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GARCH model further by applying the notion of the neural network to approximate 
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and the models are exposed to the overfitting problem. 
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Chapter 1  

Introduction 

This study is about detecting the financial market regime, the state of market which is indirectly 

observed but conveys critical information for anyone who longs for opportunities. Among other ways, 

detecting market regimes can be achieved through a key measure of uncertainty in the financial market, 

volatility. Therefore, we can rely on the stylized facts of financial asset returns.  

In the midst of working economic machines, the financial market has long been behaving like 

a complex system since there have been many participating parties that have been directly and indirectly 

involved with the market. With plenty of applications, the participants have observed prices of financial 

assets and have utilized them in many ways such as pricing financial derivatives, constructing portfolios, 

managing risks, etc. Since they all have to face financial market uncertainty, there have been great 

attempts to try to understand asset price dynamics in order to utilize observed data correctly. Nowadays, 

one of the challenging tasks is still forecasting and volatility forecasting turns out to be relatively more 

plausible than forecasting the direction of price movement, based on Danielsson (2011). Volatility has 

an impact on a wide range of applications and volatility forecasting task demands serious care on how a 

forecaster make assumptions on asset price dynamic. As pointed out by Tsay (2010), market volatility is 

unobservable directly, a forecaster or a modeler needs to rely on some of the stylized facts of financial 

asset returns. For example, there are periods when volatility stays high for a while and there are periods 

when it stays low and claim, referred to as volatility clustering. Volatility keeps changing over time but 

eventually, it reverts to some level or it seems stationary. Volatility reacts differently according to the 

direction of asset price movement, referred to as leverage effect. These characteristics can be widely 

observed in financial asset returns in many markets. The other famous stylized facts can be found in Cont 

(2001) which provides more stylized facts in detail.  

Up until now, the common tools for modeling volatility have been GARCH model. It was 

designed to capture volatility clustering, mentioned above, with an aim to provide volatility measure 

(Engle (2001)). As surveyed by Bollerslev (2009), there was a long list for ARCH extension reflecting a 

variety of aspects in improving the ARCH process. However, one interesting and critical comment can 

be found in Hamilton and Susmel (1994) and Cai (1994) on the predictability problem which is due to 

the high persistence of shock to conditional volatility that the estimated GARCH model implies. Their 

main argument was that if the estimated model showed high persistence of change in stock price 

volatility, due to uncertainty, then why they still had an inaccurate forecast using the GARCH model? 

They pointed out to structural change in the financial market as a potential suspect and then proposed 

regime switching ARCH model, which implied that the high persistence was just temporary. There exist 

times when shock persistence is high, or high volatile regime, and times when shock persistence is low, 

or claim regime. The back and forth of staying in different market regimes, in the financial market, can 

be related to the notion of business cycles where there have been times for economic expansion, getting 
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peak, decline, and recovery or it can be related to some structural change due to changes in regulatory 

laws, political risks, and wars. Many attempts have been made to improve the regime switching ARCH 

model since the model still suffered from path dependence problem in estimation process. The more 

appealing variants can be seen in Gray (1996), Dueker (1997), and Klaassen (2002) who modified the 

model and proposed methods to add Markov switching feature on GARCH processes, MS-GARCH 

model. The model allows us to have separate sets of GARCH parameters and allows for nonstationary 

volatility process for a highly volatile regime. The authors claimed that the model provided a better fit to 

data. We provide more details in the literature review part. 

As for volatility, market regimes have been presumed to be unobserved. Hamilton (1989) 

proposed a method to infer regimes from time series data. Although he aims to analyze the business cycle 

of the postwar U.S. economic system, the method can be applied to infer financial market regimes, 

including regime inference via MS-GARCH model framework. The regime dynamic is typically based 

on a Markov chain process where the transitions, changing from one regime to the next regime, are 

governed by transition probabilities. Simple assumptions have been made for transition probabilities. 

They were assumed to be a set of constants that preserved nice properties of the Markov chain, and have 

commonly been treated as parameters to estimate. Filardo (1994) referred to Hamilton’s model 

framework above as fixed transition probability Markov switching model, FTP-MS model, and argued 

that allowing the transition probabilities to vary across time did refine regime inference and prediction. 

He proposed time varying transition probability Markov switching model, TVTP-MS model, where the 

transition probabilities could depend on the dynamic of carefully preselected explanatory variables. The 

second reason for supporting TVTP-MS model is that the times, on average, that we stay in one regime 

can vary and depend on explanatory variables. This feature makes TVTP-MS model align with observed 

data and theoretical intuition. For the transition probability’s part, a linear combination of explanatory 

variables, weighted by a set of parameters, is passed into a nonlinear function which has a range that 

aligns with the notion of probability e.g., logistic function or Normal CDF. And this is the point where 

this study is all about. In this study, we will change the way of exploring the relationship of explanatory 

variables to the time varying transition probability, and we will try to explore it under time varying 

transition probability Markov switching GARCH model or TVTP-MS-GARCH model. 

In the field of artificial neural network, passing a sum of weighted explanatory variables into a 

nonlinear function can be viewed as a single hidden layer network or a shallow network. It can also be 

viewed as related to the generalized linear model in statistics. Referring to Zhang et al. (2021), although 

we can use a single hidden network to learn many functions and to explore relationship between 

variables, but it does not mean we should solve all problems using it. We can also use a deeper network 

to learn or approximate many functions. Utilizing the deeper network to approximate the transition 

probability part in TVTP-MS-GARCH model allows explanatory variables to have an impact on 

transition probability in a more sophisticated way by sacrificing interpretability. This extension may help 

refine a regime inference and may help provide a more realistic transition probability. The regime 
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inference and regime prediction will have an impact on many applications e.g., refining trading strategy, 

forecasting volatility, improving hedging strategy, and constructing a portfolio. This extension may also 

help refine a volatility forecasting which is the main application in this study. Due to very scarce literature 

on the TVTP-MS-GARCH model, and not much literature paying attention to time varying transition 

probability part of the model, this study may help fill the gap. 

1.1 Research Objective 

Our aim is to refine the TVTP-MS-GARCH model to get a more accurate forecasted volatility 

and also to get a more reliable regime inference. The main research question is if we apply the notion of 

neural network1 to approximate the transition probabilities, then do we achieve a model that provide 

better prediction out-of-sample? Note that we will separate data into three sets, the first 50% portion of 

a whole data set will be used for model estimation, referred to as the training set. The next 25% will be 

used for model selection, referred to as the validation set. The rest of the data will be used for accuracy 

evaluation, referred to as the test set or out-of-sample data.  

For the training set, we will use it to estimate the model parameters. The set of explanatory 

variables will be selected. Many forms of neural network architecture will be estimated. Given the 

estimated models, we will use the data in the validation set to select the best model that provides the best 

accurate forecasted volatility. In this study, the notion of realized volatility2 will be applied as suggested 

by Tsay (2010). We will use this measure for accuracy evaluation on the validation set and we will also 

use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the loss functions. The estimated 

model that provides forecasted volatility with the lowest MSE and MAE will be selected and will be used 

in the next step. 

 For the out-of-sample data period, the best model from above will be used for accuracy 

evaluation compared to our benchmark model. The FTP-MS-GARCH from the literature will be used as 

the benchmark model. We will use realized volatility for accuracy evaluation and also use MSE and 

MAE as the loss functions in the comparison. According to more flexibility of the neural network, the 

true relationship of explanatory variables to the transition probability may be partly captured or be 

approximated. We expect that the proposed model can reveal a reliable dynamic of transition probability 

and regime inference. This would result in higher accurate forecasts or lower MSE and MAE compared 

to the benchmark model.  

The rest of this proposal is organized as follows: Chapter 2 provides background reasoning on 

why regime detection in the financial market is related to how volatility behavior changes. Some details 

about MS-GARCH model and the related problem issue are included. Background on time varying 

transition probability assumption is reviewed and examples on using TVTP-MS-GARCH model are 

 
1 The idea of neural network will be described later in Chapter 3.  
2 For example, to calculated daily realized volatility, the sum of the squared 30-minute log returns will be calculated 

on each trading day. For one week ahead volatility, we sum the calculated daily realized volatility over 5 days ahead. 
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provided. Chapter 3 provides detail of the proposed model and all methods and also describes the data 

that will be used and the scope of this study. 

 

Chapter 2  

Literature Reviews 

In order to predict asset return volatility, we can rely on stylized facts and non-stationarity in 

return data series to back up our choice of tools, Markov switching GARCH (MS-GARCH) model, which 

has long been used and studied with interesting history.  

2.1 From persistence of shock on conditional variance to regime 

switching 

The beginning of MS-GARCH model came surprisingly from arguments against the founder of 

ARCH and GARCH model. In 1986, not too long after GARCH model had been introduced, Engle and 

Bollerslev (1986) proposed a new model of conditional variance which captured the persistence of shock 

on conditional variance, known as integrated GARCH (IGARCH) model. They spotted this feature from 

fitting GARCH model to long period weekly asset return series. The IGARCH model implied that multi-

step forecasts did not revert back to unconditional variance due to contribution of current information on 

variance process persisted. Since stock volatility has an impact on stock price through risk premium, the 

persistence is critical to stock return modeling. Although both authors did provide sound evidence and 

aligned theories, there were studies that went against their idea.  

The famous one was from Lamoureux and Lastrapes (1990), who investigated whether GARCH 

parameters were time varying or not. They estimated GARCH with daily stock returns and stock market 

index by allowing shift in constant term of GARCH process. Their results confirmed that there were 

structural changes in unconditional variance that caused the seemingly high persistence in conditional 

variance, which implied that there was a misspecification bias in using one regime GARCH model. They 

referred to Hamilton’s regime switching model as a potential solution. By this motivation, Hamilton and 

Susmel (1994) investigated further on the context of forecasting performance, they showed that constant-

variance assumption beat one regime GARCH model in forecasting. Even in a longer forecast period, 

the one regime GARCH provided no better performance to constant-variance assumption. So, this 

questions directly the evidence of high persistence of shock to conditional variance. Mikosch and Stărică 

(2004) also showed that it was non-stationarity in data, a change in unconditional variance, that caused 

one to observe IGARCH effect in the estimated GARCH model. Non-stationarity in data made some 

statistical tools provide spurious results especially when one assumed stationarity.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

Hamilton and Susmel (1994) and Cai (1994) proposed a better model, Markov switching ARCH 

model, where the switching process was governed exogenously by the Markov chain. The model implied 

that, for two market regimes and time varying in ARCH parameters, we can seize the momentum in 

conditional variance, highly volatile market regime, and we can also seize the reversion to unconditional 

variance, claim market regime. At that time, they stated that using the GARCH form with the Markov 

switching were restricted by an estimation problem.  

2.2 Markov switching GARCH model 

Because the MS-ARCH model still did not satisfy researchers enough, they explored the 

methods to have a simple GARCH form instead of many lag terms on the information period for each 

regime. In this section, we will state common model setup, emphasize the estimation problem, and 

provide details on how researchers tackle the problem. Note that the model setup and all notations in this 

section are mainly adapted from Dueker (1997) and Marcucci (2005). 

 In the case of simple two market regimes, discrete state variable 𝑆𝑡 at time 𝑡 follows the Markov 

process with 𝑆𝑡 ∈ {0,1} for all of the time. The transition probabilities are stated as follows, 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 0) = 𝑒0 

(2.1) 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 0) = 1 − 𝑒0 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 1) = 𝑒1 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 1) = 1 − 𝑒1 

The dependent variable 𝑟𝑡 represents an asset return at time 𝑡 and is assumed to have the following form, 

𝑟𝑡 = 𝜇𝑡 +  𝜖𝑡 

(2.2) 

𝜖𝑡 ~ 𝑖𝑖𝑑(0, 𝜎𝑡
2) 

Conditional mean 𝜇𝑡  is assumed to depend on state 𝑆𝑡 . While 𝜖𝑡  is assumed to have zero mean and 

conditional variance 𝜎𝑡
2 . Dueker (1997) assumed 𝜎𝑡

2 = 𝑓(ℎ𝑡) where the function 𝑓  could take many 

forms. The variable ℎ𝑡  was assumed to follows GARCH (1,1) process with Markov switching 

parameters. The general form of ℎ𝑡 is stated as follows, 

ℎ𝑡(𝑆𝑡 , 𝑆𝑡−1, … , 𝑆0) = 𝛾(𝑆𝑡) + 𝛼(𝑆𝑡)𝜖𝑡−1
2 +  𝛽(𝑆𝑡)ℎ𝑡−1(𝑆𝑡−1, 𝑆𝑡−2, … , 𝑆0) (2.3) 

We will refer to this equation as the GARCH equation. Note that ℎ𝑡 in the general form depends on the 

entire history of state variable 𝑆𝑡. In model estimation, the calculation of ℎ𝑡 places too high burden on 

evaluation of the likelihood function with information up to time 𝑡 and so this is called the path dependent 

problem for estimating MS-GARCH model. However, there are solutions. 

For this case, Dueker (1997) collapsed the entire paths by setting ℎ𝑡 to depend only on 𝑆𝑡  and 

𝑆𝑡−1 . We use ℎ𝑡
𝑚,𝑛

 for the value of ℎ𝑡  when 𝑆𝑡 = 𝑚  and 𝑆𝑡−1 = 𝑛 . Let ℱ𝑡  denote the set of all 

information up to time 𝑡. To approximate equation 2.3, the author set up ℎ𝑡
𝑚 to be the proxy for value of 
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ℎ𝑡 when 𝑆𝑡 = 𝑚. The proxy ℎ𝑡
𝑚 can be calculated by integrating out 𝑆𝑡−1 from ℎ𝑡

𝑚,𝑛
, using probability 

that state variable 𝑆𝑡−1 = 𝑛 given ℱ𝑡 and the value of  𝑆𝑡 = 𝑚. The description can be stated as follow, 

ℎ𝑡
𝑚(𝑆𝑡) = ∑ 𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 𝑛|𝑆𝑡 = 𝑚, ℱ𝑡)ℎ𝑡

𝑚,𝑛(𝑆𝑡 , 𝑆𝑡−1)

1

𝑛=0

 (2.4) 

The author used equation 2.4 to simplify ℎ𝑡−1 on the right-hand-side of equation 2.3. So, the GARCH 

equation 2.3 can be approximated by using the following equation, 

ℎ𝑡
𝑚,𝑛(𝑆𝑡 , 𝑆𝑡−1) = 𝛾(𝑆𝑡) + 𝛼(𝑆𝑡)𝜖𝑡−1

2 +  𝛽(𝑆𝑡)ℎ𝑡−1
𝑛 (𝑆𝑡−1) (2.5) 

The variable ℎ𝑡 now depends on 𝑆𝑡  and 𝑆𝑡−1 instead of the entire path history of 𝑆𝑡. With this set up, 

estimation can be done using the idea from Hamilton (1990). Dueker (1997) applied the method with 

many conditional variance specifications 𝜎𝑡
2 = 𝑓(ℎ𝑡). Recall that function 𝑓 could take many forms. The 

author used the models to study daily percentage changes of the S&P 500 Index. His models showed 

improvement on fitting with the data by comparing to one regime GARCH and MS-ARCH of Hamilton 

and Susmel (1994). However, the results showed that his MS-GARCH framework still did not pass a 

goodness-of-fit test for the out-of-sample period. 

 Another resemble method can be found in Gray (1996) which showed another way to tackle the 

path dependent problem by integrating out the path of state variable 𝑆 up to time 𝑡 − 1. Let 𝜌𝑡
𝑚 denote 

the probability that 𝑆𝑡 = 𝑚, given information up to time 𝑡 − 1, or 𝜌𝑡
𝑚 = 𝑃𝑟𝑜𝑏(𝑆𝑡 = 𝑚| ℱ𝑡−1). Recall 

that 𝑆𝑡 ∈ {0,1}  then we have 𝜌𝑡
0 = 𝑃𝑟𝑜𝑏(𝑆𝑡 = 0| ℱ𝑡−1)  and  𝜌𝑡

1 = 1 − 𝜌𝑡
0 . We use 𝜇𝑡

2(𝑆𝑡 = 𝑚)  to 

denote the square of conditional mean at time 𝑡 when 𝑆𝑡 = 𝑚. From equations 2.2 and 2.3 above, Gray 

(1996) simply assumed 𝜎𝑡
2 = 𝑓(ℎ𝑡) = ℎ𝑡 , but we state the difference by using specific notations as 

following. We use ℎ̃𝑡
𝑚(𝑆𝑡) to denote conditional variance at time 𝑡 when 𝑆𝑡 = 𝑚 and we also use ℎ̃𝑡(𝑆𝑡) 

for a proxy of conditional variance under Gray (1996) method.  The value of ℎ̃𝑡(𝑆𝑡) can be calculated as 

follows, 

ℎ̃𝑡(𝑆𝑡) = 𝐸[𝑟𝑡
2| ℱ𝑡−1] − (𝐸[𝑟𝑡|ℱ𝑡−1])2  

ℎ̃𝑡(𝑆𝑡) = 𝜌𝑡
0(𝜇𝑡

2(𝑆𝑡 = 0) + ℎ̃𝑡
0) + 𝜌𝑡

1(𝜇𝑡
2(𝑆𝑡 = 1) + ℎ̃𝑡

1) 

(2.6) 

          − [𝜌𝑡
0𝜇𝑡(𝑆𝑡 = 0) + 𝜌𝑡

1𝜇𝑡(𝑆𝑡 = 1)]2 

Using equation 2.6 to approximate ℎ𝑡−1 on the right-hand-side of equation 2.3, we have the following 

approximation:  

ℎ̃𝑡
𝑚(𝑆𝑡) = 𝛾(𝑆𝑡) + 𝛼(𝑆𝑡)𝜖𝑡−1

2 +  𝛽(𝑆𝑡)ℎ̃𝑡−1(𝑆𝑡−1) (2.7) 

Now the ℎ̃𝑡 in equation 2.7 does not depend on the entire history of state variable. 

Like in Dueker (1997), the estimation method follows the idea from Hamilton (1990). We can 

observe that both methods above are not too different. Gray (1996) also showed good performance of 

the model in fitting with data. The author did investigate the model on short term U.S. interest rate data 
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and claimed that his MS-GARCH framework beat one regime GARCH for an out-of-sample forecasting 

test. 

The main difference for these two methods is how they integrate out the history path of state 

variable 𝑆 and how they calculate the involved probabilities. However, the key feature is that, as stressed 

by Marcucci (2005), the modified method allows switching in regime to cause the persistence of shock 

to volatility. So, with these modifications, there are two sources for shock on volatility persistence, one 

come from within regime and one from switching to high volatile regime.  

The advantage on using Gray’s (1996) model specification is that we can extend the model to 

investigate the case where the transition probabilities are time varying. The details on this point will be 

explained in the next section below.  However, there are limitation on flexibility of the model to estimate 

the transition probabilities and our proposed model will refine it. We provide more details in Chapter 3. 

There are other forms of MS-GARCH model. But in this study, it is suitable to start from Gray 

(1996) version since the author clearly provided a method to allow for time varying transition probability 

assumption which is the main feature for our study. 

2.3 Time varying transition probability assumption 

The model assumption in equation 2.1 can be traced back to Hamilton (1989) in which the 

notion of the Markov chain was used to model turning points of the underlying states of the U.S. 

economy. The assumption states that the probability of switching to the next regime depends only on the 

current regime. In model estimation, the value of the transition probabilities, in equation 2.1 above, were 

treated as model parameters to be estimated. We can call the model in the previous part as fixed transition 

probability MS-GARCH or FTP-MS-GARCH in short. Filardo (1994) and Diebold et al. (1994) 

generalized the probability of switching to depend on the current regime and a set of explanatory 

variables. Note that they did not apply the notion on MS-GARCH model in their studies. They 

investigated on a fixed transition probability Markov switching (FTP-MS) model and a time varying 

transition probability Markov switching (TVTP-MS) model but their ideas could be applied directly to 

MS-GARCH model in our study. To illustrate, let 𝑋𝑡 denote the vector of the value of the explanatory 

variables at time 𝑡. Let 𝜓𝑆𝑡−1
 denote a function that can map a set of real numbers to range [0,1], to align 

with the properties of probability. The modified equation 2.1 can be stated as follows, 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 0, 𝑋𝑡−1) = 𝑒0𝑡 =  𝜓0(𝑎0 + 𝑏0
′ 𝑋𝑡−1) 

(2.8) 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 0, 𝑋𝑡−1) = 1 − 𝑒0𝑡 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 1, 𝑋𝑡−1) = 𝑒1𝑡 =  𝜓1(𝑎1 + 𝑏1
′ 𝑋𝑡−1) 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 1, 𝑋𝑡−1) = 1 − 𝑒1𝑡 
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where 𝑎𝑠  and 𝑏𝑠 , 𝑠 = 0, 1  are the model parameters. Notice that 𝑝𝑡  and 𝑞𝑡  now depend on 𝑋𝑡−1 . 

According to Tsay (2010), the return tends to stay in the state 𝑆𝑡−1 = 0  with expected duration 

1 (1 − 𝑒0𝑡)⁄  and it tends to stay in the state 𝑆𝑡−1 = 1 with expected duration 1 (1 − 𝑒1𝑡)⁄ . If the strength 

point of using Markov switching is creating meaningful forecasts with flexibility as claimed by Hamilton 

(1994), then this generalization can provide further flexibility. 

 Filardo (1994) also provided supporting reasons which can be summarized as follow. First, the 

model allowed transition probability to rise just before and after a change of an economic regime and 

this provided model flexibility adding on to the Hamilton’s Markov switching model. For the second 

reason, the model opened to more complex temporal persistence of the investigated dependent variable. 

Since both models, FTP-MS model, and TVTP-MS model, can capture two sources of the persistence, 

one from autoregressive form of the dependent variable within each regime and another one from regime 

persistence. But the regime persistence of the TVTP-MS model depends on explanatory variables and 

then the source of regime persistence comes partly from the dynamic of the explanatory variables. The 

final reason is that the expected duration of staying at each regime under the FTP-MS model depends on 

the estimated values of the transition probability. Allowing them to be time varying and to depend on 

explanatory variables also provides more intuitive interpretation of the expected duration. These 

advantages of the TVTP-MS model are directly linked to the inference of the market regime. Diebold et 

al. (1994) conducted a simulation, under the TVTP-MS model, and showed that regime detection was 

improved in the case that we know the right explanatory variables. This implies that explanatory variables 

selection is critical to the success of the model. 

All these points above will follow when we apply the extension to MS-GARCH. Gray (1996) 

generalized FTP-MS-GARCH to achieve time varying transition probability Markov switching GARCH 

(TVTP-MS-GARCH) model, and showed that the extension improved performance in fitting with data. 

The author also pointed out that the source of persistence of shock to conditional variance can depend on 

expanding phase of high volatile regime, indicated by time vary transition probability. So, the empirical 

result that was observed in Engle and Bollerslev (1986), and other studies, can be captured by TVTP-

MS-GARCH model, which raises the important role of market regime inference. Although good results 

were seen, the promising result was still in question due to limited studies on this model. Some of studies 

that utilized and supported the model are described below.  

Brunetti et al. (2008) studied market regime of exchange rate market using TVTP-MS-GARCH 

model. The authors found that exchange rate, in southeast Asia, exhibited calm phase and turbulent phase 

by distinguishing conditional mean and conditional variance processes.  They also showed that macro 

and financial variables such as real effective exchange rate, money supply, stock index return, and 

volatility contained information to detect market regime. 

 Tan et al. (2021) utilized daily trading volume and the number of daily Google searches, 

“Bitcoin”, as explanatory variables for varying transition probability of Bitcoin volatility regimes. The 
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authors showed that TVTP-MS-GARCH with only trading volume and Student-t error distribution could 

beat one regime GARCH, GJR-GARCH, and FTP-MS-GARCH for out-of-sample forecast.  

 Wang et al. (2021) studied the impact of geopolitical risk on volatility shift in crude oil dynamic 

using an asymmetric time-varying transition probability Markov regime switching GARCH (AS-TVTP-

MS-GARCH) model. The authors used geopolitical risk index as explanatory variable and modified 

TVTP-MS-GARCH to capture the different impacts of positive and negative changes in geopolitical risk 

on crude oil volatility regimes. They compared the smoothed probabilities of different regimes for MS-

GARCH, TVTP-MS-GARCH, and AS-TVTP-MSGARCH and claimed that the proposed model gave a 

better in-sample fit and the geopolitical risk index conveyed information to regime detection. Later, Hong 

et al. (2022) extended the investigation on international crude oil market using financial stress index but 

the authors focused on out-of-sample forecasting. They claimed that financial stress has affected the 

supply-demand structure of crude oil, and so the model with an asymmetric feature provided better 

performance in forecasting. 

 

Chapter 3  

Methodology and Data 

3.1 Methodology: The proposed model 

For the proposed model specification, let 𝑟𝑡 denote log-return of asset price at time index 𝑡. 

Here, we use weekly return since daily return may contain more noise. Assume that we have a discrete 

state variable 𝑆𝑡 which represents the market regime at time 𝑡 and it follows a first order Markov process. 

Note that the value of state variable 𝑆𝑡 ∈ {0, 1} for all time 𝑡. When 𝑆𝑡 = 0, the concerning asset return 

is assumed to stay in low a volatile market regime at time period 𝑡. When 𝑆𝑡 = 1, the return is assumed 

to stay in a high volatile market regime. We use 𝜇(𝑆𝑡) to denote the conditional mean of asset return at 

time 𝑡 which depends on state variable 𝑆𝑡. We will add a subscript 𝑖 to represent the value of the variables 

when state variable 𝑆𝑡 = 𝑖. So, we use 𝜇𝑖 for the value of 𝜇(𝑆𝑡) when the value of state variable 𝑆𝑡 = 𝑖 

and we will apply this logic to all other notations.  

Let 𝜎𝑡
2 denote the conditional variance at time 𝑡. We use 𝜀𝑡 to represent the innovation term and 

we assume it to be identically distributed with standard normal distribution for simplicity. We use 𝜙𝑡 to 

represent the diffusion part of asset return. The first element of the proposed model, when 𝑆𝑡 = 𝑖, is 

specified as follows, 

𝑟𝑡 = 𝜇𝑖 + 𝜙𝑡 (3.1) 

𝜙𝑡 = 𝜎𝑡𝜀𝑡   (3.2) 
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𝜀𝑡 ~ 𝑖𝑖𝑑 𝑁(0,1) 

𝜎𝑡
2 = 𝜔𝑖 + 𝛼𝑖𝜙𝑡−1

2 + 𝛽𝑖𝜎𝑡−1
2  (3.3) 

Equation 3.3 is referred to as the GARCH equation which is GARCH (1,1) with Markov switching 

parameters, denoted as (𝜔(𝑆𝑡), 𝛼(𝑆𝑡), 𝛽(𝑆𝑡)). The GARCH equation 3.3 is assumed to follow Gray’s 

(1996) specification and 𝜎𝑡−1
2  on the right-hand side will be approximated to get a state-independent 

average of past conditional variance later in this section. Note that 𝜎𝑡 and hence 𝜙𝑡  depend on the current 

state 𝑆𝑡. 

For the second element of the proposed model, we will define notations for variables, and the 

probabilities that will be needed later. Let ℱ𝑡 denote the set of asset return information up to time 𝑡. We 

use ℳ𝑡 to denote the set of all explanatory variables information up to time 𝑡. Assume that we consider 

𝑚 explanatory variables and we use 𝑥𝑚𝑡  for value of the 𝑚𝑡ℎ explanatory variable at time 𝑡. That is, 

ℱ𝑡 =  {𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑡} (3.4) 

ℳ𝑡 =  {𝑥10, 𝑥20, … , 𝑥𝑚0, … , 𝑥1𝑡 , 𝑥2𝑡 , … , 𝑥𝑚𝑡} (3.5) 

In this study, we follow Gray’s (1996) specification to have time varying transition probabilities and we 

propose an extension on this part. We use 𝑿𝑡 for the vector of the values of the explanatory variables at 

time 𝑡. To simplify the notations, we augmented the first element of vector 𝑿𝑡 to be value 1, illustrated 

below.  

𝑿𝑡 =  [

1
𝑥1𝑡

⋮
𝑥𝑚𝑡

]   (3.6) 

According to Zhang et al. (2021), given a set of explanatory variables we can apply a neural network 

method. The neural network architecture composes of input layer, hidden layer, and output layer. The 

input layer is where the information of the values of the explanatory variables are passed into the neural 

network. If we pick a set of information that contains 𝑚 values then each value can be called a node. In 

this case, our input layer has 𝑚 nodes. The input layer only passes information to the next layer which is 

the hidden layer. A hidden layer takes inputs from the input layer or from the other hidden layers. It 

processes the information and sends output to the next layer which can be another hidden layer or an 

output layer. One neural network architecture can possess many hidden layers. One hidden layer can take 

many nodes, each of which is where the input data are processed and creates output data per node. The 

output layer takes information, which is the output data from the hidden layer, and creates the desired 

final output. The output layer also can possess many nodes. 

In our context, vector 𝑿𝑡−1 can represent an input layer that contains 𝑚 nodes. Each input node 

represents data at time 𝑡 − 1, so we can actually utilize a set of data within ℳ𝑡−1 for each time period. 

For example, assume we consider 1 hidden layer with 3 nodes. We use 𝜽𝑗𝑘  to represent a vector of 

weights and a bias term of the 𝑗𝑡ℎ hidden layer at the 𝑘𝑡ℎ node. We use 𝜃𝑗𝑘𝑙  for the value of the weight 
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of the 𝑗𝑡ℎ hidden layer, 𝑘𝑡ℎ node, and the corresponding 𝑙𝑡ℎ input. Note that the bias terms are denoted 

by 𝜃𝑗𝑘0 which corresponds with value 1 that we have augmented in 𝑿𝑡 above. In our example, the vector 

of weights and the bias term of node 𝑘 can be stated as follows, 

𝜽1𝑘 =  [

𝜃1𝑘0

𝜃1𝑘1

⋮
𝜃1𝑘𝑚

] (3.7) 

𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚     =  𝜃1𝑘0  (3.8) 

Each node in the hidden layer processes input by setting up a linear combination of vector 𝑿𝑡−1 and 𝜽1𝑘. 

Then the linear combinations are passed into the activation function. In the literature, the activation 

function can take many forms and depends on the context of the study or researcher’s desire. In this 

study, we follow Gray (1996) and use the logistic function as an activation function for simplicity. Let 

𝜑𝑗𝑘 denote the activation function that we apply at the 𝑗𝑡ℎ layer and 𝑘𝑡ℎ node. We use 𝑧𝑗𝑘 for the output 

value that we get from applying 𝜑𝑗𝑘 to the input. In our example, the one hidden layer with 3 nodes 

processes input and sends out a set of 𝑧𝑗𝑘 as output to the next layer. This can be illustrated as follows, 

𝑧11 = 𝜑11(𝜽11′𝑿𝑡−1) 

(3.9) 𝑧12 = 𝜑12(𝜽12′𝑿𝑡−1) 

𝑧13 = 𝜑13(𝜽13′𝑿𝑡−1) 

The output layer takes the output from the hidden layer and processes them to create the final result. In 

our context, we use the explanatory variables and neural network to approximate transition probabilities 

so the activation function at the output layer is required to have a range from 0 to 1 to align with the 

notion of probability. Let 𝒁𝑛 denote a vector containing the output from each node of the 𝑛𝑡ℎ hidden 

layer and 𝒁𝑛 , likes vector 𝑿𝑡−1, is always augmented by value 1 at the first element. Let ℎ denote the 

number of nodes in the output layer. Then we use 𝜽̃ℎ for a vector of weights and a bias term of the output 

layer at the ℎ𝑡ℎ node. Let 𝜑̃ℎ denote the activation function that we apply at the output layer and at the 

ℎ𝑡ℎnode. Since we assume 2 market regimes, we can set 2 nodes for the output layer. For our example, 

the vector 𝒁𝑛  is stated below as equation 3.10. The transition probabilities, denoted by 𝑝𝑡
𝑖𝑗

 for the 

probability that 𝑆𝑡 = 𝑖 given 𝑆𝑡−1 = 𝑗, and the information up to time 𝑡 − 1, and the neural network 

architecture in our example can be stated as follows,  

𝒁1 =  [

1
𝑧11

𝑧12

𝑧13

] (3.10) 

𝑝𝑡
00 = 𝜑̃1(𝜽̃1

′ 𝒁1)  (3.11) 

𝑝𝑡
11 = 𝜑̃2(𝜽̃2

′ 𝒁1)  (3.12) 
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Note that in this example, [3(𝑚 + 1) + 2(3 + 1) − 2] more parameters are needed to be estimated 

compared to the two regimes FTP-MS-GARCH model.  

To state the model extension clearly, let 𝝋 denote a whole neural network architecture and 𝜽 

denote all weights and bias terms from 𝝋. We use 𝝋(𝜽, 𝑿𝑡)|𝑛𝑜𝑑𝑒=𝑖 for output value from the 𝑖𝑡ℎ node of 

the output layer given all weights, bias terms, and a set of input data at time period 𝑡. The transition 

probability for our proposed model can be stated as follows, 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 0, ℳ𝑡−1) = 𝑝𝑡
00 = 𝝋(𝜽, 𝑿𝑡−1)|𝑛𝑜𝑑𝑒=1 

(3.13) 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 0, ℳ𝑡−1) = 1 − 𝑝𝑡
00 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 1, ℳ𝑡−1) = 𝑝𝑡
11 = 𝝋(𝜽, 𝑿𝑡−1)|𝑛𝑜𝑑𝑒=2 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 1, ℳ𝑡−1) = 1 − 𝑝𝑡
11 

The conditional mean 𝜇(𝑆𝑡) from equation 3.1, the GARCH equation’s parameters (𝜔(𝑆𝑡), 𝛼(𝑆𝑡), 𝛽(𝑆𝑡)) 

from equation 3.3, and all weights and bias terms within a neural network architecture 𝜽 will be referred 

to as model parameters. The number of the hidden layers and the number of nodes of each hidden layer 

are treated as hyperparameters. Note that in this study, many combinations of the hyperparameter will 

be set up. The example above is just one model set up. 

In this study, we use FTP-MS-GARCH model as the benchmark model, so the transition 

probability for our benchmark model can be stated as follows, 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 0) = 𝑒0 

(3.14) 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 0) = 1 − 𝑒0 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|𝑆𝑡−1 = 1) = 𝑒1 

𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 1) = 1 − 𝑒1 

The fixed transition probabilities 𝑒0 and 𝑒1 are part of the model parameters of the benchmark model. 

3.2 Methodology: Estimation, model selection and accuracy 

evaluation 

We will apply the filtering method from Hamilton (1990). First, we set the probability of being 

at market regime 𝑖 at time 𝑡, denoted by 𝑝𝑖𝑡 , as follows,  

𝑝0𝑡 = 𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|ℱ𝑡−1, ℳ𝑡−1) 

(3.15) 

𝑝1𝑡 = 𝑃𝑟𝑜𝑏(𝑆𝑡 = 1|ℱ𝑡−1, ℳ𝑡−1) = 1 − 𝑝0𝑡 

To continue from equation 3.3 above, the path dependent problem is solved following Gray’s (1996) 

method. For equation 3.16 below, we use 𝜎𝑖,𝑡
2  to denote the value of the conditional variance of the return 
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at time 𝑡 given 𝑆𝑡 = 𝑖. The conditional variance 𝜎𝑡−1
2  from the right-hand side of equation 3.3 can be 

approximated as follows,  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑟𝑡−1|ℱ𝑡−2, ℳ𝑡−2) = 𝐸[𝑟𝑡−1
2 |ℱ𝑡−2, ℳ𝑡−2] − 𝐸[𝑟𝑡−1|ℱ𝑡−2, ℳ𝑡−2]2  

𝜎𝑡−1
2  ≈ 𝑝0𝑡−1(𝜇0

2 + 𝜎0,𝑡−1
2 ) + (1 − 𝑝0𝑡−1)(𝜇1

2 + 𝜎1,𝑡−1
2 ) 

(3.16) 

      − [𝑝0𝑡−1𝜇0 + (1 − 𝑝0𝑡−1)𝜇1]2 

Gray (1996) also approximated the variable 𝜙𝑡−1 as follows, 

𝜙𝑡−1 ≈ 𝑟𝑡−1 − 𝐸[𝑟𝑡−1|ℱ𝑡−2, ℳ𝑡−2]  

𝜙𝑡−1 ≈ 𝑟𝑡−1 − [𝑝0𝑡−1𝜇0 + (1 − 𝑝0𝑡−1)𝜇1] (3.17) 

Note that we only use equations 3.16 and 3.17 to approximate the terms in the right-hand side of equation 

3.3. Next, we evaluate the term 𝑝𝑖𝑡 , from equation 3.15, only for the case when 𝑆𝑡 = 0 as follows: 

𝑝0𝑡 =  𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|ℱ𝑡−1, ℳ𝑡−1)  

 =  ∑ 𝑃𝑟𝑜𝑏(𝑆𝑡 = 0|𝑆𝑡−1 = 𝑖, ℱ𝑡−1, ℳ𝑡−1)𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 𝑖|ℱ𝑡−1, ℳ𝑡−1)

1

𝑖=0

  

 =  𝑝𝑡
00𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−1, ℳ𝑡−1) + (1 − 𝑝𝑡

11)𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 1|ℱ𝑡−1, ℳ𝑡−1)  

 =  𝑝𝑡
00𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−1, ℳ𝑡−1) + (1 − 𝑝𝑡

11)[1 − 𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−1, ℳ𝑡−1)] (3.18) 

To evaluate the term 𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−1, ℳ𝑡−1), we assume that given the set of information ℱ𝑡−1 and 

ℳ𝑡−1, it is sufficient to evaluate the probability that 𝑆𝑡−1 = 0 as follows: 

𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−1, ℳ𝑡−1) = 𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|𝑟𝑡−1, ℱ𝑡−2, ℳ𝑡−2)  

 =
𝑃𝑟𝑜𝑏(𝑟𝑡−1, 𝑆𝑡−1 = 0|ℱ𝑡−2, ℳ𝑡−2)

𝑃𝑟𝑜𝑏(𝑟𝑡−1|ℱ𝑡−2, ℳ𝑡−2)
 

 =
𝑃𝑟𝑜𝑏(𝑟𝑡−1|𝑆𝑡−1 = 0, ℱ𝑡−2, ℳ𝑡−2)𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−2, ℳ𝑡−2)

∑ 𝑃𝑟𝑜𝑏(𝑟𝑡−1, 𝑆𝑡−1 = 𝑖|ℱ𝑡−2, ℳ𝑡−2)1
𝑖=0

 

 =
𝑃𝑟𝑜𝑏(𝑟𝑡−1|𝑆𝑡−1 = 0, ℱ𝑡−2, ℳ𝑡−2)𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 0|ℱ𝑡−2, ℳ𝑡−2)

∑ 𝑃𝑟𝑜𝑏(𝑟𝑡−1|𝑆𝑡−1 = 𝑖, ℱ𝑡−2, ℳ𝑡−2)𝑃𝑟𝑜𝑏(𝑆𝑡−1 = 𝑖|ℱ𝑡−2, ℳ𝑡−2)1
𝑖=0

 

  (3.19) 

The term 𝑃𝑟𝑜𝑏(𝑟𝑡−1|𝑆𝑡−1 = 𝑖, ℱ𝑡−2, ℳ𝑡−2) can be evaluated as follows, 

𝑃𝑟𝑜𝑏(𝑟𝑡−1|𝑆𝑡−1 = 𝑖, ℱ𝑡−2, ℳ𝑡−2) =
1

√2𝜋𝜎𝑖,𝑡−1

𝑒𝑥𝑝 {
−(𝑟𝑡−1 − 𝜇𝑖)

2

2𝜎𝑖,𝑡−1
2 } (3.20) 

In this study, we use realized volatility as the target output. To calculate daily realized volatility, 

the sum of the squared 30-minute log returns will be calculated on each trading day. For one week ahead 

volatility, we sum the calculated daily realized volatility over 5 days ahead. This quantity will be included 

in a whole data set which will be described in Section 3.3 below. Given the realized volatility as the 
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target output and the estimated conditional variance, which will be calculated by using equation 3.16 

above, the difference between these two quantities will be used to set the objective function. To estimate 

the model parameters, we use Mean Squared Error (MSE) as the objective function. We will minimize 

the objective function by altering all model parameters. For our proposed model, however, the analytical 

gradient and hessian are hard to formulate but we can rely on numerical approximation. So, in this study, 

the minimization problem will be done numerically. Note that we will initialize all weights and bias 

terms within a neural network architecture 𝜽 by using standard normal distribution. Re-initialize the 

model parameters are required for each model.  

 The whole data set will be separated into a training set, a validation set, and a test set. The 

training set will be used in the model estimation. We will select a set of combinations of hyperparameters. 

One model has one combination of hyperparameters. For example, if we use 4 explanatories data as 

inputs to a neural network with 3 nodes in the first hidden layer and 5 nodes in the second hidden layer, 

so we can express the combination as (4-3-5-2) to represent the model. Recall that we have 2 nodes in 

the output layer of our proposed model. The hyperparameters of each model are fixed along the accuracy 

evaluation processes. All variants of our proposed model will be trained using all data from the training 

set. 

For model prediction, we update equation 3.13 by using ℳ𝑡 and utilizing the estimated model. 

Next, we use the updated transition probability, ℱ𝑡, ℳ𝑡, and 𝑝𝑖𝑡 to calculate the predicted probability 

𝑝̂𝑖𝑡+1  by using equations 3.18 and 3.20. For given ℱ𝑡  and the estimated model, we also can update 

equations 3.16 and 3.17, and then we can update GARCH equation 3.3. Let 𝜎̂𝑖𝑡+1|𝑡
2  denote the one-step 

ahead forecast variance at time 𝑡 + 1 from updating GARCH equation 3.3 given 𝑆𝑡 = 𝑖, ℱ𝑡, and ℳ𝑡. Let 

𝜎̂𝑡+1|𝑡
2  denote the one step ahead forecast variance given ℱ𝑡  and ℳ𝑡 . We can use 𝑝̂𝑖𝑡+1 , 𝜎̂𝑖𝑡+1|𝑡

2 , and 

equation 3.16 to calculate 𝜎̂𝑡+1|𝑡
2  as follow, 

𝜎̂𝑡+1|𝑡
2  = 𝑝̂0𝑡+1(𝜇̂0

2 + 𝜎̂0𝑡+1|𝑡
2 ) + (1 − 𝑝̂0𝑡+1)(𝜇̂1

2 + 𝜎̂1𝑡+1|𝑡
2 ) 

(3.21) 

      − [𝑝̂0𝑡+1𝜇̂0 + (1 − 𝑝̂0𝑡+1)𝜇̂1]2 

After we estimate all models, we will use the estimated models and equation 3.21 above to 

calculate one step ahead forecast. Next, we update the training set by including one time step data from 

the validation set. We will re-estimate all models and calculate one step ahead forecast. Note that all of 

the model parameters will be re-estimated while all of the hyperparameters will be fixed. These steps 

will be repeated until we utilize all data in the validation set. MSE and MAE will be used to measure 

accuracy of the forecasted volatility on realized volatility. The model that provides the lowest MSE and 

MAE value will be selected and will be used for the next accuracy evaluation step. Note that we can have 

one model with the lowest MSE and another one with the lowest MAE. 

 The test set data or out-of-sample data will be used for the last accuracy evaluation process. In 

this process, we use all data from the training set and validation set to estimate the benchmark model. 
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Note that we use only asset return data and realized volatility for the benchmark model estimation which 

is the same method to our proposed model. Given the best model from the previous model selection 

process and the estimated benchmark model, we will use them to calculate one step ahead forecasts. 

Next, we update the data set, that we have already used in estimation, to include one-time step data from 

the test set. We will re-estimate both models and calculate one step ahead forecasts. These steps will be 

repeated until we utilize all data in the test set. 

Note that one limitation of Gray’s (1996) method is that the multi-step-ahead volatility forecasts 

turn out to be too complicated. So, we focus on one-step-ahead forecast, or one week ahead forecast in 

this study. To answer our research  question, we use 𝜎̂𝑤+1|𝑤
2  for the one week ahead forecasted volatility, 

given that we utilize all data up until week 𝑤, from the benchmark model and the selected model. We 

denote the calculated realized volatility, one week ahead from week 𝑤, by ℎ̂𝑤+1|𝑤. MSE and MAE3 will 

be used in accuracy evaluation for the given 𝑛 periods out-of-sample data. The MSE and MAE will be 

calculated as follows,  

𝑀𝑆𝐸1 =
1

𝑛
∑(𝜎̂𝑤+1|𝑤

2 − ℎ̂𝑤+1|𝑤)
2

𝑛

𝑖=1

 (3.22) 

𝑀𝑆𝐸2 =
1

𝑛
∑(𝜎̂𝑤+1|𝑤 − ℎ̂𝑤+1|𝑤

1/2
)

2
𝑛

𝑖=1

 (3.23) 

𝑀𝐴𝐸1 =
1

𝑛
∑|𝜎̂𝑤+1|𝑤

2 − ℎ̂𝑤+1|𝑤|

𝑛

𝑖=1

 (3.24) 

𝑀𝐴𝐸2 =
1

𝑛
∑|𝜎̂𝑤+1|𝑤 − ℎ̂𝑤+1|𝑤

1/2
|

𝑛

𝑖=1

 (3.25) 

3.3 Data and scope of study 

In this study, we will investigate our proposed model described in the previous section on 

Thailand stock market index. The main dependent variable 𝑟𝑡 is the weekly log return on the SET index. 

Our target data set starts from January 2012 to the end of December 2022. The realized volatility will be 

calculated on the whole data set.  

We will set the first 50% of the data set as the training set, from January 2012 to the end of June 

2017, for the model estimation purpose. The next 25%, from July 2017 to the end of March 2020, will 

be used for model selection and validation. The data is referred to as the validation set. The rest of the 

data set, referred to as the test set, will be used as the out-of-sample period for the accuracy evaluation 

purpose. For explanatory variables 𝑋𝑡, some candidates are proposed as follows, 

 
3 Note that the main difference between MSE and MAE is that MSE will place more serious weight on the outlier or 

large forecast error. So, they provide different interpretations which depend on how the outlier affect the use of the 

forecasted value in an application. 
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• Trading volume of the SET index. We can refer to the study of Tan et al. (2021) which was described 

in Section 2.3. 

• The volatility of other leading markets. Aloy et al. (2014) studied the shift-volatility in East Asian 

stock market that came from the regional market or came from larger global market. They used 

volatility of some leading markets such as S&P, Nikkei, Hang Seng, and Singapore indices as 

explanatory variables in TVTP-MS of market return. They also found that Hongkong, Singapore, 

and Japan markets were influenced mainly by volatility of the U.S. market while Malaysia, 

Philippines, and Thai markets were influenced mainly by volatility of Hongkong and Singapore 

markets. In this study, we will use the realized volatility of both markets. 

• Term spread from short-term government bond yield and the long-term yield, 10Y-2Y and 5Y-2Y. 

Estrella (2005) claimed that these variables could be used as a leading indicator for economic 

downturn. So, this might also help in detecting regime for the stock market.  

• Active Thai CDS prices. These prices may reflect foreign-investor confidence on the Thai 

macroeconomic and political risk. 

• There are macro-financial variables such as spread of Thai interest rate and the U.S. interest rate, oil 

price, or exchange rate. These variables may have an impact on the expectation of investors to 

Thailand macroeconomic and the stock market. In this study, we will use Effective federal funds 

rate (EFFR), exchange rate (USB/THB), oil prices, gold price and spread between EFFR and the 

BOT monetary policy rate. 

All the data in this study will come from data providers such as Bloomberg and Tradingview.com. 

 

Chapter 4  

Results 

4.1 Observed data 

 In this study, we use realized volatility of the SET index as the target output which is calculated 

by using 30-minute historical close data. We follow the calculation from Tsay (2010) and include all 

variations that occurred from the market close and re-open session. The realized volatility of the HSI 

index and the STI index are calculated the same way but they are used as a part of input factors. All of 

the 30-minute historical close data come from Tradingview.com, while the rest of the historical weekly 

data come from Bloomberg. Table 1 below summarizes all of the observed data from January 2012 to 

the end of December 2022. 

Table  1: Observed data 

Roles Data name Calculation 
Number of 

observations 

Dependent variable SET index Log-return 34,525* 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

Roles Data name Calculation 
Number of 

observations 

Target output SET index Realized volatility 

Input factor (1) SET index trading volume Standardization 

574 Input factor (2) 
Thai government  

bond spread 10Y-2Y 
Standardization 

Input factor (3) 
Thai government  

bond spread 5Y-2Y 
Standardization 

Input factor (4) HSI index 
Realized volatility,  

Standardization 
34,936* 

Input factor (5) STI index 
Realized volatility,  

Standardization 
43,910* 

Input factor (6) HSI index 
Log-return,  

Standardization 
34,936* 

Input factor (7) STI index 
Log-return,  

Standardization 
43,910* 

Input factor (8) Thai 5Y CDS rate 
First difference, 

Standardization 

574 

Input factor (9) 
Effective federal funds rate 

(EFFR) 

First difference, 

Standardization 

Input factor (10) 
Exchange rate 

(USD/THB) 

Log-return,  

Standardization 

Input factor (11) Oil price (WTI) 
Log-return,  

Standardization 

Input factor (12) Oil price (BRENT) 
Log-return,  

Standardization 

Input factor (13) Gold price 
Log-return,  

Standardization 

Input factor (14) 
Spread between  

EFFR and BOT rate 
Standardization 

* The data are calculated to get a weekly basis before they are used in the model estimation. 

For the Thai 5Y CDS rate and EFFR, the directions of change are more matter than the level 

itself in our context of this study. So, we apply first difference method for them. The same reason is 

applied to all of the prices but we use log-return method to get the direction of change. The main reason 

that we standardize all of the input factors is to prevent the gradient vanishing problem when using 

backpropagation to train our model. In the model estimation, we load all required data from the training 

set, standardize all the input factors, and then start the estimation process. For the model validation test, 

we reload all required data from the training set and include data from the validation set for one -time 

step. We standardize the input factors from the reloaded data, and then restart the estimation process. 

These steps are repeated until we utilize all data in the validation set. For the out-of-sample data set, we 

use the same method. 

4.2 Neural network configuration and model training 

 Before we train our model, we need to decide on the number of the hidden layers and the 

number of nodes in each hidden layer. Since the optimal structure of feed forward network architecture 

is still an open research question, we follow the trial-and-error scheme. However, there is the suggestion 
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that problems which require more than one hidden layer are rare. So, It is suggested to start with one 

hidden layer (Heaton, 2008).  

Heaton (2008) also suggested that the nodes in the hidden layer should be between the number 

of input factors and the number of outputs. The author stated that too few nodes might create the 

underfitting problem while too many nodes would cause the overfitting problem. There were no widely 

accepted rules on the issue. Although we have 14 input factors, we will try up to 20 nodes in this study. 

The decisions are made due to the limited resources for training our model.  

In training our model, we need to randomly initialize the values of the weight and the b ias 

parameters of the neural network. The random values are generated from the standard normal 

distribution. Each of the models are trained with many initializations and then we select the best one by 

considering the results. 

4.3 Validation evaluation and model selection 

 In this study, we separate our data set into 3 parts, the first part contains 50%. The second part 

contains 25% and the third part contains the rest. The first part is used in model training while the 

second part is used for validation evaluation. The last part or out-of-sample data set, will be used for 

accuracy evaluation in the next section. Table 2 below summarizes the measured errors from the 1-week 

ahead forecasts of the realized volatility and the calculated realized volatility of the SET index. The 

calculations in the table follow the equation 3.22 to 3.25. Note that we use the notation (14-n-2) to 

represent the model that has 14 inputs, 1 hidden layer with n nodes and 2 outputs. Also, note that we 

scale all the error values by 106. 

Table  2: Measured error from each of the models in the validation evaluation  

Model MSE1 Rank MSE2 Rank MAE1 Rank MAE2 Rank 

(14-1-2) 4.63 6 123.13 4 400.83 13 5,109.49 8 

(14-2-2) 5.26 11 156.33 14 397.00 11 5,251.06 11 

(14-3-2) 4.50 4 123.28 5 342.07 1 4,773.15 3 

(14-4-2) 5.16 8 150.99 9 394.53 10 4,994.11 5 

(14-5-2) 4.25 2 114.60 2 360.75 3 4,749.43 2 

(14-6-2) 5.27 12 154.32 12 384.40 5 5,134.21 10 

(14-7-2) 4.34 3 120.62 3 383.68 4 4,973.62 4 

(14-8-2) 5.52 18 166.14 17 387.12 6 5,102.65 7 

(14-9-2) 5.56 19 182.68 20 416.05 18 5,573.49 20 

(14-10-2) 5.44 16 163.70 16 391.98 9 5,132.71 9 

(14-11-2) 5.43 15 162.69 15 411.06 16 5,390.67 19 

(14-12-2) 3.74 1 100.55 1 343.21 2 4,578.61 1 

(14-13-2) 5.52 17 169.09 18 388.63 7 5,333.38 15 

(14-14-2) 5.33 13 152.64 11 404.38 15 5,282.48 12 

(14-15-2) 5.24 10 149.19 8 389.55 8 5,009.59 6 

(14-16-2) 5.18 9 147.14 7 403.41 14 5,306.15 14 

(14-17-2) 5.07 7 151.52 10 397.62 12 5,284.55 13 

(14-18-2) 5.40 14 155.55 13 411.83 17 5,358.29 18 

(14-19-2) 4.51 5 128.39 6 417.45 20 5,348.17 17 

(14-20-2) 5.58 20 170.89 19 417.07 19 5,333.54 16 
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At this point, our result above suggests that we may choose the model with 12 nodes (14-12-2) 

as the first-best model. The second-best model seems to be the model with 3 nodes (14-3-2). The third-

best model is the model with 5 nodes (14-5-2). Now, we have 3 models for the next step which is the 

accuracy evaluation with our benchmark model.  

4.4 Accuracy evaluation against the benchmark 

In this step, we compare model performance with the benchmark model which is the FTP-MS-

GARCH model. We retrain each model and utilize out-of-sample data set in each time step. Table 3 

below states the model parameters from the benchmark model and the selected models from the 

previous section. Note that we only present the GARCH parameters here while the neural network 

parameters will be discussed in the following section. 

Table  3: Parameters of the benchmark model and the top three models 

Parameters Descriptions Benchmark (14-12-2) (14-3-2) (14-5-2) 

𝜇0 
Conditional mean 

(regime 0) 
0.726% 2.566% 1.793% 1.323% 

𝜔0 

GARCH(1,1) parameters 

(regime 0)   

3.11E-05 8.33E-05 7.66E-23 6.45E-05 

𝛼0 0.204 0.025 0.001 0.027 

𝛽0 0.358 0.309 0.432 0.496 

𝜇1 
Conditional mean 

(regime 1) 
4.651% 10.619% -0.204% 4.273% 

𝜔1 

GARCH(1,1) parameters 

(regime 1)  

1.97E-05 1.39E-07 7.33E-06 7.11E-17 

𝛼1 0.421 1.264 0.879 1.220 

𝛽1 0.340 0.510 0.669 0.514 

𝑒0 
Fixed transition probability 

(from regime 0 to regime 0) 
0.990 

 

𝑒1 
Fixed transition probability 

(from regime 1 to regime 1) 
0.799 

 

Note that we put only non-negative constraints on the GARCH parameters in the model 

estimation process. So, we allow 𝛼𝑖 + 𝛽𝑖 from equation 3.3 to be greater than 1 and then we could have 

a model with no unconditional variance. Notice that the top three models have no unconditional variance 

in regime 1 since 𝛼1 + 𝛽1 from all three models are greater than 1. From Table 3 above, we can define 

regime 0 as a low persistence volatility state since 𝛼0 + 𝛽0 from all models are relatively lower than 

𝛼1 + 𝛽1. The contribution of shock to the conditional variance is relatively low in this regime and the 

persistence of shock from the one-time lag is relatively low too. So, regime 1 is referred to as the high 

persistence volatility state.  

The GARCH parameters of regime 1 from the top three models imply that the high volatility 

and high persistence are temporary and highly depend on the shock to the market. In the high 

persistence volatility state (regime 1), volatilities are allowed to diverge since 𝛼1 + 𝛽1 of the models are 

high and greater than 1. The convergence of the volatilities comes from the transition back to the low 
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persistence volatility state (regime 0) where a shock has a relatively low impact. Notice that the 

conditional mean of the benchmark model, the first-best model and the third-best model are aligned for 

both regimes while the conditional mean of the second-best model is not. This impacts the interpretation 

of the market regimes. A positive conditional mean for the high persistence volatility state can be related 

to a market rebound after a market downturn or a crash while a negative value implies a market 

downturn itself. If this is the case then we might need more than two regimes to capture the market 

behavior of the SET index. In my opinion, the cause may be a few experiences of long and serious 

market downturns in the training period. The second possible cause is the overfitting problem.  

Table 4 below summarizes the measured errors from the 1-week ahead forecasts of the realized 

volatility and the calculated realized volatility of the SET index. Note that we scale all the error values 

by 106. 

Table  4: Measured error from each of the models in accuracy evaluation 

Model MSE1 Rank MSE2 Rank MAE1 Rank MAE2 Rank 

(14-1-2) 0.125 3 48.01 8 190.38 6 4713.36 11 

(14-2-2) 0.143 12 49.53 14 203.58 17 4847.86 19 

(14-3-2) 0.132 5 49.48 12 194.59 10 4821.88 16 

(14-4-2) 0.123 2 44.25 3 176.36 1 4304.51 1 

(14-5-2) 0.140 10 50.12 15 189.74 5 4595.70 7 

(14-6-2) 0.116 1 41.54 1 179.32 2 4348.31 2 

(14-7-2) 0.166 18 55.88 21 207.99 20 4991.49 21 

(14-8-2) 0.148 14 50.72 16 198.89 13 4751.14 13 

(14-9-2) 0.137 7 44.08 2 188.12 4 4458.49 3 

(14-10-2) 0.156 17 53.81 20 201.16 15 4827.58 17 

(14-11-2) 0.194 21 51.68 17 216.47 21 4762.84 15 

(14-12-2) 0.150 15 53.55 19 199.59 14 4835.25 18 

(14-13-2) 0.137 8 49.27 11 197.68 11 4746.96 12 

(14-14-2) 0.177 20 47.89 7 205.43 19 4550.90 6 

(14-15-2) 0.141 11 52.36 18 194.34 9 4849.61 20 

(14-16-2) 0.172 19 47.15 6 202.29 16 4656.24 9 

(14-17-2) 0.147 13 48.78 10 203.58 18 4753.49 14 

(14-18-2) 0.136 6 44.98 4 186.61 3 4468.70 4 

(14-19-2) 0.151 16 49.50 13 198.67 12 4687.78 10 

(14-20-2) 0.128 4 46.02 5 191.80 7 4625.83 8 

Benchmark 0.137 9 48.06 9 191.80 7 4493.69 5 

 

It turns out that our first-best model fails to outperform the benchmark model and delivers 

relatively poor performance. This is a sign of the overfitting problem. However, the second-best model 

can outperform the benchmark model for MSE1 measure and the third-best model can outperform the 

benchmark model for MAE1 measure. At this point, we cannot state confidently that the notion of a 

neural network does improve the forecast ability of the TVTP-MS-GARCH model. We can only 

observe some minor improvements. However, we can observe that the model of 1 hidden layer with 3-6 

nodes can be the optimal choice. 

The following figures will show the comparison between the calculated realized volatility of 

the SET index on a weekly basis and one week ahead of forecasted volatility from the benchmark 
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model and the top three models from the validation test. The out-of-sample data start from April 2020 

to December 2022. 

 

Figure  1: Compare the realized volatility of the SET index with the forecasted volatility from the 

benchmark model 

 

 

Figure  2: Compare the realized volatility of the SET index with the forecasted volatility from the 

first-best model (14-12-2) 
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Figure  3: Compare the realized volatility of the SET index with the forecasted volatility from the 

second-best model (14-3-2) 

 

 

Figure  4: Compare the realized volatility of the SET index with the forecasted volatility from the 

third-best model (14-5-2) 

 

From all of the figures above, it seems that the second-best model (14-3-2) can deliver more 

sensible forecasts after February 2022 to December 2022. While the first-best model and the third-best 

model deliver relatively flatter and the forecasted values are centered near 1.5% from February 2022 to 

December 2022. In my opinion, it is hard to state that the second-best model is better than the 

benchmark model if we judge them from the figures.  
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4.5 Usefulness of the input factors 
 The success of the model comes partly from the preselected input factors. So, we investigate 

further for the necessary of them. We consider the trained weights, at the input layer, from model (14-3-

2) and (14-5-2). If the trained weight of a factor gets close to zero then the factor contributes less impact 

on our model performance. We take absolute on each of the weights and average over each node on the 

same factor. Table 5 below summarizes the averaged weight per one factor and we rank them from the 

highest impact to the lowest. 

Table  5: Averaged weight for each factor at the input layer 

Data name Calculation 

Averaged 

weight 

(14-3-2) 

Rank 

Averaged 

weight 

(14-5-2) 

Rank 

SET trading volume Standardization 0.294 9 0.566 1 

Thai government  

bond spread 10Y-2Y 
Standardization 0.465 3 0.371 5 

Thai government  

bond spread 5Y-2Y 
Standardization 0.345 8 0.293 9 

HSI index 
Realized volatility,  

Standardization 
0.347 7 0.392 2 

STI index 
Realized volatility,  

Standardization 
0.183 13 0.331 8 

HSI index 
Log-return,  

Standardization 
0.356 6 0.377 4 

STI index 
Log-return,  

Standardization 
0.169 14 0.237 12 

Thai 5Y CDS rate 
First difference, 

Standardization 
0.504 2 0.353 7 

Effective federal funds 

rate (EFFR) 

First difference, 

Standardization 
0.414 5 0.225 13 

Exchange rate 

USD/THB 

Log-return,  

Standardization 
0.231 12 0.267 11 

Oil price (WTI) 
Log-return,  

Standardization 0.256 10 0.357 6 

Oil price (BRENT) 
Log-return,  

Standardization 0.448 4 0.275 10 

Gold price 
Log-return,  

Standardization 
0.556 1 0.380 3 

Spread between  

EFFR and BOT rate 
Standardization 0.246 11 0.180 14 

 

The above table indicates the input factors that have a high and low impact on the model 

performance. The log-return of the STI index and spread between EFFR and BOT rate are seemed to 

have a low impact on model performance. However, most of the values do not get close to zero clearly. 

So, we cannot confidently drop them from the set of input factors. 
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Chapter 5  

Conclusion 

In this study, we aim to refine the TVTP-MS-GARCH model in forecasting realized volatility. 

By applying the notion of the neural network, we can extend the transition probability part to depend on 

external factors in a more complex way. We expect that the neural network can approximate the true 

relationship of the factors with the change of the market regimes. If it is so, then we expect to achieve a 

model that provides better prediction out-of-sample. 

We do study the realized volatility of the SET index which is calculated from 30-minute close 

data from January 2012 to December 2022. We select the input factors, based on related literatures, 

from the leading stock market (Hong Kong and Singapore market) and financial -macro data e.g., 

exchange rate, oil price, gold price, spread of interest rate and CDS price. We separate the whole data  

set into 3 parts. The first part is used for the model estimation. The second part is used in the model 

validation and selection. We select the models that deliver relatively low error on the 1 -week ahead 

forecasted volatility and the calculated realized volatility. The last part of the data set is used in accuracy 

evaluation or out-of-sample tests. We keep training the selected models and compare the forecasting 

performance of the models with the benchmark model, the FTP-MS-GARCH model. 

Our result shows that the best model from the validation test underperforms the benchmark 

model on the out-of-sample test. Our best model signals the overfitting problem. However, the second-

best model and the third-best model unclearly outperform the benchmark model out-of-sample. So, we 

cannot state confidently that our model can deliver better forecasting performance than the FTP-MS-

GARCH model. 

For the next study, we can improve or extend the model specification in many ways. For 

example, we can extend the GARCH equation by adding a one-time lag of the realized volatility. 

Another example is that we can re-select and make a new combination of input factors or just focus on 

some interesting data. In my opinion, adding more hidden layers may induce the model to the overfitting 

problem but this way might be worth a try. 
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