
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A pair trading using reinforcement learning and wavelet 

decomposition 
 

Mr. Panudate Nithinon 
 

An  Independent Study Submitted in Partial Fulfillment of the 

Requirements 

for the Degree of Master of Science in Financial Engineering 

Department of Banking and Finance 

FACULTY OF COMMERCE AND ACCOUNTANCY 

Chulalongkorn University 

Academic Year 2022 

Copyright of Chulalongkorn University 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

การซ้ือขายแบบคู่ดว้ยการเรียนรู้แบบเสริมก าลงัและการแปลงขอ้มูลเวฟเลต็ 
 

นายภาณุเดช นิธินนท ์ 

สารนิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต 
สาขาวิชาวิศวกรรมการเงิน ภาควิชาการธนาคารและการเงิน 

คณะพาณิชยศาสตร์และการบญัชี จุฬาลงกรณ์มหาวิทยาลยั 
ปีการศึกษา 2565 

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Independent Study Title A pair trading using reinforcement learning and wavelet 

decomposition 

By Mr. Panudate Nithinon  

Field of Study Financial Engineering 

Thesis Advisor Assoc. Prof. Dr. THAISIRI WATEWAI 

  
 

Accepted by the FACULTY OF COMMERCE AND ACCOUNTANCY, 

Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of 

Science 

  

INDEPENDENT STUDY COMMITTEE 

   
 

Chairman 

 (Assoc. Prof. Dr. SIRA SUCHINTABANDID) 
 

   
 

Advisor 

 (Assoc. Prof. Dr. THAISIRI WATEWAI) 
 

   
 

Examiner 

 (Dr. Tanawit Sae-Sue) 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iii 

 
ABST RACT (THAI)  ภาณุเดช นิธินนท ์: การซ้ือขายแบบคู่ดว้ยการเรียนรู้แบบเสริมก าลงัและการแปลงขอ้มูลเวฟเลต็. ( A pair 

trading using reinforcement learning and wavelet decomposition) อ.ท่ีปรึกษา
หลกั : รศ. ดร.ไทยศิริ เวทไว 

  

ในการวิจัยน้ีมีวัตถุประสงค์เพ่ือ เสนอวิธีการปรับปรุงประสิทธิภาพการซ้ือขายหุ้นแบบคู่ตามหลักการ 
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In this study, we propose a trading optimization methodology for the pair 

trading strategy. The Johansen cointegration test and the correlation measure are 

used for pair selection. We apply Deep-Q-network (DQN) technique in which the 

trainable reinforcement learning agent is designed to directly control the trading 

positions. The maximum overlap discrete wavelet transformation (MODWT) 

algorithm is used for generating the trading signal from the spread time series. 

Wavelet signal preprocessing is used to extract the original time series into cyclic 

time series components and long-term behavior components. Based on the in-

sample performance this trading model successfully solves a profit maximizing in 

the pair trading problem using wavelet components predictors. However, poor out-

of-sample results observed in many sampled pairs indicate that the proposed 

procedure has an overfitting problem. 
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1. Introduction  

Pair trading is a statistical arbitrage strategy that generates profit by taking 

long positions on an asset and short positions on another assets. The basic idea behind 

pair trading is to take advantage of relative performance of a pair of assets. The 

process starts with finding two cointegrated price series. The spread time series is 

constructed from linear combination of two prices in the way that they form a mean 

reversion process. Then statistical arbitrage is to exploit the divergence of the spread 

in which the time series is known to converge in long-run. The profitability of pair 

trading relies on the condition that two prices remain their tracking movement. This 

circumstance frequently happened in the stock market since some set of stock share 

the same common factors. Following an ordinary pair trading rule, the spread is 

monitored for a divergence. Once the spread hits a determined boundary, we open a 

long position on the undervalued asset and open a short position on the overvalued 

asset. Then close the position when the spread converges long-run mean. 

To improve the performance of this strategy, it is necessary to pick an 

appropriate level of boundary. Many researchers applied reinforcement learning to 

optimize this strategy. The trainable agent is assigned to dynamically select an optimal 

level of the trading boundary. Fallahpour et al. (2016)  proposed an optimized high-

frequency pair trading strategy on sampled stocks from the S&P. The agent is trained 

to optimize the n-arm bandit problem by selecting the four trading parameters: the 

cointegration estimation window, trading window, trading boundary and stop-loss 

boundary. The proposed method empirically outperformed fixed trading boundary 

method. Kim and Kim (2019) proposed an optimized pair trading strategy using the 

Deep-Q-Network (DQN) algorithm. The agent is assigned to select optimal trading 

and stop-loss boundaries. Based on the selected stocks from the S&P 500, the testing 

result shows that the proposed method outperformed a constant boundary strategy. 

Kim et al. (2022) developed a hybrid deep reinforcement learning. The learning agent 

is split into two learning networks. The first network is for trading action selection 

and the second network is for stop-loss determination. The strategy was tested using 

data from twenty stock pairs in the S&P 500. The empirical result shows that this 
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structure generates a significantly higher profit compared to the previously proposed 

methods. 

However, price modeling is a difficult task due to the chaotic movement in 

stock prices. Wavelet decomposition is a method that provides insight into the 

dynamics of time series. This method is increasingly popular in financial time series 

research. This technique analyzes the time domain and frequency domain by 

separating the time series into sub-series with different time scales. Several studies 

have found that applying a wavelet-based preprocess to time series improves 

forecasting accuracy when compared to the original time series method. Hsieh et al. 

(2011) presented a combination of wavelet transformation and the recurrent neural 

network for stock prediction. The Haar wavelet pre-processing method was used in 

this study to remove noise from technical indicator data. The stepwise regression-

correlation selection is then used to create a collection of input features. The model 

testing is based on the market indices data: Dow Jones index, Financial Times Stock 

Exchange 100 (FSTE100), Nikkei 225 index, and Taiwan Stock Exchange 

Capitalization Weighted Stock Index (TAIEX). This model provided a higher 

forecasting accuracy compared to the straightforward forecasting method with the 

neural network. Kao et al. (2013) proposed a stock price forecasting model which 

integrates a wavelet transformation, multivariate adaptive regression splines, and 

Support Vector Regression (SVR). For feature extraction, the Daubechies wavelet, a 

sort of waveform of discrete wavelet decomposition, was used in this study. 

Researchers employed feature selection to optimize the model performance after 

decomposing the time series into different sub-series. This model is evaluated using 

the following stock market indices: The Composite index of China, the Bovespa index 

of Brazil, the Dow Jones index of the US, and the Nikkei 225 index of Japan. The 

empirical results indicate that the proposed method outperforms the Auto Regressive 

Integrated Moving Average model (ARIMA) and SVR, including the nested 

procedures of the proposed model. Lahmiri (2014) presented a wavelet transformation 

application for stock price forecasting. A process starts with using the discrete wavelet 

transform to decompose the price data. The obtained high-frequency components 

capture a discontinuity and rupture in the original data. The low-frequency component 
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represents the long-term movement structure. These wavelet components are used as 

the input of a fully connected neural network. After testing with the sampled 

technology stocks from the USA market and S&P 500 index, the forecasting accuracy 

produced by this model outperformed both Auto Regressive Moving Average model 

(ARMA) model and the random walk model.  

This paper presents a methodology for a pair trading optimization with a 

reinforcement learning method. The pair selection is conducted using the Johansen 

cointegration approach. To optimize the pair trading, we train a DQN agent with an 

objective to maximize a cumulative profit. The agent was designed to directly control 

the trading position, with the restriction that the estimated trading policy must follow 

the mean reverting exploitation strategy. We use both detail and approximation 

components from the spread time series decomposition as trading signal.  

2. Related concepts 

2.1 Johansen cointegration test 

Cointegration implies that there is a long-run equilibrium on a set of time 

series variables. The notation 𝐼(𝑑) represents a time series that is integrated of order 

𝑑. Consider the 𝑛 times series variables 𝑥1, 𝑥2, … 𝑥𝑛 having the same order of 

integration 𝐼(𝑑) . If there exists parameters of equilibrium relationship 𝛽 1
 , 𝛽 2

 , . . 𝛽𝑛 

that generate a linear combination 𝛽 1
 𝑥1 + 𝛽 2

 𝑥2 + ⋯ + 𝛽 𝑛
 𝑥𝑛 which is integrated of 

order 𝐼(𝑒) and 𝑒 < 𝑑, then 𝑥1, 𝑥2, … 𝑥𝑛 are cointegrated. By the Johansen method, 

time series variables are formulated as a multivariate autoregression. The 𝑝-lag vector 

autoregression (VAR) is defined as 

  𝑦𝑡 =  𝐴0 + 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝛷𝐷𝑡 + 𝜀𝑡   (1) 

where 𝑦𝑡 is an 𝑛-dimension vector of time series variable at time 𝑡, 𝐴𝑝 is a coefficient 

matrix of lag 𝑝 variable, 𝐷𝑡 is a deterministic term, 𝛷 is a deterministic coefficient. 

and 𝜀𝑡 follows independent and identically distributed (i.i.d.) Gaussian noise terms. 

The vector error correction model (VECM) is defined from the first difference series 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 of VAR which can be written as  
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     ∆𝑦𝑡 = 𝜇 + 𝛷𝐷𝑡 + 𝛱𝑦𝑡−1 + 𝛤1∆𝑦𝑡−1 + 𝛤2∆𝑦𝑡−2 + ⋯ + 𝛤𝑝−1∆𝑦𝑡−𝑝−1 + 𝜀𝑡   (2) 

where 𝛱 =  𝐴1 + 𝐴2 + ⋯ +𝐴𝑝 − 𝐼 and 𝛤𝑖 =  𝐴1 + 𝐴2 + ⋯ +𝐴𝑖 − 𝐼 , 𝑖 = 1,2, … , 𝑝 − 1. If 

there exists a reduced rank of matrix 𝛱 where 0 < 𝑟𝑎𝑛𝑘(𝛱) = 𝑟 < 𝑛, then 𝑦𝑡 is 

cointegrated. 𝑟 indicates the number of cointegration relationship. The existence of 

reduced rank 𝑟 implies 𝛱 =  𝛼𝛽′ where 𝛼 and 𝛽 are rank 𝑟 matrices. The coefficient 𝛽 

is the vector of cointegrating coefficients which also represents the long-run 

equilibrium parameters. The series 𝛽′𝑦𝑡 is stationary. The intercept term 𝜇 can also be 

interpreted as 𝛼𝛽0 in which the 𝛽0 is a cointegration intercept. The equation of VECM 

can be rewritten as follows. 

∆𝑦𝑡 = 𝛼(𝛽0 + 𝛽′𝑦𝑡−1) + 𝛷𝐷𝑡 + 𝛤1∆𝑦𝑡−1 + 𝛤2∆𝑦𝑡−2 + ⋯ + 𝛤𝑝−1∆𝑦𝑡−𝑝−1 + 𝜀𝑡    (3) 

The coefficient 𝛼 captures the adjustment after deviation, 𝛽0 + 𝛽′𝑦𝑡−1 is a 

long-run equilibrium process, 𝛤𝑖 captures short-run dynamic. There are two methods 

for the Johansen test which are Trace test and Maximum Eigen value test. This study 

focuses on the Trace test. This approach starts from estimating characteristic roots 

𝜆1, 𝜆2, . . , 𝜆𝑛 of matrix 𝛱. The null hypothesis of the test is 𝐻0 ∶ 𝑟𝑎𝑛𝑘(𝛱) ≤ 𝑟0 against 

the alternative hypothesis 𝐻𝑎 ∶ 𝑟𝑎𝑛𝑘(𝛱) = 𝑛. The statistical value for likelihood ratio 

test is calculated from −𝑇 ∑ log (1 − 𝜆𝑖)
𝑛
𝑖=𝑟0+1  where  𝑇 is the sample size. The test is 

carried out for 𝑟0 as 0, 1, …, 𝑛 − 1 respectively. An estimation of 𝑟𝑎𝑛𝑘(𝛱) is 

obtained by the first value of 𝑟0 that fails to reject the null hypothesis. 

2.2 Maximal overlap discrete wavelet transformation 

 In signal processing, wavelet transformation is a time series transformation 

that is Fourier based.  Unlike sine wave and cosine wave, wavelet allows us to expand 

or stretch wave signal along a time axis. Time series can be decomposed into many 

resolution components on the time domain and frequency domain. Each wave 

component guarantees locally stationary property with the condition that the original 

time series are not necessary to be stationary (Bozic & Babic 2015). The basic idea of 

this approach is to extract a embeded wave patterns from the original time series. The 

original time series can be considered as a mixture of many wave based components 

and long-term behaviours. High resolution components are related to the volatility 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

that occurs within a short period. Low resolution components are related to the long-

term movement.  

The maximal overlap discrete wavelet transformation (MODWT) is an 

algorithm developed from a discrete wavelet transformation (DWT). This context 

focuses on the developed version of Percival and Mofjeld (1997). Both methods are 

stated that the original time series 𝑋𝑡 can be decomposed into two series which are 

Smooth 𝑆𝑗,𝑡 components and Details 𝐷𝑗,𝑡 components. The equation of components is 

                                              𝑋𝑡 =  ∑ 𝐷𝑗,𝑡
𝐽
𝑗=1 + 𝑆𝑗,𝑡                            (4) 

where 𝐷𝑗,𝑡 is a detail time series at scaling level 𝑗 = 1,2,3,... 𝐽, and 𝑋𝑡 is decomposed 

for 𝐽 times. 𝑆𝑗,𝑡 is a smooth component of 𝑋𝑡 after extraction of waves for 𝑗 times. 

More specifically, the extraction at time 𝑗 decomposes 𝑆𝑗−1,𝑡 into 𝐷𝑗,𝑡 and 𝑆𝑗,𝑡 where 

𝑆0,𝑡 is 𝑋𝑡 (see Figure 1). To break 𝑋𝑡 into smooth components and detail components, 

low-frequency and high-frequency filters are applied to 𝑋𝑡. In this context, the 

approach of Haar (1910) is implemented. The MODWT can be initiated by 

constructing filters. Define ℎ𝑡 as the time series vector [1 √2⁄ , −1 √2,⁄  0, 0, 0, … ] 

and 𝑔𝑡 as [1 √2⁄ , 1 √2,⁄  0, 0, 0, … ]. Both vectors have the same length as 𝑋𝑡 which 

is denoted by 𝑁 . The time series ℎ̃𝑡  and 𝑔̃𝑡 are Discrete Fourier Transform (DFT) of 

ℎ𝑡 and 𝑔𝑡 respectively and are defined by  

ℎ̃𝑡 =  ∑ ℎ𝑡
𝑁−1
𝑛=0 𝑒

−2𝜋𝑖𝑡𝑛

𝑁       (5) 

𝑔̃𝑡 =  ∑ 𝑔𝑡
𝑁−1
𝑛=0 𝑒

−2𝜋𝑖𝑡𝑛

𝑁  ,    (6) 

where 𝑡 = 1, 2, .., 𝑁.  Define time series ℎ̃∗
𝑡 and 𝑔̃∗

𝑡
as the downsampled time series of  

ℎ̃𝑡 and 𝑔̃𝑡 respectively. To downsampled the time series, we first expand the time 

series  in equation (2) and (3) infinitely with their full length duplicates. Then the 

downsampled time series are constructed from picking the values from the expanded 

series for every 2𝑗−1th. The mathematical notations can be shown as: 

ℎ̃∗
𝑗,𝑡 =  ℎ̃2𝑗−1𝑡 𝑚𝑜𝑑 𝑁       (7) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

𝑔̃∗
𝑗,𝑡

=  𝑔̃2𝑗−1𝑡 𝑚𝑜𝑑 𝑁       (8) 

where 𝑡 = 1, 2, .., 𝑁. Let 𝑉0,𝑡̃ denote a DFT of 𝑋𝑡 given by 

𝑉0,𝑡̃ =  ∑ 𝑋𝑡
𝑁−1
𝑛=0 𝑒

−2𝜋𝑖𝑡𝑛

𝑁        (9)  

where 𝑡 = 1, 2, .., 𝑁. Then 

   𝑊̃𝑗,𝑡 =  ℎ̃∗
𝑡 ∙  𝑉̃𝑗,𝑡                (10) 

𝑉̃𝑗+1,𝑡 =  𝑔̃∗
𝑡

∙  𝑉̃𝑗,𝑡 .               (11) 

After decomposition for 𝑗 times, wavelet transformation output 𝐷𝑗,𝑡 and 𝑆𝑗,𝑡, 

are the inverse of the DFT of time series 𝑊̃𝑗,𝑡 and 𝑉̃𝑗,𝑡 respectively. 

   𝐷𝑗,𝑡 =
1

𝑁
∑ 𝑊̃𝑗,𝑡

𝑁−1
𝑛=0 𝑒

2𝜋𝑖𝑡𝑛

𝑁                (12) 

𝑆𝑗,𝑡 =
1

𝑁
∑ 𝑉̃𝑗,𝑡

𝑁−1
𝑛=0 𝑒

2𝜋𝑖𝑡𝑛

𝑁 ,              (13) 

where 𝑡 = 1, 2, .., 𝑁. The time series need to be recursively decomposed for 𝑗 times to 

receive the 𝑗 th level components. See Figure 1 for a wavelet transformation 

algorithm. 

 

 

  

  

 

 

Figure  1 Wavelet extracted components 
 

. . . 

Original time series ( 𝑋𝑡) 

Smooth level 1 (𝑆1,𝑡) Detail level 1 (𝐷1,𝑡) 

Smooth level 2 (𝑆2,𝑡) Detail level 2 (𝐷2,𝑡) 

Smooth level j (𝑆𝑗,𝑡) Detail level j (𝐷𝑗,𝑡) 
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2.3 Deep Q-network 

Reinforcement learning is a type of machine learning in which the agent is 

assigned to take a desired action in an environment for determined reward. In each 

time-step, the agent receives the observed input state 𝑠𝑡 to chooses the best action 𝑎𝑡. 

In the next time-step, the agent receives the observed input state 𝑠𝑡+1 and observed 

reward 𝑟𝑡+1 which relates to the action 𝑎𝑡 in the previous time-step. The agent updates 

the decision-making policy based on the observed experience transition 

(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡+1) in the adjacent time-steps with an objective to maximize the 

cumulative reward function. 

Deep Q-network (DQN) is a type of reinforcement learning method which 

utilizes the neural network agent to execute an action selection in a finite Markov 

decision process. A neural network structure allows the agent to handle a difficult task 

in a complex environment. The agent is assigned to interact with an environment to 

maximize a future discounted reward function defined as 

𝑅𝑡 =  ∑ 𝛾𝑡′−𝑡𝑇
𝑡′=𝑡 𝑟𝑡               (14) 

where 𝑇 is a number of time-steps until termination, 𝛾 is a discount factor, 𝑟𝑡 is a 

reward obtained at time-step 𝑡. The action-value function 𝑄(𝑠, 𝑎) indicates the 

estimated future discounted reward of the input state variable 𝑠 and action 𝑎. The 

optimal action-value 𝑄∗(𝑠′, 𝑎′) follows the intuition of the Bellman equation.  All 

possible actions in the next time-step 𝑎′ and state variables in the next time-step 𝑠′ are 

known values. Accordingly, an optimal policy is to select the 𝑎′ that maximizes the 

expected value of 𝑟 + 𝛾𝑄∗(𝑠′, 𝑎′). In the DQN framework, the set of weights of the 

Q-network 𝜃 representing the policy is iteratively optimized with an objective to 

update the 𝑄(𝑠, 𝑎) toward the target 𝑟 + 𝛾𝑄(𝑠′, 𝑎′). 

 Mnih et al. (2015) proposed a more stable algorithm of DQN. The weight 

updating method in the original paper is unstable. While training the network, the 

value 𝑄(𝑠, 𝑎) typically increases. 𝑄(𝑠′, 𝑎′) and the target value also increases because 

of  using the same set of weights for updating. The target value keeps moving which 

leads to divergence or oscillation. To improve stability of this algorithm, the authors 
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suggested to use a seperated Q-network 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 for producing target values. In every 

certain number of iteration, weights of the updated network 𝜃𝑜𝑛𝑙𝑖𝑛𝑒 are cloned to 

𝜃𝑡𝑎𝑟𝑔𝑒𝑡. Adding time delay to a change in target value reduces divergence or 

oscillation. Moreover, reinforcement learning can also be unstable due to the 

following causes, correlation presented in the sequence of the observations and 

correlation between action-value and target value 𝑟 + 𝛾𝑄∗(𝑠′, 𝑎′). The authors 

implemented these two main procedures to reduce the instabilities. First, each 

observation (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡) is kept in the replay memory dataset 𝐷 for each time-step. 

During updates, samples are randomly drawn from 𝐷 to perform batch gradient 

descent, therefore the data are averaged with many previous observations and the 

effect from correlation in the sequence of data is removed. Second, the iterative 

update of the action-value is allowed only periodically updates, thereby correlation 

with the target is reduced.  

Additionally, observation exploration can be enhanced by performing a 

random action in some time-steps. The action execution aligns the 𝜀-greedy policy in 

which the maximized action-value is chosen with probability 1 − 𝜀 and a random 

action is chosen with probability 𝜀 where 𝜀 decreases through time. Random actions 

reduce the number of unseen observations generated by unselected actions. During 

training, experience transitions are sampled with the same chance of being selected 

from the replay memory (𝑠, 𝑎, 𝑟, 𝑠′)~𝑈(𝐷) to perform a batch gradient descent step. 

In each iteration 𝑖, the weight of Q-network 𝜃𝑖
𝑜𝑛𝑙𝑖𝑛𝑒 is optimized with the target 𝑦 =

𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

) . The objective is to minimize the following loss 

function. 

        𝐿𝑖(𝜃𝑖
𝑜𝑛𝑙𝑖𝑛𝑒) = 𝐸(𝑠,𝑎,𝑟,𝑠′)~𝑈(𝐷) [(𝑦 −  𝑄(𝑠, 𝑎; 𝜃𝑖

𝑜𝑛𝑙𝑖𝑛𝑒))]                     (15) 

 Van Hasselt et al. (2015) found that the max operation, used in both action 

selection and evaluation, leads to an over-optimistic estimation. They proposed  an 

improved method by rewriting the formula of the target action-value as follows 

𝑦 =  𝑟 + 𝛾𝑄(𝑠′, argmax
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖
𝑜𝑛𝑙𝑖𝑛𝑒) ; 𝜃𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
)                        (16) 
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𝜃𝑖
𝑜𝑛𝑙𝑖𝑛𝑒 should be used for action selection instead of 𝜃𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
, as it is a current set of 

Q-network weights that generates a current estimated result, thereby the immediate 

action is fairly evaluated with another network 𝜃𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

. A performance of DQN using 

the new target formula empirically outperforms the original algorithm in cases of 

playing various emulator game. 

3. Methodology 

3.1 Data and cointegration estimation 

Pair trading is a statistical arbitrage strategy which exploits the temporary 

deviation in a long-run equilibrium in two related prices. In this study, the Johansen 

cointegration approach is employed to identify the statistical relationship. This 

approach aims to construct a stationary spread from a linear combination of two non-

stationary prices. The time series of prices are considered as 𝐼(1) series. If a linear 

combination of prices becomes a stationary 𝐼(0) series, the corresponding price series 

are cointegrated. This research focuses on employing the Johansen test to seek for  

cointegrated stocks in which the relationships of prices is assumed to follow bivariate 

VECM with no deterministic term. The model incorporates one lag of short-run effect. 

To implement a pair trading, a mean reverting timeseries 𝑠𝑝𝑟𝑒𝑎𝑑𝑡 is calculated by 

𝑠𝑝𝑟𝑒𝑎𝑑𝑡 =  𝛽0
 + 𝛽1

 𝑃1𝑡 +  𝛽2
 𝑃2𝑡. By the ordinary trading rule, a trading signal is 

triggered when the deviation of the spread exceeds the determined trading boundary. 

When the spread falls below the lower boundary, open a long position on the asset 

with a positive coefficient and a short position on the asset with a negative coefficient 

When the spread exceeds the upper boundary, we execute opposite positions. After the 

spread reverses to its mean, we close the position to realize a profit. The portfolio 

requires that the ratio of quantity between two assets must remain 𝛽1
 /𝛽2

 . 

The dataset includes sampled stocks from the Stock Exchange of Thailand index 

(SET index). The daily price data is downloaded from Thomson Reuter data 

streaming. For pair selection, the cointegrated stock pairs with the highest Pearson 

correlation measures are selected. We use MATLAB to carry out the Johansen 

cointegration test to a pairwise of stock within the same Sector index determined by 

SET. The experiments incorporate the top correlated pairs which are INTUCH-
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ADVANC, TISCO-TCAP, UNIQ-PREP, STEC-CK, LH-BLAND, QH-LH, , QH-

BLAND. Table 1 shows the pair description. Table 2 shows the Johansen 

cointegration test results. The dataset is preprocessed based on one year formation 

window and six month trading window beginning on the first day of the year and 

keeps rolling forward. Only stacked data from the trading windows are used for the 

experiments. Data of the year 2012 to 2016 are utilized for reinforcement agent 

learning, data of the year 2017 to 2018 are used for validation, and data of the year 

2019 are used for testing. 

Table  1  Selected pair description 

 

 

Table  2  Johansen cointegration test results of selected pairs 

Stock pair Industry Sector Correlation 

INTUCH-ADVANC Technology Information and 

communication technology 

0.9664 

TISCO-TCAP Financials Banking 0.9498 

UNIQ-PREB Property and construction Construction services 0.9497 

STEC-CK Property and construction Construction services 0.9381 

LH-BLAND Property and construction Property development 0.9364 

QH-LH Property and construction Property development 0.9073 

QH-BLAND Property and construction Property development 0.9063 

Stock pair 
Johansen cointegration test 

Null hypothesis Statistic value Critical value P Value 

INTUCH-ADVANC 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 21.8585 20.2619 0.0299 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 5.8160 9.1644 0.2099 

TISCO-TCAP 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 23.0277 20.2619 0.0203 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 1.4758 9.1644 0.8776 

UNIQ-PREB 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 22.2858 20.2619 0.0260 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 3.4592 9.1644 0.5639 

STEC-CK 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 22.5061 20.2619 0.0242 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 3.4942 9.1644 0.5587 

LH-BLAND 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 30.5301 20.2619 0.0018 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 3.9833 9.1644 0.4852 

QH-LH 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 24.2885 20.2619 0.0134 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 4.5175 9.1644 0.4050 

QH-BLAND 𝑟𝑎𝑛𝑘(𝛱) ≤ 0 21.3089 20.2619 0.0358 

𝑟𝑎𝑛𝑘(𝛱) ≤ 1 4.2268 9.1644 0.4486 
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3.2 Problem formulation 

By the reinforcement learning framework, the environment is a pair trading 

simulation on the daily closing price data. In each time step, the agent receives the 

input state 𝑠 ∈ 𝑆 from the input space where set 𝑆 incorporates the selected trading 

signals. Then the agent chooses a trading action 𝑎 ∈ 𝐴 from the action space 𝐴. In the 

learning process, the action choosing policy 𝜋 is updated with a goal to maximize the 

discounted future reward 𝑅𝑡 =  ∑ 𝛾𝑡′−𝑡𝑇
𝑡′=𝑡 𝑟𝑡 where 𝑟𝑡 is  one period ahead return. 

3.3 Input states 

The input states function as a trading signal. This study aims to detect the 

pattern in the movement of the spread time series. Then, we apply MODWT to the 

spread series. Wavelet transformation starts at the first period of the formation period. 

We use the extracted components which are the detail components and the 

approximation components as trading signals. The input set includes the signal 𝑠𝑎𝑡, 

𝑠𝑏𝑡 and time series values of lag 𝑚 wavelet extraction at level 𝐽. The signal 𝑠𝑎𝑡 

equals 1 if the current value of the spread is above the zero line otherwise 𝑠𝑎𝑡 equals 

0. Similarly, 𝑠𝑏𝑡 equals 1 if the current value of the spread is below the zero line 

otherwise 𝑠𝑏𝑡 equals 0. To conclude, the set of trading signals is 

              𝑆 = {(𝑠𝑎𝑡, 𝑠𝑏𝑡, 𝐷𝑖,𝑡, 𝐷𝑖,𝑡−1, … 𝐷𝑖,𝑡−𝑚, 𝑆𝐽,𝑡, 𝑆𝐽,𝑡−1, … 𝑆𝐽,𝑡−𝑚), 𝑖 = 1,2, . . 𝐽}     (17) 

3.4 Action space 

 In each trading period, the agent is assigned to choose one action from the set 

of actions 𝐴 = {𝑎1, 𝑎2, 𝑎3}. The action 𝑎1 means to invest in the first asset by 𝑣1 and 

invest in the other asset by 𝑣2. The action 𝑎2 takes no trading position. The action 𝑎3 

means to invest in the first asset by −𝑣1 and invest in the other asset by −𝑣2. By the 

cointegration approach, the investment proportion 𝑣1 and 𝑣2 are normalized values of 

the cointegration coefficient 𝛽1
  and 𝛽2

  from the VECM. This strategy takes a long 

position on the asset with a positive coefficient and a short position on the asset with 

negative coefficient. When the spread passes zero line or the trading window ends, the 

reinforcement agent is forced to close the position automatically. 
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3.5 Reward function 

By the environment simulation, actions taken at the end of each trading day 

yield a trading profit that is observable from a pair trading simulation. The reward 

relates to a one-period ahead return from trading executions :  

𝑟𝑎′,𝑡 =
𝑣1(𝑃1,𝑡+1−𝑃1,𝑡)

𝑃1,𝑡
+

𝑣2(𝑃2,𝑡+1−𝑃2,𝑡)

𝑃2,𝑡
− 𝐶(𝑎′)            (18) 

where  𝑟𝑎′,𝑡 is a reward function if the agent takes an action 𝑎′. 𝑃𝑖,𝑡 is price data of 

asset 𝑖 at time 𝑡. 𝑛𝑖 is an investment proportion of asset 𝑖. 𝐶(𝑎′) is a constant 

transaction cost. When the 𝑎′causes agent to open a position, 𝐶(𝑎′) equals a fixed 

percentage value to the investment amount or otherwise 𝐶(𝑎′) is zero. When the agent 

executes inappropriate actions such as betting for the spread divergence, 𝑟𝑎′,𝑡 is 

replaced by a constant penalty 𝑃𝑁𝑇. The size of the penalty should be much larger 

than a possible one-period profit to disrupt inappropriate actions. 

3.6 Training process 

In this study,  the DQN training algorithm is based on the developed version of 

Van Hasselt et al. (2015). For a more stable learning curve, we apply the target 

network soft updating. Kobayashi and Ilboudo (2021) demonstrated that it 

outperforms conventional target updating. A training procedure is shown in Algorithm 

1. The action space is initialized with no trading position. There are five training 

passages with five different initial points. The notation % represents a modulus 

operator. For reinforcement learning, the data are split into three periods: training 

period, validation period, and testing period. The data in training period are used for 

agent learning. The episode means a forward run on the sequence of observation 

transitions in the training data until terminated.  To avoid overfitting, the data in the 

validation period are used for measuring the performance of the trained agent. We 

apply the early stopping to the training passage. Figure 2 illustrates the learning curve 

in the training period and the validation period. The marked point is where the model 

is chosen. The agent is set to end the training passage when the reward during the 

validation period stops increasing. While training, the action selection is based on the 

decay 𝜀-greedy policy. The probability 𝜀 decreases through training iterations.  
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Algorithm 1 training algorithm                                             

Initialize weight of neural network 𝜃𝑜𝑛𝑙𝑖𝑛𝑒, 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 

Initialize replay memory 𝐷 

foreach episode do 

    foreach time-step 𝑡 do 

            perform random action 𝑎𝑡 with probability 𝜀  

            otherwise choose action from 𝑎𝑡 = max
𝑎

𝑄(𝑠𝑡, 𝑎; 𝜃𝑜𝑛𝑙𝑖𝑛𝑒) 

            simulation pair trading based on action 𝑎𝑡 to get reward 𝑟𝑡 

            preprocess next time steps state variable 𝑠𝑡+1 

            store new observation (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into 𝐷 

            if 𝑡 % 𝑈𝑝𝑑𝑎𝑡𝑒_𝐹𝑟𝑒𝑞 = 0 

            sample experience transitions from replay memory 𝐷 

            compute 𝑦𝑡 =  𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, argmax
𝑎′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃𝑜𝑛𝑙𝑖𝑛𝑒) , 𝜃𝑡𝑎𝑟𝑔𝑒𝑡) 

            compute loss function  𝐿 =  (𝑦𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑜𝑛𝑙𝑖𝑛𝑒))
2

  

            perform a step of gradient descent with loss 𝐿 

            soft update target 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 =  𝜏𝜃𝑜𝑛𝑙𝑖𝑛𝑒 + (1 − 𝜏)𝜃𝑡𝑎𝑟𝑔𝑒𝑡 

end if 

    end for 

    evaluate the model 

end for 

___________________________________________________________________ 

 

 
 

Figure  2 Early stopping on learning curves 

 

The model architecture and data preprocessing are illustrated in Figure 3. The 

neural network topology is a simple feed forward network. Nodes in each layer is 

fully connected to the adjacent layer. The inputs are wavelet decomposed components. 
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The network composes of two hidden layers. The activation function of the hidden 

layer is the Rectified Linear Unit (ReLU). The output activation function is a linear 

function. The weights of Q-network are initialized using the method of He et al. 

(2015). The Q-network are optimized using the Adam algorithm proposed by Kingma 

and Ba (2014). Table 3 shows fixed hyperparameters in all experiments. This set of 

hyperparameters provides an increasing pattern of cumulative training reward. 

 

Figure  3 Model architecture 
 

Table  3  Hyperparameters 

 

Hyperparameter Value 

Batch size 32 

Online network update frequency 𝑼𝒑𝒅𝒂𝒕𝒆_𝑭𝒓𝒆𝒒 Every 4 time-steps 

Target soft update weight 𝝉 0.001 

Discounted factor 𝜸 0.99 

Maximum memory replay size 100,000 

Initial random action probability 𝜺 1 

Minimum random action probability 𝜺 0.5 

Learning rate 0.001 

Momentum of stochastic gradient 0.9 

Momentum of the squared gradient 0.99 

Epsilon 10-7 

Early stopping 100 episodes 
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3.7 Evaluation and benchmarks 

The trained DQN agent is evaluation without 𝜀-greedy policy. The trading 

performance indicators cover both return and risk dimensions. In terms of risk, we 

consider only the return stability and downside risk. Table 4 shows the list of 

performance indicators. The notation 𝑟𝑡 denotes a one-period percentage return from 

executing a pair trading and 𝐶𝑅𝑡 is a cumulative return series calculated from of 𝑟𝑡, 

The Sharpe ratio is calculated with an assumption that a risk-free rate equals 2% 

yearly basis. The excess return is calculated by the linear interpolation technique as a 

daily rate 𝑟𝑓 distributed into each trading day. All indicators are interpreted on a yearly 

basis. The performance of the best agent is compared to the traditional pair trading 

strategy. We use various trading boundary settings as baseline strategies. Fixed trading 

boundary (FTB) executes trading when the spread diverges over a fixed level 𝑇𝐵. 

This baseline strategy does not include the stoploss boundary. The trading executions 

are as follows: perform action 𝑎3 when the spread rises above 𝑇𝐵, perform action 𝑎1 

when the spread falls below – 𝑇𝐵, and perform action 𝑎2 once the spread passed the 

zero level. The comparison cases are FTB(0.5), FTB(1.0), FTB(1.5), and FTB(2.0) 

which have 𝑇𝐵 equals 0.5, 1.0, 1.5, and 2.0 respectively. 

Table  4  Performance indicators 

 

Indicator Description Formula 

Return  Rate of return, measuring the 

profitability. 

𝑅 = 𝛴𝑡=1
𝑇 𝑟𝑡  

Sharpe 

ratio 

Average excess return divided by 

standard deviation of excess return, 

measuring return and stability trade-off.  

𝜎 = 𝑆𝑡𝑑𝐷𝑒𝑣[𝑟𝑡 − 𝑟𝑓] 

𝑆𝑅 =
𝐸(𝑟𝑡 − 𝑟𝑓)

𝜎
 

Maximum 

drawdown 

Maximum of historical the peak-to-

trough decline in cumulative gain/loss, 

measuring the downside risk. 

𝑃𝑒𝑎𝑘𝑡 =  max
𝑡′∈[0,𝑡]

𝐶𝑅𝑡′ 

𝑀𝐷𝐷 = max
𝑡′∈[0,𝑇]

(
𝑃𝑒𝑎𝑘𝑡′ − 𝐶𝑅𝑡′

𝐶𝑅𝑡′
) 
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4. Result and discussion 

4.1 In-sample results 

In this experiment, the model comparison is based on the sum of rewards 

through the dataset. We study the effects of varying the number of lagged input 

components, starting with no lags and extending to wavelet levels 3 and 5 while 

incorporating hidden node pruning. Table 5 displays the optimized models for each 

pair. All training passages show a rising pattern in the monitored cumulative reward, 

indicating the nonlinear mapping between wavelet component inputs and the Q-

function of trading actions is well captured by the model. By the simulation using data 

in the training period, the peaked model in the learning curves outperformed the 

baseline strategy FTB in all cases. On average, the proposed method generates a 

26.47% higher return than the optimal FTB strategy during the training period. For 

model generalization, an increased curve in the training reward is expected to result in 

an increasing curve in the validation reward. This pattern occurs in the INTUCH-

ADVANC, TISCO-TCAP, UNIQ-PREP, STEC-CK, and QH-LH. Typical learning 

curves of the corresponding pairs are presented in Figure 4 and Figure 5. The 

validation performance has an increasing pattern followed by a decreasing pattern. On 

the other hand, an increasing validation curve does not appear in the learning curves 

of LH-BLAND and QH-BLAND in some training passages. Figure 6 illustrates that 

the validation performance has no clear improvement through the training iterations. 

This occurrence indicates that the related distribution of Q-value and wavelet 

predictors in the training data and the validation data are different. Therefore, the 

generalizability of the proposed model is inconsistent. 

Table  5  Optimized hyperparameters 

Stock pair Wavelet level Lag features Neural network 

nodes 

Validation return 

INTUCH-ADVANC 3 2 19-12-12-3 14.17% 

TISCO-TCAP 5 0 13-12-12-3 17.93% 

UNIQ-PREB 5 1 19-16-16-3 19.86% 

STEC-CK 3 1 15-24-24-3 25.44% 

LH-BLAND 5 0 13-8-8-3 5.52% 

QH-LH 5 2 25-16-16-3 22.27% 

QH-BLAND 3 2 19-16-16-3 6.84% 
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Figure  4 Sample of learning curve in the pair INTUCH-ADVANC 

 

 

Figure  5 Sample of learning curve in the pair UNIQ-PREP 
 

 

Figure  6 Sample of learning curve in the pair QH-BLAND 
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4.2 Out-of-sample results 

The performance assessment in this section is responsible for the testing data. 

Table 6, Table 7, and Table 8 show the strategies comparison based on the determined 

indicators. The proposed method produces successful results on the pair STEC-CK. 

The trained agents solve the patterns in the input features and substantially surpass the 

optimal FTB strategy. For return analysis, the proposed method notably 

underperforms the FTB strategy on the pairs QH-LH, TISCO-TCAP, UNIQ-PREP, 

LH-BLAND, and QH-BLAND while it is observed slightly outperforming on the 

INTUCH-ADVANC. The profitability of the trained agents on these pairs is not 

reliable in the testing period. Despite the profit maximization objective, the optimized 

trading models still underperform the FTB strategy in overall profitability. For the 

return and stability trade-off measure, the return generated by the trained agent on 

most pairs is less stable than the FTB, resulting in a lower Sharpe ratio. For pairs QH-

LH, TISCO-TCAP, UNIQ-PREP, the trained agents produce a negative Sharpe ratio 

since the generated returns do not overcome the risk-free rate. For downside analysis, 

the trained agents provide a lower maximum drawdown on the INTUCH-ADVANC, 

STEC-CK and QH-BLAND. In the other pairs, the trained agents suffer a higher 

drawdown because of losing trades caused by out-of-sample inaccuracy. The number 

of trades represents trade counting on a stock pair, with each trade encompassing the 

opening and closing positions. Table 9 presents the number of trades where the 

number of trades executed by trained agents is much greater than that by the FTB 

strategy. The trained agent behaves like a heavy trader, characterized by a tendency to 

close positions early and open new positions frequently. 

Table  6  Return comparison in the testing period 

 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 2.53% 2.57% 4.75% 5.53% 5.72% 

TISCO-TCAP 12.06% 11.63% 10.53% 8.31% -2.82% 

UNIQ-PREB 8.83% 10.22% 2.94% 4.25% 0.06% 

STEC-CK 6.40% 2.53% 2.66% 4.27% 16.23% 

LH-BLAND 7.91% 6.56% 6.89% 9.95% 4.66% 

QH-LH 4.90% 2.12% 3.01% 5.48% -1.68% 

QH-BLAND 9.98% 8.69% 7.00% 7.19% 0.20% 

Average 6.80% 5.84% 4.90% 5.93% 3.20% 
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Table  7  Sharpe ratio comparison in the testing period 

 

Table  8  Maximum drawdown comparison in the testing period 

 

Table  9  Number of trades comparison in the testing period 

 

Table 10 displays the winning rate which is a percentage proportion of the 

number of profitable trades divided by the total number of trades. Table 11 

complements by presenting the average winning return and average losing returns. 

These metrics are calculated based on the returns achieved from profitable and losing 

trades respectively. Figure 7-13 visualizes a decision-making process and the resulting 

cumulative returns over time. In the trading signal charts, the green arrow indicates 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 0.34 0.36 0.68 0.84 0.58 

TISCO-TCAP 1.33 1.39 1.40 1.75 -0.90 

UNIQ-PREB 1.42 2.01 0.97 2.02 -0.36 

STEC-CK 0.86 0.37 0.42 0.70 2.24 

LH-BLAND 1.02 1.01 1.06 2.01 0.50 

QH-LH 0.53 0.34 0.50 1.09 -0.77 

QH-BLAND 1.52 1.45 1.40 1.97 -1.85 

Average 1.00 0.99 0.92 1.48 -0.08 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 5.05% 5.05% 5.05% 5.05% 4.31% 

TISCO-TCAP 6.54% 5.49% 5.14% 2.32% 8.77% 

UNIQ-PREB 4.06% 3.43% 3.43% 1.12% 3.82% 

STEC-CK 3.98% 3.98% 3.89% 3.89% 2.35% 

LH-BLAND 6.73% 6.14% 6.14% 3.45% 4.49% 

QH-LH 4.86% 4.97% 4.01% 2.04% 3.60% 

QH-BLAND 5.47% 5.47% 5.47% 4.07% 0.66% 

Average 5.24% 4.93% 4.88% 3.16% 4.00% 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 4 3 3 3 38 

TISCO-TCAP 11 7 5 3 14 

UNIQ-PREB 7 5 1 1 35 

STEC-CK 11 5 4 3 50 

LH-BLAND 8 4 3 3 20 

QH-LH 12 9 5 3 45 

QH-BLAND 8 4 2 2 10 

Average 8.71 5.29 3.29 2.57 30.29 
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the opening of a position in the same direction as the cointegration coefficients, the 

red arrow represents an investment in the opposite direction to the cointegration 

coefficients, and the blue circle denotes the closing of positions. Based on the research 

findings, the profitable result on the pair STEC-CK has a win rate of 74% while the 

other pairs are observed to be close to 60%. Considering the magnitude of the returns, 

we find that the average positive returns cover losses in the pairs STEC-CK and 

INTUCH-ADVANC. On the other hand, average positive returns slightly exceed the 

average negative returns on the pairs UNIQ-PREP, LH-BLAND, and QH-BLAND. 

The magnitude of the returns indicates that the losses incurred from the losing trades 

are larger than the gains from the winning trades in the pairs QH-LH and TISCO-

TCAP.  

Table  10  Winning rate comparison in the testing period 

 

Table  11  Average positive and negative return comparison in the testing period 

 

Despite having a greater number of transactions and a short-term profit-taking, 

the proposed method fell short of achieving the same level of performance as the 

ordinary strategy. The proposed method suffered from a loss in modeling accuracy, 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 66.67% 66.67% 66.67% 66.67% 57.89% 

TISCO-TCAP 90.00% 85.71% 80.00% 66.67% 57.14% 

UNIQ-PREB 100.00% 100.00% 100.00% 100.00% 57.14% 

STEC-CK 90.00% 75.00% 66.67% 50.00% 74.00% 

LH-BLAND 85.71% 100.00% 100.00% 100.00% 60.00% 

QH-LH 72.73% 62.50% 80.00% 100.00% 60.00% 

QH-BLAND 85.71% 100.00% 100.00% 100.00% 50.00% 

Average 84.40% 79.51% 80.00% 78.57% 59.45% 

Stock pair FTB(0.5) FTB(1.0) FTB(1.5) FTB(2.0) Proposed 

INTUCH-ADVANC 2.38% | -2.60% 2.57% | -2.60% 3.76% | -2.60% 4.07% | -2.60% 0.54% | -0.44% 

TISCO-TCAP 1.84% | -4.15% 2.42% | -2.88% 3.09% | -1.85% 4.24% | -0.18% 0.90% | -1.66% 

UNIQ-PREB 1.77% |  0.00% 2.61% | 0.00% 2.94% |  0.00% 4.25% |  0.00% 0.47% | -0.44% 

STEC-CK 1.09% | -1.97% 1.46% | -0.62% 1.85% | -0.62% 2.17% | -0.62% 0.58% | -0.42% 

LH-BLAND 1.89% | -1.84% 2.22% | 0.00% 2.30% |  0.00% 3.22% |  0.00% 0.88% | -0.85% 

QH-LH 0.99% | -1.23% 1.21% | -0.83% 1.13% | -1.50% 1.83% |  0.00% 0.33% | -0.59% 

QH-BLAND 2.01% | -0.09% 2.21% | 0.00% 3.50% |  0.00% 3.60% |  0.00% 0.26% | -0.23% 

Average 1.71% | -1.70% 2.10% | -0.94% 2.65% | -0.94% 3.34% | -0.49% 0.57% | -0.66% 
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whereas the static trading rules demonstrated a more accurate mean-reverting 

exploitation. The corresponding profitability and risk measurements show a difference 

in accuracy between the proposed method and the conventional strategy.  Analyzing 

the optimized trading behavior reveals that most winning trades are a result of 

successive short-term exploitation. In the opposite side, notable losses are observed 

when the trained agent incorrectly predicts and holds positions for longer periods, 

particularly when the spread diverges. 

 

Figure  7 INTUCH-ADVANC trading chart during testing period 
 

 
 

Figure  8 TISCO-TCAP trading chart during testing period 
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Figure  9 UNIQ-PREB trading chart during testing period 
 

 

Figure  10 STEC-CK trading chart during testing period 
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Figure  11 LH-BLAND trading chart during testing period 

 

 

Figure  12 QH-LH trading chart during testing period 
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Figure  13 QH-BLAND trading chart during testing period 
 

5. Conclusion 

We proposed a pair trading optimization method using DQN. To improve the 

performance, we apply MODWT to the spread series. The wavelet extracted 

components represent the multi-timescale season series and long-term trend series. All 

components are used as input to the DQN. The experiments are carried out on the top 

seven correlated pairs of the stocks based on the Johansen cointegration test and 

Pearson correlation measure. In the training process, this model can solve a profit 

maximizing in the pair trading problem using wavelet inputs. since there is an 

increasing pattern in the cumulative reward for all training passages. The trained 

agents also be compared to a simple fixed trading boundary strategy using the out-of-

sample data. On average, the trading performance of the proposed model 

underperforms the baseline method in terms of profitability and risk. Based on this 

model formulation, we have found that the yielding trading model faced an overfitting 

problem in both cross validation process and out-of-sample results. The accuracy of 

predictions becomes a critical risk due to the data-driven nature of this approach. For 

further improvement, it is necessary to improve the model generalization. We suggest 

conducting noise screening, an efficient feature selection, or cutting some high-

frequency wave components which may relate to noises from the feature set. The 

model can be improved to be more precise in stock prediction by adding some 
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additional related basic features. The formation window size and trading window size 

can be another set of hyperparameters to vary in the extended experiments. Finally, by 

incorporating a local risk measure into the reward function, both the risk and return 

dimensions can be optimized. 
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