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ABSTRACT (THAI) 
 กิตติวินท ์กำลังมาก : การเรียนรู้แบบเสรมิกำลังเชิงลึกแบบหลายตัวกระทำสำหรับการซื้อขายครปิโท

เคอร์เรนซี. ( Multi-Agent Deep Reinforcement Learning for Cryptocurrency Trading) อ.ที่
ปรึกษาหลัก : รศ. ดร.พรีพล เวทีกูล 

  
การเรียนรู้แบบเสริมกำลัง (Reinforcement learning) เป็นวิธีการที่ถูกนำมาใช้ในการเพิ่มผลกำไรใน

การซื้อขายคริปโทเคอร์เรนซี (cryptocurrency) อย่างไรก็ตาม ความผันผวนของตลาด โดยเฉพาะในช่วงเวลาที่
ตลาดเป็นลักษณะตลาดขาลง (Bearish) กลายเป็นอุปสรรคที่สำคัญของด้านนี้ งานวิจัยที่มีอยู่ในปัจจุบัน มีความ
พยายามที่จะแก้ปัญหานี้โดยการใช้เทคนิค Deep Q-Network (DQN), Advantage Actor-Critic (A2C), และ 
Proximal Policy Optimization (PPO) หรือการผสมผสานกันของเทคนิคดังกล่าว (Ensemble) แต่อย่างไรก็
ตาม กลไกที่นำมาใช้เพื่อลดความเสียหายในช่วงตลาดขาลงสำหรับคริป โทเคอร์เรนซียังไม่มีประสิทธิภาพ
เท่าที่ควร ดังนั้นประสิทธิภาพของวิธีการเรียนรู้แบบเสริมกำลังสำหรับการซื้อขายคริปโทเคอร์เรนซียังถูกจำกัด  
เพื่อเอาชนะข้อจำกัดนี้ เรานำเสนอเทคนิคใหม่สำหรับการซื้อขายคริปโทเคอร์เรนซี โดยใช้การเรียนรู้แบบหลาย
ตั วกระท ำ  (Multi-Agent) และฟั งก์ ชัน รางวัล ร่ วม  (Local-Global Reward Function) เพื่ อป รับป รุ ง
ประสิทธิภาพในการทำงานร่วมกันของตัวกระทำทุกตัว รวมถึงการทำงานของตัวกระทำแต่ละตัวไปพร้อมกันด้วย 
นอกจากนั้น เรายังใช้เทคนิคการปรับปรุงเป้าหมายหลายวัตถุประสงค์  (Multi-Objective Optimization 
Technique) และการทำโทษเมื่อมีการสูญเสียแบบต่อเนื่อง ซึ่งเราเรียกว่า Multi-Scale Continuous Loss 
(MSCL) Reward ที่เราดัดแปลงมาจากการลงโทษแบบเพิ่มเติม  (Progressive Penalty) เพื่อป้องกันความ
สูญเสียต่อเนื่องของมูลค่าพอร์ตการลงทุน ในการประเมินผลของวิธีการที่เรานำเสนอ เราได้ทำการเปรียบเทียบ
กับเทคนิคอื่นๆที่เป็นที่นิยม และพบว่าผลตอบแทนสะสม (cumulative return) ของเทคนิคของเรามีค่าสูงกว่า
เทคนิคดังกล่าว โดยเฉพาะในช่วงตลาดขาลง มีเพียงวิธีการของเราเท่านั้นที่สามารถให้ผลกำไรได้ ซึ่งวิธีการของ
เราสร้างผลตอบแทนสะสมได้ถึง 2.36% ในขณะที่วิธีการอื่นๆที่เรานำมาเปรียบเทียบเกิดการขาดทุนทั้งหมด และ
เมื่อเปรียบเทียบกับ FinRL-Ensemble ซึ่งเป็นวิธีการที่ใช้การเรียนรู้แบบเสริมกำลัง เราพบว่าวิธีการของเราได้รับ
ผลตอบแทนสะสมที่สูงกว่าถึง 46.05% ในช่วงตลาดขาขึ้น (Bullish) 

 

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร ์ ลายมือช่ือนิสติ ................................................ 
ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษาหลัก .............................. 
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ABSTRACT (ENGLISH) 
# # 6470140221 : MAJOR COMPUTER SCIENCE 
KEYWORD: Cryptocurrency trading, multi-agent reinforcement learning, portfolio 

management 
 Kittiwin Kumlungmak : Multi-Agent Deep Reinforcement Learning for Cryptocurrency 

Trading. Advisor: Assoc. Prof. PEERAPON VATEEKUL, Ph.D. 
  

Reinforcement learning has emerged as a promising approach for enhancing 
profitability in cryptocurrency trading. However, the inherent volatility of the market, especially 
during bearish periods, poses significant challenges in this domain. Existing literature addresses 
this issue through the adoption of single-agent techniques such as deep Q-network (DQN), 
advantage actor-critic (A2C), and proximal policy optimization (PPO), or their ensembles. 
Despite these efforts, the mechanisms employed to mitigate losses during bearish market 
conditions within the cryptocurrency context lack robustness. Consequently, the performance 
of reinforcement learning methods for cryptocurrency trading remains constrained within the 
current literature. To overcome this limitation, we present a novel cryptocurrency trading 
method, leveraging multi-agent proximal policy optimization (MAPPO). Our approach 
incorporates a collaborative multi-agent scheme and a local-global reward function to 
optimize both individual and collective agent performance. Employing a multi-objective 
optimization technique and a multi-scale continuous loss (MSCL) reward, we train the agents 
using a progressive penalty mechanism to prevent consecutive losses of portfolio value. In 
evaluating our method, we compare it against multiple baselines, revealing superior 
cumulative returns compared to baseline methods. Notably, the strength of our method is 
further exemplified through the results obtained from the bearish test set, where only our 
approach demonstrates the ability to yield a profit. Specifically, our method achieves an 
impressive cumulative return of 2.36%, while the baseline methods result in negative 
cumulative returns. In comparison to FinRL-Ensemble, a reinforcement learning-based method, 
our approach exhibits a remarkable 46.05% greater cumulative return in the bullish test set. 
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CHAPTER I 

INTRODUCTION 

 By leveraging blockchain as a foundational technology, cryptocurrencies 

enable direct transactions between users without the need for intermediaries. As a 

result, the value of cryptocurrencies remains immune to interference or manipulation 

by governments or organizations. This unique attribute allows cryptocurrencies to 

acquire value without relying on physical representation. 

 Since the introduction of Bitcoin in 2009, a multitude of cryptocurrencies have 

surfaced, leading to the establishment of various alternative utility tokens such as 

Ethereum and Ripple. According to coinmarketcap.com, the platform that provides 

cryptocurrency market data, there are currently over 8,000 listed cryptocurrencies. In 

November 2021, the combined market capitalization of these cryptocurrencies 

reached a peak of $2.97 trillion [1]. 

 As a result of their significant value growth, cryptocurrencies have emerged as 

highly sought-after alternative assets for investment. This popularity has led to the 

establishment of over two hundred cryptocurrency exchanges by the end of 2022. A 

notable example is Binance, a prominent cryptocurrency exchange that boasts a daily 

trading volume surpassing $15 trillion. This substantial trading volume serves as a 

testament to the potential profitability associated with trading on cryptocurrency 

exchanges [2]. 

 In parallel with the surge of cryptocurrencies, the field of machine learning 

has witnessed rapid advancements and widespread adoption within the financial 

industry. In particular, researchers have been actively exploring various machine-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

learning techniques to predict the price movements of cryptocurrencies. Notably, 

Khedr et al. [3] conducted a study and discovered a consistent increase in the number 

of publications focused on cryptocurrency price prediction since 2017. They found 

that approximately 54.03% of these publications incorporate machine-learning 

methodologies for prediction purposes. This trend underscores the growing interest in 

leveraging machine learning algorithms to forecast cryptocurrency price dynamics. 

 Supervised learning and reinforcement learning are extensively explored 

machine learning approaches that hold potential in the domain of cryptocurrency 

trading. Firstly, supervised learning involves constructing models that can predict 

future outcomes based on historical data. This approach requires the availability of 

features and corresponding labels. While models developed through supervised 

learning techniques can effectively forecast future cryptocurrency prices, the ability to 

generate profits from trading is a different matter [4-6]. Merely having knowledge of 

future prices does not guarantee profitable trades. Factors such as transaction fees and 

market volatility also need to be carefully considered to ensure effective trading and 

profitability. 

 In contrast, reinforcement learning offers a framework for training agents to 

make optimal decisions in response to a dynamic environment, such as the 

cryptocurrency market. Agents, based on the current state, select actions (e.g., buy, 

sell, or hold tokens) that maximize a designated reward function. Additionally, the 

reward function can be defined in a multi-objective manner, incorporating factors like 

return, transaction cost, and volatility. Consequently, reinforcement learning proves to 

be a more suitable approach for cryptocurrency trading. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 This study presents a novel cryptocurrency trading strategy, contributing in the 

following ways: 

• Adoption of collaborative multi-agent proximal policy optimization 

(MAPPO), where each agent specializes in trading a specific token from the 

portfolio. The strategy incorporates a local-global reward function that 

simultaneously optimizes the individual and collective performance of the 

agents. 

• Implementation of a multi-objective optimization technique that includes 

return, volatility, and transaction cost within the reward function. Moreover, 

the study employs a multi-scale continuous loss (MSCL) reward mechanism to 

train agents effectively and prevent continuous loss of portfolio value, thereby 

achieving superior trading performance. 

1.1 Aims and objectives 

• To propose a cryptocurrency trading strategy based on multi-agent deep 

reinforcement learning, aiming to optimize both returns and portfolio risk 

reduction concurrently. 

• To assess the effectiveness of the multi-agent deep reinforcement learning 

approach in cryptocurrency trading, specifically under various market 

conditions, including bullish, bearish, and sideways markets. 

1.2 Scope of work 

• Evaluate the proposed multi-agent deep reinforcement learning method, 

covering the following scops: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

- Conducting experiments using hourly k-line data obtained through the 

Binance API. 

- Investigating the performance of 5 prominent tokens relative to Tether 

(USDT): Cardano (ADAUSDT), Binance Coin (BNBUSDT), Bitcoin 

(BTCUSDT), Ethereum (ETHUSDT), and Ripple (XRPUSDT). 

- Employing data spanning from April 1, 2021, to August 31, 2022. 

• Evaluate the effectiveness of the proposed multi-agent deep reinforcement 

learning method by analyzing portfolio performance measurements, including 

cumulative return, Sharpe ratio, Calmar ratio, volatility, and maximum 

drawdown (MDD). 

1.3 Benefits 

• Enable the autonomous execution of trades that are better aligned with 

cryptocurrency market conditions. 

• Facilitate simultaneous monitoring and management of multiple tokens. 

• Optimize profit while effectively managing volatility and transaction costs. 

1.4 Publication 

• K. Kumlungmak and P. Vateekul, "Multi-Agent Deep Reinforcement 

Learning With Progressive Negative Reward for Cryptocurrency Trading," in 

IEEE Access, doi: 10.1109/ACCESS.2023.3289844. 

- IEEE Access, Institute of Electrical and Electronics Engineers Inc. 

- Q1, Tier 1 

- Impact Factor = 3.476.  
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CHAPTER II 

BACKGROUND 

 Within this chapter, an exposition of the contextual understanding relevant to 

the dissertation is presented. It encompasses an elucidation of the data description, 

algorithmic approach, problem formulation, experimental scenario, and evaluation 

metrics.  

2.1 Cryptocurrency market data 

 Within the domain of the cryptocurrency market, the price volatility of a token 

during a specified timeframe is conventionally depicted using k-line data. A standard 

collection of k-line data encompasses the opening price, highest price, lowest price, 

and closing price, as enumerated subsequently: 

• The "open price" denotes the initial valuation of a token at the commencement 

of the period. 

• The "high price" corresponds to the maximum price attained by the token 

during the specified period. 

• The "low price" signifies the minimum price reached by the token within the 

given timeframe. 

• The "close price" represents the final price of the token at the culmination of 

the period. 
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2.2 Financial technical indicator 

 Within the realm of finance, technical indicators serve as signals employed by 

traders to assess an asset's characteristics based on historical data encompassing price 

and volume. These indicators provide guidance to traders regarding optimal moments 

for buying and selling [7]. 

 

2.2.1 Moving Average Convergence Divergence (MACD) 

 The Moving Average Convergence Divergence (MACD) is a widely 

recognized technical indicator employed to detect potential buy and sell signals within 

the price trend of a financial asset. Computation of the MACD line involves 

subtracting the longer-term exponential moving average (EMA) from the shorter-term 

EMA. Conventionally, a 12-day EMA is subtracted from a 26-day EMA to generate 

the MACD line, which reflects the disparity between the two EMAs and displays 

oscillations above and below a zero line [8]. Traders rely on the MACD indicator to 

determine optimal entry and exit points, validate trends, and assess the intensity of 

price movements. 

2.2.2 Relative Strength Index (RSI) 

 The relative strength index (RSI) is a momentum indicator widely utilized in 

technical analysis. Its purpose is to assess the velocity and magnitude of recent price 

changes in a security, aiming to identify potentially overvalued or undervalued 

conditions. The RSI not only indicates overbought and oversold securities but also 

provides insights into potential trend reversals or corrective pullbacks in price. By 

analyzing the RSI, traders can determine opportune moments for buying and selling. 
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In conventional practice, an RSI reading of 70 or above signifies an overbought 

situation, while a reading of 30 or below indicates an oversold condition [9]. 

2.2.3 Commodity Channel Index (CCI) 

 The Commodity Channel Index (CCI) is a momentum-based oscillator created 

by Donald Lambert that serves as a valuable tool for assessing the overbought or 

oversold condition of an investment vehicle. This technical indicator evaluates both 

the direction and strength of price trends, empowering traders to make informed 

decisions regarding trade entry or exit, trade avoidance, or the addition of positions. 

By monitoring the behavior of the CCI, traders can receive valuable trade signals that 

guide their actions in the market [10]. 

2.2.4 Average Directional Index (ADX) 

 The Average Directional Index (ADX) is a widely used technical indicator 

that measures the strength of a trend. By calculating the moving average of price 

range expansion over a specific time period, typically set to 14 bars but adjustable to 

other timeframes, ADX provides valuable insights into the intensity of a trend. 

Represented as a single line, ADX values range from zero to 100. Traders often 

consider ADX readings above 25 as an indication of a strong trend suitable for trend-

trading strategies. Conversely, when ADX falls below 25, many traders prefer to 

avoid trend-trading strategies. It is important to note that ADX is a non-directional 

indicator, meaning it assesses trend strength regardless of whether the price is moving 

upwards or downwards. This versatile tool can be effectively utilized across various 

trading vehicles, including stocks, mutual funds, exchange-traded funds (ETFs), and 

futures [11]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

2.2.5 Cryptocurrency Volatility Index (CVIX) 

The Cryptocurrency Volatility Index (CVIX) functions as a quantitative metric 

that quantifies the anticipated level of price fluctuations within the overall 

cryptocurrency market over a 30-day period. Utilizing the Black-Scholes option 

pricing model, the CVIX is specifically designed to provide insightful information 

regarding market volatility. Ranging from 0 to 200, the CVIX assigns a value of 200 

to indicate the highest level of implied volatility, while a value of zero signifies the 

lowest volatility. This index serves as a valuable instrument for investors, 

empowering them to adapt their trading strategies based on varying CVIX values and 

effectively manage potential risks. It is important to note that a higher CVIX value 

implies increased risks, but it also presents the potential for higher returns [12]. 

2.5.6 Social Media Sentiment 

 With the rise of artificial intelligence and machine learning, sentiment analysis 

tools have become increasingly valuable in assessing social media sentiment and its 

potential influence on the cryptocurrency market. Pant et al. [4] utilized sentiment 

analysis on Twitter to forecast the unpredictable price fluctuations of Bitcoin, 

achieving an impressive accuracy of 81.39% in classifying tweets as positive or 

negative. Additionally, by employing a Recurrent Neural Network (RNN), they 

attained a commendable accuracy of 77.62% in predicting Bitcoin's price. Similarly, 

Vo et al. [6] harnessed the power of sentiment analysis on news data to precisely 

anticipate the price direction of Ethereum, providing users with valuable insights for 

making informed decisions about whether to buy, sell, or hold. 
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2.5.7 Fear and Greed Index 

The Fear and Greed Index in the cryptocurrency domain is a sentiment-based 

indicator that evaluates the prevailing emotional state of market participants. It 

incorporates multiple data points, including market volatility, trading volume, social 

media activity, surveys, and price movements, to generate a sentiment reading on a 

scale of 0 to 100, ranging from extreme fear to extreme greed. This index offers 

valuable insights into market sentiment and potential market conditions, whereby 

lower values indicate fear and bearish sentiment, while higher values indicate greed 

and bullish sentiment. It is important to note that the Fear and Greed Index should be 

used in conjunction with other factors when making investment decisions, as it can 

serve as a contrarian indicator [13]. 

 In our approach, we derive technical indicators from historical k-line data and 

utilize them as features following the study done by Yang et al. [14]. Notably, we 

have utilized a publicly available library named Stock-stats [15] to compute the 

subsequent technical indicators 

2.3 Portfolio performance measurement 

 In order to assess the effectiveness of our approach and make comparisons 

with baseline strategies, we utilize the following metrics. 

2.3.1 Cumulative return 

 A cumulative return serves as an indicator of a trading strategy's profitability. 

This metric quantifies the overall gain or loss incurred during the trading period 

relative to the initial capital, expressed as a percentage. The calculation of a 

cumulative return is as follows:  
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𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 − 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙

(1) 

where 𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 represents the portfolio value at the conclusion of the trading period, 

and 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 corresponds to the initial portfolio value [16]. 

2.3.2 Sharpe ratio 

 The Sharpe ratio is a risk-adjusted measure of the return on an investment 

strategy, utilized to facilitate comparisons among investments with varying levels of 

risk and return. This metric is mathematically defined as: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
 (2) 

where 𝑅𝑝 is the average return of an interested frequency, 𝑅𝑓 is the risk-free rate, and 

𝜎𝑝 is the standard deviation of the returns of an interested frequency. A higher Sharpe 

ratio signifies that the strategy attains a superior return relative to the associated risk 

[17]. In this study, the Sharpe ratio is computed using hourly returns. Additionally, for 

simplicity, the risk-free rate is assumed to be zero. 

2.3.3 Calmar ratio 

 The Calmar ratio is an additional risk-adjusted measure that contrasts the 

portfolio return with its maximum drawdown (MDD) observed throughout the trading 

period. A higher Sharpe ratio implies a greater return per unit of maximum drawdown 

(MDD). This ratio can be mathematically defined as:  

𝐶𝑎𝑙𝑚𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝑀𝐷𝐷
 (3) 

where MDD denotes the maximum drawdown experienced throughout the entirety of 

the trading period [18]. 
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 Similar to the Sharpe ratio, we simplify the analysis by assuming a risk-free 

rate of zero. However, in our experiment, the average portfolio return obtained at a 

one-hour frequency is comparatively small when compared to the magnitude of the 

maximum drawdown (MDD) observed throughout the trading period. Consequently, 

this discrepancy poses challenges in interpretation. As a resolution, we employ a 

cumulative return instead of the portfolio return, albeit with a slight deviation from its 

original definition. Nonetheless, the interpretation of the results remains unchanged. 

2.3.4 Volatility 

 Volatility, which represents the variance of a portfolio and signifies the 

comprehensive risk of an investment, can be defined as: 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝜎(𝑅𝑝)

√𝑇
 (4) 

where 𝑇 represents the number of periods within the desired time horizon [19]. In our 

experiment, we consider 𝑇 = 365 ∙ 24 = 8,760 periods to obtain the annualized 

volatility.  

2.3.5 Maximum drawdown 

 Maximum drawdown (MDD) quantifies the potential downside risk during a 

trading period. MDD captures the largest decline in portfolio values from a peak to a 

subsequent trough, prior to a new peak, and can be expressed as: 

𝑴𝑫𝑫 =
𝒗𝒕𝒓𝒐𝒖𝒈𝒉 − 𝒗𝒑𝒆𝒂𝒌

𝒗𝒑𝒆𝒂𝒌
 (𝟓) 

where 𝑣𝑡𝑟𝑜𝑢𝑔ℎ  represents the portfolio value at the trough, while 𝑣𝑝𝑒𝑎𝑘 corresponds to 

the portfolio value at the peak. Consequently, MDD can be regarded as the most 

substantial loss encountered by a portfolio throughout the trading period [20].  
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CHAPTER III 

RELATED WORKS 

 This chapter focuses on the exploration of reinforcement learning methods 

relevant to the present study. Furthermore, an assessment of recent research articles 

concerning reinforcement learning for cryptocurrency is conducted. 

3.1 Reinforcement learning 

 Figure  1 provides an illustration of the underlying concept of reinforcement 

learning. In this framework, an agent perceives the current state or observation 𝑠𝑡 

given by the environment and subsequently responds to the environment with an 

action 𝑎𝑡. The agent’s policy 𝜋(𝑎𝑡|𝑠𝑡), a function mapping states to actions, 

determines the chosen action 𝑎𝑡 based on the observed state 𝑠𝑡. Following the action, 

the environment provides feedback to the agent in the form of a new state 𝑠𝑡+1, and a 

reward signal 𝑟𝑡+1, which reflects the agent's performance in accomplishing its 

objective. Utilizing this reward signal, the agent employs a reinforcement learning 

algorithm to enhance its policy, enabling continual improvement in its decision-

making capabilities. The interaction between the agent and the environment persists 

until a terminal state is reached. The ultimate aim is to maximize the expected reward 

at time 𝑡, which is computed as the sum of all future rewards discounted by a factor 

𝛾 ∈ (0,1] written as: 

𝑅𝑡 =  ∑ 𝛾𝑡−𝑇𝑟𝑡

𝑇

𝑡

 ( 6) 
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 The objective of solving the reinforcement learning problem is to determine 

the optimal policy for the agent to pursue, ultimately attaining maximum reward upon 

reaching the terminal state. The subsequent section elucidates the strategies employed 

to address reinforcement learning problems. 

 

Figure  1 Schema of reinforcement learning. 

 

3.1.1 Valued-based method 

 A valued-based method focuses on optimizing a value function, which enables 

the discovery of an optimal policy 𝜋∗ that leads to the attainment of the maximum 

expected reward. Two types of value functions exist: the state-value function and the 

action-value function. 

 A state-value function, represented as 𝑉𝜋(𝑠), approximates the anticipated 

discounted reward an agent would obtain when commencing in a particular state and 

adhering to a specific policy. The state-value function can be expressed as: 
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𝑉𝜋(𝑠) = 𝔼(𝑅𝑡|𝑠𝑡 = 𝑠) (7) 

 The action-value function, denoted as 𝑄(𝑠, 𝑎), predicts the anticipated reward 

an agent would receive by choosing a specific action based on a policy within a given 

state. The action-value function can be expressed as: 

𝑄𝜋(𝑠, 𝑎) = 𝔼(𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (8) 

 The optimal action-value function, denoted as 𝑄∗(𝑠, 𝑎), yields the highest 

action-value among all feasible actions for a given state. The expression for the 

optimal action-value function is: 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

𝑄𝜋 (𝑠, 𝑎) (9) 

 Through the optimization of one of the value functions, an optimal policy is 

revealed, as depicted in the following relationship: 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎) (10)

where 𝜋∗(𝑠) represents an optimal policy that determines the optimal action for a 

given state. 

3.1.2 Policy-based method 

 In contrast to the value-based method that indirectly determines an optimal 

policy through the training of a value function, a policy-based method directly 

optimizes the policy itself. Initially, the policy is parameterized using a set of 

parameters denoted as 𝜃, which can take the form of a neural network. Consequently, 

the policy outputs a probability distribution over actions, which can be 

mathematically represented as: 

𝜋𝜃 =  ℙ(𝑎|𝑠; 𝜃) (11) 
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 Subsequently, the gradient ascent method is employed to update the parameter 

set 𝜃 to maximize an objective function denoted as 𝐽(𝜃) which represent the expected 

reward. Consequently, the objective function can be expressed as: 

𝐽(𝜃) = 𝔼(𝑅𝑡) (12) 

 REINFORCE serves as a prominent example of a policy gradient method, 

where the gradient utilized to update the parameter set 𝜃 is defined as: 

𝛻𝜃𝐽(𝜃) = 𝛻𝜃𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡; 𝜃)𝑅𝑡 (13) 

where 𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡; 𝜃) represents the log probability of selecting action 𝑎𝑡 given state 

𝑠𝑡 [21]. 

 Nevertheless, the training of a policy-based method becomes challenging due 

to the substantial variance of the gradient, leading to training instability. 

3.1.3 Actor-critic method 

 To address the issue of large gradients in the policy-based method, an actor-

critic method introduces a baseline 𝑏𝑡 by subtracting the expected reward term. An 

exemplary implementation of the actor-critic method is the advantage actor-critic 

(A2C), where the estimated state-value 𝑉(𝑠𝑡) serves as the baseline, subtracted from 

the expected reward 𝑅𝑡. The outcome of this subtraction is referred to as the 

advantage and can be mathematically represented as: 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑅𝑡 − 𝑏𝑡 = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) (14) 

where 𝐴(𝑠𝑡, 𝑎𝑡) represents the advantage of action 𝑎𝑡 at state 𝑠𝑡. It is important to 

mention that calculating the advantage requires an additional set of parameters to 

estimate the state-value function. Consequently, this approach is referred to as the 

actor-critic method, which leverages state-value estimation to enhance policy 

optimization. 
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 As per the definition, the advantage quantifies the superiority or inferiority of 

an action compared to the average of all possible actions [22]. Consequently, the 

gradient used for updating the policy can be expressed as: 

∇𝜃𝐽(𝜃) = ∇𝜃𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡; 𝜃)𝐴(𝑠𝑡, 𝑎𝑡) (15) 

 However, the A2C method encounters instability during training due to the 

significant policy changes that occur after updates. 

 Proximal policy optimization (PPO) is specifically designed to address this 

limitation by constraining the gradient update during each training step using a 

clipped surrogate loss function, which is defined as: 

𝐽𝑐𝑙𝑖𝑝(𝜃) = 𝔼[𝑚𝑖𝑛(𝑞𝑡(𝜃)𝐴(𝑠𝑡, 𝑟𝑡), 𝑐𝑙𝑖𝑝(𝑞𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴(𝑠𝑡, 𝑎𝑡))] (16) 

where 𝑞𝑡(𝜃) represents the probability ratio between the new policy and the old 

policy, precisely defined as: 

𝑞𝑡(𝜃) = [
𝜋𝜃(𝑎𝑡, 𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡, 𝑠𝑡)

] (17) 

 According to the surrogate loss function, the ratio 𝑞𝑡(𝜃) is clipped between 

[1 − 𝜖, 1 + 𝜖]. This new objective function prevents the drastic change of the policy 

during training. As a result, PPO is more stable than A2C [23]. 

 By utilizing the surrogate loss function, the ratio 𝑞𝑡(𝜃) is bounded within the 

range [1 − 𝜖, 1 + 𝜖]. This modified objective function effectively mitigates the 

extreme policy changes during training. Consequently, PPO exhibits greater stability 

compared to A2C. 

 Given its capability to regulate gradient updates, PPO proves to be an 

appropriate reinforcement learning approach for handling the inherent noise present in 
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environments such as the cryptocurrency market. As a result, PPO has been chosen as 

the preferred method for our proposed approach. 

3.2 Reinforcement learning for cryptocurrency trading 

 The finance industry was among the pioneers in adopting machine learning to 

enhance its operations, particularly trading. The advent of machine learning has 

expedited advancements in trading strategies. Among various machine learning 

techniques, reinforcement learning stands out as the most suitable approach for 

algorithmic trading. It excels at learning to interact with the environment and 

optimizing actions to achieve predefined objectives. In the context of algorithmic 

trading, reinforcement learning specifically learns when to sell, buy, or hold assets 

with the aim of maximizing profit. 

 Consequently, the application of reinforcement learning to financial trading 

has garnered significant interest among researchers. Taghian et al. [24] proposed the 

utilization of deep Q learning (DQN) to acquire asset-specific trading rules, 

commencing with a simpler task of trading one asset at a time. T. Théate and D. Ernst 

[25] introduced the trading deep Q-network strategy (TDQN). In a separate study, 

Tsai et al. [26] explored the use of candlestick patterns as learning features. While 

these methods have yielded intriguing results, it is worth noting that the suggested 

approaches do not effectively handle the simultaneous management of multiple assets. 

 Jiang et al. [27] proposed the ensemble of identical independent evaluators 

(EIIE) for trading multiple assets, specifically focusing on portfolio management 

through a deterministic policy gradient algorithm. Weng et al. [28] [29]introduced 

deep reinforcement learning with a multidimensional attention-gating mechanism for 
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portfolio management. C. Betancourt and W.-H. Chen [29] adopted a self-attention 

network combined with A2C for portfolio selection. Additionally, various deep neural 

networks were employed. Sun et al. [30] utilized a deep residual shrinkage neural 

network to improve learning capability and address the issue of vanishing gradients. 

Yao et al. [31] implemented an inception module with a convolution block of 

different filter sizes and a bottleneck attention module to mitigate challenges 

associated with uniformly stacked networks, such as overfitting and computational 

overflow. However, these approaches did not incorporate risk management into their 

methodologies. 

 Reduction of unsystematic risk poses a formidable yet indispensable challenge 

within the realm of finance. An established approach to mitigate risk involves 

implementing a rule-based cut loss strategy, wherein trading agents adhere to 

predefined instructions upon the fulfillment of certain conditions. Notably, Gort et al. 

[32] relied on the cryptocurrency volatility index (CVIX) as a means of risk 

management, opting to sell all tokens and halt purchases once CVIX surpassed a 

predetermined threshold. In similar fashion, Yang et al. [14] opted to monitor a 

turbulence index instead of CVIX for their stock trading endeavors. Although these 

methodologies have demonstrated risk reduction capabilities, they are not universally 

optimal. This is due to the fact that financial markets exhibit dynamic behavior, 

influenced by a multitude of factors. Consequently, a predefined threshold may prove 

effective during certain time periods but fail to be efficacious during others. 

 A more sophisticated strategy involves training a reinforcement learning agent 

to optimize both risk reduction and return maximization. Sattarov et al. [33] 

implemented a conditional negative reward to discourage the agent from repeatedly 
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selecting a hold action. Another approach suggested by Betancourt and W.-H. Chen 

[34] is to incorporate risk considerations into the reward function by using a 

differential Sharpe ratio. Similarly, Bisht and Kumar [35] enhanced their reward 

function by including the standard deviation of returns (volatility) along with the 

average return. 

 Transaction costs have a notable impact on portfolio returns in algorithmic 

trading strategies. Excessive buying and selling can result in overtrading and high 

transaction costs. Zhang et al. [36] tackled this challenge by introducing cost-sensitive 

terms into their reward function. Their experiments showed that a trained agent can 

successfully manage transaction costs. In summary, our proposed method 

incorporates the objective of minimizing volatility and transaction costs into our 

reward function. 
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CHAPTER IV 

CONCEPT AND RESEARCH METHODOLOGY 

 In this chapter, we present our proposed approach, which consists of three 

essential components: data preparation, multi-agent proximal policy optimization 

(MAPPO), and a simulated cryptocurrency market environment. Figure  2 offers a 

visual overview of the method. During the data preparation phase, historical k-line 

data is obtained from the Binance API, with a focus on open, high, low, and close 

prices. These prices are utilized to calculate technical indicators: i.e., MACD, RSI, 

CCI, and ADX. In the simulated cryptocurrency market environment, only the 

technical indicators and the close price are considered as data inputs. At each 

timestep, identical observations, comprising the processed data, are provided to all 

agents. These observations serve as inputs for the actor and critic networks of the 

agents. The actor network generates actions, while the critic network estimates 

expected rewards or state-values. The actions are then used to interact with the 

environment, triggering trade execution and transitioning to a new state. Based on the 

resulting state, rewards are computed for each agent and communicated to them. The 

agents learn from the received rewards using the PPO algorithm and generate new 

actions based on the most recent observation. 
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Figure  2 System overview: (a) data preparation, (b) multi-agent proximal policy 

optimization (MAPPO), and (c) simulated cryptocurrency market environment. 

 

4.1 Data preparation 

 This study focuses on analyzing the historical k-line data at an hourly 

frequency for five popular token pairs: Cardano (ADAUSDT), Binance Coin 

(BNBUSDT), Bitcoin (BTCUSDT), Ethereum (ETHUSDT), and Ripple 
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(XRPUSDT). The dataset used in this research was obtained through the Binance API 

[37] and covers the period from April 1, 2021, to August 31, 2022. 

 The data retrieved from Binance API includes twelve fields for each token in 

the hourly historical k-line data. However, for the purpose of this study, only the price 

features, namely the open price, high price, low price, and close price, are utilized. 

Any unused features have been eliminated from the dataset. 

 In the subsequent stage, the dataset is enriched with informative features by 

calculating four financial technical indicators: moving average convergence 

divergence (MACD), relative strength index (RSI), commodity channel index (CCI), 

and average directional index (ADX). These indicators are widely utilized by traders 

in financial markets and have demonstrated their utility. Furthermore, as the technical 

indicators are derived from the price features, all price features except the close price 

are excluded from the dataset. Consequently, the dataset for each token consists of 

five features: close price, MACD, RSI, CCI, and ADX. 

4.2 Multi-agent policy optimization for cryptocurrency trading (MAPPO) 

 This section outlines the fundamental components of our proposed method, 

namely: state, agent, action, reward, and the simulated cryptocurrency market 

environment. 

4.2.1. State and observation  

 The state in our method represents the current status of the agents and the 

environment and is composed of two components. The first component is the 

portfolio data, which is represented by a "token value vector" (𝑋𝑡). This vector 

contains the values of each token in the portfolio at time 𝑡, and in our study, it consists 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

of six elements representing the number of tokens, including USDT. The second 

component is the market data, which encompasses the close price, MACD, RSI, CCI, 

and ADX vectors (𝑃𝑡, 𝑀𝑡, 𝐼𝑡, 𝐶𝑡, and 𝐷𝑡) for each token at time 𝑡. Each vector 

contains five elements, resulting in a total of twenty-five values stored in the market 

data at each timestep. Therefore, the state vector at each timestep encompasses thirty-

one values. 

 Observation refers to the information accessible to agents at a given time 

within the simulated environment. Agents have the ability to retrieve both current and 

historical data within this environment. In this context, the observation is equivalent 

to the state. Each agent is able to observe not only the data related to its allocated 

token but also the data pertaining to all other tokens. This enables agents to identify 

correlations between the tokens they are trading, aiding them in determining the 

optimal actions to take.  

 Ensuring the normalization of observations is essential to maintain consistency 

in the range of values for each feature. Consequently, the transformation of a token 

value vector into a portfolio vector can be observed through the following equation: 

𝑊𝑡 =
𝑋𝑡

𝑣𝑡
 (18) 

where 𝑊𝑡 represents the weight assigned to each token, contributing to the portfolio 

value at time 𝑡. Similarly, 𝑋𝑡 denotes the token value vector at time 𝑡, while 𝑣𝑡 

represents the portfolio value at that specific time. 

 To normalize the market data, min-max scaling is employed, resulting in the 

transformation of the market data vector into 𝑃′
𝑡, 𝑀′

𝑡, 𝐼′
𝑡, 𝐶′

𝑡, and 𝐷′
𝑡. Figure  3 

provides a comprehensive overview of the observation normalization process. 
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Figure  3 Schema of observation normalization. 

 

 Therefore, the normalized observation vector at timestep 𝑡, represented as 𝑆𝑡
′, 

is provided to the agents as input. It can be expressed as: 

𝑆𝑡
′ = [𝑊𝑡, 𝑃𝑡

′, 𝑀𝑡
′, 𝐼𝑡

′, 𝐶𝑡
′, 𝐷𝑡

′] (19) 

4.2.2. Agent 

 In our multi-agent approach, each agent is assigned the task of trading a 

specific token, resulting in a collective effort of five agents during the trading process. 

Each deep reinforcement learning agent consists of two crucial components: the 

learning method and the policy network. 

 The learning algorithm chosen for our method is PPO (Proximal Policy 

Optimization) from the RLlib framework. PPO is specifically selected due to its 

capability to restrict gradients during each training step, resulting in improved training 

stability [38]. Given the inherent noisiness of cryptocurrency data, which often leads 

to significant changes in gradient values and gradient explosions during training, the 

ability of PPO to control these explosions is highly advantageous for cryptocurrency 

trading. 
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 Each agent in our system consists of two neural networks: an actor network 

and a critic network. The actor network is responsible for generating actions, while 

the critic network predicts the expected reward or state-value 𝑉(𝑠𝑡). The reward 

obtained is then used to estimate the advantage 𝐴(𝑠𝑡, 𝑎𝑡), which plays a crucial role in 

the gradient update process as discussed previously. 

 Figure  4 showcases the network architecture utilized in our approach, which 

employs a multilayer perceptron (MLP). Additionally, we explore the effectiveness of 

different feature extractors, namely long-short time memory (LSTM) [39], gated 

recurrent unit (GRU) [40], ResNet [41], and Res2Net [42], to enhance our method. 

These feature extractors are fed with 6-hour observations, spanning from 𝑡 − 5 to 𝑡, 

serving as historical data. Our hypothesis is that by leveraging a feature extractor, 

agents can extract valuable insights from historical data, ultimately leading to 

improved trading performance. Figure  5 and Figure  6 provide a visual representation 

of the architectures employed in this study. 

 

Figure  4 The network architecture of the agent consists of two components: the actor 

network on the left-hand side and the critic network on the right-hand side. Each 

network comprises two layers of Multilayer Perceptron (MLP), commonly referred to 

as dense layers. Notably, the normalized market data and the portfolio vector are 

simultaneously provided as observations to both networks. 
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Figure  5 The normalized market data undergoes a feature extraction process after 

passing through either an LSTM or a GRU layer, followed by a dense layer. 

Subsequently, it is concatenated with the portfolio vector and forwarded to both the 

actor and critic networks. 

 

 

Figure  6 The normalized market data undergoes processing through two blocks of 

either ResNet or Res2Net, followed by a flatten layer and a dense layer. Subsequently, 

it is concatenated with the portfolio vector and directed towards both the actor and 

critic networks. The specific details of the ResNet block and the Res2Net block are 

depicted in (a) and (b) respectively. 
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4.2.3. Action 

 Upon receiving the observation, each agent generates an action that specifies 

the desired amount of tokens to be bought or sold. Consequently, the total number of 

actions at each timestep corresponds to the number of tokens being traded. 

 In this research, the action space for each agent is defined within the range of -

1 to 1. The sign of each action represents the type of action, where a zero value 

corresponds to holding, a negative value indicates selling and a positive value 

signifies buying. The magnitude of a non-zero action determines the transaction size, 

expressed as a percentage of the allowable transaction size, which is fixed at 100,000 

USDT. 

𝐴′
𝑡(𝑆𝑡) = 𝐴𝑡 ∙ 105 (20) 

where 𝐴𝑡 represents the vector of raw actions at timestep 𝑡, and 𝐴′
𝑡 represents the 

scaled action vector at timestep 𝑡. Consequently, the maximum magnitude of each 

buying or selling transaction is constrained to 100,000 units. 

4.2.4. Reward 

 The reward function plays a crucial role in the success of reinforcement 

learning. In this study, we introduce a local-global reward function specifically 

designed to optimize the collaborative multi-agent deep reinforcement learning 

technique. Figure  7 provides a visual representation of the different components 

integrated into our reward function. 
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Figure  7 Schema presenting the various terms employed in our reward function, with 

particular emphasis on our proposed reward term, MSCL reward. The green boxes 

represent reward terms that agents should strive to maximize, while the red boxes 

indicate penalty terms that agents should aim to minimize. 

 

 The local reward assesses the performance of each individual agent by 

evaluating their trading actions on their assigned token, resulting in a unique reward 

value for each agent at every timestep in the environment. On the other hand, the 

global reward provides the same reward value to all agents, measuring their overall 

performance. By incorporating both local and global rewards, we aim to optimize the 

individual and collective performance of the agents simultaneously. The subsequent 

section provides a comprehensive explanation of these two reward mechanisms. 

 To begin with, the local reward comprises two sub-components, which serve 

to measure the fluctuations in token value and account for the sensitivity to 

transaction costs: 

𝑅𝑙𝑜𝑐𝑎𝑙(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) = 𝑅𝑡𝑜𝑘𝑒𝑛(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) +  𝑅𝑐𝑜𝑠𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) (21) 

where 𝑅𝑙𝑜𝑐𝑎𝑙(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) represents the local reward vector obtained from the action 

vector 𝐴𝑡 at state 𝑆𝑡, resulting in the transition to a new state 𝑆𝑡+1. Additionally, 

𝑅𝑡𝑜𝑘𝑒𝑛(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) corresponds to the vector capturing the changes in the token value 
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vector caused by the action vector 𝐴𝑡 at state 𝑆𝑡, leading to the new state 𝑆𝑡+1. Lastly, 

𝑅𝑐𝑜𝑠𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) signifies the cost-sensitive reward vector resulting from the action 

vector At at state 𝑆𝑡, leading to the new state 𝑆𝑡+1. 

 The change in token value plays a crucial role in enabling the agent to 

understand the patterns and dynamics of the token it is responsible for. By analyzing 

these changes, the agent gains insights into when it should execute buying, selling, or 

holding actions for the token. Mathematically, this term can be represented as follows: 

𝑅𝑡𝑜𝑘𝑒𝑛(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) =
𝑋𝑡+1

𝑋𝑡′
− 1 (22) 

where 𝑋𝑡′ represents the token value vector after the trading activity at time 𝑡, and 

𝑋𝑡+1 represents the token value vector at time 𝑡 + 1, following the transition of the 

state. 

 Regarding the cost-sensitive reward, agents need to take into account the 

impact of transaction costs on each transaction. This consideration prevents the agent 

from engaging in excessive trading and incurring excessive losses due to transaction 

costs. The formulation of this reward is as follows: 

𝑅𝑐𝑜𝑠𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) = − 𝜙𝐾𝑡 (23) 

where, 𝜙 ≥ 0 represents the cost-sensitive reward coefficient, which regulates the 

impact of this reward term. Additionally, 𝐾𝑡 denotes the vector encompassing 

transaction costs: 

𝐾𝑡 = 𝑘|𝐻𝑡 ∙ 𝑃𝑡| (24) 

where 𝑘 represents the transaction cost, which is assumed to be 0.1% for the purposes 

of this study. Additionally, 𝐻𝑡 is a vector that contains the quantity of each token 

involved in the trading process. 
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 The global reward encompasses three key elements: the change in portfolio 

value, the risk-sensitive reward, and the multi-scale continuous loss (MSCL) reward. 

Therefore, the global reward can be formulated as follows: 

𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) = 𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) + 𝑟𝑟𝑖𝑠𝑘(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) + 𝑟𝑀𝑆𝐶𝐿(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1)(25) 

where 𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) represents the value of the global reward resulting from the 

action vector 𝐴𝑡 at state 𝑆𝑡, leading to a new state 𝑆𝑡+1, 𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) signifies 

the change in portfolio value caused by the action vector 𝐴𝑡 at state 𝑆𝑡, resulting in a 

new state 𝑆𝑡+1, 𝑟𝑟𝑖𝑠𝑘(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) represents the value of the risk-sensitive reward 

resulting from the action vector 𝐴𝑡 at state 𝑆𝑡, leading to a new state 𝑆𝑡+1, and 

𝑟𝑀𝑆𝐶𝐿(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) denotes the value of the MSCL reward resulting from the action 

vector 𝐴𝑡 at state 𝑆𝑡, leading to a new state 𝑆𝑡+1. 

The initial term, 𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1), represents the change in portfolio value 

resulting from holding, selling, or buying tokens as the environment transitions from 

time 1 to 𝑡 + 1, given by the following equation: 

𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) =
𝑣𝑡+1

𝑣𝑡
− 1 (26) 

 The reward 𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) holds utmost significance as it is the primary 

objective for agents to optimize because the ultimate aim of cryptocurrency trading is 

to maximize the portfolio's value. 

 The subsequent term in the global reward is the risk-sensitive reward, which 

represents the variance of all previous 𝑟𝑝𝑜𝑟𝑡(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) values since the start of the 

episode. It can be expressed as: 

𝑟𝑟𝑖𝑠𝑘(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) = −𝜌
1

𝑇
𝜎2 (27) 
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𝜎2 = 𝑣𝑎𝑟 (𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1)) (28) 

where, 𝜌 ≥  0 represents the risk-sensitive reward coefficient, which governs the 

impact of this reward term. 𝑇 denotes the total number of timesteps since the episode's 

inception, while 𝜎2 signifies the portfolio return's variance. Theoretically, this reward 

term allows the agents to reduce the volatility of the portfolio. 

 Moreover, in the event of a continuous decline in portfolio value, agents are 

subjected to the MSCL reward as a form of punishment. Drawing inspiration from the 

principle of progressive discipline, where penalties escalate with repeated mistakes by 

an employee, agents receive a more substantial negative reward if the following 

conditions are satisfied: 

1. In a specified period 𝜏, if the portfolio value at time 𝑡 − 𝜏 (𝑣𝑡−𝜏) is higher than 

the portfolio value at time 𝑡 (𝑣𝑡), where 𝑡 represents the current timestep, it 

indicates a persistent decline in the overall portfolio value throughout the 

given period. 

2. During the time period from 𝑡 − 𝜏 to 𝑡, if the number of positive 𝑟𝑝𝑜𝑟𝑡 values 

(indicating portfolio gains) denoted by 𝑛𝑤𝑖𝑛 is smaller than the number of 

negative 𝑟𝑝𝑜𝑟𝑡 values (indicating portfolio losses) denoted by 𝑛𝑙𝑜𝑠𝑠, it signifies 

that the agents' portfolio is experiencing more frequent decreases in value 

compared to increases. 

3. The portfolio value at time 𝑡, represented as 𝑟𝑝𝑜𝑟𝑡,𝑡, exhibits a negative value. 

 The aforementioned conditions undergo multiple iterations with varying 

values of τ. Initially, 𝜏 is set at twelve timesteps for the first test. In the event that the 

three conditions are not fulfilled at 𝜏 = 12, subsequent tests are conducted with 
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smaller 𝜏 values, such as eleven, and so forth. This iterative process persists until 

either the conditions are satisfied at a specific 𝜏 value or τ reaches its lower threshold. 

Should the conditions be met prior to 𝜏 reaching the lower bound, the agents incur a 

negative reward, as delineated below: 

𝑟𝑀𝑆𝐶𝐿(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) = 𝜇 ∙ |𝑛𝑙𝑜𝑠𝑠 − 𝑛𝑤𝑖𝑛| ∙ 𝑟𝑝𝑜𝑟𝑡,𝑡 (29) 

where 𝜇 ≥ 0 represents the MSCL reward coefficient, which governs the impact of 

the MSCL reward. Conversely, if 𝜏 reaches the lower bound, the MSCL reward 

becomes zero. It is worth noting that |𝑛𝑙𝑜𝑠𝑠 − 𝑛𝑤𝑖𝑛| is always positive and 𝑟𝑝𝑜𝑟𝑡,𝑡 is 

always negative. Consequently, 𝑟𝑀𝑆𝐶𝐿,𝑡 is always negative. Through a comprehensive 

analysis of the aforementioned conditions at different time intervals, the agent can 

enhance their ability to effectively minimize the continuous decline in portfolio value. 

 To enhance comprehension, the algorithm for the MSCL reward is elucidated 

through a pseudo-code representation in Figure  8. 

Algorithm 1: Multi-Scale Continuous Loss (MSCL) Reward 

 Input: historical portfolio value and 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜  

 Output: 𝑟𝑀𝑆𝐶𝐿,𝑡 

1 for 𝜏 = 𝜏𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥 − 1, 𝜏𝑚𝑎𝑥 − 2, … , 𝜏𝑚𝑖𝑛 do: 

2  if (𝑣𝑡−𝜏 > 𝑣𝑡) and (𝑛𝑙𝑜𝑠𝑠 > 𝑛𝑤𝑖𝑛) and (𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 < 0): 

3   return 𝑟𝑀𝑆𝐶𝐿(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) = 𝜇 ∙ |𝑛𝑙𝑜𝑠𝑠 − 𝑛𝑤𝑖𝑛| ∙ 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 

4 return 𝑟𝑀𝑆𝐶𝐿,𝑡 = 0 

Figure  8 Algorithm of multi-scale continuous loss (MSCL) reward 

 

 Ultimately, the overall reward given to the agent can be represented as 

follows: 

𝑅(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) = 𝑅𝑙𝑜𝑐𝑎𝑙(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) + 𝑟𝑔𝑙𝑜𝑏𝑎𝑙(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) (30) 
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where 𝑅(𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1) signifies the reward vector containing distinct reward value for 

each agent, obtained through their interactions with the environment at state 𝑆𝑡, 

leading to a subsequent state 𝑆𝑡+1. Consequently, our reinforcement learning agents 

are optimized by aligning their goals with this reward function. 

4.3 Simulated cryptocurrency market environment 

 We have created a simulated environment of a cryptocurrency market to 

facilitate the training and testing of our method. This section provides an explanation 

of the dynamics of the environment, including action manipulation, trade, state 

transition, and reward calculation. 

4.3.1. Action manipulation  

 The initial phase in the environment involves action manipulation. Upon 

receiving scaled actions 𝐴𝑡
′  from the agents, denoting the amount of tokens to be 

bought or sold in USDT, each scaled action is transformed into its corresponding 

number of tokens based on the prevailing price. This conversion is executed as 

follows: 

𝐻𝑡 =
𝐴′

𝑡

𝑃𝑡
 (31) 

where, 𝐻𝑡 represents the converted action vector at time step 𝑡, indicating the number 

of tokens in which the actions are expressed. 

 Prior to proceeding with the trading step, the value of each token in the 

portfolio at time 𝑡, expressed in USDT, is transformed into its corresponding number 

of tokens. This conversion process is illustrated in Equation 32. 

𝑄𝑡 =
𝑋𝑡

𝑃𝑡
 (32) 
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where 𝑄𝑡 represents the vector denoting the number of tokens at time 𝑡. 

4.3.2. Trade 

 With the completion of action manipulation, the trading process is initiated. 

During this step, tokens are exchanged based on the actions of the agents. The 

resulting number of each token after trading is represented as: 

𝑄𝑡
′ = 𝑄𝑡 + 𝐻𝑡 (33) 

where 𝑄𝑡
′ represents the vector that signifies the number of tokens after the trading 

process. 

 As a result, the cash value denoted as USDT after the trading process, 

represented by 𝑏𝑡+1, is calculated as follows: 

𝑏𝑡+1 = 𝑏𝑡 − (𝐻𝑡 ∙ 𝑃𝑡) − 𝐾𝑡 (34) 

 During the trading process, it is important to highlight that in the practical 

implementation, selling actions are executed prior to buying actions. This sequential 

order ensures that the portfolio receives cash from selling tokens, which then is spent 

for purchasing other tokens. 

4.3.3. State transition 

 After the completion of trading, the market data undergoes a transition from 

time 𝑡 to 𝑡 + 1. Consequently, the state vector at time 𝑡 + 1 can be represented as 

[𝑋𝑡+1, 𝑃𝑡+1, 𝑀𝑡+1, 𝐼𝑡+1, 𝐶𝑡+1, 𝐷𝑡+1]. This transition brings about a new token value 

vector, denoted by Xt+1, which encapsulates the values of the tokens. 

𝑋𝑡+1 = 𝑄𝑡
′ ∙ 𝑃𝑡+1 (35) 

and the updated portfolio value, denoted as 𝑉𝑡+1, signifies the total value of tokens at 

time 𝑡 + 1:  
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𝑣𝑡+1 = ∑ 𝑥𝑖,𝑡+1

𝑁

𝑖

(36) 

where, 𝑁 represents the total number of six tokens, which includes the cash: USDT. 

4.3.4. Reward calculation 

 Following the completion of trade and state transition, the total reward R(St, 

At, St+1 is computed. The process involves the normalization of the state vector, 

resulting in the following outcome: 

𝑆𝑡+1
′ = [𝑋𝑡+1, 𝑃𝑡+1

′ , 𝑀𝑡+1
′ , 𝐼𝑡+1

′ , 𝐶𝑡+1
′ , 𝐷𝑡+1

′ ] (37) 

 Figure  9 illustrates that the reward 𝑅(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1) and the normalized state 

vector are sent to the agents. 

 

Figure  9 In the simulated cryptocurrency market environment, agents submit actions, 

and in return, they receive a normalized observation at time t + 1 along with 

corresponding rewards. 
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CHAPTER V 

EXPERIMENTS AND RESULTS  

 This chapter provides a comprehensive overview of the data management 

approach employed in this study. Subsequently, the detailed implementation, 

encompassing the settings of hyper-parameters, is presented. Lastly, the evaluation 

metrics utilized for assessing the performance of the various methods are elaborated 

upon. 

5.1 Dataset 

 In the preceding chapter, the processed data was partitioned into a training set, 

validation set, and test set. Moreover, we have purposefully chosen four 

supplementary test sets from the overall test set to thoroughly evaluate the 

performance of our methods under various market conditions, encompassing bullish, 

bearish, and sideways scenarios. This careful selection empowers us to 

comprehensively assess the effectiveness of our methods across these diverse market 

dynamics. Detailed information regarding each dataset is provided in Table  1 and 

Figure  10. 

Table  1 Cryptocurrency k-line datasets 

Dataset Date 

Training set  2021/04/01 - 2021/12/31 

Validation set 2022/02/01 - 2022/02/28 

Overall test set 2022/03/01 - 2022/08/31 

Bullish test set 2022/07/01 - 2022/07/31 

Bearish test set 2022/04/01 - 2022/04/30 

Up-down test set 2022/03/19 - 2022/04/18 

Side-way test set 2022/05/12 - 2022/06/11 
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Figure  10 Normalized close price of each dataset: (a) Cryptocurrency dataset 

encompasses all the historical data utilized in this paper and is subsequently divided 

into (b) Training set, (c) Validation set, and (d) Overall test set. The overall test set is 

further partitioned into (e) Bullish test set, (f) Bearish test set, (g) Up-down test set, 

and (h) Sideways test set. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

5.2 Implementation detail 

 Throughout all subsequent experiments, the experiments were conducted 

under the following standardized set of assumptions and conditions: 

• The initial capital is 1,000,000 USDT. 

• The initial portfolio only consists of USDT as cash. 

• Each token has a maximum allowable transaction size of 100,000 USDT for 

both buying and selling. 

• Transaction costs amount to 0.1% of the transaction size. 

• Market liquidity is assumed to be abundant, ensuring that all transactions are 

promptly executed at the prevailing closing price. Furthermore, it is assumed 

that the trading activities of the agent do not have any impact on the overall 

cryptocurrency market. 

 All the methods underwent training on an identical training set, spanning 

1,000 episodes. The agent exhibiting the highest cumulative return on the validation 

set was chosen for testing. 

5.3 Results 

 In this section, we present the empirical results obtained through an extensive 

comparative analysis of various approaches across five distinct test sets, following the 

methodology employed in prior studies such as references [24], [26], and [33]. These 

references serve as examples where multiple methods were thoroughly evaluated 

using comprehensive test datasets. Firstly, Table  2 provides a comparison between 

multi-agent PPO (MAPPO) with local-global reward and single-agent PPO (SAPPO). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

Subsequently, we examine the effects of introducing risk-sensitive, cost-sensitive, and 

MSCL rewards to MAPPO. Moreover, we demonstrate the superiority of our 

proposed method by comparing it to baseline methods. Finally, to further enhance the 

performance of our method, we investigate the outcomes of employing different 

network architectures. 

5.3.1 Comparing multi-agent to single-agent PPO 

 Within this section, we conduct a comparative analysis of the performance 

between MAPPO with a local-global reward and SAPPO. It is important to emphasize 

that this experiment focuses exclusively on the changes observed in token values and 

portfolio values (two green boxes illustrated in Figure  7), specifically excluding the 

consideration of risk-sensitive, cost-sensitive, and MSCL rewards. 

Table  2 Comparison between MAPPO and SAPPO. Boldfaces refer to the winners. 

Gray numbers refer to uninterpretable results 

Method 

Cumulative 

Return 

(percent)  

Sharpe 

Ratio  

Calmar 

Ratio  

Volatility 

(percent)  

MDD 

(percent)  

Overall           

SAPPO -57.79 -1.59 -0.85 85.02 -67.67 

MAPPO -48.32 -1.3 -0.71 77.49 -68.33 

Bullish           

SAPPO 19.32 3.24 1.31 72.35 -14.74 

MAPPO 22.79 3.71 1.54 72.18 -14.84 

Bearish           

SAPPO -28.69 -6.46 -0.92 60.87 -31.09 

MAPPO -19.57 -4.89 -0.78 51.58 -25.08 

Up-Down           

SAPPO -4.11 -0.52 -0.17 60.14 -24.63 

MAPPO -7.87 -1.66 -0.38 50.61 -20.98 

Sideways           

SAPPO -5.15 -0.32 -0.24 84.04 -21.09 

MAPPO -2.45 -0.05 -0.19 81.99 -13.12 

 

 Table  2 presents the comparative performance of MAPPO and SAPPO across 

multiple test sets. MAPPO demonstrated superior cumulative return results in all test 
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sets, except for the Up-Down test set, where SAPPO only incurred a 4.11% loss of its 

initial portfolio value, compared to MAPPO's 7.87% loss. In the Bullish test set, the 

performance of MAPPO was further evaluated using the Sharpe ratio and Calmar 

ratio, both of which yielded higher values compared to SAPPO (3.71 and 1.54, 

respectively). MAPPO also exhibited lower volatility values across all test sets, 

indicating its better risk profile. Additionally, MAPPO outperformed SAPPO in terms 

of maximum drawdown (MDD) in three out of the five test sets, except for the 

Overall and Bullish test sets where SAPPO had marginally larger MDD values. In 

conclusion, based on the experimental results, MAPPO demonstrated superior 

performance over SAPPO. 

5.3.2 Comparing combinations of reward terms 

 Within this section, we expand the scope of our investigation by incorporating 

three additional reward terms, represented by red boxes in Figure  7, alongside the 

ones utilized in the previous section. These new reward terms include: (1) risk-

sensitive reward, (2) cost-sensitive reward, and (3) multi-scale continuous loss 

(MSCL) reward, with MSCL being a novel reward term proposed by our research. 

The primary objective of this section is to examine how different combinations of 

these reward terms affect the performance of MAPPO. 

 According to the findings presented in Table  3, a comparison between regular 

MAPPO and MAPPO with a risk-sensitive reward in its reward function demonstrates 

that the integration of a risk-sensitive reward term contributes to a decrease in 

portfolio volatility across all test sets.  
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Table  3 Comparing the combinations of reward terms assigned to MAPPO including 

risk-sensitive reward, cost-sensitive reward, and MSCL reward. Undoubtedly, the 

inclusion of the MSCL reward, our suggested reward term, has the capability to 

enhance the performance of all combinations. Boldfaces refer to the winners. Gray 

numbers refer to uninterpretable results 

Method 

Cumulative 

Return 

(percent)  

Sharpe 

Ratio  

Calmar 

Ratio  

Volatility 

(percent)  

MDD 

(percent)  

Total 

Transaction 

Cost (USDT) 

 

Overall             

MAPPO -48.32 -1.30 -0.71 77.49 -68.33 2638 

MAPPO + MSCL -44.37 -1.14 -0.65 76.30 -67.95 1918 

MAPPO + Risk -47.93 -1.43 -0.74 72.21 -64.80 1004 

MAPPO + Risk + MSCL -42.45 -0.75 -0.57 90.99 -74.49 3173 

MAPPO + Cost -51.93 -1.31 -0.77 83.89 -67.56 999 

MAPPO + Cost + MSCL  -11.99 -0.07 -0.27 78.66 -43.81 8132 

MAPPO + Risk + Cost -43.91 -0.85 -0.66 88.63 -66.50 1017 

MAPPO + Risk + Cost + MSCL -17.47 -0.12 -0.35 75.69 -49.81 8196 

Bullish             

MAPPO 22.79 3.71 1.54 72.18 -14.84 1422 

MAPPO + MSCL 35.60 5.23 2.53 73.85 -14.06 1011 

MAPPO + Risk 28.32 4.69 2.05 67.57 -13.85 999 

MAPPO + Risk + MSCL 36.97 5.21 2.45 76.81 -15.07 999 

MAPPO + Cost 29.03 4.48 1.99 72.99 -14.59 999 

MAPPO + Cost + MSCL  32.59 4.98 2.33 72.05 -13.96 1000 

MAPPO + Risk + Cost 26.97 4.12 1.75 75.09 -15.44 1029 

MAPPO + Risk + Cost + MSCL 28.26 4.64 2.35 68.25 -12.02 1242 

Bearish             

MAPPO -19.57 -4.89 -0.78 51.58 -25.08 5251 

MAPPO + MSCL -6.28 -1.86 -0.50 38.55 -12.66 1492 

MAPPO + Risk -20.86 -5.95 -0.94 46.07 -22.23 1000 

MAPPO + Risk + MSCL 1.30 2.74 1.44 5.81 -0.91 2329 

MAPPO + Cost -24.24 -5.84 -0.84 55.25 -28.74 999 

MAPPO + Cost + MSCL  2.05 3.94 2.91 6.31 -0.70 1888 

MAPPO + Risk + Cost -14.62 -3.91 -0.76 46.45 -19.24 1096 

MAPPO + Risk + Cost + MSCL 2.36 2.83 1.14 10.26 -2.07 2625 

Up-Down             

MAPPO -7.87 -1.66 -0.38 50.61 -20.98 5386 

MAPPO + MSCL 3.52 1.88 0.49 23.14 -7.15 1534 

MAPPO + Risk -0.40 -0.13 -0.02 46.13 -17.35 1001 

MAPPO + Risk + MSCL -8.54 -2.02 -0.46 46.64 -18.40 1189 

MAPPO + Cost 1.98 0.69 0.09 57.68 -21.21 999 

MAPPO + Cost + MSCL  1.94 3.69 2.76 6.21 -0.70 1776 

MAPPO + Risk + Cost 1.57 0.77 0.17 29.57 -9.26 1099 

MAPPO + Risk + Cost + MSCL 2.35 2.76 1.13 10.09 -2.07 2578 

Sideways             

MAPPO -2.45 -0.05 -0.19 81.99 -13.12 2439 

MAPPO + MSCL -1.14 -0.18 -0.08 78.08 -18.30 1266 

MAPPO + Risk -9.65 -1.64 -0.62 61.41 -15.61 1000 

MAPPO + Risk + MSCL 0.70 0.50 0.04 78.89 -17.88 1567 

MAPPO + Cost 0.21 0.49 0.01 92.21 -18.17 999 

MAPPO + Cost + MSCL  8.08 1.44 0.46 95.02 -17.55 999 

MAPPO + Risk + Cost 7.35 1.32 0.37 104.42 -20.02 999 

MAPPO + Risk + Cost + MSCL 1.21 0.62 0.07 93.29 -17.59 999 
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 Throughout the testing phase, a comparative analysis is conducted between 

MAPPO and MAPPO with a cost-sensitive reward to examine the influence of this 

reward term on the overall transaction cost. As predicted, the inclusion of the cost-

sensitive reward leads to a reduction in the total transaction cost. In certain 

combinations, the total transaction cost reaches approximately 1,000 USDT, which 

precisely corresponds to 0.1% of the initial capital of 1,000,000 USDT. This specific 

transaction amount is observed because the agents solely perform buy actions 

utilizing their entire cash holdings at the beginning of each episode, without engaging 

in any token selling transactions. 

 By comparing MAPPO to MAPPO with the MSCL reward, the influence of 

the MSCL reward on performance is examined. The findings demonstrate that the 

utilization of the MSCL reward leads to greater cumulative returns for the portfolio 

across all test sets and reduces the severity of maximum drawdown, except in the case 

of the Sideways test set, where the market exhibits highly volatile conditions. 

5.3.3 Comparing to baseline methods 

 In this section, we compare our method to four baseline approaches: 

• Uniform buy and hold (UBAH) strategy involves purchasing each token with 

the same quantity of USDT at the initial timestep and holding them without 

any subsequent selling. 

• Uniform constant rebalanced portfolio (UCRP) strategy entails purchasing 

each token with an equal amount of USDT at the initial timestep and engaging 

in trading activities to ensure that the tokens maintain equal value proportions. 

• Buy and hold Bitcoin (Bitcoin) strategy involves utilizing all the available 

USDT to purchase Bitcoin and refraining from any selling actions thereafter. 
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• Ensemble strategy (FinRL-Ensemble) proposed by Yang et al. [14]. 

 In this experiment, MAPPO incorporating the MSCL reward, risk-sensitive 

reward, and cost-sensitive reward was selected for comparison with the baseline 

methods. This choice was based on its outstanding performance in the validation set. 

Table  4 Comparing our MAPPO with risk-sensitive reward, cost-sensitive reward, 

and MSCL reward to four baseline methods including UBAH, UCRP, Bitcoin, and 

FinRL-Ensemble. Boldfaces refer to the winners. Gray numbers refer to 

uninterpretable results. 

  

Method 

Cumulative 

Return 

(percent)  

Sharpe 

Ratio  

Calmar 

Ratio  

Volatility 

(percent) 

 

MDD 

(percent) 

 

Overall           

UBAH -48.35 -1.31 -0.74 77.41 -65.27 

UCRP -47.98 -1.27 -0.74 78.16 -65.12 

Bitcoin -53.67 -1.87 -0.85 68.92 -62.88 

FinRL-Ensemble -52.75 -1.38 -0.85 82.86 -61.82 

MAPPO + MSCL + Risk + Cost (our) -17.47 -0.12 -0.35 75.69 -49.81 

Bullish           

UBAH 24.56 3.95 1.71 72.22 -14.36 

UCRP 24.06 3.9 1.68 71.69 -14.34 

Bitcoin 14.38 2.65 1.01 68.59 -14.24 

FinRL-Ensemble 19.35 3.08 1.31 77.59 -14.79 

MAPPO + MSCL + Risk + Cost (our) 28.26 4.64 2.35 68.25 -12.02 

Bearish           

UBAH -20.88 -5.3 -0.83 51.11 -25.29 

UCRP -21.27 -5.39 -0.83 51.58 -25.64 

Bitcoin -16.21 -4.44 -0.81 46.13 -19.9 

FinRL-Ensemble -25.42 -6.14 -0.83 55.67 -30.79 

MAPPO + MSCL + Risk + Cost (our) 2.36 2.83 1.14 10.26 -2.07 

Up-Down           

UBAH 2.08 0.73 0.11 52.11 -18.79 

UCRP 2.19 0.75 0.12 51.52 -18.44 

Bitcoin -2.11 -0.33 -0.11 45.29 -19.08 

FinRL-Ensemble 3.23 1.12 0.22 57.89 -19.52 

MAPPO + MSCL + Risk + Cost (our) 2.35 2.76 1.13 10.09 -2.07 

Sideways           

UBAH -6.58 -0.45 -0.41 89.39 -16.12 

UCRP -6.77 -0.48 -0.42 89.14 -16.16 

Bitcoin -2.56 -0.11 -0.22 67.73 -11.67 

FinRL-Ensemble -0.3 -0.14 -0.04 90.52 -21.37 

MAPPO + MSCL + Risk + Cost (our) 1.21 0.62 0.07 93.29 -17.59 
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 Table  4 presents the results, showing that our proposed method outperformed 

all other methods in terms of cumulative return, except for the Up-Down test set. 

Notably, in the bullish test set, our method achieved a remarkable 46.05% higher 

cumulative return compared to FinRL-Ensemble. Additionally, our method 

demonstrated superior performance in terms of the Sharpe and Calmar ratios, 

indicating its ability to effectively balance both profit and risk in the portfolio. These 

findings highlight the superiority of our method over the baseline methods. 

It is important to acknowledge that FinRL-Ensemble utilizes a sliding window 

procedure for training, evaluating, and testing purposes. This approach entails a 

dynamic change in the training and evaluation data with each adjustment of the 

window. Consequently, the outcomes of FinRL-Ensemble may not be directly 

comparable to other results, as it operates on distinct sets of data for training and 

evaluation. 
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5.3.4 Comparing network architectures 

 In this section, we investigate the performance of different network 

architectures (LSTM, GRU, ResNet, and Res2Net) as feature extractors. The goal is 

to identify the most appropriate architecture that can effectively extract valuable 

information from observations, thereby enhancing profitability and risk management. 

Furthermore, each network architecture was trained using a reward function that 

incorporates all the proposed terms: risk-sensitive, cost-sensitive, and MSCL reward. 

Alongside monitoring the changes in token value and portfolio value, we evaluate the 

performance of each architecture based on these combined reward terms. 

 The results presented in Table  5 demonstrate interesting findings. Among the 

tested network architectures, only MLP achieved positive cumulative return, Sharpe 

ratio, and Calmar ratio in the Bearish test set. Although LSTM exhibited a -44.29% 

cumulative return in the Overall test set, it surprisingly generated a significant 52.61% 

cumulative return in the Bullish test set. Res2Net emerged as the top-performing 

architecture in the Sideways test set, securing the second-highest cumulative return of 

34.18% in the Bullish test set. On the other hand, ResNet delivered poor cumulative 

returns in both the Overall and Bearish test sets. Overall, while MLP did not claim the 

top position in this experiment, it demonstrated the most consistent performance 

across all the test sets, making it the most versatile and reliable choice. 
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Table  5 Comparing network architectures. Boldfaces refer to the winners. Gray 

numbers refer to uninterpretable results. 

Method 

Cumulative 

Return 

(percent)  

Sharpe 

Ratio  

Calmar 

Ratio  

Volatility 

(percent)  

MDD 

(percent)  

Overall           

LSTM -44.29 -0.85 -0.63 89.41 -70.25 

GRU -54.13 -1.53 -0.84 79.93 -64.08 

ResNet -57.88 -1.59 -0.86 84.90 -67.67 

Res2Net -37.91 -0.62 -0.59 89.12 -64.68 

MLP -17.47 -0.12 -0.35 75.69 -49.81 

Bullish           

LSTM 52.61 5.9 2.97 91.63 -17.71 

GRU 31.36 4.98 2.36 69.44 -13.31 

ResNet 23.7 4.03 1.75 67.96 -13.57 

Res2Net 34.18 4.55 2.00 83.93 -17.06 

MLP 28.26 4.64 2.35 68.25 -12.02 

Bearish           

LSTM -3.86 -1.99 -0.47 22.74 -8.23 

GRU -25.56 -6.25 -0.98 55.08 -26.02 

ResNet -29.56 -6.8 -0.96 60.08 -30.89 

Res2Net -11.21 -2.92 -0.71 45.99 -15.87 

MLP 2.36 2.83 1.14 10.26 -2.07 

Up-Down           

LSTM 1.59 1.47 0.38 13.22 -4.18 

GRU 1.43 0.58 0.08 53.14 -17.24 

ResNet -5.61 -0.84 -0.23 59.83 -24.63 

Res2Net 1.15 0.6 0.12 30.14 -9.31 

MLP 2.35 2.76 1.13 10.09 -2.07 

Sideways           

LSTM -3.25 -0.11 -0.20 78.28 -16.01 

GRU -6.66 -0.55 -0.27 83.94 -24.44 

ResNet -4.01 -0.19 -0.21 80.94 -19.36 

Res2Net 6.52 1.22 0.29 110.9 -22.19 

MLP 1.21 0.62 0.07 93.29 -17.59 

 

5.4 Discussion 

This section provides a detailed discussion of the bearish test result, the 

overall test result, and an analysis of trade count and transaction cost. 
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5.4.1 Bearish test result 

 The findings presented in Table  4 highlight a noteworthy observation: among 

the baseline methods, only our method managed to generate profits in the Bearish test 

set, achieving a notable gain of 2.36% in portfolio value. This promising result 

prompted us to delve deeper into the analysis of the Bearish test set. Visual evidence 

in Figure  11 further supports the effectiveness of our method, as it accurately 

predicted trade signals by strategically buying tokens during value increases and 

selling them prior to value declines, resulting in a considerable increase in portfolio 

value. 

 

Figure  11 Result of the Bearish test set. 

 

 According to Figure 12, it was observed that at 13:00 on April 11, 2022, the 

ADX values exceeded the threshold of 60, indicating a highly robust market trend. 

Subsequently, at 14:00 on the same day, the RSI values dipped below 30, indicating 

an oversold market condition. As a result, starting from 20:00 on the same day, the 

agents initiated the purchase of all tokens except BTCUSDT, which continued until 

1:00 on April 12, 2022. At 8:00 on April 12, 2022, the ADX values exhibited a 

decline below 30, indicating a market trend characterized by weakness and volatility. 
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Similarly, at 12:00 on the same day, the RSI values surpassed 50 and continued to 

rise, indicating that the tokens were nearing an overbought condition. 

 

Figure 12 Trade signals from the bearish test set. (a) Relative Strength Index (RSI). 

(b) Average Directional Index (ADX). 

  

Furthermore, Figure  13 shows that the agents incurred a penalty in the form 

of the MSCL reward, signaling a decrease in the portfolio value during the subsequent 

hour. Consequently, at 14:00 on April 12, 2022, the agents commenced the selling 

process of the tokens in the portfolio, culminating in the complete liquidation of all 

tokens by 22:00. 

 

Figure  13 Multi-Scale Continuous Loss (MSCL) Reward during the bearish test set  
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5.4.2 Overall test result 

While the outcomes presented in Table  4 highlight the profitability of our 

approach across bullish, bearish, up-down, and sideways test sets, it is noteworthy that 

our method yielded a negative cumulative return in the overall test set. 

 

Figure  14 The results of the overall test set 

 

Figure  14 depicts significant drawdown periods experienced by our method. 

The first substantial drawdown occurred from May 9, 2022, to May 12, 2022, where 

the portfolio value declined from 1.19 million USDT to 0.83 million USDT, reflecting 

a 30% drawdown. Another substantial drawdown took place from Jun 6, 2022, to Jun 

18, 2022, as the portfolio value decreased from 1.02 million USDT to 0.61 million 

USDT, marking a 40% drawdown. Despite these two major drawdowns, our method 

exhibited lower losses than the baselines in the overall test set. 

5.4.3 Trade count and transaction cost 

Table 6  presents a comparison between our method and the baseline methods 

in terms of the frequency of trading occurrences and associated transaction costs. The 

findings reveal that our method executed fewer trades and incurred lower transaction 

costs compared to FinRL-Ensemble. Moreover, when considering the profit-making 
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capabilities highlighted in Table 4, it can be concluded that our method demonstrates 

more optimal trade execution than FinRL-Ensemble. 

Table  6 Number of trades and transaction cost of our method compared to the 

baselines. 

Method Buy Count Sell Count 
Total Trade 

Count 

Transaction 

Cost (USDT) 

Overall Test Set         

UBAH 5 0 5 999.00 

UCRP 8278 8137 16415 8458.08 

Bitcoin 1 0 1 999.00 

FinRL-Ensemble 1215 920 2135 94901.93 

MAPPO + MSCL + Risk + Cost (our) 129 107 236 8195.97 

Bullish Test Set         

UBAH 5 0 5 999.00 

UCRP 1634 1480 3114 3118.41 

Bitcoin 1 0 1 999.00 

FinRL-Ensemble 178 111 289 22468.51 

MAPPO + MSCL + Risk + Cost (our) 24 9 33 1241.51 

Bearish Test Set         

UBAH 5 0 5 999.00 

UCRP 1241 1374 2615 2131.90 

Bitcoin 1 0 1 999.00 

FinRL-Ensemble 102 64 166 2960.81 

MAPPO + MSCL + Risk + Cost (our) 35 27 62 2625.14 

Up-Down Test Set         

UBAH 5 0 5 999.00 

UCRP 1511 1487 2998 2536.55 

Bitcoin 1 0 1 999.00 

FinRL-Ensemble 630 463 1093 32458.88 

MAPPO + MSCL + Risk + Cost (our) 32 26 58 2578.13 

Sideways Test Set         

UBAH 5 0 5 999.00 

UCRP 1573 1591 3164 3198.00 

Bitcoin 1 0 1 999.00 

FinRL-Ensemble 259 151 410 26928.45 

MAPPO + MSCL + Risk + Cost (our) 0 14 410 999.00 
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CHAPTER VI 

CONCLUSION 

 In this study, we have proposed a novel approach for trading multiple 

cryptocurrency tokens using multi-agent deep reinforcement learning. Our method 

stands out from existing approaches by incorporating a local-global reward function 

that aims to optimize the performance of individual agents as well as collective 

behavior. Additionally, we have introduced a distinctive multi-scale continuous loss 

(MSCL) reward, which effectively prevents further declines in portfolio value, 

leading to improved cumulative returns. Comparative analysis against baseline 

methods clearly demonstrates the superior performance of our approach. Notably, our 

method exhibits the ability to generate profits, particularly in the challenging Bearish 

test set where other baseline methods experienced significant losses. 
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CHAPTER VII 

Appendices 

7.1 Reward Hyperparameter Tuning 

 In the quest for determining the optimal hyperparameters for the reward 

function, a thorough exploration of various values for the cost-sensitive reward 

coefficients (𝜙), risk-sensitive reward coefficients (𝜌), and multi-scale continuous 

(MSCL) reward coefficients (𝜇) was undertaken. It should be acknowledged that a 

comprehensive grid search was not feasible due to the excessively long training 

duration. However, Table  7 demonstrates that our method achieved the highest 

cumulative return on the validation dataset when the following hyperparameters were 

employed: 

• Cost-sensitive reward coefficient: 𝜙 = 10−6 

• Risk-sensitive reward coefficient: 𝜌 = 103 

• MSCL reward coefficient: 𝜇 = 0.1 

 As a result, this set of hyperparameters was utilized in our experiments. 

Table  7 Validation results of reward hyperparameters tuning. The grey row refers to 

the best hyperparameter for the reward function. 

 
Cost-Sensitive Reward 

Coefficient (𝝓) 

Risk-sensitive Reward 

Coefficient (𝝆) 

MSCL Reward 

Coefficient (𝝁) 

Validation Cumulative 

Return (percent)  

1 10-6 102 0.1 1.06 

2 10-6 103 0.1 25.05 

3 10-6 104 0.1 19.69 

4 10-6 103 0.2 23.59 
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