An SDN-Coordinated Multipath Transmission Steering Framework

Mr. Kiattikun Kawila

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy (Computer Engineering) in Computer Engineering
Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University
Academic Year 2021

Copyright of Chulalongkorn University

nseuuNsTuAdeuNIsaieyavataldunIwUUUsEALLOERA DY

WELNEIAAM N1aL

(%

iwmﬁwuﬁﬁLﬁudauwﬁq%aamiﬁﬂmmwé’ﬂgmﬂ%mﬁgﬁmﬂ'ﬁiumam@wﬁﬁmeﬁm
A1 NITIAINTTUABUNUNDT NIAITIAINTTUADUNIADS
AREIAINTIUAIANT PHIAINTAIUVTINE Y
Unsfinwn 2564

AUaAVEvRIPRINTAIININe 1Y

Thesis Title An SDN-

Coordinated Multipath Transmission Steering Framework

By Mr. Kiattikun Kawila

Field of Study Computer Engineering

Thesis Advisor Associate Professor Kultida Rojviboonchai, Ph.D.
Thesis Co Advisor Professor JongWon Kim, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Doctor of Philosophy (Computer

Engineering)

Dean of the FACULTY OF
ENGINEERING
(Professor SUPOT TEACHAVORASINSKUN, Ph.D.)

DISSERTATION COMMITTEE

Chairman

(Assistant Professor Natawut Nupairoj, Ph.D.)
Thesis Advisor

(Associate Professor Kultida Rojviboonchai, Ph.D.)

Thesis Co-Advisor

Examiner

(Professor Prabhas Chongstitvatana, Ph.D.)
__ Examiner
(Associate Professor KRERK PIROMSOPA, Ph.D.)
External Examiner

(Associate Professor Anan Phonphoem, Ph.D.)

\WNesinu N13ag : nseunuNstulafeunsdslayanangidunaluuyssauie
andu. (An SDN-Coordinated Multipath Transmission Steering Framework)

. AUSAWEN : 5. AT.NaSA1 153UIYadde, 8. AUSNWITIN : AL A5.99938U AY

nsindsudnedeyadunalandniiaiuisademansenulaense deusz@nsaiw
1AgIIUVRITLUUNMTIATIEYITRLATWIA MY 1 B9InTayadiunIngnaseluainvany

o D A d' @ = o/ ¥ ! a Ao [= & a o
ATLUUIVIAG NIINISINUITIUITIN LASLARDULIYVDYAISAITNUILIUNIANY AWUUFINNIAY

NG NIFE2DNISASIULAUNI LA LI UUA AN W UTEENS A NTAaEnauauaInanIy

v
=]

ABIN13Ee 9 Youwaundintudoyaruialvgy lunuiddedisndaiiaus nsauaunis

¥ o o

uipdisunisdsdeyaraisiduneuudseanueandud niuweundindunisiadeudiy

aa a ¥

Toyavuinlvg) Inslvpeafidfinuuraigidunvseduiidn wazaolnenssuwuuieas

=

Wussludiuddgyfignldfiarsuniieseniuy wasiauinseuunsdteyanans
v A A) P aa ° v g v Y a a wa ~ o
L UN19BRIT L aTazdanFauITNIsAIMUAEUN1T T uladsUfuR 113 naue
AN NUNMNUAEUNIILUUED A LUl TudanasAuvews Ity aziin1sidwallavaanis
Wiulinlnlad uazdoyaadinninnesnvesainditoidendunianisds NTeUNUYDLI LY
ﬁlzgﬂ‘ﬂi%Lﬁumﬁi@ﬂi‘ﬁﬂiLLﬂimﬁT’]ﬁmﬁﬁLﬁﬁﬁUIUiLLﬂi@Jﬂ’JUF’]ﬂJIEJuEJﬁ NAAWSANNNITNARDY
WARILAALIINTO UM UM LALe T AUT0AALIAYRINTIARB UG8 TR ATLA LR g
4 o Wasidud WaSeuiauiunsAIuALEUNIILUUALALAISLEUNIALENAINAU
A P v | = 2 & A P ~)
LazANNNanLIAIYRINTSIAGeU e TayaTLAlaaNts me Wesidud WellSeuiiguiu
UITYNBUNTI UBNAINLUNITANUALAUNITLIIULAUDUY TAUAINISaLLNISUSUIUIA
1TAUINNINUITENBUNTN DNNITIAANUTUTDU kazAlTINBVDITEUUNAINI HAANS
A1NNITNAADILAAILAALIINITAMUALAUNTILS 1Y LauaTUna I ARAT g8 NN
a o 1 Y = ¢ @ '3
NUWITUADUNTNDG &ed LUBSHTUS
AT IAINTSUABUNILMDS ANGLDVDUEN oo
Unsfinen 2564 ALY B.IAUSNEIAN oo

A A A e !
AN8UDTD B.IAUINYITIN o

5771460721 : MAJOR COMPUTER ENGINEERING
KEYWORD: Big Data, Data transfer, MPTCP, Multipath TCP, OpenFlow, OpenFlow
network, SDN, Software-Defined Networking
Kiattikun Kawila : An SDN-
Coordinated Multipath Transmission Steering Framework. Advisor: Assoc.

Prof. Kultida Rojviboonchai, Ph.D. Co-advisor: Prof. JongWon Kim, Ph.D.

Data transfer is a primary mechanism that can directly affect the overall
performance of Big Data analytic systems. This is because most data are generated
from several locations. It has been challenging to collect and transfer data among
multiple storage regions. Using the traditional single-path transfer approaches is not
efficient to serve several requirements of Big Data applications. In this dissertation,
we propose an SDN-coordinated multipath transmission steering framework for Big
Data transfer application. Multipath TCP protocol (MPTCP) and SDN architecture are
mainly considered to design and develop our multipath transmission framework. To
provide a practical routing solution, we propose a novel OpenFlow-5Stats routing
algorithm. In our algorithm, a new topology-pruning technique is applied, and the
transmission paths are selected based on switch-port statistics. Our proposed
framework is evaluated using the Mininet emulator and ONOS controller. The results
show that our routing scheme can reduce the completion time of Big Data transfer
up to 90% compared with the traditional routing scheme with disjoint paths and up
to 35% compared with the previous work. Moreover, our proposed routing is more
scalable than other previous works in that it can provide lower complexity and
system overhead. The results show that our routing scheme produces 57% less

overhead compared with the previous work.

Field of Study: Computer Engineering Student's Signatureccoecevvieennen
Academic Year: 2021 Advisor's Signatureccccccceviennen.

Co-advisor's Signatureccccceeeennee.

ACKNOWLEDGEMENTS

First, | would like to express my deepest gratitude to my advisor, Assoc. Prof.
Kultida Rojviboonchai, for her patient guidance, enthusiastic encouragement, and useful
critiques of this Ph.D. dissertation. She has advised me the way to study and also the
way to live. | am so proud of being her supervision since my master’s degree.

| would like to express my deepest gratitude to my co-advisor, Prof. JongWon
Kim, for his patient guidance and useful critiques of this Ph.D. dissertation. It is an honor
to learn from him.

| would also like to thank my committee members, Prof. Prabhas
Chongstitvatana, Assoc. Prof. Anan Phonphoem, Asst. Prof. Natawut Nupairoj, and Assoc.
Prof. Krerk Piromsopa, who gave many useful comments and suggestions to improve this
dissertation.

| am also thankful to Assoc. Prof. Chaodit Aswakul who provides an opportunity
for me to be a part of OF@TEIN+ project, an SDN-Cloud R&D collaboration among TEIN
partners. It is an invaluable experience that | learnt from this project.

For all tuition fee and monthly expense, this dissertation is supported by the
100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship from the
Graduate School at Chulalongkorn University, and Wireless Network and Future Internet
Research Unit at Chulalongkorn University.

| thank all members of ISEL laboratory and all members of MASS research group
for any comments and discussion on my dissertation. It was a wonderful time that we
spent together.

Finally, |1 wish to thank my family for their support and encouragement

throughout my study.

Kiattikun Kawila

TABLE OF CONTENTS

Page
.. iii
ABSTRACT (THAI 1ottt ii
.. iv
ABSTRACT (ENGLISH) ..ot iv
ACKNOWLEDGEMENTS ..ottt v
TABLE OF CONTENTS L.ttt vi
LIST OF TABLES .ottt X
LIST OF FIGURES ...ttt Xi
CHAPTER 1 INTrOAUCTION ...iiiiit ittt 1

1.1 DESIGN GOALS .ttt ettt 6
1.2 Scope and ASSUMPLION ..ottt 6
1.3 Summary of CONIIDUTIONS ... 7
1.4 Dissertation OrganmiZationci oot 8
CHAPTER 2 Background Knowledge, Related Work, and Motivation...........cccccceeeeinenee. 9
2.1 Background KNOWLEAGE........c.cu i 9
2.1.1 Software-Defined NetWorking.........cccceoeiiiriiiieeee e 9
2.1.2 Controller PLatfOrm ... 11
2.1.3 OpeNFLOW PrOtOCOLcuiiiiiiriccc s 12
2.1.4 OpenFlow Specification (Based on Version 1.0.0).....ccccoeveirirrirniinriniinnnnn. 14
2.1.8.7 FLOW TabLe e 14

2.1.8.2 OpenFLOW MESSAGEc.uuiiiieiiieicieieieee e 18

Vii

2.2 Relat@d WOTK....c.oiiiiiiiiici e 19
2.2.1 Multipath Transfer Technologies over the Traditional Networking............ 19

2.2.2 Multipath Transfer Approaches Using MPTCP over the Software-Defined
NEEWOTKING. ottt 25

2.3 IMOTIVATION e e et e e e e e e e e 30

CHAPTER 3 An SDN-Coordinated Multipath Transmission Steering Framework for Big

Data Transfer APPUCAtION ...c.cceeeecees e 33
3.1 Definition of Big Data in This DiSSertation.........ccccoeoiveieeeininieiecieeeeeeeen 33
3.2 FrameWOrK OVEIVIEW ...ttt eeaee 33
3.3 Practical Issues on Using MPTCP Protocol and OpenFlow Protocol..................... 38

3.3.1 Issue oN MPTCP ProtoCOL.......cc.ouviiiiiiiiiiiciccccieiccieieeeee e 38
3.3.2 Issue on OpenFlow ProtoCol........coiciiiciiniiciceccee e a0
3.0 0OUr FrameWork DESIGNciiiiiieiecirisieiesieet ettt 41
3.4.1 Multipath TransmisSioN Mana@gerccevvirueieieriiirieeeeeeeeee s a2
3.4.2 Multipath ToOpology MaNAGETieiirieiieeeieieese s a5
3.4.3 OpenFlow-Stats ANALYZET ...t a6

CHAPTER 4 Performance EVAaluationcceiieiniiei e a8

4.1 EXPErimMENTal SELUD ..vveeieiiicece e 48
4.1.1 Simulation ConfIGUratioNc.ooie e 48
4.1.2 SIMULALION SCENATOeviieieieieieisee e a8
4.1.3 Benchmark and MetriC....c.cvuiiiiii e 51

0.1.3.1 BENCAMAIK (.ot 51
.1.3.2 IMEEIIC ottt 52

4.2 EXperimental RESULLSiciiiieie e 53

viii

4.2.1 Scenario 1: Vary the Number of MPTCP Connectionscccccceeveveieiinnen. 53

4.2.2 Scenario 2: Vary the Size of Datacccoovviiiiiieceeeeeeee e 60

4.2.3 Scenario 3: Overhead in the Control Plane ... 65

4.3 Comparison of Multipath Transport Protocols in Our SDN Environment............ 69
CHAPTER 5 CONCIUSION ...ttt 72
5.1 DiSSErtation SUMIMIAIY ..c.coco ettt 72
5.2 Cost Analysis of Using the Proposed Frameworkcccceeeeeceeieececeee, 73
5.2.1 Cost of SDN DePLOYMENTc.iiiiiieiieiieeeee e 73

5.2.2 Cost of Multipath Configuration at the Endpoint.........ccccceeeiiinncicne. 73

5.2.3 Cost of Modifying the Network Component of Computing Software to

SUPPOrt OPen VSWITCN. ..o 73

5.2.4 Cost of Maintaining the OpenFlow Controller........oooiiieeiiiinicce, 73
5.2.5 Cost of Measuring the Maximum Capacity of LinkS........ccceceeiiirnnnnnnn. 74

5.3 Complexity Analysis of Our OpenFlow-Stats ROULING........ccooviieerriiiciniccienee 74
5.4 Discussion on the Congestion Control AlGOrithms ..., 75
5.4.1 Impact on Using the Traditional Congestion Control Algorithm................. 75
5.4.2 Impact on Using the Coupled Congestion Control Algorithm..................... 75

5.5 Discussion on the Real-World Scenario Using OF@TEIN+ Testbed.........ccueueee. 77
5.5.1 EXperimental SETUD . ..vu i 77
5.5.2 Results of Deploying the Proposed Framework.........ccceeeerrrinenirnne. 80

5.6 Discussions on Limitations and Future WOrks ..., 81
5.7 ConClUdiNg REMAIKviiiiicee e 82
REFERENCES ...ttt 83

APPENDIX .ttt ettt 89

APPENDIX A Technical Details of Our Proposed Framework Being Applied to An

OVETLAY NETWOTK ...

LIST OF TABLES

Page
Table 1 FLOW table @NTrY. .o 14
Table 2 Match field of flow table entry. ... 15
Table 3 Field lengths and the way they must be applied to flow entries................... 15
Table 4 Required list of counters for use in statistics Messages. ... 17
Table 5 Comparison of multipath transfer techniques over the traditional
NETWOTKING. .ottt a ettt ettt et sttt s et st s s et e s en e et esesenene 24
Table 6 Comparison of MPTCP-based routing decision in Software-Defined
INETWOTKING. .ttt ettt ettt ettt s b se s bbb s se et s et sene e 32
Table 7 Structure of MPTCP £able. ..o 43
Table 8 Experimental parameter settings.ooeeiiiriceecee e 50

Table 9 Completion time (in seconds) and percentage of improvement compared

with traditional routing in multipath topOolOgY.ccciiiiieeeie 57

Table 10 Completion time (in seconds) and percentage of improvement compared

with traditional routing in COST239 tOPOLOGY. w..iuiiiuiiiicicicieieieieeeeeees e 57

Table 11 Experimental parameter Settings.ooeeieeieeieeeeeccsee e 77

LIST OF FIGURES

Page
Figure 1 Comparison of the traditional network architecture and Software-Defined

NETWOTKING [B2]. 1ot 10

Figure 2 Software-Defined Networking in (a) planes, (b) layers, and (c) system design

AFCNITECTUIE [B1]1 ottt 11
Figure 3 Application programming interfaces (APIs) of SDN controller [38]. 12
Figure 4 OpenFlow architeCture [32].......ccooiiiiiiiecceeeee s 13
Figure 5 OpenFlow specification (a) version1.0.0 [39] (b) version 1.3.0 [40]. 14
Figure 6 MPTCP arChit@CTUI . .i.iiiiiieiiie e 20
Figure 7 MPTCP establishment. ..o 21
Figure 8 MPQUIC archit@CTUIE.oviiiiisei e 22
Figure 9 MFQUIC architeCture [34]. ..o 22
Figure 10 The system architecture of Multiflow [22]. ..o 26
Figure 11 The system architecture of SMOC [23].ooveiieeeeieieeieeeeeeee e 27
Figure 12 The system architecture of SFO [25]. ..o 28
Figure 13 The system architecture of S-MPTCP [26].cooeerirrreiieeeeeeeeeeee 29
Figure 14 The system architecture of GCLR [27] ..o 30
Figure 15 Distributed data storage system in the traditional network.ccccccceennen. 34

Figure 16 Distributed data storage system in our proposed framework with full-range

AEPLOYMIENT. <.ttt 35

Figure 17 Distributed data storage system in our proposed framework being applied

TO AN OVETLAY NETWOTK ...eieiiii et 36

Xii

Figure 18 Sequential diagram of data request and data transfer in our proposed

FTAMEWOIK. oottt 37
Figure 19 MPTCP connection establishment and subflow creation mechanisms........ 39
Figure 20 Example of flow rule structure with basic match fields.c.ccccocoeiniinine. a0
Figure 21 Our proposed functional modules over the ONOS controller.cccc...... a2
Figure 22 Pseudocode of our OpenFlow-Stats routing algorithm.......ccccovicvvicinnes a5
Figure 23 Pseudocode of our topology-pruning algorithm..........ccccoevionnnnnine a6
Figure 24 Pseudocode of our OpenFlow-Stats monitoring algorithm. ..o a7
Figure 25 Multipath tOPOLlOGY. .c.iiiiieiii it 49
Figure 26 COST239 tOPOLOGY .. ittt 49

Figure 27 Average throughput per connection in multipath topology (File size =

Figure 29 Throughput variation at N = 15 connections with 95% confidence interval.

(a) multipath topology. () COST239 tOPOLOGY. ...iveeieeiiieiiieieieeiee s 55
Figure 30 CDF of completion time in multipath topology (File size = 200MB)............ 59
Figure 31 CDF of completion time in COST239 topology (File size = 200MB). 59

Figure 32 Average throughput per connection in multipath topology (N = 10

CONMNECTIONS). ettt ettt et e e et et e e e ettt e et e e et et ee s 60

Figure 33 Average throughput per connection in COST239 topology (N = 10

CONMMNECTIONS). ettt ettt ettt et et e et e e e e et e et eae e s et et eae e s e e et et eeeeee e et aeeeaeeneeenes 61

Figure 34 Throughput variation at file size = 500MB with 95% confidence interval. (a)
multipath topology. (D) COST239 tOPOLOGY.c.erveveeeeereeeeeeeeise e 62

Figure 35 CDF of completion time in multipath topology (N = 10 connections)........ 63

Figure 36 CDF of completion time in COST239 topology (N = 10 connections). 64

Xiii

Figure 37 Overhead in the control plane (multipath topology) for the traditional
routing With disjoint Paths. ... 65

Figure 38 Overhead in the control plane (multipath topology) for k-Max disjoint
FOUTINE. ettt ettt ettt ettt s ettt e a e bt b et et e et et et e e e st es e et e b eneen e et e b et eneeneaneaneneneas 66

Figure 39 Overhead in the control plane (multipath topology) for our OpenFlow-
SEATS TOULING. ettt 66

Figure 40 Overhead in the control plane (COST239 topology) for the traditional
routing wWith diSJOINT PathS. .. 67

Figure 41 Overhead in the control plane (COST239 topology) for k-Max disjoint
(01]]~ OOy 7 NN N (S SO OTORARTORUSTURRN 67

Figure 42 Overhead in the control plane (COST239 topology) for our OpenFlow-Stats
FOULING. ooteieinieniecenccnenienenseessons e b S N R ettt ettt ettt 68

Figure 43 Performance comparison between MPQUIC (Dash-dotted line) and MPTCP

(SOU LNE). 1tttk sttt sse s ss st enee 70
Figure 44 Complexity analysis of OpenFlow-Stats routing algorithm.........cccooveiiiinnes 74
Figure 45 Experimental Results of using (a) CUBIC protocol and (b) LIA protocol...... 76
Figure 46 Experimental topology over OF@TEIN+ testbed. ... 78

Figure 47 Available bandwidth measurement between GIST-South Korea and HUST-
VIBTNAIMN . ottt ettt ettt ettt ettt ettt 79

Figure 48 Path latency measurement of the shortest path, alternative path 1, and

alternative path 2 reSpeCtiVELY. ... 80

Figure 49 Comparison of experimental results between OF@TEIN+ testbed and

Mininet emulator (File Size = BOOMBY). ...ue oo et 81

Figure 50 An example of our proposed framework being applied to an overlay

NYETWVOTK. e e ettt et ettt et et et et e et e e e ae et e eaeeeaeeeaeeeneeereeeneeeneeane 90

Figure 51 Examples of forwarding rules in the overlay-network environment. 91

Xiv

AWIAINTAUNNIINY 1A D
CHuLALONGKORN UNIVERSITY

CHAPTER 1

Introduction

Big data analytics is a powerful process which has gained a lot of interests not
only from scientific and medical fields but also business companies [1-3]. This is
because of the growth of Internet services, the usage of loT devices and IT-related
technologies. A lot of real-time data can be generated from customers’ smart devices
and can be sent to cloud computing through the Internet. This data can be processed
in order to analyze the customers’ behaviors and predict the customers’ demands in
the future. The core components of data analytics are related to data collecting, data
cleansing, and data analysis. To achieve the high performance of data analytics, the
data gathering process must be concerned. How to collect a lot of data and how to
transfer them to the big data analytic system are the key successes.

In general, a distributed data storage system is applied to manage the data [4].
This is because most data can be generated from several locations, for example, GIS
data, Geospatial health, Continuous Glucose Monitoring, Disease-and-Health
Monitoring, Bioinformatics, Electric Power Industry, and etc. With this characteristic, it
has been challenging to collect and transfer data among multiple storage regions [5].
As mentioned above, to support the data analytic systems, the approach for big data
transmission must be seriously concerned.

In order to cope with the big data transfer among multiple storage regions,
several data-transfer techniques have been proposed, which can be classified into two
categories. In the first category, data transfer using single-path fashion has been studied
and optimized [6, 7]. In the second category, the techniques for improving performance
of data transfer using multipath fashion have been investigated [8-27]. In this
dissertation, we focus on the second category.

According to the benefits of using multipath fashion, several multipath-transfer
techniques have been proposed, which can be classified into two categories. In the
first category, several multipath routing techniques have been studied and optimized
[8-13]. In the second category, not only multipath routing but also multipath transport

protocols have been considered and exploited in the framework together [14-27]. This

is more beneficial to enhance the performance of the overall system. In order to
support the big data transfer over the Internet environment that is filled with
heterogeneous traffic, in this dissertation, we propose our framework that belongs to
the second category.

Based on the traditional networking with network multihoming [8], in RFC 8684,
multipath transmission control protocol (MPTCP) [28], is proposed to increase the
throughput performance and improve resilience to network failure. Instead of single
flow transmission of TCP, MPTCP uses multiple subflows to transfer the data. These
subflows are generated based on all available pairs of network interfaces between
endpoints. However, using MPTCP over the traditional networks cannot efficiently
utilize the network capacity because multiple subflows normally share the same
bottleneck link [29, 30]. This is because the IP-based routing provides the shortest path
for every subflow.

Software-defined networking (SDN) [31] is a key networking paradigm which
manages the network elements in a centralized fashion. The control plane is
decoupled from the data plane. Data plane elements are replaced by simple forwarder
devices with rule tables. Each incoming traffic flow is manipulated by the table rules.
SDN controller is responsible for programming the rule tables based on its routing
decisions. OpenFlow protocol [31, 32] is the most popular control protocol which is
used for communication between the forwarding devices and the controller.

In SDN, a routing decision can be more flexible with the capability to use global
knowledge and endpoint coordination. Many researches have been proposed to use
MPTCP over SDN for big data transfer, which can be categorized into two groups.

The first group has focused on the data center environment. Due to the
particular characteristics such as path diversity and bandwidth demands on elephant
flows, most solutions aim to increase the network utilization. In [14-16], the available
bandwidth was the primary parameter which was considered by routing algorithms.
The authors in [17] applied the number of active flows on each link to define the path
cost against the link capacity. Exploiting path diversity, the authors in [18] proposed to

modify the path manager for using multiple subflows per IP-address pair. The authors

in [19-21] focused on how to find the appropriate number of subflow creations based
on the flow demand and network conditions.

The second group has focused on the Internet environment in general. To avoid
the shared-bottleneck problem, a multipath OpenFlow controller [22-27] has been
proposed.

In [22], the controller can provide the disjoint shortest paths to subflows that
are generated by the same MPTCP connection. However, this method did not consider
backeround traffic and traffic distribution throughout the overall networks. Subflows of
different connections then mostly shared the same disjoint shortest paths, leading to
inefficient network utilization.

In [23], a simple multipath OpenFlow controller using topology-based routing
algorithm has been proposed. To compose a path set, the shortest path is used for
the first subflow. Other paths for other subflows will be calculated and prioritized by
minimizing the number of the shared links with the first subflow. However, in a large-
scale incoming-traffic scenario, the algorithm leads to higsh complexity. The controller
needs to repeat the prioritization on each path set and store those sets for every
MPTCP connection.

In [24], a multipath routing algorithm has been proposed. The algorithm
considers the remaining bandwidth on possible links to calculate the optimal set of
disjoint paths. In [25], the subflow optimizer for MPTCP has been proposed. In this
scheme, the source needs to inform the required bandwidth. Then, the algorithm will
select a set of disjoint paths in which the total capacity can be satisfied. In [26, 27], a
cross-layer technique has been used to make a cooperation between the controller
and MPTCP protocol stack in order to maximize the performance of multipath
transmission. It can be seen that in [24-27], the remaining bandwidth is mainly used as
a key metric to calculate the optimal set of disjoint paths. In practice, it is difficult and
complicated to do so because the network links can be filled with heterogeneous
traffic in terms of traffic type, traffic size, and etc. A lot of flow-rule tracking mechanisms
need to be deployed and processed in real-time on every node and link. This increases

complexity to the system.

In addition to MPTCP, there are also other multipath protocols recently

proposed in the literature such as Multipath QUIC (MPQUIC) [33] and Multiflow QUIC

(MFQUIC) [34]. MPQUIC is an extension of QUIC protocol [35]. It enables a QUIC

connection to spread data over multiple networks. MFQUIC is a variant of QUIC

protocol that is aware of network asymmetries. It focuses on using multiple

unidirectional flows instead of bidirectional flows. However, currently there is only

MPTCP that is defined as a standard transport protocol in RFC.

As mentioned above, to design a practical and efficient solution for big data

multipath transmission, the following three issues should be taken into consideration.

1)

Traffic distribution: A routing decision without the consideration of traffic
distribution leads to inefficient utilization in the overall network. To support
a large number of MPTCP traffic flows, how to design multiple paths for the
flows based on the existing network resources and background traffic
should be concerned.

Complexity of the routing algorithm: For multipath transmission using
MPTCP, the number of messages to the controller will increase according
to the number of negotiating messages that are generated by subflows. The
processing time of those messages depends on the complexity of the
routing algorithm. High complexity leads to a lot of waiting states of
incoming traffic at the controller. To manipulate a large amount of the
messages, the complexity of the routing algorithm needs to be considered.
Practicality with OpenFlow protocol: The OpenFlow protocol has been
designed as a standard to provide a secure communication between the
controller and the data-plane devices. Currently, some network-related
metrics used in [24-27] such as the remaining bandwidth and delay cannot
be directly provided by the OpenFlow messages. To obtain those metrics,
a lot of flow-rule tracking mechanisms for heterogeneous traffic need to be
deployed at the controller. These mechanisms induce high complexity and

a lot of polling messages in the control plane.

In previous works, those solutions were focused on how to optimize the

performance of the routing algorithm only. Most of them do not consider the

practicality with the OpenFlow protocol. This is a main issue that needs to be
considered when we deploy a routing algorithm in a real environment. More discussion
can be found in Section 2.2.2 and the comparison between our proposed framework
and the previous works is shown in TABLE 6.

In this dissertation, we propose a new practical framework using SDN for big
data transfer applications. In our framework, the MPTCP serves as the primary
multipath transmission protocol. It is utilized among endpoints within distributed data
storage systems. All subflows will be manipulated by our SDN controller. To address
three aforementioned issues, our framework contains three modules including
Multipath Transmission Manager, Multipath Topology Manager and OpenfFlow-Stats
Analyzer.

First, to detect the background traffic, our OpenFlow-Stats Analyzer gathers the
statistics obtained from the OpenFlow messages and then estimates the resource
usage on every node and every link. Based on this information, Multipath Topology
Manager creates an OpenFlow-Stats graph that will be used by Multipath Transmission
Manager for traffic distribution. Multipath Transmission Manager is the main module
to manipulate incoming subflows and assign paths for the subflows.

Second, to reduce the complexity of the routing decision, our Multipath
Topology Manager performs a topology-pruning technique. The mechanism of
topology pruning will be operated in the background process at the controller. Based
on the OpenFlow-Stats graph, links that are associated with the highly-utilized ports
will be temporarily removed from the original topology graph. The resulting graph will
then be used in order to select paths for subflows. This helps reduce the complexity
of the routing decision.

Third, instead of using the remaining bandwidth which requires the complicated
flow-rule tracking mechanisms, our Openflow-Stats Analyzer uses the information of
port usage at every switch. Such information can be easily provided by the standard
OpenFlow protocol. Then, our OpenFlow-Stats Analyzer will determine the level of
port utilization and inform our Multipath Topology Manager about highly utilized ports.
After that, our Multipath Topology Manager will find links associated with the highly-

utilized ports and then remove them from the original graph.

Our framework has been evaluated by the well-known network emulator
called Mininet [36]. The SDN controller is implemented based on ONOS controller [37].
According to our experiments, the results showed that our proposed framework
significantly outperforms the traditional routing with disjoint paths in terms of
throughput and completion time. In addition to MPTCP, the results showed that our
proposed framework can work efficiently and compatible with other multipath

transport protocols such as MPQUIC [33].

1.1 Design Goals
The goals are set as guidelines for our design and development. The desirable
properties are traffic distribution, low complexity, and practicality with the standard

control protocol. The details of properties are mentioned as following explanations.

® Traffic distribution: According to SDN capabilities, our framework should
efficiently distribute all Big Data traffic throughout the whole network based

on the existing network resources and background traffic.

® | ow complexity: Our framework has to reduce any routing complexities in
the SDN controller as much as possible. Our framework should also
minimize the number of probing messages that are utilized for gathering

global information from SDN switches.

® Practicality with OpenFlow protocol: Our framework should operate well
using OpenFlow protocol over the Internet environment that the network

links are frequently filled with unstable and heterogenous traffic.

1.2 Scope and Assumption
The scope of this dissertation is limited to the followings:
® This dissertation considers improving the performance of Big Data transfer
application that relies on a distributed data storage system over the Internet

environment.

® |n terms of data type, the proposed framework is designed to support batch

data only.

® The proposed framework focused on using the standard protocols in both
data plane and control planes.
® |n the data plane, multipath TCP is mainly evaluated for Big Data transfer

among data storage servers.

® |n the control plane, OpenFlow 1.0 and 1.3 is mainly utilized for controlling
OpenFlow-enabled devices. Other SDN solutions is not concern in this

dissertation.

® |n order to reduce the complexity of multipath routing algorithm, the
proposed controller separates the routing tasks from the routing algorithm

into three proposed modules.
® The complexity of topology pruning is supposed to be O(1).

® The tasks that are separated from the routing algorithm are designed to be

process in background at the controller.

® |n order to evaluate a link quality, the proposed controller is relied on the

port-stats of OpenFlow-enabled devices.

® |n order to evaluate the proposed framework, the environment of SDN

environment is simulated by using Mininet emulator.

® The data size for evaluating the proposed controller is generated by iPerf

tool.

® The issue on node/link failures is not taken into consideration in this

dissertation.

1.3 Summary of Contributions

Our contribution in this article is fourfold. First, we proposed a new multipath
transmission framework using SDN for big data transfer applications. This is used as a
guideline to boost the performance of the networking component in a distributed data
storage system. Second, we proposed a new practical OpenFlow controller to extract
and manipulate subflows of the MPTCP protocol. The controller consists of three
modules as follows. (1) Multipath Transmission Manager module is the main module

to process incoming subflows and make a routing decision based on the OpenFlow-

Stats graph. (2) Multipath Topology Manager module is responsible for maintenance
the OpenFlow-Stats graph based on the information that is received by the OpenFlow-
Stats Analyzer module. (3) OpenFlow-Stats Analyzer module is responsible for
collecting port statistics on each switch and determining the level of port utilization
associated with each link. Third, we proposed a new OpenFlow-Stats routing algorithm.
The algorithm with our pruning technique can provide a disjoint path to a subflow with
low congestion level and low complexity. Fourth, we proposed a new OpenFlow-Stats
monitoring algorithm. The algorithm is designed to be processed in the background at
the controller. The output of the algorithm will be sent to the Multipath Topology
Manager to update the OpenFlow-Stats graph. This process can reduce the complexity

at the routing decision and also provide a traffic distribution.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. The next chapter describes
background knowledge to understand the emerging networking architecture and how
does it work in practice. This chapter also includes the literature review that contribute
to this dissertation. Chapter 3 explains the traditional data-transfer approach and our
proposed multipath transmission framework including our proposed controller. In
Chapter 4, we evaluate the performance of our proposed framework compared with
the previous solutions. Finally, Chapter 5 concludes the dissertation and discussion for

further research.

CHAPTER 2

Background Knowledge, Related Work, and Motivation
2.1 Background Knowledge
2.1.1 Software-Defined Networking

Software-Defined Networking (SDN) is a new networking paradigm which
manage network elements in a centralized fashion using software. Basically, SDN
architecture is completely different from the traditional networking architecture. The
control plane is physically separated from the data plane. The existing complex
functions in data plane elements are replaced by simple forwarding functions with rule
tables. Each incoming traffic flow is manipulated by the table rules. SDN controller(s)
is/are responsible for creating the table rules based on its routing decisions. Figure 1
illustrates a comparison between the traditional networking architecture and SDN
architecture. From the left to the right, the embedded control including Middleboxes
are migrated to the SDN controller. Each complex function (e.g., routing algorithm,
Firewall) is transformed to a network control application running on top of the
controller. The existing control space of forwarding devices is replaced by simple
forwarding functions with programmable tables. According to the Open Networking
Foundation (ONF), an SDN-driven community, OpenFlow protocol is defined as a
standard control protocol which is used for communication between the forwarding

devices and the controller.

10

E==S SDN Controller ' Middlebox (e.g. Firewall)
E Forwarding device with G Forwarding device with
decoupled control :X: embedded control ngtv:arle
ontro

Traditional Network Software-Defined Network
(with distributed control and middleboxes) (with decoupled control)

Figsure 1 Comparison of the traditional network architecture and Software-Defined

Networking [32].

Similarly, to the traditional networking, SDN can be depicted as a composition
of different layers, as shown in Figure 2. These layers are the management plane, the
control plane, and the data plane. From the left to the right, the controller represents
a network operating system in the control plane. Each network control application
(e.g., routing, access control, load balancer) represents an application in the
management plane. As previously mentioned, the decoupling of the control plane and
the data plane induce several advantages. For example, it becomes easier to develop
and deploy a new networking feature, a network control application can take the
global network information, it become easier to integrate different network control

applications, and etc.

11

Management plane Network Applications Network Applications

Programming Languages —

Routing
Access
Control
Load
balancer

Net App 02 NetApp »

Language-based Virtualization

<%
NZ
L Network Operating

Control plane

Northbound Interface

System (NOS) and
Network Hypervisors

Network Operating System

Data plane

oo

(a) (b) (c)

Southbound Interface

Network Infrastructure

(uonenwis 3 Sunsa] ‘uidsngaq ‘

[]
[)
[Network Hypervisor]
()
|]

Figure 2 Software-Defined Networking in (a) planes, (b) layers, and (c) system
design architecture [31].

2.1.2 Controller Platform

In general, SDN controller consists of three interfaces or APIs as shown in Figure

® Northbound interface: This interface is used for communication between
network control applications and the controller. Technically, the
programming language and the instruction set for developing applications
depend on the controller software. According to the discussion in survey
papers [30, 31], the REST API is the most popular programming interface
that is widely supported among the controller software.

® Southbound interface: This interface is used for communication between
the controller and forwarding devices. This interface involves in the low-
level instruction set that are used for programming data plane elements.
According to ONF, OpenFlow is defined as a standard southbound protocol
in SDN.

® [ast-West bound interface: In cases of multiple-domain or multiple-
controller scenarios, each domain/controller can use this interface in order
to share their control plane to others based on network policy and
agreement. This interface is also used for communication between the

controller and external servers. For example, a developer who need to

12

integrate his/her applications with a network control application, he/she

can use this interface to send a specific request to the controller.

App I App I App App I App I App
Application Layer Application Layer
Northbound ’—
Interface
Controller K Em;wm Bo""d Controller
nterface
’ ‘ /
- Southbound }
. Interface

. A

Figure 3 Application programming interfaces (APIs) of SDN controller [38].

2.1.3 OpenFlow Protocol

The OpenFlow protocol is a standard control protocol which is designed for
supporting the centralized management in SDN. The protocol defines messaging
mechanisms between controller and switches including structures of flow rules. Figure
4 demonstrates OpenFlow architecture. The forwarding devices, OpenFlow-enabled
switches contain flow tables and OpenFlow client. The OpenFlow client is responsible
for communication with the OpenFlow controller through the secure channel. The
flow tables are used to process incoming packets. Typically, the flow entries consist
of three following fields: (1) Match field, used to match incoming packets (2) Action
field, used to handle matching packets and (3) Statistics field, used to collect statistics

13

for matching flow such as number of received packets, number of received bytes,

duration, and etc.

CONTROLLER

OpenFlow Protocol

OPENFLOW CLIENT

OPENFLOW
FLOW TABLE SWITCH
RULE ACTIONS STATISTICS
— PORT PORT PORT
1 2 N

IP src/dst , MAC src/dst,
Transport Src/Dst, VLAN ...

2

Forward to port(s)

Madify header fields
Drop

Forward to the controller

Packets, Bytes, Duration

Figure 4 OpenFlow architecture [32].

Since March 2008, several versions of OpenFlow specification have been

released such as 0.2.0, 0.8.9, 1.0.0, 1.3.0, 1.5.0, and etc. Some of them are now

deprecated. However, the popular OpenFlow versions which are wildly deployed is

1.0.0 and 1.3.0. The current commercial OpenFlow-enable switches and open-source

SDN controller software support at least version 1.0.0 and 1.3.0. In general, an

OpenFlow specification consists of the requirements of OpenFlow switch, the

definitions of Switch-to-Controller message, and the definitions of Controller-to-Switch

message. In the Figure 5 demonstrates OpenFlow specification version 1.0.0 [39] and

1.3.0 [40].

14

5Y

OpenFlow
Protocol i
Lus® . 'v OpenFlow Protocol
.
&’ Controller ¥ ,
|
Secure Group
Channel : Table
EEEEEEEEEEES 1
Flow Flow Flow
Table Table Table
Pipeline
OpenFlow Switch OpenFlow Switch

(@ (b)
Figure 5 OpenFlow specification (a) version1.0.0 [39] (b) version 1.3.0 [40].

The requirements of version 1.0.0 of OpenFlow switch consists of Secure
Channel and one Flow Table but in case of version 1.3.0, there are multiple Flow table
and one Group Table. The Flow Table will be modified by SDN controller via OpenFlow
protocol over the Secure Channel. In addition, the version 1.3.0 supports Pipeline
matching of multiple Flow Table. This provides for flexibility and Scalability in practice.
However, the common specifications of message types such as Controller-Switch and
Asynchronous message, Symmetric message between two versions are almost the

same. Thus, the following explanation, it will be focused on the version 1.0.0 only.

2.1.4 OpenFlow Specification (Based on Version 1.0.0)
2.1.4.1 Flow Table
The Flow Table of OpenFlow switch is represented to forwarding rules. An
incoming packet will be processed by these rules. A flow table entry consists of three

components: Header Fields, Counters, and Actions followed by Table 1.

Table 1 Flow table entry.

HEADER FIELD COUNTERS ACTIONS

® Header Fields to match against packets.

15

This field is compared with the content of packet headers which are
coming to a switch port. Each entry contains a specific value, or any which
matches any values. The Field in OpenFlow 12-tuple are listed in Table 2
and the details of each field are described in Table 3.

Table 2 Match field of flow table entry.

1P TCP/UDP | TCP/UDP
TOS SRC DST
BITS PORT PORT

INGRESS | ETHER | ETHER | ETHER | VLAN VLAN 1P 1P 1P
PORT SRC DST TYPE D PRIORITY | SRC | DST | PROTOCOL

Table 3 Field lengths and the way they must be applied to flow entries.

Field Bits When Applicable Notes
Ingress Port | (Implementation | All packets Numerical representation
dependent) of incoming port, starting at

1.

Ethernet a8 AWl packets on

source enabled ports

address

Ethernet 38 AWl packets on

destination enabled ports

address

Ethernet 16 Al packets on | An OpenFlow switch is

type enabled ports required to match the type
in both standard Ethernet
and 802.2 with a SNAP
header and OUI of
0x000000. The special
value of OxO5FF is used to
match all 802.3 packets
without SNAP headers.

16

VLAN id 12 Al packets of
Ethernet type
0x8100
VLAN 3 Al packets of | VLAN PCP field
priority Ethernet type
0x8100
IP source 32 AWl IP and ARP | Can be subnet masked
address packets
P 32 AWl IP and ARP | Can be subnet masked
destination packets
address
IP protocol 8 ALl IP and IP over | Only the lower 8 bits of the
Ethernet, ARP | ARP opcode are used
packets
IP ToS bits 6 All IP packets Specify as 8-bit value and
place ToS in upper 6 bits.
Transport 16 AWl TCP, UDP, and | Only lower 8 bits used for
source port ICMP packets ICMP Type
/ ICMP Type
Transport 16 AWl TCP, UDP, and | Only lower 8 bits used for
destination ICMP packets ICMP Code
port / ICMP
Code

® Counters to update for matching packet.

Counters are statistic values of packet matching which are maintained

in terms of per-table, per-flow, per-port, and per-queue. A counter value is

wrapped around with no overflow indicator. The Table 4 shows that

required list of counters for use in statistic messages.

Table 4 Required list of counters for use in statistics messages.

Counter Bits
Per Table
Active Entries 32
Packet Lookups 64
Packet Matches 64
Per Flow
Received Packets 64
Received Bytes 64
Duration (seconds) 32
Duration (nanoseconds) 32
Per Port
Received Packets 64
Transmitted Packets 64
Received Bytes 64
Transmitted Bytes 64
Receive Drops 64
Transmit Drops 64
Receive Errors 64
Transmit Errors 64
Receive Frame Alignment Errors 64
Receive Overrun Errors 64
Receive CRC Errors 64
Collisions 64
Per Queue
Transmit Packets 64
Transmit Bytes 64
Transmit Overrun Errors 64

17

18

® Actions to apply for matching packets.

Each Flow Table entry can be associated with zero or more actions to
handle matching packets. The actions of OpenFlow switches can be divided
by two types.

1) Required Action

B ALL: Send incoming packet out all interfaces excluding the
incoming interface.

® CONTROLLER: Encapsulate and sent incoming packet to
controller.

® LOCAL: Send incoming packet to local networking stack of
switch.

® TABLE: Perform actions in flow table for packet-out
message.

® IN_PORT: Send incoming packet out the input interface

2) Optional Action:

® NORMAL: Process incoming packet based on the traditional
switch forwarding such as traditional L2, VLAN, and L3
processing.

® FLOOD: Flood incoming packet along minimum spanning

tree.

2.1.4.2 OpenFlow Message

Message types of OpenFlow protocol consists of three types. First, Controller-

to-Switch messages which is initiated by a controller for management and inspection.

Second, Asynchronous messages is initiated by switches for network event notification

and switch state changing. Final, Symmetric messages which is initiated by either a

switch or a controller.

® Example of structures of Controller-to-Switch message
Read State Messages are used for collecting statistics from a switch.

Several statistic levels that can be collected by this message type such as

19

Individual Flow Statistics, Table Statistics, Port Statistics, Queue Statistics,

and etc.

® Fxample of structures of Asynchronous message
Packet-In Message is used for sending a packet which does not match

any Flow Table Entries in a OpenFlow switch.

2.2 Related Work
2.2.1 Multipath Transfer Technologies over the Traditional Networking
In the traditional networking, the previous multipath transfer technologies can

be categorized into three groups as follows.

® Multipath transfer at the network layer: Many routing protocols are
allowed to use multipath via Equal Cost Multipath Protocol (ECMP) [41].
When a router has multiple destinations with same cost, the protocol will
use one of them to provide a load balancing based on computing a hash
function over packet headers with a selected transfer path. However, the
technique leads to some drawbacks such as no aggregated capacity,

uneven load balancing due to difference between big flow and small flow.

® Multipath transfer at the transport layer: Multipath TCP (MPTCP) [28] is
an extension of Transmission Control Protocol (TCP) [42] which allows an
application process to transfer any datagrams with multiple sockets over
one or more network interfaces. Figure 6 illustrates MPTCP architecture.
MPTCP is processed within Kernel space. The path manager is responsible
for scheduling the incoming data stream to multiple subflows using TCP.
MP_CAPABLE option will be included for establishing the Multipath TCP
connection, if the receiver side also supports this protocol, it replies to the
sender with MP_CAPABLE option. This is normal process of the traditional
TCP protocol to establish their connection. Otherwise, it will use the
traditional TCP instead. After the first TCP flow connection setup, MPTCP
will use MP_JOIN option to create more subflows using Fullmesh approach.

For example, an PC host which consists of two difference IP addresses with

20

difference subnets to connect the internet, and the destination server also
consists of two difference address. The possible subflows that are initiated
by MPTCP protocol is four TCP subflows. Figure 7 demonstrates an example
of MPTCP establishment. In addition to MPTCP, Concurrent Multipath
Transmission for SCTP (CMT-SCTP) [43] proposed in the literature. Although,
CMT-SCTP can support multipath transmission using multiple network
interfaces, its performance relied on the combination of source/destination
IP that are chosen. Whereas MPTCP creates a fullmesh of possible paths

among available address.

Application User Space
Multipath TCP
Kernel Space

—(Path Manager)—
O o

TCP TCP

IP IP

Figure 6 MPTCP architecture.

21

Host A Host B

Address A1 Address A2 Address B1

SYN + MP_CAPABLE]

g
»

SYN/ACK +§MP_CAPABLE : MPTCP Connection

L GREEEEE SRR

Establishment

ACK + MP_CAPABLE

ADD_ADDR;(Address A2) L

Address

ADD_ADDR jAddress B2) Advertisement

At

SYN + MP_JOIN -

SYN/ACK + MP_JOIN New Subflow

Creation

B NREREELY RECECPPPRPR

ACK + MP_JOIN

Figure 7 MPTCP establishment.

Multipath transfer at the application layer: Some applications support
for multipath transferring which are implemented not only commercial
software such as GridFTP [44] for high-speed data transfer, Internet
Download Manager (IDM) but also several open-source web browsers which
create the parallel TCP connections to increase the download speed of
web content. Multipath QUIC (MPQUIC) [33] and Multiflow QUIC (MFQUIC)
[34]. MPQUIC is an extension of QUIC protocol. It enables a QUIC connection
to spread data over multiple network interface. Figure 8 illustrates MPQUIC
architecture. According to the QUIC design, MPQUIC is also processed within
User space. The path manager is responsible for scheduling multiple data
stream to multiple subflows using UDP. MFQUIC is a variant of QUIC
protocol that is aware of network asymmetries. It focuses on using multiple

unidirectional flows instead of bidirectional flows as shown in Figure 9.

22

Application @ Stream
JL Jt JL Jd_L subflow
MPQUIC
[QUIC User Space
< JbF JIF

Path Manager)—'
L IL s

UbP UDP

Kernel Space

IP IP

Figure 8 MPQUIC architecture.

P 2 >
0
IP) \
S — Q
féonnection A Encryption Keys

NEW CONNECTION ID
STREAM

Receiving Uniflow 0
Uniflow Connection ID y

Packet Number Space p 4-tuple Y | [Packet Number Space n

Figure 9 MFQUIC architecture [34].

We summarize the previous multipath technologies over the traditional
networking in Table 5. GridFTP and Parallel Connections can provide high speed data
transfer with low resource consumption. However, using those techniques induces
unfairness and unfriendliness to other traffic in the network. Whereas Multipath QUIC

and Multiflow QUIC are fair and friendly to other due to QUIC’s congestion control.

23

However, they suffer from high resource consumption. This is because the encryption
process that belong to QUIC mechanism is frequently executed on every packet and
every subflow. CMT-SCTP and MPTCP do not suffer from the consumption issue.
Moreover, both protocols are fair and friendly to other traffic as same as the QUIC-
based protocols. However, currently there is only MPTCP that is defined as a standard
transport protocol in RFC. Thus, in this dissertation, MPTCP represent a prototype
technology for multipath data transfer that is mainly used to design and develop our

proposed framework.

24

[82] dDL1 yredmnpyy

[€p] dLDOS-LWD

[v€] 2INO Moy MNIN

[€€] DIND Yredmny

X | X | X[X|>S

SIX XIS S

dJ1 1°9neled

X

XIX IS SIS |S

\¢

XIX IS IS S>>

[v¥] d1d4P1D

D4y Ul 10203014
jlodsuel] piepuels

e se paulaq

SMO)H Dljjel] I9Y3O 0}
Apual4 pue Jeq ag

uopduwnsuo)

22JN0SaY MO

asn

1BIDJoWWO)-UON

yoeouddy
lajsues] yyedmnyy

‘SUPYIOMIBU)OUORIPD.) 2y} JdA0 sanbiuyda} 4afsub.y yiodipnw fo uosuodwod ¢ 2)qo)

25

2.2.2 Multipath Transfer Approaches Using MPTCP over the Software-Defined
Networking.

According to the benefits of MPTCP and SDN, many researches have been
proposed to use MPTCP over SDN for big data transfer, which can be categorized into
two groups.

The first group has focused on the data center environment. Due to the
characteristics such as full access control and high path-diversity, most solutions aim
to increase the network utilization. In [14-16], the available bandwidth was the primary
parameter which was considered by routing algorithms. The authors in [17] applied the
number of active flows on each link to define the path cost against the link capacity.
Exploiting path diversity, the authors in [18] proposed to modify the path manager of
MPTCP for using multiple subflows per IP-address pair. The authors in [19-21] focused
on how to find the appropriate number of subflow creations based on the flow
demand and network conditions.

The second group has focused on the Internet environment in general. To avoid
the shared-bottleneck problem, a multipath OpenFlow controller [22-27] has been
proposed.

Multiflow [22] was proposed to manipulate the transmission paths for MPTCP
subflows in disjoint fashion as shown in Figure 10. The topology-pruning technique is
applied to the Dijkstra algorithm. When an MPTCP endpoint negotiates to add a new
subflow, the links that have been utilized by the previous subflow will be removed
from the original topology. Then, the resulting topology will be used for the routing
algorithm to select the shortest path for the new subflow. This makes two subflows
of the same MPTCP connection use two different and disjoint paths. However, when
there is a new incoming connection, the original topology will be used again at the
starting point of the algorithm without consideration of paths that the current traffic
flows are using. As a result, it is most likely that all traffic flows will eventually share

the same paths, leading to inefficient network utilization in the overall network.

26

MULTIFLOW |
=1
forwarding

OpenFlow
Controller (POX)

Control Plane

7T

Figure 10 The system architecture of Multiflow [22].

SMOC [23], a simple multipath OpenFlow controller, was proposed to find the
transmission paths for an MPTCP connection. Figure 11 illustrates the SMOC
architecture. SMOC will use the NetworkX package, an open-source tool from
NetworkX project [45], to find the set of all possible paths between a sender and a
receiver. The first shortest path is defined to be a primary path with the highest priority.
Other paths will be prioritized by the number of edges shared with the primary path
and the path length in ascending. Then, SMOC will assign the set to each subflow to
such a connection. However, using the routing algorithm, the controller needs to
calculate all possible paths and prioritize those paths for every connection, leading to
high complexity at the controller. This also increases the waiting time of incoming

traffic.

27

subflow
SMocC management
path calculation
_________________________________ yms=smsmememeocoeonoe
overseer topology | spanning tree
pOX poX core

Figsure 11 The system architecture of SMOC [23].

A heuristic algorithm for multipath routing was proposed [24]. The algorithm
focused on how to find the optimal set of k disjoint paths from the candidate disjoint
paths by maximizing the minimum bottleneck bandwidth path. The algorithm consists
of two phases. First phase, the modifying Dijkstra algorithm is applied to find the set
of candidate disjoint paths. Second phase, a greedy algorithm will be applied to select
the optimal set based on the algorithm’s objective. However, in practice, to support
the algorithm with the remaining bandwidth information, it is difficult and complicated
to do by using the standard OpenFlow protocol. Moreover, the Additive Increase
Multiplicative Decrease (AIMD) algorithm in the standard transport protocol can lead
to the variance issue on the bandwidth usage in the network.

SFO [25], a subflow optimizer for MPTCP, was proposed. In SFO architecture as
shown in Figure 12, the controller will estimate the demand of an MPTCP session in
terms of data rate requirement based on the type of traffic. Then, the routing algorithm
will use the information to calculate the optimal k disjoint paths based on the network
condition. This algorithm focuses on how to select the k disjoint path with the lowest
total remaining bandwidth that is still satisfied to the data-rate requirement. However,
the performance of the routing algorithm depends on the accuracy of the remaining-
bandwidth measurement. In practice, this measurement metric is varied all the time
and difficult to be precise. A lot of flow-rule tracking mechanisms must be deployed

at the controller. This increases complexity to the system.

28

SFO
(K) Pat
Path_Finder [—>»] ONS_Estimator _&sl Path_Assigner I
x x
K : | ons MPTCP state Path Info.
Topology Info : BW,Delay Info.: 2 Info. %

OpenFlow

Topology Module Monitoring Module Controller

Packet_In. Packet_out, Flow_rules

MPTCP
Client

MPTCP
Server

Figsure 12 The system architecture of SFO [25].

S-MPTCP [26], a cross-layer technique between SDN controller and MPTCP
protocol stack was proposed. The system design as shown in Figure 13 focused on
efficient resource exploration and fair resource allocations among existing MPTCP
connections. The system consists of three phases. In the first phase, the controller
explores the bandwidth resource according to network statistics. Then, in the second
phase, the optimal route set will be calculated and deployed at the data plane.
Finally, in the last phase, the controller will calculate the expected throughputs for
each connection and send those values to the corresponding hosts in order to set
parameters for the congestion control mechanism. In practice, to obtain the network
metric, several flow-rule tracking mechanisms need to be deployed. This leads to high

complexity and a lot of polling messages in the control plane.

29

SDN Controller
Expected Throughput Subflow Routes
expected tthQhP.Ui Computation Decision
s _ _ MPTCP
e
/ / ' Network Graph Connection
Packet-Out [B Manager
Message _ o _
(Specified MPTCP Topology Discovery Statistics Collection
Option)
4> Control Layer
Infrastructure Layer
Maonitoring
MPTCP Protocol Stack)
\'\
\ U
"7 subflow Backup Decision \ /. .
Set h ~
Path \ e
» e | I — 0@
Management s
MPTCP Subflow « T . .
Parser Set / ./ .
Congestion /
¥ » Congestion / \
Control / Senders . . Receivers
» Window /
! .,".’.’
Subflow Expected Throughput ;’
|

Figure 13 The system architecture of S-MPTCP [26].

GCLR [27], an GNN-based Cross Layer Optimization for MPTCP, was proposed.
Figure 14 illustrates the system architecture of GCLR. The solution focuses on how to
predict the expected throughput of an MPTCP connection using the GNN model. Three
network-related metrics including link delay, remaining bandwidth, and packet loss
rate are considered in the GNN model. The output of the model can be used as a
guidance to adjust the congestion window at the endpoint. However, to collect those
network-related metrics, both flow-rule and link tracking mechanisms must be

deployed. This leads to a huge polling traffic at the control plane.

30

4 Network) 4 SDN Controller)

» Topology » Routing

Explorer Generator

<§ Decision GNN
[Maker Model

- J AN
Trainer

Figure 14 The system architecture of GCLR [27].

2.3 Motivation

We summarize the related works mentioned above in Table 6. As can be seen,
although Multiflow [22] and SMOC [23] are practical with the OpenFlow protocol, they
do not consider the traffic distribution issue. Additionally, SMOC [23] suffers from
extremely-high complexity with a factorial function. The heuristic algorithm [24], SFO
[25], S-MPTCP [26], and GCLR [27] consider the issue of traffic distribution and attempt
to optimize the remaining bandwidth. However, their complexities are very high.
Moreover, they are not practical with the standard OpenFlow protocol.

In this dissertation, our proposed framework focuses on how to provide a
practical multipath transmission scheme for big data transfer applications using MPTCP.
The traffic distribution, the complexity of the routing algorithm, and the practicality of
the OpenFlow protocol are mainly considered for the design of our multipath
OpenFlow controller. The OpenFlow statistics from the OpenFlow messages will be
collected and processed in order to evaluate the level of congestion. In addition, the
topology-pruning technique will be used in our routing algorithm to reduce the time
complexity of path calculation. Three following approaches are implemented to
compare the performance with our algorithm. First, the traditional routing is
represented as the existing approach on the Internet. Second, the traditional routing
with disjoint paths is represented as the solutions taken in [22, 23]. Third, the k-max

disjoint routing is represented as a group of solutions [24-27] that require the network-

31

related metrics. It focuses on selecting the first k paths that have the maximum

remaining bandwidth among candidate disjoint paths.

32

'syabd 2)qIspaf Jo saquunu = Y ‘saspa Jo dequunu = 3 ‘Sa2134aA Jo Jequinu = A {UOIIDIOU AYX)dLIOD,

Jdomawel4
N so1sIye)s Uod Wno) doy Slwiyiesur (N30 3)0 N
pasodold InQ
SSOT 1¥ded ‘ARja Ul
X SReipenp NO N [£2] 4109
‘Yipmpueg sujuieway “QuUNnod) doH
X Upimpueg sulureway ‘uno) doy dneipenp (3,N0 N [92] dDLdW-S
X Yipimpueg sujueusy quno) doy dljeipenp (N3O A + DAHNO N [s2] O4S
X Upimpueg sulureway ‘puno) doy dneipenp (A + (N8O 3O N [Y2] wyplody disunaH
N $95p3 paieys JO "ON Juno) doH eloloe (iNO X [£2] DOWS
N 3uno) do Slwuesun (N3O 3O X [2Z] moymniy
10203014 MoquadO
uoloun4 *WY3IoSy suianoy uonnqguisia Ja)043u0)
piepueis ay3 WIYIOS)Y Sul3Noy JO si9jsawieled
Aixedwo) Jo Ayxeydwio) dyjel) MmoY4uado yredimniy

Yyum Ayneosioeld

‘SUIYIOMIBN PaULfag-240MLJOS Ul UOISIDaP SUiINOI Pasuq-4D1 i JO uosuoduwo) 9 2)qo |

33

CHAPTER 3
An SDN-Coordinated Multipath Transmission Steering Framework for Big

Data Transfer Application
3.1 Definition of Big Data in This Dissertation
The definition of Big Data in our proposed framework is mentioned as the
following explanations.
® Big Data refers to extremely large, fast growing, and complex data sets that
it is difficult to manage and process using commonly used software tools.
® |n terms of data type, the proposed framework is designed for transferring
data with batch type only.
® The batch data is a set of data that has been stored or collected over a

period of time.

® |n terms of data size, the proposed framework can be performed with no

limitation of data size.

® The data arrival must be a single batch file. It must not be Poisson

distribution.

3.2 Framework Overview

Data transmission is a fundamental mechanism of distributed storage systems
which is frequently used for data synchronization and data pulling. These big data
traffic flows can be transferred across Local Area Networks (LANs) or Wide Area
Networks (WANs). Basically, the architecture of the systems consists of three
components: data servers, data clients, and network devices. Figure 15 is an example
of a distributed data storage system over the Internet. The data servers are located in
several domains or regions. A particular computing software is used in order to control
and manage all data servers. The network interface that is attached to each server is
used to communicate with each other and transfer data. All data traffic flows that are

generated within the system will be steered by network routers through the Internet.

34
Region Two

o]

Data Server

Region One

o

Data Client

Region Three

o]

Data Server

a Router

B—— Network Interface

Figure 15 Distributed data storage system in the traditional network.

In practice, the data servers consist of one main server and multiple sub-
servers. The main server is represented by a master node which is responsible for
managing and controlling accessibility of the system. The others are represented by
slave nodes which collect and protect the data based on storage policy. Thus, a data
request needs to be processed by the master node before data loading. In terms of
big data transmission, it can be divided into two major cases. The former is a
transmission that is performed based on a specific request. The latter is a transmission
that is related to the mechanisms of data exchanging due to the maintenance process.
However, to find and create a transfer path for both use cases, it relies on the control
logic inside the network routers. In the Internet case, the shortest path is always
provided to all traffic flows.

In our framework, we apply SDN to manage and control those data traffic flows
in the network. The existing network routers are replaced by OpenFlow switches which
are controlled by the OpenFlow controller. Figure 16 illustrates an example of our
framework with full-range deployment. Each OpenFlow switch is responsible for
handling incoming data traffic based on OpenFlow rules within flow tables. The
OpenFlow controller is responsible for making a routing decision and creating the rules

for the OpenFlow switches. All control messages that are generated by the controller

35

and switches are encrypted by TLS over TCP connection and sent through the secure
channel. In practice, the channel can be deployed by two types: out-of-band and in-
band. For the first type, each OpenFlow switch allocates a dedicated interface to
communicate with the controller. All control messages will be transferred by this
interface only. For the second type, each OpenFlow switch uses the existing interfaces
that are used by the data traffic to transfer the control messages. Each endpoint of
data transmission such as data server and data client are attached with multiple

network interfaces and configured to support the network multihoming and MPTCP

protocol.
OpenFlow Controller(s)
& ‘ Region Two
n‘ “ 1
s gl
Region One g : <JE:> 2 .

Yol

Data Clien

<:ut> R L g Data Server
R N A LR
.L P e ' AS:1002/52

AN : 552
S5 1) : : &>
S5 As 1001 2 ' . hd

‘-,_Intégrnet

95> = _
ol OpenFlow Switch .‘AS 1003 55> Region Three

.i_ ith Network Interface

...... Secure Channel I—2I -

Data Server

Figure 16 Distributed data storage system in our proposed framework with full-

range deployment.

In practice, shrinking the applicability of the proposed solution to selected

scenarios, the adoption of VXLAN tunnels is useful to avoid the full-range deployment

36

of OpenFlow-enabled networking devices. Figure 17 illustrates an example of our
proposed framework being applied to an overlay network. OpenFlow switches can be
put between data servers/clients and the gateway routers. These switches are
operated by our controller and can communicate to each other through VXLAN
tunnels. For more technical details, please see Appendix A. Thus, our proposed
framework can also be applied to any overlay network or private cloud WAN, for

instance, Google’s B4 [46].

..

...

Q - 5)
c h¢ .

o 2 "::> c‘gb
c <4 o
2| gl-E g [}
& S1 g

>

o Q

I-l—l 5

— - =]

=

=)

®

OpenFlow-enabled device
@ Gateway Router gé‘! orp Open vSwitch —— VXLAN Tunnel

Figure 17 Distributed data storage system in our proposed framework being

applied to an overlay network

Data transmission consists of two phases: data request phase and data transfer
phase. Figure 18 demonstrates a sequence diagram of data request and data transfer
phases. In the data request phase, the data client generates a request message with
metadata and sends it to the main data server through SDN (Step 1). The OpenFlow
switch that is directly connected to the client creates a Packet In message and sends

it to the OpenFlow controller. This mechanism will be automatically processed by

37

OpenFlow protocol when a switch cannot find a matching rule for an incoming traffic
(Step 2). The controller extracts the message to make a routing decision and create
OpenFlow rules to the related switches (Step 3). Then the request message is
transferred to the main server (Step 4). When the main server receives the request
message, it assigns the appropriate sub-server that depends on the storage policy to
transfer the data (Step 5). A notification message and response message will be sent

to the sub-server and the data client, respectively (Step 6 - Step 7).

Data OpenFlow OpenFlow Main Local
Client Switch Controller Data Server Data Server
iRequest Message (1) = i i —
: Packet_In (2) :
Flow Rules (3)
Request Message (4) Data Server { | Data Request Phase
: '—‘ Discovery ®)
‘ EResponse Message (7);] Notification (6} ,
i SYN + MP_CAPABLE (8) =

Packet_In (9) H

Flow Rules (11) :|> Subflow Iden'Eific:;ltion (10)
< Path Calculation: i | Data Transfer Phase:
: Path Record ! E First Subflow
SYN/ACK +MP_CAPABLE (13)

ACK + MP_CAPABLE (14)

H SYN +
i MP_CAPABLE (12)

{ SYN + MP_JOIN(15) i —

Packet_In (1 6)=:| Subflow Identifi¢ation

Flow Rules (18) Path Calculation: 17) H
_ Path Record i i | Data Transfer Phase:

Second Subflow

{ SYN + MP_JOIN (19)
H =

SYN/ACK +iMP_JOIN (20)
ACK +MP_JOIN (21)

Figure 18 Sequential diagram of data request and data transfer in our proposed

framework.

In the data transfer phase, the MPTCP at the sub-server starts to negotiate with
the data client for connection establishment. Based on the RFC 8684, the MP_CAPABLE
options will be used in order to create the first subflow. Other subflows will use
MP_JOIN options as shown in Figure 18. Firstly, the SYN packet with MP_CAPABLE
option will be sent to SDN (Step 8). The OpenFlow switch that is directly connected

38

to the sub-server generates a Packet In message to the controller (Step 9). The
controller calculates the transfer path and installs the OpenFlow rules to related
switches (Step 10 - Step 11). The details of the routing algorithm are explained in
Section 3.4. When the SYN packet arrives at the data client, the SYN/ACK packet with
MP_CAPABLE will be sent back to the sub-server (Step 12 - Step 13). Then the server
responds with the ACK packet and starts to transfer data respectively (Step 14).

In terms of additional subflow creation, the sub-server will negotiate with the
same mechanism as the first subflow but the MP_JOIN options will be used instead
(Step 15 - Step 21). In our framework, the MPTCP options that are extracted during the

negotiation mechanism will be recorded and considered for routing decisions.

3.3 Practical Issues on Using MPTCP Protocol and OpenFlow Protocol
This section, we explain the key mechanisms of Multipath TCP (MPTCP)

protocol and OpenFlow protocol including their practicality issues.

3.3.1 Issue on MPTCP Protocol

MPTCP is a standard transport protocol for multipath transmission that supports
the network multihoming at end hosts. Based on the RFC 8684, the MPTCP is designed
to be compatible with the traditional TCP. The control mechanisms of MPTCP will be
processed within the option space of the transport header. Each TCP connection that
is generated by MPTCP is called subflow. The number of subflow creation per one
connection is relied on the parameter setting of the path manager [47]. For example,
with the default setting of the Fullmesh parameter, the maximum number of subflows
that will be negotiated is the number of all available pairs of network addresses
between two end hosts.

Figure 19 demonstrates a sequence diagram of MPTCP establishment. Each
subflow will be created by using a traditional three-way handshake, the same as the
TCP establishment. During the handshaking, the control messages will be exchanged
between two end hosts by appending MPTCP options to the existing transport header.
For example, to create the first subflow, the MP_CAPABLE option is appended to the
transport header of the SYN, SYNACK, and ACK packets. After that, the ADD_ADDR

39

messages will be sent for advertising the additional IP addresses to the path manager
of MPTCP. Then, Host A starts to transfer the data. To generate a new subflow, Host A
negotiates with the three-way handshake again but the MP_JOIN options will be used

instead. Then, the new subflow starts to transfer the data.

Host A Host B
Address A1 Address A2 Address B1
SYN + MP_CAPABLE m
‘ SYN/ACK +§MP_CAPABLE : MPTCP Connection

Establishment

ACK + MP_CAPABLE

ADD_ADDR;(Address A2) i

Address

ADD_ADDR {Address B2) Advertisement

L

SYN + MP_JOIN -

SYN/ACK + MP_JOIN New Subflow

Creation

B CREREEEY EEPEPPEPEPR

N

ACK + MP_JOIN

Figure 19 MPTCP connection establishment and subflow creation mechanisms.

Although MPTCP can improve the throughput of data transfer by using multiple
subflows simultaneously, serving a lot of traffic flows without global knowledge
considerations of network topology and link conditions leads to two problems: the
shared-bottleneck problem and the low-network-utilization problem. This is because
the existing routing approach normally provides only the shortest path for all incoming
traffic flows. Moreover, in the traditional network architecture, it is not possible to
collect the global knowledge or route the traffic based on the flow requirement. To
deal with such problems, our framework uses the capabilities of SDN and the
OpenFlow protocol to recognize the MPTCP traffic and select the transfer paths for

subflows based on network topology and switch-port statistics.

40

3.3.2 Issue on OpenFlow Protocol

The OpenFlow protocol is a standard control protocol which is designed for
supporting the centralized management in SDN. The protocol defines messaging
mechanisms between controller and switches including structures of flow rules. Figure
20 demonstrates an example of flow rule structure. The match fields are responsible
for the conditions of that rule which is flexibly defined based on the headers in L2, L3
or L4. This enhances the capabilities of routing decisions. For example, a packet can
be steered by b5-tuple packet header (Protocol, source/destination IPs, and

source/destination ports) instead of depending upon the destination IP address only.

Flow Table Entry

m Priority | Counters | Instructions | Timeouts | Cookie

! Basic Match Fields ~—_
] g
I \\\
Switch | VLAN | VLAN | Src Dst | Eth | Src | Dst Tos!| prot Src Dst
Port ID PCP | MAC | MAC | Type | IP IP Port | Port
N _A_ A J
YT N Y
L2 L3 L4

Figure 20 Example of flow rule structure with basic match fields.

In addition, the protocol provides the capability to collect network information
such as network topology, link status, port statistics, and etc. Although the protocol
can provide the flexibility of rule creation, the range of matching rules are limited.
There are only a few existing header fields that can be used to match the rules on
switches. In other words, the protocol does not support a new end-to-end protocol
such as MPTCP. To cope with the OpenFlow limitations with MPTCP traffic, those
MPTCP packets will be extracted and recorded in our controller. This information helps

to identify and manage all MPTCP subflows in the network.

41

3.4 Our Framework Design

In this section, the design of our proposed framework and functionalities are
explained in detail. Our framework is designed to facilitate big data transmission
applications in multipath fashion using MPTCP. This is our unique transfer technique
that we proposed for using in distributed data storage systems. All incoming MPTCP
traffic flows can be detected and managed by our controller. The proposed framework
consists of three new functional modules which can be deployed on the top of the
existing controller. Figure 21 demonstrates our proposed modules running on the
ONOS controller. As can be seen, there are three new modules in our framework:
Multipath Transmission Manager, Multipath Topology Manager and OpenfFlow-Stats
Analyzer. These modules can be deployed as network control applications on top of
any SDN controllers. In order to communicate with the controller, there are six
fundamental functions needed in our framework as follows.

1) Packet In(): This function is used to deliver a Packet In message to our
framework. The function is automatically executed by the controller when
it receives a new Packet In message from switches.

2) Get Topology(): This function is used to discover the current network
topology.

3) Topology Change(): This function is used to acquire the notification of
network failure in terms of nodes and links.

4) Get Port Stats(): This function is used to collect the statistics of switches’
ports.

5) Push_Flow Rules(): This function is used to assign flow rules to switches.

6) Get Host Location(): This function is used to acquire the location

information of hosts in the network topology.

Multipath Transmission Manager

1) Packet_In ()| Subflow
| Identification

.

Create (
Update (

Find_Path ()

OpenFlow-Stats Routing

(6) Get_Host_Location (

Query ()
Update ()

MPTCP Table

Flow-Rule Builder

(5) Push_Flow_Rules ()

Query_MPTCP_Table ()

A

|

Create ()
Graph Update ()

Update ()

Multipath Topology Manager

Notify

Graph

Creation 'U‘

Pruning

Topology Graph

(2) Get_Topology ()
\ 4

A

(3) Topology Change ()

Get_Topology_Graph ()

Link_Status ()

OpenFlow-Stats Analyzer

Link Utilization ~ |Call ()] Timer
Calculation) Manager

(4) Get_Port_Stats ()

A4 \ 4

a2

ONOS API

ONOS Controller

OpenFlow Protocol

I OpenFlow-Enabled Devices

|

|

Open vSwitches]

Figure 21 Our proposed functional modules over the ONOS controller.

3.4.1 Multipath Transmission Manager

This module is the main functional module which is used for network

management. The module consists of two tasks.

The first task is to process incoming packets. This is related to the extraction

and identification of packet header. When this module receives a new packet by the

Packet_In() function, it extracts the MPTCP options from the packet header. The MPTCP

options including 5-tuple header and TCP flag will be recorded in our MPTCP table.

Table 7 shows the structure of our MPTCP table. The table is primarily used to identify

an incoming MPTCP flow and perform the topology pruning in Multipath Topology

Manager. As can be seen, there are three identifiers for each subflow that consists of

end-to-end communication ID, connection ID, and subflow No.

43

............ feeeemccmccnmcrsncenasmesadecncomnacnccmcnanadaccacananaas

ey | 31avdvO dN i NAS

| P m m . ON | @l @luojesunwwog
MoH | OVAH (uedoL Aoy odALJOLAN BEId dOL SAINLG 4o ane uoposuuos pus-oi-pu3

2)Q01 DLW JO 21ndNuS /)90

aq

In MPTCP establishment, SYN and SYN/ACK packets will be recorded in the
MPTCP table. Similarly to the traditional TCP approach, MPTCP uses the same 5-tuple
header in connection establishment phase, datagram transfer phase, and connection
closing phase. When forwarding rules for SYN packet and SYN/ACK packet are installed,
the following packets are processed by the same rules. In addition, the necessary
information of MPTCP protocol such as key, token and etc. is recorded to identify
subflows among MPTCP connections.

The second task is related to path calculation and rule installation. The path
calculation is the most important mechanism which can affect the performance of
MPTCP traffic. It can be seen that in [22-27], the performance of MPTCP can be
significantly improved by using disjoint paths and considering the remaining bandwidth.
However, in practice, it is difficult and complicated to measure the remaining
bandwidth correctly. This is because the network links can be filled with unstable and
heterogeneous traffic. A lot of flow-rule tracking mechanisms need to be deployed
and processed in real-time on every node and link. This increases complexity to the
system.

To mitigate the above-mentioned problem, in this dissertation, we propose a
new OpenFlow-Stats routing algorithm. In our routing decision, the port stats of
switches is considered as a link quality instead of the remaining bandwidth. This is our
unique design that makes our routing algorithm compatible with the OpenFlow
protocol. Our OpenFlow-Stats Analyzer is responsible for collecting the port statistics
and evaluating the level of port utilization. Our Multipath Topology Manager uses the
information of the level of port utilization to create an OpenFlow-Stats graph which is
an important input of our OpenFlow-Stats routing algorithm. The details of evaluating
the link quality are explained in Section 3.4.3. In order to reduce the complexity of
disjoint-path consideration, the topology-pruning technique is applied. Specifically, the
links that have been utilized by the previous subflows will be removed from the
topology graph. The resulting graph will then be used by Dijkstra’s algorithm [48], a
well-known shortest-path algorithm, to select a disjoint path. Our Multipath Topology
Manager uses the routes which are recorded in the MPTCP table to perform the

topology pruning.

a5

The pseudocode for OpenFlow-Stats routing algorithm is shown in Figure 22.
The idea is to use the resulting OpenFlow-Stats graph to find the shortest path first.
However, if there is no available shortest path in the OpenFlow-Stats graph, the original
graph will be used instead. The complexity of Algorithm 1 is O(E log (V) where E is the

number of edges and V is the number of vertices in the graph.

Algorithm 1: OpenFlow-Stats Routing Algorithm
Input: Switchl S/,
Switch2 S2,
MPTCP Option MP_opt,
MPTCP Table MP_table,
OpenFlow-Stats Graph OS graph,
Original Graph O_graph
Output: Path Path

1 If MP optis MP_CAPABLE do:

2 Path < Dijkstra (S1, S2, OS_graph)

3 If Path = O do:

4: Path < Dijkstra (S1, S2, O_graph)
3: end if

6 end if

7 If MP _opt is MP_JOIN do:

8: [set < get used links (MP_opt, MP table)
9: new_graph < prune (/_set, OS graph)
10: Path < Dijkstra (S1, S2, new_graph)
11: If Path = O do:

12; new_graph < prune (I_set, O_graph)
13: Path < Dijkstra (S1, S2, new_graph)
14: If Path = O do:

1S: Path < Dijkstra (S1, S2, O graph)
16: end if

17: end if

18: end if

15 update (Path, MP opt, MP table)

20: return Path

Figure 22 Pseudocode of our OpenFlow-Stats routing algorithm.

3.4.2 Multipath Topology Manager
This functional module is designed for graph maintenance. The information of

network topology from the existing network discovery module of the controller will

a6

be collected and transformed by using the Get Topology() and Topology Change()
function. To create the OpenFlow-Stats graph, this module uses the information of
port utilization which is analyzed by our OpenFlow-Stats Analyzer in order to
determine the status of network links. If the port stats is attached to Disable label, the
links will be removed from the OpenFlow-Stats graph. Otherwise, the link will be
added to the graph. In addition, this module is responsible for performing topology
pruning based on the demand of OpenFlow-Stats routing in the Multipath
Transmission Manager.

The pseudocode for Topology-Pruning algorithm is shown in Figure 23. The
complexity of Algorithm 2 is O(E) where E is the number of edges that relates to the

SWifCh/D.

Algorithm 2: Topology-Pruning Algorithm

Input: Link Set with Switch ID Lswiwnp,
Topology Graph G

Output: Topology Graph G

l: for each / in Lswiwcnip do:
2: G « remove (/, G)

3. end for

4. return G

Figure 23 Pseudocode of our topology-pruning algorithm.

3.4.3 OpenFlow-Stats Analyzer

In our framework, the level of port utilization is utilized to specify the link
quality. In order to evaluate a link quality, this module is responsible for collecting the
port statistics of switches, evaluating the level of port utilization, and notifying the
Multipath Topology Manager.

To collect the statistics, Openflow-Stats Analyzer creates a set of probing
timers. One timer is attached to one switch. When a timer expires, this module
executes the Get Port_Stats() function to the controller. Smaller probing interval can

provide higher accuracy of port-stats information. However, it can lead to higher

a7

complexity at the control plane. In practice, this value is set based on the network
administrator and the network policy.

To evaluate the level of port utilization, in this dissertation, we propose a new
OpenFlow-Stats monitoring algorithm. In our monitoring algorithm, the status of each
port is estimated based on the number of bytes which are processed within a probing
interval. If the value is above a certain threshold, the port is attached to Disable label.
Otherwise, the port is attached to Enable label.

The pseudocode for OpenFlow-Stats monitoring algorithm is shown in Figure
24. The complexity of Algorithm 3 is O(E) where E is the number of edges that relates

to the Switchyp.

Algorithm 3: OpenFlow-Stats Monitoring Algorithm
Input: Switch ID Switch_id,
Output: Port Set of Switch ID Psyiren i
I: Pswitch 10 € O
for each p € Switch id do:
A €« calculate delta bytes (p)
If A> Threshold do:
status < {Disable}
else do:
status < {Enable}
end if

Psiten 0 € Pswiren 0 U {p, status)

end for
return Pswich 1p

SS9 RN LDN

i

Figure 24 Pseudocode of our OpenFlow-Stats monitoring algorithm.

a8

CHAPTER 4

Performance Evaluation
4.1 Experimental Setup
4.1.1 Simulation Configuration

To evaluate performance of our proposed framework, we implemented it on
the Mininet v2.3.0 [36], a popular network emulator. OpenFlow switches, OpenFlow
links, and hosts were created using this emulator. All switches were controlled by a
remote controller. We used the Open Network Operating System (ONOS v1.13) [37] as
the controller in our framework for discovering and configuring the OpenFlow switches.
The discovery process and the switch-configuration process relied on the standard
versions of OpenFlow protocol (Version 1.3). Our proposed modules described in
Section 3.4 were implemented as a new control application running on top of the
controller. For MPTCP implementation, we created two network interfaces and
installed the MPTCP v0.93 [47] for every host. AL MPTCP parameters were set according
to the default setting.

4.1.2 Simulation Scenario
The performance evaluation was done using two network topologies as follows.
The first topology is a multipath topology as illustrated in Figure 25. This
topology represents the future Internet infrastructure where several completely-

disjoint paths exist among Internet Service Providers (ISPs).

a9

Figure 25 Multipath topology.

The second topology is the COST239 topology as depicted in Figure 26. This
topology is an optical-WAN topology developed in Europe [49]. It is one of the most

popular topologies used in this research field.

Copenhagen

Berlin

710

Vienna

‘»

Figure 26 COSTZ239 topology.

50

In all scenarios, each MPTCP connection randomly started to transfer data with
a given data size. The TCPDUMP [50] was used to collect experimental results for each
connection. For the multipath topology (Figure 25), the senders (S) at the left side
were transferring data to the receivers (R) at the right side of the topology. For the
COST239 topology (Figure 26), the senders and the corresponding receivers were
randomly selected from all possible pairs with two-hop distance. In our simulation, we
varied the number of MPTCP connections to represent different levels of network
congestion and varied the size of data to represent different levels of traffic load per

connection. Unless stated otherwise, our parameter settings are shown in Table 8.

Table 8 Experimental parameter settings.

Multipath Topology

Link capacity 10 Mbps.

Link delay 0 ms.
COST239 Topology

Link capacity 10 Mbps.

Link delay

Estimated by link distance
[49] in ms.

Controller Parameters

Maximum number of subflows per connection | 2
Interval of flow-stats polling 1s.
Interval of port-stats polling 1s.

Threshold of link pruning

80% of link capacity

Simulation Parameters

Traffic injection interval in multipath topology

Randomly set in the range of

1 to 80 s.

Traffic injection interval in COST239 topology

Randomly set in the range of

1 to 40 s.

Number of connections

1 to 20 connections

51

File size 50MB, 100MB, 200MB, 500MB,
and 1GB
Number of runs 5

Routing parameter for the k-max disjoint routing

Number of candidate paths 3

4.1.3 Benchmark and Metric

For

4.1.3.1 Benchmark

performance comparison, we implemented the following routing

algorithms. Each of them was implemented as a new control application running on

the well-known SDN controller (ONOS).

1)

2)

3)

4)

Traditional Routing

This represents the shortest-path IP-based routing which is being used in
today’s Internet such as OSPF.

Traditional Routing with Disjoint Paths

This represents the multipath OpenFlow controllers in [22, 23]. Each
subflow of the same connection was assigned to use a disjoint path.
k-Max Disjoint Routing

This represents the multipath OpenFlow controllers in [24-27]. The routing
decision focused on selecting the first k disjoint paths that provide the
highest bottleneck bandwidth from a set of candidate disjoint paths.
OpenFlow-Stats Routing

This represents our proposed routing algorithm. The OpenFlow-port stats
were utilized to evaluate the congestion level of all switches’ ports. The
routing decision focused on selecting disjoint paths with the lowest

congestion level.

52

4.1.3.2 Metric

1) Average Throughput per Connection

2)

3)

Average throughput per connection (TP) is measured as an average of all
connections’ throughput using Equation (1), where n is a number of MPTCP

connections, k is a number of subflows, and TPsyp 1w IS @ throughput of

n k
ZETPsubflowi‘j (D

i=1 j=1

subflow.

TP =

3=

CDF of Completion Time
CDF of completion time is measured as a distribution of completion time
of data transfer as in Equation (2), where x is a completion time. x,, is the

largest possible value of X that is less than or equal to x.

F(x) = PX < x) = Z P(X = x;) 2)
k=1

Overhead in the Control Plane

Overhead in the control plane is measured as a total cost of message
polling for collecting the OpenFlow stats in bytes using Equation (3), where
Tyort is a period of port-stats polling, Ty is a period of flow-stats polling,
i is a packet type including request and reply, n is a number of switches, t
is a simulation time, w; . is a packet size of type i at time k, and x is an

enabled flag of the polling mechanism for switch j.

n t
X . X .
Overhead = Z ZZ <Wi,k <7zjort,] + 7]:low,]>> (3)

i € {reqrep} j=1 k=1 port Flow
;forT (= R’W€Z+,x6{0’1}

53

4.2 Experimental Results
4.2.1 Scenario 1: Vary the Number of MPTCP Connections
In order to evaluate the impact of different levels of big data traffic, we varied
the number of MPTCP connections from 1 to 20 connections. Figure 27 and Figure 28
show the results of average throughput per connection in the multipath topology and

those in the COST239 topology, respectively.

24 T T T T T

[Traditional Routing
I Traditional Routing with Disjoint Paths | _
I «-Max Disjoint Routing

[OpenFlow-Stats Routing

N
N
T

N
o
T
|

[
oo
T
|

[
(=2}
T

[N
EN
T

i
o
T

Average Throughput per Connection (Mbps)
o N]
I T

| ‘ ‘ | |

o ||||||IIII|||||
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

Number of MPTCP Connections (N)

Figure 27 Average throughput per connection in multipath topology (File size =

200MB).

54

24 T T T T T

[Traditional Routing
2 |- I Traditional Routing with Disjoint Paths | _
I «-Max Disjoint Routing

[openFlow-Stats Routing

= =
o ©
I I
| |

[uN
EN
T

iy
o
T

Average Throughput per Connection (Mbps)
o N
I T

4,
2,
0
11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10
Number of MPTCP Connections (N)

Figure 28 Average throughput per connection in COST239 topology (File size =
200MB).

As can be seen from Figure 27, when the number of MPTCP connections is 1
connection, our proposed OpenFlow-Stats routing scheme achieves relatively the
same throughput as other disjoint-path routing schemes do. However, as the number
of MPTCP connections increases, the throughput improvement of our proposed
scheme increases much higher than other routing schemes do. This is because as the
number of MPTCP connections increases, the level of network congestion increases
and in such a high-congestion situation our proposed scheme can distribute traffic
throughout the whole network. This leads to greater throughput achievement
compared to other schemes. Specifically, as described in Section 3.4, our OpenFlow-
Stats graph is used to illustrate the congestion level of all links in the network. The
links carrying high amounts of background traffic will be pruned from the topology and
will not be used for the incoming MPTCP connections. This helps the incoming MPTCP
connections to avoid the congested links and then utilize other available paths instead.
Therefore, the efficient network-resource utilization can be achieved. The k-max
disjoint routing achieves less throughput than our scheme because its performance is

limited based on the predefined number of candidate disjoint paths. Increasing this

55

number will help it perform better but will make the algorithm complexity even higher.
The traditional routing schemes perform worse than our proposed scheme and the k-
max disjoint routing because they use the shortest-path algorithm and cannot deal
with the traffic-distribution issue.

As can be seen in Figure 28, the experimental results reveal the same trend as
previously discussed in Figure 27. However, the throughput improvement of our
proposed scheme in the COST239 topology is lower than that in the multipath
topology. This is because the number of possible disjoint paths for each source-
destination pair in the COST239 topology is less than that in the multipath topology.

In order to see the details of throughput variation among all connections in our
experiments, Figure 29 (a) and (b) show an example of throughput variation at N = 15
connections on the multipath topology and that on the COST239 topology,
respectively. The simulation runs that provide the lowest and the highest standard

deviation are selected and the margin of error with 95% confidence interval are shown.

24 T 24 T

[Traditional Routing [Traditional Routing

- [Traditional Routing with Disjoint Paths |- - | Traditional Routing with Disjoint Paths
Il k-Max Disjoint Routing I k-Max Disjoint Routing

+ | [OpenFlow-Stats Routing - | [OpenFlow-Stats Routing 8

N
N

N
N

N
o
N
o

-
[ee]
T
-
(o]
T
I

B e
N
T :
= e
N (o))
T .

Average Throughput per Connection (Mbps)
Ny

Average Throughput per Connection (Mbps)
[
N

10 I~ 10 |-

8 8l

6 61

4r 4F

2F ol

0 0)

Lowest-SD Case Highest-SD Case Lowest-SD Case Highest-SD Case
Simulation Run Simulation Run
(a) (b)

Figure 29 Throughput variation at N = 15 connections with 95% confidence

interval. (a) multipath topology. (b) COST239 topology.

56

As can be seen from Figure 29 (a), the traditional routing scheme provides the
smallest margin but the lowest throughput. The other routing schemes provide
relatively the same margin. However, the results show that our proposed scheme
outperforms other routing schemes in terms of throughput significantly.

As can be seen from Figure 29 (b), every routing scheme provides relatively the
same margin. This is because the number of possible disjoint paths for each source-
destination pair in the COST239 topology is less than that in the multipath topology.

Table 9 and Table 10 show average flow completion time in the multipath

topology and that in the COST239 topology, respectively.

57

(%89) | (%£9) | (%Y9) | (%09) | (%85) | (%T9) | (%69) | (%V9) | (%09) | (%83) | (%65) | (%99) | (%29) | (%65) | (%SS) | (%99) | (%vS) | (%SS) | (%19) | (%6b)

1el Gel JA% 4% [47 6C1 121 et 8¢l [44} 911 91 0ct 801 601 c01 40 G6 b6 16 W
(%19) | (%09) | (%19) | (%S9) | (%99) | (%8%) | (%99) | (%&9) | (%LS) | (%99) | (%99) | (%S9) | (%T9) | (%99) | (%19) | (%0%) | (%09) | (%eS) | (%09) | (%8b)

A 122 051 8yl 6el i cel 0¢tT i 8¢l 14 1el 14 911 611 G11 011 001 L6 z6 (¢
(%19) | (%09) | (%6b) | (%bh) | (%Ib) | (%Lb) | (%89) | (%59) | (%0S) | (%9b) | (%9V) | (%6b) | (%29) | (%09) | (%eh) | (%h) | (%62) | (%lb) | (%LS) | (%8D)

861 081 G61 181 981 9.1 p91 841 €91 84T 4! 61 3 cet 8¢l cel Gel 111 GT1 z6 (€

444 S9¢ G8¢ bee L1¢ 3% L6¢ £4e 8% ¢6C G8¢ ¢6C (XA 99¢ ove cee 1244 ¢ic 9vc 6.1 ¢

A50)0d0) 671500 Ul SUiINOJ)OUORIPDIY Yum paioduiod juawaroidw Jo asbjuadiad pup (spuodas uj) awiy uoia)dwod 0T 2)90)

(%96) | (%96) | (%96) | (%96) | (%S6) | (%56) | (%V6) | (%b6) | (%Y6) | (%L6) | (%L6) | (%26) | (%16) | (%06) | (%88) | (%L8) | (%£8) | (%08) | (%69) | (%S5)

170 801 L01 P07 011 101 101 v01 40 v01 101 0] S0T €01 P01 16 S0T v6 €6 €6 W
(%96) | (%V6) | (%V6) | (%V6) | (%b6) | (%26) | (%L6) | (%6) | (%26) | (%C6) | (%16) | (%68) | (%68) | (%88) | (%98) | (%S8) | (%6L) | (%8L) | (%L9) | (%bS)

122 6v1 1 8vl 1el 051 ovt w1 eel 14 LZ1 w1 eel Tel 6C1 811 Gl v01 L6 S6 (¢
(%99) | (%99) | (%99) | (%99) | (%99) | (%59) | (%S99) | (%S59) | (%99) | (%99) | (%V9) | (%S9) | (%V9) | (%59) | (%¥9) | (%£9) | (%¥9) | (%59) | (%19) | (%L9)

8v01 116 Ge6 188 9¢8 G508 8v. 89 G529 089 059 L1y 9% 18¢ Tee 06¢ 44 G591 811 L6 4
980¢ | T1¢6C | V9LC | €¢9¢ | TLpC | bOeC | 8¢l¢ | ¢00C | L1981 | 80L1 | 0951 | TOWT | ¢S¢1 | €601 £e6 6. [44% 1247 ¢0¢ L0¢ (T

“A50)0d0) yodi)nw Ul SuNO. YouoRIPL.IY YuMm paisoduwiod Juawaroidwi Jo asbjuadiad pup (spuodas ul) awiy uoia)dwo) ¢ 2)qQo 1

58

As can be seen in Table 9, the average time spent by MPTCP connections to
finish the data transfer using our proposed OpenFlow-Stats routing is shorter than that
using the k-max disjoint routing, the traditional routing with disjoint paths and the
traditional routing. Specifically, our proposed scheme provides up to 96% of
improvement compared with the traditional routing scheme. The k-max disjoint routing
provides up to 95% of improvement compared with the traditional routing scheme.
The traditional routing with disjoint paths provides up to 66% of improvement
compared with the traditional routing scheme. Although our proposed scheme and
the k-max disjoint routing provide a similar value of % improvement, our proposed
scheme still outperforms the k-max routing in terms of the algorithm complexity as
shown in Table 6 and the overhead at the control plane as will be shown and
discussed in this section (Scenario 3).

As can be seen in Table 10, the experimental results reveal the same trend as
previously discussed in Table 9. The average time spent by MPTCP connections to
finish the data transfer using our proposed OpenFlow-Stats routing is shorter than that
using the k-max disjoint routing, the traditional routing with disjoint paths and the
traditional routing. Specifically, our proposed scheme provides up to 68% of
improvement compared with the traditional routing scheme. The k-max disjoint routing
provides up to 64% of improvement compared with the traditional routing scheme.
The traditional routing with disjoint paths provides up to 51% of improvement
compared with the traditional routing scheme. It can be seen that the average time
spent in the COST239 topology is lower than that in the multipath topology. This is
because the traffic distribution in the COST239 topology is better than that in the
multipath topology.

In order to see the detail of completion time for all MPTCP connections, Figure
30 and Figure 31 are plotted to show Cumulative Distribution Function (CDF) of flow
completion time of all connections in the multipath topology and that in the COST239
topology, respectively.

Empirical CDF
T

Cumulative Distribution Function

Traditional Routing
—— Traditional Routing with Disjoint Paths | |
—+&— k-Max Disjoint Routing
—©— OpenFlow-Stats Routing
| | I I

0 10 20 30 40 50 60
Completion Time (min)

Figure 30 CDF of completion time in multipath topology (File size = 200MB).

Cumulative Distribution Function

Traditional Routing
—— Traditional Routing with Disjoint Paths | |
—+&— k-Max Disjoint Routing

% ~—©— OpenFlow-Stats Routing
0 g | | | | I I I
0 2 4 6 8 10 12 14 16 18

Completion Time (min)

Figure 31 CDF of completion time in COST239 topology (File size = 200MB).

59

4.2.2 Scenario 2: Vary the Size of Data

In order to evaluate the impact of different levels of big data traffic, we varied
the data size that each MPTCP connection needs to transfer. The number of MPTCP
connections is fixed at 10 connections. Figure 32 and Figure 33 show the results of

average throughput per connection in the multipath topology and those in the

COST239 topology, respectively.

24

= [N N
o] [ee] o N

[N
N

=
o

Average Throughput per Connection (Mbps)
=
[ee) N

Figure

200
File Size (MBytes)

[] Traditional Routing

I Traditional Routing with Disjoint Paths

I k-Max Disjoint Routing
[OpenFlow-Stats Routing

500

1000

32 Average throughput per connection in multipath topology (N = 10

connections).

61

N
~

\
[Traditional Routing
I Traditional Routing with Disjoint Paths ||
I k-Max Disjoint Routing

[OpenFlow-Stats Routing

N
N
T

N
o
T
1

= =
(<)) [ee)
T T

=
N
T

[
o
T

Average Throughput per Connection (Mbps)
© N
T T

200 500 1000
File Size (MBytes)

Figure 33 Average throughput per connection in COST239 topology (N = 10

connections).

According to Figure 32, as the data size increases, the average throughput of all
routing schemes decreases. This is because the congestion level in the network
increases. Nevertheless, our proposed OpenFlow-Stats routing scheme still achieves
higher average throughput than other disjoint-path routing schemes do. This is because
as the data size increases, the level of network congestion increases and in such a
high-congestion situation our proposed scheme can distribute traffic throughout the
whole network. This leads to greater throughput achievement compared to other
schemes. Specifically, as described in Section 3.4, our OpenFlow-Stats graph is used to
depict the congestion level of all links in the network. The links carrying high amounts
of background traffic will be pruned from the topology and will not be used for the
incoming MPTCP connections. This helps the traffic be distributed throughout the
whole network. Therefore, the efficient network-resource utilization can be achieved.
The k-max disjoint routing achieves less throughput than our scheme because its

performance is limited based on the predefined number of candidate disjoint paths.

62

Increasing this number will help it perform better but will make the algorithm
complexity even higher. The traditional routing schemes perform worse than our
proposed scheme and the k-max disjoint routing because they use the shortest-path
algorithm and cannot deal with the traffic-distribution issue.

According to Figure 33, the experimental results reveal the same trend as
previously discussed in Figure 32. However, the average throughput of all routing
schemes in the COST239 topology is higher than that in the multipath topology. This
is because the number of MPTCP connections is fixed at 10 connections and in the
COST239 topology the number of possible source-destination pairs is much greater
than that in the multipath topolosgy.

In order to see the details of throughput variation in this scenario, Figure 34 (a)
and (b) show an example of throughput variation at File Size = 500 MB on the multipath
topology and that on the COST239 topology, respectively.

24 24

[ITraditional Routing
~ | M Traditional Routing with Disjoint Paths |
I k-Max Disjoint Routing
- | OpenFlow-Stats Routing .

[ITraditional Routing
~ | M Traditional Routing with Disjoint Paths |-
I -Max Disjoint Routing
- | OpenFlow-Stats Routing -

N
N
N
N

N
o
N
o

[y
[ee)
T
=
[ee]
T
I

=R
B [e)]
T .
=
N D
T .
1

Average Throughput per Connection (Mbps)
N

Average Throughput per Connection (Mbps)
-
N

10 10

8r 8r

6r 6r

4 4+

2 2r

0 0

Lowest-SD Case Highest-SD Case Lowest-SD Case Highest-SD Case
Simulation Run Simulation Run
(a) (b)

Figure 34 Throughput variation at file size = 500MB with 95% confidence interval.
(a) multipath topology. (b) COST239 topology.

63

As can be seen from Figure 34 (a), the traditional routing, the traditional routing
with disjoint paths, and the k-max disjoint routing provide a smaller margin than our
proposed scheme. However, our proposed scheme outperforms other routing schemes
in terms of throughput significantly. Our proposed scheme provides the biggest margin
because it can distribute all big-data traffic to the whole network by selecting low-
congested links. This makes each connection utilize different paths, resulting in
different throughput.

As can be seen from Figure 34 (b), every routing scheme provides relatively the
same margin. This is because the number of possible disjoint paths for each source-
destination pair in the COST239 topology is less than that in the multipath topology.

In order to see the detail of completion time for all MPTCP connections, Figure
35 and Figure 36 are plotted to show Cumulative Distribution Function (CDF) of flow
completion time of all connections in the multipath topology and that in the COST239
topology, respectively.

Empirical CDF
T T

. 1GB

500MB

200MB 1

100MB |

Cumulative Distribution Function

Traditional Routing

50MB —¥v— Traditional Routing with Disjoint Paths | _|

—+&— k-Max Disjoint Routing
OpenFlow-Stats Routing

I I I I I I I I I

o)
0 20 40 60 80 100 120 140 160 180 200
Completion Time (min)

Figure 35 CDF of completion time in multipath topology (N = 10 connections).

64

Empirical CDF
N B 17

=2k

1G

o
o
T
|

500MB

e
~
T
|

o
o
T
|

200MB

o
o
T
|

Cumulative Distribution Function

0.4 m
,{ 100MB
03¢ i
=
0.2 i@ B
j Traditional Routing
0.1 & 50MB —¥v— Traditional Routing with Disjoint Paths | _|
R —a— k-Max Disjoint Routing
i OpenFlow-Stats Routing
0 '; | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Completion Time (min)

Figure 36 CDF of completion time in COST239 topology (N = 10 connections).

As can be seen in Figure 35, when the data size is 50 MB, our OpenFlow-Stats
routing scheme provides relatively the same completion time with other schemes.
However, when the data size increases, both the traditional routing scheme and the
traditional routing with disjoint paths suffer from the heavy traffic load much more
than our proposed scheme and the k-max disjoint routing scheme. This is because our
proposed scheme considers the port-stats parameter and the k-max disjoint scheme
considers the remaining bandwidth, making the heavy traffic load be distributed
throughout the whole network. Nevertheless, at the data size of 1 GB, some
connections using our proposed scheme start suffering. This shows the limitation of
our proposed scheme when being used in the condition of extremely heavy traffic
load.

As can be seen in Figure 36, the time spent in the COST239 topology is lower
than that in the multipath topology. This is because the traffic in the COST239 topology
is more distributed than that in the multipath topology. As a result, the possibility of
traffic sharing a path in the COST239 is lower.

4.2.3 Scenario 3: Overhead in the Control Plane

In order to evaluate the overhead in the control plane generated by each
routing scheme, we used TCPDUMP to observe the amount of the OpenFlow messages
between the controller and switches in the Mininet emulator. Figure 37 to Figure 42

show the amount of the OpenFlow messages in the multipath topology and that in

the COST239 topology, respectively.

11

10 -

OpenFlow Messages (bytes)

Figure 37 Overhead in the control plane (multipath topology) for the traditional

%10’
T

Il [Optional] Flow-Stats Messages
[][Optional] Port-Stats Messages 7
I Fundamental OpenFlow Messages

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

routing with disjoint paths.

OpenFlow Messages (bytes)

Figure 38 Overhead in the control plane (multipath topology) for k-Max disjoint

OpenFlow Messages (bytes)

11

10

11

10

%10’
T

Il [Optional] Flow-Stats Messages
[[Optional] Port-Stats Messages 7
Il Fundamental OpenFlow Messages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

routing.

%10’
T

Il [Optional] Flow-Stats Messages
[[Optional] Port-Stats Messages 7
I Fundamental OpenFlow Messages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

66

Figure 39 Overhead in the control plane (multipath topology) for our OpenFlow-

Stats routing.

7
11 x10

Il [Optional] Flow-Stats Messages
10 |1 [Optional] Port-Stats Messages 7
Il Fundamental OpenFlow Messages

OpenFlow Messages (bytes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

Figure 40 Overhead in the control plane (COST239 topology) for the traditional

routing with disjoint paths.

7
11 x10

Il [Optional] Flow-Stats Messages
10 - [[Optional] Port-Stats Messages 7
I Fundamental OpenFlow Messages

OpenFlow Messages (bytes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

Figure 41 Overhead in the control plane (COST239 topology) for k-Max disjoint

routing.

68

7
11 x10

Il [Optional] Flow-Stats Messages
10 -\ [Optional] Port-Stats Messages 7
Il Fundamental OpenFlow Messages

OpenFlow Messages (bytes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections

Figure 42 Overhead in the control plane (COST239 topology) for our OpenFlow-

Stats routing.

Basically, the OpenFlow messages are classified into two categories. The first
one is fundamental messages which are necessary for the basic communication
between the controller and switches. These messages include hello messages, feature
messages, config messages, packet-in messages, packet-out messages, flow mod
messages, etc. The second one is optional messages which are necessary for the
controller to acquire specific statistical information from switches. These messages
include port stats, flow stats, table stats, meter stats, etc.

As can be seen in Figures 37 to Figure 42, each routing scheme generates a
different amount of control-plane overhead. Specifically, as shown in Figures 37 and
40, the traditional routing with disjoint paths needs only the fundamental messages
for operation. As shown in Figures 38 and 41, the k-max disjoint routing requires not
only the fundamental messages, but also port-stats and flow-stats messages for
estimating the remaining bandwidth of available paths. As shown in Figures 39 and 42,
our OpenFlow-Stats routing needs the fundamental messages and port-stats messages

for evaluating level of port utilization.

69

For comparison in the multipath topology, Figure 37, Figure 38, and Figure 39
reveal the results that our OpenFlow-Stats routing generates 42% overhead more than
the traditional routing with disjoint paths. However, our OpenFlow-Stats routing
generates 57% overhead less than the k-max disjoint routing. The k-max disjoint routing
generates a lot more overhead because it needs flow-stats messages, and the amount
of the messages increases proportionally with the number of flow rules.

For comparison in the COST239 topology, Figure 40, Figure 41, and Figure 42
reveal the similar results as discussed in the previous paragraph. Briefly, our OpenFlow-
Stats routing generates 34% overhead more than the traditional routing with disjoint
paths. But our OpenFlow-Stats routing generates 32% overhead less than the k-max

disjoint routing.

4.3 Comparison of Multipath Transport Protocols in Our SDN Environment

In order to compare the performances of multipath transport protocols in our
SDN environment, we implemented the Multipath QUIC (MPQUIC) [33], an extension
to the QUIC protocol [35], and compared its performances with MPTCP. For the
experimental setup, we used the same settings as described in Scenario 1 (Section
4.2.1). Figure 43 shows the results of average throughput per connection of MPQUIC
(Dash-dotted line) and MPTCP (Solid line) for each type of routing scheme.

70

26 I I I
[MPQUIC] Traditional Routing — 3 - [MPQUIC] k-Max Disjoint Routing
24 - [MPTCP] Traditional Routing —H— [MPTCP] k-Max Disjoint Routing q
—\/ - [MPQUIC] Traditional Routing with Disjoint Paths [MPQUIC] OpenFlow-Stats Routing
22 - —5/— [MPTCP] Traditional Routing with Disjoint Paths [MPTCP] OpenFlow-Stats Routing N
207 &/ I

~

=
[e¢]
I

=Y
»
I

-—
— -
- — —_—-——
— - — ="
-
-

H
a
I

—

e
o N
I I

-~
-
~.
-
-
~.
~.

——
-
-~
—~-
-~
—.
—.
—.

Average Throughput per Connection (Mbps)

1 5 10 15 16
Number of Connections (N)

o N Ea D (o]
I

Figure 43 Performance comparison between MPQUIC (Dash-dotted line) and
MPTCP (Solid line).

As can be seen in Figure 43, when the number of connections is 1, the MPQUIC
protocol achieves relatively the same throushput as MPTCP protocol does for all
routing schemes. However, when considering each routing scheme, as the number of
connections increases, MPQUIC can achieve slightly-higher throughput than MPTCP.
Specifically, for the cases of the traditional routing and the traditional routing with
disjoint paths, MPQUIC can outperform MPTCP at every number of connections. This
is because MPQUIC relies on UDP protocol and its congestion control is maintained at
the application level. When the network is congested, MPQUIC can estimate the path
latencies and adjust its congestion windows precisely, whereas MPTCP is suffering from
the multiplicative decrease and slow start. For the case of k-max Disjoint routing and
our proposed OpenFlow-Stats routing, MPQUIC achieves relatively the same
throughput as MPTCP does at every number of connections. This is because the k-max

Disjoint routing focuses on selecting paths that provide the highest available bandwidth

71

and our proposed OpenFlow-Stats routing focuses on selecting paths that provide the
low congestion level based on OpenFlow-Stats graph. This helps both MPQUIC and
MPTCP run on less-congested paths, thus less suffering from network congestion. In
overall, our proposed OpenFlow-Stats routing scheme outperforms other routing
schemes.

In conclusion, as can be seen and discussed above, our proposed routing
scheme outperforms other routing schemes. Furthermore, it can work efficiently and

is compatible with several multipath protocols such as MPQUIC and MPTCP.

72

CHAPTER 5

Conclusion
5.1 Dissertation Summary

In this dissertation, we proposed an SDN-coordinated steering framework for
big data transfer application. The MPTCP protocol is primarily used to transfer the data.
Our framework consists of Multipath Transmission Manager, Multipath Topology
Manager, and OpenFlow-Stats Analyzer. Each module is deployed as a network
control application running on the top of the SDN framework. Our proposed
OpenFlow-Stats routing algorithm performs the topology-pruning technique based on
the switch-port statistics. Specifically, the congestion level of each link will be
evaluated based on the utilization of the associated ports. The topology pruning helps
reduce the system complexity.

Using our framework, the performance of the big data analytic system that
relies on the distributed data storage system can be significantly improved. The results
show that our proposed routing scheme outperforms other previous works in several
aspects in both multipath topology and COST239 topology. It can provide the highest
throughput improvement with low complexity. It can reduce the completion time of
data transfer up to 90% compared with the traditional routing with disjoint paths and
up to 35% compared with the k-max disjoint routing. In addition, it can reduce the
system overhead at the control plane up to 57% in the multipath topology and up to
32% in the COST239 topology. However, we observe the performance degradation of
our proposed routing algorithm in the extremely-high traffic load. This can be improved
by adding mechanisms in order to identify the traffic with high load and avoid the
shared bottleneck among those traffic flows. This is included in our future work.

In addition to OpenFlow, other solutions of opening up the forwarding plane
such as P4 [51] can also benefit from our proposed framework. Specifically, since port
statistics and network topology are basic information generally provided by forwarding
devices, the technique of using port statistics and choosing multiple paths proposed

in this dissertation can be applied.

73

5.2 Cost Analysis of Using the Proposed Framework

This section, we explain the cost of deploying our proposed framework in the
real environment. The details of our cost are explained as follows.

5.2.1 Cost of SDN Deployment

Currently the Internet architecture relies on the network routers. The routing
schemes among Autonomous Systems (ASes) relied on static routing. Thus, if one wants
to implement this framework over the traditional Internet, basically he/she needs to
put OpenFlow switches between the data servers/clients and the gateway routers.
Then, the VXLAN technology can be applied to each switch in order to create the
VXLAN tunnels among the data servers/clients. These tunnels are managed and

controlled as an overlay network by the proposed controller.

5.2.2 Cost of Multipath Configuration at the Endpoint
In order to use the MPTCP protocol, we need to modify the Kernel of the
operating system (OS) of all data servers including data clients. Although MPTCP is
currently defined as a standard multipath transport protocol, most operating systems
have not supported the protocol yet. There are only the Linux-based OSes [47] that
can be manually installed by users. In addition, we need to add more network

interfaces and manually configure them for supporting the network multihoming.

5.2.3 Cost of Modifying the Network Component of Computing Software to
Support Open vSwitch.
In case of cloud-based systems, we need to modify the network component
of the computing software to support the Open vSwitch [52] that is mainly used for

creating OpenFlow switches.

5.2.4 Cost of Maintaining the OpenFlow Controller
In order to control the Big Data traffic, we need to set up a dedicated server or
a cloud server in order to deploy the OpenFlow controller and our proposed modules.
This induces additional cost of maintaining the server and the connections between

OpenFlow controller and OpenFlow switches.

74

5.2.5 Cost of Measuring the Maximum Capacity of Links
In order to set up the threshold of evaluating the link quality, we need to
collect the information about the maximum capacity of links first. In practice, the
maximum capacity depends on the network policy among ASes. Thus, we need to

manually measure the link capacity by using a network tool such as iPerf and NetFlow

among data servers.

5.3 Complexity Analysis of Our OpenFlow-Stats Routing

This section, we explain the complexity of our proposed routing. According to
the pseudocode as shown in Figure 22, the sub-tasks of our OpenFlow-Stats routing
can be divided into two major cases. The first case is a sub-task for processing the first
subflow. The second case is a sub-task for processing the next subflow. Figure 44
illustrates the details of sub-tasks that h;(n), h,(n) are routing functions for the first

subflow and the next subflow respectively.

Algorithm 1: OpenFlow-Stats Routing Algorithm

Input: Switchl 57, \
Switch? 82,
MPTCP Option MP_opr, i) m hafn)
MPTCP Table MP feble. B ST ReETEI e . o B IR IR
OpenFlow-Stats Graph 08 _graph, : MPEAPABLE % —3ca Option Chack == MP_JOIN :
Original Graph O_graph : :
Output: Path Path . H :
1 1§ MP_opt is MP_CAPABLE do: : - : :) :
2 Path + Dijkstra (51, 52, OS_graph) : fifn) | Dijkstra (OS_graph) | : Pr;:;:gffg:;zm gM;r;t::;e) fan) :
3 If Path = @ do: : : : - :
4 Parh < Dijkstra (81, 82, O_graph) H I :
- . : T : : T T :
o N,Tin:- " s 2 path avalablgt o T a path avallabiel :
7: If MP_opiis MP_JOIN do: : : : Y :
8: [_set & get_used_links (MP_opt, MP_table) : No : : :
9: new_graph € prune (I_set, OS_graph) H : : :
10: Paih + Dijkstra (81, 52, new_graph) " fsn) | Dikstra (O_graph) : : | Prune (O_graph, MP_table) faln)
11: If Path = O do: H H : Dijkstra (resulting_graph) :
12: new_graph + prune ({_ser, O_graph) 5 B H
13: Path « Dijkstra (S1, 52, new graph) FTITTYSTOURIEY [P S Y RPN I
14: 1f Path = @ do:
15: Path < Dijkstra (81, 82, O graph)
16: end if
17: end if
18: end if
19: update (Path, MP_opt, MP_table)
20: return Paith J

Figure 44 Complexity analysis of OpenFlow-Stats routing algorithm.

According to our framework design in Section 3.4, the complexity of topology
pruning is O(E) where E is the number of edges. The complexity of Dijkstra’s algorithm
is O(E log (V) [48] where E is the number of edges and V is the number of vertices.

Then, the complexity of OpenFlow-Stats graph can be obtained as follows:

Complexity of Openflow-Stats routing € max(h,(n), h(n))

75

First Subflow (h,(n)) Next Subflow (hy(n))
hi(n) € O(fy(n) + fo(n)) han) € O(fs(n) + fo(n))
hy(n) € O(E log (V) + E log (V) h4n) € O((O(E) + E log (V) + (O(E) + E log (V)
hy(n) € OCE log (V) h4n) € O2O(E) + 2E log (V)
hy(n) = O(E log (V) hon) = O(E log (V)

Thus,
Complexity of OpenFlow-Stats routing € max(O(E log (V)), O(E log (V)
Complexity of OpenFlow-5Stats routing = O(E log (V)

5.4 Discussion on the Congestion Control Algorithms
5.4.1 Impact on Using the Traditional Congestion Control Algorithm

According to the current speed of Internet links, the traditional congestion
controls such as Reno are too slow to fill up the network links due to the Bandwidth-
Delay-Product (BDP) problem [53]. This induces high completion time of a Big Data
transfer among data storage regions. In order to deal with the problem, most operating
systems (OS) have already changed the default congestion control algorithm to CUBIC
and CTCP [54]. This configuration also affects MPTCP because the path manager of
MPTCP relied on the TCP congestion control. Thus, in order to avoid the BDP problem,

we suggest to use the OS default congestion control algorithms in our framework.

5.4.2 Impact on Using the Coupled Congestion Control Algorithm
In order to avoid the unfairness problem between MPTCP and regular TCP, the
coupled congestion controls named Linked Increase Algorithm (LIA) [55] was proposed
for MPTCP, in RFC 6356. The following three goals capture the desirable properties of

a practical multipath congestion control algorithm:
® Goal 1 (Improve Throughput) A multipath flow should perform at least as well
as a single path flow would on the best of the paths available to it.
® Goal 2 (Do no harm) A multipath flow should not take up more capacity from

any of the resources shared by its different paths than if it were a single flow

76

using only one of these paths. This guarantees it will not unduly harm other

flows.

® Goal 3 (Balance congestion) A multipath flow should move as much traffic as

possible off its most congested paths, subject to meeting the first two goals.

In addition to LIA, there are also other coupled congestion control protocols
recently proposed in the literature such as Opportunistic Linked Increase Algorithm
(OLIA) [56], Delay-based Congestion Control for MPTCP (wVegas) [57] and Balanced
Linked Adaptation Congestion Control Algorithm (BALIA) [58]. However, currently there
is only LIA that is defined as a standard coupled congestion control protocol in RFC.

In this dissertation, we also evaluated the performance between CUBIC and LIA
in our framework. Figure 45 (a) and (b) show the results of using the regular congestion
control named CUBIC and the coupled congestion control named LIA. As can be seen
in Figure 45 (a) and (b), the experimental results of using LIA reveal the same trend as
the results of using CUBIC. In addition, the performance of each routing scheme reveals
the same trend as previously discussed in Section 4.2.1. Because, in this dissertation,
we focused on providing a set of disjoint paths for serving a multipath transport
protocol such as MPTCP. The disjoint consideration can benefit both regular congestion
control and coupled congestion control. Thus, the coupled congestion control can

work together with our framework.

nection (Mbps)

S
T

-

S

Average Throughput per Coni
5

Average Throughput per Con
8

o N & o o
o N & o ®

il

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of MPTCP Connections (N) Number of MPTCP Connect tions (N)

(@) (b)
Figure 45 Experimental Results of using (a) CUBIC protocol and (b) LIA protocol.

14

5.5 Discussion on the Real-World Scenario Using OF@TEIN+ Testbed
5.5.1 Experimental Setup

In order to evaluate the proposed framework over the real environment, we
setup a multipath topology as an overlay network over the Open/Federated
Playground for Future Networks (OF@TEIN+) [59], an SDN-Cloud R&D collaboration
among TEIN partners. Figure 46 illustrates our multipath topology which consists of
four nodes: Gwangju Institute of Science and Technology (GIST) in South Korea, Hanoi
University of Science & Technology (HUST) in Vietnam, Chulalongkorn University (CU)
in Thailand, National Cheng Kung University (NCKU) in Taiwan. According to the
architecture of OF@TEIN+ that relied on the OpenStack platform [60] and OpenFlow
networking, we used the Open vSwitch software [52] for installing OpenFlow switches
on the selected sites. In order to create a set of overlay links, the VXLAN tunnels were
applied on each node. GIST and HUST sites were set as a source and a destination
respectively.

As can be seen in Figure 46, our overlay network consists of one shortest path
and two alternative paths between GIST site and HUST site. In our overlay network,
the shortest path has only one-hop distance. The first alternative path has a two-hop
distance (GIST—™CU—HUST). The second alternative path has a two-hop distance
(GISTNCKU—HUST). In order to create a Big Data flow, we created a virtual machine
that represents a data server running on GIST site and another virtual machine that
represents a data client running on HUST site. In this experiment, the data server
transferred a batch of data with 500MB to the data client. For MPTCP implementation,
we created two network interfaces and installed the MPTCP v0.93 [47] on both virtual
machines. All MPTCP parameters were set according to the default setting. Unless

stated otherwise, our parameter settings are shown in Table 11.

Table 11 Experimental parameter settings.

Controller Parameters

Maximum number of subflows per connection 2

Interval of port-stats polling 1s.

78

Threshold of link pruning 80% of link capacity
Simulation Parameters

Number of connections 1 connection

File size 500MB

Number of runs 5

In order to control the multipath topology, we create a virtual machine for
deploying our SDN controller at the GIST site. For performance comparison, we
implemented two routing schemes: the traditional routing and our OpenFlow-Stats

routing.

Beijing North Korea

°
Pyongyang-
0

GIST (Source)

South Korea

Wik Hong Kong
4 s miE

HUST (Destination)
4

Luzon
aaaaaa
Islands

. Vietnam Philippines
Paray

Negros

- Google

Figure 46 Experimental topology over OF@TEIN+ testbed.

As can be seen in Figure 46, the path characteristics can be varied by the real-
world background traffic. Figure 47 illustrates the available bandwidth that was
measured about 1,200 seconds. According to heterogeneous traffic and the network
policies of the Internet, each path suffers a high variation including the bandwidth
shaping. The average bandwidth of the shortest path, the first alternative path, and
the second alternative path are about 36, 19, and 14 Mbps respectively. Figure 48

79

illustrates the results of path latency measurement of the shortest path, the first
alternative path, and the second alternative path respectively. The average of path
latency of the shortest path, the first alternative path, and the second alternative path

are about 67, 321, and 524 milliseconds respectively.

120 T T

T
—Shortest Path (GIST->HUST)
——Alternative Path1 (GIST->CU->HUST)
100 - —Alternative Path2 (GIST->NCKU->HUST)

o]
o

Available Bandwidth (Mbps)
P D
o o

N
o

600 800 1000 1200
Time (s)

Figure 47 Available bandwidth measurement between GIST-South Korea and

HUST-Vietnam.

ubuntu@gistl-vml:~$ ping hustl-2 -c 10
GIST—HUST PING hust1-2 (192.168.125.125) 56(84) bytes of data.

64 bytes from hustl-2 (192.168.125.125): icmp_seq=1 ttl=64 time=67.
64 bytes from hust1-2 (192.168.125.125): icmp_seq=2 ttl=64 time=65.
64 bytes from hust1l-2 (192.168.125.125): icmp_seq=3 ttl=64 time=68.
64 bytes from hust1l-2 (192.168.125.125): icmp_seq=4 ttl=64 time=64.
64 bytes from hustl-2 (192.168.125.125): icmp_seg=5 tt1=64 time=64.
64 bytes from hustl-2 (192.168.125.125): icmp_seg=6 tt1=64 time=77.
64 bytes from hustl-2 (192.168.125.125): icmp_seq=7 ttl=64 time=64.
64 bytes from hustl-2 (192.168.125.125): icmp_seq=8 ttl=64 time=64.
64 bytes from hustl-2 (192.168.125.125): icmp_seq=9 ttl=64 time=69.
64 bytes from hustl-2 (192.168.125.125): icmp_seq=10 tt1=64 time=65.@ ms

NOWONOUOUNS -
3
w

--= hust1-2 ping statistics ---
10 packets transmitted, 1@ received, 0% packet loss, time 9@13ms
rtt min/avg/max/mdev = 64.869/67.256/77.760/3.831 ms

ubuntu@gistl-vml:~$ ping hustl-1 -c 10
GIST—CU—™HUST PING hust1-1 (192.168.115.129) 56(84) bytes of data.

64 bytes from hustl-1 (192.168.115.129): icmp_seq=1 tt1=64 time=343 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=2 ttl=64 time=317 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=3 ttl=64 time=316 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=4 ttl=64 time=317 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=5 ttl=64 time=318 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=6 ttl=64 time=320 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seg=7 ttl=64 time=317 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seq=8 ttl=64 time=317 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seq=9 ttl=64 time=328 ms
64 bytes from hustl-1 (192.168.115.129): icmp_seq=10 ttl=64 time=319 ms

--= hustl-1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9@11lms
rtt min/avg/max/mdev = 316.827/321.570/343.026/7.952 ms

80

ubuntu@gistl-vml:~$ ping hustl-4 -c 10
GIST—NCKU—™HUST PING hustl-4 (192.168.145.122) 56(84) bytes of data.

64 bytes from hustl-4 (192.168.145.122): icmp_seqg=1 tt1=64 time=525 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=2 ttl=64 time=522 ms
64 bytes from hustl-4 (192,168.145.122): icmp_seq=3 ttl=64 time=522 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=4 ttl=64 time=522 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=5 ttl=64 time=522 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=6 tt1=64 time=532 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=7 tt1=64 time=522 ms
64 bytes from hustl-4 (192,168.145.122): icmp_seq=8 tt1=64 time=522 ms
64 bytes from hustl-4 (192,168.145.122): icmp_seq=9 tt1=64 time=530 ms
64 bytes from hustl-4 (192.168.145.122): icmp_seq=10 tt1=64 time=522 ms

--- hust1l-4 ping statistics —--—-
10 packets transmitted, 10 received, 0% packet loss, time 8999ms
rtt min/avg/max/mdev = 522.614/524.813/532.113/3.450 ms

Figure 48 Path latency measurement of the shortest path, alternative path 1,
and alternative path 2 respectively.
5.5.2 Results of Deploying the Proposed Framework

Figure 49 (a) and (b) show the results of throughput performance of Big Data
transfer from OF@TEIN+ testbed. As can be seen in Figure 49 (a), our OpenFlow-Stats
routing scheme significantly outperforms the traditional routing scheme. Our routing
scheme can reduce the completion time by about 26%.

In order to validate the experimental results over the real environment, we
also repeated the experiment on the Mininet emulator. We created the same topology
and also configured the path characteristics by using the average values of bandwidth
and path latency that were estimated from the previous section. Figure 49 (b) shows
the results of the throughput performance of a Big Data transfer from Mininet. As can
be seen in Figure 49 (b), the throughput results reveal the same trend as previously
discussed in Figure 49 (a). Our routing scheme can reduce the completion time by
about 32%.

In conclusion, as can be seen and discussed above, our proposed framework
can be deployed on the Internet environment and also provides the improvement of

a Big Data transfer with the same trend as done in Mininet.

81

T T
A —e—Traditional Routing
& A —4—OpenFlow-Stats Routing

OF@TEIN+
Testbed
10 | -
(o] L L 1 1 A "
0 20 40 60 80 100 120 140 160
Time (s)
(a)
60
—&—Traditional Routing
—2—0OpenFlow-Stats Routing
50
D
40
=3
Mininet 330 i
c U
2
Emulator S oo |
£
'_
10 | -
G Il

0 20 40 60 80 100 120 140 160
Time (s)

(b)
Figure 49 Comparison of experimental results between OF@TEIN+ testbed and

Mininet emulator (File Size = 500MB).

5.6 Discussions on Limitations and Future Works

Despite several benefits, there are limitations that should be mentioned.

Our proposed framework can provide the highest throughput performance
compared with other routing schemes. However, in the condition of extremely heavy
traffic load, our OpenFlow-Stats routing induce higher completion time compared with
the k-max disjoint routing. This is because all links are fully utilized above the
threshold. All links are completely removed from our OpenFlow-Stats graph. Such a
situation, the performance of our routing scheme is nearly the same as the traditional
routing with disjoint paths. We believe that the adoption of adaptive threshold that

need to be investigate for algorithm improvement.

82

The practicality is @ main issue that is taken into consideration for developing
our multipath transmission framework. Although, the proposed framework was
evaluated by the real controller platform with the emulated OpenFlow-enabled
switches, the actual distributed storage environment needs to be investigated.

Althousgh, our framework is designed to support batch data only, we believe
that using QUIC-based multipath transfer protocols such as MPQUIC and MFQUIC can

be investigated for supporting other data types.

5.7 Concluding Remark

We induce a new data-transfer solution using MPTCP and SDN in order to
improve the performance of Big Data transfer application. Our proposed framework
can be used as a guideline to modify the networking component in a distributed data
storage system. We believe that this dissertation can be the beginning of Big Data

transfer for further study of Big Data analytic system and more complex data types.

REFERENCES

1. Philip Chen CL, Zhang C-Y. Data-intensive applications, challenges, techniques
and technologies: A survey on Big Data. Information Sciences. 2014;275:314-47.

2. Chen M, Mao S, Liu Y. Big Data: A Survey. Mobile Networks and Applications.
2014;19(2):171-2009.

3. Yang C, Huang Q, Li Z, Liu K, Hu F. Big Data and cloud computing: innovation
opportunities and challenges. International Journal of Digital Earth. 2017;10(1):13-53.

4. Oussous A, Benjelloun F-Z, Ait Lahcen A, Belfkih S. Big Data technologies: A survey.
Journal of King Saud University - Computer and Information Sciences. 2018;30(4):431-48.
5. Yu S, Liu M, Dou W, Liu X, Zhou S. Networking for Big Data: A Survey. IEEE
Communications Surveys & Tutorials. 2017;19(1):531-49.

6. Liu Z, Kettimuthu R, Foster |, Beckman PH. Toward a smart data transfer node.
Future Generation Computer Systems. 2018;89:10-8.

7. Qin Y, Rodero |, Simonet A, Meertens C, Reiner D, Riley J, et al. Leveraging user
access patterns and advanced cyberinfrastructure to accelerate data delivery from
shared-use scientific observatories. Future Generation Computer Systems. 2021;122:14-
27.

8. Singh SK, Das T, Jukan A. A Survey on Internet Multipath Routing and Provisioning.
IEEE Communications Surveys & Tutorials. 2015;17(4):2157-75.

9. Doshi M, Kamdar A, editors. Multi-constraint QoS disjoint multipath routing in SDN.
2018 Moscow Workshop on Electronic and Networking Technologies (MWENT); 2018 14-
16 March 2018.

10. Tapolcai J, Rétvari G, Babarczi P, Bérczi-Kovacs ER. Scalable and Efficient Multipath
Routing via Redundant Trees. IEEE Journal on Selected Areas in Communications.
2019;37(5):982-96.

11. Zuo L, Zhu M, Wu C, Hou A, Cao L, editors. Bandwidth Reservation for Data
Transfers through Multiple Disjoint Paths of Dynamic HPNs. 2019 IEEE 21st International

Conference on High Performance Computing and Communications; IEEE 17th

84

International Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS); 2019 10-12 Aug. 2019.

12. Martin B, Sanchez A, Beltran-Royo C, Duarte A. Solving the edge-disjoint paths
problem using a two-stage method. International Transactions in Operational Research.
2020;27(1):435-57.

13. Lopez-Pajares D, Rojas E, Carral JA, Martinez-Yelmo |, Alvarez-Horcajo J. The
Disjoint Multipath Challenge: Multiple Disjoint Paths Guaranteeing Scalability. [EEE Access.
2021;9:74422-36.

14. Hussein A, Elhajj IH, Chehab A, Kayssi A, editors. SDN for MPTCP: An enhanced
architecture for large data transfers in datacenters. 2017 IEEE International Conference
on Communications (ICC); 2017 21-25 May 2017.

15. Alharbi F, Fei Z, editors. An SDN Architecture for Improving Throughput of Large
Flows Using Multipath TCP. 2018 5th IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom); 2018 22-24 June 2018.

16. Lee SSW, Li K, Chan KY, YwiChi J, Lee T, Liu W, et al., editors. Design of SDN based
large multi-tenant data center networks. 2015 IEEE 4th International Conference on Cloud
Networking (CloudNet); 2015 5-7 Oct. 2015.

17. Deepshikha, Dave M, editors. An Efficient Traffic Management Solution in Data
Center Networking Using SDN. 2018 International Conference on Power Energy,
Environment and Intelligent Control (PEEIC); 2018 13-14 April 2018.

18. Zannettou S, Sirivianos M, Papadopoulos F, editors. Exploiting path diversity in
datacenters using MPTCP-aware SDN. 2016 IEEE Symposium on Computers and
Communication (ISCC); 2016 27-30 June 2016.

19. Duan J, Wang Z, Wu C, editors. Responsive multipath TCP in SDN-based
datacenters. 2015 IEEE International Conference on Communications (ICC); 2015 8-12
June 2015.

20. Pang J, Xu G, Fu X. SDN-Based Data Center Networking With Collaboration of
Multipath TCP and Segment Routing. IEEE Access. 2017;5:9764-73.

21. Chattopadhyay S, Shailendra S, Nandi S, Chakraborty S, editors. Improving MPTCP

Performance by Enabling Sub-Flow Selection over a SDN Supported Network. 2018 14th

85

International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob); 2018 15-17 Oct. 2018.

22. Sandri M, Silva A, Rocha LA, Verdi FL, editors. On the Benefits of Using Multipath
TCP and Openflow in Shared Bottlenecks. 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications; 2015 24-27 March 2015.

23. Nakasan C, Ichikawa K, lida H, Uthayopas P. A simple multipath OpenFlow
controller using topology-based algorithm for multipath TCP. Concurrency and
Computation: Practice and Experience. 2017;29(13):e4134.

24, Jang-Ping S, Lee-Wei L, Jagadeesha R, Yeh-Cheng C, editors. An efficient multipath
routing algorithm for multipath TCP in Software-Defined Networks. 2016 European
Conference on Networks and Communications (EUCNC); 2016 27-30 June 2016.

25. Joshi KD, Kataoka K, editors. SFO: SubFlow Optimizer for MPTCP in SDN. 2016 26th
International Telecommunication Networks and Applications Conference (ITNAC); 2016
7-9 Dec. 2016.

26. Liu Y, Qin X, Zhu T, Chen X, Wei G. Improve MPTCP with SDN: From the
perspective of resource pooling. Journal of Network and Computer Applications.
2019;141:73-85.

27. Zhu T, Chen X, Chen L, Wang W, Wei G. GCLR: GNN-Based Cross Layer
Optimization for Multipath TCP by Routing. I[EEE Access. 2020;8:17060-70.

28. Ford A, Raiciu C, Handley M, Bonaventure O, Paasch C. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 8684; 2020.

29. Ferlin S, O A, Dreibholz T, Hayes DA, Welzl M, editors. Revisiting congestion control
for multipath TCP with shared bottleneck detection. IEEE INFOCOM 2016 - The 35th
Annual [EEE International Conference on Computer Communications; 2016 10-14 April
2016.

30. Habib S, Qadir J, Ali A, Habib D, Li M, Sathiaseelan A. The past, present, and future
of transport-layer multipath. Journal of Network and Computer Applications.
2016;75:236-58.

31. Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S.
Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE.

2015;103(1):14-76.

86

32. Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T. A Survey of Software-
Defined Networking: Past, Present, and Future of Programmable Networks. IEEE
Communications Surveys & Tutorials. 2014;16(3):1617-34.

33. Coninck QD, Bonaventure O. Multipath QUIC: Design and Evaluation. Proceedings
of the 13th International Conference on emerging Networking EXperiments and
Technologies; Incheon, Republic of Korea: Association for Computing Machinery; 2017. p.
160-6.

34. Coninck QD, Bonaventure O. Multiflow QUIC: A Generic Multipath Transport
Protocol. IEEE Communications Magazine. 2021;59(5):108-13.

35. J. lyengar E, M. Thomson E. QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC 9000; 2021.

36. Team M. Mininet [Available from: http://mininet.org/.
37. al. TVe. Open Network Operating System (ONOS) [Available from:

https://opennetworking.org/onos/.

38. Cox JH, Chung J, Donovan S, Ivey J, Clark RJ, Riley G, et al. Advancing Software-
Defined Networks: A Survey. I[EEE Access. 2017;5:25487-526.

39. Foundation ON. OpenFlow Switch Specification Version 1.0.0. Open Networking
Foundation; 2013.

4a0. Foundation ON. OpenFlow Switch Specification Version 1.3.0. Open Networking
Foundation; 2014.

a1. Hopps C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992; 2000.

42. Postel J. Transmission Control Protocol. RFC 793; 1981.

43. lyengar JR, Amer PD, Stewart R. Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths. IEEE/ACM Transactions on Networking.
2006;14(5):951-64.

44, Allcock W, Bresnahan J, Kettimuthu R, Link M, editors. The Globus Striped GridFTP
Framework and Server. SC '05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing; 2005 12-18 Nov. 2005.

45, Hagberg A, Swart P, S Chult D, editors. Exploring network structure, dynamics, and
function using networkx2008 2008-01-01; United States. Research Org.. Los Alamos
National Lab. (LANL), Los Alamos, NM (United States)Sponsor Org.: USDOE.

http://mininet.org/
https://opennetworking.org/onos/

87

46. Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, et al. B4: experience with
a globally-deployed software defined wan. 2013;43(4 SIGCOMM Comput. Commun.
Rev.):3-14.

afi. ICTEAM. MultiPath TCP - Linux Kernel implementation: ICTEAM; [Available from:

https://www.multipath-tcp.org/.

48. Dijkstra EW. A note on two problems in connexion with graphs. Numerische
Mathematik. 1959;1(1):269-71.

49. Batchelor P, Daino B, Heinzmann P, Hjelme DR, Inkret R, Ja'ger HA, et al. Study on
the Implementation of Optical Transparent Transport Networks in the European
Environment—Results of the Research Project COST 239. Photonic Network
Communications. 2000;2(1):15-32.

50. Group TT. TCPDUMP & LIBPCAP: The TCPDUMP Group; [Available from:

https://www.tcpdump.org/.

51. Bosshart P, Daly D, Gibb G, Izzard M, McKeown N, Rexford J, et al. P4: programming
protocol-independent packet processors. 2014;44(3 SIGCOMM Comput. Commun.
Rev.):87-95.

52. Project LFC. Open vSwitch: Linux Foundation Collaborative Project; [Available

from: https://www.openvswitch.org/.

53. Ha S, Rhee I, Xu L. CUBIC: a new TCP-friendly high-speed TCP variant. 2008;42(5
%J SIGOPS Oper. Syst. Rev.):64-74.

54. Afanasyev A, Tilley N, Reiher P, Kleinrock L. Host-to-Host Congestion Control for
TCP. IEEE Communications Surveys & Tutorials. 2010;12(3):304-42.

55. Raiciu C, Handley MJ, Wischik D. Coupled Congestion Control for Multipath
Transport Protocols. RFC 6356; 2011.

56. Khalili R, Gast N, Popovic M, Boudec JL. MPTCP Is Not Pareto-Optimal:
Performance Issues and a Possible Solution. IEEE/ACM Transactions on Networking.
2013;21(5):1651-65.

57. Yu C, Mingwei X, Xiaoming F, editors. Delay-based congestion control for
multipath TCP. 2012 20th IEEE International Conference on Network Protocols (ICNP);
2012 30 Oct.-2 Nov. 2012.

https://www.multipath-tcp.org/
https://www.tcpdump.org/
https://www.openvswitch.org/

88

58. Hwang J, Low SH, Walid A, Peng Q, editors. Balanced Linked Adaptation
Congestion Control Algorithm for MPTCP2016.

59. Ling TC, Kim J. OF@TEIN+: Open/Federated Playground for Future Networks:
OF@TEIN+ Project GitHub; 2018 [Available from: https://cithub.com/OFTEIN-NET/OFTEIN-
Plus.

60. Project OF. OpenStack Openinfra Foundation Project; [Available from:

https://www.openstack.org/.

https://github.com/OFTEIN-NET/OFTEIN-Plus
https://github.com/OFTEIN-NET/OFTEIN-Plus
https://www.openstack.org/

APPENDIX

90

APPENDIX A
Technical Details of Our Proposed Framework Being Applied to An Overlay
Network

This section, we demonstrate the adoption of our proposed framework over
the traditional Internet architecture. If one wants to implement this framework over
the traditional Internet, basically he just needs to put OpenFlow switches between
the data servers/clients and the gateway routers. Then, the VXLAN technology can be
applied to each switch in order to create the VXLAN tunnels among the data
servers/clients. These tunnels are managed and controlled as an overlay network by
the controller. With this configuration, our framework can be deployed in practice.
There is no need to replace all routers with SDN switches. Figure 50 show our proposed

framework being applied to an overlay network.

OpenFlow Controller

Region Two

o

Data Server

Region One

-

Data Client

» - :
() AS 1001 .

e Router

9 >| OpenFlow-enabled device

Region Three
<55°| or Open vSwitch

m— ith Networkinterface N\ _ N\ "*[.... 2
e ol
5
O--- VXLANinterfface @~ Ntel_ L

Data Server

------ Secure Channel

Figure 50 An example of our proposed framework being applied to an overlay

network.

91

Figure 51 show examples of forwarding rules of OpenFlow-enabled switches
that are in different regions. As can be seen in Figure 51, We can create simple
forwarding rules with the lowest priority for handling other traffic flows (See Switch A).
For the multipath decision, we can create complex forwarding rules with higher priority

to manage your Big Data traffic flows (See Switch A and Switch B).

Flow Table: Switch A

Match Action <output=2> Flow Table: Switch B
<Priority=101, in_port=3, ipv4,
tep, src=10.0.1.1, dst=172.0.1.2, Match Action <output=3>
s_port=12345, d_port=5001> <Priority=101, in_port=2, ipv4,
tcp, sre=10.0.1.1, dst=172.0.1.2,
Match Action <output=1> s_port=12345, d_port=5001>
<Priority=10, in_port=3, IPv4>

Switch A Switch B

om] uoibay

Region One
o
\

[VXLAN Tunnel 1]

(VXLAN Tunnel 2)

¢||:> OpenFlow-enabled device i)
Router 5 | or Open vSwitch Port number O--- VXLAN interface

Figure 51 Examples of forwarding rules in the overlay-network environment.

VITA

NAME Kiattikun Kawila
DATE OF BIRTH 27 February 1989
PLACE OF BIRTH Phayao

INSTITUTIONS ATTENDED Received the B.Eng. degree in computer engineering from
Kasetsart University Sriracha Campus, Thailand in 2010 and
the M.Eng. degree in computer engineering from
Chulalongkorn University, Thailand in 2013.

HOME ADDRESS 208 Phahonyothin Street, Mae Tam Sub-district, Mueang
Phayao District, Phayao Province, 56000, Thailand

PUBLICATION International Journal Publication

K. Kawila, J. Kim and K. Rojviboonchai, "An SDN-
coordinated Steering Framework for Multipath Big Data
Transfer Application," IEEE Access, (Submitted).

N. Pramuanyat, K. Na Nakorn, K. Kawila and K.
Rojviboonchai, "LARB-Alpha: A Quantitative Study of
Location-Aware Reliable Broadcasting Protocol in VANET,"
Journal of Internet Technology, vol. 18, no. 7, Dec. 2017,

pp. 1669-1679.

International Conference Publication
A. Chanakitkarnchok, K. Kawila, G. Sato, Y. Owada
and K. Rojviboonchai, "Disaster-Resilient Communication
Framework for Heterogeneous Vehicular Networks," 2019
IEEE 30th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2019.
T. Banchuen, K. Kawila and K. Rojviboonchai, "An

SDN framework for video conference in inter-domain

93

network," 2018 20th International Conference on
Advanced Communication Technology (ICACT), 2018.

V. Deeying, K. Kawila, K. N. Nakorn and K.
Rojviboonchai, "A study of vehicular desynchronization for
platooning application," 2017 IEEE 17th International
Conference on Communication Technology (ICCT), 2017.

P. Chumcharoen, K. Kawila, K. N. Nakorn and K.
Rojviboonchai, "Queuing-aware Routing Algorithm in
Software Defined Networks," 2017 14th International Joint
Conference on Computer Science and Software
Engineering (JCSSE), 2017.

N. Pramuanyat, K. N. Nakorn, K. Kawila and K.
Rojviboonchai, "LARB: Location-aware reliable broadcasting
protocol in VANET," 2016 13th International Joint
Conference on Computer Science and Software

Engineering (JCSSE), 2016.

National Journal Publication

J. Jullawat, K Kawila, Kulit Na Nakorn and K.
Rojviboonchai, "Quantitative Study of Path Selection
Algorithm for Multipath TCP in Software-Defined
Networking," Information Technology Journal, vol. 15, no.

1, Jun. 2019, 1-7.

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 Introduction
	1.1 Design Goals
	1.2 Scope and Assumption
	1.3 Summary of Contributions
	1.4 Dissertation Organization

	CHAPTER 2 Background Knowledge, Related Work, and Motivation
	2.1 Background Knowledge
	2.1.1 Software-Defined Networking
	2.1.2 Controller Platform
	2.1.3 OpenFlow Protocol
	2.1.4 OpenFlow Specification (Based on Version 1.0.0)
	2.1.4.1 Flow Table
	2.1.4.2 OpenFlow Message

	2.2 Related Work
	2.2.1 Multipath Transfer Technologies over the Traditional Networking
	2.2.2 Multipath Transfer Approaches Using MPTCP over the Software-Defined Networking.

	2.3 Motivation

	CHAPTER 3 An SDN-Coordinated Multipath Transmission Steering Framework for Big Data Transfer Application
	3.1 Definition of Big Data in This Dissertation
	3.2 Framework Overview
	3.3 Practical Issues on Using MPTCP Protocol and OpenFlow Protocol
	3.3.1 Issue on MPTCP Protocol
	3.3.2 Issue on OpenFlow Protocol

	3.4 Our Framework Design
	3.4.1 Multipath Transmission Manager
	3.4.2 Multipath Topology Manager
	3.4.3 OpenFlow-Stats Analyzer

	CHAPTER 4 Performance Evaluation
	4.1 Experimental Setup
	4.1.1 Simulation Configuration
	4.1.2 Simulation Scenario
	4.1.3 Benchmark and Metric
	4.1.3.1 Benchmark
	4.1.3.2 Metric

	4.2 Experimental Results
	4.2.1 Scenario 1: Vary the Number of MPTCP Connections
	4.2.2 Scenario 2: Vary the Size of Data
	4.2.3 Scenario 3: Overhead in the Control Plane

	4.3 Comparison of Multipath Transport Protocols in Our SDN Environment

	CHAPTER 5 Conclusion
	5.1 Dissertation Summary
	5.2 Cost Analysis of Using the Proposed Framework
	5.2.1 Cost of SDN Deployment
	5.2.2 Cost of Multipath Configuration at the Endpoint
	5.2.3 Cost of Modifying the Network Component of Computing Software to Support Open vSwitch.
	5.2.4 Cost of Maintaining the OpenFlow Controller
	5.2.5 Cost of Measuring the Maximum Capacity of Links

	5.3 Complexity Analysis of Our OpenFlow-Stats Routing
	5.4 Discussion on the Congestion Control Algorithms
	5.4.1 Impact on Using the Traditional Congestion Control Algorithm
	5.4.2 Impact on Using the Coupled Congestion Control Algorithm

	5.5 Discussion on the Real-World Scenario Using OF@TEIN+ Testbed
	5.5.1 Experimental Setup
	5.5.2 Results of Deploying the Proposed Framework

	5.6 Discussions on Limitations and Future Works
	5.7 Concluding Remark

	REFERENCES
	APPENDIX
	APPENDIX A Technical Details of Our Proposed Framework Being Applied to An Overlay Network

	VITA

