 ∈ 𝑆𝑡  
Procedure: 

 1:  FOR       each 𝑠     in    𝑆𝑡  

 2:        FOR     each  𝑤   in    𝑤𝑗   

 3:         calculate  𝑑𝑗,1(𝑥) =  
‖𝑓𝑛(𝑥)𝑇𝑤𝑗‖

‖𝑤𝑗‖
  

 4:          calculate   𝑑𝑗,2(𝑥) =  ‖(𝑓𝑛(𝑥) − 𝑑𝑗, 1(𝑥))
𝑤𝑗

‖𝑤𝑗‖
‖  

 5:       ENDFOR 
 6:       Assign 𝜋(𝑠) = 𝑤: 𝑎𝑟𝑔𝑚𝑖𝑛(𝑤, 𝑠, 𝑑𝑗,2(𝑥))  

 7:      Assign 𝑑(𝑠) =  𝑑𝑗,2(𝑠, 𝜋(𝑠)) 

 8:  ENDFOR 

 
3.4.6i Niche Count Operation 

The niche preservation operation counts the reference points that are 
associated with the population member. All members from the (𝐹1, 𝐹2 …  𝐹𝑙−1) 

are automatically added to the new population (𝑃𝑡+1). The niche count be 
denoted as 𝜌𝑗 for the j-th sub-region. Niche count is firstly counted from current  
(𝑃𝑡+1)  for each reference point. The remaining slots are filled by selecting 
members from 𝐹𝑙. Next, the set of the reference point with minimum niche count 
(𝜌𝑗) are sorted and listed. If there are multiple reference points with the same 
niche count, one reference point is randomly selected. If 𝜌𝑗 = 0, there are two 
possible scenarios which are (1) There are members from 𝐹𝑙 associate with the 
selected reference point. Hence, the nearest perpendicular distance is added to 
𝑃𝑡+1. (2) There is no member from 𝐹𝑙 associate with the selected reference point. 
Hence, the member from 𝐹𝑙 is chosen at random and added to 𝑃𝑡+1. If 𝜌𝑗 ≥ 1, 
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This means that the reference points are already associated with members of the 
population. In this case, the member from 𝐹𝑙 is chosen at random and added to 
𝑃𝑡+1. Next, niche counts are updated and repeated for a total of 𝐾 times to fill 
the remaining slot. And 𝑃𝑡+1 is completely updated for a generation ‘𝑡’ . 
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CHAPTER 4 

RESULT AND DISCUSSION 
 

In this section, a detailed description of the different instance data sets is 
introduced and used to verify the effectiveness of the proposed hybrid NSGA-III for 
multi-compartment vehicle loading, and transportation routing problems (MCVLRP). And 
the computational experiments were carried out to evaluate the performance of the 
proposed approach. The optimal solution obtained from single objective optimization by 
solving the proposed nonlinear programming (NLP) model presented in Chapter 3 is 
utilized as a benchmark for validating the proposed algorithm's performance. In this 
study, attempts are made to solve the NLP model using the software IBM-ILOG CPLEX 
12.6 solvers. The proposed heuristic is implemented, replicated, and modified in Jupyter 
Notebook (in Python language). All experiments are computed and evaluated on PC 
with Intel ® Core™ i5-4460 CPU@3.20GHZ and RAM of 24 GB. 
 
4.1  Instance Generation 

The test data set is introduced and used to validate the effectiveness of the 
hybrid NSGA-III. The data set is named ‘𝑡 − 𝑤’, where ‘𝑡’ represents the types of fresh 
fruits and vegetables and ‘𝑤’ defined the required weight of each fresh fruit and 
vegetable type. As mentioned in Chapter 3, Table 15 shows three, five, and eight 
different types of fresh fruits that have been pre-selected as small, medium, and large 
cases for the algorithm’s performance evaluation, respectively. Following that, the 
required weight (𝑤) of each fresh fruit and vegetable type is randomly selected from a 
range of 10,000 to 50,000 kgs for small, medium, and large instances. 
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Fruit Types (𝒕) Optimal temperature (℃) Weight loss rate (kg/hour) Shelf life (hours) 
Durian 14 0.000625 336 
Longan 5 0.000321 672 

Mangosteen 13 0.000417 672 

(a) Three pre-selected fresh fruits for small instances 
 

Fruit Types (𝒕) Optimal temperature (℃) Weight loss rate (kg/hour) Shelf life (hours) 
Durian 14 0.000625 336 
Longan 5 0.000321 672 

Mangosteen 13 0.000417 672 
Mangoes 10 0.000167 504 
Bananas 13 0.000417 1008 

(b) Five pre-selected fresh fruits for medium instances 
 

Fruit Types (𝒕) Optimal temperature (℃) Weight loss rate (kg/hour) Shelf life (hours) 

Durian 14 0.000625 336 

Longan 5 0.000321 672 

Mangosteen 13 0.000417 672 

Mangoes 10 0.000167 504 

Bananas 13 0.000417 1008 

Pineapple 10 0.000279 1008 

Citrus 13 0.000792 672 

Lychee 5 0.000275 672 

(c) Eight pre-selected fresh fruits for large instances 

 
Table  15: Pre-selected fresh fruits type for small, medium, and large instances 
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4.2  Experimental Design for Algorithm's Performance Evaluation 
It should be noted that the number of non-dominated solutions is used to assess 

the performance of the algorithm. The impact of variation in population size and number 
of generations on the proposed hybrid NSGA-III is studied and evaluated in this section 
by comparing the results obtained from 12 sample runs on the small instance with one 
data set to see if there is an improvement in the average number of non-dominate 
solutions in the Pareto front when increasing the population size and the number of 
evolution iterations. According to Reed et al. (2003), the parameters are set as follows: 
the initial population is set to 60, 120, 240, and 480, and the number of evolution 
iterations is set to 100, 200, 500, and 1000 for each iteration.  

The results from Table 16 clearly show that a larger population size with a 
smaller number of generations generates a greater average number of solutions in less 
computational time than a smaller population size with a larger number of generations. 
For example, a population size of 120 with 1000 generations yields approximately 15 
solutions in 1 hour and 47 minutes. While a population of 240 with 100 generations can 
generate approximately 17 solutions in 35 minutes. As a result, the nondominated set 
grew by two members, about a 13.33% increase, with less total runtime. However, at the 
population size of 480, doubling the population size has only a minor effect on the 
number of solution improvements. Regardless of the computational result, a population 
size of 480 with 100 generations appears to be a good combination because the 
computational time begins to significantly increase after 100 generations with a small 
improvement in the average number of non-dominated solutions.  Thus, an average of 
21 solutions are generated within approximately 2 hours and 25 minutes. In another 
word, using a population size of 480 with 100 generations increased the nondominated 
solution by 4 solutions, resulting in a 23.5294 percent increase. 

In Figure 24, the graph depicts the results in varying population sizes and 
generations to provide a clearer picture. The results show a small improvement in the 
same population size with a different number of generations, and the runtime increased 
dramatically as the number of generations increased, notably for population sizes of 
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480. With a significant increase in computational runtime, a stop criterion is suggested 
to reduce runtime because it is not necessary to run up to 1000 generations to generate 
better performance. Furthermore, the results of combining 480 population size with 100 
generations, in which an average of 21 solutions are generated in approximately 2 hours 
and 25 minutes, are used as the benchmark for selecting the stop criterion for small 
instances and determining whether there is an improvement from using a stop criterion. 
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Figure  24:  Average number of non-dominated solutions and runtime for 12 sample 
runs for small instances. 
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Due to the long runtime from the previous computational result, non-
improvement in the number of solutions is introduced as a stop criterion in this study to 
reduce the computational runtime while maintaining solution quality, in terms of the 
number of non-dominated solutions. For a more detailed explanation, the algorithm is 
terminated if there is no improvement in the number of non-dominated solutions after '𝑡' 
generations. For example, if the total number of solutions found over the next hundred 
generations does not improve, the algorithm will terminate and return the maximum 
number of solutions found with the non-dominated solution set. 

The effect of population size variation and the stopping criterion on allocating 
three, five, and eight different types of fresh fruits is then thoroughly investigated and 
discussed. The stop criterion in this computational experiment starts at 50 non-
improvement generations and gradually increases by 50 until it reaches 500. Apart from 
that, the population size is limited to 60, 120, 240, and 480. In addition, the experiment 
uses a single data set with 12 iterations to determine the average number of non-
dominated solutions. The appropriate population size and stopping criterion for 
allocating three, five, and eight different types of fresh fruits are then suggested. 

The computational experiment begins with the problem of allocating three 
different types of fresh fruits. The graph in Figure 25 shows that the population size of 
240 outperforms other population sizes. The number of non-dominated solutions 
reaches a steady state after limiting the generation of non-improvement solutions to 150. 
However, the computational starts to have a significant increase after setting the 
generation of non-improvement solutions to 250. When the number of solutions does not 
improve after 150 generations, a population size of 240 generates approximately 21 
solutions within 33 minutes after the algorithm terminates. While a population of 480 
takes approximately 2 hours and 20 minutes to generate 20 solutions after running for 
100 generations. As a result, a population size of 240 is recommended, with non-
improvement solutions limited to 150 generations. According to the results, it is possible 
to conclude that introducing a stop criterion reduced computational time while 
maintaining algorithm performance. 
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Following that, the medium and large instances are tested. For medium 
instances, in Figure 25, the 240 population size tends to generate the same number of 
non-dominated solutions as the 480 population size after 50 non-improvement 
generations, but the 240 population size appears to outperform the 480 population size 
afterward. Besides, the computational time of the 480 population size increased 
significantly without any improvement in the number of non-dominated solutions. As a 
result, the population size of 240 outperformed all other population sizes. After limiting 
the generation of non-improvement solutions to 150 for a population of 240, the number 
of nondominated solutions becomes steady.  

Additionally, the results from allocating three and five types of fresh fruit show 
that doubling the population size generate improvement in a number of non-dominated 
solutions and yields diminishing points at the population size of 480 (Figures 25 and 26). 
However, this is not the case for the allocation of the eight types of fresh fruit.  

For large instances, even though 240 and 480 population sizes generate the 
same number of non-dominated solutions after 50 non-improvement generations in both 
five and eight-type allocation cases, the 480 population size outperforms the 240 
population size in the eight-type allocation case (Figure 27). However, the generated 
number of solutions has a slight improvement after setting the generation of non-
improvement solutions to 100. In terms of computational time, the runtime increased 
slightly and dramatically after limiting the generation of non-improvement solutions to 
300, and the runtime then became constant. As a result, a 480 population size is used in 
this study, with 300 non-improvement generations chosen as a stop criterion. The 
runtime of 300 for non-improvement generation is deemed acceptable. 

In conclusion, the appropriate population size for allocating three types of fresh 
fruits is 240, and the algorithm terminates after 150 generations if the number of 
solutions does not improve. While a population size of 240 is recommended for five 
different types of fresh fruits, the algorithm terminates after 150 generations if no better 
number solution is found. Finally, for eight types of fresh fruit allocation, a population 
size of 480 is recommended, with a stop criterion of 300 generations of non-
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improvement total solutions. And these rules will be applied in the following 
computational section of this study. 

 

Figure  25: Impact of population size variation on the number of solutions and runtime 
(3 types) 
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Figure  26:  Impact of population size variation on the number of solutions and runtime 

(5 types) 
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Figure  27:  Impact of population size variation on the number of solutions and runtime 

(8 types) 
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4.3  Single Objective Optimization Computational Experiment 
 In this study, the single objective optimization computational method is used to 
validate the MCVLRP model, and the CPLEX results are used as a benchmark for the 
proposed hybrid NSGA-III effectiveness verification. As a result, the optimal value of 
each objective function as well as the computational time generated by the NLP model 
and hybrid NSGA-III are compared. This comparison computation experiment, however, 
can only be carried out in small instances of problems due to CPU memory limitations. 
The error occurs when implementing the medium and large instances which are known 
as out-of-memory (OOM). This indicates that there is insufficient virtual memory available 
and that the computer is unable to allocate additional memory (Molina and Mishra, 
2013). Therefore, only small instances are investigated in this computational 
comparison. The twelve data sets of three types of fresh fruits were chosen at random 
from a range of 10,000 to 50,000 kgs and tested on a single run, with the total shipment 
in each case not exceeding 100,000 kilograms. 

According to the previous computational experiment, a population of 240 with 
suggested stopping criteria is used in this experiment as well. When no improvement 
number is found in the solution after 150 generations, the algorithm is terminated. The 
optimal results from CPLEX and the best solutions based on each objective from the 
proposed heuristic are shown in Table 17 and the sample of the Pareto fronts obtained 
from the first four instances is displayed in Figure 28. The results demonstrate that the 
proposed heuristic successfully obtained the optimal solution regards the optimal 
solution from CPLEX. 

 As single objective optimization is employed to find an optimal solution, this 
means not all objective value is optimal. By comparing the result based on the 
objective1 optimal solution, the proposed heuristic is able to find a better solution with 
the same minimum cost. For example, in Instance 1, with the same minimum cost of 
9,360 USD, the total carbon emissions of 19,870,000 kgCo2 are emitted from CPLEX 
computational result meanwhile the total carbon emissions of 17,953,572 kgCo2 are 
found from the proposed heuristic.  
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Furthermore, the results show that the vehicle type selection and loading 
allocation influence both total cost and total carbon emissions. For example, the total 
cost from the objective 2 optimal value solution is lower than the total cost from objective 
3 optimal value from CPLEX which is caused by utilizing the different vehicle types. In 
other words, the partition adjustment cost is what causes the different total costs. The 
set of vehicle types in the optimal value solution for objective 2 is [1,1,1,2] whereas the 
set of vehicle types in the optimal value solution for objective 3 is [1,3,2,2]. 

 
Table  17: Result comparison obtained from CPLEX and proposed heuristic 

 
 
 

Instances Method Result Obj1 Value Obj2 Value Obj3 Value Vehicle Used Runtime

Objective 1 9,360             19,870,000        9,899            4 0.03 min

Objective 2 24,700          3,594,200          1,965            4 4.15 min

Objective 3 24,740          4,866,900          1,965            4 1.40 min

Num of solutions

Objective 1 9,360             17,953,572        9,899            4

Objective 2 24,700          3,594,231          1,965            4

Objective 3 24,700          3,594,231          1,965            4

Average Obj 19,083          13,289,430        5,666            

SD Obj 4,696             7,460,052          2,986            

Objective 1 -                 1,916,428          -                

Objective 2 -                 31                         -                

Objective 3 40                   1,272,669          -                

Objective 1 -                 10                         -                

Objective 2 -                 0                           -                

Objective 3 0                     30                         -                

Objective 1 9,360             19,870,000        9,479            4 0.03 min

Objective 2 24,700          3,594,200          1,882            4 1.41 min

Objective 3 24,820          6,854,200          1,882            4 3.36 min

Num of solutions

Objective 1 9,360             17,953,557        9,479            4

Objective 2 24,700          3,594,228          1,882            4

Objective 3 24,700          3,594,228          1,882            4

Average Obj 18,649          12,766,579        5,260            

SD Obj 5,076             7,308,248          2,861            

Objective 1 -                 1,916,443          -                

Objective 2 -                 28                         -                

Objective 3 120                3,259,972          -                

Objective 1 -                 10                         -                

Objective 2 -                 0                           -                

Objective 3 0                     62                         -                

% Differences

% Differences

2

1

CPLEX

Heuristic

29

Differences

10 min

32

Differences

9.28 min

CPLEX

Heuristic
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Table  17: Result comparison obtained from CPLEX and proposed heuristic (Cont.) 
 
 

Instances Method Result Obj1 Value Obj2 Value Obj3 Value Vehicle Used Runtime

Objective 1 9,360             19,739,000        9,399            4 0.04 min

Objective 2 24,700          3,519,100          1,866            4 4.33 min

Objective 3 24,800          6,239,100          1,866            4 9.11 min

Num of solutions

Objective 1 9,360             18,713,527        9,399            4

Objective 2 24,700          3,519,054          1,866            4

Objective 3 24,700          3,519,054          1,866            4

Average Obj 18,666          13,378,995        5,454            

SD Obj 5,014             9,546,683          2,894            

Objective 1 -                 1,025,473          -                

Objective 2 -                 46                         -                

Objective 3 100                2,720,046          -                

Objective 1 -                 5                           -                

Objective 2 -                 0                           -                

Objective 3 0                     56                         -                

Objective 1 9,360             19,111,000        8,769            4 0.05

Objective 2 24,700          3,240,200          1,741            4 25.18 min

Objective 3 24,760          4,951,800          1,741            4 21 min

Num of solutions

Objective 1 9,360             17,954,329        8,769            4

Objective 2 24,700          3,240,263          1,741            4

Objective 3 24,700          3,292,963          1,741            4

Average Obj 17,870          12,292,813        5,062            

SD Obj 5,343             6,831,421          2,568            

Objective 1 -                 1,156,671          -                

Objective 2 -                 63                         -                

Objective 3 60                   1,658,837          -                

Objective 1 -                 6                           -                

Objective 2 -                 0                           -                

Objective 3 0                     40                         -                

Objective 1 9,320             15,308,000        10,012          4 0.03min

Objective 2 24,660          3,066,300          1,988            4 0.39 min

Objective 3 24,840          6,329,800          1,988            4 0.49 min

Num of solutions

Objective 1 9,320             15,294,281        10,012          4

Objective 2 24,660          3,066,332          1,988            4

Objective 3 24,660          3,066,332          1,988            4

Average Obj 18,049          10,340,861        5,387            

SD Obj 5,112             6,053,513          2,848            

Objective 1 -                 13,719                -                

Objective 2 -                 32                         -                

Objective 3 180                3,263,468          -                

Objective 1 -                 0                           -                

Objective 2 -                 0                           -                

Objective 3 1                     69                         -                

% Differences

3

% Differences

4

% Differences

5

9.57 min

7.37 min

31

7.28min

32

CPLEX

Heuristic

29

Differences

CPLEX

Heuristic

CPLEX

Heuristic

Differences

Differences
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Table  17: Result comparison obtained from CPLEX and proposed heuristic (Cont.) 
 
 

 

Instances Method Result Obj1 Value Obj2 Value Obj3 Value Vehicle Used Runtime

Objective 1 9,360             20,325,000        9,041            4 0.03

Objective 2 24,700          3,609,500          1,795            4 59 min

Objective 3 24,800          5,858,400          1,795            4 0.22min

Num of solutions

Objective 1 9,360             18,030,482        9,041            4

Objective 2 24,700          3,609,499           1,795            4

Objective 3 24,700          3,609,499           1,795            4

Average Obj 18,187          12,805,965        5,308            

SD Obj 5,083             8,506,364          2,828            

Objective 1 -                 2,294,518          -                

Objective 2 -                 1                           -                

Objective 3 100                2,248,901          -                

Objective 1 -                 12                         -                

Objective 2 -                 0                           -                

Objective 3 0                     48                         -                

Objective 1 9,320             13,334,000        7,359            4 0.02min

Objective 2 24,660          2,674,600          1,461            4 6.45 min

Objective 3 24,780          4,792,500          1,461            4 29 min

Num of solutions

Objective 1 9,320             13,321,123        7,359            4

Objective 2 24,660          2,674,638          1,461            4

Objective 3 24,660          2,674,638          1,461            4

Average Obj 18,982          10,205,002        3,972            

SD Obj 5,162             5,979,124          2,284            

Objective 1 -                 12,877                -                

Objective 2 -                 38                         -                

Objective 3 120                2,117,862          -                

Objective 1 -                 0                           -                

Objective 2 -                 0                           -                

Objective 3 0                     57                         -                

Objective 1 9,360             16,529,000        7,636            4 0.04 min

Objective 2 24,700          2,840,900          1,516            4 3.30 min

Objective 3 24860 7243300 1515.8 4 15 min

Num of solutions

Objective 1 9,360             14,158,452        7,636            4

Objective 2 24,700          2,840,858          1,516            4

Objective 3 24,700          2,840,858          1,516            4

Average Obj 20,053          8,687,213          3,603            

SD Obj 4,845             5,880,730          2,313            

Objective 1 -                 2,370,548          -                

Objective 2 -                 42                         -                

Objective 3 160                4,402,442          -                

Objective 1 -                 15                         -                

Objective 2 -                 0                           -                

Objective 3 1 87 0

% Differences

6

% Differences

7

% Differences

8

4 min

10.40min

11.38 min

34

28

CPLEX

31

Heuristic

Differences

CPLEX

CPLEX

Heuristic

Differences

Heuristic

Differences
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Table  17: Result comparison obtained from CPLEX and proposed heuristic (Cont.) 

 

Instances Method Result Obj1 Value Obj2 Value Obj3 Value Vehicle Used Runtime

Objective 1 7,070             19,846,000        6,477            3 0.01 min

Objective 2 18,575          3,883,200          1,286            3 3.03 min

Objective 3 18,615          5,466,700          1,286            3 1.3 min

Num of solutions

Objective 1 7,070             19,447,353        6,477            3

Objective 2 18,575          3,883,202          1,286            3

Objective 3 18,575          3,883,202          1,286            3

Average Obj 14,441          12,021,939        3,496            

SD Obj 3,766             7,729,575          1,867            

Objective 1 -                 398,647              -                

Objective 2 -                 2                           -                

Objective 3 40                   1,583,498          -                

Objective 1 -                 2                           -                

Objective 2 -                 0                           -                

Objective 3 0                     34                         -                

Objective 1 9,320             12,574,000        7,509            4 0.03 min 

Objective 2 24,660          2,523,800          1,491            4 11.37 min

Objective 3 24,880          6,565,400          1,491            4 9.07 min

Num of solutions

Objective 1 9,320             12,561,253        7,509            4

Objective 2 24,660          2,523,796          1,491            4

Objective 3 24,660          2,523,796          1,491            4

Average Obj 18,544          11,288,659        4,216            

SD Obj 4,878             6,761,159          2,198            

Objective 1 -                 12,747                -                

Objective 2 -                 4                           -                

Objective 3 220                4,041,604          -                

Objective 1 -                 0                           -                

Objective 2 -                 0                           -                

Objective 3 1                     89                         -                

Objective 1 9,320             14,245,000        8,230            4 0.03 min

Objective 2 24,660          2,855,400          1,634            4 0.26 min

Objective 3 24,800          5,690,500          1,634            4 3.14 min

Num of solutions

Objective 1 9,320             14,231,488        8,230            4

Objective 2 24,660          2,855,356          1,634            4

Objective 3 24,660          2,855,356          1,634            4

Average Obj 18,974          9,323,490          4,193            

SD Obj 5,045             5,185,726          2,180             

Objective 1 -                 13,512                -                

Objective 2 -                 44                         -                

Objective 3 140                2,835,144          -                

Objective 1 -                 0                           -                

Objective 2 -                 0                           -                

Objective 3 1                     66                         -                

32

2.24 min

15.48 min

8.58 min

23

35

% Differences

11

Differences

CPLEX

Heuristic

Differences

% Differences

% Differences

9

10

CPLEX

Heuristic

Differences

CPLEX

Heuristic



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 126 

 

Table  17: Result comparison obtained from CPLEX and proposed heuristic (Cont.) 
 

 

 
Figure  28: Pareto Fronts of first 4 instances obtained from the proposed heuristic. 

Instances Method Result Obj1 Value Obj2 Value Obj3 Value Vehicle Used Runtime

Objective 1 9,360             17,592,000        8,366            4 0.04 min

Objective 2 24,700          3,021,700          1,661            4 4.42 min

Objective 3 24,860          7,063,200          1,661            4 2.26 min

Num of solutions

Objective 1 9,360             15,069,611        8,366            4

Objective 2 24,700          3,021,733          1,661            4

Objective 3 24,700          3,021,733          1,661            4

Average Obj 18,894          10,368,965        4,494            

SD Obj 4,660             5,851,127          2,345            

Objective 1 -                 2,522,389          -                

Objective 2 -                 33                         -                

Objective 3 160                4,041,467          -                

Objective 1 -                 15                         -                

Objective 2 -                 0                           -                

Objective 3 1                     80                         -                

9.44 min

27

12

% Differences

CPLEX

Heuristic

Differences

(a) Instance 1 Pareto Front (b) Instance 2 Pareto Front 

(c) Instance 3 Pareto Front (d) Instance 4 Pareto Front 
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In terms of loading allocation, in Table 18, the different allocation amount pattern 
results in lessening the carbon emissions from operating the refrigeration unit. If types 2 
and 3 are utilized, selecting the type of fresh fruits with similar optimal temperature 
requirements is recommended as less fuel is consumed to maintain the temperature 
inside the container which is caused by the heat from the outside through the container 
wall and heat respired from the fresh fruits inside the container. 

As illustrated by the Pareto front in Figure 28, the relationship between the three 
objectives is that lowering total cost leads to higher total carbon emissions and total 
weight loss at the destination. The results show that utilizing the proposed heuristic by 
assigning different routes to different vehicle generates more transportation options for 
the stakeholders. The choice is therefore dependent on the stakeholder’s decision and 
circumstances. The solutions include various vehicle type combinations, fresh fruit 
types, amount allocation, and a combination of different transportation routes, as shown 
in Table 19. 

According to Table 20, the results showed that using the proposed mathematical 
model's piecewise linear approximation caused a slight difference in the optimal value 
of objective 2, with an average percentage of differences of 0.1354 percent, while there 
are no percent differences in Objective 1 and Objective 2. In other words, when 
compared to CPLEX, the proposed heuristic successfully obtain the optimal value for 
objectives 2 and 3. 

In addition, in terms of total runtime and the best value obtained, it is possible to 
conclude that the proposed heuristic is effective. As in some cases, the proposed 
heuristic provides the set of solutions in less time, as evidenced by the results of 
instances 4, 6, and 7.  
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Instances 
% differences of the best value 

Objective 1 Objective 2 Objective 3 

1 0 0.0008691 0 
2 0 0.0007851 0 
3 0 0.0013063 0 
4 0 0.0019450 0 
5 0 0.0010515 0 
6 0 0.0000356 0 
7 0 0.0014323 0 
8 0 0.0014947 0 
9 0 0.0000427 0 
10 0 0.0001696 0 
11 0 0.0015408 0 
12 0 0.0010841 0 

Average 0 0.000979726 0 

 

Table  20: Differences between the result from CPLEX and the proposed heuristic in 
each Best Objective Value 

 

4.4  Multi-Objective Optimization Computational Experiment 
  In this section, only the proposed heuristic with suggested population size and 
stop criterion for multi-objective optimization problems is used and evaluated. In multi-
objective problems, multiple sample runs are required to obtain the most effective 
solutions for stakeholders. In this computational experiment, 12 data sets of small, 
medium, and large instances with 10 replications each are tested over 1000 
generations. Because the proposed heuristic generates random solutions, the best 
solution set is chosen from 10 replications based on the maximum number of non-
dominated solutions. And the value of inverted generational distance (IGD) is then 
calculated to access their quality. As mentioned in the previous section, the weight 
requirement of each fresh fruit and vegetable type is randomly selected from a range of 
10,000 to 50,000 kgs for all instances. The results of small, medium, and large instances 
are discussed as follows: 
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4.4.1  Small Instance Problem 
The population size of 240 with 150 non-improvement generations as a 

stop criterion has been applied to small instance cases. Table 21 displays the 
results in terms of minimum value, maximum value, number of non-dominated 
solutions, and IGD value. 

 

Instances Value 
Obj1 
(USD) 

Obj2 
(KgCO2) 

Obj3 
(Kgs) 

No. 
solutions 

Runtime 
(mins) 

IGD 

1 
Max 30,885 27,442,754 9,899 

36 49.37 0.536 
Min 9,360 3,380,856 1,965 

2 
Max 30,885 31,736,366 9,609 

40 49.36 0.607 
Min 9,360 3,380,850 1,881 

3 
Max 31,125 42,976,060 9,938 

46 53.42 0.487 
Min 9,360 30,794,77 1,865 

4 
Max 30,825 29,467,730 8,812 

37 58.54 0.534 
Min 9,360 29,287,68 1,741 

5 
Max 24,660 31,955,375 10,012 

35 38.53 0.444 
Min 9,320 10,361,809 1,987 

6 
Max 30,825 34,127,452 9,041 

39 27.24 0.448 
Min 9,360 9,351,709 1,795 

7 
Max 24,660 28,068,599 7,358 

36 75 0.488 
Min 9,320 26,746,38 1,460 

8 
Max 30,825 20,843,491 7,636 

36 72 0.457 
Min 9,360 2,717,792 1,515 

9 
Max 24,700 20,286,808 6,477 

26 18.43 0.421 
Min 7,070 3,293,140 1,285 

10 
Max 24,700 35,258,069 7,875 

35 92 0.49 
Min 9,320 2,523,795 1490 

11 
Max 24,700 38,616,269 8,620 

37 69 0.561 
Min 9,320 2,855,356 1,633 

12 
Max 30,825 35,052,104 8,839 

38 66 0.431 
Min 9,360 2,868,501 1661 

 
Table  21: Multi-objective problem results for small instances 
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According to Table 12, the average CPU runtime is 55.74 minutes, with 
37 solutions generated on average. The algorithm appears to generate a longer 
run time than the results obtained from using a 240 population size with the 
stopping criterion of 150 non-improvement generations in section 4.2. The 
computational time increases from 33 minutes to 55.7 minutes on average. 
Regarding the randomness of the input, the results indicate that variations in the 
required weight of fresh fruits necessitate a lengthy search for loading 
combination solutions with a CPU runtime standard deviation of 20.94 minutes. 
Even though the computational time increased by 68.9115 percent, 
approximately, the number of non-dominated solutions also improved from 20 to 
about 37, representing an 85 percent increase. As a result, it is possible to 
conclude that the proposed heuristic with the stopping criterion performs 
effectively on small instance problems.  

Furthermore, to access the quality of the non-dominated solution set, the 
solutions are first normalized. The minimum Euclidean distance between the 
solution point and the reference point is then calculated and selected to obtain 
the IGD value. Hence, the average IGD value is reported to be 0.492 
approximately.  
4.4.2  Medium Instance Problem 

The results of applying the proposed heuristic to medium instances are 
discussed in this section. For medium instance cases, a population size of 240 
with 150 non-improvement generations as a stop criterion was used. The results 
are shown in Table 22 in terms of minimum value, maximum value, number of non-
dominated solutions, and IGD value. 

Table 22 shows that the average runtime is about 134.33 minutes. By 
including two more types of fresh fruits, the average runtime increased by about 
155 percent. Again, the variation in fresh fruit requirement weight affects runtime 
variation, with a standard variation of 120.668. Furthermore, the number of 
solutions increased from 37 to 41 solutions which increased by 10.8%. Meanwhile, 
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an increase in the variety of fresh fruits results in an increase in all objective 
values, which increases in IGD value because a higher value results in a greater 
distance from the reference point in the search space. As a result, the IGD value is 
0.6072 which increased by approximately 23.374 percent, with a standard 
deviation of 0.092. 

 

Instances Value 
Obj1 
(USD) 

Obj2 
(KgCO2) 

Obj3 
(Kgs) 

No. 
solutions 

Runtime 
(mins) 

IGD 

1 

Max 43,155 31,701,415 9,020 

43 20 0.533 Min 14,020 4,733,277 1,790 

2 

Max 43,195 45,835,881 8,577 

49 347 0.689 Min 14,060 4,854,042 1,702 

3 

Max 43,215 47,858,031 10,750 

35 17 0.477 Min 14,020 5,215,618 2,134 

4 

Max 43,235 45,235,147 11,405 

41 100 0.669 Min 16,390 60,00,004 2,264 

5 

Max 30,825 34,909,186 6.260 

40 15 0.579 Min 9,400 2,988,985 1,242 

6 

Max 30,905 39,260,584 5,794 

41 305 0.789 Min 11,690 3,848,466 1,150 

7 

Max 49,400 71,072,290 12,831 

43 203 0.69 Min 18,700 7,098,192 2,547 

8 

Max 37,070 38,957,157 8,691 

34 99 0.622 Min 14,060 5,595,069 1,646 

9 

Max 43,155 65,397,630 9,616 

39 223 0.577 Min 16,310 5,215,497 1,909 

10 

Max 49,380 64,681,012 12,157 

44 223 0.621 Min 16,350 5,620,474 2,413 

11 

Max 11,730 43,782,727 6,646 

43 23 0.481 Min 37,090 4,590,899 1,319 

12 

Max 37,050 34,532,365 6,534 

37 37 0.56 Min 9440 3,424,076 1,297 

Table  22: Multi-objective problem results for medium instances 
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4.4.3 Large Instance Problem 
A population size of 480 with 150 non-improvement generations as a 

stop criterion was used for large example cases. Table 23 displays the results in 
terms of minimum value, maximum value, number of non-dominated solutions, and 
IGD value. The average runtime increased from 134 minutes to 267 minutes by 
increasing from 5 to 8 types. The runtime variation is also increased by 94%  
compared to medium instances. Meanwhile, the number of discovered solutions 
has increased by 39 percent, from 41 to 57, representing a 28.2 percent increase 
when comparing the changes from small to medium instances. The average IGD 
value as well increased from 0.6 to 0.868 with a standard deviation of 0.11. 

 

Instances Value 
Obj1 
(USD) 

Obj2 
(KgCO2) 

Obj3 
(Kgs) 

No. 
solutions 

Runtime 
(mins) 

IGD 

1 

Max 61,690 45,166,534 10,627 

54 120 1.019 Min 21,050 7,500,619 2,109 

2 

Max 61,890 77,595,719 11,902 

63 377 0.96 Min 23,340 7,591,111 2,362 

3 

Max 49,520 51,094,520 12,417 

50 777 0.878 Min 18,720 6,796,837 2,464 

4 

Max 80,265 107,713,739 14,999 

57 111 0.774 Min 25,790 10,358,617 2,977 

5 

Max 61,750 57,853,301 13,591 

64 215 0.982 Min 21,030 7,651,533 2,697 

6 

Max 55,565 75,072,252 12,704 

52 76 0.747 Min 21,050 8,904,887 2,522 

7 

Max 61,710 70,693,705 13,330 

55 256 0.741 Min 21,050 8,058,622 2,646 

8 

Max 61,690 84,301,740 12,663 

60 140 0.668 Min 21,010 7,455,081 2,507 

9 

Max 61,770 83,166,586 14,280 

63 206 0.928 Min 23,400 9,475,988 2,834 

10 

Max 67,955 56,486,481 15,307 

57 134 1.027 Min 21,130 9,564,006 3,038 

 
Table  23: Multi-objective problem results for large instances 
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Instances Value 
Obj1 
(USD) 

Obj2 
(KgCO2) 

Obj3 
(Kgs) 

No. 
solutions 

Runtime 
(mins) 

IGD 

11 

Max 61,730 79,064,940 11846.221 

48 692 0.818 Min 21,130 8,616,279 2351.607 

12 

Max 74,040 101,284,719 17188.744 

66 105 0.876 Min 23,420 8,868,073 3362.229 

Table  23: Multi-objective problem results for large instances (Cont.) 
  

When comparing the objective value results from small, large, and medium 
(Figures 29, 30, and 31), the total cost values in Objective 1 consistently increase in 
both the average minimum and maximum value as the types of fresh fruits are 
increased. Similarly, when more types of fresh fruits were added, the average maximum 
and minimum total carbon emissions (Objective 2) increased instantly. In contrast, 
increasing the number of fresh fruit types has the least impact on the value of objective 
3. The average of the maximum value in Objective 3 began to rise at 8 types of fresh 
fruits, while the minimum value increased slightly. The weight loss rate of the added 
fresh fruits is suspected to be the factor influencing the changes. 

 
Figure  29:  Objective 1 comparison of small, medium, and large comparison 
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Figure  30: Objective 2 comparison of small, medium, and large comparison 

 

Figure  31:  Objective 3 comparison of small, medium, and large comparison 
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 To summarize, there are computational time trade-offs when increasing the type 
of fresh fruits as well as the IGD values. When the number of fresh fruit types is 
increased from 3 to 5 and 5 to 8, both computational time and IGD increase dramatically 
(Figures 32 and 33 ). The variation in the required weight of fresh fruits, on the other 
hand, caused a large deviation in computational time while having a minor impact on the 
IGD value. All objectives' values are more likely to have a direct impact on changes in 
IGD value. When all values are normalized, especially Objective 2, it tends to result in a 
greater distance from the set of selected reference points. Furthermore, as more 
vehicles are used, an increase in the number of fresh fruit types is more likely to have an 
impact on total distance and total carbon emissions. While the weight loss rate of the 
assigned fresh fruits is likely to influence Objective 3. 

Figure  32:  Average IGD value for small, medium, and large instances 

Figure  33: Average CPU time of small, medium, and large instances 
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4.5  Pareto Solutions Selection for Decision-makers 
 According to the previous section's findings, the number of non-dominated 
solutions increased as the number of fresh fruit types increased. Furthermore, the results 
demonstrated the relationship between the three objectives. Objective 1 (or total 
transportation cost) has a conflicting relationship with objectives 2 and 3 (or total carbon 
emissions and total weight loss). In other words, lowering objective 1 leads to higher 
values for objectives 2 and 3. Minimizing objectives 2 and 3, on the other hand, results 
in higher transportation costs. Therefore, prioritizing the objectives is recommended to 
select the solutions in the Pareto fronts in this study.  

Though minimizing total transportation is the most important factor, freshness 
becomes another influential concern in the transportation of fresh fruits and vegetables 
because it affects both customer satisfaction and the market price. Therefore, 
prioritizing cost and freshness at the same level is suggested in this study to balance 
the quality standard and transportation cost, with carbon emissions coming last. As this 
prioritizing level is set at the same level for Objective 1 and Objective 3, and the two 
objectives have a conflicting relationship, the solutions between the 25th and 75th 
percentiles are considered in this section assessment. 

For this section evaluation, instance 1 from the medium instance is selected for 
analysis. Figure 34 depicts the 3-D Pareto front, whereas Table 24 contains 43 solutions 
and their percentile for example 1 of a medium case problem. The solutions between the 
25th and 75th percentiles are sorted separately based on the fitness values (or objective 
values), and the details information, such as the layout of each vehicle, the loading 
assignment of fresh fruits, and the route selection of each vehicle, are investigated 
further.  

According to Table 24, the solutions for objectives 1 and 3 are chosen based on 
the selected percentile range (highlighted in Table 24). As shown in Table 25, the 
mutual solutions are selected from the non-dominated solutions set by sorting the 
number of solution points and selecting the mutual point in objectives 1 and 3. As a 
result, the number of selected solutions decreased from 43 to 20 solutions (Figure 35 ). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 139 

Figure  34:  3-D Pareto front for instance 1 of medium case problem 

Table  24: The non-dominated solutions from instance 1 of the medium case problem 
 
 

Point Obj1 Rank Percent Point Obj2 Rank Percent Point Obj3 Rank Percent 

2 43155 1 100.00% 26 31701415 1 100.00% 1 9020.096 1 97.60% 

38 43125 2 97.60% 23 27714009 2 97.60% 4 9020.096 1 97.60% 

9 42285 3 95.20% 1 27651826 3 95.20% 15 8995.958 3 95.20% 

25 36740 4 92.80% 21 27430639 4 92.80% 31 8951.346 4 92.80% 

6 36640 5 90.40% 15 27277513 5 90.40% 21 8917.105 5 90.40% 

33 36470 6 88.00% 29 24343816 6 88.00% 23 8897.251 6 88.00% 

34 36250 7 85.70% 13 24088790 7 85.70% 19 8860.95 7 85.70% 

24 35860 8 83.30% 22 23871976 8 83.30% 3 8423.773 8 83.30% 

5 34720 9 80.90% 4 23577243 9 80.90% 13 8233.526 9 80.90% 

17 34330 10 78.50% 31 23450871 10 78.50% 36 8211.885 10 78.50% 

41 32365 11 76.10% 19 23322181 11 76.10% 22 7714.062 11 76.10% 

43 31165 12 73.80% 3 22986949 12 73.80% 29 7705.148 12 73.80% 

30 30985 13 71.40% 36 21748506 13 71.40% 14 6687.384 13 71.40% 

11 30940 14 69.00% 28 21485489 14 69.00% 26 6664.907 14 69.00% 

20 30585 15 66.60% 8 20937072 15 66.60% 37 6631.51 15 66.60% 

35 28510 16 64.20% 37 20791669 16 64.20% 16 6343.36 16 64.20% 

10 27930 17 61.90% 27 19150821 17 61.90% 40 5827.077 17 61.90% 

7 27240 18 59.50% 14 18926714 18 59.50% 12 5706.435 18 59.50% 

42 26360 19 57.10% 18 18720282 19 57.10% 39 5659.171 19 57.10% 

12 26205 20 54.70% 40 18038785 20 54.70% 7 5316.038 20 54.70% 

32 25905 21 52.30% 32 17353196 21 52.30% 42 5274.94 21 52.30% 

18 25735 22 50.00% 35 17008186 22 50.00% 10 5273.536 22 50.00% 
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Table  24: The non-dominated solutions from instance 1 of the medium case problem (Cont.) 

Table  25: Selected solutions between 25th and 75th percentile of instance 1 from 
medium case problem 

Point Obj1 Rank Percent Point Obj2 Rank Percent Point Obj3 Rank Percent 

39 25625 23 47.60% 42 15652465 23 47.60% 8 5141.75 23 47.60% 

27 25235 24 45.20% 10 15634846 24 45.20% 28 5133.087 24 45.20% 

16 25125 25 42.80% 7 15557834 25 42.80% 20 5123.881 25 42.80% 

40 24735 26 40.40% 39 15543179 26 40.40% 27 5083.728 26 40.40% 

14 24345 27 38.00% 16 14595523 27 38.00% 32 5060.502 27 38.00% 

28 23495 28 35.70% 12 13982779 28 35.70% 35 4944.565 28 35.70% 

3 22360 29 33.30% 30 12983056 29 33.30% 43 4639.144 29 33.30% 

37 21870 30 30.90% 11 12895711 30 30.90% 41 4261.48 30 30.90% 

8 21290 31 28.50% 41 12743252 31 28.50% 11 4164.897 31 28.50% 

26 20260 32 26.10% 20 12398016 32 26.10% 18 3803.534 32 26.10% 

22 20040 33 23.80% 43 11707702 33 23.80% 5 3531.631 33 23.80% 

36 19820 34 21.40% 33 10928665 34 21.40% 30 2919.145 34 21.40% 

29 19270 35 19.00% 17 10114610 35 19.00% 17 2834.208 35 19.00% 

19 19045 36 16.60% 5 8894695 36 16.60% 9 1918.736 36 16.60% 

13 17465 37 14.20% 25 7836889 37 14.20% 24 1900.111 37 14.20% 

15 16945 38 11.90% 24 5886341 38 11.90% 38 1852.778 38 11.90% 

21 16755 39 9.50% 6 5708385 39 9.50% 33 1845.152 39 9.50% 

31 16500 40 7.10% 34 5695553 40 7.10% 34 1836.528 40 7.10% 

4 16310 41 4.70% 38 5493176 41 4.70% 6 1815.548 41 4.70% 

23 16015 42 2.30% 9 4987547 42 2.30% 25 1795.278 42 2.30% 

1 14020 43 0.00% 2 4733278 43 0.00% 2 1790.59 43 0.00% 

Point Obj1 Rank Percent Point Obj2 Rank Percent Point Obj3 Rank Percent 

7 27240 18 59.50% 7 15557834 25 42.80% 7 5316.038 20 54.70% 

8 21290 31 28.50% 8 20937072 15 66.60% 8 5141.75 23 47.60% 

10 27930 17 61.90% 10 15634846 24 45.20% 10 5273.536 22 50.00% 

11 30940 14 69.00% 11 12895711 30 30.90% 11 4164.897 31 28.50% 

12 26205 20 54.70% 12 13982779 28 35.70% 12 5706.435 18 59.50% 

14 24345 27 38.00% 14 18926714 18 59.50% 14 6687.384 13 71.40% 

16 25125 25 42.80% 16 14595523 27 38.00% 16 6343.36 16 64.20% 

18 25735 22 50.00% 18 18720282 19 57.10% 18 3803.534 32 26.10% 

20 30585 15 66.60% 20 12398016 32 26.10% 20 5123.881 25 42.80% 

26 20260 32 26.10% 27 19150821 17 61.90% 26 6664.907 14 69.00% 

27 25235 24 45.20% 28 21485489 14 69.00% 27 5083.728 26 40.40% 

28 23495 28 35.70% 30 12983056 29 33.30% 28 5133.087 24 45.20% 

30 30985 13 71.40% 32 17353196 21 52.30% 32 5060.502 27 38.00% 

32 25905 21 52.30% 35 17008186 22 50.00% 35 4944.565 28 35.70% 

35 28510 16 64.20% 36 21748506 13 71.40% 37 6631.51 15 66.60% 

37 21870 30 30.90% 37 20791669 16 64.20% 39 5659.171 19 57.10% 

39 25625 23 47.60% 39 15543179 26 40.40% 40 5827.077 17 61.90% 

40 24735 26 40.40% 40 18038785 20 54.70% 41 4261.48 30 30.90% 

42 26360 19 57.10% 41 12743252 31 28.50% 42 5274.94 21 52.30% 

43 31165 12 73.80% 42 15652465 23 47.60% 43 4639.144 29 33.30% 
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Figure  35: Reduction in the number of solutions 
Furthermore, as shown in Figure 36, the gap between the minimum and 

maximum value of all objectives is reduced because the minimum value of the selected 
solution set is increased while the maximum value is decreased. The difference between 
the minimum and maximum values of objectives 1, 2, and 3 is reduced by 62.57 
percent, 65.33 percent, and 60 percent, respectively. As a result, according to the 
recommended solutions, the total transportation cost falls between $20,260 and 
$31,165, while the total weight loss falls between 3,803 Kgs and 6,687 Kgs. This results 
in total carbon emissions ranging from 12,398,016 KgCO2 to 21,748,505 KgCO2. 
 

Figure  36: The changes in minimum and maximum values of all objectives 
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Figure  36: The changes in minimum and maximum values of all objectives (Cont.) 
 

For an in-depth analysis, three pairs of solutions are selected as samples and 
compared. The first pair denoted the same vehicle layout and loading pattern but a 
different route selection, whereas the second pair represented a different vehicle layout, 
loading pattern, and route selection. And the last pair represented the number of 
vehicles used. In Table 26, the first pair shows that a small difference in total weight loss 
can result in a large difference in total carbon emissions with higher costs. The varied 
route selection has a great impact on total carbon emissions when it comes to the same 
vehicle selection and loading pattern.  
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For the second pair, a difference in vehicle layout selections and loading with 
different route selections for each vehicle indicates that the loadings assignment 
influences a higher carbon emission because the total heat load is made up of thermal 
energy sources inside the compartment, such as transmission load based on 
compartment body size and respiration heat from fresh fruits. Furthermore, the weight of 
fresh fruits influences total heat through respiratory heat rate, which requires more fuel to 
maintain the temperature low. Route selection, on the other hand, continues to be a 
major factor in determining whether total transportation costs are high or low, whereas 
vehicle layout has a smaller impact on adjustment costs. 

Finally, the results of the last sample pair show that using fewer vehicles does 
not result in lower objective values. As shown in Table 26, the solution with 7 vehicles 
appears to produce less total carbon emissions and total weight loss at a slightly higher 
total cost and route selection decision. Again, vehicle loadings and route selection 
appear to have a significant impact on these differences. 

 In conclusion, fresh fruit loadings and route selection have a significant impact 
on all objective values and the variation of the solution set. Another finding is that having 
fewer vehicles does not always result in better solutions. More vehicles appear to result 
in lower total carbon emissions and weight loss at a slightly higher total transportation 
cost in this case. However, this study only suggests alternative solutions that prioritize 
cost and freshness at the same level. Solutions between the 25th and 75th percentiles 
are considered in decision-making evaluation. As a result, an appropriate solution is 
ultimately determined by stakeholder preferences and circumstances. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
14

4 

 
So

lu
ti

o
n

  
V

e
h

ic
le

 
C

o
m

p
1

 
C

o
m

p
2

 
C

o
m

p
3

 
R

o
u

te
 

Ti
m

e 
D

is
ta

n
ce

 
C

o
st

 
O

b
j 1

 
O

b
j 2

 
O

b
j 3

 

1
 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

2
7

2
4

0
 

1
5

5
5

7
8

3
4

 
5

3
1

6
.0

3
8

 

1
 

'M
an

go
es

', 
3

0
0

0
0

 
  

  
2

 
4

4
 

1
9

5
9

 
6

3
4

0
 

1
 

Lo
ga

n
', 

3
0

0
0

0
 

  
  

6
 

2
2

7
 

4
0

0
0

 
3

8
2

0
 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
5

 
1

9
4

 
3

2
0

0
 

2
3

9
5

 

1
 

'M
an

go
st

ee
n

', 
2

2
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

2
 

'L
o

ga
n

', 
1

0
0

0
0

 
'M

an
go

es
', 

1
4

0
0

0
 

  
3

 
4

0
 

1
6

9
4

 
6

0
4

0
 

2
 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
3

 
4

0
 

1
6

9
4

 
6

0
4

0
 

2
1

2
9

0
 

2
0

9
3

7
0

7
2

 
5

1
4

1
.7

5
 

1
 

'M
an

go
es

', 
3

0
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

1
 

Lo
ga

n
', 

3
0

0
0

0
 

  
  

3
 

4
0

 
1

6
9

4
 

6
0

4
0

 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
2

 
4

4
 

1
9

5
9

 
6

3
4

0
 

1
 

'M
an

go
st

ee
n

', 
2

2
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

2
 

'L
o

ga
n

', 
1

0
0

0
0

 
'M

an
go

es
', 

1
4

0
0

0
 

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

3
 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

2
5

7
3

5
 

1
8

7
2

0
2

8
2

 
3

8
0

3
.5

3
4

 

1
 

'M
an

go
es

', 
3

0
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

1
 

Lo
ga

n
', 

3
0

0
0

0
 

  
  

2
 

4
4

 
1

9
5

9
 

6
3

4
0

 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

1
 

'M
an

go
st

ee
n

', 
2

2
0

0
0

 
  

  
2

 
4

4
 

1
9

5
9

 
6

3
4

0
 

2
 

'L
o

ga
n

', 
1

0
0

0
0

 
'M

an
go

es
', 

1
4

0
0

0
 

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

Ta
ble

  2
6 

: T
hr

ee
 p

air
s o

f s
am

ple
 so

lut
ion

s f
ro

m 
the

 se
lec

ted
 so

lut
ion

s f
ro

m 
Ins

tan
ce

 1
 o

f t
he

 m
ed

ium
 c

as
e 

pr
ob

lem
 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
14

5 

 

Ta
ble

 2
6 

: T
hr

ee
 p

air
s o

f s
am

ple
 so

lut
ion

s f
ro

m 
the

 se
lec

ted
 so

lut
ion

s f
ro

m 
Ins

tan
ce

 1
 o

f t
he

 m
ed

ium
 c

as
e 

pr
ob

lem
 (C

on
t.)

So
lu

ti
o

n
  

V
e

h
ic

le
 

C
o

m
p

1
 

C
o

m
p

2
 

C
o

m
p

3
 

R
o

u
te

 
Ti

m
e 

D
is

ta
n

ce
 

C
o

st
 

O
b

j 1
 

O
b

j 2
 

O
b

j 3
 

4
 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
4

 
2

0
8

 
3

4
0

0
 

4
5

6
0

 

2
0

2
6

0
 

3
1

7
0

1
4

1
5

 
6

6
6

4
.9

0
7

 

2
 

'M
an

go
es

', 
1

0
0

0
0

 
'M

an
go

st
ee

n
', 

2
0

0
0

0
 

  
5

 
1

9
4

 
3

2
0

0
 

2
3

9
5

 

3
 

'M
an

go
st

ee
n

', 
2

0
0

0
 

'M
an

go
es

', 
1

0
0

0
0

 
'L

o
ga

n
', 

1
0

0
0

0
 

7
 

2
0

1
.5

 
3

4
6

4
 

2
2

0
5

 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

1
 

'L
o

ga
n

', 
3

0
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

1
 

'M
an

go
es

', 
2

4
0

0
0

 
  

  
5

 
1

9
4

 
3

2
0

0
 

2
3

9
5

 

   5
 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
6

 
2

2
7

 
4

0
0

0
 

3
8

2
0

 
   

2
4

7
3

5
 

   
1

8
0

3
8

7
8

5
 

   
5

8
2

7
.0

7
7

 

1
 

'M
an

go
es

', 
3

0
0

0
0

 
  

  
6

 
2

2
7

 
4

0
0

0
 

3
8

2
0

 

1
 

Lo
ga

n
', 

3
0

0
0

0
 

  
  

5
 

1
9

4
 

3
2

0
0

 
2

3
9

5
 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
3

 
4

0
 

1
6

9
4

 
6

0
4

0
 

1
 

'M
an

go
st

ee
n

', 
2

2
0

0
0

 
  

  
3

 
4

0
 

1
6

9
4

 
6

0
4

 

2
 

'L
o

ga
n

', 
1

0
0

0
0

 
'M

an
go

es
', 

1
4

0
0

0
 

  
5

 
1

9
4

 
3

2
0

0
 

2
3

9
5

 

  
 

6
 

1
 

'D
u

ri
an

', 
2

3
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

   
2

6
3

6
0

 

   
1

5
6

5
2

4
6

5
 

   
5

2
7

4
.9

4
 

1
 

'M
an

go
es

', 
3

0
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

1
 

'L
o

ga
n

', 
3

0
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

1
 

'B
an

an
as

', 
2

5
0

0
0

 
  

  
7

 
2

0
1

.5
 

3
4

6
4

 
2

2
0

5
 

1
 

'M
an

go
st

ee
n

', 
2

2
0

0
0

 
  

  
2

 
4

4
 

1
9

5
9

 
6

3
4

0
 

1
 

'M
an

go
es

', 
1

4
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 

3
 

'L
o

ga
n

', 
1

0
0

0
0

 
  

  
1

 
4

4
.5

 
1

7
9

7
 

5
6

5
0

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 

This chapter summarizes the study's objective and problem, as well as the 
methodology used to solve single-objective and multi-objective optimization problems 
and the performance of the proposed algorithm. Subsequently, in this section, the 
recommendation for this study is discussed. 
 
5.1  Conclusions 
 In recent years, the common challenge of exporting fresh fruits and vegetables 
is balancing the quality standard and transportation costs as they typically have a short 
life cycle and deteriorate instantly. The refrigerated vehicles are used to prolong the 
shelf life of fresh fruits and vegetables by maintaining the temperature inside the 
chamber at an optimal level. However, the refrigeration unit's fuel consumption appears 
to be a cause of high carbon emissions. A multi-compartment technology was recently 
introduced into the market as an alternative solution for business owners, allowing them 
to transport multiple products with different temperature requirements in a single 
shipment. Therefore, this study has taken mentioned matter into account and represents 
the problem as a multi-compartment vehicle loading, and transportation routing problem 
(MCVRLP). The proposed mathematical model and heuristic are an integration of the 
shortest path and bin packing problem which aim to minimize the total transportation 
cost, total carbon emissions, and the total weight loss at the destination.  
 Because the multi-compartment vehicle loading and transportation routing 
problem (MCVRLP) is considered an NP-hard problem, the hybrid NSGA III algorithm is 
proposed in this study to solve the problem. The algorithm performance evaluation for 
the heuristic computational experiment is divided into three parts. The sample data 
range from 10,000 to 50,000 kilograms at random. Regarding the long runtime, stop 
criteria are introduced, and non-improvement generation in the number of solutions is 
used as a stop criterion. The impact of population size and generation number variation 
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is assessed to select appropriate stop criteria ( small, medium, and large). The 
population size is set to 60, 120, 240, and 480, with evolution iterations of 100, 200, 500, 
and 1000. In terms of the number of solutions found and computational time, the results 
of running all combinations on small case problems are chosen as the benchmark. 
Thus, using stop criteria performs better in terms of runtime while generating the same 
number of solutions for a small instance. Regarding the outcome of a small instance, the 
appropriate stop criteria are also chosen for both medium and large instances. As a 
result, in this study, a population size of 240 with a stop criteria of 150 non-improvement 
generations is used in the small and medium cases, while a population size of 480 with 
a stop criteria of 300 non-improvement generations is used in the large case.  
 Next, the optimal solution obtained from single objective optimization by solving 
the proposed nonlinear programming (NLP) model presented in Chapter 3 is utilized as 
a benchmark for validating the proposed algorithm's performance. The twelve data sets 
of three types of fresh fruits were chosen at random from a range of 10,000 to 50,000 
kgs and tested on a single run, with the total shipment in each case not exceeding 
100,000 kilograms. By comparing the results of CPLEX and the proposed heuristic, it is 
possible to conclude that the algorithm can generate a near-optimal solution set. For 
each objective, there is no difference between the optimal CPLEX solution and the 
minimum value from the proposed heuristic. Furthermore, the heuristic results show a 
relationship between the three objectives, implying that lowering total cost leads to 
higher total carbon emissions and total weight loss at the destination. The results also 
show that by assigning different routes to different vehicles, the proposed heuristic 
generates more transportation options for the stakeholders. As a result, the choice is 
determined by the stakeholder's decision and circumstances. 

To further investigate, small, medium, and large case computational experiments 
for multi-objective optimization are performed to see the effects of changes in the 
number of fresh fruit types. As a result, when more types of fresh fruit are added, the 
values for objectives 1 and 2 increase, while the value for Objective 3 remains 
unchanged until the number of fresh fruit types increases to eight. Furthermore, 
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increasing the number of fresh fruit types from 3 to 5 and 5 to 8 increases both 
computational time and IGD significantly. However, the goal of this study is to balance 
the total transportation cost and the quality of fresh fruits at the destination. It is 
recommended to prioritize cost and freshness equally and to select solutions between 
the 25th and 75th percentiles. The results also revealed that varied route selection has a 
significant impact on total carbon emissions when the same vehicle selection and 
loading pattern are used. The majority of carbon dioxide emissions are caused by 
operating refrigeration units and are greatly influenced by the weight of fresh fruits 
through their respiratory heat rate; thus, loadings assignment influences a higher carbon 
emission. Another discovery is that using fewer vehicles does not always result in better 
solutions. More vehicles appear to reduce total carbon emissions and weight loss at the 
expense of a slightly higher total cost and route selection decision.  

To summarize, the proposed heuristic can provide stakeholders with more 
transportation options. The variation in generated solutions is due to different vehicle 
type combinations, amount allocation, and a combination of different transportation 
routes. However, the decision and circumstances of the stakeholder determine the 
option. 
5.2  Recommendations 

In this section, consideration of practical and strategic that arise from the 
research findings are discussed and introduced as the managerial implication. In other 
words, it's the application of insights gained from research to decision-making and 
problem-solving in real-world business settings. This section highlights the key 
takeaways from the research and their potential impact on managerial decision-making, 
offering suggestions for action that managers can take to improve business 
performance.  

To apply the proposed heuristic to a situation where the number of vegetables 
and fresh fruit types is more than eight, the new stop criteria or the non-improvement 
generation is needed to be defined before solving the problem using the proposed 
heuristic. This has to be noted that the proposed heuristic is only applicable for the 
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vegetable and fresh fruits that are sold by weight where the size of the packaging is not 
taken into account. 

Moving to the insights gained from this research, as this research rate the 
importance of total cost and the freshness quality at the same level, the solution 
obtained was suggested to sort the obtained solutions and selected the solutions 
between percentile 25th and 75th. However, the solutions sorting still results in several 
alternative solutions. The versatility of the solution is influenced by three main factors 
which are the loading pattern, number of vehicles used, and route selection. The are two 
trade-offs that must be considered during the decision-making process to select one 
solution to solve a real-life problem. Most solutions generate the trade-off among the 
cost, total carbon emissions, and fresh fruit quality. With lessen total cost tends to 
generate high carbon emissions and huge total weight loss. On the other hand, lowering 
carbon emissions and reducing total weight loss results in higher transportation costs. If 
the company's goal is focusing on green policy, for example, if the company needs to 
select the solution between the two solutions with different numbers of vehicles used 
and there are trade-offs between the total cost and the total carbon emissions. The 
solution with more vehicle usage generates lower total carbon emissions but higher 
costs due to the number of vehicles used. A solution with a slight increase in the total 
cost is suggested as the company goal is to focus on the environmental policy and vice 
versa the solution with fewer vehicles used may be selected if the company goal is to 
lessen the total cost while maintaining the total carbon emissions and the total weight at 
the acceptable level. 

Thus, the managerial implications section is critical because it translates 
academic findings into practical recommendations for managers to make informed 
decisions that drive business growth and success. By understanding the implications of 
research, managers can use evidence-based insights to develop effective strategies, 
implement changes, and ultimately achieve their organizational goals. 
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5.3  Future Works 

• This study only considers the weight assigned to each compartment; however, 
to perform practically, a further study is suggested by considering adapting the 
container box allocation problem to multi-compartment vehicle loading. This can 
be either in 2-D or 3-D box allocation problems. 

• As only the exporting case is considered in this study, the problem can be 
simplified to the VRP or CVRP problem by using a multi-compartment vehicle to 
transport the fresh produce. 

• In the real world, the temperature outside and inside refrigerated vehicles 
fluctuate all the time. However, this issue was not considered in this study and is 
assumed to be constant. A temperature data logger is suggested for future work 
to consider both fuel consumption in maintaining internal temperature and 
predicting the freshness of fresh fruits and vegetables at the destination. 

• To calculate the heat produced by fresh fruits and vegetables precisely, the 
respiration rate of each should be collected separately. However, in this study, 
the respiration rate is assumed to be constant, and the data is taken from other 
literature. 

• Furthermore, the decay rate equation (i.e. Arrhenius equation) could be used to 
calculate the quality of fresh fruits more precisely than simply using the weight 
loss rate. 

• Because transportation route data collection is not conducted in this study, the 
route information is taken from other literature, and only exporting fresh fruit from 
Thailand to China with limited information on transportation routes is considered. 
Collecting more route options and adding more cases is suggested for further 
investigation to see how the results vary. 
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