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ส าหรบัจ าลองผล ประสิทธิภาพการท านายผลของโปรแกรม NACAC ถูกตรวจสอบโดยการเปรียบเทียบผลการจ าลอง
กับ โปรแกรม  Java-based Realtime Online DecisiOn Support system (JRODOS) ผลการตรวจสอบพบว่า 
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ABSTRACT (ENGLISH) 

# # 6171454721 : MAJOR NUCLEAR ENGINEERING 
KEYWORD: Atmospheric dispersion, Radiation consequence evaluation, Climate Change, 

Meteorological data selection, Verification, Severe accident 
 Narakhan Khunsrimek :  A STUDY ON THE EFFECTS OF HISTORICAL METEOROLOGICAL 

DATA SET ON SIMULATED RADIOACTIVE DISPERSION FROM A NUCLEAR POWER PLANT 
ACCIDENT BY NACAC CODE. Advisor: Assoc. Prof. SOMBOON RASSAME, Ph.D. Co-advisor: 
Kampanart Silva, Ph.D. 

  
Quantifying the variability in the prediction of atmospheric dispersion code from the Influences 

of variations in meteorological data is investigated in this study. Historical meteorological data from 2016 
to 2020 by the National Centers for Environmental Prediction (NCEP) and the overlap hypothetical 
accident Loss Of Offsite Power (LOOP) and Large-Break Loss Of Coolant Accident (LBLOCA) are used 
as initial and boundary conditions. The Fangchenggang nuclear power plant in China, close to Thailand, 
is considered a study location. The Nuclear Accident Consequence Assessment Code (NACAC) is used 
as a simulation tool for the investigation process. The NACAC prediction performance is verified by 
comparing the predicted result with the Java-based Realtime Online DecisiOn Support system (JRODOS). 
It found that different computational schemes cause variations in dispersion distances of about 200 km 
and activity concentration of about one order of magnitude. A sensitivity test with various meteorological 
input data is performed in NACAC to demonstrate the Influences of meteorological characteristic changes 
on the predicted results. Variations in rain, wind, and atmospheric stability class data affected 
radionuclides' depletion, dispersion range, and dispersion boundary. The scenario with low rain intensity, 
low wind speed, and stable atmospheric stability class (F class) causes the highest average radionuclide 
concentration. The influences of variations in meteorological data on NACAC predicted results are 
investigated. The high variants of each meteorological data are found in the middle of the year. This 
variability causes differences in dispersion characteristics and activity concentration for each year. 
Utilizing five years of meteorological data for simulation yields more comprehensive predicted results than 
a single year. The high disparity in both predicted results is found at the 50th percentile. The average 
correlation coefficient of the total effective dose equivalent value over a year in the short, medium, and 
long dispersion distances of predicted results at the 50th percentile are found at 0.79, 0.81, and 0.66, 
respectively. 
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DISCLAIMER 

This research used released source terms from the environmental impact report 
of the Fangchenggang power plant (site selection for units 3 and 4) published 
information.  The radiation effect evaluation processes in this research are performed by 
hypothetical severe accidents, leading to results being consistent or inconsistent  with 
actual events.  
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CHAPTER 1  
 INTRODUCTION 

1.1 Background and statement of the problem  
The Fukushima Nuclear Accident demonstrated that the radionuclides from a 

severe nuclear power plant (NPP) accident could affect other regions worldwide once 
released into the environment. According to Marzo's study [3], the radionuclides from 
the Fukushima nuclear accident could be transported through the atmosphere over the 
northern hemisphere and Europe. Povinec et al.[4] and Nakano et al. [5] showed that 
they could disperse all over the Pacific and Indian Oceans. In addition, the radiation 
detection measurements in Vietnam also demonstrated that the radionuclides could 
disperse to neighboring countries [6].  

The facts mentioned above cause several countries to be concerned and 
interested in evaluating the radiation effect from neighboring countries. For example, 
Leung [7] showed that the radionuclides from a hypothetical accident in Guangdong 
NPP and Lingao NPP in China directly affected Hong Kong from April to May. This 
situation caused some parts of the northeastern region to have a thyroid equivalent dose 
higher than 50 mSv in the first week. Min and Kim's demonstrated that the worst-case 
scenario at Haiyang NPP in China caused an effective dose higher than 100 mSv over 
the Korean Peninsula [8]. Klein et al. investigated the radionuclide consequence in 
Norway from the Sellafield reprocessing plant in England. They found that the 
radionuclide significantly affected the western part of Norway with ground concentration 
higher than 10 Bq/m2 [9]. 

Thailand is a country in the Indochinese Peninsula with a seasonal monsoon 
from the high-pressure areas in the northern hemisphere of Mongolia and China blowing 
past [10]. Many nuclear power plants in western China are located under this monsoon 
pathway and may cause radiation effects on Thailand. Among them, the 
Fangchenggang NPP, Yangjian NPP, and Changjiang NPP are located within a radius of 
1,500 km from Thailand's capital. Therefore, these nuclear power plants are a good 
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starting point for Thailand to study the transboundary radiation effect of a hypothetical 
accidental release.  

The Nuclear Accident Consequence Analysis Code (NACAC) is an atmospheric 
dispersion code designed to evaluate the radiation effect from these nuclear power 
plants. The NACAC is developed by the Thailand Institute of Nuclear Technology (TINT). 
The calculation algorithms in the code are referred to the Offsite Consequence Analysis 
Code for Atmospheric Release in reactor accidents (OSCAAR), developed by the Japan 
Atomic Energy Research Institute [9]. The NACAC is performed in three main calculation 
parts. The one year of meteorological data from NCEP is formatted in the cartesian 
coordinate grid with a resolution of 0.5 degrees in the meteorological data preparation 
part. The formatted data is then sent to the atmospheric dispersion calculation part to 
predict plume advection, activity concentration, and the Total Effective Dose 
Equivalence (TEDE). Prediction results are presented in polar coordinates, providing 
convenience in defining the dispersion of radionuclides in the result display part. This 
program is used to evaluate the transboundary radiation effect from the neighboring 
countries. 

However, the climate change effect may cause changing air pollution patterns. It 
modifies meteorological parameters, significantly affecting pollutant transportation [11]. 
Mickley et al. demonstrated that the weakening of air circulation in the period of 1950 to 
2052 led to a decrease in the number of cyclones and increased air pollution in the 
Northeastern and Midwestern United States [12]. Jacob and Winner evaluated changing 
meteorological data within the 21st century by simulation and found that weakening 
global circulation caused increasing ozone gas in the summertime of North America, 
Europe, and Asia [13]. Liu et al. simulated the concentration of PM2.5 produced by 
wildfires in North America between 2041 to 2051. They showed that the climate change 
effect caused the concentration of PM2.5 by wildfire to increase 160% on average [14].  

These facts show that changing climate data each year leads to changing air 
pollution character. One year of meteorological data in the prediction of the NACAC may 
not be enough to provide comprehensive prediction results, especially the impact 
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assessment from neighboring countries.  Thus, the meteorological data selection and 
climate change effect on the prediction of the NACAC for the transboundary radiation 
effect is investigated. The hypothetical severe accident Loss Of Offsite Power (LOOP) 
and the Large-Break Loss Of Coolant Accident (LBLOCA) at the Fangchenggang 
nuclear power plant [15] are used as the initial condition. 

The  NACAC is used as a representative code in the investigation process. It is 
verified with the JRODOS code that has been validated with the Fukushima nuclear 
accident [7,16,17]. The verification process is conducted by result comparison. The 
activity concentration, TEDE, and dispersion characteristic map from both codes are 
compared to investigate prediction performance for long-range dispersion in the 
NACAC. Then, the optimum data preparation process is investigated to prepare 
meteorological input data for transboundary radiation effect evaluation. The prediction 
result produced by the representative and sequential data selection is compared. One 
of them providing comprehensive prediction results is demonstrated. The historical 
meteorological data for five years are then used to analyze variations in meteorological 
data in a year. The meteorological data for each year is prepared as input data for 
simulation in the NACAC. The difference in prediction results by each meteorological 
input dataset is investigated by statistical methods to demonstrate the effect of 
variations in meteorological data on the prediction result.  

1.2 Objective 
To study the effects of historical meteorological data set on simulated 

radioactive dispersion from a nuclear power plant accident by NACAC code 

1.3 Scope of study 
- Historical meteorological data for five years and hypothetical severe accident 

Loss Of Offsite Power and Large-Break Loss Of Coolant Accident are the initial 

conditions for the study.  

- Fangchenggang nuclear power plant is a study location.  
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- Conduct atmospheric dispersion simulation and total effective dose equivalence 

calculation using Nuclear Accident Consequence Assessment Code (NACAC).  

- Verify the Nuclear Accident Consequence Assessment Code (NACAC) 

calculation using Realtime Online DecisiOn Support system (JRODOS).  

- Investigation of Influence of meteorological characteristic changes such as wind 

pattern rain pattern and atmospheric stability class pattern on simulation result of 

atmospheric dispersion code such as dispersion characteristic, activity 

concentration, and total effective dose equivalence. 

- Compare dispersion characteristic, activity concentration, and total effective 

dose equivalence from simulation using meteorological data of a single year and 

five years. 

1.4 Expectation 
 It can point out the effect of meteorological data set selection on the prediction 

result of atmospheric dispersion code and demonstrate the effect of variations in 

meteorological data for five years on atmospheric dispersion code prediction results. 
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CHAPTER 2 
 THEORY AND LITERATURE REVIEW 

2.1 Nuclear power plant 
2.1.1 Fission reaction in nuclear power plant  

The fission reaction is the heat source used to generate electricity in nuclear 

power plants. It is an interaction between thermal neutrons and uranium fuel. The 

uranium isotope absorbing neutron becomes an unstable nucleus or compound 

nucleus. Then, the nucleus dissociates into two or three parts called fission products. 

Meanwhile, this reaction also provides a free neutron and energy of around 200 MeV. 

Some fission products decay or capture neutrons, causing a new isotope. All isotopes 

from these phenomena have a mass number from 72 to 161. The main isotopes 

produced from these phenomena are shown in Table 1[18]. 

Table  1. Main Radioactive Fission Products[18] 
Active in the 
short term 

Active in the 
medium-term 

Active in the 
long term 

Fission product Half-life Fission product Half-life Fission product Half-life 

Kr-88 2.8 h Zr-95/Nb-95 64 d/35 d Kr-85 10.7 y 

Sr-91/Y-91m 9.5 h/0.8 h Mo-99 2.8 d Sr-90 28.6 y 

Sr-92/Y-92 2.7 h/3.7 h Ru-103 39 d Ru-106 1.0 y 

Y-93 10.5 h Sb-127 3.8 d Ag-110m 0.7 y 

Zr-97/Nb-97 17 h/1.2 h I-131 8.0 d Sb-125 28 y 

Ru-105/Rh-105 4.4 h/ 35.5 h Te-131m 1.2 d Cs-134 2.1 y 

I-133 20.8 h Te-132/I-132 3.2 d/ 2.3 h Cs-137 30.1 y 

I-134 0.9 h Xe-133 5.2 d Ce-144 284 d 

I-135 6.6 h Xe-133m 2.2 d Eu-144 8.6 y 

Xe-135 9.1 h Ba-140/La-140 12.8 d/1.7 d   
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Continuous Table 1. 
Active in the 
short term 

Active in the 
medium-term 

Active in the 
long term 

Fission product Half-life Fission product Half-life Fission product Half-life 

Ce-143 1.4 d Ce-141 32 d   

  Ce-143 1.4 d   

  Nd-147 11.1 d   

  Np-239 2.43 d   

 

2.1.2 Past nuclear severe accident 
The nuclear power plant is a thermal power plant that uses a fission reaction of 

uranium fuel and thermal neutron in the thermal generation process. This reaction 

provides a lot of heat energy, leading to high electricity production. However, It causes 

fission products, which are harmful to organisms. Previously, three severe accidents 

caused leakage of these fission products into the environment.  

First is the Three-Mile Island accident. The accident began with the failure of the 

coolant pump in the secondary coolant loop of the pressurized water reactor. This loss 

caused the steam generator and the turbine system to lack water and steam, 

respectively. This abnormality caused the turbine and the reactor trip. Besides, the 

pump loss increased pressure in the primary loop. Thus, the release valve was opened 

to decrease the pressure in the system. However, the control valve failure prevented the 

closing of the valve. This leads to leakage of the coolant in the primary loop, causing a 

water pump malfunction. The staff decided to stop the pump operation and emergency 

coolant system. However, this process caused reactor core melt and radionuclide 

leakage into the environment on March 28, 1979 [19]. 

The Chornobyl nuclear power plant accident is the second incident that caused 

leakage of the radionuclide into the environment. On April 26, 1986, operational testing 
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of the turbine system with the main power supply lost was conducted in the NPP. 

However, operators with insufficient knowledge ignored to consider the xenon poison 

effect in the setting experiment. They constantly decreased the power in the NPP until it 

was too low power. They increased the power by closing the emergency system and 

withdrawing most control rods. This caused instability in the power system and led to a 

sharp increase in the fission reaction. They decided to decrease the power by quickly 

inserting the control rod into the reactor. However, the control rod was designed to have 

a moderate neutron at the end. This caused a rapidly increased fission reaction. The 

temperature and pressure in the system subsequently increased. Then, an explosion of 

pressure vessels and leakage of radionuclides were found [20]. 

The Fukushima nuclear accident is the third incident that caused leakage of 

radionuclides into the environment. The 9.0 magnitude earthquake in the Pacific Ocean 

on March 11, 2011, caused a tsunami wave. The wave hit the NPP, damaging the 

external power source and electrical generator within the NPP. The lack of electricity 

stopped the coolant system from working and caused the core to melt in units 1, 2, and 

3. The interaction of zirconium in cladding and the hot water caused hydrogen gas. The 

gas interaction with oxygen led to the exploding and release of the radionuclide into the 

environment at unit 1, unit 3, and unit 4 of the NPP [21]. 

2.1.3 General characteristics of severe accidents [22] 

A severe accident is an accident that leads to a melting of the reactor core due 

to the loss of coolant. After a severe accident, the incident can be separated into two 

phases: in-vessel and ex-vessel. For the in-vessel, the lack of coolant results in the 

cladding heat and meal subsequently. The gas in the gap between the cladding and the 

fuel is released into the pressure vessel and contaminates the coolant. The 

contaminated coolant leaks into the containment and the environment through leaks in 

the pipeline. For the ex-vessel, the lack of coolant for a long period leads to melting fuel 
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rods. The core melt destroys the pressure vessel and relocates to the cavity, which is 

hole concrete for supporting the melted core. However, the reaction between molten 

corium and concrete can cause the concrete to break in some parts. It results in 

radionuclides being released into the environment.  

2.1.4 Station blackout [23] 

The station blackout is an accident that disasters damage the power supply 

outside the power plant. This situation causes a loss of alternating current in the nuclear 

power plant, stopping the systems depending on the alternating current and the failure 

of the reactor subsequently. 

The risk assessment analysis in NUREG-1150 [24] showed that the station 

blackout accident has a frequency of core damage greater than Anticipated Transients 

Without Scram (ATWS) and Loss Of Coolant Accident (LOCA). Besides, it is also the 

cause of the Fukushima nuclear accident, leading to the release of radionuclides into 

the environment. 

Many types of disasters cause the station blackout. One of them is an 

earthquake incident causing two types of station blackouts. First is a short-term station 

blackout caused by an earthquake of 0.5–1.0 g peak ground acceleration (PGA). This 

incident resultes in a sudden loss of the power plant's external power supply and 

reserve. This causes the coolant system to be lost, leading to core melt at the 3rd hour 

after the accident. The pressure vessel is then the brake, and the radionuclide is 

released to containment at the 8th hour. Finally, radionuclides are leaked into the 

environment at the 25th hour after the accident. This accident has a core damage 

frequency of 3x10-7 per reactor year. 

The second type is the long-term station blackout accident. This accident occurs 

when affected by an earthquake of 0.3 to 0.5 g(PGA). This accident has a higher 

frequency of occurring than the short-term station blackout, with a core damage 
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frequency of 3x10-6 per reactor year. The long-term station blackout causes the power 

plant to lose power supply from outside, but the power reserve system still operates. 

This situation causes the reactor core to melt in the 9th hour after the accident. The 

radionuclides are released to containment through the release valve of the pressurizer at 

the 16th hour. Then, they are released into the environment at the 45th hour after the 

accident. 

2.1.5 Loss Of Offsite Power (LOOP) and Large-Break Loss Of coolant Accident 

(LBLOCA) [25] 

An overlay of Loss Of Offsite Power (LOOP) and Large-Break Loss Of coolant 

Accident (LBLOCA) is an accident designed as more serious accident conditions than 

expected operational events. This scenario evaluated the radiation effect in the site 

location selection phase of the Fangchenggang NPP in 2014. The LBLOCA causes a 

decrease in the cooling water level in the primary coolant loop. Then, the temperature in 

the reactor core increases, and the reactor core melts. The melted core ruptures the 

pressure vessels, causing radionuclides to leak into the reactor containment. 

Meanwhile, the LOOP will cause the safety systems to become unavailable. The loss of 

safety mitigation results in an increased temperature and pressure in the containment 

facility, driving radionuclide release into the environment through the ventilation system. 

The released source term of radionuclide by this scenario with units 1 and 2 core 

inventories of Fangchenggang NPP is shown in Table 2. 
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Table  2. Released source term of loss of offsite power accidents (LOOP) and large-
break loss of coolant (LBLOCA) [GBq][25] 
 

Isotopes 2 hours 8 hours 24 hours 4 days 30 days 
Kr-83m 6.71E+04 1.84E+05 2.12E+04 5.01E+01 7.52E-11 
Kr-85m 1.52E+05 6.21E+05 3.71E+05 3.40E+04 4.86E-01 
Kr-85 5.19E+03 3.04E+04 8.10E+04 3.62E+05 3.00E+06 
Kr-87 3.10E+05 6.83E+05 2.72E+04 4.54E+00 4.52E-17 
Kr-88 4.41E+05 1.51E+06 4.42E+05 8.97E+03 1.97E-04 
Xe-131m 5.87E+03 3.41E+04 8.86E+04 3.57E+05 1.41E+06 
Xe-133m 2.61E+04 1.48E+05 3.42E+05 8.88E+05 5.53E+05 
Xe-133 8.48E+05 4.90E+06 1.23E+07 4.34E+07 8.43E+07 
Xe-135m 1.69E+05 1.74E+05 1.41E-02 1.73E-21 1.35E-106 
Xe-135 2.75E+05 1.34E+06 1.63E+06 6.82E+05 2.86E+03 
Xe-138 7.78E+05 7.91E+05 1.61E-02 4.93E-23 2.41E-115 
I-131 8.83E+02 1.06E+04 3.00E+04 1.15E+05 3.38E+05 
I-132 1.27E+03 8.48E+03 4.55E+03 6.85E+01 2.57E-08 
I-133 1.88E+03 2.10E+04 4.51E+04 5.84E+04 5.77E+03 
I-134 2.09E+03 8.47E+03 3.90E+03 3.20E-01 5.45E-26 
I-135 1.76E+03 1.68E+04 2.07E+04 5.00E+03 2.63E+00 
Cs-134 1.90E+02 3.23E+03 9.54E+03 4.26E+04 3.50E+05 
Cs-136 5.47E+01 9.25E+02 2.68E+03 1.09E+04 4.57E+04 
Cs-137 1.11E+02 1.89E+03 5.58E+03 2.50E+04 2.07E+05 
Cs-138 1.34E+03 7.06E+03 3.05E+03 1.38E-03 5.30E-44 
Rb-88 6.98E+02 3.22E+03 1.57E+03 1.74E-08 1.51E-81 
Rb-89 9.21E+02 4.18E+03 2.08E+03 5.89E-10 2.10E-94 
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2.2 Meteorological conditions involved in the calculation of atmospheric dispersion. 
2.2.1 Atmospheric layer 

The air is a mixture of gas consisting of 78.084% nitrogen, 20.948% oxygen, 

0.934% argon, and approximately 1% other gases. These gases are attracted by gravity 

and become a layer of air surrounding the Earth. This air layer is called the atmosphere. 

The Earth's atmosphere can be classified into four layers according to temperature 

conversion: the troposphere, stratosphere, mesosphere, and thermosphere [26]. The 

troposphere is the first layer of the atmosphere, which has a height above the ground 

layer of around 10 to 18 km. Due to it being located near the ground surface, the density 

of air in this layer is more than others. The components in this layer consist of carbon 

dioxide and dust, which can absorb the radiation from the sun in the range of 0.28 to 

0.32 microns. The density of these components is inverse with height, resulting in the 

temperature characteristic in this layer decreasing with height. 

The stratosphere is the second layer, with a height above the ground of around  

18 to 50 km. The radiation from the sun in the range of 0.2 to 0.3 microns is absorbed in 

this layer. This layer has three types of temperature characteristics: stable temperature 

in the range of altitudes 18 to 20 km, slow rise temperature in the range of altitudes 20 to 

32 km, and rapid temperature in the range of altitudes 32 to 50 km. The third layer is the 

mesosphere layer, high from the ground surface in the range of 50 to 80 km. The 

photodissociation reaction produces ozone gas with a reaction between radiation waves 

in the range of 0.1 to 0.2 microns and the oxygen in this layer. The temperature 

characteristic in this layer decreases with high. The last layer is the thermosphere, which 

is over 80 km above the earth's surface. The sun's radiation, with a wavelength lower 

than 0.1 microns, interacts with the nitrogen and oxygen atoms by the photoionization 

reaction, causing ion and free electrons in this layer. The temperature profile in this layer 

increases with height.  
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However, the troposphere, which is the atmosphere closest to the ground, has 

the most significant plume dispersion. This is because the temperature difference 

between the ground surface and the top of the layer results in the movement of the air 

both vertically and horizontally, which is a dispersion carrier. The temperature profile of 

each atmosphere layer is presented in Figure 1. 

 
 

Figure  1. Atmospheric temperature characteristics [26] 

2.2.2 Atmospheric circulation 

The wind is a natural phenomenon caused by the air masses movement, which 

transports from the low-temperature area to the high-temperature area [27]. The solar 

radiation hits the Earth's surface, causing the ground temperature to increase. However, 

the temperature in each area is not the same. It depends on the density of sunlight. The 

equator, which is perpendicular to the sun, receives more energy than the north and 

south poles. This situation causes the equator area to have a temperature higher than 

the pole area. Air masses with high temperatures in the equatorial region float and move 

to the polar regions. Meanwhile, low-temperature air masses in the pole sink and move 

to the equator. However, the Earth's rotation force resulting in this air circulation is 

divided into three parts: Hadley cell, Ferrel cell, and Polar cell, as shown in Figure 2.  
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Figure  2. Atmosphere circulation of the Earth [27] 

 

2.2.3 Lanina and Elnino phenomena  

Anomalies in atmospheric circulation cause the Elnino and Lanina phenomena, 

which occur every five years [28]. These phenomena occur from abnormal trade winds, 

causing unusual rainfall in Southeast Asia. Generally, the trade wind blows from South 

America's coast to the west of the Pacific Ocean.  It carries moisture over the ocean 

around Indonesia to the atmosphere, causing rainfall in Southeast Asia and northern 

Australia. The Lanina is a phenomenon in which the trade wind blows too strong. The 

warm seawater in the Pacific Ocean moves from east to west. When the air rises, it 

produces many rain clouds, leading to heavy rain in southeast Asia. The Elnino 

phenomenon is the opposite of the Lanina phenomenon. The wind around Indonesia 

country blows to the east of the Pacific Ocean and floats around South America's coast. 

This causes heavy rainfall in South America, and the drought occurs in Southeast Asia. 

The behavior of these phenomena is shown in Figure 3. 
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Figure  3. Behavior of Lanina and Elnino phenomena [28] 

2.2.4 Monsoon 

Monsoon wind is the air mass circulation from the low-temperature area to the 

high-temperature area between land and ocean [10]. Two types of monsoons affect 

Thailand. First is the northeast monsoon that occurs from November to April. The solar 

radiation hits the ocean more than land. The air temperature on the ocean surface 

increases and floats, while the air on land with low temperature moves to replace. This 

circulation results in the cold air from Siberia blowing through China into the northeast 

region of Thailand. Second is the southwest monsoon that occurs from May to October. 

The air circulation is inverse to the northeast monsoon, in which the air on the ocean with 

high humidity moves to replace the air on land. This circulation causes rainfall in 

Thailand.   

2.2.5 Air stability 

The heat energy accumulated in the ground transfers to the air by convection. 
This phenomenon increases the air temperature and causes an imbalance between the 
air and the environment temperature. The temperature difference leads to vertical air 
movement. The air rises when the air temperature is higher than the ambient 
temperature, while the air sinks when the air temperature is lower than the ambient 
temperature. This movement results in temperature inside the air changes in adiabatic 
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form, classified into two types. The first type is the dry adiabatic lapse rate, which 
occurs in the air without moisture. When the air rises, the pressure surrounding the air 
decreases. The energy carried from the ground is used to expand the air volume to 
balance the pressure. The expansion causes a temperature decrease of 10 Celsius per 
1 km. Another type is the saturated adiabatic lapse rate, considering the air with 
moisture. The water is condensed in the air volume, causing a loss of energy and 
decreasing temperature to around 5 Celsius per 1 km [29]. 

Generally, the pattern of air stability can be classified into three patterns 
according to the adiabatic process evaluated by comparing the environmental lapse 
rate and the adiabatic lapse rate. The first pattern is unstable. The temperature lapse 
rate of the environment and air change by altitude. With increasing altitude, the 
environmental lapse rate is greater than, equal to, and less than the dry adiabatic lapse 
rate. This causes an unbalanced temperature of air and environment. The plume in this 
state fluctuates as a looping pattern. The second pattern is stable, contrary to the first 
pattern. The environment lapse rate is lower than, equal to, and higher than the dry 
adiabatic lapse rate, causing air to move upwards with equilibrium temperature as the 
fanning pattern. The third pattern is natural, with an equal environment lapse rate and 
adiabatic lapse rate. The air in this pattern does not float or sink since the temperature 
between the air and the environment is balanced. This causes the plume to move along 
the altitude line as the coning pattern [30]. The plume patterns described before are 
shown in Figure 4. 

 

Figure  4. Plume pattern under various conditions of atmospheric stability [30] 
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2.2.6 Atmospheric stability class classification 

The abovementioned demonstrates that the air transportation depends on 

various factors. The temperature difference between air mass and the environment is the 

most Influence on air movement. Pasquill has classified the atmosphere stability state by 

considering the relationship between wind speed and solar quantity, which has 

conditions according to Table 3 and Table 4. The turbulence patterns from classification 

in this method are separated into seven classes consisting of extremely unstable (A), 

moderately (B), slightly unstable (C), natural (D), slightly stable (E), moderately stable 

(F), and strongly stable (G) [31]. 

Table  3 Conditions for evaluation of solar quantity[32].  

Sky Cover 
(Opaque or Total) 

Solar Elevation 
Angle>60° 

Solar Elevation 
Angle < 60° but, > 

35° 

Solar Elevation 
Angle < 35°but, 

 > 15° 
4/8 or less or, Any amount of 

High Thin Clouds 
Strong Moderate Slight 

5/8 to 7/8 Middle Clouds Moderate Slight Slight 

5/8 to 7/8 Low Clouds Slight Slight Slight 

Table  4 Conditions for atmospheric stability classification[31] 

Surface Wind 
Measured at 10 m 

      (m / sec) 

Day 
Incoming Solar Radiation 

Night 

Strong Moderate Slight > 4/8 low cloud ≤4/8 low cloud 

< 2 A A-B B F F 

2 - 3 A-B B C E F 

3 - 5 B B-C C D E 

5 - 6 C C-D D D D 

6 C D D D D 

Note A: extremely unstable, B: moderately, C: slightly unstable, D: natural, E: slightly stable, F: moderately stable, 

 and G: strongly stable. 
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2.3 Atmospheric dispersion  
2.3.1 Mixing height 

An explanation of the atmosphere layer in section 2.2.1 shows that the 

temperature in the troposphere decreases with height, causing vertical and horizontal 

radioactive transport. The limited height of changing temperature in this layer is called 

mixing height. Thus, the mixing height is the maximum height of the radionuclide 

transport layer [33]. Generally, it can be indicated with the atmospheric stability class, as 

shown in Table 5. 

Table  5 Conditions for mixing height evaluation [33] 
Atmospheric stability 

class 
A B C D E F 

Mixing layer height 1600 m 1100 m 800 m 560 m 320 m 200 m 

 

2.3.2 Plume rise 

The plume released into the environment is influenced by heat within 

containment. It causes the plume to rise in a vertical direction for Δh. Then, the plume 

disperse along with the wind in the horizontal direction [33]. The simulation code 

assumes that the initial position of plume dispersion is effective height, which is the 

summation of stack height (H) and range of plume rise (Δh), as shown in Figure 5. 

 

 

 

 

Figure  5 Plume rise characteristic. 
2.3.3 Air concentration  

Presently, there are many models developed to calculate the concentration of 

pollution in the atmosphere. One of them is the Gaussian model, which describes a 

Plume rise  

Physical height  Effective stack height  
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concentration field from a point source. The model assumes that the dispersion of 

radionuclides is a normal distribution that occurs both vertically and horizontally at the 

same time. The air concentration is calculated along with the receptor point located on a 

horizontal plane. The Gaussian model is rather suitable for a simple distribution situation, 

which is non-complex terrain. It can provide effective prediction results in short-range 

transport with constant meteorological conditions. The Gaussian model is developed to 

be the Gaussian puff model to increase prediction efficiency. The calculations in the puff 

model are conducted step by step, and each step consists of two parts. The first part is 

the plume advection calculation, which provides the direction and distance of the plume 

movement. Another part is the air concentration calculation, carried out with the 

Gaussian equation, as Equation 1 [34].   

𝐶𝐴𝑖(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) =
𝑄(𝑖)

2𝜋
3
2𝜎(𝑖)𝑥𝜎(𝑖)𝑦𝜎(𝑖)𝑧

exp [−
1

2
[[

𝑥(𝑖)𝑐−𝑥𝑟

𝜎(𝑖)𝑥
]

2

+ [
𝑦(𝑖)𝑐−𝑦𝑟

𝜎(𝑖)𝑦
]

2

+ [
𝐻−𝑍𝑟

𝜎(𝑖)𝑧
]

2

]]       (1) 

Where 𝐶𝐴𝑖(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟),𝑥(𝑖)𝑐,𝑦(𝑖)𝑐,𝜎(𝑖)𝑥 , 𝜎(𝑖)𝑦,𝜎(𝑖)𝑧, 𝑄(𝑖), and 𝐻 represent the 

air concentration of puff number 𝑖 at the receptor coordinate 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 [𝐵𝑞/𝑚3] . The 

puff center in 𝑥 and 𝑦 axis [-], the diffusion coefficient in 𝑥, 𝑦, and 𝑧 direction [𝑚], the 

concentration emission rate in each isotope [𝐵𝑞/𝑠], and the puff height [𝑚], respectively. 

The distribution of each step is a puffed pattern that had size according to the 

dispersion coefficient. This coefficient can be calculated from many methods. One 

method widely used is the formula from Pasquill's experiment [33], as presented in 

Equation 2. 

𝜎𝑖 = 𝑝𝑖,𝑐 ∙ 𝑥𝑞𝑖,𝑐                         (2) 

Where 𝑥, 𝑖 , and 𝑐 represent a distance from the source [𝑚], an index for direction 𝑥 or 𝑦 

and an index for diffusion category, respectively. Meanwhile, 𝑝𝑖,𝑐 and 𝑞𝑖,𝑐 are empirical 

constants. 
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2.3.4 Deposition and depletion  

Two main phenomena reduce the radionuclides in the atmosphere. The first 

phenomenon is decay. The unstable radionuclides emit radiation and go back to a 

steady state. The activity of these radionuclides is decreased as an exponential form 

according to the half-life of each isotope. The second phenomenon is the deposition 

consisting of dry deposition and wet deposition [34]. As for dry deposition, the gravity 

force, wind turbulence, and particle sedimentation process lead to radionuclide 

deposition to the ground. The dry deposition rate is called deposition velocity, which is 

the ratio between the time-integrated air concentration and ground concentration. The 

deposition velocity of noble gasses, particles, and reactive vapors has values around 0, 

1x10-3, and 1x10-2, respectively. The wet deposition is the leaching of radioactive 

material from the atmosphere to the ground by precipitation. The radionuclide 

accumulated on the ground is calculated ground concentration by Equation 3. 

𝐶𝐺𝑖(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) =
𝐶𝐴𝑖(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) ∙ (𝑉𝑑 + 𝑉𝑊) ∙ (1 − 𝑒−𝜆𝐸∗𝑇𝑏)

𝜆𝐸
 

Where 𝐶𝐺𝑖(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) represents the ground concentration of isotope 𝑖 at receptor 

coordinate 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 [𝐵𝑞/𝑚2], 𝑉𝑑 and 𝑉𝑊 are dry and wet deposition coefficient [𝑚/𝑠], 
𝜆𝐸 is the effective decay constant, which is the summation of the decay constant of 
isotope and natural decay in soil [𝑠−1]. 𝑇𝑏 is the duration of the radionuclide discharge 
[𝑠]. 

2.3.5 Resuspension  

The radionuclide deposition from the atmosphere to the ground can disperse to 

the air again by wind, traffic, or agricultural activities. This process is called 

resuspension. The dose is calculated from this phenomenon, considering inhalation. 

However, the dose from this phenomenon is relatively low compared to other groups 

[33]. Thus, this research does not consider the resuspension effect. 

(3) 
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2.4 Dose estimation and emergency planning  
The radionuclides contaminated in the environment are calculated with a two-

part dose [33]. The first is the external dose, which considers cloud shine and ground 

shine radiation. The calculation in this method does not consider the effect of alpha 

radiation because it has a low penetrating ability. Meanwhile, the effect of beta radiation 

is considered only skin. The formula for the external calculation method is presented as 

Equation 4. Another part is the internal dose, which takes into account the effects of 

internal radioactivity from ingestion and inhalation. However, the dose calculation from 

ingestion required various information that is difficult to prepare, such as the 

consumption rate in each age and each food type. Thus, this research considers only 

the internal dose with inhalation, calculated by Equation 5. The total effective dose is the 

summation value of Equations 4 and 5 [34]. 

 𝐸𝑒𝑥 = ((𝐶𝐴𝑖 ∙ 𝐷𝐹𝑐𝑙) + (𝐶𝐺𝑖 ∙ 𝐷𝐹𝑔𝑟)) ∙ 𝑂𝑓  (4) 

 𝐸𝑖𝑛 = 𝐶𝐴𝑖 ∙ 𝑅𝑖ℎ ∙ 𝐷𝐹𝑖ℎ     (5) 

Where 𝐸𝑖𝑛  is the internal dose from inhalation [𝑆𝑣], 𝑅𝑖ℎ is inhalation rate [𝑚3/𝑠], 𝐷𝐹𝑖ℎ is 

inhalation dose coefficient [𝑆𝑣/𝐵𝑞], 𝐸𝑒𝑥  is the summation of external dose from cloud 

shine and ground effect [𝑆𝑣]. 𝐷𝐹𝑐𝑙  and 𝐷𝐹𝑔𝑟 are dose conversion factor of cloud shine 

[𝑆𝑣 𝑝𝑒𝑟 𝐵𝑞3/𝑚] and ground shine [𝑆𝑣 𝑝𝑒𝑟 𝐵𝑞2/𝑚]. 𝑂𝑓  is the factor of the group 

member who receives the radionuclide effect.  

2.4.1 Dose limit  
The International Commission on Radiological Protection (ICRP) is an 

independent and international organization. They recommend the radiation exposure 

limit for occupational workers and public people to ensure that no person is exposed to 

excessive radiation in normal, as shown in Table 6. 

The effect of receiving a radiation dose can be separated into two parts: 

deterministic and stochastic. The deterministic effect causes malfunction of the system 
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of internal organs when radiation exposure exceeds the limit of individual organs. The 

body anomalies according to radiation exposure levels are shown in Table 7.  

The stochastic effect is a health effect from receiving low exposure over a long period. 

This situation leads to cancer and genetic disorders [35]. 

2.4.2 Emergency planning  
The above-mentioned demonstrates that severe accidents at nuclear power 

plants can lead to the release of radionuclides into the atmosphere. They can transport 

along with the wind and deposit to the ground by wet and dry deposition. The 

contamination of these radionuclides in the environment can affect humans, both 

internal and external exposure. Radiation exposure causes deterministic and stochastic 

effects. The emergency plan is a necessary thing that helps manage and decrease this 

risk. The main strategies used in a nuclear accident consist of nine strategies.  

The first is evacuation. It is the evacuation of people from the area expected to 

be a high risk before the risk arrives. The second is sheltering, which uses a suitable 

barrier to protect or decrease the radiation effect. The third is respiratory protection, 

which uses significant material to protect radiation effects by inhalation, such as 

facemasks, towels, or cloth. Remove the contaminated material from people, such as 

washing or removing any contaminated clothing. Relocation is moving people to new 

areas with low radiation concentrations. The potassium iodide (KI) blockage or taking 

stable iodine is one of the strategies for decreasing radiation of unstable iodine in the 

thyroid gland. Decontamination of the city and protecting the food chain decreases the 

radionuclide effect over a long period. Finally, medical treatment reduces the risk to the 

sufferer [33]. The International Atomic Energy Agency (IAEA) has recommended 

protective action to reduce the stochastic effect risk [36], as shown in Table 8. 

Meanwhile, ICRP has recommended the framework to decrease the risk of 

radiation exposure in an emergency [35]. The risk level or the reference level is defined 

into three parts according to radiation exposure. The first part is that the incident causes 
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the individual to be exposed to radiation less than or equal to 1 mSv. The sufferer should 

receive general information about the exposure level, and the occupational worker 

should investigate the exposure pathway. The second part is that the incident causes 

the individual to be exposed to more than 1 mSv to 20 mSv radiation. Radiation 

assessment and dose reduction are performed on the patient. The constraints for the 

occupational worker are defined in the emergency plant. The last part is the incident 

leading to radiation exposure of more than 20 mSv to 100 mSv in individuals. The 

radiation dose reduction in the environment is conducted. The risk information should be 

presented to the public. Radiation assessment and dose reduction are performed on the 

patient. 

Table  6 Recommended dose limits in planned exposure situations[35] 

Application 
Recommended dose limits 

Occupational Public 

Effective dose 
20 mSv per year averaged 

over 5 years. 
1 mSv in a year 

Annual equivalent dose 

- The lens of the eye 150 mSv 15 mSv 
- The skin 500 mSv 50 mSv 
- The hand and feet 500 mSv 50 mSv 
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Table  7 Deterministic effects [37]  

List 
Exposure dose  

1 – 2 Sv 2 – 6 Sv 6 – 10 Sv 10 – 50 Sv More than 50 Sv 

vomit 
1 Sv : 5% 
2 Sv : 50% 

3 Sv : 100% 100% 100% 100% 

Damaged 
organ system 

Hematopoietic system 
Digestive 
system 

Central nervous 
system 

symptom 
Low white 
blood cells 

Bleeding will not stop, 
easily contracted, and hair 

loss. 

Diarrhea, fever, 
loss of 

electrolyte 
balance 

Convulsions, 
tremors, 

uncontrollable 
muscles, 

unconsciousness 
Time for 

symptoms 
- 4 to 6 weeks 5 to 14 weeks 1 to 48 hours 

Period 
returned to 

normal 

Several 
weeks 

1 to 12 
months 

More than 
12 months 

- - 

Cause of 
death 

- 
Bleeding 

does not stop 
Infectious 
diseases 

The circulatory 
system stops 

working. 

The respiratory 
system does not 

work, water 
retention in the 

brain. 
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Table  8 Responsed actions in emergency situations to reduce risks [36]. 

Generic criteria Examples of protective actions 

The criteria for urgent protective actions 

- H (thyroid) 

50 mSv in the 
first 7 days 

Iodine thyroid blocking 

- E 
100 mSv in the 

first 7 days 
Sheltering; evacuation; contamination control; 
public reassurance; decontamination; restriction 
of the consumption of food, milk, and water - H (Fetus) 

100 mSv in the 
first 7 days 

The criteria for taking protective actions and other response actions early in the response 

- E 100 mSv per annum Temporary relocation; public reassurance; 
decontamination; replacement of food, milk, and 
water - H (Fetus) 

100 mSv for the full period 
of in utero development 

The criteria for taking medical actions to detect and treat radiation-induced health effects 

- E 100 mSv in a month 
Screening, according to doses equivalent to 
specific radiation-sensitive organs. 

- H (Fetus) 
100 mSv for the full period 

of in utero development 
Counseling to allow informed decisions to be 
made in individual circumstances 

Equivalent dose in an organ (HT) or tissue (T); Effective dose (E). 
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2.5 Radiological consequence evaluations 

The examination of all factors impacted by an accident or environmental 

radioactive material release is known as the radiological consequence evaluation. It can 

usually be divided into two types: the consequence evaluation by measured data and 

predicted results. 

2.5.1 Evaluation by measured data  
Beta and gamma radiation detected by on-site radiation detectors are used to 

assess radiation doses, determine population hazards, and take appropriate 

precautions [38]. Generally, results from this kind of evaluation are relatively accurate. 

However, It is limited in determining the radiation impact in an area where measurement 

data cannot be accessed. In addition, this process cannot be used to assess radiation 

effects by a hypothetical accident. 

2.5.2 Evaluation by predicted results  
This process evaluated the radiation effects by considering the prediction results 

of a simulation code performed with the chemical and physical transformation. The 

boundary and initial conditions used in the prediction process are based on actual 

events in the past, such as the release period, release source term, and meteorological 

data. Generally, this process is performed with measurement data to evaluate the 

radiation effects in regions where measurements cannot be accessed. In addition, it is 

used in examining the potential radiation effects of hypothetical nuclear accidents. 

Generally, the evaluation by prediction results can be categorized into two types by 

considering the assessment boundary. The first type is inside boundary evaluation 

monitoring radiation effects around power pant location [39-41]. Adverse meteorological 

conditions and worst-case scenarios are generally considered in this method to provide 
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conservative prediction results [42]. The second type is outside boundary evaluation 

monitoring transboundary radiation effects from neighboring countries [7,8,43]. 

However, It has no clear requirements or recommendations in the assessment process. 

It is generally conducted with worst-case scenarios and considers the release 

characteristics. This is because the release characteristics are related to meteorological 

data that significantly impact concentration calculations [44-46]. 

2.6 Atmospheric dispersion code  

The atmospheric dispersion code is a computational code designed to 

investigate radionuclide transportation and health effects. Most atmospheric dispersion 

codes have a similar calculation process consisting of three main parts: pre-processing 

process, atmospheric dispersion calculation process, and report data process, as 

presented in Figure 6. 

The pre-processing process is input data preparation before being sent to the 

dispersion calculation process. The input data commonly applies in the code consisting 

of meteorological data and release source term data [47]. The release source term data 

is the activity concentration of a radionuclide released from the nuclear power plant 

system into the environment. Two patterns of release source term data are commonly 

used in radiation consequence assessment. First is the actual release data measured 

from real incidents in the past, such as the Chornobyl nuclear accident [48], the 

Fukushima nuclear accident [49], and the wildland fires in Chornobyl [50]. Second is the 

predicted release data evaluated from the simulation code. The radionuclide behavior 

within the containment building is initially predicted. The amount of radionuclides leaking 

into the environment is then calculated. [39,51]. 

Meteorological data is weather data from observation or evaluation by a 

meteorological provider. It is applied in the atmospheric dispersion code to evaluate the 
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transportation behavior of radionuclides in the atmosphere. The meteorological 

parameters imported in each code depend on the calculation design. Generally, the 

code performs with atmospheric stability class, wind, and rain data defining 

atmospheric suitability, speed and direction of dispersion, and deposition, respectively.  

The release source term and meteorological data are used in the atmospheric 

dispersion calculation process to predict the radionuclide dispersion by the dispersion 

model. The dispersion model in the codes is commonly one of the following three 

models. Firstly, the Gaussian plume model calculates radionuclide dispersion under a 

single release point with constant meteorological data conditions [52]. Secondly, the 

Puff model calculates dispersion, assuming that the plume dispersed from the trajectory 

line changed according to weather conditions [53,54]. Thirdly, the Lagrangian 

dispersion model calculates distribution by assuming that a radionuclide is a particle 

pattern that diffuses through an atmospheric flow [55].  

These models use mathematical equations to predict radionuclide transportation 

in the atmosphere, considering downwind and atmospheric turbulence. Removing 

radionuclide phenomena, such as radioactive decay and wet and dry deposition, are 

considered in calculating air and ground concentration at an interesting location. All 

radiation effects from the contaminated environment are then used to calculate internal 

and external doses [56]. The calculated results from the atmospheric dispersion 

calculation process are sent to the reporting process to demonstrate the consequent 

evaluation results. A display pattern commonly applied in the codes consists of the 

statistics graphs, the tabulated results, and the graphical results. 
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Figure  6 General calculation process in the atmospheric dispersion code[1]. 

2.6.1 Nuclear accident consequence analysis code (NACAC)  
NACAC is a program that has been used in this research. It is the atmospheric 

dispersion model developed by the Thailand Institute of Nuclear Technology (TINT). The 

program referred to the OSCAAR code algorithm developed by the Japan atomic 

energy agency (JAEA) and verified with JAEA projects [57,58]. The algorithms in the 

NACAC are designed to allow evaluation of the radiation covering the Asian region. 

There are two layers of the computational grid in NACAC. The first is the meteorological 

data grid designed as a cartesian coordinate according to the National Center for 

Environmental Protection data (NCEP) format. The second is the concentration 

calculation grid designed as a polar coordinate with 400 calculation receptors located at 

25 radii and 16 directions. The calculation process in the NACAC consists of three parts: 

the data preparation, atmospheric dispersion calculation, and the result display.  

As for data preparation, the source term data is used to calculate the release 
rate, defined as a step according to the puff form as Equation 6. Meanwhile, the 
meteorological data from the NCEP is prepared in the meteorological data grid with a 
55.5 x 55.5 km2 resolution. There are three main meteorological parameters used in the 
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NACAC. Firstly, the atmospheric stability class data is used to define atmospheric 
turbulence. Secondly, the wind data is used for the radionuclide transportation 
evaluation. Thirdly, the rain data is used for radionuclide depletion evaluation. The 
atmospheric stability class and rain data are prepared at the surface layer (10 m). 
Meanwhile, the wind data is prepared with ten layers consisting of surface wind (10 m), 
1,000, 975, 950, 925, 900, 850, 800, 750, and 700 hPa, respectively. 
 

𝑄𝑅 =
𝑄𝑇

𝑇𝑆 ∙ 𝑃𝐹𝑖
 

Where 𝑄𝑅 is the activity release in each step of the isotope 𝑖 [𝐵𝑞/ℎ] , 𝑄𝑇 is the total 
release activity [𝐵𝑞] , 𝑇𝑆 is the total simulation time [ℎ] , and  𝑃𝐹𝑖 is the size particle 
fraction of the isotope 𝑖.  

As for atmospheric dispersion calculation, the meteorological and source term 
data from the previous section are used in the Gaussian puff model to calculate 
dispersion, depletion, and concentration with 16 parameters, as shown in Figure 7. In 
the dispersion calculation part, the atmospheric stability class is used to evaluate the 
diffusion coefficient in horizontal ( 𝜎𝑦)and vertical (𝜎𝑧) directions by the Pasquill-Grifford 
method. 

 

Figure  7 Calculation flow chart in atmospheric dispersion calculation part 
The dispersion coefficient in vertical directions is used to calculate the plume 

density fraction in each wind layer. The wind data in each layer is then weighed by the 

(6) 
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plume density and averaged to calculate the average wind component in X and Y 
directions, as shown in Equation 7. The effective vector of the averaged wind 
component is multiplied with advection time to determine the plume dispersion distance 
and direction in each calculation step on the meteorological data grid. Then, the 
dispersion coefficient in the horizontal direction is used to calculate the dispersion 
boundary fraction in each advection step to select the calculation receptor, as in 
Equation 8.    

           

𝑊𝐴𝑉 =
∑ ℎ𝑖 ∙ 𝑤 ∙ 𝑒

−0.5(
ℎ𝑖−ℎ𝐸

𝜎𝑧
)

2

10
𝑖=1

∑ ℎ𝑖 ∙ 𝑒
−0.5(

ℎ𝑖−ℎ𝐸
𝜎𝑧

)
2

10
𝑖=1

 

                          
𝐷𝑏 = 5 ∙ 𝜎𝑦              (8) 

Where 𝑊𝐴𝑉, 𝑤, ℎ𝑖, ℎ𝐸 , 𝐷𝑏 , 𝜎𝑧,  and 𝜎𝑦   are the average wind component  
[𝑚/𝑠], wind components in the 𝑥 or 𝑦 directions [𝑚/𝑠], geographical heights 
 at layer 𝑖 [𝑚], effective release height [𝑚], dispersion boundary faction [-], the diffusion 
coefficient in 𝑧 and 𝑦 direction [-], respectively. 

 

Figure  8  Advection calculation pattern of the NACAC [59] 
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Figure  9 Receptor selection in NACAC 

In the depletion calculation part, the decay, wet, and dry deposition phenomena 

are taken into account in this part. All phenomena cause decreasing the emission 

concentration in exponential form as Equation 9. The decay depends on the half-life of 

radionuclides. The dry deposition depends on the dry depletion coefficient and 

considering radionuclide distribution from puff center to ground as Equation 10. The wet 

deposition depends on the wet depletion coefficient evaluated by a wash coefficient and 

average rain within the dispersion boundary, as Equation 11. Depletion of all 

phenomena is considered according to advection time in each calculation step.  

𝑄𝑑(𝑖) = 𝑄(𝑖) ∙ 𝑒−(𝜆𝑖+𝑊𝑑+𝐷𝑑)∙𝑡           (9) 

           𝐷𝑑 =
𝐷𝑣

𝜎𝑧 ∙ √2𝜋
∙ 𝑒

−
(𝐻−ℎ𝑔)

2

2∙𝜎𝑧  

                  𝑊𝑑 = 𝑊𝑐1 ∙ 𝑅̅
𝑤𝑐2                                                  (11) 

(10) 
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                                                                𝑡 =
𝑇 ∙ 𝜎𝑦

𝑆
 

 Where 𝑖, 𝑄𝑑(𝑖), 𝑄(𝑖), 𝜆𝑖, 𝑊𝑑, 𝐷𝑑, 𝑡 , 𝑇, 𝐷𝑣, 𝜎𝑦, 𝜎𝑧 , 𝐻 , ℎ𝑔, 𝑅̅, 𝑆, 𝑒−(𝜆𝑖+𝑊𝑑+𝐷𝑑)∙𝑡  and 

𝑊𝑐1 or 𝑊𝑐2 present radionuclide isotope 𝑖 [-], emission concentration rate with depletion 

[𝐵𝑞/𝑠], emission concentration rate [𝐵𝑞/𝑠], decay constant [𝑠−1], wet depletion 

coefficient [𝑠−1], dry depletion coefficient [𝑠−1], sub advection time [𝑠], advection time 

[𝑠], dry deposition velocity [𝑚/𝑠], diffusion coefficient in horizontal and vertical direction 

[-], the puff height [𝑚], ground height [𝑚], average rain [𝑚𝑚/ℎ], advection distance 

faction [-], sum depletion faction [-], and wash coefficient [-], respectively. 

In the concentration calculation part, the emission concentration rate with 

depletion is used to calculate the air concentration at the selected receptors by 

Equation 1 in section 2.3.3. These calculation patterns continue until the end of the 

simulation time, causing the plume trajectory, as shown in Fig. 10. Meanwhile, the 

ground concentration is calculated by multiplying the air concentration in each receptor 

with the deposition coefficient considered wet and dry deposition phenomena as 

Equation 3 in section 2.3.4. 

 
Figure  10 Trajectory characteristics in the NACAC [60]. 

(12) 
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The external and internal dose calculation processes in the NACAC are 

determined as in NUREG/CR-0494 and NUREG/CR-4214, respectively [61,62]. The 

internal dose considers the effect of the radionuclide brought into the body by 

breathing. Thus, the inhalation rate and the air concentration are used in the calculation 

process by multiplying the inhalation dose coefficient, as shown in Equation. 4 in section 

2.4. Meanwhile, the external dose considers the effect of gamma and beta rays from 

ground and cloud shine phenomena, calculated as Equation 5 in section 2.4. 

As for the result display, the calculated results are shown in polar coordinates 

according to the concentration calculation grid, providing convenience in defining the 

dispersion of radioactive materials.   

2.6.2 Java-based Realtime Online DecisiOn Support system (JRODOS)  
The JRODOS code is the program for offsite emergency management evaluation 

covering both local, regional, and national levels. The code is developed by the 

Karlsruhe Institute of Technology in Germany [63]. It is a well-known code widely used 

for radiological emergency response [64]. Previously, the prediction performance of 

JRODOS was investigated by comparing predicted results with measurement data from 

the Fukushima nuclear accident in several studies.  

Leung, Ma [7] investigated the capability of the JRODOS code by estimating the 

radiation effect from the Fukushima nuclear accident. The release source conditions of 

Cs-137 in the period from March 12 to April 5, 2011, were considered.  The JRODOS 

calculates the dispersion and deposition of the radionuclide with forecast meteorological 

data from the German Weather Service (DWD). Measurement data from the United 

States Department of Energy (DOE) and the Ministry of Education, Culture, Sports, 

Science and Technology (MEXT) of Japan are used as reference values for the 

verification process. It noted that the predicted result from JRODOS agrees well with 

measurement data. The same order of magnitude of ground concentration is found. 
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However, slight differences in dispersion characteristics are noted by the effect of the 

forecast meteorological data. 

 Dvorzhak, Puras [16] estimated the radiation effect from the Fukushima nuclear 

accident in the period March 12 to 24, 2011 by the JRODOS code. The released source 

term data is evaluated by RASCAL code according to the status and accident 

information of the Fukushima nuclear accident.  The forecast meteorological data from 

the European Centre for Medium -Range Weather Forecasts (ECMWF) is considered. 

Comparing predicted results with measurement data of Cs -137 from Tokyo Electric 

Power Company (TEPCO) at Ibaraki, Yamagata, and Tochigi provinces are performed. It 

was found that JRODOS can provide a ground concentration of Cs -137 lower than 

measurement data in all locations by effect discrepancies in the released source term. 

However, the predicted result and measurement are in the same order of magnitude in 

almost all positions. 

 Landman, Päsler-Sauer [17] recalculated the dispersion of Cs -137 from the 

Fukushima nuclear accident in the period March 12 to 26, 2011  by the JRODOS code.  

The calculation is performed with source terms from the German Gesellschaft für 

ReaktorsicherheitFootnote5 (GRS) installed in JRODOS and has released concentration 

close to measurement data. Meteorological data from Weather Research & Forecasting 

Model (WRF) is used.  A Predicted result is compared with measurement data from 

published information by United States and Japanese institutions. It noted that JRODOS 

can provide dispersion characteristics correlated with the published information.  The 

maximum concentration of ground concentration agrees well with measurement data. 

However, the overestimate with the extension of the impact area is found by the effect of 

variation in forecast meteorological data. 

 Generally, the JRODOS provides reasonably agreed predicted results with 

measurement data with similar dispersion characteristics. However, there are limitations 
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in observing actual data throughout the accident period. These limitations cause 

released source terms and meteorological data by estimation to be used in the 

evaluation process, leading to some variation in the JRODOS predicted result and 

measurement data.   

The JRODOS code is a program used in the NACAC verification process. The 

code uses three data sets for atmospheric dispersion calculation: source term data, 

meteorological data, and terrain data. In the beginning, the source term data is used to 

calculate the release rate, while the meteorological data is sent to the meteorological 

preprocess to prepare data for the atmospheric dispersion calculation. In this process, 

all meteorological data are taken to the computational grids with various resolutions in 

five domains consisting of 2 x 2, 4 x 4, 8 x 8, 16 x 16, and 32 x 32 km2 recommended in 

the JRODOS [65]. Wind data and terrain data are used to analyze wind turbulence. This 

results in the wind characteristic changes according to the topography. The high 

roughness area has complex wind directions and low wind speed, while the low 

roughness area has strong wind and single directions. The atmospheric stability class is 

evaluated by one of the following methods depending on data available at each grid 

position. Wind surface and net radiation data are first used for the evaluation if available. 

If the net radiation data is not available, the stability class will be evaluated from the 

temperature lapse rate and surface wind. Finally, if the temperature lapse rate is not 

available, the Pasquill-Gifford method will be used to evaluate the atmospheric stability 

class [66]. Then, the processed data are sent to the atmospheric dispersion module to 

calculate dispersion characteristics and activity concentrations. There are three different 

dispersion models in JRODOS: the puff model, the particle model, and the long-range 

model. The puff model called RIMPUFF, mostly similar to NACAC, is used in the 

verification process. 
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The RIMPUFF model considers the 3D wind data in calculating plume advection 

[67], as shown in Figure 11. The wind data is imported from the meteorological data file 

and instated at the reference heights designed in the JRODOS code.  Meanwhile, the 

wind data in the gaps between the reference heights are calculated by three 

interpolation processes. The logarithmic interpolation is performed when the plume is 

located inside the surface layer. The power-law interpolation is conducted when the 

plume is located between the surface layer and the mixing height. Finally, linear 

interpolation is used when the plume is above the mixing height [66]. The effective 

vector at the puff position is calculated to define the dispersion distance and direction in 

each calculation step. The Gaussian equation is used to calculate air concentration in 

the atmosphere.  Meanwhile, ground concentration is calculated based on the 

deposition coefficient varying with the type of isotopes. The JRODOS calculates dose 

values by the dose model and terrestrial food chain considering four radiation effects: 

ingestion effect, inhalation effect, cloud effect, and ground shine effect. The dose 

conversion coefficient used in the dose calculation process refers to the internal 

dosimetry program PLEIADES, the National Radiation Protection Board (NRPB), and 

GSF-12/90 report. All prediction results in the JRODOS is calculated and displayed on 

cartesian coordinate with five-domain grid resolution. 

 

Figure  11 Advection calculation pattern of the JRODOS [66] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

2.6.3 Differences between the NACAC and JRODOS  
As mentioned above, it is noted that the NACAC and JRODOS codes have 

different and similar parts. They have the same calculation pattern. Firstly, the 

meteorological data is prepared in the pre-processing process. Then, the processed 

data are sent to the atmospheric dispersion model to calculate activity concentration 

and dose.  Finally, all results are sent to the display part to demonstrate the predicted 

results. However, both codes also have different calculation details in each process. 

 As for the pre-preparation process, NACAC used the Pasquill-Grofford method 

[31] and ignored terrain data to evaluate the atmospheric stability class and generate 

wind field, respectively. In addition, all meteorological data in NACAC are prepared in a 

single domain resolution grid of 55.5 x 55.5 km2. In comparison, the JRODOS used three 

methods to evaluate atmospheric stability class and generate wind field by considering 

the terrain data. Preparing meteorological data in the JRODOS is performed with five 

domains resolution grid of 2 x 2 km2, 4 x 4 km2, 8 x 8 km2, 16 x 16 km2, and 32 x 32 km2, 

respectively. 

As for the atmospheric dispersion calculation, the two codes use different 

advection calculation models. The NACAC determines plume advection by a 2D 

effective vector. The average wind data according to plume density in each wind layer 

are used in the calculation process. In comparison, the JRODOS defines plume 

advection by considering a 3D vector of wind data at the puff center. In addition, both 

codes also have different schemes for calculating activity concentration and dose. 

Although both codes calculate air concentration by the Gaussian equation, JRODOS 

calculates ground concentration by wet deposition coefficient higher than NACAC, 

around 1.25-fold. Besides, the information used in the dose calculation of both codes is 

different. The NACAC refers to information on NUREG/CR-4214 and NUREG/CR-0494, 

while JRODOS refers to information on the NRPB internal dosimetry program PLEIADES 

and GSF-12/90 report. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

As for the result display, the NACAC shows all predicted results on a polar 

coordinate map, while the JRODOS shows them on a Cartesian coordinate map. Details 

of differences between NACAC and JRODOS are summarized in Table 9. 

Table  9 Differences between the NACAC and JRODOS[2]. 
List NACAC JRODOS 

Data preparation system 
Wind field evaluation Ignore terrain effect Consider terrain effect 
Atmospheric stability class 
evaluation 

Pasquill-Grifford method Evaluate by one of three methods: 
- Wind surface and net radiation 
- Temperature lapse rate and surface 
wind 
- Pasquill-Gifford method 

Meteorological data preparation grid 
resolution 

Single domain with a resolution of 
55.5 x 55.5 km2 

Five domains with different 
resolutions:  
2 x 2 km2, 4 x 4 km2, 8 x 8 km2, 16 x 
16 km2, and 32 x 32 km2 

Atmospheric dispersion model 
Advection calculation Use a 2D effective vector of 

averaged wind data proportional to 
the plume density. 

Use 3D effective vector of wind data 
at plume position. 

Concentration calculation Calculated on a polar grid Calculated on a Cartesian grid 

Deposition coefficient   
- Aerosol  

    (I is precipitation rate)  

Dry deposition 0.001 [m/s] 
Wet deposition 1 x 10-4 I0.8 [s-1] 

Dry deposition 0.001 [m/s] 
Wet deposition8 x 10-5 I0.8 [s-1]   

- Iodine organic  

    (I is precipitation rate) 

Dry deposition 0.0005 [m/s] 

Wet deposition 1 x 10-6 I0.8 [s-1] 

Dry deposition 0.001 [m/s] 
Wet deposition  8 x 10-8 I0.8 [s-1]   

Information for dose calculation NUREG/CR-0494 

NUREG/CR-4214 

The NRPB internal dosimetry 
program PLEIADES Report GSF-
12/90 

Result display 

Concentration map Polar coordinate map Cartesian coordinate map 
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2.7 Meteorological data selections 

Evaluating radiation consequences requires carefully selecting metrological data 

because meteorological data vary with time, causing various computed results. Thus, 

defining simulation time relating to meteorological data is important. The meteorological 

data selection is a process designed to prepare meteorological data before being sent 

to a consequence evaluation process. It is generally used to define a format and time for 

simulation. Three types of meteorological selection processes are widely applied, 

consisting of sequential, extreme, and representative data selection [68]. 

2.7.1 Sequential data selection  

Sequential data selection or cyclic sampling is the selection of meteorological 

data n sequence with the same interval, as shown in Figure 12. Each sequence includes 

the meteorological parameters required for evaluating the consequences according to 

the evaluation period. This process typically applies with a year of meteorological data 

to provide comprehensive assessment results [69-71]. The 8,760 meteorological 

sequences are prepared as input data for a simulation process. Then, a percentile or 

average of all prediction results is used as a representative value for evaluating radiation 

consequences. This process provides a comprehensive prediction result. However, it 

requires a large computational resource. 

2.7.2 Extreme data selection 

Extreme data selection is the selection of meteorological data with extreme or 

adverse situations. In general, the extreme situation is considered with the highest 

severity of meteorological parameters or weather characteristics that greatly affect the 

area of interest. For example, Kaviani, Memarian [72] select a high rainfall period to 

evaluate domestic radiation consequences from Bushehr NPP in Iran with the 
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hypothetical severe accident. Extreme data selection is generally used to produce a 

conservative result in the evaluation process. However, some overestimated predicted 

results may be found with a low occurrence rate of extreme conditions [73]. 

2.7.3 Representative data selection 
Representative data selection or stratified meteorological sampling is designed to 

Improve efficiency in evaluating the radiation effect with low computational resource 

situations [74]. This process generates an input dataset covering all meteorological 

conditions by selecting representatives of all meteorological characteristics. As a result, 

the simulation is performed with a low simulation case. However, it also provides quite 

comprehensive prediction results for all phenomena. 

Previously, this process was frequently utilized to assess the radiation effects 

surrounding NPPs [75-77]. Generally, this process is performed by grouping time with 

similar weather characteristics and then selecting the representative time of each group 

to generate a new dataset, as shown in Figure 13 [74,78]. There are three steps 

performed in the representative data selection: data preparation, data classification, and 

representative selection. 

The data preparation step is a process for collecting meteorological parameters. 

There are four parameters widely used in this step. Firstly, rain intensity plays an 

important role in defining the deposition potential of radionuclides. Secondly, the 

atmospheric stability class demonstrates the atmospheric conditions for dispersion. 

Thirdly, wind direction indicates the pathway or direction of plume movement.  Fourthly, 

the wind speed or the travel time shows the speed of plume movement. These hourly 

meteorological parameters are collected by average or summation in an area  covering a 

study site to confirm that the collected meteorological data influence prediction results in 

the area of interest. 
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The data classification step categorizes the corrected meteorological data into 

several groups by considering the characteristics and severity level of the 

meteorological data.  Generally, the collected data is separated into a wet and dry 

group or a high and low rain level group [77-79]. The low rain group data is classified by 

the parameters influencing a plume movement, such as wind speed, travel time, and 

atmospheric stability class [77,80]. However, travel time and wind speed have the same 

property in the dispersion investigation. Thus, one of them is performed in the 

classification process. As for the high rain group, most of the data in this group cause 

radionuclide deposition by wet deposition phenomena. Hence, the classification in this 

group ignores the parameters influencing a plume movement. Finally, wind direction is 

used in the classification of all subgroups to categorize meteorological characteristics at 

each time. 

The representative selection step selects representative data in each subgroup 

by a random function with the appropriate selection rate. All selected data are 

generated as input data for simulations. 
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Figure  12 Sequential data selection[1] 
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Figure  13 Representative data selection[1] 
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2.8 Demonstration of predicted results by percentile levels 
Demonstration of predicted results by percentile levels is widely used in 

Probabilistic Safety Assessment (PSA) [59,75,81,82]. This process is performed to 

select representative predicted results according to consequence levels. Accessing 

radiation consequences from a hypothetical accident is conducted with meteorological 

conditions. Predicted results by each meteorological condition are sorted from low 

consequence to high consequence according to concentration levels. The 

representative results are selected according to percentile for radiation consequence 

evaluation. The predicted result at the 100 th percentile represents the highest 

concentration from all simulation cases, leading to the highest consequence. 

2.9 Literature review  

2.9.1 Potential dangers of nuclear power plants in China 

Qiang wang [83] studied the nuclear power strategy in China and found that the 

industrial growth in China caused higher electricity demand. However, this problem was 

not solved by coal plants because air pollution remains a concern in China. China was 

one of the countries that emit the most carbon dioxide, producing acid rain and sulfur 

dioxide. Thus, the nuclear power plant was the best option for increasing electricity 

generation capacity in China. China planned to increase nuclear generation up to 70 

GWe. Most of these power plants were built along with the coastal areas from Guanxi to 

Jilin province. Some parts of nuclear power plants were built in central China, such as 

Anhui, Henan, and Jiangxi province. Some of these provinces were located under the 

northeast monsoon blowing to Thailand.  

Chritoudias et al. [84] studied global risk using ECHAM/MEESSY and EMAC 

codes. The research studies the radionuclide effect by assuming that all the nuclear 

power plants in the world had an accident leading to the release of I-131 and Cs-137 to 

an environment of 1 PBq per station. The result showed that the USA was most affected 
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by radioactive contamination, followed by India, France, Germany, Japan, and China for 

the current station. Meanwhile, if the power plant under construction was operated, 

China would be the highest-risk country, followed by India and the USA. Besides, this 

research also defined that the radionuclide effect could occur in countries without a 

nuclear power plant from the Influence of wind circulation and rain. These researchers 

point out that China is a country with high radiation risk. Thus, the evaluated effect of 

radionuclides from China's nuclear power plants is necessary for Thailand, located near 

China.   

2.9.2 Climate changes 

Several studies have examined changing monsoon characteristics and found 

that the northern East Asian summer monsoon (EASM) circulation had been weak since 

the late 1970s. The cause of the monsoon weakening was investigated. Yu et al. [85] 

suggested that decreasing temperature in the troposphere was the main cause. 

Meanwhile, Yang and Lau [86] demonstrated that the sea surface temperature warming 

over the central and eastern Pacific was another cause. Besides, Zhu et al., [87] found 

that greenhouse gases could produce the warming trend of the surface air temperature 

around Lake Baikal, causing weak circulation of the East Asian summer monsoon. 

Mickley et al. [12] studied the changing air quality from 1950 to 2052. The 

research analyzed carbon dioxide behavior each year, assuming that carbon dioxide 

emissions from industrial plants in the United States were constant. The result showed 

that global warming caused the air circulation pattern to gradually change. This led to 

the wind blowing through the northeast and midwestern United States to decrease. It 

caused high concentrations of carbon dioxide in these areas. Besides, Daniel and 

Darrell [13] also confirmed that the Earth's air circulation was weak by studying the 

behavior of air quality for the twenty-first century. This research supports the hypothesis 
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that a single year of meteorological data may not be sufficient to study atmospheric 

radionuclide dispersion. 

2.9.3 Influences of variations in meteorological data on air pollution behavior 

Chen et al. [88] studied the relationship between meteorological variation and 

concentration of PM2.5 and O3 in the North China Plain (NCP), Yangtze River Delta (YRD), 

and Fen-wei Plain (FWP) in the period of 2014 to 2018. Hourly observation data of PM2.5 

and O3 was used together with meteorological data from the European Centre for 

Medium-Range Weather Forecasts Reanalysis Interim (ERA-Interim) in the Multiple linear 

regression (MLR) models. The research evaluated the meteorological impact of 

changing air quality trends. The investigation result demonstrated that the 

meteorological variation significantly changed the air quality in each area. The increased 

planetary boundary layer caused the concentration of PM2.5 at the surface layer to 

decrease. Meanwhile, increased temperature caused the concentration of O3 to 

increase. 

Hu et al. [89] investigated the impact of meteorology on ozone gas in China. The 

daily meteorological data from the China Meteorological Data Network from 2015 to 

2017 and O3 measurement data from 334 cities were used. The investigation results 

showed that yearly meteorological data caused a significant change in O3 concentration. 

These results correspond to Chen et al. study [88]. Increasing temperature and 

decreasing humidity were a productivity accelerator of O3. It was noted that the summer 

season caused the highest concentration of O3, followed by spring, autumn, and winter, 

respectively.  

Xu et al. (2020) [90] have studied the consequence of meteorological variation to 

PM2.5 pollution in China. The Community Multiscale Air Quality (CMAQ) model was used 

in the simulation to study the characteristics of PM2.5 pollution covering 31 provinces in 

China. Meteorological data from 2000 to 2017 from the Weather Research and 
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Forecasting (WRF) model was used in the simulation process. Each year, the simulation 

was conducted with varying meteorological data. The PM2.5 concentration from the 

different scenarios was compared with the PM2.5 mean concentration to evaluate the 

impact of meteorological variation on air quality. The result showed that the 

meteorological data in each year shows a significant change in the concentration of 

PM2.5 in each area.  

Rudas and Pazmandi [73] investigated the consequences of selecting different 

subsets of meteorological data to utilize in the deterministic safety analysis. The 

research is conducted under the hypothesis that evaluating radiation effects using one 

meteorological dataset makes it hard to provide representative results covering all 

potential consequences. Thus, radiation effect investigations using various 

meteorological data sets were performed. The Calculating Atmospheric Release Criteria 

software (CARC) was used together with source term data from the REM case study and 

the meteorological measurement data for five years from 2014 to 2018. 

For the first case, they evaluated the effective dose for seven days at 1 km from 

the release point at one receptor point using the worst-case meteorological condition 

each year. The dose comparison demonstrated that the conservative results in each 

year were significantly different. The meteorological condition in 2014 caused the 

highest effective dose, followed by the meteorological condition in 2017, 2015, 2016, 

and 2018, respectively.  

For the second case, they calculated the effective dose for seven days at one 

position of 30 km from the release point using meteorological data every three months in 

2014. The result showed that meteorological data in each season caused different dose 

concentration values. The dose values from meteorological data in the period of April to 

June were the highest, followed by the dose values from meteorological data from July 

to September, January to March, and October to September, respectively. 
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For the last case, they calculated the effective dose for seven days at 1 km, 3 km, 

10 km, and 30 km from the release point using annual meteorological data. They found 

that the meteorological data each year provided a significantly different result. The 

meteorological data for one year could not provide an effective prediction result.  

2.9.4 Calculation processes in the atmospheric dispersion code and comparing 
prediction results by different atmospheric dispersion code 

Ádám Leelossy et al. [47] reviewed the atmospheric dispersion model 

construction, with detail as follows. Several models were used in the study of 

atmospheric dispersion, such as the Gaussian, Eulerian, Computational fluid dynamics 

(CFD) simulations, and Lagrangian models. Most models used source term and 

meteorological data as input data to calculate radionuclide movement. The 

meteorological data was the main parameter to define dispersion pathways. The 

common calculation function in the atmospheric dispersion model consisted of air 

concentration, ground concentration, and total effective dose calculation. As for the 

ground concentration, the program considers the radionuclide deposition by two 

processes. The first was dry deposition by gravitational force characterized by the 

deposition velocity. The second was wet deposition by precipitation. Atmospheric 

dispersion codes generally were verified by comparing the predicted results with the 

measurement data. There were various aspects of comparisons, such as plume 

dispersion characteristics, peak concentration values, arrival time at specific locations, 

or the integrated concentration throughout the pollution period. The measurement values 

from the actual accidents and measured from the experiments were widely used in the 

comparison process. The radionuclides with low background concentrations, such as 

Cs-137 and I-131, were considered in the verification process. This research points out 

the general construction of the atmospheric dispersion model and demonstrates the 

common verification method. 
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Rakesh et al. [91] investigated the performance of FLEXPART and SPEEDI 

codes. Both codes were used to evaluate radiation effects from the Durance Valley in 

France. The meteorological data from the WRF model, which evaluated turbulence from 

terrain data, was used in the process. The hypothetical release of Ar-41 from the 

Mediterranean Sea coast (5.74 E,43.69 N) was used as a source term. The comparison 

results showed that the different calculation schemes resulted in different dispersion 

characteristics. The FLEXPART code provided a wider dispersion than the SPEEDI 

code. The different methods for evaluation of the atmospheric stability class also 

resulted in the dose from the FLEXPART code being higher than the SPEEDI code. This 

research shows that the calculation scheme is significant to simulation results. Although 

both codes were verified, the different calculation schemes caused different simulation 

results.  

2.9.5 Effects of using different meteorological data sources and defining 
simulation period 

The meteorological data is the main parameter that influences the accuracy of 

atmospheric dispersion models. Many organizations have developed numerical weather 

prediction and provider meteorological data for various fields. However, each model 

may have a different calculation scheme that leads to different results in the atmospheric 

distribution model. D. Arnold et al. [92] studied the Influence of meteorological data on 

the atmospheric dispersion model and provided the assumption that different 

meteorological data sources might cause different prediction results of atmospheric 

dispersion code. The FLEXPART model was used to simulate the dispersion of 

radionuclides in the case of the Fukushima nuclear accident using meteorological data 

from different sources. This research focused on the difference in the precipitation data, 

which was taken from ECMWF, NCEP, Mesoscale (precipitation) analysis of JMA, and 

Radar/rain gauge precipitation analysis of JMA. The other necessary parameters for the 

calculation were bought from the same source. The simulation result showed that rain 
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data from different sources led to different ground concentration patterns. This points 

out that the meteorological data significantly influences the simulation results. All the 

contents of these research studies are summarized in Table 10. 

The content related to this research can be described as follows. The studies of 

Qiang wang and Chritoudias et al. demonstrated that China had a high electricity 

demand but environmental problems. Thus, they planned to build many nuclear power 

plants in a short period. These studies pointed out that China will be a country with high 

radiation risk if a severe accident occurs. Thus, this supports this research's objective 

that evaluating the radionuclide effect from China's nuclear power plants is necessary. 

The studies of Mickley et al., Yu et al., Yang, and Lau, Zhu et al. showed that climate 

change caused air circulation changes. In addition, the studies of Chen et al., Hu et al. 

Xu et al., Rudas, and Pazmandi demonstrate that yearly meteorological data caused 

variations in air pollution concentration. These studies support the hypothesis that a 

single year of meteorological data is insufficient for radiation evaluation. However, It 

does not demonstrate a quantitative variation of radiation consequence evaluation in 

atmospheric dispersion codes. Thus, quantifying the variability of the predicted results of 

atmospheric dispersion codes from the influence of the climate change effect is 

investigated in this research. 

As simulation in atmospheric dispersion code, Ádám Leelossy points out the 

pattern of the atmospheric dispersion calculation model, making it clear to understand 

the sequence of steps in the calculation. Arnold shows that the meteorological data from 

different sources caused different simulation results. Therefore, using meteorological 

data from the same source is necessary in the verification process. Rakesh compared 

the prediction results of FLEXPART and SPEEDI. The different calculation schemes were 

found to be significant to both codes' different results. These studies are useful for using 

the atmospheric dispersion code in this study.  
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Table  10 Literature reviews 
Title Author Content 

Potential dangers of nuclear power plants in China 
C h in a  n e e d in g  a  c a u t io u s 
ap p roach  to  nuc lea r p ow e r 
strategy 

Qiang wang China had plans to increase nuclear 
generation up to 70 G W e along the 
co a sta l a re a s  fro m  G u an x i to  J ilin 
province. Some of these provinces were 
located under the northeast monsoon 
blowing to Thailand. 

Global risk from the atmospheric 
dispersion of radionuclides by 
nuclear power plant accidents in 
the coming decades 

Chritoudias et al. R a d ia tio n  e ffe c t e va lu a tio n  w ith  a 
hypothetical accident showed that China 
w ill be the highest-risk country if the 
power plant under construction operates. 

Climate changes 
T ro p o s p h e r ic  c o o lin g  a n d 
summ er monsoon weakening 
trend over East Asia 

Yu et al. The decreasing  tem perature  in  the 
troposphere weakened the monsoon 
wind. 

Trend and variability of China 
p re c ip ita t io n  in  sp r in g  a n d 

summer: linkage to sea‐surface 
temperatures 

Yang and Lau The sea surface temperature warming 
over the central and eastern Pacific 
weakened the monsoon wind. 

Recent weakening of northern 
East Asian summer monsoon: A 
possib le  response to  g loba l 
warming 

Zhu et al. Greenhouse gases could produce a 
w a rm in g  t re n d  in  th e  s u r fa c e  a ir 
te m p e ra tu re , le a d in g  to  th e  w e a k 
circulation of the East Asian summer 
monsoon. 

Particula te a ir po llu tion  from 
wildfires in the Western US under 
climate change 

Mickley et al. Global warming caused changes in air 
circulation and air pollution patterns. 

Influence of climate change on air pollution behavior 
M eteorological influences on 
P M 2 . 5  a n d  O 3  tre n d s  a n d 
associated health burden since 
China's clean air actions 

Chen et al. Observation data of PM2.5 and O3 in China 
fro m  2 0 1 4  to  2 0 1 8  in d ic a te d  th a t 
meteorological variations significantly 
changed air quality concentration. 
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Continue Table  10 

Title Author Content 

Understanding the im pact of 
m eteorology on ozone in 334 
cities of China 

Hu et al. Observation data of meteorological data 
and O3 in China from 2015 to 2017 was 
p e r f o r m e d .  I t  w a s  n o t e d  t h a t 
meteorological data each year showed a 
significant change in O3 concentration. 

Spatiotemporal variation in the 
im p a c t o f  m e te o ro lo g ic a l 
conditions on PM2. 5 pollution in 
China from 2000 to 2017 

Xu et al. The consequence of m eteorological 
variation to PM2.5 pollution in China was 
performed with a simulation code.  
The meteorological data from 2000 to 
2017 showed a significant change in the 
concentration of PM 2.5 in each area of 
China. 

C onseq uences o f se lec ting 
d i f f e r e n t  s u b s e t s  o f 
meteorological data to utilize in 
deterministic safety analysis 

Rudas and Pazmandi influence of meteorological data on the 
prediction of atmospheric dispersion 
code was investigated.  
It was found that meteorological data 
each season and each year cause d 
sign ificant d ifferences in pred ic ted 
results. 

Calculation process in the atmospheric dispersion code and comparing prediction results by different 
atmospheric dispersion code 

A review of numerical models to 
p r e d ic t  t h e  a tm o s p h e r ic 
dispersion of radionuclides 

Ádám Leelossy et al. Reviewed computational process in an 
atmospheric dispersion code 

Simulation of radioactive plume 
gam m a dose over a com plex 
terrain using Lagrangian particle 
dispersion model 

Rakesh et al. A com parison of the com putationa l 
p ro c e s s  a n d  p re d ic te d  re su lt s  o f 
FLEXPART and SPEEDI was performed. 
It found that the d ifferent calculation 
schem es led  to d ifferent sim u lation 
results. 
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Continue Table  10 

Title Author Content 
Effect of using different meteorological data sources and defining simulation period 

Influence of the meteorological 
in p u t o n  th e  a tm o s p h e r ic 
t r a n s p o r t  m o d e l l in g  w i th 
FLEXPART of radionuclides from 
the Fukushima Daiichi nuclear 
accident 

D. Arnold et al. A comparison of predicted results of the 
FLEXPART model with meteorological 
d a ta  f ro m  d if fe re n t  s o u rc e s  w a s 
performed. It was shown that different 
sources caused different variations in 
predicted results. 
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CHAPTER 3 
 METHODOLOGY 

This research aimed to understand the effects of variations in meteorological 

data on the prediction results of an atmospheric dispersion code. Figure 14 shows the 

methodology flow chart in this research. The NACAC was used as a simulation tool to 

investigate the effects of variations in meteorological data. The calculation processes in 

NACAC were described in 3.1. The boundary and initial conditions used in the 

investigation were described in section 3.2. Verification of calculation performance in 

NACAC was conducted, as described in section 3.3. The appropriate meteorological 

data preparation for investigating the influence of variations in meteorological data on 

predicted results was examined, as detailed in section 3.4. The influences of each 

meteorological parameter on NACAC calculations were investigated, as detailed in 

section 3.5. The influences of variations in meteorological data on NACAC predicted 

results were investigated, as detailed in section 3.6. 

 

 

Figure  14 Methodology flow chart 
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3.1 NACAC computational process 
The NACAC was a program developed by the Thailand Institute of nuclear 

technology. The program was written in the Fortran language. The simulation was 

performed through Compaq Visual Fortran. The calculation algorithms in the code were 

referred from OSCAAR, developed by the Japan Atomic Energy Research Institute [9]. 

Figure 15 shows the calculation flow in NACAC. The NACAC was performed with two 

input data: source term and meteorological data. As for the source term data, total 

emission concentrations of I-131 and Cs-137 demonstrating short and long-radiation 

effects were used in this investigation. As for meteorological data, five parameters of 

meteorological data with a resolution of 55.5x55.5 km2 were prepared. The wind 

components in Y and X directions, rain intensity(total precipitation), total cloud cover, 

geopotential high, and solar elevation were downloaded from NCEP.  

Wind components at 10 m, total cloud cover, and solar radiation were used to 

evaluate atmospheric stability class by the Pasquill Gifford method, as detailed in 

section 2.26. Then, source term data, wind components in X and Y directions, rain 

intensity, atmospheric stability class, and geopotential high were sent to the 

preprocessing process module. It calculated the emission concentration rate according 

to Equation 6 in section 2.6.1 and formatted meteorological data into meteorological 

data grids with a resolution of 55.5x55.5 km2. The meteorological data selection module 

defined the simulation dates to select meteorological data for simulation. There were 

three meteorological data selections in this module: sequential, representative, and 

extreme data selection. Each scheme had calculation details, as described in section 

2.7. Meteorological data according to simulation dates and emission concentration rate 

were sent to the atmospheric dispersion calculation module. This module calculated the 

depletion, dispersion, and activity concentration of radionuclides, as detailed in section 

2.6.1. A polar coordinate presented the calculation results from the atmospheric 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

dispersion calculation module. Details of computational processes, as mentioned 

above, were demonstrated in Appendix B.   

 
Figure  15 Calculation flow chart in NACAC 

3.2 Boundary and initial conditions  

3.2.1 Study location 

Fangchenggang NPP in China was used as the study location because its release 

source term information was accessible. This power plant was located with a latitude 

and longitude of 21.67 and 108.55 degrees and was surrounded by five countries within 

a 900 km radius, as shown in Figure 16: Vietnam, Laos, Thailand, Cambodia, and 

Myanmar. Silva, Krisanungkura [93] suggested that the release of radionuclides from 

this NPP had a high possibility of affecting these neighboring countries during the 

monsoon period. Therefore, this study examined radiation effects within a 900 km 

radius, which was the shortest distance that radioactivity can spread to all five countries. 
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                                 Figure  16 Fangchenggang power plant location[1] 

3.2.2 Source terms 

This research was performed with the release data reported by the radiation 

impact report of Fangchenggnag NPP in China. This release data was evaluated with 

serious accidents before constructing units 3 and 4 [15]. The overlap of LBLOCA and 

LOOP scenarios designed for more severe accident conditions than ordinally accidental 

events was considered. The I-131 and Cs-137 represented short-term and long-term 

radiation effects according to their half-life were taken into account. The total release 

data of Cs-137 with aerosol form 100% and I-131 with aerosol form 97 % and organic 

form 3% of the accident were used. The NACAC verification process was performed 

with a total release of 96 hours to demonstrate prediction performance over a long 

period, while the investigation of appropriate meteorological data selection and the 

effects of variations in meteorological data on prediction results were performed with a 

total release of 24 hours to define the effect in a day. 
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3.2.3 Meteorological data 
Several meteorological parameters, namely geopotential high, wind component, 

total cloud cover, and rain intensity, with a 55.5 x 55.5 km2 resolution, were processed to 

generate the wind, rain intensity, geopotential high, and atmospheric stability class data 

for the calculation in NACAC. In the NACAC verification section, the meteorological data 

from the JRODOS database connected with the National Oceanic and Atmospheric 

Administration (NOAA) [94] were used to control the same meteorological input data for 

comparing predicted results between NACAC and JRODOS. However, this section 

started in 2019. Thus, meteorological data from 2018 was used, the most updated 

historical climate data. Meanwhile, the other sections were carried out with 

meteorological data from the CFSv2 model of NCEP [95], which was convenient to 

access. The investigations of appropriate meteorological data selection and the 

Influence of variation in meteorological dataeffect on prediction results were investigated 

with meteorological data in 2020 and from 2016 to 2020, respectively. The boundary 

and initial conditions of all sections were summarized in Table 10 

3.3 Verification of calculation performance in NACAC 

This section described details verifying the NACAC performance in predicting 

radionuclides' transportation and radiation effects by comparing them with the JRODOS 

prediction results. Figure 17 shows the verification process flow chart with details of 

input data, calculation model, and comparison results of the JRODOS and NACAC 

codes. The details of the verification process were described as follows: 

3.3.1 Verification conditions 
Initially, the NACAC was designed to monitor the radiation effects of nuclear 

power plants near Thailand. The code cannot access areas where past accidents 
occurred, such as Chornobyl, Fukushima, and Three Mile Island NPPs. This limitation 
causes difficulty in comparing the predicted results and the actual incident. 
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Consequently, comparing the predicted results of a hypothetical severe accident by the 
JRODOS and NACAC was performed in the performance verification process. The 
extreme cases with the potential to affect neighboring countries were used as a 
condition for defining the simulation dates. The representative extreme cases from four 
seasons with high fluctuation wind direction, as shown in Figure 18, were selected: 
Winter (January 18, 2018, 7:00 UTC), Spring (March 20, 2018, 3:00 UTC), Summer 
(August 10, 2018, 5:00UTC), 

 
Table  11 Boundary and initial conditions 

Section Study location Source term 
Meteorological 

data 

Verification of calculation 

performance in NACAC 

Fangchenggang 

NPP units 3 and 4 

LBLOCA and LOOP for 96 

hours 

- Cs-137: 2.50×1013 Bq 

- I-131: 1.15×1014 Bq 

Data in 2018 by 

NOAA 

Investigation of appropriate 

meteorological data selection 

Fangchenggang 

NPP units 3 and 4 

LBLOCA and LOOP for 24 

hours 

- Cs-137: 5.58×1012 Bq 

- I-131: 3.00 ×1013 Bq 

Data in 2020 by 

NCEP 

Influence of meteorological 

data on NACAC 

computational 

Fangchenggang 

NPP units 3 and 4 

LBLOCA and LOOP for 24 

hours 

- Cs-137: 5.58×1012 Bq 

- I-131: 3.00 ×1013 Bq 

Data designed 

in Table 14 

Influence of variation in 

meteorological dataeffect on 

prediction results 

Fangchenggang 

NPP units 3 and 4 

LBLOCA and LOOP for 24 

hours 

- Cs-137: 5.58×1012 Bq 

- I-131: 3.00 ×1013 Bq 

Data from 2016 

to 2020 by 

NCEP 
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Figure  17 Flow chart of the verification process[2]. 

 
Figure  18 Wind fluctuation at the release point for 96 hours from (a) January 18, 2018, 
7:00 UTC, (b) March 20, 2018, 3:00 UTC. (c) August 10, 2018, 5:00 UTC, and (d) 
September 19, 2018, 3:00 UTC[2]. 
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3.3.2 Comparison processes 
The simulation in NACAC and JRODOS were carried out to determine the daily 

radiation consequence over a 96 hours post-accident period. The source term and 

meteorological data of the four extreme cases were used in the simulation. The 

concentration calculation of both codes was conducted every 24 hours throughout the 

96 hours of simulation. Simultaneously, the total effective dose rate for 96 hours was 

calculated by considering the effects of ground shine, cloud shine, and inhalation.  

The verification process compared the predicted results obtained from both 

codes in two parts. Firstly, the air concentration maps of each 24 hours over 96 hours 

were compared to point out differences in the daily distribution changes and estimate 

NACAC performance in predicting the radionuclide's dispersion pattern, as detailed in 

section 4.1.1. Secondly, ground concentration, air concentration, and effective dose rate 

in the dominant dispersion direction were compared point by point to demonstrate 

NACAC performance in predicting radiation consequences, as detailed in section 4.1.2. 

In addition, to investigate the NACAC performance in evaluating the transboundary 

radiation effects, consistent prediction results between NACAC and JRODOS at a 

distance between the Fangchenggang NPP and Thailand border (500 km) were 

performed by three statistical parameters. The three statistical parameters are Absolute 

Mean Bias Error (AMBE), Root Mean Square Error (RMSE), and Correlation coefficient 

(CC) as follows:  

𝐴𝑀𝐵𝐸 =
1

𝑁
∑|𝑃𝑖 − 𝑂𝑖| 

                                                      

  𝑅𝑀𝑆𝐸 = √
1

𝑁
(𝑃𝑖 − 𝑂𝑖)2 

 

𝐶𝐶 =
∑[(𝑃𝑖 − 𝑃̅) ∙ (𝑂𝑖 − 𝑂̅)]

√∑(𝑃𝑖 − 𝑃̅)2 ∙ ∑(𝑂𝑖 − 𝑂̅)2
 

(13) 

(14) 

(15) 
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where 𝑂𝑖 and 𝑃𝑖represented the JRODOS and NACAC results at the time 𝑖 by site, while 

𝑁 and overbars signify the number of results and mean over time, respectively. 

3.3.3 Comparison patterns 
The JRODOS and NACAC had different calculation processes and display 

patterns, as mentioned in section 2.6.3. The NACAC was designed for a radial 

emergency response to facilitate the determination of the dispersion direction and 

distance, so the result display and calculation process were polar coordinates. In 

contrast, the JRODOS calculated results in cartesian coordinates with the five domains' 

grid resolution. These differences caused a limitation in comparing the radionuclides 

dispersion pattern between the two codes. Changing the visual style to be the same in 

both programs made it easier to compare. The polar coordinate was selected with better 

identification of the dispersion distance and direction. The JRODOS predicted results 

were modified to the NACAC polar grid form by moving the plume pattern, as shown in 

Figure 19.  

 

Figure  19 Modified result after swapping from a cartesian grid to a polar grid[2]. 

3.4 Investigation of appropriate meteorological data selection 

Generally, meteorological data selection is preparing input data for simulation by 
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selecting meteorological data in each time period. Hence, it is significant in defining the 

dates for the simulation. Previously, there were several meteorological data selection 

methods performed in evaluating radiation consequence effects. Different selection 

methods produced different input characteristics. However, it lacked the selection 

method to investigate the effects of variations in meteorological data on radiation 

consequence evaluation. Thus, the Investigation of appropriate meteorological data 

selection to define simulation dates for investigating the effects of variations in 

meteorological data on the prediction results of an atmospheric dispersion code was 

performed. 

Investigating the effects of variations in meteorological data on the prediction 
result required a meteorological dataset that could define changing climate behavior. 
The meteorological dataset, including incomprehensive climate behavior, cannot 
demonstrate all aspects of the effects of variations in meteorological data on prediction 
results. Previously, three data selection methods were performed in meteorological data 
selection, as mentioned in section 2.7. The extreme data selection was preparing a 
meteorological dataset by considering cases with a maximum severity level of the 
meteorological parameters. This process required less computational resources but 
might provide incomprehensive prediction results with a low occurrence rate [96]. Thus, 
the extreme data selection, which cannot represent all climatic data conditions, was 
ignored for this investigation. The sequential data selection was preparing a 
meteorological dataset by considering all cases of meteorological data. It provided a 
comprehensive prediction result but required large computational resources. The 
representative data selection was one of the preferable schemes, requiring less 
computational resources than the sequential data selection and providing more 
comprehensive prediction results than the extreme data selection. This process was 
generally designed for domestic radiation consequence evaluation. However, this study 
aimed to evaluate the radiation effect from neighboring countries. Thus, the 
representative data selection was modified to be able to assess the transboundary 
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radiation effect, as detailed in section 3 . 4 . 1 .  Then, the Investigation of appropriate 
meteorological data selection to demonstrate the variation in meteorological data effect 
on the prediction result between sequential and representative data selection was 
performed as detailed in section 3.4.2.  

3.4.1 Modification of representative data selection  

Representative data selection was a sampling process to select representative 
data that reflected individual climate characteristics, as mentioned in section 2.7.3. It 
significantly reduced computational resources in radiation consequence evaluation. This 
method was previously used to evaluate the effects of radiation in a country. The 
evaluation was performed with protective action criteria, suggesting awareness of 
radiation effects within a radius of 100 km [97]. Thus, only meteorological data 

surrounding NPP was required in the evaluation. In addition, the criteria for classifying 
meteorological data was generally performed with determined values requiring 
experience and understanding of the climate behavior surrounding the study site [98].  

However, the classification criteria by the pre-determined values might not cause 
a distributed classification of meteorological data for transboundary radiological effect 
problems. Moreover, excessive meteorological data might be required to predict a long-
range dispersion of radionuclides. Thus, investigating and modifying the existing 
algorithm of metrological data classification in representative data selection of the 
COSYMA code [79] and the OSCAAR code [59] were conducted in this study. The 
percentile level was used to identify subgroups of metrological data instead of using a 
specific range of weather parameters in the classification process. This scheme equally 
classified data and prevented excessive data in each classification group.  

Table 12 shows a pattern of the metrological data classification used in this study. 
The rain level and atmospheric stability class were the main weather parameters. 
Meanwhile, plume travel time or wind speed level was defined as the optional weather 
parameter. All meteorological parameters were classified into low, medium, and high 
severity levels. The low rain level was defined with the percentile of rain data at 2.5 
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mm/h, showing light rain characteristics [99]. The medium and high rain level was 
determined by percentile levels of rain, indicating half of the remaining data.  The three 
severity levels of the other parameters were classified with a 33.3 percentile interval. The 
upper boundary of classification criteria for a low, medium, and high level is a value of 
33.3, 66.6, and 100 percentiles of all collected data in each parameter, respectively.  
Consequently, the 11 subgroups of metrological data are produced. Then, the wind 
directions demonstrating the plume pathway classified the metrological data in the last 
step with 45-degree intervals.  

Table  12 Metrological data classification[1] 

Group*1 
Main Parameter Main Parameter Optional Parameter 

Rain Level*2 Atmospheric 
Stability Class*3 

Plume Travel Time, 
(PT)*3 or 

Wind Speed 
Level, (WS)*3 

Low rainfall Low 

Low 
Low  Low 

Medium  Medium 
High  High 

Medium 
Low  Low 

Medium  Medium 
High  High 

High 
Low  Low 

Medium  Medium 
High  High 

High rainfall 
Medium - -  - 

High - -  - 

Remark 

*1 Low rainfall and high rainfall groups were classified by eight wind directions with 45 degrees intervals to produce 88 

subgroups of metrological data 
*2  Rain levels were separated into low, medium, and high levels defined with data at percentile ≤ (2.5 / )RP mm h , ≤ 

(max) (2.5 / )
(2.5 / )

2

R R
R

P P mm h
P mm h

−
+ , and >, respectively. 

-3  Atmospheric stability class, plume travel time, and wind speed level were separated into three severity levels    

    defined with data at percentile ≤ 33.3, ≤ 66.6, and ≤ 100. 
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3.4.2 Comparisons of sequential and representative data selection 
In fact, the sequential data selection provides the most comprehensive predicted 

result by preparing all cases of meteorological data in simulation. Therefore, it is rather 
appropriate to investigate the effects of variations in meteorological data on a prediction 
result. However, using a large computational resource in this method obstructs the 
investigation, requiring several years of meteorological data. Representative data 
selection modified for transboundary radiation effect evaluation is another option that 
solves this problem.  

However, there are several ambiguous selection schemes in the representative 
data selection. Previously, an area boundary for meteorological data collection (area 
boundary) was defined at the released point [100] or a short radius surrounding the NPP 
[59,77] for radiation effect evaluation within a country. The transboundary radiation 
effect evaluation may need an extension of the area boundaries. Besides, two optional 
weather parameters for metrological data classification (optional parameters) are 
proposed with plume travel time [80] and wind speed level [77]. 

Thus, the computational cases were designed, as shown in Table 13 , to identify 
the effect of selected optional parameters and area boundaries. Case nos. 1 up to 4 
used the plume travel time as the optional parameter and used the area boundaries at 
the release point, 100 km, 200 km, and 300 km radius around the power plant, 
respectively. However, case no.1 was ignored because the plume travel time at a 
released point could not be calculated. Case nos. 5 up to 8 used the wind speed level 
as the optional parameter and used the area boundaries at the release point, 100 km, 
200 km, and 300 km radius around the power plant, respectively. All cases were 
performed with the rate of selecting representative data (sampling rate) 1:100, as 
suggested by Homma [80]. 

Then, the off-site consequence for 24 hours was calculated using the NACAC 
and meteorological data prepared by sequential and each case of representative data 
selection. The TEDE values at the 50th, 90th, and 99.5th percentile in several locations 
within 900 km from the release point were compared.  Performance in providing 
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comprehensive assessment results in each case of representative data selection was 
investigated by Absolute Mean Bias Error (AMBE), Root Mean Square Error (RMSE), and 
Correlation Coefficient (CC) as Equations 16 to 18. The details of the investigation were 
shown in section 4.3. Then, comparisons of transboundary radiation effects by 
sequential data selection and representative data selection with the optimum case were 
performed to investigate the appropriate simulation method for predicting dispersion 
characteristics and TEDE in a long-range dispersion, as detailed in section 4.4. 

                                                 

𝐴𝑀𝐵𝐸𝑖 =
1

𝑁
∑|𝑅𝑖𝑗 − 𝑆𝑖𝑗|

16

𝑗=1

 

 

𝑅𝑀𝑆𝐸𝑖 = √
1

𝑁
∑(𝑅𝑖𝑗 − 𝑆𝑖𝑗)2

16

𝑗=1

 

       

𝐶𝐶 =
∑ [(𝑅𝑖𝑗 − 𝑅𝑖̅) ∙ (𝑆𝑖𝑗 − 𝑆𝑖̅)]16

𝑗=1

√∑ (𝑅𝑖𝑗 − 𝑅𝑖̅)
216

𝑗=1 ∙ ∑ (𝑆𝑖𝑗 − 𝑆𝑖̅)
216

𝑗=1

 

             

Where 𝑅𝑖𝑗  and 𝑆𝑖𝑗 were TEDE values predicted by simulation using representative and 
sequential data selection at distance 𝑖, and 𝑗 direction.  𝑁 and overbars were the 
numbers of data in the distance i and averages over 16 directions.  
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Table  13 Computational cases to identify effects of optional weather parameters and 
area boundaries[1]. 

Cases 
Optional Weather 

Parameter 
Area Boundary of 
Metrological data  

    1*1 

Plume Travel Time 

At Release Point 

2 100 km Radius 

3 200 km Radius 

4 300 km Radius 

5 

Wind Speed Level 

At Release Point 

6 100 km Radius 

7 200 km Radius 

8 300 km Radius 

Remark  *1    Case no. 1 was ignored in the analysis process since plume travel time collection at a single point cannot 

be computed. 

3.5 Influences of each meteorological parameter on NACAC calculations 
Understanding the influences of each meteorological parameter on each 

calculation process in NACAC was important for investigating the effects of variations in 

meteorological data. As mentioned in section 2.6.1, it was noted that each 

meteorological parameter significantly affected several calculation parameters in 

NACAC. The wind speed and atmospheric stability class data affected the diffusion 

coefficient in the horizontal and vertical directions. The diffusion coefficient in the vertical 

direction affected the dry coefficient, plume density, and distance faction, respectively. 

The diffusion coefficient in the horizontal direction affected the dispersion boundary. The 

distance faction and dispersion boundary affected the receptor and dispersion 

characteristic. Meanwhile, the rain intensity data affected the wet deposition coefficient 
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and subsequently affected the depletion faction with wet deposition. In addition, the 

type of isotope affected the decay constant and dry coefficient, causing an effect on 

depletion faction with decay and dry deposition, respectively. The depletion factions 

with decay, dry deposition, and wet deposition affected the emission concentration rate. 

Finally, the emission concentration rate and dispersion characteristics affected the air 

concentration, ground concentration, and TEDE values. 

To understand the influences of each meteorological parameter on these 

calculation parameters in NACAC, 13 cases of meteorological input data were 

designed, as shown in Table 14 . All cases were defined by wind direction in the 

northeast direction. Case Nos. 1 up to 3 were meteorological input data designed to 

study the influences of changing atmospheric stability class with low wind speed and no 

rainfall on predicted results. These cases defined rain intensity at 0 mm/h and wind 

speed at 0.3 m/s, demonstrating light wind characteristics. Meanwhile, the atmospheric 

stability class was varied as unstable (A), natural (D), and stable (F) conditions. Case 

Nos. 4 up to 6 were meteorological input data designed to study the influences of 

changing atmospheric stability class with low wind speed and heavy rainfall on 

predicted results. The meteorological conditions in these cases differed from the first 

three cases only rain intensity defined by heavy rainfall with 7.6 mm/h   

Case Nos. 7 up to 9 were meteorological input data designed to study the 

influence of changing atmospheric stability class with high wind speed and low rainfall 

on predicted results. The meteorological conditions in these cases differed from the first 

three cases in wind speed defined by strong breeze rainfall with 10.8 m/s. Case Nos. 10 

up to 12 were meteorological input data designed to study the influences of changing 

atmospheric stability class with high wind speed and heavy rainfall on predicted results. 

The meteorological conditions in these cases differed from the first three cases, with rain 

intensity defined by the heavy rainfall and wind speed defined by the strong breeze.  
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Each case of meteorological input data was used in NACAC to evaluate the radiation 

effect for 24 hours. The calculation parameters of each calculation process in NACAC 

were compared to demonstrate the influences of each meteorological parameter in 

NACAC. 

Table  14 Meteorological input data cases. 
Cases Wind direction,  

[-] 
Wind speed, 

[m/s] 
Rain intensity, 

[mm/h] 
Atmospheric 

stability class, [-] 
1 Northeast 0.3: Light air 0.0: No rain A: Unstable 
2 Northeast 0.3: Light air 0.0: No rain D: Natural 
3 Northeast 0.3: Light air 0.0: No rain F: Stable 
4 Northeast 0.3: Light air 7.6: Heavy rain A: Unstable 
5 Northeast 0.3: Light air 7.6: Heavy rain D: Natural 
6 Northeast 0.3: Light air 7.6: Heavy rain F: Stable 
7 Northeast 10.8: Strong breeze 0.0: No rain A: Unstable 
8 Northeast 10.8: Strong breeze 0.0: No rain D: Natural 
9 Northeast 10.8: Strong breeze 0.0: No rain F: Stable 
10 Northeast 10.8: Strong breeze 7.6: Heavy rain A: Unstable 
11 Northeast 10.8: Strong breeze 7.6: Heavy rain D: Natural 
12 Northeast 10.8: Strong breeze 7.6: Heavy rain F: Stable 

 

3.6 Influences of variations in meteorological data on predicted results 
This section quantified the variability of the predicted results from the influences 

of variations in meteorological data performed in two parts. The first part investigates the 

Influences of variations in meteorological data on predicted results in a year. Hourly 

meteorological data in 2016 within a radius of 900 km from Fangchenggang NPP was 

used as a sample in the investigation. A monthly meteorological behavior indicating 

seasonal changes was examined by the frequency distribution of wind direction and 

average wind speed, atmospheric stability class, and rain intensity. Changing monthly 

meteorological behavior within a year was studied.  Monthly meteorological input data 

was then prepared. Simulation by sequential data selection to investigate radiation 
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effect for 24 hours throughout each month was performed. A correlation between 

monthly changes in meteorological behavior and predicted results was examined. 

The second part investigated the Influences of variations in meteorological data 

on predicted results each year and between a year and five years. Hourly 

meteorological data from 2016 to 2020 within a radius of 900 km from Fangchenggang 

NPP were used to investigate changes in meteorological behavior each year. The 

statistical parameters of Absolute Mean Bias Error (AMBE), Root Mean Square Error 

(RMSE), and Correlation Coefficient (CC) evaluated the monthly difference in all data 

within the radius of 900 km of the wind speed, rain intensity, and atmospheric stability 

class data in each year by comparing average values of five years. Since wind direction 

is a vector quantity, all data within the radius of 900 km of each year was calculated as 

frequency distribution first. Then, they were compared by the average frequency 

distribution of five years with the three statistical methods as Equations 19 to 21.  
                         

𝐴𝑀𝐵𝐸𝑖𝑘 =
1

𝑁
∑|𝑃𝑗𝑘 − 𝑂𝑗𝑘|
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𝑗=1
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𝐶𝐶𝑖𝑘 =
∑ [(𝑃𝑗𝑘 − 𝑃𝑖̅) ∙ (𝑂𝑗𝑘 − 𝑂𝑖̅)]𝑁

𝑗=1

√∑ (𝑃𝑗𝑘 − 𝑃𝑖̅)
2𝑁

𝑗=1 ∙ ∑ (𝑂𝑗𝑘 − 𝑂𝑖̅)
2𝑁

𝑗=1

 

  

Where k, i, and j presented the year, month, and data in a month sequence, 

respectively. Oi was the average wind speed, rain intensity, and atmospheric stability 

class in each latitude and longitude within the radius of 900 km of every year or the 

average frequency distribution of wind direction of every year. Sik was each 

(19) 

(20) 

(21) 
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meteorological parameter in year k. N and overbars were the numbers of data in a 

month and an average value over N data. 

The radiation consequence evaluation for 24 hours by NACAC was performed 

with monthly meteorological data for each year and monthly meteorological data for five 

years. The air concentration, ground concentration, and TEDE were critical parameters 

in investigating the influence of variation in meteorological dataon prediction results by 

AMBE, RMSE, and CC methods, as in Equations 22 to 24. The investigation was 

performed with three distances: short ( 0- 10km), medium (10-100km), and long (100-

1000 km). The average monthly predicted results of every single year and monthly 

prediction results for five years were used as a reference value in the examination of the 

different predicted results of each year and different predicted results between a single 

year and five years, respectively. 
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Where k, i, and j presented the year, month, and data in a month sequence, 

respectively. Oi was the average predicted results of every single year or prediction 

results for five years. Sik was the concentration of predicted results in year k. N and 

overbars were the numbers of data in a month and an average value over N data. 
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CHAPTER 4 
 RESULT AND DISCUSSION 

 This section showed the results according to the investigation process 

described in section 3. The NACAC verification results were demonstrated in section 

4.1. Meanwhile, the effects of different computational methods on the predicted results 

of atmospheric dispersion code were investigated in section 4.2. The verification of the 

modified representative data selection for the assessment of the transboundary radiation 

effect was presented in Section 4.3. The results of investigating appropriate 

meteorological data selection for demonstrating the influence of variation in 

meteorological dataon prediction results were shown in section 4.4. The results of 

investigating meteorological parameters on the calculation process in NACAC were 

demonstrated in section 4.5. The results of investigating the effects of variations in 

meteorological data on NACAC prediction results were shown in section 4.6. 

4.1 NACAC verification results 
The activity concentrations and radionuclide transportation patterns by the 

NACAC were compared with those by the JRODOS in this section. Advection calculation 

and input data preparation effects on calculated results were investigated. 

4.1.1 Comparisons of radionuclide transportation patterns  

The daily transportation patterns of radionuclides were compared based on the 

air concentration maps obtained from both codes every 24 hours throughout the 96 

hours of simulation time. This study indicated Cs-137 as aerosol form, while I-131 was 

defined as organic form 3% and aerosol form 97% according to a recommendation of 

the Environmental impact report of Fangchenggang NPP [15]. However, the dispersion 

patterns of I-131 were more apparent than Cs-137. Hence, the comparisons were 

conducted using the air concentration maps of I-131. It was found that the different 

resolutions of displayed results between the JRODOS and NACAC occurred from two 
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issues. First was the number of computational positions (receptor points) of the JRODOS 

higher than the NACAC, resulting in the JRODOS results getting more natural than the 

NACAC results. Second was the NACAC display results in the polar coordinate grid by 

original design, leading to the NACAC results being sharper than the JRODOS results, 

which were modified from cartesian to polar grid display for comparison purposes. 

Figures 20(a), 20(b), 20(c), and 20(d) compared the air concentration maps after 

the accident occurred 24 hours, 48 hours, 72 hours, and 96 hours from the NACAC and 

JRODOS prediction in the case of January 18, 2018, 7:00 UTC (Winter season). Figure 

20(a) showed that the NACAC and JRODOS provided consistent simulated results 

throughout the first 24 hours. Most plumes were separated into the NNW and SW 

directions with a maximum distance of around 250 km. However, a slight difference was 

found in the SSW and N directions. The NACAC provided plumes more dispersed than 

the JRODOS. Figure 20(b) showed that most plumes from both codes dispersed to the 

WSW region at 48 hours. The plume from the NACAC also dispersed further than the 

JRODOS, and the dispersion distance between the SW and N directions increased to 

350 km. As for the dispersion pattern at 72 hours, both codes provided similar 

dispersion distances in the W, WNW, and NW directions, as presented in Figure. 20(c). 

However, the NACAC gave a longer dispersion distance than the JRODOS in the other 

directions, with a maximum of 200 km. In the last 24 hours, Figure 20(d) showed that in 

the W and WNW directions from the NACAC prediction increased to 700 km, JRODOS 

gave dispersion distances in the NW, WNW, and W directions increased to 668, 645, 

and 541 km. 

Figures 21(a), 21(b), and 21(c) showed a comparison of the air concentration 
map after the accident occurred 96 hours in the case of March 20, 2018, 3:00 UTC 
(Spring season), August 10, 2018, 5:00 UTC (Summer season), and September 19, 
2018, 3:00 UTC (Autumn season), respectively. The comparisons showed a reasonable 
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agreement of the air concentration transportation patterns by NACAC and JRODOS. The 
dominant dispersion direction was the SW, E, and NNW direction for Spring, Summer, 
and Autumn, respectively. Nevertheless, a variation in dispersion distance of 
approximately 200 km was observed in the dominant dispersion direction in the cases of 
March 20, 2018, at 3:00 UTC and September 19, 2018, at 3:00 UTC. In addition, a 
variation in dispersion size also found that NACAC provided more widely dispersion in 
the case of January 18, 2018, 7:00 UTC and March 20, 2018, 3:00 UTC.  

The comparisons above showed that the NACAC could offer a dispersion 
pattern similar to the predicted results of JRODOS. Most radionuclides dispersed in the 
same direction in all representative cases. Slight differences in dispersion distance were 
found in some directions. However, both codes generally showed similar plume 
transportation patterns in the dominant dispersion direction. 

 
(a) Air concentration map after 24 h            
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(b) Air concentration map after 48 h 

 

(c) Air concentration map after 72 h 

 
 (d) Air concentration map after 96 h 

Figure  20 Predicted air concentration of I-131 every 24 h from the NACAC and 
JRODOS at (a) 24 h, (b) 48 h, (c) 72 h, and (d) 96 h in the case of January 18, 2018, 
7:00 UTC[2]. 
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(a) Predicted result of March 20, 2018, 3:00 UTC case 

 
(b) Predicted result of August 10, 2018, 5:00 UTC case 

 
(c) Predicted result of September 19, 2018, 3:00 UTC case 

Figure  21 Air concentration of I-131 for 96 hours predicted by the NACAC and 
JRODOS.of (a) March 20, 2018, 3:00 UTC (b) August 10, 2018, 5:00 UTC, and (c) 
September 19, 2018, 3:00 UTC[2] 
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4.1.2 Comparisons of calculated results 
The preliminary study showed that the predicted results between the JRODOS 

and NACAC in the four cases were similar. Thus, the first case (January 18, 2018, 7:00 

UTC), which best demonstrated the different character of prediction results between the 

two codes, was used in the investigation. Figure 22 presented the predicted result 

comparison point by point between both codes in the case of January 18, 2018, at 7:00 

UTC. The comparisons of air concentration, ground concentration, and effective dose 

rate in the dominant dispersion directions (W, WNW, and NW) were shown in 

Figures.22(a), 22(b), and 22(c), respectively. The triangle and square symbols in 

Figures 22(a) and 22(b) represented Cs-137 and I-131 predicted results. The solid and 

open symbols were the results obtained by the NACAC and JRODOS, respectively. 

The predicted result comparisons showed that the NACAC gave a similar trend 

line of dose rate and concentration values as the JRODOS, decreasing with distance. 

However, variation of these predicted results was found between the two codes of 

around one order of magnitude. The NACAC predicted lower air concentrations in the W 

direction and higher ground concentrations in the NW and WNW directions, as shown in 

Figures 22(a) and 22(b).  Meanwhile, dose values predicted by the NACAC were higher 

than the JRODOS in NW and WNW directions, while lower dose values predicted by the 

NACAC were found in the W direction, as shown in Figure 22(c).   

Table 15 displayed the statistical parameters for the four weather cases at 500 

km in a direction with the furthest dispersion and the highest radiation intensity. The 

results demonstrated that the NACAC gave reasonable agreement with the JRODOS 

predicted results in long dispersion distance with a maximum correlation coefficient of 

0.95, 0.96, 0.72, 0.97, and 0.88 in air concentration of I-131, air concentration of Cs-137, 

the ground concentration of I-131, the ground concentration of Cs-137, and dose rate, 

respectively. In addition, AMBE and RMSE also show that the difference in dose rate 
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between the two codes was lower than 2.47×10-7 and 5.95×10-9 mSv, respectively. 

These variations were the result of different computational methods in input data 

preparation and advection calculation process. These different methods caused 

variations in meteorological input data and trajectory patterns, leading to variations of 

activity concentration in each direction and distance, with more detail in section 4.2.  

 

Table  15 Statistical parameters values at 500 km in the dominant dispersion direction 
of four cases[2] 

Parameters 
CC 
[-] 

RMSE 
[Concentration Unit] 

AMBE 
[Concentration Unit] 

Air concentration  
(I-131) [Bqs/m3] 

0.51 to 0.95 5.01×102 to 1.03×104 4.11×102 to 8.10×103 

Air concentration  
(Cs-137) [Bqs/m3]  

0.49 to 0.96 1.10×101 to 2.72×103 9.11×100 to 2.25×103 

Ground concentration  
(I-131) [Bq/m2] 

0.44 to 0.72 3.76×100 to 1.35×101 1.58×100 to 1.13×101 

Ground concentration  
(Cs-137) [Bq/m2] 

0.56 to 0.97 4.56×10-1 to 3.15×100 2.23×10-1 to 2.61×100 

Dose rate  
(All nuclides) [mSv/h] 

0.33 to 0.88 2.91×10-7 to 5.95×10-9 2.45×10-9 to 2.47×10-7 
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Figure  22 Comparison of the predicted air concentration, ground concentration, and effective dose rate from the 
NACAC and JRODOS in the dominant dispersion direction in the case of January 18, 2018, 7:00 UTC[2]. 
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4.2 Effects of different computational methods on the predicted results of atmospheric 
dispersion code. 

The aforementioned comparison indicated that the predicted plume 

characteristics from the NACAC and JRODOS codes were not significantly different. The 

plume mostly dispersed in the same dominating dispersion direction in each instance. 

Nevertheless, in some directions, the NACAC still predicted a wider and longer plume 

dispersion than the JRODOS. As for the concentration results, the predicted 

radionuclide concentration generally diminished as dispersal distance increased in both 

codes. However, the magnitude varies by around an order of magnitude at each point. 

These variations were probably a result of the various computation techniques each 

code used. As described in section 2.4, both codes prepared meteorological data and 

calculated advection by different methods. Consequently, these effects were assessed 

by the following sensitivity analysis. 

4.2.1 Effects of input data preparation  
The input data preparation system was designed to prepare the meteorological 

data according to each code computational pattern. It varied along with computational 

code design. The data preparation system in the NACAC ignored the terrain effects in 

generating wind fields and evaluated atmospheric stability class by the Pasquil-Gifford 

method. A single grid domain resolution was used for all meteorological parameters in 

the NACAC. In contrast, the JRODOS considered the terrain effects in preparing the 

wind field, used various methods to evaluate the atmospheric stability class, and 

prepared all meteorological parameters in five grid domain resolutions.  

Consequently, three analyses were conducted to assess the potential impact on 

the simulated results: grid resolution effects, terrain effects, and effects of atmospheric 

stability class analyses. As a representative case, the above analyses were based on 

January 18, 2018, weather data at 7:00 UTC that led to significant differences in 
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dispersion distance estimates for NACAC and JRODOS. The meteorological data from 

15 locations was compared with the various surface types and grid resolutions in 

analyzing grid resolution and terrain effects, as described in Table 16. The difference 

(%) between hourly meteorological data from the NACAC and JRODOS data 

preparation systems were computed and visualized in the histogram graph shown in 

Figure 23. 

Table  16 Representative positions for the meteorological data collection from the 
different data preparation system evaluations[2]. 

   

Position Latitude [o] Longitude[o] Roughness [m] 
Grid resolution [km2] 

JRODOS NACAC 

Land area:   

City 1 21.03 105.83 1.5 32 x 32 Constant at 
55.5 x 55.5 

 
City 2 22.82 108.34 1.5 8 x 8 

City 3 18.72 105.60 1.5 16 x 16 
Forest 1 18.85 103.40 1.5 32 x 32 

Forest 2 22.25 102.70 1.5 32 x 32 

Forest 3 24.10 110.17 1.5 8 x 8 

Agriculture 1 29.00 112.60 0.2 32 x 32 

Agriculture 2 15.40 103.65 0.2 32 x 32 

Agriculture 3 21.00 106.15 0.2 8 x 8 

Mountain area:  

Constant at 
55.5 x 55.5  

Mountain 1 22.57 100.19 1.5 32 x 32 

Mountain 2 19.50 103.00 1.5 32 x 32 

Mountain 3 24.50 112.00 1.5 32 x 32 

Ocean area:  

Constant at 
55.5 x 55.5  

Ocean 1 20.67 108.90 0.01 4 x 4 

Ocean 2 21.26 107.71 0.01 8 x 8 
Ocean 3 18.50 108.00 0.01 16 x 16 
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(a) Frequency percentage of rain 

difference 
(b) Frequency percentage of wind 

speed difference 

 

 

(c) Frequency percentage of wind 
direction difference 

 

Figure  23 Comparison of the different (a) rain, (b) wind speeds, and (c) wind direction 
obtained from the NACAC and JRODOS data preparation systems in the case of 
January 18, 2018, 7:00 UTC[2]. 

As for the grid resolution analysis, rain data directly influenced by varying grid 

resolutions was utilized in the process. Figure 23(a) displayed the difference (%) in rain 

data resulting from the preparation processes of both codes. The x-axis displays the 
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difference (%) of hourly rain data between two codes divided into five groups, and the 

data frequency (%) in each group was shown in the y-axis.  

The analysis results suggested that grid resolutions could affect variances in rain 

intensity between the two codes, even though both codes utilized data from the same 

source. Approximately 50% of the data generated through NACAC preparation differed 

from the JRODOS data by approximately 10%. This result was related to the Sekiyama 

study [101], which revealed that the variation in grid resolution led to slight differences in 

rain data. Furthermore, the differences in rain data also contributed to variations in the 

wet deposition coefficient, resulting in differences in concentration values and 

transportation patterns of radionuclides [45,92]. 

The terrain effect analysis used the wind data influenced by terrain effects in this 

process. Figures 23(b) and 23(c) showed the difference (%) of wind speed and wind 

direction between the data preparation systems of both codes with five surface types: 

forest, mountain, city, agriculture, and ocean.  Each surface type's difference (%) was 

divided into several groups on the x-axis to increase analysis efficiency. The wind speed 

difference (%) was categorized into eight groups ranging from 10% up to over 70% by 

white color without a pattern up to violet color with a pattern, as visualized in Figure 

23(b). Meanwhile, the difference (%) in wind direction was categorized into six groups. 

Each group was incremented by 11.25 degrees with white color without a pattern up to 

orange color with a pattern, as illustrated in Figure 23(c). The y-axis of both graphs 

demonstrated each group's frequency (%) of the data.    

The results demonstrated that terrain effects significantly influenced both codes' 
differences in wind speed and wind direction, especially in high-roughness areas. 
Approximately 50%, 30%, and 20% of wind speed data from both codes differed around 
10% to 20%, 30% to 40%, and 50% to 80%, respectively. Regarding wind direction, 
roughly 50% of the data between the two codes differed by about 11o. Additionally, 40% 
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of the remaining data differed by about 11o to 45 o, while the remaining 10% showed 
differences from approximately 45 o to 90 o. This phenomenon correlated to Lim et al. 
study [102], which demonstrated that the terrain has played an important role in the 
changing wind direction and speed. The different wind data resulted in an inconsistency 
in plume transportation and caused a difference in radionuclide dispersion and activity 
concentration. 

The atmospheric stability class data was compared to evaluate the effects of 
different evaluation methods on the two codes. Figure 24 displayed atmospheric stability 
class data on January 18, 2018, at 23 UTC, prepared by the NACAC and JRODOS 
systems. It was categorized into six groups: unstable (class A) to stable stability (class 
F). The comparison results showed that the NACAC and JRODOS performed with one 
and three evaluation methods provided a different pattern of the atmospheric stability 
class data.  The evaluation method in the NACAC provides atmospheric stability class E 
more than the evaluation method in the JRODOS. This was related to prior research that 
variations in evaluation methods caused discrepancies in atmospheric stability class 
data [102,103]. The different atmospheric stability class data caused various diffusion 
coefficients between the two codes, leading to inconsistencies in the plume intensity of 
each area. The plume dispersion arrival time and dispersion distance were previously 
reported to vary with the atmospheric stability class data [104]. 

 
(a) NACAC atmospheric stability class  (b) JRODOS atmospheric stability class  

Figure  24 Atmospheric stability class data on January 18, 2018, 23 UTC derived from 
the (a) NACAC and (b) JRODOS[2]. 
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4.2.2 Effects of advection calculation  
Advection calculation plays an important role in determining the dispersion 

direction and distance in the atmospheric dispersion code. The total advection at each 

calculation step was the trajectory line utilized to demonstrate the pathway of the plume. 

The simulation process in NACAC and JRODOS was performed with different advection 

calculation schemes. Hence, these differences were investigated to identify the cause of 

inconsistent predicted results. The plume trajectory of the NACAC was determined 

using the 2D effective vector derived from the average wind data across ten layers. 

Figure 25 illustrated the distribution of wind data across ten layers, which were averaged 

in each trajectory line. These proportions vary according to each area's atmospheric 

stability class data. The x-axis showed the number of trajectory lines produced by the 

NACAC. Meanwhile, the y-axis presented the proportion (%) of wind data in each layer, 

ranging from grey to blue.  

 

Figure  25 Wind proportion for the trajectory calculation in NACAC in the case of  
January 18, 2018, 7:00 UTC[2]. 
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(a) Wind direction (b) Wind speed 

Figure  26 The wind (a) direction and (b) speed obtained from the NACAC using the 
vector summation at a latitude of 21o to 25o and longitude of 105o to 109o in case of 
January 18, 2018, 7:00 UTC[2]. 

The trajectory generated by the NACAC could be categorized into two groups. 

Firstly, trajectories were generated using wind data from layers 1 to 6 higher than 95 %. 

This pattern was evident in trajectory lines such as 5, 30, 53, and 85. Secondly, 

trajectories were generated using wind data from layers 1 to 6 lower than 95%. This 

characteristic was observable in trajectory lines 1, 21, 45, and 75. These trajectories 

exhibited distinct movement patterns based on the wind data utilized in the calculation 

process.  

Figure 26 displayed wind direction and speed derived from wind vector 

summation within a latitude of 21o to 25o and a longitude of 105o to 109o. The black solid 

up to the grey dashed lines demonstrated wind data from the first up to the tenth layer. 

Figure 26 (a) showed that the dominant wind directions of the first six and the last three 
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layers were different. Most of the wind blows in the SW to NW directions in the six layers. 

The wind blows strongly in the N to E direction in the last three layers. 

 Furthermore, Figure 26(b) demonstrated that wind speed varied with altitude. 

These phenomena resulted in the trajectories in the first group being affected mainly by 

the first six wind layers, causing movement towards the SW up to the NW directions. 

Meanwhile, the trajectories in the second group were influenced by the last three wind 

layers moving to the N to E directions, with higher wind speeds than in the first six 

layers.  Figure 27 showed an example of the trajectory above the pattern. Open symbols 

represented the trajectories in the first group, while solid symbols presented the second 

group's trajectories. Both trajectory groups caused radionuclide transportation from the 

SW to N directions. However, the number of trajectories in the second group was lower 

than in the first group, as shown in Figure 25. Consequently, most of the radionuclides 

predicted by the NACAC were transported along the lower wind.  

 

Figure  27 Example of the trajectory characteristic in the first and second groups 
generated in the NACAC simulation in the case of January 18, 2018, 7:00 UTC[2]. 
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The JRODOS computed the plume trajectories by employing the 3D effective 

vector of the wind data at the puff position, considering the turbulence from the terrain 

effects. This approach results in the plume moving both horizontally and vertically. 

However, the JRODOS imported only the wind components in the y and x directions of 

the wind surface. Meanwhile, the wind component in the z-direction was calculated 

utilizing the LINCOM or MCF model, especially notable in high-roughness regions [105]. 

Consequently, the plume movement in the vertical direction was primarily evident in 

specific regions, and most of the plumes probably dispersed along with the lower wind. 

However, limitations on access to JRODOS trajectory data made it difficult to assess the 

plume movement. Thus, the wind data and radionuclide transportation patterns were 

compared to investigate this hypothesis. Figure 28 demonstrated that the majority of the 

plume dispersed in the W up to NNW directions, consistent with the dominant wind 

direction at 10 meters, illustrated by an arrow. This pointed out that different advection 

calculation schemes caused different advection patterns. The NACAC, considering 

average wind data of ten layers in advection calculation, causes a high wind component 

in the X and Y directions according to the high wind speed of the upper wind. This leads 

to a high value of the effective vector and subsequently causes a long dispersion 

distance. Meanwhile, considering wind data at the plume position in the advection 

calculation of JRODOS causes a shorter dispersion distance than NACAC since most 

radionuclides are transported along lower wind with low wind speed. 

 This study revealed that variations in calculation schemes between NACAC and 

JRODOS resulted in a difference in input data and plume trajectory pattern. These 

caused variations in the radionuclide dispersion characteristics and activity 

concentrations predicted by NACAC and JRODOS codes. The advection calculation in 

NACAC considering ten layers of wind caused a longer dispersion distance than the 

JRODOS considering wind data at puff position. The further dispersion and higher 
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concentration in some dispersion directions are found in NACAC prediction.  In addition, 

the variation of activity concentration around one order of magnitude is found. Silva, 

Krisanungkura [93] suggest that the variation with one order of magnitude is a common 

difference by the effect of a different computational process that is generally found in 

comparing predicted results in commercial codes. 

 Nevertheless, the NACAC also demonstrates significantly faster calculation 

times than JRODOS, approximately 30 times, within the same computational process 

since it has a low complexity of data preparation. The further dispersion of radionuclides 

in NACAC prediction is appropriate for evaluation in conservative cases. In addition, 

open-source code in NACAC makes the modified evaluation method easier than 

JRODOS, which is commercial code.  This results in NACAC being performed with 

various evaluation patterns according to user design, while the evaluation pattern in 

JRODOS is fixed with an original design. 

Ultimately, Thailand's objective was to employ the NACAC to evaluate radiation 
impacts from nuclear power plant accidents in neighboring countries. The comparison 
of total effective dose rates between the NACAC and JRODOS was examined for the 
March 20, 2018 scenario, during which radionuclides are clearly dispersed towards 
Thailand, as shown in Figure 29. This analysis showed that the prediction results derived 
from NACAC agreed with those generated by JRODOS. Most radionuclides from the 
LOOP/LB LOCA scenario dispersed to the southwest, covering a radius ranging from 
approximately 700 to 900 km. These radionuclides covered certain northeastern regions 
in Thailand. However, the total effective dose equivalence remained below the minimum 
operational intervention level criteria (1 mSv) [106]. 
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Figure  28 Comparison between the JRODOS predicted I-131 air concentration 
transportation patterns and wind data at 10 m after (a) 24 h, (b) 48 h, (c) 72 h, and (d) 
96 h in the case of January 18, 2018, 7:00 UTC[2]. 
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Figure  29 Total dose rate of I-131 and Cs-137 at Fangchenggang NPP after 96 h 
derived from the (a) NACAC and (b) JRODOS predictions after 96 h in the case of 
March 20, 2018, 3:00 UTC[2]. 

4.3 Results of modifying representative data selection 
This research aimed to investigate the influences of climate change on the 

predicted results of an atmospheric dispersion code. However, the investigation 

required preparing meteorological input data illustrating all aspects of the effects of 

variations in meteorological data on prediction results for transboundary radiation effect 

evaluation. Sequential data selection could fulfill this requirement, but challenges were 

associated with employing excessive computational resources. Thus, representative 

data selection providing a comprehensive predicted result with less computational 

resources in the domestic evaluation was modified for transboundary radiation effect 

evaluation. The analysis results of computational cases in Table 13 were discussed in 

this section. The effects of selected optional weather parameters, area boundaries, and 

sampling rate were defined by comparing statistical parameters between the 

simulations using sequential and representative data selection.  
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4.3.1 Effects of optional weather parameters and area boundaries  
The statistical values of AMBE at the 50th, 90th, and 99.5th percentiles for radial 

locations up to 900 km were shown in Figures 30(a), 30(b), and 30(c), respectively. The 

open blue circle, open blue triangular, and open blue rectangular symbols correspond 

to the AMBE values for cases numbered 2, 3, and 4, respectively.  Meanwhile, the solid 

red diamond, solid red circle, solid red triangular, and solid red rectangular symbols 

denote the AMBE values for cases No. 5, 6, 7, and 8, respectively. 

The comparison showed that all cases generally provided a similar trend of AMBE 

changing along the locations. Thus, the effects of selected optional parameters and 

area boundaries in the simulation using representative data selection were insignificant. 

The TEDE values derived from all cases were similar to those of the simulation using the 

sequential data selection. The AMBE values of the three percentile levels throughout 900 

km radials were found to be lower than 0.1 mSv, which was lower than the minimum 

requirement of operational intervention levels at 1 mSv [106]. 

Figure 30(a) suggested it had very close TEDE values at the 50th percentile 

derived from the simulation using sequential and representative data selection 

throughout 900 km radials. Meanwhile, a slight variation in TEDE obtained by both 

simulation processes was identified with a high TEDE, frequently near a release point, as 

a comparison at the 99.5th percentile in Figure 30(c). 

Figures 30(d), 30(e), and 30(f) showed RSME values at the percentile of 50th, 

90th, and 99.5th at the radial locations up to 900 km, respectively. Similar symbols used 

in Figures. 30(a) to 30(c) were applied here. Typically, the RMSE values exhibited similar 

trend lines to AMBE values in the three percentile levels. It illustrated that the RMSE and 

AMBE investigation agreed that the differences in optional parameters and selected 

area boundaries are negligible in predicting the TEDE values. 
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Figures 30(g), 30(h), and 30(i) showed the CC values at the 50th, 90th, and 99.5th 
percentiles at the radial locations up to 900 km, respectively. Similar symbols used in 
Figure. 30(a) to 30(c) were applied here.  As shown in Figures 30(g) and 30(i), the CC 
values at the percentiles of 50th and 99.5th were lower than 0.8 and fluctuated over the 
radius locations. The trends of CC values at the 90th percentiles for all cases were higher 
than 0.8 and generally correlated well. This is the effect of the NACAC computational 
scheme. The NACAC calculates the TEDE values in all locations, even though 
radionuclides do not entirely affect some locations. These cause those locations to 
contain a TEDE value of zero (0 mSv) in the predicted result dataset. This results in the 
prediction results at the 50th percentile being lower than the average and generally 
approaching the minimum TEDE value.  

 In addition, the simulation using representative data selection is performed with 
meteorological input data derived from the sampling method. Consequently, certain 
meteorological conditions are excluded, especially the conditions causing high and low 
radiation consequences that are less likely to occur. Hence, the predicted results at the 
50th and 99.5th percentile demonstrating almost minimum and maximum TEDE of both 
simulations are different. This leads to a low CC value at specific locations. The different 
variations in the predictions at each location contribute to the fluctuation in CC value at 
specific locations [1].  

To confirm these hypotheses, Figure 31 compared the TEDE values predicted 
by simulation using sequential and representative data selection at a radius of 9 km in 
the NE direction.  Figure 31(a) demonstrated that the TEDE values of zero (0 mSv) 
contained in the dataset of the predicted results by simulation using sequential and 
representative data selection 47% and 33%, causing predicted results at the 50th 
percentile close to the minimum value. Meanwhile, Figure 31(b) showed that the most 
consistent predicted results between both simulations were found at the 90th percentile, 
while predicted results at the 50th and 99.5th percentiles had a higher variation. 
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Figure  30 Data consistency investigation of TEDE values after 24 hours at 50
th, 90

th, and 99.5
th percentile between simulation 

using sequential data selection and representative data selection by case no. 2 to 8 based on statistical values[1].  
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As mentioned above, the effects of selected optional parameters and area 

boundaries in the simulation using representative data selection were insignificant to 

predicted results based on analyzing the statistical parameters across radial locations. 

Thus, simulation using representative data selection with the computational case 

requiring the minimum computational resources was probably more favorable than other 

computational cases. 

  
(a) TEDE dataset (b) TEDE at 50th,90th and 99.5 percentile 

Figure  31 Comparing TEDE value predicted by simulation using sequential and 
representative data selection at a radius of 9 km in the NE direction 

4.3.2 Effects of sampling rates  
This section investigated the influences of sampling rates on the predicted results 

in simulation using representative data selection. Computational case No. 5, using less 

computational resources, was selected as a representative case. The sensitivity tests 

were conducted by five sampling rate conditions from high to low sampling rate: at least 

1:50, 1:100, 1:200, 1:300, and 1:400. The NACAC conducted the off-site consequence 

evaluation for 24 hours. The CC values evaluated consistency in predicted simulation 

results by simulation using sequential and representative data selection. Changing the 

CC values along the radius locations was utilized to define the sampling rate effect on 

the predicted results of the simulation using representative data selection.  
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Figures 32(a), 32(b), and 32(c) demonstrated CC values across 900 km radials 

at the 50th, 90th, and 99.5th percentiles of each sampling condition, respectively. Each 

figure contained subfigures illustrating the CC values at each sampling rate condition. 

Generally, it noted that the CC values were inversely related to distance. The short 

distance had low CC values, while the long distance had high CC values.  This was 

because the activity concentration near the release point was high, leading to a high 

difference in predicted results and low CC values. Meanwhile, the depletion phenomena 

cause the activity concentration to be decreased when distance increased.  The low 

concentration caused a low difference in predicted results, leading to low CC values, 

Figures 32(a) and 32(b) showed that sampling rates significantly affected predicting 

TEDE values at the 50th and 90th percentiles of the simulation using representative data 

selection. The increase in sampling rate caused the higher CC values. However, the CC 

values at the 99.5th percentile were insignificantly changed, as shown in Figure 32(c).  

This evaluation showed that each sampling rate condition may affect the 

predicted results in each percentile differently. For the 50th and 90th percentile, the 

higher sampling rate improved the consistent predicted results of the simulation using 

representative data selection. However, the higher sampling did not improve the data 

consistency of the predicted results at the 99.5th percentile of data. In addition, It was 

found that the sampling rate impacted the computational resources of the simulation 

using representative data selection. Thus, selecting an appropriate sampling rate for the 

consequence evaluation should be prudent to achieve reasonable predicted results. 

The optimum condition of the sampling rate should be selected based on specific data 

stratification characteristics. 
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Figure  32 CC values of case no. 5 with five-sampling rate conditions at (a) 50
th, (b) 90t h, and (c) 99.5

th percentile[1]. 
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4.4 Results of investigating appropriate meteorological data selection 
 The appropriate simulation process to investigate the effects of variations in 

meteorological data on transboundary radiation effect evaluation was examined. The 

simulation using modified representative data selection was compared to the simulation 

using sequential data selection, providing comprehensive predicted results. The 

hypothetical severe accidents at Fangchenggang NPP in China and hourly 

meteorological data in 2020 were used as initial conditions.  

The simulation using representative data selection was performed with the 

scheme of data selection of case No.5 with the minimum computational resources. The 

optional parameter with wind speed and the area boundary of metrological data at the 

release point was used. According to the previous analysis, the sampling rate of 1:50, 

achieving the highest acceptable CC values, was selected. These conditions produced 

input data containing 206 meteorological data sequences for the simulation. Meanwhile, 

the simulation using sequential data selection was performed with input data containing 

8,760 meteorological data sequences at one-hour intervals throughout a year to 

produce comprehensive predicted results.  

The TEDE values and dispersion characteristic maps of 24 hours at the 50th,90th, 

and  99.5th percentiles, demonstrating radiation consequences at medium, severe, and 

critical, were compared. One of the simulation processes was selected to demonstrate 

the effects of variations in meteorological data on the transboundary radiation effect with 

reasonable computational resources in section 4.6. 

4.4.1 Total Effective Dose Equivalence (TEDE ) 
Figures 33 to 35 compared the TEDE values for 24 hours in 16 directions at the 

50th, 90th, and 99.5th percentiles produced by the simulation using representative and 

sequential data selection with the open red rectangular and black triangular symbols, 

respectively. Generally, both simulation processes provided similar TEDE trends with 
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TEDE values less than 1 mSv. The TEDE values decreased along the radius location 

depending on the direction. The TEDE values reached near-zero values at a specific 

radius location (dispersion distance) depending on the direction. However, some 

differences in TEDE values and dispersion distances were also found. The differences in 

TEDE values were generally found at almost the end of the dispersion distance. 

As for the comparison at the 50th percentile, Figure 33 showed that both 

simulations provided similar predicted results, with most radionuclides dispersed in 8 

directions from 16 directions. However, simulation using representative data selection 

gave a shorter dispersion distance in 5 directions with a maximum difference of around 

100 km. Meanwhile, the differences in the TEDE values of both simulations were found in 

period 1 up to 5 orders of magnitude in SSE, S, NW, and NNW directions. As for the 

comparisons at the 90th percentile, Figure 34 showed that the highest consistency 

predicted results between both simulations were found in this percentile. However, the 

NE and NNW directions have slightly different dispersion distances, with a maximum 

value of 150 km. Meanwhile, different TEDE values of around 1 up to 2 orders of 

magnitude were found in E, ESE, SE, W, and WNW directions. In contrast, the lowest 

consistency predicted results between both simulations was found in the 99.5th 

percentile. The high difference was shown in the E up to the SSE directions, as shown in 

Figure 35. The maximum difference in TEDE values and dispersion distances in these 

directions was found at 6 orders of magnitude and 200 km, respectively. 

4.4.2 Dispersion characteristics  
Figure 36 compared the dispersion characteristic maps of TEDE values at the 

50th,90th, and  99.5th percentiles produced by the simulation using representative and 

sequential data selection. Generally, the dispersion characteristics of both simulations 

agreed well. Most radionuclides of the three percentiles dispersed in the same direction. 

The most consistent predicted results were found at the 90th percentile, as shown in 
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Figured 36 (b) and (e). However, as mentioned above, the differences in dispersion 

distances and concentration of the TEDE values caused a difference in dispersion 

characteristics.  The highest difference was found at the 99.5th percentile, as shown in 

Figured 36 (c) and (f). The simulation using representative data selection did not show 

some part of the radiation impact in the directions of ENE up to SSE compared with the 

simulation using sequential data selection. 

Conclusively, simulation using representative data selection could provide high 

consistency in predicted results compared with simulation using sequential data 

selection. The predicted results at the 90th percentile were the most consistent. 

However, comparing predicted results at the 50th and 99.5th percentile also showed high 

differences in dispersion distances and TEDE values. This was the effect of different 

schemes in preparing meteorological input data. The representative data selection 

prepares meteorological data by sampling method. It caused certain meteorological 

conditions to be excluded, especially the conditions causing low and high radiation 

consequences that were less likely to occur. Hence,  the representative data selection 

yielded only good predictions that reflected most of the climate data that occurred in a 

year. Meanwhile, the ineffective prediction result was found in rare cases, such as the 

predicted result at the 99.5th percentile.  

This demonstrated that simulation using representative data selection was suitable 

for emergency impact assessment, which required the preliminary impact locations and 

preliminary level of radiation impacts in a short period of time. However, the investigation 

of the effects of meteorological data variations on prediction results required all aspects 

of meteorological behavior to demonstrate the effect of each meteorological 

characteristic change. The loss-effective predicted result in rare meteorological data 

cases in the representative data selection might be inappropriate for this investigation. 
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Consequently, simulation by sequential data selection providing a comprehensive 

prediction result was used for the investigation of the effects of meteorological data 

variations on prediction results. 
 

 

 

Figure  33 Comparing TEDE values after 24 hours at the 50
th percentile within a radial of 900 km in 

16 directions predicted by simulation using representative and sequential data sections. 
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Figure  34 Comparing TEDE values after 24 hours at the 90
th percentile within a radial of 900 km in 

16 directions predicted by simulation using representative and sequential data sections. 
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Figure  35 Comparing TEDE values after 24 hours at the 99.5
th percentile within a radial of 900 km in 

16 directions predicted by simulation using representative and sequential data sections. 
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Figure  36 Comparing dispersion characteristics at the 50th, 90th, and 99.5th percentile 
by simulation using sequential and representative data selection  

4.5 Results of investigating influences of meteorological data on NACAC computational 
Understanding the influences of meteorological parameters at each 

computational step in NACAC was essential for discussions about investigating the 

effects of variations of meteorological data on prediction results. As mentioned in 

section 2.6.1, NACAC calculated atmospheric dispersion with 16 main calculation 

parameters in three sub-calculation parts: depletion, dispersion, and concentration 

calculations. To investigate the influences of each meteorological parameter on these 

calculation parameters, a sensitivity test was performed by varying meteorological input 

data in 12 cases, according to Table 14.  

Figures 37 to 39 showed the average values for 24 hours of each calculation 

parameter of depletion, dispersion, and concentration calculation parts, respectively. 

The open and solid symbols represented conditions of no rain and heavy rain. The black 
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and red colors represented conditions of low and high wind speeds. The square, circle, 

and triangle represented atmospheric stability class A, D, and F, respectively. 

As for depletion calculation, the depletion of the emission concentration rate was 

calculated by decay, wet, and dry deposition phenomena. However, this study was 

performed by Cs-137 with a long half-life. Thus, depletion with decay was low, as shown 

in Figure 37(a). Meanwhile, wet deposition was considered the main effect, followed by 

dry deposition. Thus, the rain intensity was the main parameter causing the depletion of 

the emission concentration rate in this part.  

This investigation had 6 cases of meteorological input data considering heavy 

rain. It was noted that case No. 4, with low wind speed ( 0.3 m/s), heavy rain (7.6 mm/h), 

and unstable atmospheric stability class (A), caused the highest depletion. The low wind 

speed and unstable atmospheric stability class caused short dispersion distance and 

high diffusion coefficient in both horizontal and vertical directions. The high diffusion 

coefficient in a vertical direction caused great radionuclide dispersion in the 

atmosphere, leading to a low dry deposition coefficient, as shown in Figure 37(b). 

Meanwhile, the high diffusion coefficient in the horizontal direction and low dispersion 

distance caused a high advection time, according to Equations 12 and Figure 37(d). 

However, the high rain intensity produced a high wet depletion coefficient. These 

conditions caused the lowest depletion fraction, leading to the highest depletion in the 

emission concentration rate, as shown in Figures 37(c), 37(e), and 37(f), respectively.  

On the other hand, the case causing the lowest depletion was found in case No. 

7 with high wind speed (10.8 m/s), no rain (0 mm/h), and unstable atmospheric stability 

class (A). This was because no rain does not cause wet deposition, which was the main 

parameter of the depletion calculation. In addition, the high wind speed and unstable 

atmospheric stability class were a combination, causing a short travel time. These 

conditions caused depletion fractions close to one, demonstrating the lowest depletion. 
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Figure  37 Depletion parameters 

As for the dispersion calculation, it was noted that the change in wind speed and 

atmospheric stability class significantly affected the calculation parameters in this part. 

Meanwhile, the change in rain intensity indirectly affected these parameters with the 

depletion of the emission concentration rate, as mentioned above. Case No. 7, with high 

wind speed (10.8 m/s), no rain, and unstable atmospheric stability class (A), caused 

long and wide dispersion distances. The high wind speed and unstable atmospheric 

stability class caused the high diffusion coefficient in both horizontal and vertical 

directions, as shown in Figure 38(a) and (b).  

Effective dispersion in the vertical direction enabled radionuclides to disperse 

across multiple layers of wind, leading to high plume density in each layer. It resulted in 

the high wind speeds commonly observed at higher altitudes employed in advection 

calculations, contributing to extended dispersion distances, as shown in Figures 38 (c-

e). Meanwhile, effective dispersion in a horizontal direction caused a wide dispersion 

boundary, causing more calculation receptors in several directions and radii to be 

selected, as shown in Figures 38 (f-i). These conditions allowed radionuclides to 

disperse far and wide. 
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Figure  38 Dispersion parameters 
In contrast, the condition causing the opposite character was observed in case 

No. 6 with low wind speed (0.3 m/s), heavy rain (7.6 mm/h), and stable atmospheric 

stability class (F). The low wind speed and stable atmospheric stability class resulted in 

inefficient dispersion coefficients in both horizontal and vertical directions. These 

conditions caused narrow and shot dispersion of radionuclides. In addition, heavy rain 

also led to high depletion in the concentration emission rate, causing the shortest 

dispersion distance in this case. The dispersion characteristic of the 12 cases was 

shown in Appendix A. 

As for concentration calculation, the depleted emission concentration rate and 

selected receptor from the above-mentioned were utilized. Case No. 3, with low wind 

speed (0.3 m/s), no rain (0 mm/h), and stable atmospheric stability class (F), caused the 

height average air concentration, ground concentration, and total effective dose 

equivalence. The low wind speed and stable atmospheric stability class caused low 

diffusion coefficients in horizontal and vertical directions, leading to narrow and shot 
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dispersion of radionuclides. This demonstrated that the calculation receptors selected 

were low. In addition, no rain caused a low wet deposition coefficient, leading to low 

depletion in the emission concentration rate. The low number of calculation receptors 

and low depletion in the emission concentration rate caused the high average air 

concentration, as shown in Figure 39 (a). Meanwhile, the ground concentration was 

calculated by considering air concentration and deposition coefficient. However, the air 

concentration was the main effect. It caused a high average ground concentration in 

case No. 3, even though there was no rainfall, as shown in Figure 39(b).  Finally, the 

high air and ground conditions in case No. 3 led to high total effective dose 

equivalence, as shown in Figure 39 (c). 

In contrast, the lowest average activity concentrations and total effective dose 

equivalence were found in Case No.10 with high wind speed (10.8 m/s), heavy rain (7.6 

mm/h), and unstable atmospheric stability class (A). The high wind speed and unstable 

atmospheric stability class caused wide and long dispersions. This led to a large 

selection of calculation receptors. In addition, heavy rain caused high depletion. These 

conditions resulted in low average air concentration, leading to low average ground 

concentration and total effective dose equivalence.  

 

Figure  39 Concentration parameters 

Figure 40 showed the prediction results of 12 meteorological input data sorted in 

ascending order concentration parameters and categorized according to the number of 
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dispersion directions. Since the dispersion characteristics of air concentration, ground 

concentration, and TEDE are the same, the dispersion characteristics of TEDE are used 

as representatives in Figure 40. 

 

 

Figure  40 Prediction results of 12 meteorological input data sorted in ascending order concentration parameters 
where Avg AC, Avg GC, and Avg TEDE are average total for 24 hours of air concentration [Bq/m

3], ground 
concentration [Bq/m

2], and total effective dose equivalent [mSv] 
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As mentioned above, it demonstrated that each type of meteorological 

parameter had different influences on calculation parameters in NACAC. The 

atmospheric stability class and wind speed were used in calculating the diffusion 

coefficient in the horizontal and vertical directions. The unstable atmospheric stability 

class and high wind speed were a combination causing the highest diffusion coefficient.  

The high diffusion coefficient in the vertical direction provided effective vertical 

dispersion of radionuclides. This resulted in the average wind speed being high since 

the high wind speed at high altitudes was used in the calculation. The high average 

wind speed led to a long dispersion distance. In addition, effective vertical dispersion 

also caused great dispersion in the atmosphere. The radionuclides were low deposited 

from the puff center to the ground. Meanwhile, the high diffusion coefficient in the 

horizontal direction provided further dispersion of radionuclides. This caused the high 

dispersion boundary fraction and many calculation receptors to be selected. In addition, 

this condition led to a long advection time, causing high depletion in the emission 

concentration rate. As for rain intensity, this parameter affected depletion and ground 

concentration calculations. The high rain intensity caused high depletion by wet 

deposition, leading to decreased concentration emission rates. Meanwhile, this 

condition caused a high deposition coefficient, leading to high ground concentration. 

As for average air concentration, ground concentration, and total effective 

equivalent dose, these parameters depended on the emission concentration rates and 

the number of receptors. They had a high value with the meteorological parameter sets, 

causing low depletion and dispersion, such as low wind speed, low rain intensity, and 

stable atmospheric stability class. In contrast, these parameters had a low value with the 

meteorological parameter sets, causing high depletion and dispersion, such as high 

wind speed, high rain intensity, and unstable atmospheric stability class. Figure 41 
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shows combinations of meteorological parameters causing the highest value of each 

calculation parameter in NACAC. 

 

Figure  41 Combinations of meteorological parameters causing the highest value of 
each calculation parameter in NACAC 

4.6 Results of investigating the influences of variations in meteorological data on the 
predicted results 

This section demonstrated results according to the investigation process 

described in section 3.6. the influences of variations in meteorological data on predicted 

results were investigated for a year and five years, as detailed in sections 4.6.1 and 

4.6.2, respectively. 

4.6.1 Influences of variations in meteorological data on predicted results for a year 
4.6.1.1. Change in meteorological data over one year  

Hourly meteorological data in 2016 within a radius of 900 km was collected to 

use as sample data for investigating meteorological change in a year. The frequency 

distribution of wind directions and the average values of wind speed, rain, and 

atmospheric stability class in each month were plotted to obtain characteristics of these 

parameters in each season.  
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As for changes in wind direction, Figure A-4 in Appendix A showed the 

frequency distribution of wind directions of 10 layers in 2016. It was found that wind 

directions were separated into two patterns: wind directions of the first seven layers and 

the last three layers. To simplify the analysis, the two groups' wind directions were 

plotted by the wind pathway form, as shown in Figure 42. The green and blue colors 

represented the wind pathways in the first seven and last three layers. 

 

Figure  42 Wind pathway in the first seven and last three layers in each month in 2016 
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It was noted that the wind directions of the first seven layers changed more than 

the wind directions of the last three layers. As for the first seven layers, the dominant 

wind directions changed clockwise. It started with the SW direction in the period 1st to 3rd 

month. Then, it moved to the N up to NE directions from 4th to 6th month and changed to 

the NE up to E directions from 7th to 9th month. Finally, it moved to the SW direction from 

10th to 12th month. As for the last three layers, the NNE direction was the dominant wind 

direction in the first three months. Meanwhile, the ENE and E directions have been the 

dominant wind directions for the 4th to 9th months. As for the last three months, it noted 

that most wind moved to SSW and S direction. This investigation showed that changing 

wind direction could separate into stable and unstable wind direction parts. The 4 th and 

9th months were transition periods between both parts with more change in wind 

direction than the other periods.  

As for changes in wind speed, Figure 43 showed each layer's monthly average 

wind speed values in 2016. It was found that the average wind speed varied with 

altitude. Changing the characters of the average wind speed values in each layer was 

similar. The high average value was found in the first and last three months. Meanwhile, 

the low average value was found in the 4th to 9th month period. As for changes in rain 

intensity and atmospheric stability class, it was noted that the changing behavior of both 

parameters on a monthly had a similar trend line, as shown in Figure 44. The average 

values of both parameters decreased in the first and last three months. In contrast, they 

increased in the 4th to 9th months. 

The above investigation noted that changing meteorological data in a year could 

be categorized into two parts according to changes in the dominant wind direction of 

the first seven layers. Firstly, the stable wind direction occurs in the year's first and last 

three months. The trend line of average wind speed was increased. Meanwhile, the 
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trend line of average atmospheric stability class and rain intensity was decreased. The 

dominant wind directions of the first seven layers were stable in the SW direction. 

Meanwhile, the dominant wind direction of the last three layers was the NNE direction in 

the first three months and the SSW and S directions in the last three months. 

Secondly, the unstable wind direction part occurred from 4th to 9th month of the 

year. The trend line of average wind speed was decreased while average atmospheric 

stability and rain intensity was increased. The dominant wind direction changed 

clockwise for the first seven layers. It transfers from SW to N directions, changes 

between N up to E directions, and moves from E to SW directions, respectively. The 

dominant directions for the last three layers were between ENE and E directions.  

 
Figure  43  Monthly average wind speed value of each layer in 2016 
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Figure  44 Monthly average (a) atmospheric stability class and (b) rain intensity in 
2016 
 

4.6.1.2  Change in projected results over one year 
Dispersion characteristics 

Simulation using sequential data selection was used to evaluate the radiation 
effect for 24 hours of the hypothetical accident at Fangchenggang NPP. The simulation 
was performed with meteorological data in 2016. The predicted results at the 50th,90th, 
and 99.5th percentile of air concentration, ground concentration, and TEDE values were 
used to analyze changing dispersion characteristics and concentration values.  As 
mentioned in section 4.5, air concentration, ground concentration, and TEDE dispersion 
maps were the same pattern. Thus, the dispersion maps of TEDE were used as the 
representative in this investigation. Figures 45, 46, and 47 showed the TEDE dispersion 
maps for 24 hours at the 99.5th, 90th, and 50th percentile in each month in 2016. 

The result comparison showed that the predicted results at the 99.5th percentile 
had the greatest dispersion and the highest TEDE values, followed by the predicted 
results at the 90th and 50th percentile, respectively. Generally, the dispersion maps of the 
three percentile are consistent with meteorological data in each month. As for dispersion 
maps at the 99.5th percentile,  
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(a) 1st month (Jan) (b) 2nd month (Feb) (c) 3rd month (Mar)  

   

 

(d) 4th month (Apr) (e) 5th month (May) (f) 6th month (Jun)  

   

 

(g) 7th month (Jul) (h) 8th month (Aug) (i) 9th month (Sep)  

   

 

(j) 10th month (Oct) (k) 11th month (Nov) (l) 12th month (Dec)  

Figure  45 TEDE in 2016 at 99.5th percentile 
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(a) 1st month (Jan) (b) 2nd month (Feb) (c) 3rd month (Mar)  

   

 

(d) 4th month (Apr) (e) 5th month (May) (f) 6th month (Jun)  

   

 

(g) 7th month (Jul) (h) 8th month (Aug) (i) 9th month (Sep)  

   

 

(j) 10th month (Oct) (k) 11th month (Nov) (l) 12th month (Dec)  

 
Figure  46 TEDE in 2016 at 90th percentile 
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(a) 1st month (Jan) (b) 2nd month (Feb) (c) 3rd month (Mar)  

   

 

(d) 4th month (Apr) (e) 5th month (May) (f) 6th month (Jun)  

   

 

(g) 7th month (Jul) (h) 8th month (Aug) (i) 9th month (Sep)  

   

 

(j) 10th month (Oct) (k) 11th month (Nov) (l) 12th month (Dec)  
 

Figure  47 TEDE in 2016 at 50th percentile 
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Figure 45 showed that changing dispersion characteristics at the 99.5 th 
percentile correlated with changing meteorological parameters, as mentioned in section 
4.6.1.1. Figures 45 (a-c) and 45 (j-l) showed that the dispersion of radionuclides in the 
1st up to 3rd and 10th up to 12th month was wide and long. Most of the radionuclides 
dispersed to SSW up to SW directions and N up to NNE directions with high 
concentration. 

This is because the meteorological characteristic in these periods was the stable 
wind direction part consisting of low rain intensity, low atmospheric stability class, and 
high wind speed. These conditions correlated to the nature of case No. 7 in section 4.6.  
The high wind speed and low atmospheric stability class caused wide and long 
dispersion. The low rain intensity caused a low depletion of the emission concentration 
rate, leading to a high concentration value in each dispersion location. In addition, the 
low atmospheric stability class caused a high diffusion coefficient in the vertical 
direction. Hence, wind in the low and high layers was used in advection calculation.  It 
caused most of the radionuclides to disperse to the SW and NNE directions, which were 
dominant wind directions of the first seven and last three wind layers of the first and last 
three months in 2016. 

Meanwhile,  Figures 45 (d-i) showed that the concentration of TEDE and 
dispersion distance from the 4th up to 9th months was lower and shorter than those of the 
first and last three months. Most radionuclides disperse from SSW to N directions and 
move from N up to E directions and from E to SSW directions, respectively. This is the 
influence of meteorological characteristics in the unstable wind direction period.   

In the 4th  up to 9th months, meteorological characteristics in this period were 
high rain intensity, high atmospheric stability class, and low wind speed correlating to 
the nature of case No. 6 in section 4.6. The low wind speed and high atmospheric 
stability class caused short and narrow dispersion. Meanwhile, the high rain intensity 
caused high depletion, resulting in a low concentration value, especially in the eighth 
month with the highest rain intensity. The dispersion distances in this month were the 
shortest, and the TEDE values were the lowest, especially the predicted results at the 
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50th percentile, as shown in Figure 47 (h). The high atmospheric stability class caused a 
low diffusion coefficient in the vertical direction. Thus, the wind data in the low layer was 
likely to be used in advection calculation.   
As for the dispersion direction, the 4th month was the transition from the stable to 

unstable wind direction parts. Thus, most radionuclides used to disperse in SSW and 

NNE directions move to the N direction, which was the dominant wind direction of the 

first seven layers of this month. In the 5th up to 8th month, most radionuclides dispersed 

between N up to E directions correlated with the dominant wind directions of the first 

seven layers in this period. In the 9th month, this month was the transition from the 

unstable to stable wind direction parts. Thus, the dispersion of most radionuclides 

moves from E to SSW direction. Meanwhile, dispersion characteristics at the 90 th and 

50th percentile correlated with dispersion characteristics at the 99.5th percentile with the 

dominate dispersion direction. However, the concentration values in some directions 

were decreased according to percentile levels, leading to the disappearance of some 

dispersion directions, as shown in Figures 46 and 47. 

Activity concentrations 
As for activity concentration, average air concentration, ground concentration, 

and TEDE values in each radius location of each month were calculated to investigate 

changing activity concentration at the 50 th, 90th, and 99.5th percentile. Since the trend 

lines of activity concentration by Cs-137 and I-131 were the same, predicted results by 

I-131 with higher activity concentration were used as representative results for the 

investigation. Figure 48 showed the average air concentration values of I-131, the 

ground concentration values of I-131, and TEDE values by I-131 and Cs-137 at the 50th, 

90th, and 99.5th percentile in each month. The dashed blue and green lines represented 

the stable wind direction part in the period of 1st to 3rd and 10th to 12th month. The dotted 

red lines represented the unstable wind direction part in the 4th to 9th month period. The 
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solid black line was an average value in a year. The symbols from a square to a 

pentagon in each color presented the order of the months in each range. 

 It was noted that the trend lines of air concentration values, ground 

concentration values, and TEDE values in each percentile were similar. Generally, a 

concentration value of predicted results in the stable wind direction part with low rain 

intensity was close to the average in a year. Meanwhile, a concentration of predicted 

results in the unstable wind direction part with high rain intensity was lower than the 

average value in a year, especially a result of the 8 th month with the highest rain 

intensity. 

 As for air concentration, it was found that the predicted results for each month at 

the 90th and 99.5th percentile were rather consistent within a radius of 100 km. Contrarily, 

the difference in predicted results about 1 up to 6 and 1 up to 5 orders of magnitude 

was found in a radius of more than 100 km of predicted results at 90 th and 99.5th 

percentile. As for predicted results at the 50th percentile, the most consistently predicted 

results with the average value of a year were found within a radius of 10 km, while 

different predicted results of about 1 up to 7 orders of magnitude were found after that. 

The most differences were found in the unstable wind direction part with high rain 

intensity. 

As for ground concentration and TEDE values, the trend lines of both parameters 

were consistent with the trend lines of the air concentration. The maximum difference in 

both parameters at the 90th and 99.5th percentile was around 6 orders of magnitude, 

while the maximum difference at the 50th percentile was around 7 orders of magnitude. 
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Figure  48 Monthly average activity concentration in each radius location at 50th, 90th, 
and 99.5th percentile in 2016 
 

4.6.2 Influences of variations in meteorological data on predicted results for five 
years 

4.6.2.1 Change in meteorological data over five years 
Hourly meteorological data from 2016 up to 2020 within a radius of 900 km was 

collected and compared by averaged value to demonstrate the different characteristics 

of meteorological data in each year. The wind data at 10 m most significantly affected 

advection calculation in NACAC, as mentioned in section 4.2.2. Thus, wind speed and 

wind direction at 10 m were used as representatives from the ten layers of wind in this 

investigation.  
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Figures 49 (a), (b), and (c) showed the average atmospheric stability class, rain 

intensity, and wind speed at 10 m within a radius of 900 km. Meanwhile, Figure 50 

showed the frequency distribution of wind directions at 10 m each year. Generally, it 

was found that meteorological characteristics in each year were similar, corresponding 

to changing meteorological data in a year described in section 4.6.1.1. The 

meteorological characteristics at the beginning and end of the year had low 

atmospheric stability class, low rain intensity, and high wind speed. Most of the wind 

blew in the SW direction. In contrast, the meteorological characteristics of the middle of 

the year were opposite: high atmospheric stability class, high rain intensity, low wind 

speed, and dominant direction change clockwise from SW to NE and NE to SW 

directions.  

However, some differences in meteorological characteristics of each year were 

also found. The obvious difference was shown in the average rain intensity in Figure 49 

(b). The high average rain intensity was found from the 6th to 9th month in 2017 to 2019, 

but this kind of weather was delayed for a month in 2016 and 2020.  The average wind 

speed of 10 m in 2020 was the lowest in the 6th to 9th month but highest in the 10th 

month, as shown in Figure 49 (c). In addition, the proportion of wind in each direction in 

each year was different. It was clearly found in the 4th to the 9 th month, as shown in 

Figures 50(e-j). Although the dominant wind direction in each year changed clockwise, 

the change period of each year was different. 
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Figure  49 Average hourly meteorological parameter in each year within a radius of 900 km from Fanhchenggang NPP  
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Figure  50 Frequency of wind direction at 10 m of each year within a radius of 900 km 
from Fangchenggang NPP 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 128 

 These differences were identified with AMBE, RMSE, and CC statistical methods 

by comparing hourly meteorological data in each year and average value over five 

years, as shown in Figure 51. 

 The result comparison shows that the atmospheric stability class of each year 

has similar changes, with a maximum AMBE of 0.33, maximum RMSE of 0.48, and 

minimum CC of 0.94, as shown in Figure 51 (a), 51 (b), and 51 (c), respectively. In 

contrast, the other parameters were rather different. Most differences were found in the 

unstable wind direction part (the 4th and 9th months). The wind direction was the highest 

difference, followed by rain intensity and wind speed. It was noted that the frequency 

distribution of wind direction in each year was different every month, with a maximum 

AMBE of 2.15% and RMSE of 2.76 %, as shown in Figures 51 (d) and 51 (e). Meanwhile, 

CC showed that the transition between stable and unstable wind direction was the most 

different, with a CC value of about 0.7%, as shown in Figure 51 (f).  

As for the rain intensity, the most difference was found in the period of the 5th to 

10th month with rainfall occurring. Figures 51 (g), 51 (h), and 51 (i) showed that the 

maximum AMBE, maximum RMSE, and minimum CC are 1.64 mm/h, 2.75 mm/h, and 

0.45, respectively. The differences in wind speed were not much different but found 

throughout a year with a maximum AMBE of 1.37 m/s, maximum RMSE of 2.94 m/s, and 

minimum CC of 0.72, as shown in Figures 51 (j), 51 (k), and 51 (l). 

These comparisons showed that meteorological parameters in each year 

changed with a similar pattern but did not change with the same ratio. The consistency 

in each meteorological parameter between a single year and the five-year average was 

medium up to high correlate.  
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Figure  51  Monthly statistical values of AMBE, RMSE, and CC, demonstrating 
differences in each meteorological parameter in each year from the average value over 
five years. 
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4.6.2.2 Change in predicted results over five years 
To demonstrate the influences of variation in meteorological data from each year 

on predicted results, simulations were conducted using sequential data selection with 
monthly meteorological data for each year and over five years. The simulation was 
carried out with the hypothetical severe accident at Fangchenggang NPP to evaluate 
the radiation effect for 24 hours. The predicted results of air concentration, ground 
concentration, and TEDE at the 50th, 90th, and 99.5th percentile were calculated to 
demonstrate radiation effect at medium, severe, and critical consequence levels. The 
effects of variation in meteorological data on dispersion characteristics and activity 
concentration were examined.  

Dispersion characteristics 
The influences of meteorological data variation on dispersion characteristics 

were investigated. As mentioned in section 4.5, the dispersion characteristics of air 
concentration, ground concentration, and TEDE were the same. Thus, the dispersion 
characteristic maps of TEDE were used as a representative in this investigation, as 
shown in section A5 in Appendix A. Typically, the dispersion characteristics of predicted 
results at 50th,90th, and 99.5th percentile were correlated. However, some dispersion 
parts in the 99.5th percentile disappear in the 90th and 50th percentages according to the 
consequence level. The disappearance of some dispersion parts in predicted results at 
the 90th and 50th percentile might cause a misinterpretation of the effects of 
meteorological data variation. Thus, the dispersion characteristics at the 99.5 th 
percentile, providing clear variation from the influence of different meteorological data, 
were considered. 

Generally, the dispersion characteristics of each year were similar and related to 

the dispersion characteristics of a year described in section 4.6.1.2. They changed 
according to meteorological characteristics each month. The low atmospheric stability 
class, low rain intensity, and high wind speed in the first and last three months 
corresponded to Case No. 7 or 8, causing wide and long dispersion distances. Most 
radionuclides dispersed to the dominant wind directions of the first seven and last three 
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layers: S to WSW and ENE to NNW direction, respectively, as shown in section A6 of 
Appendix A. Meanwhile, the high atmospheric stability class, high rain intensity, and low 
wind speed in the middle of the year (4th to 9th month) corresponded to Case No. 5 or 6, 
causing narrow and short dispersion distances. Most radionuclides dispersed along 
with the dominant wind directions of the first seven layers of wind, changing clockwise 
between SW and NW directions. 

 However, variations in meteorological data of each year also caused variations 
in the monthly dispersion characteristic. The comparison results showed that the 
obvious difference is found in the 4th to 10th month, with a high variant of each 
meteorological parameter. In the 4th month, Figure A-9 showed that the dispersion 
characteristics of 2016 and 2019 differed from the others, with shorter dispersion 
distances in the SW and SSW directions. Generally, each year's average rain intensity, 
atmospheric stability class, and wind speed were not much different. However, the 
investigation of the dominant wind direction showed that the frequency of wind direction 
in SW and SSW directions in 2016 and 2019 was lower than the others, as shown in 
section A6 in Appendix A. This resulted in the transportation of radionuclides in 2016 
and 2019 being lower than the others in those directions. 

In the 5th month, Figure A-10 showed that the dispersion characteristics of 2018 
were different from the others.  The radionuclide did not disperse in the S up to SSW 
directions. This was the effect of differences in atmospheric stability class. Figure 49 
showed that the average stability class in the 5th month of 2018 was the highest, with a 
value of  4.35. This resulted in a low diffusion coefficient in a vertical direction. It caused 
low wind in the last three layers used in the advection calculation. However, the 
dominant wind direction of the first seven layers in the 5th month of 2018 was mainly 
found from the NW up to NNW directions, while the E up to SSW directions had a lower 
occurrence rate than the other. Consequently, the radionuclides in the 5th month of 2018 
were low dispersed in the S up to SSW directions. 
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In the 6th month, predicted results of each year showed that most radionuclides 
were dispersed in the N direction, as shown in Figure A-11. However, predicted results 
in 2018 indicated that some radionuclides dispersed in the E direction. This was the 
effect of different atmospheric stability class and different wind direction. Since the 
average stability class in the 6th month of 2018 was low, the wind data at the last three of 
the ten layers were used in the advection calculation. The wind data in 2018 had the 
highest occurrence in the E direction. This resulted in some parts of the radionuclides in 
2018 being dispersed in the E direction.   

In the 7th month, since the frequency of wind direction in each direction was 
similar in this month, radionuclides disperse in all directions, as shown in Figure A-12. 
However, the dispersion characteristic of 2020 differed from the others, with low 
dispersion in the W to NW directions and the ENE to ESE directions. This was the effect 
of different atmospheric stability classes and wind direction. The average stability class 
in the 7th month of 2020 was the lowest, with a value of 2.88.  The wind data at the last 
three-layer was used in the advection calculation. However, the characteristics of the 
wind in 2020 differed from the others. More winds moved to the N to NW directions than 
in other years, while fewer winds blew in the other direction every year. This resulted in 
the dispersion distance of 2020 being longer than the others in N up to NW directions 
but lower than the others in other directions. 

In the 8th month, the dispersion distances in each year were short because of the 
high rain intensity effect, as shown in Figure A-13. However, the dispersion 
characteristic in each year was quite different in this month. A dominant dispersion 
direction in 2017 and 2020, 2016 and 2018, and 2019 was the N, E, and SSW direction, 
respectively. This was because each year had a different wind pattern. The wind pattern 
of 2017 and 2020 was similar, with a higher frequency of wind in NNE up to WNW 
directions than the other years.  Meanwhile, the wind patterns of 2016 and 2018 had a 
high frequency of wind direction in the E up to NE directions. The frequency of wind 
direction in 2019 was higher than the others in W up to S directions. This resulted in the 
dominant dispersion direction of each year being different.  
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In the 9th month, Figure A-14 showed that the dispersion characteristics in each 
year were all different. Since the wind direction patterns of each year in this month were 
quite inconsistent compared with the other months. This led to the dispersion direction in 
each year being quite different. However, it also obtained that most radionuclides each 
year dispersed to the SSW direction.  

In the 10th month, Figure A-15 showed that the dispersion characteristic of 2016 
and 2017 was rather different than the others. They have high dispersion in the SSE up 
to ESE directions. In addition, the radionuclides in 2016 dispersed in the N direction 
higher than in other years.  Meanwhile, the radionuclides in 2017 dispersed in the N 
direction lower than in the other years.  This was the effect of different wind direction 
patterns. Although the wind direction pattern of each year in this month is similar with 
high frequency in the NW to SSW directions,  the frequency of data in this period of 2016 
and 2017 was lower than the others. However, frequencies in the S up to N directions 
and SSW up to ESE directions of 2016 and 2017 were the highest, respectively. This 
difference led to inconsistent dispersion characteristics each year. 

As for dispersion characteristics by five years of meteorological data, the 
comparison result showed that the simulation with monthly meteorological data over five 
years provided more comprehensive dispersion characteristics than the simulation with 
monthly meteorological data of a single year. It gave dispersion characteristics similar to 
dispersion characteristics by an average of a single year that showed predominant 
characteristics of each year. However, the high consistency of dispersion characteristics 
by the average and the five years was found in the month with a low variation of 
meteorological data.  

As for the month with a high variation of meteorological data, the simulations with 
the five years yielded results consistent with most of the yearly simulation results. A level 
of result consistency varied across a percentile level. The predicted results at the 99.5th 
percentile provided the most consistency. For example, the yearly dispersion 
characteristic in the 8th month was quite different by a high variant of wind patterns. The 
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high frequency of wind direction in 2017 and 2020 was the E up to NE directions, while 
in 2016 and 2018 was the NNE up to WNW directions. The wind pattern in 2019 was 
similar to 2016 and 2018 but higher than the others in W up to S directions. This resulted 
in the dominant dispersion direction of each year being different. However, the 
predicted results at the 99.5th percentile of simulation with the five years of 
meteorological data covered all dominant dispersion directions. 

The predicted results at the 90th percentile of simulation by the five years were 
less consistent with the yearly predicted results than the 99.5th percentile. It 
demonstrated that most radionuclides dispersed to the NE up to NW directions, which 
were the overlapping directions of the three different wind patterns. However, the unique 
predicted results of each year were not demonstrated, such as dispersion in the E 
direction in 2018. Meanwhile, the predicted results at the 50th percentile of simulation 
with five years of meteorological data were close to zero.  This was consistent with the 
5 0 th percentile of yearly predictions, where more than 50 % of the predicted results 
every year were close to zero by the high rain intensity effect. 

In general, predictions using five-year data yielded results that were consistent 
with most of the data found in the annual predictions. However, high-specificity data that 
occurred only in one year over a five-year period will be found in predicted results at the 
9 9 . 5 th percentile but might not be found in predicted results at the 9 0 th and 5 0 th 
percentiles of five-year prediction results. The data presentation by percentile provided 
a less comprehensive dispersion characteristic than the data presentation by average in 
some months. However, the data presentation by percentile clearly demonstrated the 
radiation effect according to all consequence levels. 

Activity concentrations  
The influences of variations in meteorological data on activity concentration were 

investigated. The monthly air concentration, ground concentration, and TEDE values by 
a single year, average single year, and five years of meteorological data in the dominant 
dispersion direction of the average single-year dispersion characteristic within a radial 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 135 

of 900 km were shown in section A7 in Appendix A. It was noted that trend lines of air 
concentration, ground concentration, and TEDE values were the same pattern. Thus, the 
predicted results of the TEDE values at the 50th, 90th, and 99.5th percentile were 
representative of this investigation, as shown in Figures 52 to 54. 

Generally, The result comparisons showed that the distribution of predicted 
results from 2016 to 2020 was a positive skew in all months of the three percentiles. 
Thus, the TEDE values by average were close to the maximum value found from the 
predicted results of every single year. Meanwhile, the TEDE values for the five years 
were varied according to percentile levels. The predicted results in each year at the 
99.5th percentile were the most correlated with the predicted results by an average 
single year and the five years, followed by the predicted result at the 90 th and 50th 
percentile, respectively. 

The predicted results at the 99.5th percentile had the longest dispersion 
distance. The radionuclide could disperse in the dominant dispersion direction of almost 
900 km every month. The TEDE values by the five years at the 99.5th percentile were a 
few higher than the TEDE values by average, as shown in Figure 52. The main 
difference in comparing predicted results at 99.5th was found in the 7th  up to 9th months 
in a period of 100 to 1000 km, with less TEDE values and short dispersion distances. As 
mentioned in section 4.5, low wind speed caused ineffective radionuclide transportation. 
In addition, high rain intensity led to a high depletion of the emission concentration rate, 
subsequently causing a short dispersion distance. The period of the 7th up to 9th months 
had a high variation of these parameters, as shown in Figure 49  

 The dispersion distance and TEDE values of 2017 and 2018 in the 7th and 8th 
months were the shortest and lowest compared with the other years by the influences of 
the highest rain intensity in that month. Meanwhile, the influences of the lowest wind 
speed in 2017 and 2020 of the 9th month caused the short dispersion distance. 
However, It was noted that the TEDE values by each year in the other months were quite 
correlated with the TEDE values by average and the five years.  A slight difference with 
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a lower TEDE value was found at almost the end of a dispersion distance of around 500 
to 1000 km. 

The predicted results at the 90th percentile had a few shorter dispersion 
distances than the predicted results at the 99.5th percentile, as shown in Figure 53. The 
TEDE values by average were slightly higher than the TEDE values by five years. This 
was in contrast to the results predicted at the 99.5th percentile. However, the main 
difference was still found in the 7th up to 9th months in 50 to 1000 km, with the same 
characteristics as the 99.5th percentile comparison. Meanwhile, the TEDE values in the 
other months differed slightly from 500 to 1000 km. 

In contrast, the predicted results at the 50th percentile were different from the 
other percentiles. The dispersion distances and the TEDE values were the lowest, as 
shown in Figure 54. The TEDE values by five years had a value in the medium found 
from every year's predicted result. It is clearly lower than the TEDE by average, which 
was close to the maximum value. As mentioned in section 4.3.1, the prediction results at 
the 50th percentile were lower than the average and generally close to the minimum 
value by the effect of the NACAC calculation pattern. This caused a high difference in 
the monthly TEDE values at the 50th percentile. The TEDE values by single year differed 
from the TEDE values by average and the five years throughout a dispersion distance 
with an unclear pattern. However, the highest difference was also found in the period of 
the 7th up to 9th month by the effects of different rain intensities and wind speeds. 

As mentioned above, it noted that the predicted results of an atmospheric 
dispersion code depend on meteorological data. The meteorological data changed 
throughout the year, with the stable and unstable wind direction periods occurring from 
October to March and April to September. The stable and unstable wind direction 
periods were related to the northeast and southwest monsoon periods. Thus, it could be 
concluded that the radionuclide dispersion in the northeast monsoon was wide and 
long. Most radionuclides dispersed in the SW direction.  Meanwhile, the dispersion of 
radionuclides in the southwest monsoon period had a short dispersion distance due to 
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the effects of high rain intensity. The dominant dispersion direction varied between  SW 
and  NW directions. Predicted results in each year had more variations in the southwest 
monsoon period than in the northeast monsoon periods. 

 

 

Figure  52 TEDE values at 99.5th percentile comparison in dominant dispersion 
direction of the yearly average dispersion characteristic 
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Figure  53 TEDE values at 90th percentile comparison in dominant dispersion direction 
of the yearly average dispersion characteristic 
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Figure  54 TEDE values at 50th percentile comparison in dominant dispersion direction 
of the yearly average dispersion characteristic 

4.6.3 Variability of the predicted results 
To quantify the variability of the predicted results from the influences of the 

variations in meteorological data. The predicted results at 50th, 90th, and 99.5th percentile 

of air concentration, ground concentration, and TEDE values by single year were 

compared with those by an average of every single year and five years through AMBE, 

RMSE, and CC methods to investigate different predicted results in each year and five 

years. The investigation was performed in all directions with three distances: short ( 0- 

10km), medium (10-100km), and long (100-1000 km) periods.  Section A 8 in Appendix 

A showed statistical values in comparing the predicted results by single year and 

average. Meanwhile, section A 9 in Appendix A showed statistical values in comparing 

the predicted results by single year and five years. It was noted that the trend lines 

character of AMBE, RMSE, and CC of air concentration, ground concentration, and 

TEDE were the same. Thus, the AMBE, RMSE, and CC of TEDE were used as 

representatives in the investigation to demonstrate different predicted results for each 

year and five years.  

4.6.3.1 Variation of predicted results for each year and average 
Figures 55 to 57 showed AMBE, RMSE, and CC of TEDE values by a single year 

of meteorological data compared to averaged TEDE values over five years.  Each 

symbol presented statistical values comparing TEDE values in each year with the 

average TEDE values. As mentioned above, the predicted results at the 99.5th percentile 

were almost the highest of all simulation results, followed by the 90 th and 50th percentile. 

Thus, the difference in concentration of predicted results at the 99.5 th percentile by a 

single year of meteorological data and the average TEDE values were the highest, 

resulting in AMBE and RMSE being the highest, as shown in Figures 55 (c, f, i) and 56 

(c, f, i).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 140 

Figures 55(c) and 56(c) showed that the short distance period with the highest 

TEDE values had the highest variant in the 99.5th percentile with an average AMBE and 

RMSE of 1.85E-2 and 5.02E-2 mSv, respectively. Meanwhile, the variations of the TEDE 

values in the medium and long distances decreased according to the concentration 

levels. This resulted in average AMBE and RMSE values in medium and long distances 

being dropped by around 2 and 4 orders of magnitude, as shown in Figures 55(f, i) and 

56 (f, i). 

As for result comparisons at the 90th percentile, the high concentration of TEDE 

values also caused a high variation of predicted results each year. However, the 

variances in the TEDE values were decreased from the 99.5th percentile by lower 

average AMBE and REME around one order of magnitude, as shown in Figures 55(b, e, 

h) and 56(b, e, h). Meanwhile, the low concentration of TEDE values at the 50th 

percentile caused the low variation. The AMBE and RMSE values of the 8th and 9th 

months were the lowest by the effect of high rain intensity. It caused a high deposition of 

radionuclides, leading to a low concentration over a long distance. The decreased 

concentration caused a low variation of prediction results. Generally, It noted that the 

50th percentile variance was two orders of magnitude smaller than the 99.5th percentile, 

as shown in Figure 55(a, d, g) and 56(a, d, g). 

However, the variation investigation by the CC method demonstrated that the 

predicted results at the 99.5th percentile had the highest correlation, followed by the 

predicted results at the 90th and 50th percentile, as shown in Figure 57. The comparison 

results at the 99.5th percentile showed that the most consistent predicted results were 

found in the short distance, followed by the medium and long distance, with the 

minimum CC values of 0.66, 0.65, and 0.44, as shown in Figure 57(c, f, i). Generally, the 

lowest correlation was found in the 4th up to 9th months, with a high variation of 

meteorological data, as mentioned in section 4.6.2.1. This caused inconsistent 
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dispersion characteristics and activity concentrations each year, as mentioned in 

section 4.6.2.2. 

The predicted results at the 90th percentile had a lower CC value than the 

predicted results at the 99.5th percentile. The high variation of meteorological data from 

the 4th up to 9th months also caused the lowest correlation in the long distance. However, 

it noted that predicted results by each year at the medium distance had the highest 

correlation, followed by the short and long distances with the minimum CC value of 0.68, 

0.30, and 0.18, respectively.  

This was the effect of variation in yearly wind direction patterns. The frequency 

distribution of wind direction from 2016 up to 2020 in section A6 of Appendix A showed 

that the wind data for each year tend to have a consistent frequency of wind in the main 

direction. However, the frequency of wind in the minor direction was different. Typically, 

the radionuclide was dispersed more by the main wind direction than by the minor wind 

direction. It caused the highest radionuclide concentration in the main wind direction. 

Hence, the CC values in the predicted results at the 99.5th percentile, almost the 

maximum value,  were high. Since the dispersion characters of the predicted results in 

each year were highly correlated according to the main wind direction. 

In contrast, the predicted results at the 90th percentile with concentrations lower 

than the maximum value were dispersed in the minor wind direction. The low correlation 

of the minor wind direction each year caused a lower correlation of the predicted results 

than the 99.5th percentile throughout the dispersion distance, as shown in Figures 57(e, 

b, h). To demonstrate this phenomenon, predicted results in the 1st month with the 

lowest possible variance of meteorological parameters were used. 

Figure 58 showed the yearly average TEDE at the 90th percentile in short, 

medium, and long in the 1st month. Figure 58 (a) showed that the predicted results near 

the release point had the highest concentration. The dispersion of the highest 
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concentration in the minor wind direction caused high variation between each year, 

leading to low CC values, as shown in Figure 57 (b). However, the concentration of the 

predicted results decreased with the dispersion distance increased. It caused a close of 

predicted results in each direction of each year at a medium distance, as shown in 

Figure 58 (b). This decreased the effects of variation in minor wind direction and caused 

a higher CC value than a short distance, as shown in Figure 57 (e). As for the long 

distance, Figure 58 (c) showed that the low concentration of the predicted result was 

more influenced by variation in minor wind direction. This caused variations in predicted 

results each year, leading to a low CC value, as shown in Figure 57 (h). 

As for the predicted result at the 50th percentile, it had the lowest correlation with the 

average value, as shown in Figures 57 (a, d, g). the CC values in the long distance were 

the lowest with 0 because the radionuclide could not disperse to such a distance. 

Meanwhile, the effects of variation in minor wind direction also caused a low CC value in 

the short distance. As for the medium distance, it was noted that the high rain intensity in 

the period of the 7th up to 8th month caused a low CC value. The minimum CC value of 

TEDE in the short, medium, and long distances was around 0.02, 0.01, and 0, 

respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 143 

 

Figure  55 AMBE values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with an average value over five years in short, medium, and long distances. 
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Figure  56 RMSE values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with an average value over five years in short, medium, and long distances. 
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Figure  57 CC values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with an average value over five years in short, medium, and long distances. 
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Figure  58 Yearly average TEDE values at the 90th percentile in short, medium, and 
long in the 1st month  

4.6.3.2 Variation of predicted results for each year and five years 
Figures 59 to 61 compared TEDE values for single and five years of 

meteorological data using AMBE, RMSE, and CC methods. The similar colors and 

symbols used in section 4.6.3.1 were applied here.  Generally, it noted that comparing 

predicted results by a single year and five years was similar to comparing predicted 

results by a single year and the average.  

 As for the AMBE and RMSE investigation, the differences in predicted results at 

the 99.5th percentile were the highest, followed by the 90th and 50th percentile. Figures 

59 and 60 showed that the highest concentration near the release point caused the 

highest variation in the short distance of all percentile levels. Meanwhile, a lower 

variation in medium and long distances was found from decreased concentration along 

the distance. The predicted results at the 99.5th percentile, with the highest variation, 
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had an average AMBE in the short, medium, and long distances of 3.07E-02, 5.78E-04, 

and 5.43E-06 mSv, respectively. An average RMSE value in the short, medium, and long 

distances was found with 8.64E-02, 1.29E-03, and 1.82E-05 mSv. Meanwhile, the 

average AMBE and RMSE values of the predicted results at the 90th and 50th percentile 

were lower than the predicted result at the 99.5th percentile of around one and two 

orders of magnitude in all distance periods. The lowest variation was found in the long 

distance at the 50th percentile with the 7th up to 9th month. It was lower than the variation 

by comparing the TEDE values by a single year and the average value of around one up 

to five orders of magnitude. This was because, during the 7th to the 8th month, there was 

a high rainfall variability between the five years. It caused different predicted results 

from year to year with a positive skew. Hence, the average value differed from the 

predicted results at the 50th percentile value. 

As for the CC investigation, Figure 61 showed that the highest correlation 

between the predicted results by each single and five years was the 99.5th percentile, 

followed by the 90th and 50th percentile. The high variation of rain intensity in periods of 

the 7th to 9th month also caused low consistency in all percentile levels. It clearly affected 

the long distance with high variation due to the radionuclide not reaching it. In addition, 

a low consistency in the short distance of the predicted result at the 90 th and 50th 

percentile was also a result of the variation in minor wind direction, as noted before. 

Meanwhile, the lowest correlation was found at the long distance of the 50th percentile 

by the low dispersion distance effect.  

The explanation above highlighted a similar pattern between the variation of the 

TEDE between a single year and five years and the variation of the TEDE between each 

year. However, the difference between both variations was found. Most differences were 

shown at the TEDE values at the 99.5th percentile. Comparing TEDE values between the 

single year and five years had an average AMBE and RMSE values higher of around 60-

70 %, 50-60 %, and 20 % in short, medium, and long distances. The average CC values 
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were around 2% in long distances and  6 % in short and medium distances. Meanwhile, 

the difference in comparing TEDE values at the 90th and 50th percentile was lower than 

4% of the average CC value and 10% of the average AMBE and REME value throughout 

the dispersion distance. This was because simulation by five years of meteorological 

data provided a comprehensive predicted result more than simulation by one year of 

meteorological data in all radiation consequence levels.  

Generally, evaluating radiation consequences at a critical level between each 

year, considering predicted results at the 99.5th percentile, exhibited a high variation of 

predicted results. This was because the meteorological data that caused the impact at 

the 99.5th percentile had a low occurrence rate (Rare case). The rare cause of each year 

caused a high variation of predicted results, as shown in Figure 62. Figure 62 showed 

the variation of TEDE values at the 99.5th percentile in short, medium, and long distances 

on the 11th month of each year. The low average wind speed of 10 m in 2016 caused a 

higher concentration in the short and medium distances, while a lower concentration in 

the long distance was found compared with the others. This clearly showed variation in 

predicted results from different rare case characteristics in each year.  

However, evaluating radiation consequences at a critical level for five years provided a 

more comprehensive evaluation result, as shown in the pink line in Figure 62. It covered 

all characteristics of rare cases in each year causing the highest concentration. Hence, 

the evaluation of five years covering all phenomena was very different from the 

evaluation of each year covering some phenomena, especially at the short distance with 

the highest variation of predicted results each year.   

Meanwhile, evaluating radiation consequences at a severe and medium level, 

considering predicted results at the 90th and 50th percentile, was a lower variation 

between each year and five years. This was because meteorological conditions causing 

radiation effects at the 90th and 50th percentile were less specific than those at the 99.5th 
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percentile. It led to a lower variation of meteorological phenomena, causing radiation at 

the 90th and 50th percentile each year. Thus, the evaluation of five years covering all 

phenomena and the evaluation of each year with similar phenomena had a low variation. 

 

Figure  59 AMBE values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with five years in short, medium, and long distances. 
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Figure  60 RMSE values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with five years in short, medium, and long distances. 
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Figure  61 CC values in each single year of TEDE at 50th,90th, and 99.5th percentiles 
compared with five years in short, medium, and long distances. 
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Figure  62 Variation of TEDE values at the 99.5th percentile in short, medium, and long 
distances on the 11th month of each year 

All details mentioned above could be summarized as follows. This research was 

carried out in four parts. Firstly, the verification of calculation performance in NACAC 

was performed with methods in section 3.3. Results and discussions were demonstrated 

in sections 4.1 and 4.2. Secondly,  appropriate meteorological data selection was 

investigated to define the meteorological data preprocessing process that was 

appropriate to examine the influences of variations in meteorological data on predicted 

results. This research part was conducted according to the method in section 3.4. 

Results and discussions were shown in sections 4.3 and 4.4. Thirdly, the influences of 

meteorological data on NACAC calculations were evaluated to illustrate the impact of 

changes in each meteorological parameter on the predicted results of the atmospheric 

dispersion code. The methods and results were shown in sections 3.5 and 4.5, 

respectively. Fourthly, The influences of variations in meteorological data on predicted 
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results were investigated to determine variations of predicted results in atmospheric 

dispersion code by the influences of variations in meteorological data in a year and five 

years. The critical points found in each research part were summarized in Table 17.  

Table  17 Summary of research results 

Research parts Methodology Results 
Verifications of calculation 
performances in NACAC 

• Comparing predicted 
results between 
NACAC and JRODOS 

• NACAC could offer a 
similar character of 
radionuclide 
concentration and 
transportation to the 
JRODOS predicted 
results. 

• Differences in 
meteorological data 
preparation schemes 
caused different input 
data. 

• Differences in the 
advection calculation 
scheme caused 
differences in plume 
trajectories. 

• These caused variations 

in dispersion distances 
around 200 km and 
variations in activity 
concentration around one 
order of magnitude. 
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Research parts Methodology Results 
Investigation of 
appropriate 
meteorological data 
selection 

• Representative data 
selection was modified 
for the transboundary 
radiation effects.  

• Comparing the 
predicted results of 
simulation using 
representative and 
sequential data 
selection was 
performed to find the 
method that gave the 
most comprehensive 
predicted results. 

• The appropriate 
process was used to 
investigate the 
influences of variations 
in meteorological data 
on predicted results 
(the fourth part of the 
research).  

• For modification of the 
representative data 
selection, the selected 
area boundary and the 
optional meteorological 
parameter insignificantly 
affected the simulation 
using representative 
data selection. 

• A high sampling rate 
improved the accuracy 
of the simulation using 
representative data 
selection. 

• However, preparing 
meteorological data by 
sampling method in 
representative data 
selection caused 
ineffective prediction 
results in rare cases. 

• Simulation using 
sequential data 
selection providing 
higher comprehensive 
predicted results was 
selected. 
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Research parts Methodology Results 

Influences of 
meteorological data on 
NACAC calculations 

• Various meteorological 
input data were used to 
predict the radiation 
effects for 24 hours in 
NACAC with the same 
condition. 

• Predicted results of 
each meteorological 
input data were 
compared to 
demonstrate the effects 
of rain, wind, and 
atmospheric stability 
class data on 
atmospheric dispersion 
calculation. 

• Rain data affected the 
depletion of emission 
concentration. 

• High rain intensity 
caused low 
concentrations of 
radionuclides in the 
atmosphere.  

• Wind data affected the 
dispersion distance of 
radionuclides. 

• High wind speed data 
caused long dispersion 
distances of the 
radionuclides. 

• Atmospheric stability 
class affected the 
boundary of radionuclide 
dispersion. 

• The unstable 
atmospheric stability 
class caused wide 
dispersion 
characteristics. 

• Low rain intensity, low 
wind seed, and stable 
atmospheric stability 
class caused the highest 
average TEDE values. 
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Research parts Methodology Results 

Influences of variations in 
meteorological data on 
predicted results 

• The simulation using 
sequential data selection 
was performed with a 
single year and five 
years of meteorological 
data. 

• Variations in 
meteorological data for a 
year and five years of 
meteorological data 
were investigated. 

• The consistency of 
changes in predicted 
results and climate data 
was evaluated. 

• AMBE, RMSE, and CC 
methods investigated 
the variations of 
predicted results in each 
year by comparing 
yearly and average 
predicted results over 
five years. 

• AMBE, RMSE, and CC 
methods investigated 
the variations of 
predicted results in each 
year and five years by 
comparing single-year 

• Meteorological data in a 
year changed with two 
patterns: stable and 
unstable wind direction 
part. 

• The stable wind direction 
occurred around the year's 
first and last three months. 

• This period had low rain 
intensity, low atmospheric 
stability class, and high 
wind speed.  

• Wind direction was stable 
at around the SW direction 
for the first seven layers 
and varied between NNE 
and SSW directions for the 
last three layers.  

• The unstable wind 
direction occurred around 
the middle of the year. It 
had the opposite climatic 
characteristics as in the 
first pattern. 

• Predicted results had high 
variation in the unstable 
wind direction pattern 
period. 

• As for variation in 
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and five-year predicted 
results. 

 

predicted results by a 
single year, the highest 
average AMBE and RMSE 
value throughout a year 
was found in the short 
distance of predicted 
results at the 99.5th 

percentile. Meanwhile, the 
lowest average CC value 
was found in the long 
distance of predicted 
results at the 50th 

percentile. 

• As for variation in 
predicted results by a 
single year and five years, 
it had a similar pattern to 
the variation in predicted 
results by a single year 
with a higher variation.  

• The average over a year of 
AMBE, RMSE, and CC 
values in the short and 
long distance of predicted 
results at the 50th and 
99.5th percentile were 
calculated and shown in 
Tables 18 and 19. 
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Table  18 Average over a year of statistical values demonstrating variation between 
predicted results by each year and the average predicted results over five years.   
Parameters 
(1Y vs Av) 

The long distance at the 50th percentile The short distance at the 99.5th percentile 
AMBEAvg RMSEAvg CCAvg AMBEAvg RMSEAvg CCAvg 

Air concentration  
of I-131 [Bqs/m3] 

5.35X101 4.02X102 6.94X10-1 1.21X108 3.29X108 8.53X10-1 

Air concentration  
of Cs-137  [Bqs/m3] 

9.65X100 7.43X101 6.92X10-1 2.26X107 6.13X107 8.53X10-1 

Ground concentration 
of I-131  [Bq/m2] 

9.38X10-1 7.89X100 6.75X10-1 1.19X105 3.24X105 8.53X10-1 

Ground concentration 
of Cs-137  [Bq/m3] 

1.83X10-1 1.54X100 6.74X10-1 2.26X104 6.13X104 8.53X10-1 

TEDE [mSv] 4.30X10-8 3.49X10-7 6.82X10-1 1.85X10-2 5.02X10-2 8.53X10-1 

 

Table  19 Average over a year of statistical values demonstrating variation between 
predicted results by each year and the predicted by five years.   
Parameters 
(1Y vs 5Y) 

The long distance at the 50th percentile The short distance at the 99.5th percentile 
AMBEAvg RMSEAvg CCAvg AMBEAvg RMSEAvg CCAvg 

Air concentration  
of I-131 [Bqs/m3] 

4.79x101 3.67x102 6.72x10-1 2.02X108 5.68X108 8.01X10-1 

Air concentration  
of Cs-137  [Bqs/m3] 

8.50X100 6.65X101 6.64X10-1 3.76X107 1.06X108 8.01X10-1 

Ground concentration 
of I-131  [Bq/m2] 

8.42X10-1 7.41X100 6.50X10-1 1.99X105 5.59X105 8.01X10-1 

Ground concentration 
of Cs-137  [Bq/m3] 

1.64X10-1 1.45X100 6.42X10-1 3.76X104 1.06X105 8.01X10-1 

TEDE [mSv] 3.85X10-8 3.26X10-7 6.59X10-1 3.07X10-2 8.64X10-2 8.01X10-1 
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CHAPTER 5  
CONCLUSIONS AND SUGGESTIONS 

This research investigated the variability of radiation consequence evaluation for 

transboundary radiation effects from the influences of variation in meteorological data. 

Historical meteorological data from 2016 to 2020 by NCEP was used to examine 

meteorological behavior change. Fangchenggang NPP, located in western China and 

surrounded by many ASEAN countries, was considered as a study location. The 

investigation was performed by the overlap hypothetical severe accident loss of off-site 

power and large-break loss of coolant to provide conservative predicted results. The 

NACAC code was employed as a computational tool for the investigation process. The 

study findings could be summarized as follows: 

(1)  The NACAC was verified before investigating the variability of radiation 

consequence evaluation. Comparing predicted results with JRODOS code was 

performed to evaluate the prediction performance in NACAC. The four 

representative causes with highly fluctuating wind direction in each season were 

used to increase verification performance. Simulation for 96 hours with the 

hypothetical severe accident of LB LOCA and LOOP scenarios at Fangchenggang 

NPP was conducted.  

The comparison result showed that the NACAC could offer a dispersion pattern 

similar to the predicted results of JRODOS. Most radionuclides dispersed in the 

same direction in all representative cases. In addition, a similar trend line of dose 

rate and concentration values was shown. However, slight differences in dispersion 

distance and variation around one order of magnitude in predicting activity 

concentration and dose rate were found.  

Different data preparation and advection calculation schemes were considered 

as possible factors causing the variation in simulation results. Three analyses of the 

grid resolution effects, terrain effects, and effects of atmospheric stability class 
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evaluation were performed to evaluate the potential effects of different data 

preparation schemes. Meanwhile, the effects of various advection calculation 

schemes were identified by comparing trajectory patterns. It was noted that 

differences in grid resolution, terrain data, and evaluation method caused variations 

in preparing data of rain, wind, and atmospheric stability class data, respectively. In 

addition, the different advection calculations led to different trajectory patterns. 

These caused variations in the radionuclide dispersion characteristic and activity 

concentration predicted by NACAC and JRODOS codes.  

However, the NACAC code, with significantly faster calculation times, also 

provided consistent dose consequence evaluation compared to JRODOS. They 

agreed that radionuclides probably cover certain northeastern regions in Thailand, 

with a lower total effective dose equivalence than 1 mSv.  

(2)   Appropriate meteorological data selection for investigating the influences of 

variation in meteorological dataon predicted results was investigated. This process 

was required to demonstrate the effects of the variations in meteorological data of 

the transboundary radiation effect with reasonable computational resources. 

Representative data selection providing comprehensive predicted results for 

domestic radiation effect evaluation with computational resources was considered. It 

was improved to be appropriate for transboundary radiation effect evaluation. The 

meteorological classification was modified by categorizing data according to 

percentile level instated of specific value. 

The optimum condition for the transboundary radiation effect of selected area 

boundaries, optional parameters, and the sampling rate was examined. Simulation 

with the hypothetical accident of LB LOCA and LOOP scenarios at Fangchenggang 

NPP was performed by considering meteorological data prepared by representative 

and sequential data selection. Comparing predicted results with simulation using 

sequential data selection providing comprehensive prediction results for 
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transboundary radiation effect with large computational resources was conducted. 

Statistical methods investigated the consistency of predicted results between both 

simulations to define appropriate data preparation methods for investigating the 

influence of variations in meteorological data on predicted results. 

  The result revealed that differences in selected area boundaries and optional 

parameters insignificantly affected the prediction of simulation using representative 

data selection. Meanwhile, higher sampling rates increased the consistency of 

predicted results at the 50th and 90th percentile compared with simulation using 

sequential data selection. In addition, it noted that simulation using representative 

data selection with optimum conditions could reduce computational resources by 

around 42 times. 

 However, preparing meteorological data by sampling method in representative 

data selection caused certain meteorological conditions to be excluded. As a result, 

simulation using representative data provided an ineffective prediction result in rare 

cases, such as the predicted result at the 99.5th percentile. This disadvantage 

caused simulation using representative data selection to be inappropriate for the 

investigation of the effects of variations in meteorological data on prediction results 

requiring all aspects of meteorological behavior in a discussion. Consequently, 

simulation by sequential data selection providing a comprehensive prediction result 

was considered an appropriate process for the investigation of variations in 

meteorological data on prediction results. 

(3)   The influence of wind, rain, and atmospheric stability class on NACAC predicted 

results was investigated. Simulations with 12 cases of meteorological input data 

were conducted to evaluate radiation consequences for 24 hours. Each 

meteorological input case consisted of rain intensity, wind speed, and atmospheric 

stability class varied between 0 to 7.6 mm/h, 0.0 to 10.8 m/s, and class A, D, and F, 
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respectively. Meanwhile, the wind direction was fixed in the northeast direction. 

Predicted results in each case were compared to demonstrate the impact on 

computational processes in NACAC. 

The result comparison showed that rain intensity significantly affected the 

depletion of emission concentration. The dispersion distance of the radionuclide 

varied with wind speed. Meanwhile, the atmospheric stability class influenced the 

dispersion width of radionuclides. The meteorological data case with low rain 

intensity (0 mm/h),  low wind speed (0.3 m/s), and stable atmospheric stability class 

(F class) caused low depletion and dispersion of radionuclides. These conditions 

caused the high radionuclide concentration. The dispersion characteristic is short 

and narrow dispersion characteristics. The average TEDE value is the highest.  

In contrast, the meteorological data with high rain intensity (7.6 mm/h), high wind 

speed (10.8 m/s), and unstable atmospheric stability class (A class) caused high 

depletion and dispersion of radionuclide. These conditions caused the low 

radionuclide concentration to disperse in long and wide dispersion characteristics, 

leading to the lowest average TEDE value.  

(4)   The influences of variations in meteorological data on NACAC predicted results 

were investigated. The meteorological in 2016 was used as a representative to 

demonstrate monthly climate changes in a year. The behavior of wind direction, 

wind speed, rain intensity, and atmospheric stability class was investigated. It was 

noted that changing meteorological data in a year could be categorized into two 

parts.  

  Firstly, the stable wind direction part occurred in the year's first and last three 

months. The dominant wind direction of the first seven layers was sable in the SW 

direction. Meanwhile, the dominant wind direction of the last three layers was the 

NNE and SSW direction in the first and last three months, respectively. The average 

wind speed was high, while the average rain intensity and atmospheric stability 
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class were low. Secondly, the unstable wind direction part occurred in the middle of 

the year. The dominant wind direction in the first seven layers changed clockwise 

between NE and SW direction. The dominant direction for the last three layers was 

between ENE and E directions. The average wind speed was low, while the average 

rain intensity and atmospheric stability class were high. 

 The simulation using sequential data selection to evaluate radiation 

consequences for 24 hours with meteorological data in 2016 was performed. The 

consistency of the predicted results and climate data change trends were analyzed. 

It was noted that changing dispersion characteristics and activity concentration of 

radionuclides correlate with changing meteorological data. As for dispersion 

characteristics, the high wind speed data and low atmospheric stability class in the 

first and last three months caused long and wide dispersion of radionuclides. Most 

of the radionuclides dispersed to SSW up to SW directions and N up to NNE 

directions with high concentration values. In the middle of the year, the effects of 

high rain intensity caused the short dispersion distance. The unstable wind direction 

resulted in most radionuclides dispersing from SSW to N directions. Then, it moved 

from N to E directions and from E to SSW directions, respectively. 

As for activity concentration, the trend lines of air concentration, ground 

concentration, and TEDE values were similar. Generally, a concentration of 

predicted results in the stable wind direction part with low rain intensity was rather 

close to an average value in a year. Meanwhile, a concentration of predicted results 

in the unstable wind direction part with high rain intensity is lower than an average 

value in a year, especially a result of the 8th month with the highest rain intensity. 

(5)   The influence of variations in meteorological data between five years on NACAC 

predicted results was investigated. The meteorological data from 2016 to 2020 was 

used to demonstrate monthly variations in meteorological data between a year. The 

statistical methods identified variations between each year and the average value 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 164 

over five years. It was noted that meteorological characteristics in each year 

changed with a similar pattern but did not change with the same ratio. Most 

differences were found in the unstable wind direction part. The consistency in 

medium up to high correlation was found by comparing meteorological data each 

year and the average value. The wind direction had the highest difference, followed 

by rain intensity, wind speed, and atmospheric stability class. 

Simulation using sequential data selection with meteorological data for a single 

year and five years was performed. Investigation of radiation effects for 24 hours at 

predicted results at the 50th, 90th, and 99.5th percentile was carried out. It was noted 

that the most consistent predicted result was found at the 99.5 th percentile, followed 

by the 90th and 50th percentile, respectively. Each year's dispersion characteristic of 

radionuclides was similar and related to the changing prediction results in a year 

with stable and unstable wind direction parts. 

 However, inconsistent meteorological data each year also caused variations in 

the monthly dispersion characteristic and activity concentration. Most differences 

were found in the unstable wind direction part with a period of the 7 th  up to 9th 

months. The discrepancy in rain intensity during this period significantly caused 

validations in predicted results. Meanwhile, the simulation using five years of 

meteorological data provided more comprehensive predicted results than the 

simulation using a single year of meteorological data. It yielded predicted results 

that align with most of the data found in the annual predictions. 

(6)   Variations of predicted results in short (0-10 km), medium (10-100 km), and long 

(100-900 km) distances between simulations with a single year and five years of 

meteorological data were analyzed by three statistical methods: AMBE, RMSE, and 

CC. As for variations in every single year, AMBE and RMSE values showed that a 

difference in concentration of predicted results at the 99.5 th percentile was the 

highest, followed by the 90th and 50th percentile. The highest concentration near the 
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release point caused the highest variation in the short distance of all percentile 

levels. Meanwhile, a lower variation in medium and long distances was found from 

decreased concentration along the distance. 

 Average AMBE and RMSE values in comparing TEDE values by a single year 

and the average value at the 99.5th percentile in the short distance were found at 

1.85E-2 and 5.02E-2 mSv, respectively. Meanwhile, the average values of AMBE 

and RMSE dropped by around 2 and 4 orders of magnitude in the medium and long 

distances. Decreasing the concentration of predicted results at the 90 th and 50th 

percentile caused average AMBE and RMSE of TEDE throughout dispersion 

distance to drop from those at the 99.5th percentile of around 1 and 2 orders of 

magnitude, respectively.  

CC values showed that the highest correlation between the predicted result by 

each year of meteorological data and the average value was the 99.5th percentile, 

followed by the 90th and 50th  percentile. The high variation of rain intensity in periods 

of the 7th  to 9th  month caused low consistency in all percentile levels. It clearly 

affected the long distance with high variation due to the radionuclide not reaching it.  

In addition, a low consistency in the short distance of the predicted results at the 90th 

and 50th  percentile was a result of the variation in minor wind direction.  Meanwhile, 

the low dispersion distance effects caused the low correlation in the long distance at 

the 50th percentile. 

As for variation between predicted results by a single year and five years, it had 
a similar pattern to the variation in every single year. However, simulation using five 
years of meteorology providing a higher comprehensive predicted result caused a 
higher variation. The predicted result at the 99.5th percentile was the most different. 
The higher average AMBE and RMSE values were found at around 60-70  %, 50-60 
%, and 20 % at short, medium, and long distances.  Meanwhile, the average CC 
values were lower, around 2% in long distances and  6 % in short and medium 
distances.  
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As for the predicted results at the 90th and 50th percentile, they had a closer 
variation to the variation in every single year. A difference in average AMBE and 
RMSE values of TEDE values was lower than around 10% throughout the dispersion 
distance. Meanwhile, A difference in average CC values of TEDE value was lower 
than  4% throughout the dispersion distance. 

(7)   As mentioned above, it has been shown that variations in meteorological data 
caused significant variations in the predicted results. It was noted that the radiation 
effect evaluation in the unstable wind direction period with large variations in 
meteorological data led to a high discrepancy in dispersion characteristics and 
activity concentration from year to year, especially at long dispersion distances. In 
addition, the high depletion with wet deposition in this period also caused a low 
concentration of the TEDE values. Therefore, in order to obtain comprehensive 
assessment results, it was preferable to carry out a radiation effect evaluation with 
several years of meteorological data in the unstable wind direction period. 
Meanwhile, low variation in meteorological data in the stable wind direction period 
caused minimal variation in the evaluation results from year to year at all distances. 
Low rain intensity in this period also caused the high TEDE values. Therefore, 
radiation effect evaluation with one year of meteorological data was sufficient to 
provide comprehensive prediction results in this period with a conservative situation.
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APPENDIX A 
EXTENDED RESULTS 
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A1. Average values for 24 hours of each m
eteorological param

eter in the NACAC calculation process 

Table A-1. Average  values for 24 hours of each m
eteorological param

eters in depletion calculation part 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 180 

                    

Table A-2. Average values for 24 hours of each m
eteorological param

eters in dispersion calculation part 
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Table A-3. Average values for 24 hours of each m
eteorological param

eters in concentration  calculation part 
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A2. Dispersion characteristics from sensitivity test of varying meteorological input data 
in 12 cases   

 

 

Figure A-1 Total air concentration for 24 hours of Cs-137 
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Figure A-2 Total ground concentration for 24 hours of Cs-137 
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Figure A-3 Total effective dose equivalent for 24 hours 
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Figure A-4 Frequency distribution of wind direction of 10 layers in 2016 

A3.Frequency distribution of wind direction of ten layers in each m
onth   
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A4. Monthly average activity concentration of Cs-137 

 

Figure A-5 Monthly average activity concentration of Cs-137 in each radius location at 

50th, 90th, and 99.5th percentile in 2016 
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A5. Dispersion characteristics of TEDE after the accident for 24 hours 

Figure A-6 Dispersion characteristic of TEDE after the accident for 24 hours on 1 st m
onth 
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Figure A-7 Dispersion characteristic of TEDE after the accident for 24 hours on 2
nd m

onth 
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Figure A-8 Dispersion characteristic of TEDE after the accident for 24 hours on 3
rd m

onth 
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Figure A-9 Dispersion characteristic of TEDE after the accident for 24 hours on 4
th m

onth 
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Figure A-10 Dispersion characteristic of TEDE after the accident for 24 hours on 5
th m

onth 
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Figure A-11 Dispersion characteristic of TEDE after the accident for 24 hours on 6
th m

onth 
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Figure A-12 Dispersion characteristic of TEDE after the accident for 24 hours on 7
th m

onth 
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Figure A-13 Dispersion characteristic of TEDE after the accident for 24 hours on 8
th m

onth 
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Figure A-14 Dispersion characteristic of TEDE after the accident for 24 hours on 9
th m

onth 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 196 

 

Figure A-15 Dispersion characteristic of TEDE after the accident for 24 hours on 10
th m

onth 
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Figure A-16 Dispersion characteristic of TEDE after the accident for 24 hours on 11
th m

onth 
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Figure A-17 Dispersion characteristic of TEDE after the accident for 24 hours on 12
th m

onth 
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A6. Frequency distribution of wind direction and average wind speed of ten layers 
between 2016-2020 

 

Figure A-17 Frequency distribution of wind direction at 1st layer (10m) 

 

Figure A-18 Frequency distribution of wind direction at 2nd layer (1000 hPa) 
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Figure A-19 Frequency distribution of wind direction at 3rd layer (975 hPa) 

 

Figure A-20 Frequency distribution of wind direction at 4th layer (950 hPa) 
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Figure A-21 Frequency distribution of wind direction at 5th layer (925 hPa) 

 

Figure A-22 Frequency distribution of wind direction at 6th layer (900 hPa) 
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Figure A-23 Frequency distribution of wind direction at 7th layer (850 hPa) 

 

Figure A-24 Frequency distribution of wind direction at 8th layer (800 hPa) 
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Figure A-25 Frequency distribution of wind direction at 9th layer (750 hPa) 

 

Figure A-26 Frequency distribution of wind direction at 10th layer (700 hPa) 
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Figure A-27 Monthly average wind speed from
 1

st up to 10 th wind layer of 2016 to 2020 
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A7. Activity concentrations in dominant dispersion direction of annual average 
dispersion characteristic. 

Air concentration values of Cs-137 

 
Figure A-28 Total air concentration of Cs-137 for 24 hours at 50th percentile  
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Figure A-29 Total air concentration of Cs-137 for 24 hours at 90th percentile  

 
Figure A-30 Total air concentration of Cs-137 for 24 hours at 99.5th percentile  
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Air concentration values of I-131 

 
Figure A-31 Total air concentration of I-131 for 24 hours at 50th percentile  

 
Figure A-32 Total air concentration of I-131 for 24 hours at 90th percentile  
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Figure A-33 Total air concentration of I-131 for 24 hours at 99.5th percentile  
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Ground concentration values of Cs-137 

 

Figure A-34 Total ground concentration of Cs-137 for 24 hours at 50th percentile  

 
Figure A-35 Total ground concentration of Cs-137 for 24 hours at 90th percentile  
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Figure A-36 Total ground concentration of Cs-137 for 24 hours at 99.5th percentile  
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Ground concentration values of I-131 

 
Figure A-37 Total ground concentration of I-131 for 24 hours at 50th percentile 

 
Figure A-38 Total ground concentration of I-131 for 24 hours at 90th percentile 
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Figure A-39 Total ground concentration of I-131 for 24 hours at 99.5th percentile 
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Total effective dose equivalence (TEDE) 

 
Figure A-40 TEDE for 24 hours at 50th percentile 

 
Figure A-41 TEDE for 24 hours at 90th percentile 
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Figure A-42 TEDE for 24 hours at 99.5th percentile 
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A8. Statistical values of AMBE, RMBE, and CC to investigate the difference in 
predicted results between a single year and an average over five years. 

AMBE 1 year VS Average 

 
Figure A-43 AMBE value in each single year of air concentration of Cs-137 at 50th,90th, 
and 99.5th percentile compared with average value over five years 

 
Figure A-44 AMBE value in each single year of air concentration of I-131 at 50th,90th, 

and 99.5th percentile compared with average value over five years 
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Figure A-45 AMBE value in each single year of ground concentration of Cs-137 at 

50th,90th, and 99.5th percentile compared with average value over five years 

 
Figure A-46 AMBE value in each single year of ground concentration of I-131 at 
50th,90th, and 99.5th percentile compared with average value over five years 
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Figure A-47 AMBE value in each single year of TEDE at 50th,90th, and 99.5th percentile 

compared with average  value over five years 
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RMSE 1 year VS Average 

 
Figure A-48 RMSE value in each single year of air concentration of Cs-137 at 50th,90th, 
and 99.5th percentile compared with average value over five years 

 
Figure A-49 RMSE value in each single year of air concentration of I-131 at 50th,90th, 
and 99.5th percentile compared with average value over five years 
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Figure A-50 RMSE value in each single year of ground concentration of Cs-137 at 

50th,90th, and 99.5th percentile compared with average value over five years 

 
Figure A-51 RMSE value in each single year of ground concentration of I-131 at 

50th,90th, and 99.5th percentile compared with average value over five years 
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Figure A-52 RMSE value in each single year of TEDE at 50th,90th, and 99.5th percentile 

compared with average of those values over five years 
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CC 1 year VS Average 

 
Figure A-53 CC value in each single year of air concentration of Cs-137 at 50th,90th, 

and 99.5th percentile compared with average value over five years 

 
Figure A-54 CC value in each single year of air concentration of I-131 at 50th,90th, and 

99.5th percentile compared with average value over five years 
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Figure A-55 CC value in each single year of ground concentration of Cs-137 at 

50th,90th, and 99.5th percentile compared with average value over five years 

 
Figure A-56 CC value in each single year of ground concentration of I-131 at 50th,90th, 

and 99.5th percentile compared with average value over five years. 
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Figure A-57 CC value in each single year of TEDE at 50th,90th, and 99.5th percentile 

compared with average value over five years 
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A9. Statistical values of AMBE, RMBE, and CC to investigate the difference in 
predicted results between a single year and five years. 

AMBE 1 year VS 5 years 

 
Figure A-58 AMBE value in each single year of air concentration of Cs-137 at 50th,90th, 
and 99.5th percentile compared with five years 

 
Figure A-59 AMBE value in each single year of air concentration of I-131 at 50th,90th, 
and 99.5th percentile compared with five years 
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Figure A-60 AMBE value in each single year of ground concentration of Cs-137 at 
50th,90th, and 99.5th percentile compared with five years 

 
Figure A-61 AMBE value in each single year of ground concentration of I-131 at 
50th,90th, and 99.5th percentile compared with five years 
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Figure A-62 AMBE value in each single year of TEDE at 50th,90th, and 99.5th percentile 
compared with five years 
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RMSE 1 year VS 5 years 

 
Figure A-63 RMSE value in each single year of air concentration of Cs-137 at 50th,90th, 
and 99.5th percentile compared with five years 

 
Figure A-64 RMSE value in each single year of air concentration of I-131 at 50th,90th, 
and 99.5th percentile compared with five years 
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Figure A-65 RMSE value in each single year of ground concentration of Cs-137 at 
50th,90th, and 99.5th percentile compared with five years 

 
Figure A-66 RMSE value in each single year of ground concentration of I-131 at 
50th,90th, and 99.5th percentile compared with five years 
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Figure A-67 RMSE value in each single year of TEDE at 50th,90th, and 99.5th percentile 
compared with five years 
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CC 1 year VS 5 years 

 
Figure A-68 CC value in each single year of air concentration of Cs-137  at 50th,90th, 

and 99.5th percentile compared with five years 

 
Figure A-69 CC value in each single year of air concentration of I-131  at 50th,90th, and 

99.5th percentile compared with five years 
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Figure A-70 CC value in each single year of ground concentration of Cs-137  at 

50th,90th, and 99.5th percentile compared with five years 

 

Figure A-71 CC value in each single year of ground concentration of I-131  at 50th,90th, 

and 99.5th percentile compared with five years 
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Figure A-72 CC value in each single year of TEDE at 50th,90th, and 99.5th percentile 

compared with five years 
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APPENDIX B 
NACAC COMPUTATIONAL PROCESSES 
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B1. Preparing meteorological data 

- The wind components in Y and X directions, rain intensity (total precipitation), 

total cloud cover, geopotential height, and solar elevation are downloaded from 

the NCEP with a resolution of 55.5x55.5 km2, as shown in Figure B-1. 

 

Figure B-1 Download wind component in x direction at 10 m.  

(https://rda.ucar.edu/datasets/ds094.0/dataaccess/) 

- The file download with a gib2 form is extracted to a CSV file by the wgrib2 

program with the command of ./wgrib2  name file.tar -undefine out-box 95:122 

6:32  -csv name file.csv, as shown in Figure B-2. 

 

 
 

Figure B-2 Convert grib2 file to CSV file 

(https://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/) 

https://rda.ucar.edu/datasets/ds094.0/dataaccess/
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- Wind components at 10 m, total cloud cover, and solar radiation are used to 

evaluate atmospheric stability class by the Pasquill Gifford method as Table B -1 

and Table B-2 

Table B-1 Condition for evaluation of solar quantity.  

Sky Cover 
(Opaque or Total) 

Solar Elevation 
Angle>60° 

Solar Elevation 
Angle < 60° but, 

> 35° 

Solar Elevation 
Angle < 35°but, 

 > 15° 
4/8 or less or, Any amount 

of High Thin Clouds 
Strong Moderate Slight 

5/8 to 7/8 Middle Clouds Moderate Slight Slight 

5/8 to 7/8 Low Clouds Slight Slight Slight 

 
Table B-2 Condition for atmospheric stability classification 

Surface Wind 
Measured at 10 

m 
      (m / sec) 

Day 
Incoming Solar Radiation 

Night 

Strong Moderate Slight 
> 4/8 

cloudiness 
≤4/8 

cloudiness 

< 2 A A-B B F F 

2 - 3 A-B B C E F 

3 - 5 B B-C C D E 

5 - 6 C C-D D D D 

6 C D D D D 

 

- Wind components in X and Y directions at 10 m and atmospheric stability class 

data are formatted in form 2I5,I1 in meso file according to the read format of 

NACAC, as shown in Figure B-3. 
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- Wind components in X and Y directions and geopotential high at 1,000, 975, 

950, 925, 900, 850, 800, 750, and 700 hPa are formatted in synop file in form 

2i5,i4, as shown in Figure B-4.  

- Rain intensity is formatted in form F5.2 in the rain file, as shown in Figure B-5.  

         .  

Figure B-3 Example metrorological data in meso file 

 
Figure B-4 Example meteorological data in synop file 
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Figure B-5 Example meteorological data in rain file 

B2. Computational processes in NACAC 

- The NACAC is written in the Fortran language. Simulation is performed through 

Compaq Visual Fortran Version 6.6, as shown in Figure B-6. 

 

Figure B-6 Compaq Visual Fortran Version 6.6 
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B2.1 Input data 
- NACAC uses four input files: condition, meso, synop, and rain. As mentioned 

above, meso, synop, and rain are meteorological data files. A condition file 

includes five parts used for simulation. 

- The isotope part de fine  re lease source te rm  data  and cond itions  fo r 

concentration calculation, as shown in Figure B-7.  

 
Figure B-7 Isotope part 

- The leakage part mainly defines the release period and release high, as shown 

in Figure B-8. 

 

Figure B-8 Leakage part 
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- The advection part indicates the release location, as shown in Figure B-9. 

 
 

Figure B-9 Advection part 

- The receptor part defines receptor locations, as shown in Figure B-10. 

    

Figure B-10 Receptor part 

- The weather part defines starting time for simulation and the option for 

meteorological data selection, as shown in Figure B-11. 

 
 

Figure B-11 Weather part 
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B2.2 Preprocessing process module  
Import input data 

- A for source term data, a release source term data from isotope part are read 

and calculated release rate in each advection, as shown in Figure B-12.     

 

Figure B-12 Release rate calculation 

- As for meteorological data, time and each meteorological parameter in the 

meso, rain, and synop file are read according to the command in Figure B -13.  

The data from the meso and rain files are imported into the layer at 10 m, while 

data from the synop file is imported into the remaining nine layers, as shown in 

Figure B-14.  

 
 

(a) Command for meso import data 
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(b) Command for rain import data 

 

   (c) Command for synop import data 

Figure B-13 Command for import data 

 

Figure B-14 Meteorological grid system in NACAC 
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B2.3 Meteorological data selection module  

- As for extreme data selection, it is performed with istart 4. The starting time for 

simulation is defined according to ITIME, IDAY, MNST, and JUER in Figure B-11. 

As for sequential data selection, it is performed with istart 5. The number of 

simulation sequent is defined according to the INSEQU parameter, as shown in 

Figure B-11. The starting time for simulation in the first sequent is defined with 

ITIME, IDAY, MNST, and JUER parameters. Then, IHR, IDA, and MON set a time 

interval to select the starting time for the next step simulation. As for the 

representative data section, it is performed with istart 6. It is conducted with 

three subroutines: RDMET, BINMET, and RANMIN, as shown in Figure B-15. The 

RDMET reads meteorological data collected in the area boundary, as mentioned 

in section 2.7.3. The BINMET classifies meteorological data into several groups. 

The criteria for classification are evaluated according to the percentile level of 

the input dataset. The RAN M IN  selected representative data from  all 

classification groups. The starting time for simulation and the number of 

simulation sequences are related to the representative data. 

 

 

Figure B-15 subroutines in representative data section module 
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B2.4. Atmospheric dispersion calculation module   
B2.4.1 Depletion  

- The release rate calculated in the processing process is calculated depletion by 

decay, wet and dry deposition, as shown in Figure 16.  

 

Figure B-16 Depletion calculation 

B2.4.2 Dispersion  
- Meteorological data at four points around the release point is interpolated to 

calculate meteorological data at the release point. Then, the average wind 

component in x (u) and y (v) is calculated according to Equation 7 in section 

2.6.1. The effective vector of u and v is used to define advection direction and 

distance, as shown in Figure B -17. The dispersion boundary is calculated 

according to Equation 8.  
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Figure B-17  Advection calculation 

B2.4.3 Concentration  

- The receptors within the dispersion boundary calculate air concentration by the 

Gaussian equation. M eanwhile, ground concentration is calculated by 

multiplying the air concentration with the deposition coefficient , as shown in 

Figure B-18. The total effective dose equivalence is a summation of ground 

shine, cloud shine, and inhalation doses, as shown in Figure B-19.  

-  

 
Figure B-18  Calculation of air and ground concentration 
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Figure B-19  Calculation of total effective dose equivalence 

B2.5 Result display  
Predicted results are shown according to receptor location in Figure B-20.  

 

Figure B-19  Predicted result in NACAC 
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This data is plotted in Python code as follows. 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib.colors 

import matplotlib as mpl 

# Define radial of polar coordinate 

r,theta = 

np.meshgrid([0,0.5,1.5,2.5,3.5,4.5,5.5,7,9,12.5,17.5,22.5,27.5,30,50,70,

90,125,175,250,350,500,700,900] 

,np.arange(0,6.47955,0.19635))   

z=[] 

# Read input file 

import glob  as gb 

aaa=0 

windu = gb.glob("./50-1RE/*.csv") 

print(windu) 

for filenameu in windu: 

    aaa+=1 

    print(aaa) 

    print(filenameu) 

    file = open(filenameu) 

    for line in file: 

        if line.strip() != "": 

            x=([float(n) for n in line.split(',')]) 

            z.append(x[0:23]) 

    file.close() 

# Define color bar 

    boundaries = [-30,-16,-15,-14,-13,-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-

2,-1,0]#TEDE msv 

    cmap_reds = plt.cm.get_cmap('YlOrRd', len(boundaries) + 1) 

    colors = list(cmap_reds(np.arange(len(boundaries)))) 

    colors[0] = "w" 

    cmap = matplotlib.colors.ListedColormap(colors[:-1], "") 

    cmap.set_over(colors[-1]) 

    fig, (ax2) = plt.subplots( subplot_kw=dict(projection='polar')) 
# Plot graph and save a graph 

    a=ax2.pcolormesh(theta, r, z, cmap=cmap,norm = 

mpl.colors.BoundaryNorm(boundaries, ncolors=len(boundaries)-1, 

     clip=False)) 

    ax2.set_yticklabels([], color='black') 

    ax2.tick_params(axis='y', colors='black') 

    ax2.grid(c='black', ls='--', lw=0.5) 

    b = fig.colorbar(a, extend="both") 

    plt.thetagrids([theta * 22.5 for theta in range(16)], 

   ('E', 'ENE', 'NE', 'NNE', 'N', 'NNW', 'NW', 'WNW', 'W', 'WSW', 

'SW','SSW', 'S', 'SSE', 'SE', 'ESE'), fontsize=13, **csfont) 

   plt. rgrids( 

[0.5,1.5,2.5,3.5,4.5,5.5,7,9,12.5,17.5,22.5,27.5,30,50,70,90,125,175,250

,350,500,700,900],("", "", "", "", "", "", "", "", "", "", "", "", "", 

"", "", "", '125', '', '250', '350', '500', '700 ', '900km') 

     , color='black',fontsize=11,**csfont,angle=34.) 

    plt.savefig(filenameu+'.jpg', dpi=300) 

    plt.show() 

    z.clear() 

    x.clear() 
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