

Investigate the possibility of using smart contracts and digital signatures to create a
legally binding contract, and to create a prototype opensource web application as a

proof of concept

Mr. Yosnai Chanatrutipan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2022
Copyright of Chulalongkorn University

ศึกษาความเป็นไปได้ในการใช้สัญญาอัจฉรยิะและลายเซ็นดิจิทัลเพื่อทําการเซ็นสัญญาผ่านช่องทาง
ดิจิทัลให้มีผลในโลกจริง และทําการพัฒนาเว็บแอปพลิเคชันต้นแบบเพื่อการเผยแพร่ต่อไปแบบโอเพน

ซอร์ส

นายยศนัย ชนัศรุติพันธ์ุ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปรญิญาวิทยาศาสตรมหาบัณฑติ
สาขาวิชาวิทยาศาสตร์คอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title Investigate the possibility of using smart contracts and

digital signatures to create a legally binding contract,
and to create a prototype opensource web application
as a proof of concept

By Mr. Yosnai Chanatrutipan
Field of Study Computer Science
Thesis Advisor Associate Professor NUTTAPONG CHENTANEZ

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
ENGINEERING

 ()

THESIS COMMITTEE

Chairman
 (Assistant Professor SUKREE SINTHUPINYO, Ph.D.)

Thesis Advisor
 (Associate Professor NUTTAPONG CHENTANEZ)

External Examiner
 (Assistant Professor Peerapat Chokesuwattanaskul)

 iii

ABSTRACT (THAI)
 ยศนัย ชนัศรุติพันธุ์ : ศึกษาความเป็นไปได้ในการใช้สัญญาอัจฉริยะและลายเซ็นดิจิทัลเพื่อทําการเซ็น

สัญญาผ่านช่องทางดิจิทัลให้มีผลในโลกจริง และทําการพัฒนาเว็บแอปพลิเคชันต้นแบบเพื่อการ
เผยแพร่ต่อไปแบบโอเพนซอร์ส. (Investigate the possibility of using smart contracts and
digital signatures to create a legally binding contract, and to create a prototype
opensource web application as a proof of concept) อ.ที่ปรึกษาหลัก : รศ.ดร.ณัฐพงศ์ ชิน
ธเนศ

เราได้ศึกษาความเป็นไปได้ในการนำเทคโนโลยีบล็อกเชนมาใช้ในการเซ็นสัญญาซื้อขายที่มีผลในโลก

จริง จากผลการศึกษาเราพบว่าเราสามารถนำบล็อกเชนมาใช้ในการยืนยันตัวตนของคู่เซ็นสัญญา ใช้ในการสร้าง
ลายเซ็นอิเล็กทรอนิกส์ที่สามารถนำมาใช้เซ็นสัญญาได้ และนำมาใช้ในการบังคับใช้เงื่อนไขสัญญาหลังจากการเซ็น
สัญญาสิ้นสุดลง

การยืนยันตัวตนและการเซ็นสัญญานั้นทำได้โดยการใช้หนึ่ งในเทคโนโลยีของบล็อกเชนที่เรียกว่า
decentralized identity และ verifiable credential. ส่วนการบังคับใช้สัญญานั้นสามารถทำได้ผ่านสัญญา
อัจฉริยะที่ทำงานบนระบบบล็อกเชน สัญญาอัจฉริยะนั้นมีข้อจำกัด การบังคับใช้สัญญาเลยถูกจำกัดอยู่ภายใต้
กรณีที่เงื่อนไขของสัญญานั้นไม่ซับซ้อนมากนัก ซึ่งขอบเขตของงานวิจัยเราก็คือสัญญาเช่าแบบง่าย เนื่องจาก
เทคโนโลยีบล็อกเชนนั้นมีความปลอดภัยสูง มีลักษณะที่ไม่สามารถแก้ไขสิ่งที่ทำไว้แล้วได้ เก็บบันทึกข้อมูลทุก
อย่างที่เกิดขึ้น และยังเข้าถึงได้ทุกคนอย่างเท่าเทียมแบบกระจายศูนย์โดยที่ไม่ได้มีได้บุคคลใดควบคุม ลักษณะ
เหล่านี้ทำให้สัญญาที่เซ็นโดยวิธีของเรามีความปลอดภัยและโปร่งใสกว่าวิธีธรรมดา สุดท้ายนี้เราได้ทําการพัฒนา
เว็บแอปพลิเคชันต้นแบบเพื่อเป็นแนวทางในการสร้างเว็บเซ็นสัญญาผ่านบล๊อกเชนเพื่อการเผยแพร่ต่อไปแบบ
โอเพนซอร์ส

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร์ ลายมือชื่อนิสิต ..
ปีการศึกษา 2565 ลายมือชื่อ อ.ที่ปรึกษาหลัก

 iv

ABSTRACT (ENGLISH)
6372096621 : MAJOR COMPUTER SCIENCE
KEYWORD:
 Yosnai Chanatrutipan : Investigate the possibility of using smart contracts and digital

signatures to create a legally binding contract, and to create a prototype opensource
web application as a proof of concept. Advisor: Assoc. Prof. NUTTAPONG CHENTANEZ

We investigated the possibility of using blockchain to create a legally binding contract.

According to our study, blockchain can be used to authenticate the identities of the involved
parties, to provide a cryptographically generated electronic signature used to sign a contract,
and to automate and enforce the term of an agreement. The authentication and the signing are
done using a blockchain-based self-sovereign identity framework called a decentralized identity
and verifiable credentials. The term can be enforced by using a smart contract, a program that
runs on the blockchain. Some contracts terms are too complex to be translated into a smart
contract code. Therefore, we limit the scope of our thesis to enforce just a simple lease
agreement between a tenant and a landlord.

Blockchain is publicly accessible, immutable, verifiable, and timestamped by design.
Therefore, the contracts signed this way are more secure and more transparent compared to
the ones signed with the traditional method. The main drawback of this method is user
experience. Interacting with the blockchain required a certain level of computer literacy which
made it not suitable for everyone.

We built a proof-of-concept web application. We design it in such a way that it can be
used by anyone, sacrificing some decentralized aspects for ease of use. The users can sign and
enforce a lease agreement just by using their phone, without having to interact with the
blockchain themselves at all. The code is open source, published on GitHub.

Field of Study: Computer Science Student's Signature
Academic Year: 2022 Advisor's Signature

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor for their
invaluable guidance and support throughout the completion of this thesis.

Yosnai Chanatrutipan

TABLE OF CONTENTS

 Page
 ..iii

ABSTRACT (THAI) ..iii

 ... iv

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

Abstract .. 1

INTRODUCTION ... 2

Chapter 1 signing a contract. ... 7

Signing on paper .. 7

Signing on computer .. 9

Electronic signature ... 9

Problem with an electronic signature .. 10

Digital signature .. 11

Certificate authority and Digital certificate .. 13

A review of an existing document signing web application ... 14

Chapter 2 BLOCKCHAIN .. 16

Blockchain ... 16

Smart Contract ... 17

The blockchain used in this thesis.. 19

Chapter 3 Decentralized identity ... 20

 vii

A decentralized identity identifier (DID) ... 22

A decentralized identity document. (DID document) .. 24

Problem with DID and DID document. .. 28

Verifiable credential .. 30

Chapter 4 Method ... 36

Signing a contract using a verifiable credential as an electronic signature 39

Enforcing a lease agreement with smart contract .. 44

Deploying a smart contract .. 46

Smart contract automation on Ethereum... 47

Advantage of rent payment with smart contracts .. 48

Related work .. 49

DIAGRAM (OVERVIEW OF THE THESIS) .. 50

Chapter 5 Opensource Web application .. 57

How to create a decentralized identity ... 57

How to issue and obtain a verifiable credentials: part 1 .. 63

How to issue and obtain a verifiable credentials: part 2 .. 65

The web application .. 69

SIGN PAGE .. 70

Document authentication Page ... 77

Lease Page .. 78

Chapter 6 Conclusion and Future work ... 80

REFERENCES ... 82

VITA .. 84

Abstract

We investigated the possibility of using blockchain to create a legally binding
contract. According to our study, blockchain can be used to authenticate the
identities of the involved parties, to provide a cryptographically generated electronic
signature used to sign a contract, and to automate and enforce the term of an
agreement. The authentication and the signing are done using a blockchain-based
self-sovereign identity framework called a decentralized identity and verifiable
credentials. The term can be enforced by using a smart contract, a program that runs
on the blockchain. Some contracts terms are too complex to be translated into a
smart contract code. Therefore, we limit the scope of our thesis to enforce just a
simple lease agreement between a tenant and a landlord.

Blockchain is publicly accessible, immutable, verifiable, and timestamped by design.
Therefore, the contracts signed this way are more secure and more transparent
compared to the ones signed with the traditional method. The main drawback of this
method is user experience. Interacting with the blockchain required a certain level of
computer literacy which made it not suitable for everyone.

We built a proof-of-concept web application. We design it in such a way that it can
be used by anyone, sacrificing some decentralized aspects for ease of use. The users
can sign and enforce a lease agreement just by using their phone, without having to
interact with the blockchain themselves at all. The code is open source, published
on GitHub.

 2

INTRODUCTION

Figure 1 , A decentralized identity is a combination of digital ID and blockchain.
The identity of an individual or organization can be stored, authenticated, verified,
and viewed directly on the blockchain without requiring a third-party intervention.

A contract needs to be signed to be legally valid. The most common way is to sign a
handwritten signature on a paper, but in this thesis, we will focus on how to digitally
sign a document on a computer.

Unlike on paper, a signature on computer can be generated in many ways, the
quality of signatures varies based on the method used to create them, some are
more secure than another. What signature we use depends on the level of security
required for the contract in question. The contract between schools and parents
about the small deposit fee would not need the same level of integrity as the
contract between two companies dealing with millions of dollars. In this paper, we
will focus on the contracts that are highly staked, meaning that the contract should
be signed in a secure manner with a good quality signature.

A signature create on a computer is call an electronic signature. An electronic
signature can be anything as long as it can be used to represent a person, for
example, a digital hand-drawing signature, a name in a plaintext format typed in
Microsoft word, a signature created from the secure cryptographic method, or a
signature issued by a trusted authority, and etc. In legal setting, all signatures are

 3

equally valid and legally equivalence to the handwritten signature done on paper[1].
However, using a too-simple signature can lead to a problem later. It would be best
to use a signature that is cryptographically generated from a well-known algorithm
and that is bound to the real-world identity of the owner. We will discuss this in
more detail in Chapter 1.

 In this thesis, we use a feature on a blockchain, called decentralized identity to
create an electronic signature used to sign a contract. A decentralized identity is a
digital identity management system operated on the blockchain, in which everyone
owns a unique identification number. To be able to claim and operate this identity,
the cryptographic key is required; These keys are given only once when the users
create their decentralized identity. We will use these keys to sign a contract. These
keys are our electronic signature. The difference between these blockchain keys and
a normal key will be discussed in Chapter 2. The contract signed with these keys can
be authenticated and verified by anyone directly from the blockchain, and it can be
done in total privacy.

We can go even further with the blockchain using verifiable credentials. This
verifiable credential is one feature of decentralized identity. It is a digital credentials
issued by a trusted institute. It exists to bind the real-world identity and credentials
of its owner to an online identity, in this case a decentralized identity. For example,
this guy, who has decentralized identity ID 1234, wants everyone to know that he
can drive a car. He can ask a driving license issuer to issue him driving license in the
form of a verifiable credentials addressing to a decentralized identity ID 1234, he can
use this verifiable credential to proof to anyone that he can drive as long as he has
the private key corresponding to that ID to back up his claim.

In our thesis, we use this verifiable credential for signers to authenticate each other.
Verifiable credentials are built on top of decentralized identity, which are built on
top of blockchain. Therefore, the verifiable credentials are cryptographically secure
and immutable by design. It can be used as an electronic signature too. The guy

 4

from the previous example could use that driving license verifiable credentials to fill
in the form of a contract or simply attach it along with the contract document as an
electronic signature. Using these methods, we can have more than one electronic
signature per contract. Normally, we sign the contract only once, but in our thesis,
we can sign the contract multiple times, not in the form of handwritten signature,
but in the form of credentials from verifiable credentials. It’s like attaching your
digital ID to the contract documents. It acts like an electronic signature.

Anyone who reads the signed contract will see which part of the contract is data
from a verifiable credential and which one is not. In our demo application, the signer
can force the other party to fill in a specific form of the contract using only data
from a verifiable credential. Therefore, the contract cannot be finalized or signed
unless the signer has verifiable credentials to back up his claim.

While the decentralized identity is publicly searchable like searching a name on
google, these verifiable credentials are kept privately even though its underlying
technology is based on decentralized identity which is public. More detail on
decentralized identity and verifiable credentials in Chapter 3.

The method we use can sign any type of contract, however, enforcing them with a
smart contract is a different matter. Smart contracts are currently not developed
enough to enforce just any type of contract; Some contracts terms are too complex
to be translated into a smart contract code. Transferring real money or setting up an
automated recurring payment system is also not possible due to a smart contract
limitation. We offer a solution to some of these problems in this thesis.

Smart contracts are pieces of code with predefined action sitting quietly on the
blockchain waiting for someone to execute them. The landlord and the tenant must
define what action it should do in advance, since it cannot be changed after its
creation. For example, landlord can set a smart contract like this “If this guy does

 5

not pay rent by 20 August, then set this lease agreement status to TERMINATED FOR
A BREACH OF CONTRACT”.

The key point is that smart contracts are immutable. It cannot be modified. It will do
exactly what it was program to do. It records everything it has ever done. The code is
on the public blockchain so anyone can verify it. This is perfect to enforce a legal
contract. However Smart contracts are not easy to construct, it must be written in a
programming language. They are not suitable to be used by everyone. This thesis will
show how an application can provide the tools for anyone to create smart contracts
without coding.

This thesis is organized in the following ways. Chapter 1 is an overview of signing a
contract in general; we will go over all the tools that are needed to sign a contract,
e.g., an electronic signature, public key infrastructure, certificate authority, and digital
signature. Chapter 2 and Chapter 3 will provide the reader with the essential
background knowledge on blockchain, decentralized identity, and verifiable
credentials. Chapter 4 explains how to use them to sign and enforce a contract. At
the end of chapter 4, there is an easy-to-follow diagram overviewing the whole
operation. Chapter 5 will show how to implement the web application outlined in
chapter 4. The web application functionalities are demonstrated in a series of figures
in detail from start to finish.

The concept of decentralized identity, verifiable credential and smart contract is not
yet a mature concept. Documentation on how to build it in detail is rare, and in
some cases, nonexistent. There is no contract signing service on the market that uses
verifiable credentials or decentralized identity to sign a contract just like us yet.
There is also no service that allows a user to enforce the term of lease agreement
with a smart contract either despite this idea being proposed in many research
papers. This is due to some smart contract limitation that we will discuss later.

 6

In this thesis, we create a demo web application to demonstrate the whole process
in more detail and to serve as an implementation reference for any future work.

 7

Chapter 1 signing a contract.
Signing on paper

Signing a contract on paper typically involves the following steps:

1. Drafting the Contract: The first step is to create the contract itself. This is
typically done by a party or their legal representative, outlining the terms and
conditions of the agreement. The contract should include all relevant details
such as names and addresses of the parties involved, the purpose of the
agreement, obligations and rights of each party, payment terms, duration, and
any other specific terms and conditions.

2. Reviewing the Contract: Once the contract is drafted, it is essential for all

parties involved to carefully review the document. The party should ensure
they understand the terms and conditions and seek legal advice if necessary.
This step helps avoid misunderstandings and disputes later.

3. Making Amendments: If any party wishes to make changes to the contract,

they should communicate their proposed amendments to the other party.
Both parties can negotiate and reach an agreement on any modifications
before proceeding to the next step.

4. Signing the contract: Once all parties are satisfied with the contract and any

amendments, the contract can be signed.

5. Retaining Copies: It is crucial to keep the signed contract in a safe and easily
accessible place. Parties should store the contract along with any supporting
documents related to the agreement. This ensures that all parties can refer
to the contract if disputes arise or if they need to enforce or comply with its
terms in the future.

 8

It's important to note that the specific process may vary depending on the
jurisdiction and the type of contract involved. Consulting with legal professionals is
always recommended to ensure compliance with local laws and regulations. We will
not be focusing on these matters in this thesis.

Although this thesis builds a web application that can sign any type of contract, we
will focus on the leasing agreements. The steps of signing a leasing contract are listed
below.

1. Initial Agreement: The prospective tenant and landlord first agree on the
terms of the lease, including the rental price, lease duration, security deposit
amount, maintenance responsibilities, and any other specific terms and
conditions. This negotiation phase is crucial to ensure both parties agree
before proceeding.

2. Drafting the Lease Agreement: Once the terms are agreed upon, the

landlord prepares the lease agreement. The document outlines all the terms
discussed in the initial agreement, as well as any additional clauses or
provisions required by local laws.

3. Reviewing the Lease Agreement: Both the tenant and the landlord should

carefully review the lease agreement to ensure they understand all the terms
and conditions. It is advisable for each party to seek legal advice if needed,
especially if there are any complex provisions or unfamiliar clauses.

4. Amendments and Negotiations: If either party wishes to make amendments

to the lease agreement, they should discuss the proposed changes with the
other party. Negotiations may take place to reach a mutually acceptable
version of the agreement. It is important to document any agreed-upon
modifications and ensure that both parties are satisfied with the final terms.

 9

5. Execution of the Lease Agreement: Once the lease agreement is finalized, it

is time to sign the document.

6. Retaining Copies: It is important to keep the signed lease agreement in a safe
place, along with any supporting documents related to the tenancy. Both the
tenant and the landlord should retain copies for reference, enforcement of
terms, or resolving any potential disputes that may arise during the lease
period.

Signing on computer

Signing on a computer is like signing done on paper, but the handwritten signature is
replaced by an electronic signature.

Electronic signature

 Figure 2 , an example of an electronic signature.

The easiest way to sign a contract digitally is to use applications such as Microsoft
word or Adobe acrobat. In those applications, users simply type in or draw their
signature on top of the document. The signature made this way is called an
electronic signature. For a non-serious contract, signing a document like this is

 10

perfectly fine. However, this type of signature is not secured enough in a professional
setting. Before we talk about the downside of this type of signature, let’s formally
define what an electronic signature is.

An electronic signature is the signature that is made on a computer. It can be any
data that is associated with its owner [1]. For example, your voice recording can be
used as an electronic signature too. If it can be used to represent the person, then it
counts as an electronic signature. In Thailand, it is legally recognized as an equal to
the signature done on paper.

Problem with an electronic signature

1. It can be forged, and impersonated.

Figure 3, signature forging; a malicious actor type in a name that is not his. There is
no way to prove who made the signature without external factor. This is a bad
signature. A good signature should be able to be verified cryptographically by itself.

 11

2. Not non-repudiation

Figure 4 Not non-repudiation; the signer can deny any involvement with the
contract. A good signature should be undeniable once signed.

Digital signature

The previous figures explained how a simple electronic signature made by yourself is
not good enough in a high staked contract. The de facto standard is to sign a
document under a public key infrastructure. The signature is created from a secured
cryptographic algorithm to ensure the integrity and authenticity of the signature and
its operation.

In public key infrastructure, each person carried 2 keys, a public key, and a private
key (also known as a secret key). Both keys are created from a cryptographic
algorithm. The public key can be shared with anyone, but the private key should
remain a secret only to the owner. The most common metaphor is that the private
key is the key to your house, and the public key is the address of your house.

 12

Figure 5 , A private key can be used to sign a document. The result of the signing is
a signed document and a piece of data called digital signature. In other words, a
digital signature is a code, containing proof that you signed THIS document with THIS
private key.

Figure 6, A digital signature is a non-repudiation proof that the signer did indeed
sign a contract. Anyone can use the author’s public key, a signed document, and a
digital signature to verify the integrity and authenticity of the signed document.

These key pairs can be made offline by anyone; Nevertheless, one can also
obtain these keys from a third-party identity provider such as a certificate authority.
In addition to just a key pair, it comes in bundle with your identity attached to the
keys, this is called a digital certificate.

 13

Certificate authority and Digital certificate

Keys pair and digital signature alone cannot be used to identify the real-world
identity of the signer. The use of third-party identity provider such as certificate
authority is needed to link these cryptographic keys pair, to the real-world identity of
the key owner.

A certificate authority (CA) is a trusted third party that issues digital certificates, which
are used to establish the identity of individuals, organizations, and devices in a
secure manner. Digital certificates contain information about the identity of the
certificate owner, as well as an owner’s public key.

CAs are responsible for verifying the identity of individuals and organizations before
issuing digital certificates to them. They use a variety of methods to verify identity,
including checking government-issued identification documents, verifying business
licenses, and performing background checks. Once an individual or organization's
identity has been verified, the CA issues a digital certificate that can be used to
establish their identity and sign the document.

CAs play a crucial role in the operation of many online systems, including e-
commerce, online banking, and other applications that require secure
communication and authentication. They are typically highly trusted entities, and
their digital certificates are widely accepted as evidence of identity in online
contexts. Many document signing service providers are partners with the certificate
authority, to offer an all in one, ease of use, centralized document signing platform.

 14

A review of an existing document signing web application

Non-blockchain based online signing service.

There are many trusted signing services in the market, such as Adobe sign, Dropbox
sign, DocuSign etc. The advantage of using these trusted services is that they provide
everything the signer need to sign a contract in an all-in-one package such as creating
and editing the document functionality, issue a digital certificate, secure and reliable
signing process, data storage to store the document, an ability to verify the signed
document, API request for developer, customer support, and more. The downside is
that these services are centralized, not opensource, charge a subscription fee, some
offer a free service but start costing money if the user goes above the free tier limit.
Most importantly, all services rely on the central server of the host. If the website
becomes unavailable, due to any reason, for example, a failure due to the cloud
provider that the website is operated on, then the whole system will stop
functioning. Although, this shouldn’t be that much of a problem in modern times
due to the advancement of clouds technology. Another downside is that all user
activity is tracked by the service provider since everything is happening on their site.

Blockchain-based online signing services.

The centralized issue can be solved using a blockchain. The blockchain will be
discussed in more detail in chapter 2, for now we will focus on the website that uses
blockchain in their document signing service.

Blockchain is typically used to record the evidence of the signing, for example,
storing the hash of a signed document on the blockchain, leaving a permanent
immutable record. In some websites users can sign a document with a private key of
their blockchain account, just like how we use a normal private key to sign a contract
in a traditional setting. These websites all fail in one aspect. The blockchain key pairs

 15

that the users use to sign a contract have no link to their real-world identity, unlike a
digital certificate and a private key obtained from a certificate authority. We will solve
this issue with a decentralized identity and a verifiable credential in the next chapter.
We will bind the identity of an individual to their blockchain key pairs.

The signing services built on top of the blockchain technology are divided into 2
categories based on the type of blockchain these services operate on. The services
built on the private or consortium blockchain require users to pay for the services.
Meanwhile, services operating on the public blockchain are technically free to use,
but the users need to pay the transaction fee themselves. Blockchain technology is
inherently tamper proof, signing a contract on the blockchain guarantees the safety
of the record.

Here is the (non-inclusive) list of signing services utilizing blockchain technology.

Sign.co- a paid signing service operated on IBM Hyperledger.
OpenLaw – an opensource document signing service operated on Ethereum.
EthSign – a signing service that operates on polygons. Currently in beta.

Our thesis goes further than these websites by adding in a decentralized identity and
verifiable credential to bridge the gap between online identity and the real-world
identity. Note that these websites only sign a document, there is no service that I
know of that use smart contract to enforce the term after signing. The reason none
exists is due to a certain problem with a smart contract that will be discussed later.

 16

Chapter 2 BLOCKCHAIN

In this chapter, I will review all the decentralized technologies that we used to build
a web application. We will start with blockchain and a smart contract, and then
move on to the topics of decentralized identity and verifiable credentials, which is a
technology that enables self-sovereign identity governance on the blockchain that
we will use it as a replacement for a digital certificate.

Blockchain

Blockchain is a type of distributed ledger. The simplest way to understand
blockchain is to think of it as a network of a synced-digital ledger. Back in the old
days, a ledger was a book where all transactions are recorded. Now, instead of one
book, there are many identical copies of that book held by different people. All of
them keep checking each other’s books to make sure that all their books are
identical. Whenever a new record is to be added, there must be a consensus among
all the book holders. This is called a consensus mechanism.

The blockchain works in the same way. Instead of multiple books, we store the same
data on different computers, or in other words, a network. Transactions are stored in
blocks. Each block represents a group of transactions, a new block is appended to
the previous block forming a chain of blocks, hence the name Blockchain. Note that
there exist hundreds of unique blockchain networks. The most well-known ones
being Bitcoin and Ethereum.

One benefit of the blockchain is that it is decentralized. No single entity has control
over it. It is also protected by cryptographic algorithms making it less vulnerable to
hacking. To use the blockchain, you need a private key and a public key just like in a

 17

public key infrastructure. You will obtain these keys when you create a blockchain
account.

Blockchain can be used more than just for financial transactions. For example, it can
be used to store information or create a new digital currency.

In conclusion, blockchain technology offers the following benefits.

1. Decentralization: Its decentralized nature enhances transparency, security,
and resilience since no single entity has control over the network.

2. Security and Immutability: Blockchain is incorporated with a cryptographic

technique. Once a transaction is recorded on the blockchain, it is nearly
impossible to alter or tamper with, providing data integrity and preventing
fraudulent activities.

3. Efficiency and Cost Reduction: Blockchain enables faster and more efficient

transactions by eliminating the need for intermediaries.

4. Smart Contracts and Automation: some blockchain platforms support smart
contracts, which are self-executing agreements with predefined rules and
conditions. It is an ideal tool to enforce the terms of the contract.

Smart Contract

A smart contract is pieces of code reside on the blockchain. These codes can be
called by a user or other smart contract to automatically perform a certain action on
a blockchain, e.g., transferring assets between accounts, check user balances, and
etc. Not all blockchains support the use of smart contracts. The most widely used
blockchain for smart contracts is Ethereum. We will only refer to the Ethereum

 18

smart contract from now on. Smart contracts from other blockchain will not be
discussed.

Smart contracts are inactive by default. It lays dormant until someone executes it
and goes back to sleep after its job is done. This is done to reduce the workload of
the node running the blockchain. To prevent spamming, the user must pay a fee
each time they want to use a smart contract to do something. The fee also increases
based on the amount of work the smart contract does. The smart contract should be
designed in such a way that it consumes as little fee as possible. In a private
blockchain or enterprise blockchain, this fee can be set to zero. A service deployed
on such a blockchain can be built without this restriction. However, the cost and the
manpower need to set up and maintain the private blockchain make this option
unrealistic for a small business or an individual developer. In this thesis, we will
deploy the smart contract on the public blockchain (Ethereum) as it offers better
security, longevity and requires no maintenance.

The biggest problem with the smart contract on the public blockchain is that it must
be executed by someone. Technically, you cannot schedule it either since you must
be present with the private key at all interaction, and you don’t want to put your
private key up online to automate some tasks.

A smart contract only supports cryptocurrency transactions, so you cannot transfer
real money without some outside shenanigans. With these restrictions, it explains
why there is no website that uses smart contracts to enforce a legal agreement. The
problems with the automation are solved if the users do not mind using an external
program to automate his private key usage. For example, the user can use a third-
party service provider that lets him set up his private key to interact with the smart
contract periodically and automatically. We will propose a possible solution for
some of these problems; more detail in chapter 4.

 19

 The term “smart legal contract” can be used to refer to a legal contract
incorporated with the smart contract. Legal contracts are typically written in a
natural language. Some people have been working on writing contracts in term of
pure code[2]. However, it is beyond the scope of this thesis. For this thesis, instead of
writing a contract in code, we write a contract in natural language and then enforce
the terms with code written in the smart contract.

The blockchain used in this thesis.

There are many blockchain available to choose from with different advantages and
disadvantages. It doesn’t really matter which one we pick since our work can be
implemented in pretty much every blockchain. Nevertheless, we will use the two
most popular blockchain, Bitcoin and Ethereum, in our demo opensource web
application. Bitcoin is used to manage users’ keys pair, identity, and their credentials
(technically, we use ION, a blockchain that runs on top of Bitcoin). As for the smart
contract, we use Ethereum.

 20

Chapter 3 Decentralized identity

Blockchain or not, when we sign a contract, we must leave proof behind so that
other people can verify it later, i.e., a digital signature. Normally, we store this digital
signature on a private computer device or on an online server. However, these are
susceptible to loss and fraud. If we store that part of the proof on the blockchain
instead, then that proof stays on the blockchain as a permanent record forever, and
even better, verifiable and timestamped too.

By the same logic, we can also store our identity or our credentials on the
blockchain too. In this way, anyone can look at your information directly from the
blockchain without needing to contact any organization or a government. The data
on the blockchain cannot be tampered with, providing the best security that protects
the integrity of your credentials and is also publicly verifiable available to everyone.

Blockchain is decentralized by design, storing your data or proof on the blockchain is
an easy thing to do. You don’t have to rely on anyone. You don’t have to follow any
guidelines on the best practice on how to store your data in it. It is an inherent
nature of the blockchain that allows you to do these things by yourself. However, to
keep things interoperable between different blockchain, to make other people
search for you easily, we need to adhere to the community standards. These
concepts of storing your information on the blockchain are called a decentralized
identity. The most widely used standard and specification are the one published by
World Wide Web Consortium (W3C)[3] and Decentralized Identity Foundation (DIF).
All works related to decentralized identity in this thesis are made under these two
specifications. If I were to summarize decentralized identity in one short sentence,
then it would be “a decentralized identity is a combination of digital ID and
blockchain”.

 21

Decentralized identity is a system of identity management that uses blockchain
technology to enable individuals and organizations to have more control over their
own digital identities and personal data. In this system, identity is stored in a
decentralized manner (on the blockchain), rather than being controlled by a single
centralized authority. This means that individuals and organizations can use their
own digital identities to access online services and resources, without having to wait
for an online service to authenticate your identity with the authoritative source or
identity provider that issue your identity. An online service, or anyone else, can verify
your identity instantly, directly, and privately from the blockchain.

Decentralized identity is currently being developed by multiple organizations. The
leading organization are World Wide Web Consortium (W3C) and Decentralized
Identities Foundation (DIF), whose goal are both to create an open ecosystem of
decentralized identity that is accessible to anyone and interoperable across different
organization and across different blockchain.

Let’s see how decentralized identity can be created. We will show just the concept
in this section. In Chapter 5, we will show the technical details and the code
required to create them. Just like any secure transaction, whenever we want to do
something that others can verify later, we must create a proof (verifiable evidence).
The blockchain does this inherently.

 22

Figure 7, an example of a decentralized identity, you can make a document
containing your credentials, signed it, and then publish them to the blockchain of
your choice. You can always claim ownership of this document if you have a private
key used to create this document. (Note that most blockchain will insert this
cryptographic proof automatically). The private key in this context is the private key
of your blockchain account, not the traditional one.

In the next section, I will show you how to create a proper decentralized identity
based on a community standard, published by W3C.

A decentralized identity identifier (DID)

Under the decentralized identity system published by W3C, each person is uniquely
identified by a string (stored on the blockchain), called Decentralized Identity
Identifier (DID). We will refer to this name many times in this thesis. It can be used to
refer to any person or an organization. In short, a DID is your digital ID on the
blockchain.

ID : 11030130

School : Suankularb

Student name: wanchai

Student ID

 <<CRYPTOGRAPHIC PROOF>>

 23

A DID must follow the format below.

did : (blockchain) : (unique id)

For example, a person with a DID, did:btcr:1111111111111111111 has their identity
published on the Bitcoin blockchain with a unique ID “111111111111111”

A person with a DID, did:eth:ABCDEFGHIJK has their identity published on the
Ethereum blockchain with a unique ID “ABCDEFGHIJK” .

A DID represents your unique ID on the blockchain. You can share it with anyone.
Unlike a national ID, you don’t have to worry about its falling into the wrong hand.
What is important and should be kept a secret is the private key associated with the
DID, not the DID itself.

did:ion:EiAmFosP8PQIpI4PftKVt5fZaC_gbcNg8xM6nDAQf4I4FA

Here is an example of an actual DID I created and published on a blockchain called
ION. This DID represent the web application that I created for this thesis. When
someone creates a DID, they will receive a cryptographic key pair, a private key and a
public key just like in a public key infrastructure. The private key can be used to
claim ownership of this DID. The public key can be used to verify the integrity of the
document signed by this private key. In summary, anyone can have a DID, a unique
ID on the blockchain. It can be operated and controlled with cryptographic key pairs.

DID is not limited to an individual. An organization can create a DID to represent
themselves on the blockchain too. We will show how to read and write a DID in
Chapter 5.

 24

A decentralized identity document. (DID document)

A decentralized identity identifier (DID) is just an ID in string format. We need a way
to store data. A decentralized identity document, or in short, a DID document, is a
file published on the blockchain in which anyone can read. It contains your data. The
DID document is bound to the DID of its owner.

A DID document is just a file stored on the blockchain. You can insert anything that
you want inside it. Whenever someone wants to see your information, you give them
your DID. They can use that DID to search for a DID document on the blockchain by
themselves at any time without needing to rely on anyone. You can prove that DID
document on the blockchain belongs to you by using a private key. A DID document
content is divided into two parts, your information, and the cryptographic proof. This
cryptographic proof can be viewed as a digital signature so that a DID document can
be claimed later, just like the role of a digital signature in a traditionally signed
document. The cryptographic proof, used in W3C standards, is just a public key of
the owner. Only the private key associated with that public key can claim this
document ownership. From this point onward, the term cryptographic proof and
public key have the same meaning and may be used interchangeably. They are
proof, or a digital signature, that says this data belongs to you.

 25

Figure 8, an actual DID document published on the blockchain ION, associated with
our web application (did:ion:EiAmFosP8PQIpI4PftKVt5fZaC_gbcNg8xM6nDAQf4I4FA).
You can see that you can insert anything inside it. In this case, I insert the web URL,
photo, and a contact address inside it. A verification method is automatically
generated so it is easier to make than its look. You can see that the verification
method is actually a public key. (The easiest way to search for someone else DID
document is to use a website https://dev.uniresolver.io/ , enter a DID and the
website will automatically query a corresponding DID document for you)

https://dev.uniresolver.io/

 26

Figure 9, Creating a DID document; A person generates a key pair, a decentralized
identifier, and a DID document. This process can be done offline. We will show how
to do this in code in a later chapter. Due to the probability involving large numbers,
it is almost guaranteed that you will never create the same DID with someone else.

Figure 10, You can self-publish your DID document on the blockchain of your choice
(Doesn’t have to be bitcoin)

 27

Figure 11 anyone can search for you directly from the blockchain.

Figure 12, but only you can claim it ownership.

 28

Problem with DID and DID document.

We can store our information on the blockchain using DID and DID document.
However, we don’t want to store our sensitive information inside it. For example,
storing user credentials like national ID, diploma, birth certificate on the blockchain is
a terrible idea.

There must be a way to store our credentials privately, but somehow still be able to
utilize the power of the blockchain to keep the data immutable, contain proof of
ownership, publicly searchable, and cryptographically verifiable. Luckily, we already
have a technology for that, it is called a Verifiable credential (VC). Before we talk
about the Verifiable credentials, let define what a credential is.

A credential is a claim about someone about something. For example, a diploma is a
claim a person graduated from a university. A driving license is a claim that you are
allowed to drive. A digital credential is a credential store on computers, for example,
a digital professional certificate from an online learning platform.

The main issue with a traditional digital credential is that it can be inconvenient to
verify since it relies on the issuer responsibility, it also notified the issuer if we try to
verify it, exposing a private interaction between two persons.

For example, if a student wants to apply for a job, he need to use his diploma; the
employer may want to check whether this student submits a legit diploma or not,
the employer must contact the school and ask them to verify the integrity of the
diploma. Even if the diploma file is signed with a digital signature attached, they still
must go through the trouble of validating it, the school might store their digital
certificate on third party centralized server, which can be compromised. You may
grab the wrong one from a scam website, etc. In conclusion, you must check both
student credentials and school credentials to verify the diploma. Decentralized

 29

identity can solve this problem due to its immutable nature. You don’t have to
worry whether the file content is modified, or changed location, or whatever.

It is also easy to forge or copy digital credentials. Just because someone has a copy
of your diploma doesn’t mean they are the real owner of the credential despite
passing the document authentication test. These digital credentials may be signed
with a school signature, it can be authenticated, but it does not offer a way to claim
it. The employer may be able to proof that the diploma is real, but that doesn’t tell
them that the student is the original owner or not. Note that the school will be
aware of some of these interactions between the student and the employer too.

A good digital credential should be able to be verified by everyone securely and
publicly yet should not reveal an attempt to do so, to the other party, even to the
issuer themselves. It should only be claimable by its owner too.

Verifiable credentials are introduced to solve all these problems.

 30

Verifiable credential

Figure 13, a verifiable credential is a credential that is linked to a DID

A verifiable credential is a digital credential combined with a digital signature, made
specifically to support a decentralized identity system. Its ownership and integrity
can be verified through a cryptographic algorithm hence the name “verifiable”. The
simplest way think about a verifiable credentials is that, it is a digital ID that has a
cryptographic proof attached to it. It can be verified by anyone, but only the owner
can claim it. The verification and the proof of ownership does not require any trusted
third party to perform unlike their traditional counterpart. The trick is to store some
of it on the blockchain, enough to be verified and harness the power of the
blockchain, but not too much that its reveal the sensitive information. Once issued, it
stays on the owner device, bind to their DID, and does not exist anywhere else. The
owner is the sole controller of their data. Later in this paper, we will propose a new

 31

way to sign a contract using this verifiable credential as a signature instead of a digital
certificate issue by the certificate authority.

An individual can have multiple verifiable credentials issues by different
organizations. To share a verifiable credential with others, the user can select the
information inside each verifiable credential they want to partially share and wrap
them up in a “verifiable presentation”. A verifiable presentation is a wrapper around
one or more verifiable credential. Think of a wallet with a credit card and national ID
inside it. You can hand over your wallet to the police to identify yourself. In this
case, the wallet is a presentation that contains the credentials, credit card and a
national ID. In our demo web application, the user can share the verifiable
credentials using a QR code from their mobile phone.

Perhaps the most important feature of the verifiable credentials is that no one will
be able to track your verifiable credentials usage. You can send verifiable credentials
to anyone. Anyone can verify it privately from the public blockchain. Reading from
the blockchain does not leave any record, so no one will ever know who just
checked on you. The issuer will not know how, where, and when you used the
verifiable credentials that they issued to you. Once issued, the verifiable credentials
belong solely to you. No one can control it except you.

The picture below shows an example of how the verifiable credentials work
technically. For the full technical explanation of verifiable credentials and
decentralized identity, the reader is advised to read from the official documentation.

 32

Figure 14, this is the simplified view of how a VC works. In this figure, the
government (the issuer) wants to issue a digital national ID to an individual. The
issuer creates two cryptographic proofs, one attached to the issued credentials, and
another one stored on the blockchain. The government must have their
decentralized identity published on the blockchain to represent themselves on the
blockchain, so that anyone knows where to look for the proof. Whatever data
signed by a government; anyone can verify it by grabbing cryptographic proof the
government store on the blockchain. (The government store a proof inside their DID
document, if the verifier knows the government’s DID, he can retrieve a
corresponding DID document from the blockchain and use a proof stored inside it to
authenticate the signed data)

 33

 Figure 15, the verifiable credentials can be verified by comparing the proof on the
blockchain with the proof on the credentials. If it matches, then the verifiable
credential is validated. Note that the verification steps is more complex than what
is shown here. The proof stored on the blockchain is the public key of the issuer
inside a DID document. And the proof inside the issued credential is a digital
signature signed by the issuer. The policeman must use the government public key
store inside the Government’s DID document to cryptographically validate the
verifiable credential. What made this better than the traditional credential is that
the proof inside the blockchain is immutable, timestamped, and easily searchable
due to its being bound to DID. Moreover, even if a malicious actor stole the phone
and the verifiable credentials, he cannot use them since he does not have the
private key to claim the ownership of the verifiable credentials (assuming that the
owner does not store the private key in the same device). Another key point is that,
even if the government private key becomes compromised later, the verifiable
credential issue before the compromised date is unaffected, since the verifiable
credentials are timestamped. One can easily prove that it was issued before the
compromised date.

 34

Figure 16, A simplify view of a verifiable credentials, the school issues a diploma in
the form of a verifiable credential. The school issued this verifiable credential to the
student with the DID of DID:ION:f1Xe5ae54. The student can claim this verifiable
credential as long as he has the private key associated with that DID.

Figure 17 An employer verifies the authenticity of this diploma by using a public key
of the school. The student also has to perform the proof of ownership to show the
employer that he is the owner of the verifiable credential. Note that the school is
not aware of this interaction and never will.

 35

Figure 18, An example of a verifiable credential store on my phone.; A Verifiable
credentials is just a text file like a DID document, but store privately on phone.
Meaning that a developer can made it look however they want. This representation
style is used by Microsoft.

In conclusion, the verifiable credentials are digital credentials, cryptographically tied
to a decentralized identity identifier, that can be verified by anyone without leaving
any record and can only be claimed by their owner.

 36

Chapter 4 Method

In this chapter, we will show how to use a decentralized identity, verifiable
credentials, and smart contracts to sign and enforce the term of the contract.

Both verifiable credentials and smart contracts are inherently designed to be part of
blockchain technology. The contracts signed this way should have the following
properties:

1. Authenticity: The contract is signed with DID private key. Anyone can use the
signer's DID public key to verify the authenticity of the contract. The signer’s
real-world identity can be obtained from verifiable credentials associated with
that DID private key.

2. Integrity: Any modification or alteration of the contract, even a minor change,

would invalidate the cryptographic proof.

3. Non-Repudiation: Cryptographic proof prevents signers from denying their
involvement or disowning the contract. Due to the unique link between the
private key and the signer's identity, it becomes extremely difficult for the
signer to repudiate their signature. If a dispute arises, the recipient can
provide the digital signature from a signed contract as evidence of the signer's
intent and involvement. This strengthens the legal enforceability of the
contract and ensures accountability among the parties involved.

4. Autonomy and Automation: Smart contracts remove the need for

intermediaries and manual intervention. Once deployed on the blockchain,

they automatically execute predefined actions when specific conditions are

met. The term in a smart contract cannot be denied. Once deployed on the

blockchain, it cannot be changed and will only do its job in that way.

 37

Before we talk about how to create such a web application, let’s review the current
industry standard method of signing a contract and see how we can improve upon it.

1. The users must obtain the digital certificate from a certificate authority or
from a trusted identity provider. This step includes performing identity checks
with the issuer.

2. The user can then sign the contract with the private key associated with that
digital certificate.

3. Once signed, anyone can verify the integrity and the authenticity of the
signed contract using the digital certificate of the author.

4. The tenant and the landlord fulfil the term of the contract as written in an
agreement.

On step 1, a digital certificate can be replaced with a verifiable credential. They
technically serve the same purpose, connecting a real-world identity of the owner to
the key pairs, but the verifiable credential is a more advanced one due to it being a
newer technology, i.e., built with blockchain integration in mind. Verifiable credentials
are more secure and easier to verify and authenticate than a digital certificate.

Unfortunately, an identity check with the issuer in step 1 is unavoidable. Blockchain
or not, the users must perform an identity check at least once, otherwise the
verifiable credential will be meaningless since it does not bind to the real-world
identity.

On step 2, we replace a digital certificate private key with a decentralized identity
private key.

 On step 3, the problem with the digital certificate approach is that the verifier must
use the signer’s digital certificate to verify the integrity of the signed contract, but
how can one obtain signer’s digital certificate in the first place? The signer can share

 38

it with the verifier, or it can be obtained from the certificate authority who issued it.
The 3 ways communication channel between signer, verifier, and the certificate
authority can be eavesdropped on or can be intercepted by the malicious actor. All
it takes is for one party to become compromised, and the whole thing will collapse.

This issue can be solved by using verifiable credentials and decentralized identity.
Instead of exchanging confidential data with each other directly, we verify and share
each other’s identity through the blockchain. The data in the blockchain is
immutable and innately cryptographically verifiable by anyone.

Verifiable credentials also have another advantage over digital certificates, it can be
seamlessly integrated with other blockchain functionality and utilized it full power.
For example, we could store the hash of the signed contract inside a DID document
corresponding to the private key that was used to sign it. Leaving permanent proof of
signing on the blockchain. (User does not have to do this though, they can sign a
contract and save the document and the proof offline). The point is that it can be
integrated with any blockchain features, unlike a digital certificate that does not have
native blockchain support.

 39

Signing a contract using a verifiable credential as an electronic signature

In this section we will list the whole procedure of the signing process between web
application (service provider) and the users. An easy-to-follow diagram is attached at
the end of this chapter.

A. Obtain a digital identity (DID/VC)

Figure 19, the issuer, users, and web application all have to create the
decentralized identity to represent themselves to the other party.

Users who wish to sign a contract must create their decentralized identity

by publishing a DID document onto the blockchain. The user then

performs an identity check with an issuer of their choices to obtain a

verifiable credential. The users must reveal their DID to an issuer so that

an issuer can issue verifiable credentials to a correct DID address. Note

that an issuer must verify that the user is the real owner of that DID

before handling out verifiable credentials or else it will be issued to the

wrong person.

The verifiable credentials should contain the information necessary to sign

a contract, such as name and birthdate, or national ID. Extra information

 40

can be added depending on the user’s need. For example, one can

request a university to issue a verifiable credential that contains the

diploma as proof of graduation. Note that, if the user has already had a

DID or a verifiable credential for other used before, he can reuse them

without having to create or request for a new one. For example, the user

may reuse his identity issued by the school to apply for an online

shopping service rather than making a new one. Different services may

require different levels of trust. For example, applying for a banking

service may require a verifiable credential officially issued by your

government, but applying for an online shopping service may accept a

verifiable credential issue by any private company. It all depends on the

service provider whether they trust the organization that issued you the

verifiable credential or not. Once issued, a verifiable credential can be

reused again and again without being tracked. Note that the issuer can set

the expiration date for the verifiable credential, so you may have to

renew a verifiable credential occasionally.

At this point, the user should have the following pieces:

DID – a unique digital ID
DID private key – for signing contract, for claiming DID and VC.
DID public key – for others to authenticate a contract you signed.
DID document – store user info and public key.
Verifiable credentials – a digital credential issued by a trusted source.

 41

B. User authentication

Prior to the signing, both parties select the credential that they want to
share from the verifiable credential and turn it into a verifiable
presentation. Both parties share each other’s credentials by exchanging
the verifiable presentation. There are two verification steps that the users
must perform here. First, the users must prove that they are the legit
owner of the verifiable credential. This can be done using DIDs private
key. Second, they must check that the verifiable credential of the other
party is issued by a trusted issuer not some random untrusted
organization. After this step, both parties are aware of each other’s real-
world identity and personal information. The web application should
provide a necessary tool to assist this user credential exchange. In
addition, the web application may also participate in these credentials
exchange by presenting their verifiable credentials to the user. The web
application could create their own decentralized identity and
authenticate themselves with the identity provider so that the user can
trust them.

C. Drafting and signing a contract

The web application should provide a platform where both parties can
draft and sign a contract simultaneously to encourage fair signing. To
make the signing fair, the web application must ensure that both users
agree on the state of the contract, whether to keep on editing the
document or whether both are ready to sign. This can be done by
opening a secure communication channel between both parties.
Communication between two parties must also be encrypted in such a
way that the web application themselves cannot read them to ensure the
privacy of the users. This is a typical scenario that can easily be

 42

implemented using a standard encryption protocol. One options, the
most extreme one, is to use a decentralized messenger; A messaging
method that does not rely on the central server for a communication
between users, but the encrypted message is broadcast through the
blockchain node, ensuring the integrity while maintaining full privacy. We
will not focus on this encryption part or use it in our web application.

The web application must provide the user with an ability to verify,
authenticate, and claim both the verifiable credential and the
decentralized identity. The web application must allow users to extract
the credentials from the verifiable credentials and insert it into the
contract document. This is what I mean when I say using the verifiable
credential as an electronic signature. An electronic signature can be
anything that can represent a person. The information inside a verifiable
credential can be used as an electronic signature since it can represent
the person's identity or credential. It’s like attaching your digital ID with
the contract document. Anyone who reads the document will know it’s
you who signed the contract since no one else has the private key to use
your verifiable credential like that. It is a good quality signature, even
more secure than a signature from a digital certificate.

For example, instead of typing in your date of birth in the contract, you
can grab your birth date from a birth certificate verifiable credentials
issued by the hospital and insert it on to the document. The web
application should make it clear that this part of the document is verified
data, for example, highlighting the text in color to differentiate it from a
normal text. The key points here is that a signature generated from
verifiable credentials is not limited to a typical handwritten signature, it
can be any information like date of birth, diploma, or anything.

 43

Once a contract document is finalized. A contract is signed once again
with the decentralized identity private key, to leave proof that the
information inside a document, including the part filled with the data
from verified credentials, is done and is authorized by its owner. The users
will obtain the signed document in pdf format and a digital signature as
proof of signing.

We mentioned earlier that we signed a finalized contract with the
decentralized identity private key, but whose keys should we use? We
proposed 2 signing methods. The first method uses all signatures of the
involved party, the signers, and the web application. For example, a
contract between 2 individuals will be signed by three decentralized
identity private keys, one from each signer and one from the web
application. The second method, less decentralized but more convenient,
uses only the web application’s DIDs private key. As long as the web
application is not compromised, then the signed document is as secured
as done by the first method.

First method: Every participant signs a contract.

This approach is the most secure and decentralized way of signing a
contract. Note that the user is required to have a digital wallet that can
sign a transaction with decentralized identity private key.

Second method: Only Web application sign a contract.

In this method, users do not sign the contract themselves, rather, they
give permission to the web application, to sign the contract for them. This
can be done by the following step,

 44

1. Users reveal their verifiable credentials to the web application.
2. The web application authenticates user identity and allows users to
insert their credentials or attach verifiable credential data into a contract.

3. The web application then signed the finalized contract with its private
key.

We will use this second method for our demo web application.

Enforcing a lease agreement with smart contract

The web application should provide the users with lists of lease agreement
templates to choose from. The smart contract associated with these templates will
be generated automatically when the users fill in the form. This should be enough
for most users where an agreement is straightforward and can be constructed from
the provided template.

For a custom contract that the user drafts from scratch, the web application will ask
landlord on what the payment detail, or a termination condition should be before
the contract is signed. The landlord can do this by filling in the form provided by the
web application.

 45

Figure 20; Smart contract in Ethereum is written in solidity, a programming language
designed for developing a smart contract. The figure above shows a code that
allows user to pay rents in an exact amount. If the user pays more than needed,
then the smart contract will only retrieve a necessary amount and send the rest
back.

 Figure 21; The web application should provide a user with an easy-to-use interface
that can automatically generate a smart contract based on the user input.

Smart

Contract

 46

Our method is very simple, the web application simply replaces the variable in a
prewritten smart contract with a value that the user specified. For example, if the
user wants to create a smart contract to enforce the term specified in the form in
the figure above, that rent is equal to 15000 baht per month, we can just replace
“rent” variable in figure 20, with the value “15000 baht”.

Note that the smart contract has not yet supported real money transfer. So, the
above example is hypothetical, baht should be replaced with crypto currency. For
Ethereum, the smart contract used Ether as a currency.

Deploying a smart contract

The web application generates the smart contract based on the condition specified
in the previous section. Each lease agreement has its own smart contract. In this
thesis, we deployed a smart contract on Ethereum blockchain. The web application
must inform the user with the smart contract address right after it is deployed, so
that the user will know where to look in case the web application might no longer
be accessible in the future.

Interacting with a smart contract requires the user to talk to the blockchain, which is
not an easy thing to do. Therefore, the web application should provide a place
where users can interact with the smart contract from within the web application.
Note that we want to remember which users belong to which contract, so that we
can grab the correct one for them when they request it. To achieve this, we created
another smart contract, “the factory”, as a state keeper. This factory keeps track of
all the smart contracts that have been deployed by the web application. It will
record which smart contract belongs to which users and which lease agreement.
With this factory contract, the users can always retrieve their smart contract from
Ethereum using the web application. The web application will read this retrieved
contract and provide an easy-to-use interface for a user to interact with it. Note that

 47

this factory smart contract is not necessary, the tenant and the landlord can access a
deployed smart contract by themselves any time on Ethereum (Assuming that they
remember its address).

Smart contract automation on Ethereum
As mentioned before in Chapter 2, the smart contract on Ethereum can only be
executed by a user command. The user needs a private key to initiate a command.
This is the only way to execute a smart contract.

The tenants must execute a smart contract with his private key to pay rent each
month. This action cannot be automated. It cannot be scheduled. It is how smart
contracts are designed. If you want to transfer money, you must use the private key
of the money owners with no exceptions.

This weakness of Ethereum is one of the most discussed problems on Ethereum
community. Fortunately, the solutions are underway. The Ethereum community is
working on a feature called “An account abstraction”[4] This account abstraction
allows users to have more control over their own Ethereum account. For example,
you can have someone else pay for you or you can pay for someone else. This was
previously impossible since the private key of the owner is required to transfer
money from the owner’s account.

Account abstraction allows users to delegate their keys usage to someone else
without actually giving them a key. For example, you can delegate the ability to
transfer funds out of your account, to someone else[5], and let him execute a smart
contract to pay rent for you in your name, using money from your account. Such a
services provider will exist in the future. Enabling us to enforce and automate the
terms of the contract without requiring user input periodically. The delegatee
doesn’t have to be a person. For example, you can delegate your right to transfer
funds to a smart contract. The smart contract will then use your keys to do whatever
you program it to do.

 48

Visas are working on a similar tech called “a delegable account”[6, 7], based on the
same Account Abstraction method we mention above. Their goal is to allow users to
be able to set up a recurring payment on Ethereum. The tenants may go on a
vacation without having to worry about bringing his private key along to pay rent with
a smart contract. The recurring payment system will automatically pay for him as
scheduled. This is a work in progress, it may take a few years before we can use it.

Smart contracts are easier to automate if the tenant and landlord seek help from a
service provider. For example, our web application can help users to automate the
lease agreement. The web application acts as a server that runs 24/7. Therefore, we
can program it to interact with the smart contract at the specific time in advance. For
example, we can tell our web application to talk to smart contract at each midnight
to check whether the terms are fulfilled yet or not. If is not fulfilled, then alert the
landlord.

Let’s see another example, the smart contract can also act like an escrow, it holds a
tenant money; the tenant can pay rent in advance to this smart contract, the web
application can then schedule a command to tell a smart contract to release this
fund to a landlord. The landlord does not have to do anything in this case.
Everything is automated for him.

In general, smart contracts can be automated by a service provider if it does not
involve transferring funds from someone else’s account. The service provider can
schedule the smart contract to pay someone, but it cannot force someone to pay,
since the user private key is needed in this case. Account abstraction will solve these
problems.

Advantage of rent payment with smart contracts
Paying rent via smart contract offers many benefits compared to the traditional
payment. First, the record of payment is safely stored on the blockchain which is

 49

immutable and can be verified by anyone at any time. Second, it ensures that the
correct amount of rent is paid, no more no less.

Paying rent in cryptocurrency has a low transaction fee no matter how large the
amount is. Chen Qi-Long et al. [8], calculated the cost of using smart contract in
lease agreement on Ethereum. Simple transactions like paying rent cost 0.000062
Ether or 0.01 USD at the time of the writing. In other blockchain such as Polygon, this
fee can go as low as 0.0001 USD if the smart contract is well optimized.

Related work
The idea of using verifiable credential as a signature to sign a contract has not been
proposed before but using smart contract to automate the terms of the contract has
been done by many authors. Shanker [9] design a smart contract for lease
agreement. In his work, the landlord deployed smart contract on Ethereum
blockchain and notified the tenant. The tenant must pay rent to that smart contract.
Shanker smart contract does not automate any process. The landlord still must
check the money in the smart contract manually and decide whether tenants follow
the terms properly or not. The smart contract simply acts as a payment system. His
smart contract is premade with fixed condition unlike our approach that generates
based on user input.

Smart contracts are not limited to lease agreements. Hasan and Salah [10] use smart
contract to build a decentralized proof of delivery system that enable merchant and
buyer to trade securely without middleman. It is designed in such a way that all
entities involved are incentive to act honestly.

At the time of the writing, there is no research paper that discusses using verifiable
credentials as a means to sign a contract like us. Constructing a custom smart
contract for each lease agreement based on the contract document and user input
are also not found in any literature.

 50

DIAGRAM (OVERVIEW OF THE THESIS)

A visual example of the signing process from start to finish.

Figure 22, All participants, the users, the web application, the issuer (identity
provider), create a decentralized identity to represent themselves. The public key is
stored inside a DID document published on the blockchain. The private key is kept
secret.

Figure 23, User request a verifiable credential from an issuer of his choice. Identity
verification is the responsibility of the issuer. The issuer may refuse to issue verifiable
credentials if the user does not have enough evidence to authenticate himself.

 51

Figure 24, If the user passes an identity check, the issuer will issue a verifiable
credential, binding user real world identity to his DID.

Figure 25, The user is now ready to sign a contract. Note that if the user already
has a verifiable credential from other use before, he can skip all the steps above
and reuse the old one.

 52

Figure 26, the user can authenticate himself with the web application by using a
verifiable credential. The user must use his private key to claim its ownership,
showing that this verifiable credential is not a stolen one.

Figure 27, the web application verifies the integrity and the authenticity of this
verifiable credential with proof store inside an issuer DID. This step will not be
notified to the issuer, keeping an interaction between users and web applications a
secret to everyone else.

 53

Figure 28, if there are multiple signers involves, the web application will share these
verifiable credentials with all involves parties. At this point, all participants learn of
each other’s identity. Ready to draft and sign a contract.

Figure 29, the web application allows user to fill in the form of the contract with an
information inside a verifiable credentials. In other words, the users sign a document

 54

with verifiable credentials. This is what it means to use verifiable credentials as an
electronic signature. It’s like attaching the digital ID with the contract document.
The web application allows the landlord to force the user to fill in the contract with
only a verified data, forcing the tenant to go and obtain the verifiable credentials
from a trusted issuer first.
The last step involves each party signing a document with their private keys,
including the web application. The reason the web application key is needed is to
add extra security, to ensure that the document creates these ways (green
text=verified data), is not arbitrarily forge to look like one. (Anyone can create a
fake green text, but if the web application is overseeing the whole operation, then
this cannot be done).

Figure 30, The web application generates a smart contract and publishes it on an
Ethereum blockchain. If the user uses a contract template provided by the web
application, then this smart contract is automatically generated. For a custom
contract, or if the landlord wants to add in an extra term, the landlord can use a
tool provided by a web application to manually add these enforcing conditions to a
smart contract. In the future, the web application might use AI to determine the
term of the contract just from a text document.

 55

Figure 31, While not necessary, the web application should build a smart contract
factory to record all the smart contracts that has been deployed. The smart
contract factory records which smart contract belongs to which users. This way, the
users can interact with their smart contracts from the web application at any time,
i.e., The web application acts as an intermediary between user and blockchain.
Alternatively, if a user wants to do things in the most decentralized way possible,
the user can choose to interact with the smart contract directly from Ethereum by
himself. Note that he must remember the smart contract address to locate it on the
blockchain.

 56

Figure 32, All the steps mentioned above required the user to be competent
enough to manipulate their own private key. We use a different approach in our
web application. We abstract away all the operation on the user’s side, by relying
on a decentralized identity as a service by Microsoft Entra. The user can obtain and
share their verifiable credentials simply by using a QR code on a phone.

 57

Chapter 5 Opensource Web application
This chapter starts with how to create a decentralized identity and verifiable
credentials. After that, we will showcase the web application functionality.
The source code is available at: https://github.com/TaroAndMulan/VCsignAlpha.

The web application that we created has the following functionality.

1. Allow users to authenticate each other using verifiable credentials.
2. Allow users to draft a contract from scratch or from a provided template.
3. Allow users to sign a contract.
4. Allow users to save a signed contract in a pdf format.
5. Allow users to verify and authenticate a signed contract.
6. Allow users to enforce the term of the lease agreement with smart contracts.
7. Allow users to view and interact with the deployed smart contracts.
8. Allow tenants to pay rent and landlords to receive money in cryptocurrency.
9. Allow tenant and landlord to use a smart contract as an escrow.

How to create a decentralized identity

We want our web application to sign a contract in such a way that anyone can verify
it directly from the blockchain without relying on any third party. To achieve that, the
web application must first create a decentralized identity to represent themselves on
the blockchain first. Decentralized identity is supported in all major blockchain. It
doesn’t really matter which one the developer chooses, since it is designed to be
interoperable across different blockchain.

https://github.com/TaroAndMulan/VCsignAlpha

 58

Figure 33, ION; a layer 2 blockchain built on top of Bitcoin, built specifically for a
decentralized identity system. An identity can be created and managed through an
open-source tool.

In this paper, we create a decentralized identity on the blockchain name “ION”. It
was created by Decentralized identity foundation (DIF), one of the two biggest names
in decentralized identity community. ION is an open, public, permissionless layer 2
decentralized identity networks built on top of the Bitcoin, offering the same level of
trust and security as Bitcoin. It can support thousands of DID operations per second
across the network.

Ion is like any other blockchain, if you want to participate in it and use it to its full
potential, you must download the whole blockchain to your computer, becoming a
new node in the network. This can be troublesome; Ion uses Bitcoin as a backbone.
Its total size is huge. In this paper, we will sacrifice some of the decentralized aspects
for ease of use. We will rely on other people’s node and communicate to the ION
blockchain via this node instead of dealing with the blockchain directly ourselves,
saving tons of diskspace. Many organizations provide an easy shortcut to read and
write from ION network. For example, Microsoft allows any organization to set up
decentralized identity on ION using a “Microsoft Entra” service. The decentralized
identity foundation (DIF) provides several opensource codes on GitHub for
developers to interact with ION.

 59

The developer or user can create a decentralized identity by the following steps.

1. Clone an ion-tools repository[11]. ION tools repository contains all the tools
and utilities you need to work with DID.
https://github.com/decentralized-identity/ion-tools

2. Follow the instructions on the GitHub page. Create a key pair, use it to create
a DID, then publish it on the blockchain. I will highlight some of the steps in a
list figure below.

let authnKeys = await generateKeyPair();

console.log(authnKeys.privateJwk)

console.log(authnKeys.publicJwk)

Figure 34. key pair can be created in single line of code. (Caution: You must write
down or save your private key now. You will not be able to recover it later after this
point.

let did = new DID({

 content: {

 publicKeys: [

 {

 id: 'key-1',

 type: 'EcdsaSecp256k1VerificationKey2019',

 publicKeyJwk: authnKeys.publicJwk,

 purposes: ['authentication']

 }

],

 services: [

 {

 id: 'picture',

 type: 'photo',

 serviceEndpoint: 'https://imgur.com/AIkpvFz'

 },

 {

 id: 'contact',

 type: 'linked',

 serviceEndpoint: 'Bob@gmail.com'

 },

 {

https://github.com/decentralized-identity/ion-tools

 60

 id: 'Nationality',

 type: 'text',

 serviceEndpoint: 'Italian'

 },

 {

 id: 'DateOfBirth',

 type: 'number',

 serviceEndpoint: '02/12/93'

 }

]

 }

});

Figure 35 With a key pairs ready, DID document can be created using a constructor
new DID(). Note that you can insert whatever data you want in the DID document.
In this figure I create a DID for a person named Bob with his photo and contact
address.

id:ion:EiBAhyd-INTO4D9oa_IE040HqgS66-7nb3oxDZyLAjwSJw

Figure 36, You cannot select your own DID since it is automatically generated from
the key pairs, which is randomly generated.

let anchorResponse = await anchor(createRequest);

Figure 37, everything we do so far is offline. We can play around with this local DID
without affecting the blockchain. The DID can be published to the blockchain using
“anchor” function. After this line of code, the decentralized identity you created
earlier will be published on the ION blockchain. (Note: it may take a couple of
minutes for DID to be published on the blockchain).

const DigitalSignature = await sign({ contract, privatekey });

const isLegit = await verify({ DigitalSignature, publickey });

Figure 38, sign and verify any payload with DID key pairs; This is how our web
application signs and verifies the contract document.

 61

In summary, ION tools provide the developer an easy way to create, modify, update,
publish their decentralized identity. It also provides support for signing and verifying
with private key and public key, allowing our application to sign a contract document
or to verify the authenticity of the signed contract with a few lines of code.

Now that we have DID published, let’s see how to access this information from the
blockchain. The easiest but a centralized way is through the website
https://dev.uniresolver.io/. (The hard way is download ION blockchain and query it
yourself)

Figure 39, https://dev.uniresolver.io/.[12] Allows anyone to access DID from any
blockchain with ease. This website pulls DID information from ION blockchain. It is
very convenient for someone who does not wish to deal with the blockchain
directly. Note that this approach relies on third party, it can be compromised.

Figure 40 , Let’s test the DID we created earlier, id:ion:EiBAhyd-
INTO4D9oa_IE040HqgS66-7nb3oxDZyLAjwSJw
 Insert the DID and click resolve. The result is shown in the next figure.

https://dev.uniresolver.io/

 62

Figure 41, As show in the figure above, this DID link to Bob. The verification methods
section contains proof (a public key). Anyone can grab this public key and verify any
contract that Bob signed. Note that the private key is not online. The owner keeps
private keys to themselves and publishes only the public key to the blockchain.

{

 "WebappPrivateKey": {

 "kty": "EC",

 "crv": "secp256k1",

 "x": "s9jij62nXBxFWNduvZAMHcS0q91SL9Ypi9UOBT3Crwk",

 "y": "T3QcokSgOzZ7GdexnxKcMoYH50Wy9zTYuWDioFRZKbQ",

 "d": "MzsGLadxCqpnZtyNmOQlLKblJCa6PDJSq_1-M0HEJ1w"

 },

 "WebappPublicKey":{

 "kty": "EC",

 "crv": "secp256k1",

 "x": "s9jij62nXBxFWNduvZAMHcS0q91SL9Ypi9UOBT3Crwk",

 "y": "T3QcokSgOzZ7GdexnxKcMoYH50Wy9zTYuWDioFRZKbQ"

 },

 "webappION":

"did:ion:EiAmFosP8PQIpI4PftKVt5fZaC_gbcNg8xM6nDAQf4I4FA",

 63

Figure 42 The web application identity is published on the blockchain as
“did:ion:EiAmFosP8PQIpI4PftKVt5fZaC_gbcNg8xM6nDAQf4I4FA". The public keys and
the private keys are also shown. The web application will sign the contract with this
private key.

Note there are other methods and approaches in how to create a DID too. Some
companies provide a service for users to easily create a DID in a few clicks without
coding like Microsoft. However, these companies are centralized providers, so choose
carefully. In the next section we will move onto how to create verifiable credentials.

How to issue and obtain a verifiable credentials: part 1
Just like DID, there is an opensource code to issue and obtain a verifiable credentials
in a few lines of codes at https://github.com/decentralized-identity/did-jwt-vc.

Let’s take a different approach here, I will not use this opensource code tool to
create or issue verifiable credentials. Verifiable credentials are hard to use since the
owner’s private key is required. We want to abstract away this difficulty and remove
the burden from the users. Therefore, we will use a third-party service that can issue
and verify the verifiable credentials in such a way that the users don’t have to
manage private keys on their own. They can use their phone to receive or request
verifiable credential by QR code.

In this thesis, we use Microsoft Entra as a backend to issue and verify the verifiable
credentials. Note that we don’t have to use any third-party service for this. but I
chose this approach since it is the most convenient way for end users.

Microsoft Entra is a service that allows users or organizations to manage a
decentralized identity and verifiable credentials without having to talk to the

https://github.com/decentralized-identity/did-jwt-vc

 64

blockchain directly. Microsoft Entra operates on the same ION blockchain that we
used in the previous section. Microsoft role is to help us communicate with the ION
blockchain.

Figure 43 While it is possible to do everything in a decentralized way. Using private
keys is too overwhelming for a general user. It can be dangerous if the user doesn’t
know how to keep the private keys safe.

Figure 44; We use Microsoft Entra service to allow users to retrieve, store, and share
a verifiable credential via QR code on their mobile phone.

 65

Figure 45 For an overview of how decentralized identity work on Microsoft Entra,
please visit https://www.microsoft.com/en/security/business/identity-
access/microsoft-entra-verified-id

How to issue and obtain a verifiable credentials: part 2

Issuing verifiable credentials to the user is not a part of web application jobs. The
users should obtain verifiable credentials from a trusted issuer instead; Nevertheless,
the detail on how any organization can become an issuer, and how the user can
obtain a verifiable credential from them is shown in detail in the following figures.

Figure 46; Set up an azure account for your organization. Then follow instructions
from Microsoft Entra document. Programming knowledge is not required here. You
will be asked to create a DID, linking a DID to the azure account, storing a private
and public key inside azure storage, publishing organization identity on the ION
blockchain, registering your domain, etc. After that, the organization can design,
create, issue, revoke a verifiable credential to an individual from a “verified id” tab.

 66

Figure 47; In this figure, I use Microsoft Entra to create verifiable credentials. As you
can see on the left side of the screen, you can issue and revoke credentials within a
few clicks. Microsoft also provides an opensource code on GitHub for an
organization to set up a web server that can issue and verify verifiable credentials
as an alternative of doing thing from the web browser.

 67

 Figure 48; For this thesis, I created a dummy organization called “lak nai nam” to
issue a verifiable credential to myself.

Figure 49; On the client side, the user simply has to download a Microsoft
authenticator app and Scan a QR code to receive a verifiable credentials.

 68

Figure 50, After the user scans the QR code, the verifiable credentials will be stored
privately on their phone. This figure is an example of how a verifiable credential
looks like on a phone (Microsoft authenticator app). Users can share this verifiable
credential with anyone via a QR code.

 69

The web application

The website is built using the popular web framework, React and NextJS. As a proof-
of-concept web application, we will focus on the functionality of the website not
how these libraries are used.

The website is divided into three main pages. The first page SIGN is where the users
draft and sign a contract. The second page VERIFY, is where anyone can verify the
integrity and authenticity of a signed contract. The third page LEASE is where
landlord and tenant can see the status of the deployed smart contract.

Figure 51, web application structure;

 70

SIGN PAGE

Figure 52 SIGN page; Users can authenticate each other in a user authentication
tab. Draft tab allow user to draft a contract template. The sign tab is for users to fill
in the contract and sign it.

Figure 53, USER AUTHENTICATION TAB; allow user to scan a QR code to share a
verifiable credentials, (the website will send a verifiable credential request to the
user phone)

 71

Figure 54, USER AUTHENTICATION; a mobile phone screen from a user perspective.
The left picture show a credential request. If the users have more than 1 verifiable
credentials, they have to pick one that fit the requirement. The web application is
the one who decide which type of verifiable credentials is accepted.

 72

Figure 55, USER AUTHENTICATION; The user successfully authenticated himself. If
there are multiple signer, they can scan the other QR code. Once verified, the user
can use these credentials obtained from a verifiable credentials to sign the contract.

Figure 56, DRAFT; allows users to draft any type of contract. The square bracket
denotes a form that required a user input in a contract. There are two types of
square brackets. The one ends with “:VC” and the one that doesn’t. VC symbol
indicates that this data must be filled with verified information obtained from a
verifiable credential. For example, [ผู้ให้เช่า:VC] is the name of the landlord. The
landlord must authenticate himself using a verifiable credentials first, only then he
can fill in this information using a data from a verifiable credential he used to
authenticate himself. For the square bracket that ends without VC, the website
does not limit what the signer can fill in the form there.

 73

Figure 57, SIGN; The users can fill in a form and sign a contract here. The form on
the left and the document on the right is automatically generated from a contract
template the user draft in draft tab. The green text indicates that this part of the
contract is an electronic signature that comes from the verifiable credentials. The
red text is the data that does not come from verifiable credentials. Once all parties
agree on the contract, click Sign. The website will sign this contract with its
decentralized identity private key.

Figure 58, Digital signature from a signed contract; Signing a contract result in two
files, the document of the contract in pdf format and the digital signature signed by
the web application. In this figure, we show an example of the digital signature of a
signed contract. Anyone can use this digital signature to verify the integrity and
authenticity of the signed contract using a public key of a web application.

 74

Figure 59, A signed contract in PDF format. The green text represents an electronic
signature extract from verifiable credentials. The red text is where the users just type
in the data normally. The pdf is watermarked with the decentralized identity
identifier (DID) of a web application that signed this contract.

 75

Figure 60; The users can click “Enforce with smart contract” button to generate a
smart contract that they wish to deployed on the blockchain.

Figure 61; Customizing smart contract; The landlord can specify the term of the
contract manually; the web application will use these data to automatically
generate a smart contract and deploy it on the blockchain.

 76

Figure 62; The deployed contract is publicly available on blockchain. In this figure,
we use Etherscan, a website that allows users to query the Ethereum blockchain, to
view the deployed contract details, information, and its history.

Figure 63, The smart contract code deployed on the blockchain as view from
Etherscan; The code resides on the blockchain, being immutable and timestamped,
offers a great way to make sure that the term of the contract can be enforce in a
transparent and undeniable ways.

 77

Document authentication Page

The signed contract can be verified and authenticated on this page. Any change or
modification to the files will be detected by the website.

Figure 64, DOCUMENT AUTHENTICATION; user can upload the signed document and
a digital signature to verify the integrity and authenticity of the signed document.
Note that the users can verify it themselves with the blockchain without relying on
the web application.

 78

Lease Page

Figure 65; Lease Page, allows tenant and landlord to view and interact with the
deployed smart contract.

Figure 66;. The web application will read the state of that deployed smart contract,
including all the variables inside it, and show it to the user as shown in the figure
above.
The tenant can pay rent from this page. Payment with cryptocurrency is supported
through a MetaMask, a web browser crypto wallet. Note that we do not have
technology to pay with real money yet due to the reason stated in Chapter 4. The
payment can be automated if the user transfer fund to the smart contract in
advance.

 79

Figure 67, MetaMask is shown on the right-hand side of the figure. The tenants can
pay rent directly from the web browser with a crypto wallet (not necessarily have to
be MetaMask, there are many available crypto wallets to choose from)

Figure 68, Interacting with the smart contract leave an immutable recorded on the
blockchain that can be seen by anyone in the world. In the figure above we used
Etherscan to track the smart contract usages, we can see a tenant paying rent and
deposit with the smart contract method “Pay_rent” and “Pay_deposit”, and see a
landlord withdraw the money with “LandlordWithdraw” method.

 80

Chapter 6 Conclusion and Future work

Signing a contract requires an electronic signature; The electronic signature can be
created in many ways with different strength and weakness. In this thesis, we decide
to use a blockchain to create these signatures. The signature created this way covers
many weaknesses of the traditional signature. The blockchain also offers an identity
management system. We use this to let users authenticate each other before they
signed the contract. The term of the contract can be enforced by using a smart
contract. All these features work seamlessly well with each other because they are
all based on blockchain technology. The decentralized nature of the blockchain
makes communication between entities more convenient and safer compared to the
traditional way, where each entity must find the way to contact each other by their
own means. In our method, the blockchain acts as a fair intermediary between each
party.

Transferring real money with smart contracts is currently not possible and will
continue to be so for a while. Most banks and financial institutes have been
researching into blockchain for quite some time now. For example, Visa is developing
an automated payment system on Ethereum. Mastercard has a crypto card program,
that allows users to easily use their crypto. The gap between crypto and fiat money
is becoming closer each year, soon it will be possible to enforce the term of an
agreement through smart contract using real money instead of crypto currency.

From a technical viewpoint, our method can be seen as an upgrade in every way
compared to the traditional document signing services. However, in terms of user
experience, it has a major problem. The blockchain technology has not yet
developed to the point where it is accessible to all demographics yet. The general
population are not yet ready to use blockchain in their daily life. Therefore, we
downgraded some of the blockchain’s features to make it easier to use when we

 81

designed a proof-of-concept web application. In our case, the users simply need a
phone, to scan a QR code and sign a contract.

Here is the list of the possible future work that can improve this thesis.

1. Research into smart contracts from a non-Ethereum based blockchain.
Other blockchain might offer smart contract functionality that is more suitable
for our work than Ethereum.

2. Research into blockchain related projects from a financial institute
Recurring payment or payment with a non-cryptocurrency are not natively
supported by smart contract. Financial institutes are trying to incorporate
blockchain into their services. These projects will contain a clue on how to
solve these smart contract limitations.

3. Research into National Digital ID (NDID)

NDID is a Thailand only version of a decentralized identity system. We should
be able to use it to sign the contract in the same way too. NDID and DID
implementation are completely different and are not compatible in any way
but are based on the same principles.

NDID is connected to the Thai citizen database containing banking information
and personal information. This can be used as an identity check before
signing a contract without needing a verifiable credential. It might even be
possible to build a smart contract on it that use Thai baht as a currency
where the user can transfer fund to the smart contract with a mobile banking
application.

REFERENCES

REFERENCES

1. Mason, S., Electronic signatures in law. 2016: University of London press.
2. Dwivedi, V., et al., Legally Enforceable Smart-Contract Languages: A Systematic

Literature Review. ACM Computing Surveys, 2021. 54(5): p. 1-34.
3. Consortium, W.W.W. Verifiable credentials data model 1.1 2019; Available from:

https://www.w3.org/TR/vc-data-model/.
4. Vitalik Buterin, A.D., Matt Garnett, Will Villanueva, Sam Wilson, EIP-2938: Account

Abstraction [DRAFT],.
5. BEAMS, A., et al., AUTOPAYMENTS VIA ACCOUNT ABSTRACTION. 2022.
6. Visa. Auto Payments for Self-Custodial Wallets. Available from:

https://usa.visa.com/solutions/crypto/auto-payments-for-self-custodial-
wallets.html.

7. Visa. Rethink Digital Transactions with Account Abstraction. Available from:
https://usa.visa.com/solutions/crypto/rethink-digital-transactions-with-account-
abstraction.html.

8. Qi-Long, C., Y. Rong-Hua, and L. Fei-Long. A Blockchain-based Housing Rental
System:. in International Conference on Advances in Computer Technology,
Information Science and Communications. 2019. SCITEPRESS - Science and
Technology Publications.

9. Shanker, M., Use Case: Smart Contract for Lease Agreements using Blockchain
Technology. 2019: p. 9.

10. Hasan, H.R. and K. Salah, Proof of Delivery of Digital Assets Using Blockchain and
Smart Contracts. IEEE Access, 2018. 6: p. 65439-65448.

11. Decentralized Identity Foundation. ION Tools. Available from:
https://github.com/decentralized-identity/ion-tools.

12. Decentralized Identity Foundation. Universal Resolver. Available from:
https://github.com/decentralized-identity/universal-resolver.

https://www.w3.org/TR/vc-data-model/
https://usa.visa.com/solutions/crypto/auto-payments-for-self-custodial-wallets.html
https://usa.visa.com/solutions/crypto/auto-payments-for-self-custodial-wallets.html
https://usa.visa.com/solutions/crypto/rethink-digital-transactions-with-account-abstraction.html
https://usa.visa.com/solutions/crypto/rethink-digital-transactions-with-account-abstraction.html
https://github.com/decentralized-identity/ion-tools
https://github.com/decentralized-identity/universal-resolver

VITA

VITA

NAME yosnai chanatrutipan

DATE OF BIRTH 12 August 1993

PLACE OF BIRTH Bangkok

INSTITUTIONS ATTENDED University of Illinois, at Urbana champaign

HOME ADDRESS 34 phetkasem 53 laksong bangkae bangkok 10160

PUBLICATION none

AWARD RECEIVED none

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Abstract
	INTRODUCTION
	Chapter 1 signing a contract.
	Signing on paper
	Signing on computer
	Electronic signature
	Problem with an electronic signature
	Digital signature
	Certificate authority and Digital certificate

	A review of an existing document signing web application

	Chapter 2 BLOCKCHAIN
	Blockchain
	Smart Contract
	The blockchain used in this thesis.

	Chapter 3 Decentralized identity
	A decentralized identity identifier (DID)
	A decentralized identity document. (DID document)
	Problem with DID and DID document.
	Verifiable credential

	Chapter 4 Method
	Signing a contract using a verifiable credential as an electronic signature
	Enforcing a lease agreement with smart contract
	Deploying a smart contract
	Smart contract automation on Ethereum
	Advantage of rent payment with smart contracts
	Related work
	DIAGRAM (OVERVIEW OF THE THESIS)

	Chapter 5 Opensource Web application
	How to create a decentralized identity
	How to issue and obtain a verifiable credentials: part 1
	How to issue and obtain a verifiable credentials: part 2
	The web application
	SIGN PAGE
	Document authentication Page
	Lease Page

	Chapter 6 Conclusion and Future work
	REFERENCES
	VITA

