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ABSTRACT (THAI) 
 ชัยวุฒ ิสิทธิวิจารณ์กิจ : การพัฒนาวิธีการรับรู้ความเข็งของวัตถุและการจับแบบปรับได้

ด้วยมือจับนิวแมติกแบบอ่อน. ( Development of stiffness sensing and adaptive 
grasping with soft pneumatic grippers) อ.ที่ปรึกษาหลัก : รศ. ดร.รัชทิน จันทร์
เจริญ 

  
การศึกษานี้ครอบคลุมการพัฒนาเพื่อรับรู้ความแข็งของวัตถุโดยการจับด้วยมือจับนิว

แมติกแบบอ่อน และปรับการจับให้เหมาะสมตามความแข็งของวัตถุที่วัดได้ โดยได้รับแรงบันดาลใจ
จากความสามารถในการรับรู้ความแข็งของวัตถุผ่านการจับและการจับวัตถุที่ซับซ้อนของมนุษย์  
สาเหตุของความยากและซับซ้อนคือความยืดหย่ ุนของมือจับนิวแมติกแบบอ่อน  การศึกษานี้
นำเสนอความเชื่อมโยงระหว่างพฤติกรรมของวัตถุที่ถูกจับและการทำงานของมือจับ  แนวทางใหม่
ในการสร้างแบบจำลองของมือจับ และระเบียบวิธีในการวัดความแข็งของวัตถุผ่านการทำงานของ
มือจับ จากนั้นนำผลลัพธ์จากระเบียบวิธีดังกล่าวไปเปรียบเทียบกับผลทีได้จากการทดสอบการบีบ
อัด โดยผลลัพธ์ทั้งสองชุดมีลักษณะคล้ายกันและมีความคลาดเคลื่อนเล็กน้อย นอกจากนี้การศึกษา
ยังนำเสนอวิธีการจำลองการยุบตัวและแรงบนวัตถุขณะถูกจับด้วยมือจับ  และวิธีการควบคุมการ
ทำงานของมือจับที่ปรับตามความแข็งของวัตถุ วิธีการดังกล่าวให้ผลลัพธ์เชิงการยุบตัวที่คาดเคลื่อน
ในกรอบที่ยอมรับได้ ขณะที่ผลลัพธ์เชิงแรงมีความคาดเคลื่อนสูง ข้อจำกัดสำคัญในการศึกษานี้คือ
การวัดระยะกดของมือจับด้วยภาพถ่าย ซึ่งมีข้อจำกัดด้านความแม่นยำ โดยภาพรวมการศึกษานี้
เป็นงานแรกที่บูรณาการการวัดความแข็งของวัตถุเข้ากับการจับวัตถุด้วยมือจับนิวแมติกแบบอ่อน  
และนำเสนอวิธีการที่สามารถควบคุมพฤติกรรมของวัตถุขณะที่ถูกจับด้วยมือจับนิวแมติกแบบอ่อน
ได้ โดยภาพรวมการศึกษานี้นำไปสู่การพัฒนาในสาขาวิทยาการหุ่นยนต์แบบอ่อนและการจำแนก
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ABSTRACT (ENGLISH) 
# # 6371006021 : MAJOR MECHANICAL ENGINEERING 
KEYWORD: soft gripper, pneumatic gripper, pincer grasping, adaptive grasping, 

sensible grasping, stiffness sensing 
 Chaiwuth Sithiwichankit : Development of stiffness sensing and adaptive 

grasping with soft pneumatic grippers. Advisor: Assoc.  Prof. RATCHATIN 
CHANCHAROEN, Ph.D. 

  
This study presents a framework for stiffness sensing and adaptive grasping 

using soft pneumatic grippers (SPGs). The motivation was to imitate the capabilities 
of human hands. The challenge was the compliance of soft pneumatic actuators 
(SPAs). The study associated the behaviors of grasped objects with those on SPAs, 
introduced a new concept of SPA modeling, and proposed a method for stiffness 
sensing through SPG pincer grasping. Compression testing was conducted for 
validation. A technique for forecasting deformation and force on grasped objects 
based on their stiffness was established, and a control law was elaborated. The 
presented technique and control architecture were validated at different input 
pressure conditions. The proposed method yielded similar stiffness trends with slight 
deviations compared to compression testing and demonstrated the potential for 
manual classification of samples. The presented technique provided small 
deviations in deformation but significant errors in force. A major limitation was 
caused be the using of computer vision for inspecting SPA deformation. To overcome 
this limitation further studies on the direct sensing of SPA deformation is 
recommended Overall, this study contributes to the field of soft robotics and object 
classification by integrating stiffness sensing and SPG grasping in a single action, 
leading to the next level of adaptive SPG grasping. 

 Field of Study: Mechanical Engineering Student's Signature ............................... 
Academic Year: 2022 Advisor's Signature .............................. 
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CHAPTER I: INTRODUCTION 

1.1 Background 
A robotic system is basically one or a group of machine that capable of 

performing complex operations following a computer program.1, 2 Its operation can be 
flexibly designed for various applications, such as manufacturing, inspection, 
exploration, and transportation.3 Nowadays, robotic systems are increasingly important 
in modern society as they can complete tasks that difficult or impossible for humans.4 
One of their most essential components is gripper.5-8 Robotic grippers are commonly 
equipped to robotic manipulators and mainly responsible for grasping objects.9-11 The 
grippers come in various shapes, sizes, and working principles.12 Based on the working 
principle, the grippers can be categorized into four main groups, including impactive, 
ingressive, astrictive, and contigutive.13 

Developers of robotic grippers have been studied on human hand for 
inspiration in creating grippers with similar functionality and capabilities.14-17 One of the 
most interesting features of human hand is haptic sensing, which allows us to perceive 
the mechanical properties of objects we grasp and adjust the motion and force of our 
fingers accordingly throughout grasping.18 The developers have been inspired by this 
feature and are working to bring it into robotic systems. The systems with this feature 
have the potential to be more effective in the terms of working cost, space, and time 
for object classification and identification across a wide spectrum of applications.19, 20 
This capability can also facilitate adaptive grasping based on the mechanical properties 
of grasped objects, and enable further advancements in the field. 

Researchers have conducted numerous studies on the sensing of mechanical 
properties through impactive grippers. However, most of such studies have focused on 
conventional impactive grippers, commonly known as mechanical grippers.21-24 The 
researchers integrated various types of sensors onto the grippers to measure their 
internal states, external inputs, and loads. The sensors utilized in these studies were 
primarily visual, force, and tactile types.25, 26 In cases that such variables could not be 
directly measured, kinematic and kinetic models of the grippers were developed and 
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employed to determine them. The connection between variables on the grippers and 
those on grasped objects was solved. Afterwards, the properties of the objects were 
observed through the variables on the grippers. For example, Kim27 integrated a force 
sensor to a mechanical gripper in estimating object weight. Romano et al. 28 developed 
a human-inspired adaptive grasping technique using a mechanical gripper with tactile 
sensors. Spiers et al.29, 30 investigated feature extraction, shape recognition, and object 
classification using various types of mechanical grippers. 

During several recent decades, soft gripper has been growing attention as a new 
and interesting class of grippers.31-33 Soft grippers were designed to be structurally 
compliant, and some of them are impactive type. A key feature of the soft grippers is 
their mechanical intelligence, which allows them to grasp dissimilar objects using 
simple control architectures.34-36 A popular type of soft grippers is soft pneumatic 
gripper (SPG), the working principle of which relies on anisotropic inflation based on 
pressurized air. SPGs typically consist of two or more soft pneumatic actuators (SPAs) 
that have flexible structures.37-39 Only a few of studies have explored the potential of 
SPG grasping in the context of sensing. For instance, Homberg et al.40 used data-driven 
haptic identification to recognize objects using SPGs. Chen et al.41 demonstrated 
adaptive grasping and size recognition with SPGs. Sankar et al.42 investigated the 
discrimination of textures using SPGs. These studies primarily focused on the 
geometrical features and surface properties of objects, rather than their mechanical 
characteristics. 

Adaptive grasping is a field of robotics, which involves designing and developing 
robotic systems capable of grasping objects in unstructured environments.43, 44 The 
primary objective of this field is to equip robotic systems with the ability to handle 
objects with diverse characteristics, including shape, size, and texture, without any prior 
knowledge of the objects.29, 45 This capability is critical in many applications where 
robotic systems are utilized to manipulate a vast array of objects. To achieve adaptive 
grasping, diverse techniques are employed to enable robotic systems to perceive 
object properties and adjust their grasping strategy based on the properties of the 
objects.46 If object properties can be observed through grasping, adaptive grasping of 
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robotic systems is expected to be revolutionized made more efficient, like that 
performed by humans. 

1.2 Challenges 
SPAs are typically made of various elastomers, which offer admirable flexibility 

and compliance.47, 48 SPA compliance makes the modeling of SPAs and SPG grasping 
complicated, because SPA structures have infinite degree of freedom (DOF) with 
nonlinear characteristics. Conventional modeling methods rely on local-joint variables, 
and only suitable for systems with finite DOF.49 Such methods thus cannot be used to 
model SPAs or SPG grasping. Some researchers have proposed simulation approaches 
to overcome this challenge, however available simulation solvers are not designed to 
handle the enormous magnitude of deformation occurring on SPA bodies.50, 51 
Compared to the modeling of SPAs, there is much less information available on the 
modeling of SPG grasping. Consequently, the modeling of SPAs and SPG grasping 
remains a sophisticated problem. 

1.3 Scope and Contributions 
This dissertation aims to develop a novel approach for sensing object stiffness 

through SPG pincer grasping, and adaptively grasping objects based on their stiffness. 
To achieve this goal, SPG pincer grasping was first observed, and then the association 
between the deformation and force on SPAs and those on grasped objects was 
investigated and formulated. A new concept of SPA modeling was also elaborated and 
implemented on an industrial SPA. Afterwards, an innovative method of stiffness 
sensing through SPG pincer grasping was developed. The developed method was 
applied to four elastic samples using an SPG, the SPAs of which are identical to the 
one examined with the presented SPA-modeling concept. Later, compression testing 
was conducted on the same samples. The results of stiffness obtained from both 
methods were compared to validate the proposed method. Later, a technique for 
modeling the deformation and force on grasped objects, with respect to the input 
pressure of SPAs, throughout SPG pincer grasping was established, together with an 
opened-loop control architecture for accomplishing desirable deformation and force 
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on the objects. The presented techniques of modeling and control was practiced on 
the samples, and the deformation and force on the samples were then practically 
measured for validation. The contribution and novelty of this study are that it is the 
first study to combine stiffness sensing and SPG grasping in a single action, and utilize 
the resulting stiffness to perform adaptive SPG grasping based on object stiffness. 
Therefore, this study makes a considerable advancement in the field of soft robotics, 
for connecting SPG grasping to a new sensing application, and progressing leading to a 
novel form of adaptive SPG grasping. In addition, the study contributes to the area of 
object classification, by offering another class of classification data with an efficient 
approach of data acquisition. 
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CHAPTER II: LITERATURE REVIEW 

2.1 Robotic Gripper 
Grippers are necessary in robotics and other forms of automation, for grasping 

objects. They are typically equipped to the moving ends of robotic manipulators, and 
enable robotic systems to have physical interaction with objects.5-8 This interaction can 
be exploited for mechanical object manipulation.9-11 There are many types of robotic 
grippers that can be classified according to various criteria (Figure 1), such as finger 
number, actuation type, mechanism type, grasping mode, and grasping principle.12 
Grippers of different types are suitable for grasping objects with different properties. 
The most comprehensive classification strategy is based on the principle of grasping, 
which categorizes robotic grippers into four main groups: impactive, ingressive, 
astrictive, and contigutive.13 The majority of industrial grippers are either impactive or 
astrictive. The following list provides details on each type of gripper. 

 
FIGURE 1. Gripper classification based on different strategies of classification.12 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 
FIGURE 2. Robotic grippers: (a) mechanical gripper52; (b) pin-array gripper53; (c) vacuum 
gripper54; and (d) adhesive gripper55. 

• Impactive gripper is the type of gripper that conduct impactive force against 
the surface of objects. Grippers of this type have two or more fingers to 
produce impactive force, and operate like human hand. The vastest 
instance of impactive gripper is mechanical gripper (Figure 2a). 

• Ingressive gripper is the type of gripper that permeate objects. The 
permeation can be either intrusive or non-intrusive. Pin-array gripper (Figure 
2b) is an example of intrusive gripper, while hook-and-loop gripper is an 
instance of non-intrusive gripper. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

• Astrictive is the type of gripper that generate some kinds of field, such as 
air flow, magnetic, and electric, to make binding force. Vacuum gripper 
(Figure 2c) is the most widespread example of the grippers of this type. 

• Contigutive is the type of gripper that directly make contact adhesion with 
object surface. The adhesion can be originated with various mechanisms, 
such as chemical reactions and thermal effects. An instance of contigutive 
gripper is adhesive gripper (Figure 2d). 

2.2 Robotic Modeling 
In conventional robotics, every system commonly consists of two fundamental 

components, links and joints.56, 57 These components are coupled into chain-like 
structures, allowing robots to have specific ranges of motion. Each link represents a 
rigid body with a certain shape and size. Designs of links can vary in design for particular 
requirements. Meanwhile, joints are mechanical components that connect two links 
and constrain relative motion between them. There are various types of joints widely 
used in robotics, such as revolute, prismatic, spherical, and planar. Different types of 
joints offers dissimilar forms of the relative motion between two links. The 
characteristics of robots depend on the combination of links and joints. Kinematic58-60 
and dynamic61-63 modeling are two essential approaches of modeling, for describing 
the behaviours of robotic systems. 

Kinematics deals with the aspects of motion without any consideration in force. 
Kinematic modeling is accordingly the process of mathematically describing the 
positions, orientations, and motion of robot links. To handle the geometrical 
complexity of robots, a coordinate frame is widely attached to each robot link. Then, 
the association between a pair of robot links is described through the relationship 
between the corresponding frames. Denavit–Hartenberg parametes64, including link 
length (𝑎), link offset (𝑑), link twist (𝛼), and joint angle (𝜃), are the most widespread 
parameters for representing the kinematics of a robot. Such parameters indicate the 
relation of the current frame of consideration to the further frame (Figure 3). The 
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relationship between the (𝑖 − 1)th frame and 𝑖th frame can be mathematically 
established with a homogeneous transformation as follows: 

 𝐻𝑖
𝑖−1 = [

cos 𝜃𝑖

sin 𝜃𝑖

0
0

− sin 𝜃𝑖 cos 𝛼𝑖

cos 𝜃𝑖 cos 𝛼𝑖

sin 𝛼𝑖

0

sin 𝜃𝑖 sin 𝛼𝑖

− cos 𝜃𝑖 sin 𝛼𝑖

cos 𝛼𝑖

0

𝑎𝑖 cos 𝜃𝑖

𝑎𝑖 sin 𝜃𝑖

𝑑𝑖

1

]. (1) 

Equation (1) is a straightforward solution for forward kinematics, as it explicitly offers 
the direct calculation of the positions and orientations of robot end-effectors, based 
on specific values of joint variables (𝑑 and 𝜃). In contrast, solving inverse kinematics, 
in which the determination of the joint variables from the positions and orientation of 
the end-effectors is concerned, is much more challenging, because there is no 
systematic approach for this problem. 

 
FIGURE 3. Denavit–Hartenberg parameters.65 

Dynamic modeling is basically the process of describing the motion of robots 
according to their forces and torques of internal and external. With a dynamic model, 
robot behaviours can be predictively determined. It is also extremely essential for 
robot control. Euler-Lagrange dynamic equation66 is one of the most well-known 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

formulations for elucidating robot dynamics. The dynamics of a robot link can be 
generically written as follows: 

 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) +

𝜕𝐿

𝜕𝑞𝑖
= 𝜏𝑖 , (2) 

where 𝐿 is known as Lagrangian. Let 𝑇 and 𝑉 respectively denote the total kinetic and 
potential energy of the whole system of a robot, 𝐿 was defined as 𝐿 = 𝑇 − 𝑉. Note 
that 𝑞𝑖 and 𝜏𝑖 respectively represent the generic joint variable and force of the 𝑖th link, 
while 𝑞̇𝑖 is the first-order derivative with respect to time of 𝑞𝑖 . This equation is 
applicable for a broad range of robot types. 

Equation (1) and (2) obviously illustrate that both kinematic and dynamic 
modeling in classical robotics rely on joint variables. Such approaches is technically 
viable only for robotic systems with countable numbers of joints. The modeling in the 
field of soft robotics, where robots are admirably compliance with infinite DOF, must 
be consequently succeeded following a new concept of modeling. 

2.3 SPA Modeling 
The modeling and control of SPAs has been a part of the mainstream research 

in soft robotics.67-69 The main cause of complication in this topic is that the admirable 
compliance of SPA structures comes with infinite DOF.47, 48 Most of SPAs are fabricated 
with some kinds of elastomer or fabric. These materials are continuously flexible and 
elastic, thus SPA structures commonly have infinite DOF with nonlinear characteristics. 
This issue makes conventional modeling methods, which rely on local-joint variables, 
unfunctional for SPA modeling, because the numbers of SPA local joints cannot be 
defined. The most usual technique to deal with the modeling of infinite-DOF systems 
is exploiting some combination effects of local joints to represent system configuration. 
Ordinarily, the assumption of constant curvature is applied in SPA modeling, and the 
configurations of SPAs are represented by SPA curvature (Figure 4).70-72 Most of 
published works on SPA modeling were proceeded based on this concept, using either 
analytical or empirical approach. Some researchers also tried to elaborate curvature-
based SPA models using simulation methods. Early models describe the correlation 
between the curvature and input air pressure of SPAs. In recent studies, the external 
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load at the free ends of SPAs is included in SPA models. Nevertheless, SPAs practically 
curve with increasing angle along SPA length during SPG pincer grasping (Figure 5). A 
novel idea of SPA modeling is hence needed for describing SPA performance 
throughout SPG pincer grasping. There is an adaptable concept of configurational 
representation in the work of Haibin et al.73, where pincer grasping of soft cable-driven 
grippers was studied. The researchers recognized the configurations of gripper fingers 
through their transverse deformation (Figure 6). 

 
FIGURE 4. SPA modeling based on the assumption of constant curvature.72 
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FIGURE 5. SPAs with continuously increasing angle of curvature along their length 
during SPG pincer grasping. 

 
FIGURE 6. Pincer grasping of a soft cable-driven gripper with eight annotations of spatial 
and force.73 
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2.4 Stereo Computer Vision 
Computer vision is a field of study in computer science that focuses on making 

computers capable of understanding, interpreting, and analyzing visual information 
from digital images or videos.74 Basically, it aims to imitate human vision capabilities to 
computers.75 The development of in this field enables computers to perform various 
categories of tasks, such as object detection, facial recognition, and pose estimation. 
Accordingly, computer vision has been practically utilized in a wide range of other 
study fields, such as automotive76, robotics77, surveillance and security78, medical79, 
and agricultural80. Stereo computer vision is the specific term referred to computer 
vision with multiple digital cameras.81 These cameras are typically positioned to 
capture different views of a scene. The disparity of images with different views of a 
scene allows three-dimensional (3D) spatial information to be extracted from the 
scene.82 

Pose estimation is the utilization of computer vision in determining the 
positions and orientations of designated features from one or a set of digital images.83 
It basically relies on image projection, the fundamental phenomenon during the 
acquisition of digital images, where light is projected onto sensing elements of digital 
cameras.81 One of the most extensive models for describing this phenomenon is 
central projection (Figure 7).84 In this model, the rays of light direct from sources 
through the image plane to the center of projection, and the position and orientation 
of the image plane are relatively fixed to the center of projection. The intersection 
points of the rays on the image plane is literally the representation of the light sources 
on an image. Through the projection process, the 3D spatial information of a physical 
scene is reduced into two-dimensional (2D) information, represented in the images of 
the scene. 85 To overcome the information loss caused by image projection, the 
concept of stereo images, multiple images with different views of an identical scene, 
is widely employed (Figure 8).86  

Pose estimation with stereo images must be started with the calibration of the 
relative position and orientation of stereo cameras. Then, the corresponding points of 
features in the stereo images are identified. The disparity among the identified 
corresponding points is subsequently calculated. At this state, the distance in the 
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direction of dept can be estimated based on the calculated result of disparity. Finally, 
the 3D positions of the features with respect to the camera coordinate systems can 
be approximately reconstructed. 

There is currently no complete solution for SPA sensing. Numerous developers 
exploited commercial resistive flex sensors to measure SPA curvature. Meanwhile, 
many researchers are working on elaborating novel intrinsically-soft sensors to perceive 
various proprioceptive parameters of SPAs. Pose estimation with stereo photographs 
of SPAs is a vastly-used method for recognizing SPA configuration. Several features on 
SPAs are frequently marked as the features for pose estimation. 

 
FIGURE 7. Central image projection of an ideal point onto a single image.85 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

 
FIGURE 8. Central image projection of an ideal point onto a pair of stereo images.86 
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CHAPTER III: METHODOLOGY 

3.1 Stiffness Measurement 
When an external force is applied to an object in the direction normal to object 

surface, the object deforms in the same direction (Figure 9). Stiffness is a mechanical 
property of an object that indicates its ability to withstand deformation under external-
force loading. The magnitude of the deformation and force of the object are denoted 
by 𝛿O and 𝐹O (Figure 9) respectively. The stiffness of the object, denoted by 𝑘O, relates 
𝛿O and 𝐹O as follows: 

 𝜕𝐹𝑂 = 𝑘𝑂(𝛿𝑂) ⋅ 𝜕𝛿𝑂. (3) 

Rigid objects typically have consistent 𝑘O, while flexible objects have variable 𝑘O over 
𝛿O. Tensile87 or compression88 testing is a common method for investigating 𝑘O. These 
tests involve applying tension or compression loads to objects with specific machines, 
Meanwhile, the resulting series of 𝛿O and 𝐹O are collected. Equation (1) is then 
employed to determine 𝑘O from the collected series of 𝛿O and 𝐹O. During pincer 
grasping, grasped objects are also compressed by the fingertips of grippers. The 
interaction between the objects and grippers leads to the occurrence of 𝛿O and 𝐹O. A 
series of 𝛿O and 𝐹O recorded throughout pincer grasping is viable for determining 𝑘O 
following Equation (3). Therefore, there is the probability of sensing compressive 𝑘O 
through grasping. 

3.2 SPG Pincer Grasping 
Impactive grasping can be roughly classified into two main types: pincer and 

envelope grasping. In pincer grasping, objects are squeezed and held between the 
fingertips of grippers. Envelope grasping, on the other hand, involves using gripper 
fingers to confine objects, and the contact locations are unpredictable. In this study, 
we focused on pincer grasping of SPGs (Figure 9). The locations of the contact between 
SPAs and grasped objects can be assumed at SPA tips. The understanding in the 
interaction between each SPA and a grasped object is critical for associating the 𝛿O 
and 𝐹O to the deformation and force of the SPA, denoted by 𝛿S and 𝐹S (Figure 9). 
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Several factors, such as SPA performance, manipulator motion, and object weight, 
affect this interaction. To accurately perceive 𝑘O through grasping, grasping conditions 
must be set up to minimize the effects of other factors besides SPA performance. 
Specifically, manipulators should be static, and additional support should be provided 
to compensate for the object weight. 

 
FIGURE 9. SPG pincer grasping on an object with deformation and force annotations 
on the SPA and object. 
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We observed and analyzed the pincer grasping of two-finger SPGs, and found 
that 𝐹O algebraically correlates to 𝐹S in magnitude as follows: 

 𝐹S(𝑡) = 𝐹O(𝑡). (4) 

Equation (4) allows 𝐹O to be accomplished through 𝐹S. According to the geometrical 
constraints, 𝛿S can be considered equivalent to the summation of 𝛿O and the gap 
distance between the object and SPA, denoted by 𝐺 (Figure 9), as follows: 

 𝛿S(𝑡) = 𝛿O(𝑡) + 𝐺. (5) 

Equation (5) can be utilized to achieve 𝛿O through 𝛿S, when both SPAs have similar 
behaviours throughout grasping. If the SPAs differently perform on grasping, another 
correlation should be used for connecting 𝛿O to 𝛿S. 

3.3 SPA Modeling 
The modeling of SPAs has been extensively researched. However, there is still 

ongoing research on SPA modeling in the field of soft robotics. To handle the infinite 
DOF structures of SPAs, researchers have commonly employed SPA angle of curvature 
to represent SPA configuration. Many SPA models based on this representation have 
been developed under the assumption of constant curvature. Such models are 
inadequate for SPG pincer grasping. In practice, SPA curvature varies along SPA length. 
Therefore, a new concept of SPA modeling is required in this case. A possible solution 
is using 𝛿S to represent SPA configuration. An SPA model can be initiated based on the 
equation of motion as follows: 

 𝛿̈S(𝑡) = 𝑓 (𝛿S(𝑡),𝛿̇S(𝑡),𝐹S(𝑡),𝑃S(𝑡)), (6) 

where 𝑃S represents the SPA input pressure. The variables 𝛿̇S and 𝛿̈S denote the first 
and second derivatives of 𝛿S with respect to time, and 𝑓 represents a nonlinear 
function that describes SPA nonlinear characteristics. Both 𝛿̇S and 𝛿̈S are typically 
negligible, because SPAs are mostly at their steady state throughout grasping. Equation 
(6) is then able to be simplified as follows: 

 0 = 𝑓(𝛿S(𝑡),𝐹S(𝑡),𝑃S(𝑡)). (7) 

Equation (7) states that 𝛿S is repeatable under identical conditions of 𝐹S and 𝑃S. 
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Solving Equation (7) in SPA modeling is well known to be challenging, as there 
is no standard analytical method available, and accessible simulation solvers are not 
suitable due to the large deformations and nonlinear characteristics of SPAs. In this 
study, an empirical investigation was implemented on an industrial SPA (Figure 10). This 
SPA operates in the 𝑃S range of –100 to 100 kPa, and it weighs 66 gf. The investigation 
used an experimental setup shown in Figure 11. The experimental setup included a 
load cell (Figure 12), motorized linear stage (Figure 13), and air supply. The 
specifications of the load cell and linear stage are respectively expressed in Table 1 
and 2.  

 
FIGURE 10. SRT M3064 SPA: (a) photograph and (b) dimensional drawing89. 
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The SPA was hung vertically, and the load cell was attached to the linear stage. 
The load cell was moved horizontally to constrain 𝛿S, while the air supply generated 
𝑃S. The load-cell signal was then interpreted to determine 𝐹S after the SPA reached 
its steady state under the constrained condition of 𝛿S and provided value of 𝑃S. This 
process was repeated for different combinations of 𝛿S and 𝑃S until 𝐹S was recorded 
for all designated conditions of 𝛿S, ranging from 0 to 8 mm with 200-µm intervals, and 
𝑃S, ranging from 10 to 100 kPa with 10-kPa increments. Finally, linear fitting using QR 
factorization90 was applied to the resulting relationship between 𝛿S and 𝐹S at each 𝑃S 
condition, and the fitting results were plotted as 𝐹S–𝛿S straight lines over the 𝛿S range 
of 0 to 10 mm. 

 
FIGURE 11. An experimental setup for SPA modeling. 
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FIGURE 12. A miniature s-type load cell. 

TABLE 1. Specifications of a miniature s-type load cellใ 

Attribute Value 

Capacity 1 kgf 

Sensitivity 1.5±0.1 mV/V 

Creep 0.1 % of FS/hour 

Accuracy 0.05 % of FS 

Nonlinearity 0.03 % of FS 

Repeatability 0.02 % of FS 

Allowable load 150 % of FS 

Working temperature –20 to 70 °C 

Material Alloy steel 
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FIGURE 13. A ball-screw linear stage with a 5-phase stepping motor. 

TABLE 2. Specifications of a ball-screw linear stage with a 5-phase stepping motor. 

Attribute Value 

Motor voltage 0.86 V 

Motor current 0.66 A 

Motor resolution 0.72°/step 

Stage stroke 40 mm 

Stage lead 1 mm 

Linear resolution 2 µm/step 

3.4 Stiffness Sensing Through SPG Pincer Grasping 
The proposed method for stiffness sensing relies on object compression due 

to SPA performance during SPG pincer grasping. Equations (4) and (5) demonstrate that 
𝛿O and 𝐹O can be algebraically transformed into 𝛿S and 𝐹S. Equation (3) can be then 
revised in accordance with the transformation of 𝛿O and 𝐹O as follows: 

 𝜕𝐹S = 𝑘O(𝛿S − 𝐺) ⋅ 𝜕𝛿S. (8) 

To determine 𝑘O, a simultaneous series of 𝛿S and 𝐹S can be produced by varying the 
applied amount of 𝑃S. The distance 𝐺 is known from the rest-state geometries of SPGs 
and grasped objects. However, sensing 𝛿S and 𝐹S is still challenging. Previous works on 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 22 

SPA-motion sensing are only based on SPA angle of curvature, which cannot be directly 
converted into 𝛿S in SPG pincer grasping. Visual inspection using computer vision is 
currently the only available approach for immediate observation of 𝛿S, despite its 
accuracy. Meanwhile, the sensing of 𝐹S can be achieved only using cutting-edge tactile 
sensing technologies. Therefore, the most straightforward method for perceiving 𝛿S or 
𝐹S is to utilize computer vision to visually inspect 𝛿S. Once 𝛿S is successfully sensed 
and 𝑃S is identified using some industrial pressure sensors, 𝐹S can be approximated 
using kinetic models of the SPAs. The method for solving Equation (7), mentioned in 
the previous section, was developed and implemented for the approximation of 𝐹S. 

To demonstrate stiffness sensing through SPG pincer grasping, four elastic 
elastomer hollow tubes (Figure 14), subsequently call thin, slim, medium, and thick 
sample, were tested. The hollow tubes were fabricated by 3D printing with the same 
material, using a fused-deposition-modeling 3D printer with 400-µm extrusion nozzles. 
Their weight is around 1.5 to 3 g, and their outer diameter was designed to be 20 mm. 
The major difference between the tubes was their wall thickness. The wall thickness 
is 800 µm for thin sample, 1.2 mm for slim sample, 1.6 mm for medium sample, and 
2 mm for thick sample. The SPG used in this experiment consisted of two SPAs, 
identical to the one investigated in the previous section. One of the samples was 
instantaneously grasped in the vertical gesture (Figure 15). Eleven different conditions 
of 𝑃S, ranging from 0 to 100 kPa with 10-kPa intervals, were applied to the SPG. After 
each 𝑃S condition, a stereo photograph of the SPG and sample was captured using a 
binocular digital camera with FHD resolution (Figure 16). The specifications of the 
binocular camera are shown in Table 3. Afterwards, 𝑃S was released to return the SPG 
and sample to their neutral shape before repeating the process with another 𝑃S 
condition. The stereo photographs were then processed using image processing91, 92 
and stereo computer vision93, 94 to estimate the positions, with respect to the camera 
coordinate system, of the SPA tips. From the estimated positions of the SPA tips, 𝛿S 
can be extracted. Meanwhile, 𝐺 was approximated using a similar process. Once 𝛿S at 
each condition of 𝑃S was extracted, the corresponding value 𝐹S was achieve using the 
SPA model obtained from the experiment addressed in the previous section. Next, the 
data points at which 𝛿S was below 𝐺 or over 10 mm was eliminated, and the x-axis 
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intersection point was added at (𝐺,0). The remaining pairs of 𝛿S and 𝐹S were 
subsequently made continuous using linear interpolation. The characteristics of 𝑘O 
were realizable using Equation (8). Alternatively, the resulting 𝛿S and 𝐹S were 
converted into 𝛿O and 𝐹O using Equation (4) and (5). The stiffness 𝑘O was then 
determined using Equation (3). Two curves of 𝐹O and 𝑘O over 𝛿O were plotted for 
demonstration. This process was repeated with all other samples. 

 
FIGURE 14. Elastic elastomer 3D-printed hollow tubes utilized as testing samples for 
stiffness sensing. 

 
FIGURE 15. An experimental setup for stiffness sensing through SPG pincer grasping. 
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FIGURE 16. HBV binocular digital camera.95 

TABLE 3. Specifications of HBV binocular digital camera. 

Attribute Value 

Maximum resolution 2560x720 pixels 

Maximum refresh rate 30 FPS 

Field of view 100° 

Pixel size 3 µm 

Max dynamic range 72 dB 

Sensitivity 2066 mV/(lx·s) 

Supply voltage 5 VDC 

Power consumption 850 mW 

The workflow of image processing and stereo computer vision for approaching 
𝛿S involved several steps. A pair of the stereo photographs was first gone through 
image undistortion96 using pre-calibrated intrinsic camera parameters. Afterwards, the 
pixels corresponding to the SPA tips were manually extracted from the undistorted 
images. Point triangulation97 was then performed on the extracted pixels to estimate 
the 3D positions, with respect to the camera, of the SPA tips. The displacement vector 
from one SPA tip to the other was calculated. The magnitude of the displacement 
vector was subsequently determined as the distance between the SPA tips. These 
steps were repeated for every pair of the stereo photographs. The distance between 
the SPA tips at every 𝑃S condition was determined. The rest-state distance between 
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the SPA tips was marked as the reference distance. The margins of the distance 
between the SPA tips at other conditions over the reference distance were considered 
twice 𝛿S. This workflow was used for 𝛿S of every samples. 

The determination of 𝐺 was proceeded with the process similar to the 
presented workflow of acquiring 𝛿S. After all pairs of the stereo photographs were 
undistorted, the edges of the sample were extracted from a pair of the undistorted 
images. Next, point triangulation was applied to the extracted points of the sample 
edges. The vector from one of the extracted points to the other was established as 
the difference of their positions. The magnitude of the vector was considered as the 
size of the sample. Once the sample size and the distance between the SPA tips were 
obtained, 𝐺 can be determined as a haft of the difference of them. 

3.5 Validation of Stiffness Sensing Through SPG Pincer Grasping 
The validation of the proposed method of stiffness sensing was done by 

conducting an experiment of compression testing on the same samples. The 
experimental setup includes a motorized linear stage driven load cell (Figure 17). The 
load cell and linear stage are identical to the ones used in SPA modeling, the 
specifications of which are noted in Table 1 and 2. Although this setup was not 
calibrated, the uncertainty of the setup was calculated from the inaccuracy and 
resolution of the load cell and linear stage, which resulted ±44 N/m for 𝑘O of 1 N/mm. 
The uncertainty shrinks for greater 𝑘O, while rises for smaller 𝑘O. Each sample was 
compressed using this setup. By moving the load cell, 𝛿O was adjusted. The sample 
was compressed until it was steadily compressed, and then 𝐹O was measured with the 
load cell. These steps were iterated until 𝐹O at all 𝛿O conditions, ranging from 0 to 6 
mm with 100-µm intervals, was determined. Afterwards, the corresponding curve of 
𝐹O over 𝛿O was plotted. The stiffness 𝑘O was computed based on the resulting series 
of 𝛿O and 𝐹O following Equation (3). A curve of 𝑘O over 𝛿O was also plotted for 
illustration. The resulting 𝑘O was subsequently compared to its counterpart obtained 
from the proposed method. The deviation of 𝑘O, denoted by ∆𝑘O, was calculated 
along 𝛿O. The definition of ∆𝑘O was defined as follows: 

 ∆𝑘O(𝛿O) = |𝑘O,S(𝛿O) − 𝑘O,C(𝛿O)|, (9) 
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where 𝑘O,S and 𝑘O,C were respectively the values of 𝑘O gathered from SPG pincer 
grasping and compression testing. From the resulting ∆𝑘O, the credibility of the 
proposed method can be shown. 

The viability of the resulting 𝑘O from the proposed method for object 
classification was also verified. Manual template-matching classification was 
implemented on the samples. The classification data was 𝑘O obtained from the 
proposed method. Meanwhile, the templates were 𝑘O collected through compression 
testing. The classification was proceeded based on the similarity in the moving average 
of 𝑘O over 𝛿O, and the maximum values in 𝑘O and 𝛿O. 

 
FIGURE 17. An experimental setup for stiffness sensing through compression testing. 

3.6 Adaptive SPG Pincer Grasping Based on Object Stiffness 
The influence of 𝑘O on 𝛿S and 𝐹S throughout SPG pincer grasping can be 

obviously observed, as demonstrated in Equation (8). By synchronously solving 
Equation (7) and (8), the resulting 𝛿S and 𝐹S with respect to 𝑃S during SPG pincer 
grasping can be foreseen. The presented approach of SPA modeling was developed to 
solve Equation (7). Furthermore, the proposed method of stiffness sensing basically 
provides a series of 𝛿S and 𝐹S in Equation (8) during its process (Figure 18). The 
corresponding 𝑃S values of the series of 𝛿S and 𝐹S are also obtained from this 
framework. Therefore, 𝛿S and 𝐹S at specific conditions of 𝑃S are predictively 
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determined. Equation (4) and (5) can be employed to convert 𝛿S and 𝐹S into 𝛿O and 
𝐹O at the same 𝑃S conditions. By applying linear interpolation on the discreate set of 
𝛿O and 𝐹O, 𝛿O and 𝐹O can be modeled over a certain range of 𝑃S. 

To achieve desirable 𝛿O and 𝐹O, denoted by 𝛿O
′  and 𝐹O

′ , respectively, a new 
control architecture is necessary and was consequently elaborated. This control 
architecture is an opened-loop architecture (Figure 19). First, a suitable amount of 𝑃S 
for specific 𝛿O

′  and 𝐹O
′  are determined using the technique of modeling 𝛿O and 𝐹O 

presented in the previous paragraph. The obtained amount of 𝑃S is subsequently 
applied to the SPAs of an SPG. If the SPG and object are in an appropriate gesture, SPG 
pincer grasping is performed. The SPAs operate and produce 𝛿S and 𝐹S, while the 
object reacts with 𝛿O and 𝐹O. Adaptive SPG pincer grasping based on object stiffness 
is accordingly attainable using this control architecture. 

 
FIGURE 18. A modeling technique for accomplishing adaptive SPG pincer grasping 
based on object stiffness. 

 
FIGURE 19. An opened-loop control architecture for adaptive SPG pincer grasping 
based on object stiffness. 
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The presented technique of modeling 𝛿O and 𝐹O was practiced for 
demonstration. The resulting 𝛿S and 𝐹S from the implementation of the proposed 
method of stiffness sensing were used. The conditions of 𝑃S ranged from 10 to 100 
kPa with 10-kPa increments, and there were four testing samples with different 𝑘O 
characteristics. Later, 𝛿O and 𝐹O at the same 𝑃S conditions were computed using 
Equation (4) and (5). Linear interpolation was applied to the resulting 𝛿O and 𝐹O. Hence, 
𝛿O and 𝐹O over 𝑃S between 10 to 100 kPa were predicted. Practical SPG pincer grasping 
was proceeded at the 𝑃S conditions ranging from 25 to 85 kPa with 20-kPa intervals. 
The corresponding values of 𝛿O and 𝐹O for these 𝑃S conditions were determined using 
the prediction results, and these values were considered as 𝛿O

′  and 𝐹O
′ . Furthermore, 

𝛿O was practically measured using the same binocular camera previously used for 
demonstrating the proposed method of stiffness sensing. The workflow of image 
processing and stereo computer vision for approaching 𝛿O was similar to the one 
employed for determining 𝛿S and 𝐺 in that demonstration, but the extracted feature 
became the locations on the sample edges at which the deformation was largest. From 
the resulting values 𝛿O, 𝐹O was calculated based on 𝑘O obtained through compression 
testing using Equation (3). The difference between 𝛿O

′  and𝛿O, denoted by ∆𝛿O, was 
subsequently computed together with the difference between 𝐹O

′  and 𝐹O, denoted by 
∆𝐹O, for evaluating the established technique of adaptive SPG pincer grasping based 
on object stiffness. Mathematically, ∆𝛿O and ∆𝐹O were defined as follows: 

 ∆𝛿O(𝑃S) = |𝛿O(𝑃S) − 𝛿O
′ (𝑃S)|, (10) 

and 

 ∆𝐹O(𝑃S) = |𝐹O(𝑃S) − 𝐹O
′ (𝑃S)|. (11) 
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CHAPTER IV: RESULTS AND DISSCUSSION 

4.1 SPA Modeling 
An empirical model of the SPA was successfully investigated, and it was the 

earliest result of this study. The values of 𝐹S at every designated conditions of 𝛿S and 
𝑃S were first obtained (Table 4, APPENDIX A). The linear fitting on each correlation 
between 𝛿S and 𝐹S were subsequently succeeded. The resulting coefficients of the 
linear functions were achieved (Table 5, APPENDIX A). Ten performance curves of the 
SPA were plotted following the linear functions and utilized as a model of the SPA. 
The performance curves illustrate the characteristics of 𝐹S over 𝛿S between 0 and 10 
mm, at particular 𝑃S conditions ranging from 10 to 100 kPa with 10-kPa increments 
(Figure 20). The SPA behaviours during SPG pincer grasping can be then foreseen for 
this model. At every single condition of 𝑃S, 𝛿S had a linearly inverse relationship with 
𝐹S. The decrease rate of 𝐹S over 𝛿S varied between 260 and 415 N/m. Moreover, 𝛿S 
and 𝐹S were consistently increased over 𝑃S when 𝑃S was amplified. The maximum 
value of 𝐹S was 2.196 N when 𝛿S was 0 mm and 𝑃S was 100 kPa, while its minimum 
value was 0 N when 𝛿S was 6 mm and 𝑃S was 10 kPa. While the original process was 
implemented with the of 𝛿S resolution of 200 µm, it was also proceeded with the 𝛿S 
resolutions of 100 and 400 µm. There was tiny changes in the resulting models. The 
effort and time required for processing SPA modeling of this concept can be reduced 
with a rougher resolution of 𝛿S. The increase of SPA curvature along SPA length was 
also observed in this investigation. The SPA had smaller curvature around its fixed end, 
and had greater curvature around its free end. This phenomenon consequently 
highlights the necessity of a new concept of SPA modeling for SPAs operating in SPG 
pincer grasping. 

4.2 Stiffness Sensing Through SPG Pincer Grasping 
The implementation of stiffness sensing through SPG pincer grasping was 

finished. At each condition of 𝑃S, ranging from 0 to 100 kPa with 10-kPa intervals, 
eleven stereo photographs of SPG pincer grasping  were captured  and recorded for 
each testing sample (Figure 26 to 29, APPENDIX B). The mentioned workflow of image 
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processing and stereo computer vision was further applied on each group of the eleven 
stereo photographs for determining 𝛿S and 𝐺. 

 
FIGURE 20. An empirical kinetic model of an SPA and primary results of stiffness 
sensing through SPG pincer grasping on four samples with different stiffness 
characteristics. 

The undistorted images of the stereo photographs were first obtained. The 
locations of the SPA tips in every pair of the undistorted images were next manually 
extracted (Figure 21). All extracted pixels are demonstrated in Table 6, 9, 12, and 15, 
APPENDIX B. This manual procedure took about a haft of hour for each sample, while 
available solutions of feature extraction98 and feature tracking99 were unviable in this 
specific case. This procedure is consequently burdensome nowadays, according to its 
extremely high consumption in processing effort and time. To overcome this limitation, 
further studies particularly focusing on feature extraction and feature tracking for 
deformable objects are strongly recommended. Point triangulation was completed 
and provided the 3D positions , with respect to the coordinate of the first camera, of 
the SPA tips (Table 7, 10, 13, and 16, APPENDIX B). From the 3D positions of the SPA 
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tips, the displacement vector from one SPA tip to the other was calculated, and the 
distance between the SPA tips was then determined. Afterwards, the values of 𝛿S at 
the specific conditions of 𝑃S was achieved. All resulting values of the distance and 𝛿S 
are shown in Table 8, 11, 14, 17, APPENDIX B. The corresponding 𝐹S values of the 
collected series of 𝛿S were subsequently recognized using the investigated SPA model. 
The discrete pairs of 𝛿S and 𝐹S were modified into a continuous correlation between 
𝛿S and 𝐹S. After this process was iterated for all four samples, the correlations between 
𝛿S and 𝐹S in all designated cases were obtained (Figure 20). The resulting 𝛿S at the 𝑃S 
condition of 100 kPa for thin sample was not included in the demonstration figure of 
results, because it was over 10 mm, which was the boundary of consideration in this 
study. 

 
FIGURE 21. A stereo photograph of SPG grasping captured using a binocular camera 
with manually-extracted features of SPA tips. 

From the same set of the undistorted images, the edges of the sample was 
later manually extracted. The outer diameter of the sample was computed, and found 
at 20.901 mm for thin sample, 21.129 mm for slim sample, 21.184 mm for medium 
sample, and 21.244 mm for thick sample. Afterwards, 𝐺 was calculated and identified 
at 1.439 mm for thin sample, 1.383 mm for slim sample, 1.27 mm for medium sample, 
and 1.403 mm for thick sample. Because the samples were all designed to have the 
same size of outer diameter, and fabricated using the same process and machine, the 
deviation of the resulting sizes of the outer diameter can be utilized for evaluating the 
accuracy of the workflow of image processing and stereo computer vision. Thus, the 
workflow accuracy was concluded as 343 µm. 
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The equivalent values of 𝛿O and 𝐹O were calculated from 𝐺 and the resulting 
series of 𝛿S and 𝐹S using Equation (4) and (5). Four curves illustrating the values of 𝐹O 
over 𝛿O were accordingly drawn (Figure 22). The stiffness 𝑘O of all samples was then 
computed using Equation (3), and plotted over 𝛿O (Figure 22). Consequently, the 
sensing of 𝑘O through SPG pincer grasping was successful for all testing samples. The 
characteristics of 𝑘O was found as follows: 

 
FIGURE 22. Resulting force, stiffness, and stiffness deviations over object deformation 
from stiffness sensing through SPG pincer grasping and compression testing methods 
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on four samples with different characteristics of stiffness: (a) thin sample; (b) slim 
sample; (c) medium sample; (d) thick sample. 

• The stiffness 𝑘O of thin sample slowly dropped from 96 to 57 N/m when 
𝛿O was below 3.7 mm, then ramped up to 147 N/m when 𝛿O was between 
3.7 to 4.9 mm, and decayed to 131 N/m when 𝛿O was between 4.9 and 6 
mm (Figure 22a). For 𝑘O of this sample at which 𝛿O was greater than 6 mm, 
it dramatically rose over 𝛿O, but was not numerically considered, according 
to the excessive amount of 𝛿O. 

• The stiffness 𝑘O of slim sample was horizontal between 188 and 263 N/m 
when 𝛿O was under 4 mm, and dramatically increased to 973 N/m when 
𝛿O went beyond 4 mm (Figure 22b). The maximum value of 𝛿O in the 
consideration range was 6 mm. 

• For medium sample, 𝑘O over 𝛿O was similar to a step response with a single 
peak of overshoot (Figure 22c). The initial value of 𝑘O was 308 N/m, and 
then 𝑘O ramped up to 1.109 N/mm when 𝛿O was between 500 µm and 1 
mm. Afterwards, 𝑘O started to descend from 1.06 N/mm at 𝛿O of 1.1 mm 
to 562 N/m at 𝛿O of 1.4 mm. When 𝛿O was over 1.1 mm, 𝑘O was moderately 
plane between 443 and 625 N/m. The maximum obtained value of 𝛿O was 
3.7 mm. 

• The stiffness 𝑘O of thick sample was found initially flat between 1.086 and 
1.13 N/mm until 𝛿O reached 500 µm (Figure 22d). Later, 𝑘O continuously 
oscillated between 1.106 and 2.096 N/mm when 𝛿O was between 500 µm 
and 1.6 mm. 

4.3 Validation of Stiffness Sensing Through SPG Pincer Grasping 
The experiment of compression testing was completed on all four testing 

samples, and a curve of 𝐹O over 𝛿O was obtained for each testing sample (Figure 22). 
The raw values of 𝐹O at all conditions of 𝛿O are illustrated in Table 18, APPENDIX B. 
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Next, 𝑘O was collected by the calculation on the resulting series of 𝛿O and 𝐹O following 
Equation (3). The calculated values of 𝑘O were subsequently drawn over 𝛿O (Figure 
22). The comparison on the comparable series of 𝑘O over 𝛿O was accomplished. 
Briefly, 𝑘O obtained through SPG pincer grasping has similar trends with its counterpart 
acquired through compression testing. The computation of ∆𝑘O was successfully 
finished following Equation (9), and found as follows: 

• The deviation ∆𝑘O of thin sample fluctuated between 0 and 76 N/m when 
𝛿O was under 4 mm (Figure 22a). Once 𝛿O went through 4 mm, ∆𝑘O 
increased to 212 N/m at 𝛿O of 6 mm. The comparison was terminated at 
this value of 𝛿O. 

• For slim sample, ∆𝑘O frequently oscillated between 0 and 219 N/m when 
𝛿O was below 4 mm (Figure 22b). Afterwards, the oscillation of ∆𝑘O became 
larger, between 0 and 574 N/mm, when 𝛿O went beyond 4 mm. The 
comparison 𝛿O conditions ranged from 0 to 6 mm. 

• The deviation ∆𝑘O of medium sample was almost flat between 95 and 233 
N/m when 𝛿O was between 1.28 and 3 mm (Figure 22c). Out of this range 
of 𝛿O, ∆𝑘O fluctuated between 0 and 603 N/m. The comparison was done 
in the 𝛿O range of 0 to 3.7 mm. 

• For thick sample, ∆𝑘O was at 934 N/m when 𝛿O was smaller than 100 µm 
(Figure 22d). Later, ∆𝑘O was roughly oscillating between 0 and 656 N/m 
when 𝛿O ranged from 0 to 1.6 mm. 

It was apparently found that ∆𝑘O was significantly increased when 𝛿O grew 
further than 4 mm, for thin and slim sample (Figure 22a and 22b). The increase of ∆𝑘O 
could be caused by occlusion effect100, which obstructing the visibility of the SPA tips. 
When 𝛿O reaches a certain amount, the SPA tips sink into sample surface, and hence 
invisible. This phenomenon was occurred when 𝛿O was over 4 mm, and made the 
extracted pixels of the SPA tips deviate from the actual values. Once the extracted 
pixels were inaccurate, the workflow of image processing and stereo computer vision 
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provided diverged results of 𝛿S. Accordingly, the resulting 𝑘O of the proposed method 
of stiffness sensing could have large deviations in this region of 𝛿O. Future studies on 
the direct sensing of 𝛿S are consequently suggested to defeat occlusion effect in the 
sensing process. If there was an accessible technique for accurate 𝛿S, the stiffness 
sensing through the SPG pincer grasping could provide more reliable 𝑘O over larger 
ranges of 𝛿O. 

The manual template-matching classification of all testing samples was also 
completely done. The resulting values of 𝑘O over 𝛿O obtained through compression 
testing were plotted for every sample in the same diagram as the templates for 
classification (Figure 23). The series of 𝑘O over 𝛿O collected through SPG pincer grasping 
of each sample was individually compared to these templates. The moving average of 
the 𝑘O series of thin, slim, and thick sample distinctively matched three different 
templates, and thus these samples were promptly classified (Figure 23). For medium 
sample, its series of 𝑘O have a similar trend with two templates. However, the 
maximum value in 𝑘O of the series indicated the matching of this series and the 
template of medium sample (Figure 23). This classification was not numerically and 
programmatically done, nevertheless it demonstrates the promise of the proposed 
method of stiffness sensing to provide credible 𝑘O for object classification. 

 
FIGURE 23. Manual classification on four samples based on their stiffness collected 
through SPG pincer grasping. 
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4.4 Adaptive SPG Pincer Grasping Based on Object Stiffness 
After stiffness sensing through SPG pincer grasping was finished, a pair of 𝛿S and 

𝐹S at every designated condition of 𝑃S, was obtained for each testing sample (Figure 
20). The data point at the 𝑃S condition of 100 kPa of thin sample was eliminated, 
because its 𝛿S value went beyond 10 mm, which was the consideration boundary. The 
collected values of 𝛿S and 𝐹S were converted into 𝛿O and 𝐹O using Equation (4) and 
(5), and then plotted over 𝑃S (Figure 24 and 25). Thus, 𝛿O and 𝐹O were predicted over 
𝑃S of 10 to 90 kPa for thin sample, and 10 to 100 kPa for other samples. The values 
of 𝛿O

′  and 𝐹O
′  were defined equal to the prediction results of 𝛿O and 𝐹O at the 𝑃S 

conditions ranging 25 to 85 kPa with 20-kPa intervals. Later, SPG pincer grasping was 
practiced at the identical conditions of 𝑃S. A stereo photograph of SPG pincer grasping 
at each 𝑃S condition was successfully collected (Figure 30 to 33, APPENDIX C). The 
sample edges 𝑃S were manually extracted from the stereo photographs. The extracted 
pixels of the sample edges are shown in Table 19, 22, 25, and 28, APPENDIX C. The 3D 
positions of the sample edges were then estimated using point triangulation. The 
resulting 3D positions are addressed in Table 20, 23, 26, and 29, APPENDIX C. These 
positions were utilized to calculate 𝛿O, and the resulting values of 𝛿O are noted in 
Table 21, 24, 27, and 30, APPENDIX C. Afterwards, the corresponding values of 𝛿O were 
computed based on the results from compression testing. The prediction and actual 
results of 𝛿O have resembling tendencies. The comparable values of 𝛿O

′  and 𝛿O were 
next compared, and ∆𝛿O were determined (Figure 24). Afterwards, 𝐹O was computed 
from 𝛿O and 𝑘O obtained through compression testing using Equation (3). The 
prediction and actual results of 𝐹O have less similarity compared to the parity of those 
of 𝛿O. The comparable values of 𝐹O

′  and 𝐹O were compared, and ∆𝐹O was calculated 
(Figure 25). The maximum values of ∆𝛿O and ∆𝐹O for each testing sample can be 
described as follows: 

• The resulting ∆𝛿O for thin sample was maximum at 375 µm when 𝑃S was 
at 65 kPa, while ∆𝐹O was up to 412 mN when 𝑃S was at 45 kPa. 
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• For slim sample, ∆𝛿O was highest at 211 µm when 𝑃S was at 45 kPa, and 
∆𝐹O was greatest at 883 mN when 𝑃S was at 85 kPa. 

• The resulting ∆𝛿O for medium sample was up to 484 µm when 𝑃S was at 
85 kPa, and ∆𝐹O was largest at 871 mN when 𝑃S was at 85 kPa. 

• For thick sample, ∆𝛿O was up to 456 µm when 𝑃S was at 85 kPa, while ∆𝐹O 
was maximum at 893 mN when 𝑃S was at 65 kPa. 

The comparison results show that ∆𝛿O was under 500 µm. While the accuracy 
of the sensing of 𝛿O was recognized at 343 µm, the resulting values of ∆𝛿O are 
acceptable. The resulting ∆𝐹O was up to 893 mN, which is relatively high compared to 
the maximum capacity of the SPAs at 2.196 N. The large values of ∆𝐹O could be caused 
by the superposition effects of ∆𝑘O and ∆𝛿O. Therefore, further studies on the sensing 
of 𝛿S and the association between 𝛿S and 𝛿O, for more accurate results of 𝛿S and 𝛿O 
are expected to minimize all ∆𝑘O, ∆𝛿O, and ∆𝐹O. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

 
FIGURE 24. Prediction and actual deformation on testing samples in adaptive SPG 
pincer grasping together with deviations of prediction: (a) thin sample; (b) slim sample; 
(c) medium sample; (d) thick sample. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

 
FIGURE 25. Prediction and actual force on testing samples in adaptive SPG pincer 
grasping together with deviations of prediction: (a) thin sample; (b) slim sample; (c) 
medium sample; (d) thick sample. 
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CHAPTER V: CONCLUSION 

A framework of stiffness sensing through SPG pincer grasping and adaptive SPG 
pinger grasping based on object stiffness is comprehensively presented in this study. 
The purpose of this study is elucidating stiffness sensing through SPG grasping and 
adaptive SPG grasping based on object stiffness. The transformation between the 
deformation and force on grasped objects and their equivalents on SPAs is the 
challenging issue in this study. This challenge is basically caused by the admirable 
compliance of SPAs, the structures of which have infinite DOF with nonlinear 
characteristics. 

The conventional measurements of object stiffness and its background 
principle were first revealed, and the connection between stiffness measurement and 
grasping was addressed. Next, the nature of SPG grasping was analyzed and clarified. 
The deformation and force on grasped objects during SPG pincer grasping was 
subsequently associated to their equivalents on SPAs. While available techniques of 
SPA modeling are constrained to the assumption of constant curvature, SPA curvature 
is practically increasing along SPA length. Such techniques were thus unviable in this 
study. A new concept of SPA modeling was later introduced. Afterwards. a method of 
stiffness sensing through SPG pincer grasping was proposed, and this method was 
implemented on four cylindrical testing samples with different stiffness characteristics 
for demonstration. To validate the proposed method of stiffness sensing, compression 
testing was conducted on the same samples. Furthermore, a technique of forecasting 
the deformation and force on grasped objects during SPG pincer grasping based on 
object stiffness was presented. An adaptive opened-loop control architecture of SPG 
pincer grasping for achieving desirable amounts of the deformation and force on 
grasped objects was established. To evaluate the forecasting technique and control 
architecture, SPG pincer grasping was practiced at different conditions of SPA input 
pressure from the ones at which the SPA operated in SPA modeling. The foreseen and 
actual values of the deformation and force on grasped objects were finally compared. 
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The results of stiffness sensing illustrate that the proposed method could 
provide similar results with their counterparts collected through compression testing, 
for all testing samples. Moreover, the results of the proposed method of stiffness 
sensing was viable for manual template-matching classification on the samples. The 
results of the presented technique of forecasting the deformation and force on grasped 
objects offered small deviations in deformation, and provided considerable errors in 
force. 

The using of stereo computer vision for the direct sensing of object and SPA 
deformation was the main limitation in this study, according to its lack of accuracy. 
Occlusion effect was one of the consequences. This phenomenon obstructed the 
visibility of the SPA tips, and led to the significant increase of the resulting deviations 
in all deformation, force, and stiffness. Future studies on the direct sensing of SPA 
deformation are recommended to overcome this phenomenon, and enhance the 
resulting accuracy of the proposed framework.  

The importance and originality of this study are that it integrates stiffness 
sensing and SPG grasping into a single action. This study also provides new insights into 
the utilization of object stiffness in adaptive SPG grasping. The findings of this study 
should make an important contribution to the field of soft robotics, by associating SPG 
grasping to a broader range of sensing applications, and leading to a next generation 
of SPG grasping. Ultimately, this study also contributes to the field of object 
classification, by providing an efficient framework of acquiring a novel class of 
classification data. 
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APPENDIX A: DATA FROM SPA MODELING 

TABLE 4. Raw values of SPA force in an experiment of SPA modeling. 

𝑷𝐒 (kPa) 
𝜹𝐒 (mm) 10 20 30 40 50 60 70 80 90 100 

0 0.251 0.472 0.692 0.881 1.128 1.336 1.539 1.778 2.012 2.225 
0.2 0.241 0.473 0.681 0.874 1.114 1.323 1.534 1.757 2.016 2.223 
0.4 0.235 0.466 0.673 0.862 1.111 1.323 1.517 1.756 1.988 2.216 
0.6 0.228 0.456 0.662 0.852 1.101 1.313 1.512 1.750 1.990 2.207 
0.8 0.214 0.450 0.657 0.848 1.086 1.306 1.502 1.736 1.978 2.190 
1 0.210 0.437 0.649 0.838 1.086 1.285 1.493 1.731 1.966 2.179 

1.2 0.204 0.434 0.640 0.826 1.078 1.288 1.476 1.720 1.951 2.172 
1.4 0.197 0.421 0.627 0.829 1.069 1.278 1.464 1.706 1.942 2.157 
1.6 0.186 0.416 0.617 0.818 1.054 1.266 1.457 1.694 1.929 2.146 
1.8 0.178 0.405 0.609 0.814 1.054 1.260 1.449 1.686 1.920 2.137 
2 0.168 0.388 0.606 0.794 1.047 1.241 1.452 1.675 1.904 2.112 

2.2 0.162 0.374 0.596 0.806 1.042 1.238 1.434 1.662 1.897 2.098 
2.4 0.154 0.375 0.588 0.806 1.034 1.242 1.433 1.661 1.886 2.086 
2.6 0.144 0.361 0.576 0.782 1.029 1.236 1.425 1.655 1.871 2.086 
2.8 0.138 0.358 0.569 0.791 1.023 1.232 1.421 1.644 1.864 2.076 
3 0.123 0.352 0.559 0.792 1.019 1.229 1.406 1.638 1.855 2.070 

3.2 0.118 0.342 0.542 0.786 1.016 1.219 1.405 1.627 1.848 2.074 
3.4 0.116 0.335 0.539 0.774 1.005 1.202 1.405 1.634 1.828 2.056 
3.6 0.104 0.327 0.544 0.769 0.999 1.202 1.401 1.633 1.833 2.044 
3.8 0.100 0.325 0.532 0.767 0.999 1.198 1.391 1.626 1.816 2.039 
4 0.090 0.314 0.518 0.750 0.988 1.185 1.388 1.631 1.825 2.027 

4.2 0.084 0.304 0.532 0.745 0.981 1.185 1.390 1.619 1.820 2.024 
4.4 0.075 0.289 0.522 0.733 0.967 1.194 1.388 1.611 1.815 2.023 
4.6 0.065 0.286 0.513 0.729 0.962 1.176 1.380 1.613 1.800 2.022 
4.8 0.61 0.276 0.505 0.720 0.954 1.162 1.380 1.614 1.804 2.009 
5 0.046 0.270 0.497 0.721 0.943 1.152 1.364 1.608 1.799 1.994 

5.2 0.044 0.259 0.487 0.710 0.944 1.136 1.364 1.598 1.794 1.999 
5.4 0.037 0.253 0.472 0.709 0.931 1.139 1.363 1.598 1.793 1.993 
5.6 0.030 0.240 0.459 0.692 0.928 1.123 1.351 1.592 1.784 1.994 
5.8 0.022 0.240 0.457 0.692 0.918 1.116 1.350 1.586 1.783 1.989 
6 0.015 0.232 0.452 0.689 0.910 1.123 1.349 1.585 1.773 1.977 

6.2 0.006 0.224 0.438 0.688 0.904 1.118 1.335 1.596 1.781 1.969 
6.4 0.000 0.226 0.420 0.675 0.909 1.116 1.336 1.561 1.777 1.965 

*The values of 𝐹S are in N. 
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TABLE 4. Raw values of SPA force in an experiment of SPA modeling. (Continued) 

𝑷𝐒 (kPa) 
𝜹𝐒 (mm) 10 20 30 40 50 60 70 80 90 100 

6.6 0.000 0.214 0.417 0.661 0.906 1.104 1.343 1.566 1.775 1.959 
6.8 0.000 0.205 0.419 0.658 0.891 1.105 1.328 1.557 1.772 1.985 
7 0.000 0.200 0.399 0.644 0.894 1.099 1.330 1.573 1.764 1.982 

7.2 0.000 0.189 0.387 0.633 0.977 1.106 1.322 1.595 1.759 1.952 
7.4 0.000 0.183 0.391 0.637 0.883 1.116 1.298 1.573 1.769 1.939 
7.6 0.000 0.179 0.397 0.633 0.875 1.103 1.323 1.574 1.740 1.981 
7.8 0.000 0.164 0.365 0.616 0.871 1.084 1.300 1.571 1.731 1.952 
8 0.000 0.162 0.369 0.613 0.868 1.091 1.320 1.554 1.728 1.954 

*The values of 𝐹S are in N. 

TABLE 5. Results of the linear fitting in an experiment of SPA modeling. 

𝑷𝐒 (kPa) 
𝑭𝐒 = 𝒂𝜹𝐒 + 𝒃 

𝑎 𝑏 

10 –0.040 0.249 

20 –0.040 0.474 

30 –0.040 0.686 

40 –0.032 0.876 

50 –0.036 1.116 

60 –0.031 1.132 

70 –0.027 1.510 

80 –0.025 1.738 

90 –0.034 1.980 

100 –0.035 2.196 

*The values of 𝛿𝑆 and 𝐹𝑆 are respectively in mm and N. The resulting coefficients are 
with confidence bounces of 95%.  
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APPENDIX B: DATA FROM STIFFNESS SENSING 

 
FIGURE 26. Raw stereo photographs of stiffness sensing on thin sample through SPG 
pincer grasping. 
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TABLE 6. Extracted pixels of SPA tips from stereo photographs of stiffness sensing on 

thin sample through SPG pincer grasping. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

0 (894,270) (446,276) (893,443) (453,448) 

10 (886,295) (452,293) (895,422) (452,436) 

20 (890,309) (454,323) (902,394) (454,407) 

30 (895,318) (451,325) (912,388) (454,394) 

40 (914,325) (452,332) (910,379) (457,387) 

50 (909,329) (457,335) (912,374) (466,381) 

60 (907,332) (454,337) (915,370) (464,377) 

70 (907,333) (455,338) (914,367) (466,373) 

80 (911,335) (456,341) (913,365) (463,371) 

90 (914,337) (452,342) (917,364) (461,371) 

100 (915,337) (451,342) (921,364) (458,370) 

TABLE 7. Estimated 3D positions of SPA tips in stiffness sensing on thin sample through 
SPG pincer grasping. 

𝑷𝐒 (kPa) Left SPA Right SPA 

0 (33.358,–13.084,186.976) (33.694,10.440,190.410) 

10 (32.979,–10.226,191.696) (33.311,7.831,192.120) 

20 (33.606,–8.161,192.117) (34.319,4.170,186.975) 

30 (33.684,–6.579,188.659) (34.896,2.821,182.874)) 

40 (34.867,–5.402,181.276) (35.012,1.782,184.884) 

50 (34.963,–5.053,185.280) (35.830,1.062,187.752) 

60 (34.620,–4.708,184.884) (35.838,0.514,185.671) 

*The positions are in mm with respect to the first camera. 
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TABLE 7. Estimated 3D positions of SPA tips in stiffness sensing on thin sample through 
SPG pincer grasping. (Continued) 

𝑷𝐒 (kPa) Left SPA Right SPA 

70 (34.695,–4.584,185.291) (35.942,0.043,186.908) 

80 (34.999,–4.220,184.060) (35.649,–0.226,186.088) 

90 (34.865,–3.959,181.279) (35.714,–0.289,183.640) 

100 (34.846,–3.942,180.499) (35.700,–0.350,180.866) 

*The positions are in mm with respect to the first camera. 

TABLE 8. Resulting distance between SPA tips and SPA deformation in stiffness sensing 
on thin sample through SPG pincer grasping. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐒 (mm) 

0 23.778 0.000 

10 18.066 2.856 

20 13.379 5.199 

30 11.104 6.337 

40 8.040 7.869 

50 6.652 8.563 

60 5.419 9.180 

70 5.058 9.360 

80 4.526 9.626 

90 4.446 9.666 

100 3.710 10.034 
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FIGURE 27. Raw stereo photographs of stiffness sensing on slim sample through SPG 
pincer grasping. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

TABLE 9. Extracted pixels of SPA tips from stereo photographs of stiffness sensing on 

slim sample through SPG pincer grasping. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

0 (888,270) (447,275) (891,442) (453,339) 

10 (887,285) (449,288) (890,425) (454,433) 

20 (885,291) (449,293) (888,419) (454,427) 

30 (885,295) (448,299) (887,414) (454,421) 

40 (891,302) (447,305) (897,409) (455,415) 

50 (896,306) (451,312) (899,402) (453,408) 

60 (895,310) (452,316) (896,395) (453,401) 

70 (897,313) (448,318) (904,390) (459,397) 

80 (901,315) (447,321) (904,385) (458,392) 

90 (899,319) (448,323) (904,383) (461,389) 

100 (906,320) (448,325) (909,379) (461,387) 

TABLE 10. Estimated 3D positions of SPA tips in stiffness sensing on slim sample 
through SPG pincer grasping. 

𝑷𝐒 (kPa) Left SPA Right SPA 

0 (32.960,–13.362,189.952) (33.571,10.489,191.283) 

10 (33.044,–11.517,191.253) (33.588,8.243,192.154) 

20 (32.926,–10.805,192.136) (33.464,7.444,193.041) 

30 (32.840,–10.086,191.701) (33.402,6.690,193.487)) 

40 (33.142,–9.039,188.673) (34.095,5.800,189.523) 

50 (33.747,–8.267,188.229) (34.064,4.798,187.824) 

60 (33.761,–7.758,189.079) (33.885,3.872,189.100) 

*The positions are in mm with respect to the first camera. 
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TABLE 10. Estimated 3D positions of SPA tips in stiffness sensing on slim sample 
through SPG pincer grasping. (Continued) 

𝑷𝐒 (kPa) Left SPA Right SPA 

70 (33.582,–7.317,186.562) (34.821,3.243,188.215) 

80 (33.747,–6.901,184.504) (34.744,2.556,187.794) 

90 (33.702,–6.545,185.732) (34.978,2.231,189.056) 

100 (34.114,–6.245,182.882) (35.265,1.802,186.936) 

*The positions are in mm with respect to the first camera. 

TABLE 11. Resulting distance between SPA tips and SPA deformation in stiffness sensing 
on slim sample through SPG pincer grasping. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐒 (mm) 

0 23.896 0.000 

10 19.788 2.054 

20 18.280 2.808 

30 16.881 3.507 

40 14.895 4.501 

50 13.075 5.410 

60 11.630 6.133 

70 10.760 6.568 

80 10.063 6.916 

90 9.470 7.213 

100 9.084 7.406 
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FIGURE 28. Raw stereo photographs of stiffness sensing on medium sample through 
SPG pincer grasping. 
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TABLE 12. Extracted pixels of SPA tips from stereo photographs of stiffness sensing on 

medium sample through SPG pincer grasping. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

0 (890,270) (447,275) (894,443) (450,449) 

10 (888,284) (445,287) (889,427) (448,436) 

20 (887,288) (447,289) (890,425) (453,433) 

30 (896,285) (447,292) (895,426) (453,429) 

40 (892,289) (449,292) (892,419) (455,427) 

50 (891,291) (448,296) (892,417) (456,422) 

60 (890,295) (448,300) (887,413) (454,419) 

70 (888,296) (445,301) (889,408) (456,413) 

80 (891,298) (442,303) (892,404) (455,409) 

90 (892,301) (443,306) (894,400) (457,405) 

100 (908,299) (440,308) (908,397) (454,402) 

TABLE 13. Estimated 3D positions of SPA tips in stiffness sensing on medium sample 
through SPG pincer grasping. 

𝑷𝐒 (kPa) Left SPA Right SPA 

0 (33.085,–13.302,189.091) (33.529,10.415,188.702) 

10 (32.810,–11.524,189.105) (33.072,8.495,189.998) 

20 (32.894,–11.190,190.390) (33.511,8.225,191.717) 

30 (33.452,–10.962,186.558) (33.819,7.924,189.538)) 

40 (33.355,–10.838,189.087) (33.789,7.392,191.705) 

50 (33.218,–10.427,189.092) (33.867,6.922,192.140) 

60 (33.156,–9.902,189.524) (33.402,6.480,193.487) 

*The positions are in mm with respect to the first camera. 
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TABLE 13. Estimated 3D positions of SPA tips in stiffness sensing on medium sample 
through SPG pincer grasping. (Continued) 

𝑷𝐒 (kPa) Left SPA Right SPA 

70 (32.808,–9.744,189.109) (33.682,5.710,189.109) 

80 (32.776,–9.344,186.586) (33.792,5.103,191.700) 

90 (32.911,–8.938,186.582) (34.081,4.549,191.688) 

100 (33.652,–8.572,178.988) (34.667,3.979,184.494) 

*The positions are in mm with respect to the first camera. 

TABLE 14. Resulting distance between SPA tips and SPA deformation in stiffness sensing 
on medium sample through SPG pincer grasping. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐒 (mm) 

0 23.724 0.000 

10 20.040 1.842 

20 19.469 2.128 

30 19.123 2.300 

40 18.423 2.651 

50 17.627 3.049 

60 16.857 3.434 

70 16.082 3.821 

80 15.359 4.183 

90 14.467 4.628 

100 13.744 4.990 
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FIGURE 29. Raw stereo photographs of stiffness sensing on thick sample through SPG 
pincer grasping. 
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TABLE 15. Extracted pixels of SPA tips from stereo photographs of stiffness sensing on 

thick sample through SPG pincer grasping. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

0 (891,270) (447,275) (893,444) (455,449) 

10 (887,281) (449,284) (891,429) (455,437) 

20 (887,283) (449,287) (891,428) (457,436) 

30 (887,285) (449,289) (887,427) (454,435) 

40 (888,286) (448,290) (887,426) (454,434) 

50 (887,287) (449,291) (888,425) (455,432) 

60 (891,287) (445,291) (889,420) (456,427) 

70 (889,287) (446,291) (888,419) (455,425) 

80 (889,288) (442,292) (888,416) (455,421) 

90 (894,287) (443,293) (891,412) (456,419) 

100 (898,286) (443,291) (896,411) (455,418) 

TABLE 16. Estimated 3D positions of SPA tips in stiffness sensing on thick sample 
through SPG pincer grasping. 

𝑷𝐒 (kPa) Left SPA Right SPA 

0 (33.147,–13.271,188.663) (33.847,10.626,191.272) 

10 (33.044,–12.070,191.252) (33.726,8.799,192.150) 

20 (33.044,–11.724,191.253) (33.880,8.700,193.028) 

30 (33.044,–11.447,191.254) (33.400,8.580,193.492)) 

40 (33.032,–11.257,190.386) (33.400,8.440,193.491) 

50 (33.043,–11.170,191.254) (33.540,8.230,193.485) 

60 (32.997,–10.970,187.828) (33.680,7.530,193.478) 

*The positions are in mm with respect to the first camera. 
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TABLE 16. Estimated 3D positions of SPA tips in stiffness sensing on thick sample 
through SPG pincer grasping. (Continued) 

𝑷𝐒 (kPa) Left SPA Right SPA 

70 (32.946,–11.044,189.101) (33.540,7.320,193.483) 

80 (32.653,–10.810,187.421) (33.541,6.830,193.482) 

90 (33.036,–10.713,185.747) (33.805,6.381,192.582) 

100 (33.280,–10.818,184.106) (34.034,6.157,189.956) 

*The positions are in mm with respect to the first camera. 

TABLE 17. Resulting distance between SPA tips and SPA deformation in stiffness sensing 
on thick sample through SPG pincer grasping. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐒 (mm) 

0 24.050 0.000 

10 20.900 1.575 

20 20.518 1.766 

30 20.155 1.947 

40 19.944 2.053 

50 19.534 2.258 

60 19.355 2.347 

70 18.889 2.580 

80 18.673 2.688 

90 18.426 2.812 

100 17.971 3.039 
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TABLE 18. Raw values of force on samples in compression testing. 

𝜹𝐎 (mm) Thin Slim Medium Thick 

0.1 0.007 0.018 0.006 0.015 
0.2 0.018 0.036 0.044 0.157 
0.3 0.027 0.079 0.125 0.326 
0.4 0.035 0.124 0.217 0.504 
0.5 0.047 0.155 0.298 0.669 
0.6 0.061 0.198 0.386 0.839 
0.7 0.071 0.243 0.484 1.000 
0.8 0.080 0.276 0.560 1.164 
0.9 0.098 0.313 0.657 1.322 
1 0.103 0.346 0.715 1.477 

1.1 0.106 0.378 0.795 1.630 
1.2 0.118 0.413 0.869 1.784 
1.3 0.132 0.443 0.943 1.938 
1.4 0.136 0.485 1.017 2.086 
1.5 0.149 0.512 1.088 2.237 
1.6 0.158 0.542 1.160 2.375 
1.7 0.165 0.579 1.233 2.522 
1.8 0.171 0.605 1.303 2.661 
1.9 0.182 0.634 1.374 2.787 
2 0.191 0.662 1.437 2.914 

2.1 0.200 0.696 1.503 3.058 
2.2 0.205 0.728 1.566 3.184 
2.3 0.212 0.757 1.635 3.334 
2.4 0.220 0.798 1.698 3.472 
2.5 0.224 0.821 1.763 3.599 
2.6 0.237 0.844 1.827 3.733 
2.7 0.243 0.869 1.895 3.876 
2.8 0.252 0.907 1.969 4.013 
2.9 0.261 0.928 2.054 4.140 
3 0.267 0.948 2.116 4.272 

3.1 0.279 0.982 2.190 4.441 
3.2 0.282 1.008 2.290 4.584 
3.3 0.292 1.042 2.349 4.724 
3.4 0.304 1.067 2.422 4.880 
3.5 0.312 1.099 2.510 5.029 

*The values of 𝐹O are in N. 
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TABLE 18. Raw values of force on samples in compression testing. (Continued) 

𝜹𝐎 (mm) Thin Slim Medium Thick 

3.6 0.319 1.144 2.584 5.180 
3.7 0.325 1.171 2.668 5.350 
3.8 0.337 1.210 2.746 5.500 
3.9 0.350 1.246 2.848 5.682 
4 0.359 1.308 2.942 5.861 

4.1 0.376 1.327 3.033 6.059 
4.2 0.389 1.364 3.132 6.260 
4.3 0.403 1.403 3.249 6.478 
4.4 0.418 1.454 3.347 6.679 
4.5 0.429 1.497 3.442 6.898 
4.6 0.445 1.562 3.538 7.141 
4.7 0.463 1.62` 3.662 7.376 
4.8 0.481 `.693 3.796 7.627 
4.9 0.503 1.737 3.934 7.873 
5 0.510 1.804 4.040 8.144 

5.1 0.537 1.866 4.165 8. 409 
5.2 0.558 1.922 4.323 8.713 
5.3 0.585 2.076 4.461 9.014 
5.4 0.604 2.157 4.628 9.340 
5.5 0.634 2.234 4.827 9.696 
5.6 0.663 2.354 5.019 10.050 
5.7 0.697 2.450 5.209 10.384 
5.8 0.728 2.548 5.385 10.764 
5.9 0.748 2.548 5.596 11.192 
6 0.723 2.651 5.848 11.570 

*The values of 𝐹O are in N. 
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APPENDIX C: DATA FROM ADAPTIVE GRASPING 

 
Figure 30. Raw stereo photographs of adaptive SPG pincer grasping on thin sample. 

TABLE 19. Extracted pixels of sample edges from stereo photographs of adaptive SPG 

pincer grasping on thin sample. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

25 (895,315) (439,322) (896,414) (446,401) 

45 (903,328) (444,334) (907,377) (442,382) 

65 (907,334) (440,340) (908,368) (443,374) 

85 (908,336) (438,342) (910,366) (446,370) 

TABLE 20. Estimated 3D positions of sample edges in adaptive SPG pincer grasping on 
thin sample. 

𝑷𝐒 (kPa) Left SPA Right SPA 

25 (32.805,–6.806,183.729) (33.362,5.085,186.172) 

45 (33.644,–5.109,182.503) (33.726,1.279,180.161) 

65 (33.589,–4.243,179.383) (33.857,0.171,180.154) 

85 (33.504,–3.958,178.242) (34.191,–0.220,180.529) 

*The positions are in mm with respect to the first camera. 
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TABLE 21. Resulting distance between sample edges and sample deformation in 
adaptive SPG pincer grasping on thin sample. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐎 (mm) 

25 12.153 4.374 

45 6.804 7.048 

65 4.489 8.206 

85 4.435 8.233 

 

 
Figure 31. Raw stereo photographs of adaptive SPG pincer grasping on slim sample. 

TABLE 22. Extracted pixels of sample edges from stereo photographs of adaptive SPG 

pincer grasping on slim sample. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

25 (888,293) (453,299) (891,416) (459,422) 

45 (892,305) (445,311) (899,406) (448,409) 

65 (899,313) (440,319) (900,392) (448,398) 

85 (895,317) (441,323) (903,384) (442,390) 
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TABLE 23. Estimated 3D positions of sample edges in adaptive SPG pincer grasping on 
slim sample. 

𝑷𝐒 (kPa) Left SPA Right SPA 

25 (33.407,–10.270,192.561) (34.038,6.916,193.910) 

45 (33.056,–8.367,187.412) (33.689,5.080,185.758) 

65 (33.191,–7.107,182.913) (33.750,3.394,185.342) 

85 (32.948,–6.636,184.533) (33.491,2.276,181.734) 

*The positions are in mm with respect to the first camera. 

TABLE 24. Resulting distance between sample edges and sample deformation in 
adaptive SPG pincer grasping on slim sample. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐎 (mm) 

25 17.250 1.940 

45 13.563 3.783 

65 10.792 5.167 

85 9.357 5.886 

 

 
FIGURE 32. Raw stereo photographs of adaptive SPG pincer grasping on medium 
sample. 
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TABLE 25. Extracted pixels of sample edges from stereo photographs of adaptive SPG 

pincer grasping on medium sample. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

25 (889,288) (453,294) (889,424) (456,429) 

45 (889,292) (448,298) (890,417) (454,423) 

65 (886,297) (437,303) (886,411) (449,417) 

85 (891,298) (441,304) (893,403) (443,406) 

TABLE 26. Estimated 3D positions of sample edges in adaptive SPG pincer grasping on 
medium sample. 

𝑷𝐒 (kPa) Left SPA Right SPA 

25 (33.471,–10.942,192.116) (33.679,7.949,193.479) 

45 (33.093,–10.268,189.954) (33.589,6.992,192.151) 

65 (32.103,–9.412,186.610) (32.960,6.144,191.734) 

85 (32.704,–9.255,186.174) (32.958,4.687,186.197) 

*The positions are in mm with respect to the first camera. 

TABLE 27. Resulting distance between sample edges and sample deformation in 
adaptive SPG pincer grasping on medium sample. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐎 (mm) 

25 18.941 1.121 

45 17.406 1.888 

65 16.401 2.391 

85 13.945 3.620 
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FIGURE 33. Raw stereo photographs of adaptive SPG pincer grasping on thick sample. 

TABLE 28. Extracted pixels of sample edges from stereo photographs of adaptive SPG 

pincer grasping on thick sample. 

𝑷𝐒 (kPa) 
Left SPA Right SPA 

1st camera 2nd camera 1st camera 2nd camera 

25 (888,287) (452,292) (892,427) (456,435) 

45 (886,289) (442,293) (886,422) (452,430) 

65 (883,285) (442,292) (891,418) (450,424) 

85 (883,287) (441,292) (890,414) (441,420) 

TABLE 29. Estimated 3D positions of sample edges in adaptive SPG pincer grasping on 
thick sample. 

𝑷𝐒 (kPa) Left SPA Right SPA 

25 (33.332,–11.151,192.120) (33.865,8.521,192.120) 

45 (32.463,–10.747,188.694) (33.185,7.862,193.053) 

65 (32.272,–11.164,189.982) (33.348,7.050,189.984) 

85 (32.199,–11.002,189.556) (32.624,6.386,186.628) 

*The positions are in mm with respect to the first camera. 
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TABLE 30. Resulting distance between sample edges and sample deformation in 
adaptive SPG pincer grasping on thick sample. 

𝑷𝐒 (kPa) Distance (mm) 𝜹𝐎 (mm) 

25 19.679 0.782 

45 19.127 1.058 

65 18.246 1.499 

85 17.638 1.803 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VITA 
 

VITA 
 

NAME Chaiwuth Sithiwichankit 

DATE OF BIRTH 21 May 1995 

PLACE OF BIRTH Bangkok, Thailand 

INSTITUTIONS ATTENDED Faculty of Engineering, Chulalongkorn University 

PUBLICATION Sithiwichankit C, Chanchareon R. Adaptive Pincer Grasping 
of Soft Pneumatic Grippers Based on Object Stiffness for 
Modellable and Controllable Grasping Quality. Robotics. 
2022; 11(6):132. https://doi.org/10.3390/robotics11060132  
 
Sithiwichankit C, Chanchareon R. Advanced Stiffness 
Sensing through the Pincer Grasping of Soft Pneumatic 
Grippers. Sensors. 2023; 23(13):6094. 
https://doi.org/10.3390/s23136094 

  

 

 


	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	CHAPTER I: INTRODUCTION
	1.1 Background
	1.2 Challenges
	1.3 Scope and Contributions

	CHAPTER II: LITERATURE REVIEW
	2.1 Robotic Gripper
	2.2 Robotic Modeling
	2.3 SPA Modeling
	2.4 Stereo Computer Vision

	CHAPTER III: METHODOLOGY
	3.1 Stiffness Measurement
	3.2 SPG Pincer Grasping
	3.3 SPA Modeling
	3.4 Stiffness Sensing Through SPG Pincer Grasping
	3.5 Validation of Stiffness Sensing Through SPG Pincer Grasping
	3.6 Adaptive SPG Pincer Grasping Based on Object Stiffness

	CHAPTER IV: RESULTS AND DISSCUSSION
	4.1 SPA Modeling
	4.2 Stiffness Sensing Through SPG Pincer Grasping
	4.3 Validation of Stiffness Sensing Through SPG Pincer Grasping
	4.4 Adaptive SPG Pincer Grasping Based on Object Stiffness

	CHAPTER V: CONCLUSION
	REFERENCES
	APPENDIX A: DATA FROM SPA MODELING
	APPENDIX B: DATA FROM STIFFNESS SENSING
	APPENDIX C: DATA FROM ADAPTIVE GRASPING
	VITA

