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The photocatalytic for C-C and C-S bond formations by ATRA reaction is an attractive topic
in green organic synthesis. In the first part of this dissertation, a series of aminoquinoline-
methylpyridine conjugates (1Q, 2Q, and 3Q) was synthesized, characterized, and used as a ligand for
complexing Cu(ll) ion. The ligand containing one aminoquinoline unit and two methylpyridine (1Q),
gave the complex with the highest catalytic activity for haloalkylation of alkenes. The reaction
proceeds well with high chemo- regio- and stereoselectivity for over 20 examples of alkenes. The
mechanistic study is consistent with the visible-light-induced homolysis (VLIH) of Cu(ll)-X bond to Cu(l)
complexes which subsequently reduces the alkyl halide via a single electron transfer (SET) to form
the Cu(ll) bound radical. A base additive or AIBN which acts as a halogen atom transfer (XAT) reagent
promotes the ATRA product yields of haloform substrate by preventing acid poisoning of the catalyst.
In the second part, the Cu(ll) complexes of C5 substituted-1Q derivatives, including a heavy atom (1Q-
), electron-withdrawing group (1Q-CN), and electron-donating group (1Q-OMe) were prepared and
studied for photocatalytic chlorosulfonylation of olefins (C-S bond formation). The substituents
showed little effect to the product yields thus the more readily synthesized ligand 1Q was further
optimized. The reactions effectively provided a broad scope of olefin substrates (40 examples) in the
absence or presence of base under blue LED or white light. The reactions on alkynes also gave only £-
selective products. This is the first time for observation of exclusive formation of E-isomer in the
reaction catalyzed by a homoleptic copper complex. To tune photophysical properties, the extended
conjugation at the C5 position of the quinoline ring, ligands 1Q-Ph and 1Q-DMAP were prepared. The
preliminary study of these ligands showed an improvement in the catalytic activity in comparison with

Cu(l)-1Q complex.
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CHAPTER |
INTRODUCTION

1.1 Visible light photoredox catalysis

A ‘photocatalysis’ reaction refers to the reaction that is promoted by the
synergistic of light and photocatalysts to engage in the electron transfer process with
substrates upon the photoexcitation. It becomes one of the most attractive reactions
for the development of ‘Green’ processes, with an emphasis that a given
transformation is achievable by green energy sources, utilization of catalytic
protocols with safe and ecologically benign reagents and solvents under mild
conditions. The photocatalytic quenching of an excited state photocatalyst via single
electron transfer (SET) or energy transfer process is generally divided into two modes
depending on the nature and reduction potentials of quenchers and photocatalyst
(Figure 1.1). In the oxidative quenching cycle, after irradiation excited-photocatalyst
or PC* donates the electron to the oxidative quencher before receiving an electron
from the electron donor. If the excited-photocatalyst accepts the electron from the
reductive quencher and then donates the electron to the electron acceptor this

pathway is called a reductive quenching cycle.

Reductive Quencher, RQ Oxidative Quencher, OQ

RQ-

- Light
PC absorption

Electron acceptor, A Electron Donor, D

. Photocatalyst,PC ..
A D

Reductive Quenching Cycle Oxidative Quenching Cycle

Figure 1.1 Quenching mode of photo catalysis.
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Up to date, a variety of organic dyes sensitizers and transition metal complexes
have been studied and developed. Even though the organic dye photocatalyst
beneficially provides a low-cost and metal-free reaction as a ‘Green’ catalyst of
choice, the lower photostability, and redox property feasibly limit the scope of the
reaction. The arguably best-known metal photocatalysts are based on iridium and
ruthenium complexes due to their long-excited state lifetimes combined with their
ability for a SET process to other compounds under irradiation with light (Figure 1.2)
[1-5]. Nevertheless, the high cost and toxicity of these metals constrain the scalability
for photocatalytic applications. With a low cost and toxicity, the copper complex was
introduced as an alternative photocatalyst. The most effective and well-known
copper catalyst is [Cu(dap),]” [6] also known as Sauvage catalyst [7]. The flexibility of
lisand combining with copper, to tune the redox potential and its photoexcitation
properties, is an advantage for the drastic development of this metal photocatalyst

for widespread reaction over the last decade [8-11].

fac-Ir(ppy)s [Ru(bpy)s]**
}\'abs 375 nm 452 nm
N 494 nm 615 nm
12 (esm) +1.29V -0.81V
E1/2 (e +0.77 V -1.73V
T 1900 ns 1100 ns

Figure 1.2 The classical metal complexes as photocatalysts.
ppy = 2-phenylpyridine, bpy = 2,2’-bipyridine, dap = 2,9-bis(p-anisyl)-1,10-
phenanthroline, Aabs = maximum absorption wavelength, Aem = maximum

emission wavelength, E;,, = half wave potential, and T = excited state lifetime.
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1.2 Atom transfer radical addition (ATRA)

Atom transfer radical addition (ATRA) has proven to be a powerful tool for the
functionalization of alkenes [12-14]. Being atom economic and versatile, this type of
reaction provides a variety of functionalized compounds that can be used for further

synthesis of chemical feedstocks, advanced materials, and pharmaceuticals [15-17].

The history of ATRA

Not long after the discovery of anti-Markovnikov in the addition reaction of
hydrogen bromide to unsymmetrical alkenes by peroxide initiators through the
radical process in the early 1940s, the additions of alkyl halides to olefins in the
presence of radical initiators or light were reported and later known as Kharasch
reaction. Although the reactions proceeded well under the presence of peroxide or
licht, they need a highly active and excess of the alkyl halide to provide respectable
yields [18, 19]. In 1956, Kochi suggested the termination process of radical
intermediate in the presence of metal halides (CuCl, or FeCl,) through the inner
sphere electron transfer mechanism which implied a possible role of metal ions in
the addition reaction [20]. The proposed involvement of metal ions is consistent with
the discovery by Minisci’s group that iron leached into the reaction can increase the
chain transfer reaction rate. They explained that iron was oxidized by chlorine radical
to give iron(lll) chloride as a byproduct. A year later, Minisci and Vofsi, and Asscher
reported a transition metal-catalyzed atom transfer radical addition or TMC-ATRA [21,
22]. The transition metal-catalyzed atom transfer radical addition is currently
achieved with various complexes of several metals such as iron [23, 24], ruthenium
[25-27], iridium [28], copper [29, 30], niobium [31], and nickel [32] under either

thermal or photo conditions (Figure 1.3).
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Figure 1.3 Transition metal complexes used as catalysts in ATRA reaction.

The commonly accepted mechanism proposed for metal-catalyzed ATRA is
shown in Figure 1.4 [33]. The initial step is metal-induced homolytic cleavage of the
carbon-halogen bond. This step generates a metal-halide and alkyl radical. The
generated alkyl radical then adds to a double bond to afford another alkyl radical
intermediate which rapidly abstracts halogen atom from the metal-halide to
regenerate the active metal species for the next reaction cycle [34]. The desired
addition product is continuously formed. However, the combination or the
polymerization of the alkyl radicals can lead to competitive products and disturb the
catalytic cycles.

To achieve a selective ATRA reaction, Matyjaszewski has suggested 3 factors for
concerns in this reaction. First, the overall radical concentration in the reaction must
be low (kg and kg, >> ky; and k,,) to avoid the radical-radical combination. Second,
the catalyst reactivation must be slower than the starting material activation (k,; >>
ka2) to prevent further activation of the addition product. Third, the oxidation must
be faster than the propagation (kg >> k) to avoid any polymerization [35]. These
criteria implied that the active species of the metal catalyst must be always present

at low concentrations but unceasingly regenerated in the reaction.
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Figure 1.4 Proposed mechanism for copper catalyzed ATRA.

1.3 Copper catalyzed ATRA for C-C bond formation

Copper is one of the most attractive choices for the metal center of ATRA
catalysts owing to its natural abundance and low toxicity. Copper-mediated atom
transfers radical cyclization or ATRC of a molecule containing both active alkyl halide
and alkene groups can also provide carbon-carbon cyclization which is useful in
synthesizing natural products and pharmaceuticals. The pioneering work was found
in the synthesis of bicyclic Y-lactams and Y-lactones by Nagashima and co-workers
(Figure 1.5) [36, 37]. Cu(l) chloride was used to produce bicyclic compounds with
chloromethyl substituent. Nevertheless, the drawbacks of these reactions are the
requirements for a large amount of copper salt and relatively high temperatures. The
high temperature used is inappropriate for intermolecular addition of readily
polymerizable alkenes such as methyl methacrylate (MMA), methyl acrylate (MA),
styrene, vinyl acetate (VA), and acrylonitrile (AN) due to the competitive

polymerization.
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cl
Cl o 0.3 eq. CuCl N%
cl MeCN, 140 °C
—> O
0” X X
X=0 38%
X=NH 76%

Figure 1.5 Copper catalyzed intramolecular ATRC reaction.

Several ligands have been developed for the improvement of both activity
and selectivity of copper catalysts (Figure 1.6). These ligands are nitrogen-based
ligands such as phenanthroline [38], pyridine [39, 40], tris(2-piridylmethyl)amine [41-
46], and tris(pyrazolylborate [47-50] which can stabilize the generated Cu(l)
intermediates. Several copper complexes typically used as low as 0.01 equivalent.

Moreover, the reaction time and temperature have been significantly decreased.

=N A\ g N O
7\
bpy phen NPrPMI »_)\
NI\

S | N
B N
Z U\, .
| NS \N(\N/\N/ NS I NS
_N Neo , N N1 N =N
tpy PMDETA BPMA TpMe

N
|
N/\ SN (Nj\ N \N/_\N/ m
P A O g
_ /N N\ /N N\
| \N AV
| |/

MegTREN TPMA HMTETA Me,CYCLAM
Figure 1.6 Common nitrogen-based ligands used in Cu-mediated ATRA and ATRC.

Copper complexes with bipyridine (bpy) are one of the primary active catalysts
used in ATRA and ATRC reactions. This catalyst showed high activity for catalyzing the
addition of chloromethyl ketones to olefins. In 2006, Yang and co-workers
investicated the ATRC reaction of unsaturated a—chloro—ﬂ—keto esters to obtain
various cyclic compounds in moderate to high yield (Figure 1.7) [39]. Furthermore, a
recent study by Hu and co-workers suggested the addition of &,Q&,&-trichlromethyl

ketones to styrene derivatives under low temperatures and benign conditions in high
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yield. Nevertheless, in both studies, a large amount of copper complex is still

needed [40].

O O

CO,Et
OEt 30 mol% CuClibpy Ci _ _
ci” ¢l —_— Hooo —
2,05  DCE, 80°C, 18h \ \N—7
X
cl bpy

61%
Figure 1.7 ATRC of a—chloro—ﬁ—keto esters by using of CuCl and bpy as a catalyst.

Tris(pyrazolylborate derivatives (Tpx) were first studied by Perez and co-
workers for the transfer of carbene, nitrene, and oxo groups to hydrocarbons.
Afterward, they turned their attention to constructing this licand family for ATRA
reaction. They reported active copper complexes with these ligands, TpxCu(NCMe)
for the addition of CCly and CHCl; to olefins under mild conditions (Figure 1.8). A few
years later, they successfully extended the substrate scope to polychlorinated esters
and sulfonyl chlorides. They noted that steric and electron-donating substituents on
the pyrazole rings enhance the efficiency of the complexes [47, 48, 50]. The
mechanistic and computational studies revealed that the CH;CN additive affected
the rate of styrene addition by controlling the radical concentration in reaction via

the complexation of generated copper with the additive [49].

CXCl,
R
z 0.3 or 1.0 mol% Tp*Cu/(NCMe)  Cl N.,
Additive B
+ CXCly > N7 NN
CGHG’ 3000 ~N ).—J/
X=HorCl o'

Figure 1.8 ATRA reaction catalyzed by Tp*Cu(NCMe).

Up to date, phenanthroline derivatives are recognized as the most active
lisands for photo-mediated ATRA reactions due to their ability to harvest energy from
UV-visible light and stabilize the excited state of the generated Cu(l) complexes.
These allowed the activation of less active alkyl halides and expanded the scopes of

the alkene substrates. The pioneering work by Reiser and co-workers demonstrate
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the ATRA reaction of alkyl bromide to an olefin using [Cu(dap),Cl] under green light
(530 nm) as shown in Figure 1.9 [6].

Br
0.3 mol% [Cu(dap),Cl]
R“X + R™Br > R)\/R1
DCM, 20 h, rt
LEDs30
[Cu(dap),Cl]
Selected example products
Br B 0
CBry Boc. CO,Et

6713 Br  CO,Et Ho g

88% 78% 75% 98%

Figure 1.9 ATRA reaction catalyzed by [Cu(dap),Cl].

The mechanism was proposed through singlet electron transfer from the
excited state, [Cu(dap),]* to organohalide to generate a radical intermediate which
adds to an alkene. Then generated addition radical accept an electron from

generated Cu(ll) and regenerate active Cu(l) for the next catalytic cycle as shown in

Figure 1.10.
LED
[*Cu(dap),]* 530 [Cu(dap),]*
R-X o R @ X R
— —_— >_/
R R
[Cu(dap),]*"
AT R’
5 Z R .
R

Figure 1.10 Proposed mechanism for ATRA reaction catalyzed by [Cu(dap),CLl.

A few years later, the same group reported mixed ligand Cu(l) complexes of
phenanthroline and bis-isonitrile ligand. The result suggested the incorporation of
these wide-bite-angle ligands improved both the photophysical properties of the
complexes and catalytic activity between the alkyl halides and alkenes (Figure 1.11)

[38].
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O O 0.5 mol% Catalyst, LiBr
LEDys5 Boc CO,Et
Boc.\ AN + EtOJH/u\OEt — N Y
H Br DMFH2O (1:4),7.5h, rt H Br COzEt
catalyst =
N

Q_o Qo

< X
C o Ph o Ph

Figure 1.11 Photo-mediated ATRA reaction using mixed ligand copper complexes.

Another, simple but also an effective catalyst for ATRA reaction is copper
complex with tris(2-pyridylmethyl)amine or TPMA ligand (Figure 1.12). In 2007,
Pintauer group reported ATRA reaction of CCl; and CHCl; with alkenes by using
complexes of CuCl and CuCl, with TPMA as a catalyst in the presence of AIBN as an
activator for regenerating active catalyst, ICAR under heating at 60 °C [41]. This
complex was successfully used in both thermal and photocatalytic conditions for the
additions of various alkyl halides to active alkenes. Later on, the same group also
expanded the scopes of alkyl halide [42], ligands [51, 52], and reducing agents [43,
53] for the ATRA reactions.

Thermal condition
1 mol% [Cu(TPMA)CI|CI

7 mol% Ascorbic acid | \
CH3CN X N/ \)Nj
60°C, 24h |
RN+ RX - ,R)\,R N Z
Photocatalytic condition
I =

SN
1 mol% [Cu(TPMA)CIICI
5 mol% AIBN X=Clor Br
CH4CN
UV light, 24h TPMA

Figure 1.12 Photo-mediated ATRA reaction using [CU(TPMA)CUCL as a catalyst.

In 2011, they successfully performed this reaction under UV light at ambient
temperature. The reactions gave various addition products of active alkenes with high
yield and conversion. The cyclization reactions of 1,6-dienes with CCl; were also

achieved (Figure 1.13) [46].
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1.0 mol% [Cu(TPMA)CI|CI
5.00 mol% AIBN
Diene + CCl, ————— 3= Cl,C— Cl Cl,C— Cl cie Cl ClL,C cl

MeOH - o Vi .
g 85% Yield 92% Yield 86% Yield 84% Yield
UV light, 24h 82:18 Z/E 80:20 Z/E 85:15 7/E 8515 Z/F

Figure 1.13 Photo-mediated ATRC of dienes using [CU(TPMA)CUCL as a catalyst.

The mechanism starts with the activation of the initiator radical under
thermal or light conditions to generate an active Cu(l) complex in the catalytic cycle
(Figure 1.14). As the catalyst continuously regenerates in the reaction it benefits to
set up the reaction from the easy handle Cu(ll) complexes in low catalyst loading.
However, the major role of light in those studies was attributed to the
photodecomposition of AIBN to form isobutyronitrile radical which in turn serves as
the reducing agent [38]. The role of light in the direct excitation of copper complexes

has not been mentioned.

CL
= | Hlj\/ﬂ

alkyl halide
monoadduct
AIBN
Cu"L X
. Rv/\
radical /\/Fl -------- > polymers
termination H “ R
|/\ \\
RZ = radical
L=complexing ligand termination

X=halide or pseudo halide

Figure 1.14 Proposed mechanism for photo-mediated copper-catalyzed ATRA in the

presence of reducing agent.

1.4 Copper catalyzed ATRA for C-S bond formation
Chlorosulfonylation is a recent advancement for copper-catalyzed reactions
under either thermal or photo conditions [54-56]. This reaction is attractive as a facile

step in the synthesis of sulfone derivatives, [57-67] which are an important class of
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natural products, pharmaceuticals, and bioactive molecules [68-75]. In 2015, Dolber
group studied the photo-mediated ATRA reaction of a fluoroalkylsulfonyl chloride to
an electron-deficient alkene in the presence of [Cu(dap),]Cl as a photocatalyst.
Under the optimized condition, only the chlorofluoroalkylation products that are
from SO, extrusion were observed (Figure 1.15) [76].

0.5 mol% [Cu(dap),]Cl
0.0 20 mol% K,HPO, Cl

Y + %EWG —_— 3 FC
FsC Cl DCE, rt, overnight s \)\EWG
Visible light
Selected example products
cl R ci o o
cl
oyt resAyon we by
(@) (@) lo) CF3
R=H, 98% R=Ph, 97% 51% 77%, d.r.=1.4:1
R=Me, 96% R=C3HgPh, 85%
R=Bu, 87%

Figure 1.15 Photo-mediated chloride trifluoromethylation of electron deficient

alkenes.

In the same year, Reiser group successfully developed the unprecedented
photo-mediated trifluoromethylchlorosulfonyltion of the unactivated alkenes
without extrusion of SO, (Figure 1.16). A variety of [)’—triﬂuoromethylethanesulfonyt
chloride products were achieved in respectable to good yields. The study suggested
the dual role of copper catalyst as an electron transfer agent and coordinating

reactant with SO,Cl through the inner sphere catalytic process [77].

Photocatalyst SO,CI
o‘ssl,o . R \/\\ KoHPO, >» R \A/CF3
FsC” ClI C._.?  CHCN, i, 24h vl
LEDsg30 ot

Selected example products

S0,Cl
R SO,CI o SO:Ll o SO,Cl SO,CI CF,
| 0

R=H, 86% 80% 87% 56% 71%
R=CHj, 82%

R=OCH,, 76%

R=F, 64%

Figure 1.16 Photo-mediated trifluoromethylsulfonyltion of the unactivated alkenes.
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Recently, air-stable Cu(ll) complexes with phenanthroline ligands have also
been demonstrated to be robust and effective photocatalyst precursors for various
ATRA processes based on the facile visible-light-induced homolysis (VLIH) that
Cu(l)shalide complexes undergo upon irradiation to form the active Cull) species

(Figure 1.17) [78, 79].
LCU”CIZ

hv Photoinduced homolysis

L CI
cl
Rogs\)\R,
o

Cu‘”LCI LCu'Cl,
ROzS r > ROS AL

(SET) X
Lcu'Cl,

- SO.R

>0
=

RSO,CI

Figure 1.17 Simplified mechanism for Cu(ll) catalyzed chlorosulfonylation via initial

visible-light-induced homolysis (VLIH) of Cu-Cl bond.

In 2018, [Cu(dap),]Cl along with an air-stable [Cu(dap)Cl,] was first introduced
as robust and effective photocatalyst precursors, which most likely act as precursors
for catalytically active Cu(l) species for chlorosulfonylation of activated and
unactivated olefins (Figure 1.18) [78]. The addition smoothly occurs without extrusion
of SO,. Nevertheless, these complexes tend to suffer from degradation, especially in
the presence of trace acids, which is most likely caused by ligand exchange followed

by protonation.
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Figure 1.18 Photo-mediated copper-catalyzed chlorosulfonylation using [Cu(dap),]Cl

and [Cu(dap)Cl,] as photocatalysts.
Later on, copper complexes with 2,9-dimethyl-1,10-phenanthroline (dmp),

[Cu(dmp),ICl, and [Cu(dmp),CUCL, were also reported as robust and economic

alternative ligands for ATRA reactions to provide a various of 1,2-difuntionalized

alkenes (Figure 1.19) [79].

o. .0 2.0 mol% [Cu(dmp),Cl] .
R1,§ 2 \/ : > J\/\S':
Cl" R? CH5CN, rt, 30 h, N,

LEDa4ss
Cl Cl o Cl o
X2 RS w0 R ¢ 9.0
IPAACYSARG! T S
R R \©\

R=H, 92% R=H,97% R=H, 68% 6%

R = CH3, 94% R = OCHg, 70% R = CHjg, 39%

R=CN, 89% R = NO,, 94%

Photocatalyst = cr

[Cu(dmp),ICl

Figure 1.19 Photo-mediated chlorosulfonylation using [Cu(dmp),ClCL as

photocatalyst.

a
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During the same period, Hu and co-workers also suggested that the
heteroleptic Cu(l) complex efficiently catalyzed this reaction with the high
diastereoselective addition of alkyne substrates (Figure 1.20). Even though the
reaction efficiently proceeds with a broad substrate scope with good functional
group tolerance for substituted styrene, many highly photoactive compounds were
reported as unsuccessful olefins as mostly resulted from competitive polymerization.
As same as the deactivated alkenes, the incorporated electron-withdrawing group,

and internal olefins were found less effective under the optimized condition [80].

R—= 2.5 mol% Photocatalyst Cl o o
o, Opf DramRommee, (o
" o’ R DCMCHCN1:1 (5mL) R R?
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40 W LEDass
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¢l o o T Q.0
W\, S'
R1 S \Rz R1 N
O:ﬁ—@—F
F )
5-98% 20-98% 20-56%
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Unsuccessful substrates:

(0]
(0]
%\(O\/\OJ\/ O %\TJ\ \/\/// /“Il/// /

o

OMe Q Z
NN PN 2> CN )j\\\ Ph/\// R=Me, Ph

Photocatalyst =

Figure 1.20 Photo-mediated copper-catalyzed chlorosulfonylation.

Besides the bidentate ligands, tri- and tetradentate ligands have found less
attention as constituents of metal photocatalysts, although multidentate
coordination should rigidify the complex and this way extend excited-state lifetimes
being essential for efficient intramolecular SET processes. Intrigued by the excellent
results of Pintauer et al, who showed that a Cu(ll) complex of tris(2-
pyridylmethyllamine (TPMA) in the presence of AIBN or ascorbic acid as a reducing

agent is effective in the thermal or UV-mediated coupling of perhaloalkanes and
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alkenes [41, 43, 46, 53, 81, 82], the development of tripyridyl methylamine core
further aiming at photocatalysts that can operate under visible light conditions are
set out (Figure 1.21). Replacing some of the pyridinylmethyl groups in TPMA with
quinoline rings, which have higher absorptivity at a longer wavelength and electron-

accepting ability, may be used to form copper complexes capable of photo

~ successive ;"\/(j
(j\ exchange of
N
Cd
N \)'\l\:) > 10,20,30

N
for
i
Z N TPMA Ny
\S

Figure 1.21 Design principle of ligands 1Q-3Q.

catalyzed ATRA reaction.

1.6 Objectives and scopes

This research work aims to develop a new photocatalyst for ATRA reactions
from Cu(ll) complexes of quinoline derivatives. The structures of quinoline derivatives
investigated in this work are presented in Figure 1.22. The ATRA reactions being
investigated are haloalkylation and chlorosulfonylation of olefins for C-C bond and C-
S bond formation, respectlve

N N =
z

\ \ X
/
X
1Q-1 1Q-CN 1Q-OMe 1Q-Ph 1Q-DMAP

Figure 1.22 Structure of quinoline derivatives used in this study.
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CHAPTER Il
EXPERIMENT

2.1 Reagents and materials

All commercial chemical materials were used without further purification and
weight was calculated based on the purity mentioned in the container. The weight of
compounds was calculated based on the purity mentioned on the container. 8-
Aminoquinoline, 2-(chloromethyl)pyridine hydrochloride and alkyl halides were
purchased from TCl Tokyo Chemical Industry (Japan). Cu(ll) chloride, Cu(ll) bromide,
and Cu(l) Chloride were purchased from Merck (Germany). Tris(2-pyridylmethyl)
amine (TPMA) was purchased from Sigma-Aldrich and TCI Tokyo Chemical Industry
(Japan). Alkenes were purchased from Sigma Aldrich, Merck (Germany), Acros, or TCl
Tokyo Chemical Industry (Japan). Alkyl halides were purchased from TCI Tokyo
Chemical Industry (Japan). Chlorosulfonylating agents were purchased from Sigma-
Aldrich. AIBN was purchased from Chemieleva Pharmaceutical (China). Potassium
iodide, potassium carbonate, and other reducing agents. All deuterated solvents for
NMR Yield calculations were purchased from Cambridge Isotope Laboratories (USA).
Other solvents for the synthesized reaction are analytical grades from TCl Tokyo
Chemical Industry (Japan). The reactions were monitored by TLC and visualized by a
dual short (254 nm) / long (366 nm) wavelength UV lamp. Column chromatography
was run on Merck silica oxide 60 (70-230 mesh) (for the column chromatography of
addition products) or Merck aluminium oxide 90 active neutral (for the column
chromatography of ligands). Solvents used for extraction and chromatography such
as dichloromethane, hexane, and ethyl acetate were commercial grade and distilled
before use. DI water was used in all aqueous experiments. Quinoline derivatives were
synthesized according to a modified literature procedure. Cu(ll) complexes were

synthesized according to previously published literature.
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2.2 Analytical instruments

'H NMR, “¥F NMR, >C NMR, and 2D-NMR spectra were obtained using a Brucker
advance 300 MHz, 400 MHz, and 600 MHz spectrometer, Varian 400 MHz
spectrometer, or Jeol 500 MHz with chemical shifts given in (ppm) relative to residual
solvent peak (CH;CN at 1.96 ppm, CH;OH at 3.31 ppm, (CH5),SO at 2.50 ppm, CHCl,
at 7.26 ppm for 'H NMR, and 77.2 ppm for >C NMR. MestReNova and topspin
software were used to investigate NMR spectra. Coupling constants (J) were given in
Hertz (Hz). Elemental analyses for C, H, and N were recorded at Department of
Chemistry, Faculty of Science, Mahidol University on Perkin-Elmer 2400 Series
CHNS/O Elemental Analyzer. Electrospray mass spectra (ESI) were recorded at
Department of Chemistry, Faculty of Science, Chulalongkorn University on micrOTOF-
Q 1™ ESI-Qg-TOF mass spectrometer and the Central Analytical Laboratory at the
Department of Chemistry of the University of Regensburg on Agilent Technologies
6540 UHD Accurate-Mass Q-TOF LC/MS. UV-vis spectra were obtained using HP 8453
UV-visible spectrometer in 1.00 cm path-length quartz cuvettes at room
temperature. The molar absorption coefficient (€) of ligands and complexes were
determined from the solutions with at least 5 different concentrations diluted from
stock solutions. Cyclic voltammetry experiments were conducted on uAutolab I
potentiostat using a standard tree-electrode system: glassy carbon working electrode,
Ag/AgCl reference electrode, and Pt-wire auxiliary electrode. The EPR spectra were
recorded by Scientific and technological Research Equipment Centre, STREC,
Chulalongkorn University using EMXmicro -Brucker spectrometer operating at X band
(9.84 GHz). Crystallography structures of copper complexes; X-ray diffraction data
were performed by Materials and Textiles Technology, Faculty of Science and
Technology, Thammasat University using a Bruker D8 VENTURE CMOS PHOTON Il with
graphite monochromated Cu-KOL (A = 1.54178 A) radiation at 100 K or a Bruker D8

QUEST CMOS PHOTON Il with graphite monochromated Mo-KQl (N = 0.71073 A)
radiation at 296 K. Crystallography structures of chlorosulfonylation products, X-ray
crystallographic analysis was performed by the Central Analytic Department of the

University of Regensburg using an Agilent Technologies SuperNova, an Agilent
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Technologies Gemini R Ultra, an Agilent GV 50 or a Rigaku GV 50 diffractometer. The
irradiation for ATRA was done using an in-house made photoreactor equipped with
white LEDs or Philips Helix 32 W white CFL, E27 6500K cool daylight, 2080 lumen 70
Im/W. The irradiation for chlorosulfonylation was done using blue light-emitting
diodes CREE XP or Oslon SSL (2.5 W electric power @700 mA, Amax = 530 nm) or
Philips Helix 32 W white CFL, E27 6500K cool daylight, 2080 lumen 70 Im/W.

2.3 Synthetic procedures for quinoline derivatives

2.3.1 Synthesis of 1Q

I N
NH2 Cl Kl ~N
N K,COs
| + 1 N cHieN/H,0 N
— 3 2
2 80°C, 48h N N &

NS

1Q, 48% Yield

A N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine, 1Q was synthesized applying
from the reported procedure [83]. A mixture of 8-aminoquinoline (1.44 g, 10.0 mmol),
2-(chloromethyl)pyridine hydrochloride (6.56 g, 40.0 mmol), K,CO; (3.46 ¢, 25.0
mmol), and Kl (330 mg, 2.00 mmol) in acetonitrile and distilled water (4:1, 50.0 mL)
was refluxed for 48 hours. A brown crude was extracted with dichloromethane and
brine 3 times. The product was purified by column chromatography on alumina gel
(hexane:EtOAc = 8:2, Rr = 0.26). The product was obtained as a clear crystal after
recrystallization (1.56 g, 48% Yield). 'H-NMR (400 MHz, DMSO-dj): 6 8.84 (dd, 1H),
8.47 (d, J = 4.7 Hz, 2H), 8.28 (dd, J = 8.2, 2.0 Hz, 1H), 7.70-7.62 (m, 2H), 7.51 (d, J = 7.6
Hz, 2H), 7.51 (dd, J = 8.2, 4.0 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.30 (dd, J = 8.1, 7.6 Hz,
1H), 7.24-7.16 (m, 2H), 7.04 (d, J = 7.6 Hz, 1H) 4.89 (s, 4H) ppm. C NMR (101 MHz,
DMSO-dy, 298K): o) 158.86, 148.80, 148.01, 147.30, 142.59, 140.03, 137.19, 136.47,
130.23, 123.04, 122.01, 121.88, 118.51, 87.00, 58.73. HRMS (ESI-TOF) m/z: [M+H]" Calc.
for C,1HgNg 327.1604; Found 327.1608. Anal. Calc. for CyHigNg: C, 77.28; H, 5.56; N,
17.17; Found C, 77.02; H, 5.18; N, 17.30.
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2.3.2  Synthesis of 2Q
2.3.2.1 Synthesis of I-Q

NHz  NaNO,, HCI

/N Kl /N
X H,O N
Reflux
I-Q, 75% Yield

An 8-iodoquinoline, I-Q was synthesized according to the reported procedure.
A mixture of 8-aminoquinoline (500 mg, 3.50 mmol) and water (2.50 mL) was heated
and stirred until all starting material dissolved. The mixture was cooled in an ice bath
and added concentrated hydrochloric (2.50 mL) to form a red solution. An ice-cool
solution of sodium nitrite (390 mg, 5.70 mmol) in water (2.50 mL) was slowly
dropped into the solution and the solution changed to a reddish transparent
solution. The solution of potassium iodide (965 mg, 5.80 mmol) in water (1.50 mL)
was added. The solution turns dark brown with black precipitate. Then the solution
was heated at 80 °C for 10 minutes and left at room temperature for 1 hour. The
golden-brown portion was obtained. The solution was neutralized by adding of
sodium hydroxide solution obtained a black precipitate. The solution was filtered,
and the solution part was extracted with dichloromethane and water. The product
was purified by column chromatography on alumina gel (hexane:EtOAc = 9.5:0.5, R¢
= 0.71). The product was obtained as a yellow to a brown oil (664.0 mg, 75%
Yield). *H-NMR (400 MHz, DMSO-d,): & 8.97 (d, J = 7.7 Hz, 1H), 8.36 (m, 2H), 8.00 (d, J
= 7.8 Hz, 1H), 7.59 (dd, J = 7.7, 3.8 Hz, 1H), 7.36 (dd, J = 7.3, 7.8 Hz, 1H) ppm.">’C NMR
(101 MHz, DMSO-dy, 298K): & 151.73, 146.25, 139.86, 136.97, 129.12, 128.58, 128.03,
122.39, 103.66. HRMS (ESI-TOF) m/z: [M+H]" Calc. for CgH;IN 255.9618; Found
255.9676.
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2.3.2.2 Synthesis of QP

I S
cl

NH, Kl 2N
N K,COs

- + N7 | ———— HN

S S CH3CN / H,0 N

80°C, 24 h | ~
~

QP, 79% Yield

A N-(pyridin-2-ylmethyl)quinolin-8-amine, QP was synthesized applying from
the reported procedure [83]. A mixture of 8-aminoquinoline (1.44 g, 10.0 mmol), 2-
(chloromethylpyridine hydrochloride (1.64 g, 10.0 mmol), K,CO5 (6.91 g, 50.0 mmol)
and KI (0.17 g, 1.00 mmol) in 50.0 mL in acetonitrile and distilled water was heat at
80.0 °C for 24 hours. A brown crude was evaporated and extracted with
dichloromethane and water 3 times. The organic phase was dried over magnesium
sulphate, filtrate, and evaporated to dryness by rotary evaporator. The product was
purified by column chromatography on alumina gel (hexane:EtOAc = 9.5:0.5, R¢ =
0.46). The product was obtained as a yellow oil (1.86 ¢, 7.91 mmol, 79% Yield). H
NMR (400 MHz, CD5CN) b 878 (dd, J = 4.2, 1.6 Hz, 1H), 8.61 (dd, J = 4.6, 1.6 Hz, 1H),
8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.69 (td, J = 7.6, 1.8 Hz, 1H), 7.46 (dd, J = 8.3, 4.2 Hz,
1H), 7.40 - 7.33 (m, 2H), 7.24 (dd, J = 7.5, 4.9 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.66 (d,
J = 7.7 Hz, 1H), 4.65 (s, 2H). *C NMR (101 MHz, CDsCN) & 158.61, 149.09, 147.22,
144.49, 136.62, 135.91, 128.68, 127.73, 122.13, 121.67, 121.45, 117.28, 114.02, 105.03,
48.19. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Ci5H4N3 236.1182; Found 236.1293
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2.3.2.3 Synthesis of 2Q

N~ ~N
' Cul/L-proline
HN N K,CO3 N P
N * —> N Nz
- NS (CH3),S0, 100 °C <
NS \S
QP 1-Q 2Q, 80% Yield

A N-(pyridin-2-ylmethyl)-N-(quinolin-8-yl)quinolin-8-amine, 2Q was synthesized
according to Ullman-type aryl-amination [84]. A mixture of N-(pyridin-2-
ylmethyl)quinolin-8-amine (1.18 ¢, 5.00 mmol), 8-iodoquinoline (1.40 g, 5.50 mmol),
K,COs5 (1.38 g, 10.0 mmol), Cul (1.00 mg, 5.00 pmol) and L-proline (1.00 mg, 10.0
umol) in dimethyl sulfoxide was stirred at 100 °C for 24 hours. The dark brown crude
was extracted with ethyl acetate and water for a few times. The organic phase was
dried over magnesium sulphate, filtrate, and evaporated to dryness by rotary
evaporator. The product was purified by column chromatography on alumina
(hexane:EtOAc = T7:3, Ry = 0.64). The bright yellow solid was obtained after
recrystallization (1.45 g, 80% Yield). *H NMR (400 MHz, (CH,),SO, 298K): & 8.54 (d, J =
3.4 Hz, 2H), 8.46 (d, J = 4.4 Hz, 1H), 8.26 (d, J = 7.8 Hz, 2H), 7.94 (d, J = 7.8 Hz, 1H),
7.58 (t, J = 7.8 Hz, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.39 (dd, J = 7.8, 3.4 Hz, 2H), 7.34 (t, J
= 7.9 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.17 - 7.11 (m, 1H), 5.60 (s, 2H). "°C NMR (101
MHz, (CH,),SO, 298K): & 160.00, 148.37, 148.01, 146.94, 142.40, 136.25, 136.17,
129.38, 126.47, 122.09, 121.95, 121.76, 121.32, 120.99, 59.67. HRMS (ESI-TOF) m/z:
[M+H]" Calc. for CyqHoNg 363.1604; Found 363.1614. Anal. Calc. for CyHigNg: C, 79.54;
H, 5.01; N, 15.46; Found C, 78.22; H, 4.39; N, 15.84.
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2.3.3  Synthesis of 3Q

I N
~N
| Cul/L-proline
K,COs N S
. |
N N 2
(CH3),S0, 100 °C Z
\S
-Q 3Q, 33% Yield

A tri(quinolin-8-yllamine, 3Q was synthesized according to reported Ullman-
type aryl-amination [84]. A mixture of 8-aminoquinoline (144 mg, 1.00 mmol), 8-
iodoquinoline (510 mg, 2.00 mmol), Cul (38.1 mg, 200 umol), L-proline (46.2 mg, 400
umol) and K,CO5; (553 mg, 4.00 mmol) in dimethyl sulfoxide was stirred at 100 °C
overnight. The dark brown crude was extracted with ethyl acetate and water for
several times and dried with magnesium sulphate. The product was purified by
column chromatography on alumina (hexane:EtOAc = 1:1, Rf = 0.54). The product
was recrystallized in methanol to produce a yellow solid (132 mg, 33% Yield). 'H
NMR (400 MHz, (CH5),SO, 298K): & 8.37 (d, J = 3.9 Hz, 3H), 8.27 (d, J = 8.2 Hz, 3H),
7.61 (d, J = 8.1 Hz, 3H), 7.38 - 7.29 (m, 6H), 7.00 (d, J = 7.5 Hz, 3H). >C NMR (101
MHz, (CH5),SO, 298K): & 148.19, 147.74, 142.74, 135.96, 129.32, 126.51, 124.28,
122.77, 120.88. HRMS (ESI-TOF) m/z: [M+H]" Calc. for CyHioN, 399.1604; Found
399.1680. Anal. Calc. for CyqHigNg: C, 81.39; H, 4.55; N, 14.06; Found: C, 81.15; H, 4.20;
N, 14.56.



a2

2.3.4  Synthesis of 1Q-I

B
N |
| ~N
~N
I, Pyridine N X
VN che N NI =
N N = 2ve 4
X
S
|
1Q-1, 82% Yield
A 5-iodo-N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine, 1Q- was

synthesized via iodination of 1Q. The 1Q (233 mg, 700 pmol) was dissolved in
pyridine (5.00 mL) and dichloromethane (5.00 mL) and cool the solution to 0O
°C. lodine (630 mg, 2.50 mmol) was added to the solution. The solution turns
to a dark brown color. The solution was removed from ice bath after 1 hour
and added a supplementary portion of iodine (270 mg, 1.10 mmol). Then the
solution was stirred at room temperature for 1 hour. A saturated solution of
sodium thiosulfate was gradually added to the solution until the brown color
disappears. Crude was extracted with dichloromethane and water 3 times. The
product was purified by column chromatography on alumina gel
(hexane:EtOAc = T7:3, R = 0.66). The product was recrystallized in
dichloromethane and hexane receiving a light-yellow solid (260.0 mg, 82%
yield). 'H-NMR (400 MHz, DMSO-dy): & 8.80 (dd, J = 4.1, 1.2 Hz, 1H), 8.47 (d, J =
4.5 Hz, 2H), 8.27 (dd, J = 8.5, 1.2 Hz, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.67 (td, J =
7.7, 1.4 Hz, 2H), 7.61 (dd, J = 8.5, 4.1 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.26 —
7.14 (m, 2H), 6.84 (d, J = 8.3 Hz, 1H), 4.91 (s, 4H) ppm. C NMR (101 MHz,
DMSO-ds, 298K): & 158.86, 148.80, 148.01, 147.30, 142.59, 140.03, 137.19,
136.47, 130.23, 123.04, 122.01, 121.88, 118.51, 87.00, 58.73. HRMS (ESI-TOF) m/z:
[M+H]* Calc. for CpyH,gINg 453.0571; Found 453.0578.
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2.3.5  Synthesis of 1Q-OMe

I N
~N
NH, cl K|
Ny KoCOs N Ny
I ~ + SN |
| _J CHON/H0 Ny Z
(o]
OMe 80°C, 24 h |
OMe

1Q-OMe, 39% Yield

A 5-methoxy-N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine, 1Q-OMe was
synthesized applying from the reported procedure [83]. A mixture of 5-methoxy-8-
aminoquinoline (432 mg, 2.50 mmol), 2-(chloromethyl) pyridine hydrochloride
(1.55 g, 9.50 mmol), KI (41.0 mg, 2.00 mmol) and K,CO; (498 mg, 3.60 mmol) in
50.0 mL acetonitrile was refluxed for 48 hours. A brown crude was extracted
with ethyl acetate and brine for 3 times. The product was purified by column
chromatography on alumina gel (hexane:EtOAc = 8:2, R = 0.26) Yellow solid
was obtained as a product (345.0 mg, 39% Yield). 'H-NMR (400 MHz, DMSO-d,)
6 8.94 (dd, J = 4.0, 1.6 Hz, 1H), 8.49 (dd, J = 8.4, 1.6 Hz, 1H), 8.45 (d, J = 4.7 Hz,
2H), 7.65 (td, J = 7.7, 1.5 Hz, 2H), 7.57 — 7.51 (m, 3H), 7.20 — 7.16 (m, 2H), 7.01
(d, J = 85 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 4.71 (s, 4H), 3.86 (s, 3H) ppm. “°C
NMR (101 MHz, DMSO-dy) o) 159.42, 149.37, 148.63, 148.59, 143.10, 139.27,
136.32, 130.54, 122.10, 121.91, 121.09, 120.47, 118.85, 104.42, 59.04, 55.65.
HRMS (ESI-TOF) m/z: [M+H]" Calc. for CyoHyNgO 357.1710; Found 357.1717.
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2.3.6  Synthesis of 1Q-CN

S S
~N ~N
10 mol% CuCN
2 eq. NaCN
N - N
N NG DMF 120°C,N, 72h N N &
NS NS
| CN

1Q-CN, 80% Yield

A 8-(bis(pyridin-2-ylmethyl))quinoline-5-carbonitrile  amine, 1Q-CN  was
synthesized via the Rosenmund-Von Braun reaction. The 1Q-l (678 mg, 1.4 mmol),
CuCN (13.0 mg 140 pmol) NaCN (141 mg, 2.90 mmol) were dissolved in dried
dimethylformamide, DMF. The reaction was refluxed under nitrogen atmosphere for
72 hours. The reaction was diluted with ammonium chloride solution and
extracted with ethyl acetate. The product was purified by column
chromatography on alumina gel (hexane:EtOAc = 7:3, R = 0.31) A product was
obtained as a yellow solid (404 mg, 80% vyield). *H NMR (400 MHz, DMSO-d,) &
8.76 (d, J = 1.4 Hz, 1H), 8.50 (d, J = 4.7 Hz, 2H),8.38 (d, J = 8.4 Hz, 1H), 7.88 (d, J/ = 8.5
Hz, 1H), 7.78 — 7.63 (m, 3H),7.45 (d, J = 7.8 Hz, 2H),7.24 (t, J = 4.7 Hz, 2H), 6.98 (d, J =
8.5 Hz, 1H), 5.20 (s, 4H) ppm. °C NMR (101 MHz, DMSO-d,) & 158.74, 151.22, 149.52,
147.90, 140.11, 137.14, 134.59, 133.56, 129.71, 123.87, 122.63, 122.16, 118.44, 113.68,
96.93, 59.36. HRMS (ESI-TOF) m/z: [M+H]" Calc. for C,HigNs 352.1567; Found
352.1557.
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2.3.7  Synthesis of 1Q-Ph

N
S I ~N
I ~-N
HO~B,OH N

PACI(PPhy), /\@
N N P — . N N =
| + -
Na,CO5, THF
N N = 23
- @ 60°C, 12 h N O
N

1Q-Ph, 37% Yield

A 5-phenyl-N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine, 1Q-Ph was synthesized
via the Suzuki-Miyaura reaction. The 5-iodo-N,N-bis(pyridin-2-ylmethyl)quinolin-8-
amine, 1Q-1 (680 mg, 1.50 mmol) and phenylboronic acid (220 mg, 1.80 mmol) were
dissolved in the mixture of H,O and THF. The reaction was bubbled with N, gas for
15 minutes. [PdCL,(PPhs),] (53.0 mg, 75.0 pmol) and Na,COs; (239 mg, 2.30 mmol)
were added to the reaction mixture. The reaction was stirred as 60 °C for 12 h. The
reaction was diluted with ammonium chloride solution and extracted with
dichloromethane. Organic phase was dried with sodium sulfate and purified by
column chromatography on alumina gel (hexane:FtOAc = 7:3, Ry = 0.58). The off-
yellow solid was obtained after recrystallization (224 mg, 37% Yield). 'H NMR (400
MHz, DMSO-dy) 6 8.84 (dd, J = 4.0, 1.7 Hz, 1H), 8.48 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H),
8.16 (dd, J = 8.6, 1.8 Hz, 1H), 7.70 (td, J = 7.6, 1.8 Hz, 2H), 7.59 (dt, J/ = 7.9, 1.2 Hz, 2H),
7.51 = 7.45 (m, 3H), 7.43 - 7.36 (m, 3H), 7.27 (d, J = 7.9 Hz, 1H), 7.21 (ddd, J = 7.5, 4.8,
1.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 4.91 (s, 4H). *C NMR (101 MHz, DMSO-dy) &
159.75, 149.27, 147.85, 146.23, 142.37, 139.51, 137.02, 134.55, 132.11, 130.33, 129.02,
127.68, 127.65, 127.60, 122.53, 122.43, 121.84, 116.94, 59.23. HRMS (ESI-TOF) m/z:
[M+H]* Calc. for Cp7H,5N, 403.1917; Found 403.1919.
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2.3.8  Synthesis of 1Q-DMAP

| AN
~N
B
I 2N #_k N O
o\ &O I
B PdCI(PPhg), N N
YY) o™ L)
Na,COjs, THF S
N N2 23,
7 60°C, 12 h
S
I /N\ O
/N\

1Q-DMAP, 34% Yield

A 5-(4-(dimethylamino)phenyl)-N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine, 1Q-
DMAP was synthesized via the Suzuki-Miyaura reaction. The 5-iodo-N,N-bis(pyridin-2-
ylmethylquinolin-8-amine, 1Q-1 (800 mg, 1.80 mmol) and  4-(N,N-
dimethylamino)phenyl boronic acid, pinacol ester (525 ¢, 2.10 mmol) were dissolved
in the mixture of H,O and THF. The reaction was bubbled with N, gas for 15 minutes.
[PACL,(PPh3)] (62.0 mg, 0.10 mmol) and Na,CO5 (281 mg, 2.70 mmol) were added to
the reaction mixture. The reaction was stirred as 60 °C for 12 hours. The reaction was
diluted with ammonium chloride solution and extracted with dichloromethane.
Organic phase was dried with sodium sulfate, filtrate, and evaporate to dryness. The
crude was purified by column chromatography on alumina gel (hexane:EtOAc = 7:3,
Rt = 0.48). The yellow solid was obtained after recrystallization (269.0 mg, 34% yield).
'H NMR (400 MHz, DMSO-dy) 6 8.86 (d, J = 2.4 Hz, 1H), 8.49 (d, J = 4.4 Hz, 2H), 8.26
(d, J=8.6Hz, 1H), 7.72 (t, J = 7.5 Hz, 2H), 7.62 (d, J = 7.7 Hz, 2H), 7.49 (dd, J = 8.5, 4.0
Hz, 1H), 7.23 (dd, J = 7.9, 3.6 Hz, 5H), 7.12 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.6 Hz, 2H),
4.89 (s, AH), 2.96 (s, 6H) ppm. *C NMR (101 MHz, DMSO-dj, 298K): & 159.88, 150.04,
149.23, 147.75, 145.43, 136.95, 134.88, 132.86, 130.87, 127.95, 127.00, 122.46, 121.46,
117.45, 112.85, 59.28, 55.36, 40.69, 40.59, 40.49, 40.28, 40.07, 39.86, 39.65, 39.44.
HRMS (ESI-TOF) m/z: [M+H]" Calc. for CyoH,gNs 446.2339; Found 446.2399.
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2.4 Synthetic procedure for some isolated copper complexes

2.4.1  Synthesis of [Cu"(1Q)CU]*

The copper complex with ligand 1Q was synthesized using a modification of
the procedure reported by Tomislav group [41]. A round-bottom flask (25.0 mL)
equipped with a magnetic stirring bar was charged with 1Q (326 mg, 1.0 Ommol, 1.00
equiv) and dissolved with chloroform (5.00 mL). A dissolved copper(ll) chloride (134
mg, 1.00 mmol, 1.00 equiv) in chloroform (5.00 mL) was slowly added and the
mixture was stirred at room temperature for 10 minutes. The complex was
precipitated upon the addition of hexane (50.0 mL). The complex was collected by
vacuum filtration using a Buchner funnel. The complex was washed twice with cold
hexane and dried under a vacuum. HRMS (ESI-TOF) m/z: [M]* Calc. for [Cu'(1Q)CU*
424.0511; Found 424.0637. Ey/p scr = -0.29, Ayae = 291 and € [m%/mol] = 5457.

2.4.2  Synthesis of [Cu"(2Q)CU]*

A round-bottom flask (25.0 mL) equipped with a magnetic stirring bar was
charge with 2Q (362 mg, 1.00 mmol, 1.00 equiv) and dissolved with chloroform (5.00
mL). A dissolved copper(ll) chloride (134 mg, 1.00 mmol, 1.00 equiv) in chloroform
(5.00 mL) was slowly added and the mixture was stirred at room temperature for 10
minutes. The complex was precipitated upon the addition of hexane (50.0 mL). The
complex was collected by vacuum filtration using a Buchner funnel. The green solid
was washed twice with cold hexane and dried under vacuum. The complex was
washed twice with cold hexane and dried under a vacuum. HRMS (ESI-TOF) m/z: [M]*
Cale. for [CU"(2Q)CU* 460.0511; Found 460.0519. Eypp ¢ = -0.17, Ay = 292 and €
[m*/mol] = 6704.

2.4.3  Synthesis of [Cu"(3Q)CU]*

A round-bottom flask (25.0 mL) equipped with a magnetic stirring bar was
charge with 3Q (398 mg, 1.00 mmol, 1.00 equiv) and dissolved with chloroform (5.00
mL). A dissolved copper(ll) chloride (134 mg, 1.00 mmol, 1.00 equiv) in chloroform
(5.00 mL) was slowly added and the mixture was stirred at room temperature for 10
minutes. The complex was precipitated upon the addition of hexane (50.0 mL). The

complex was collected by vacuum filtration using a Buchner funnel. The green solid
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was washed twice with cold hexane and dried under a vacuum. The complex was
washed twice with cold hexane and dried under vacuum. HRMS (ESI-TOF) m/z: [M]*
Cale. for [CU'(BQ)CU" 496.0511; Found 496.0553. Eypp o¢ = -0.03, Apae = 294 and €
[m*/mol] = 7321.
2.5 Photophysical study

2.5.1 UV-Visible spectroscopy

The stock solutions of 1.00 mM ligands and copper complexes in acetonitrile
were prepared. The absorption spectra of all lisands and copper complexes were
recorded from acetonitrile solutions (100 uM) in the wavelength range of 200-900 nm

at ambient temperature.

2.5.2  Molar absorption coefficient (€)

Molar absorption coefficients (€) of ligands and copper complexes in
acetonitrile were estimated from UV-vis absorption spectra in the concentrations
range of 20.0 - 100 uM. The intensities at maximum absorption wavelength (M) OF
each compound were plotted against the concentration (M). The best fit lines were
set through the origin. Molar Absorptivity Coefficients (€) were obtained from the
slopes of these plots according to the following equation:

A = EbC
Where A is the absorbance,
€ is the Molar absorption coefficient (M'cm™),
b is the cell path length (cm), and
C is the concentration (M)
2.6 Electrochemical study

Complex solutions (2.00 mM) were prepared by dissolving CuCl, and
corresponding ligands in dry acetonitrile containing 100 mM tetra-n-butylammonium
hexafluorophosphate (NH4PF4) as supporting electrolyte. The cyclic voltammetry
experiments were conducted using a standard tree-electrode system: Glassy carbon
working electrode, Ag/AgCl reference electrode, and Pt-wire auxiliary electrode with

measurements carried out under N, atmosphere at a scanning rate (V) of 50.0 mV s,
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Potentials were measured relative to a ferrocenium/ferrocene couple (E}’cHFC =

0.08255 V versus Ag/AgCl in CH3CN) which was used as an external standard.

2.7 Excited state calculation
The excited copper complex, E;,* was calculated according to the equation:
E12* = EgapBir2
Where the redox potentials, E;,, were measured relative to ferrocene and

reported in reference to the SCE electrode. The energy gaps (Eg,,) were determined

by using the onset of the longest wavelength absorption (Ao sct) following equation:
c 1240
P =)on set

2.8 X-ray crystallography

2.8.1 Crystallography structures of copper complexes

Crystals of the complexes suitable for X-ray analysis were obtained via
crystallization of copper(ll) chloride with the corresponding ligands in methanol or
acetonitrile at room temperature. The good-quality single crystals were mounted to
hollow glass fiber. The data were recorded using graphite monochromated Cu-KQl A
= 1.54178 A) radiation at 100 K or graphite monochromated Mo-KQt (A = 0.71073 A)
radiation at 296 K. Data reduction was performed using SAINT and SADABS was used
for absorption correction [85]. The structure was solved with the ShelXT structure
solution program using combined Patterson and dual-space recycling methods [86].
The structure was refined by least squares using ShelXL [87]. All non-H atoms were
refined anisotropically. The hydrogen atoms attached to carbon atoms were
positioned geometrically with C-H = 0.93-0.97 A and refined using a riding-model
approximation with fixed displacement parameters U(H) = 1.2U.((C). The O-H
hydrogen atoms were placed in geometrically idealized positions and refined by
using a riding model.

2.8.2  Crystallography structures of chlorosulfonylation products

The suitable crystals of the products for X-ray analysis were obtained via

crystallization of products in ethyl acetate and hexane at room temperature. The
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suitable crystals of addition products were mounted on a Lindemann tube oil and
kept at a steady temperature of T = 293 K during data collection. The structures
were solved with the ShelXT (Scheldrick 2015) structure solution program using the
Intrinsic Phasing solution method and by using Olex2 as the graphical interface. The
model was refined with ShelXL using Least Squares minimization.
2.9 General experimental procedure for ATRA

2.9.1 Reaction using AIBN

Alkene (500 pmol, 1.00 equiv), alkyl halide (750 pmol, 1.50 equiv), reducing
agent (25.0 umol, 5.00 mol%), copper(ll) chloride (5.00 pmol, 1.00 mol%), ligand (5.00
umol, 1.00 mol%), and toluene (internal standard) (500 pmol, 1.00 equiv) were
added to an NMR tube. Deuterated acetonitrile or methanol was added to the
mixture until a total volume of 500 pyL was obtained. The reaction mixture was
purged by a stream of nitrogen gas for a minute. The NMR tube was sealed with a
standard polyethylene cap and wrapped with Teflon tape to ensure a tight seal. The
reaction tube was placed under a white light source (LED or CFL) with an electric
cooling fan to maintain a reaction temperature of 35 °C for the entire reaction period
(Figure 2.1). Alkene conversions and yields were obtained via 'H NMR spectroscopy.

2.9.2  Reaction without AIBN

All starting materials except AIBN were mixed in an NMR tube. Deuterated
methanol was added to the mixture until the total volume of 500 UL was obtained.
The reaction also bubbles a nitrogen gas, seals with a standard polyethylene cap,
and wraps with Teflon tape. The reaction tube was placed under a white CFL with an
electric fan to maintain the reaction temperature of 35 °C for 24 hours (Figure 2.1b).
The isolated products were obtained from flash column chromatography and their

structures were confirmed via *H NMR and *C NMR.
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a)

Figure 2.1 In-house made photoreactor equipped with a) white LEDs b) White CFL.

2.9.3  The large-scale synthesis

The Large-scale syntheses were carried out according to the procedure
described above by using alkene (5.00 mmol, 1.00 equiv), alkyl halide (7.50 mmol,
1.50 equiv), copper(ll) chloride (50.0 pmol, 1.00 mol%), and ligand (50.0 pmol, 1.00
mol%) were dissolved in dried MeOH or i-PrOH. The reaction bottle was placed
under a white CFL with an electric fan to maintain the reaction temperature of 35 °C
for a given time (Figure 2.1b). Alkene conversions and yields were obtained via 1H
NMR spectroscopy.

2.9.4  The relative emission spectra of light source

The relative emission spectra of light sources in this study were recorded using
ocean optics USB2000 fiber optic spectrometer. The emission spectra of specified
blue, green, and red LEDs showed narrow emission bands around 400 - 500 nm, 500
- 600 nm, and 600 - 700 nm, respectively (Figure 2.2). The emission spectrum of
white LEDs showed a broad emission in the white light region from 400 - 700 nm
while the emission spectrum of white compact fluorescent lamp, CFL showed mixed

emission of slim peaks (~10 - 30 nm) including small emission peak in UV region.
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Figure 2.2 Normalized emission spectra of white CFL (black), white LEDs (grey), blue
LEDs (Blue), green LEDs (green) and red LEDs (red) lines.

2.9.5 Determination of percent NMR yield of the addition product.

The percent NMR yield is determined from integrations of aliphatic protons of

product, against methyl protons of toluene internal standard as shown in Figures 2.3-
2.4,
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Spectrum for 100% conversion and 100% Yield
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Figure 2.3 'H NMR spectra of crude product, after flash column chromatography,
from the reaction between styrene and CCly in CD;OD, in the presence of toluene

internal standard.
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Figure 2.4 'H NMR spectra of crude product, after flash column chromatography,

from the reaction between styrene and CHCl; in CD5OD, in the presence of toluene
internal standard.
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2.9.6 Spectroscopic data of ATRA products

The spectroscopic data of ATRA products were characterized in comparison

with previous reports [88, 89].

|
c CClg

(1,3,3,3-tetrachloropropyl)benzene, la

'H NMR (500 MHz, CDCl,) 6 746 - 7.41 (m, 2H), 7.41 — 7.35 (m, 2H), 7.38 — 7.30 (m,
1H), 5.30 (dd, J = 6.4, 5.4 Hz, 1H), 3.62 (dd, J = 15.4, 5.4 Hz, 1H), 3.54 (dd, J = 15.3, 6.5
Hz, 1H). *C NMR (126 MHz, CDCly) & 140.50, 129.03, 127.48, 96.30, 62.78, 58.38. 1>C
NMR (101 MHz, acetone-dy) o) 140.67, 128.86, 128.82, 127.60, 96.47, 61.89, 58.40.

Br
CBrj

(1,3,3,3-tetrabromopropyl)benzene, 1b

'H NMR (400 MHz, DMSO-dj) b 7.64 (d, J = 7.5 Hz, 2H), 7.44 — 7.32 (m, 3H), 5.45 (dd, J
= 7.7, 3.9 Hz, 1H), 4.24 (dd, J = 15.8, 7.7 Hz, 1H), 4.08 (dd, J = 15.8, 3.9 Hz, 1H). °C
NMR (101 MHz, DMSO-dj) 6 141.45, 129.28, 129.19, 128.73, 65.28, 51.45, 36.52.

B
' CCly

(1-bromo-3,3,3-trichloropropyl)benzene, 1c

'H NMR (400 MHz, DMSO-dy) & 7.62 (d, J = 7.3 Hz, 2H), 7.42 — 7.31 (m, 3H), 5.58 (dd, J
= 8.0, 4.6 Hz, 1H), 4.00 (dd, J = 15.5, 8.0 Hz, 1H), 3.82 (dd, J = 15.5, 4.6 Hz, 1H). °C
NMR (101 MHz, DMSO-dj) o) 141.24, 129.28, 129.15, 128.47, 97.40, 61.35, 48.79.
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Cl J\/

Cly

Methyl-2,2,4-trichloro-4-phenylbutanoate, 1d

'H NMR (400 MHz, DMSO-dg) & 7.54 — 7.47 (m, 2H), 7.39 (qd, J = 8.0, 7.1, 4.0 Hz, 3H),
538 (dd, J = 7.5, 6.0 Hz, 1H), 3.69 (d, J = 1.1 Hz, 3H), 3.48 (ddd, J = 15.1, 7.6, 1.0 Hz,
1H), 3.36 — 3.27 (m, 2H). *C NMR (101 MHz, DMSO-dg) & 165.44, 140.05, 129.38,
129.15, 128.05, 82.98, 59.10, 55.09, 52.91.

|
c CCNCl,

2,2,4-trichloro-4-phenylbutanenitrile, 1e

'H NMR (500 MHz, CDCls) & 7.55 - 7.36 (m, 1H), 5.22 (t, J = 6.7 Hz, OH), 3.37 (dd, J =
15.1, 7.1 Hz, OH), 3.22 (dd, J = 15.1, 6.4 Hz, OH). *C NMR (126 MHz, CDCl;) & 138.74,
129.74, 129.30, 127.62, 114.55, 66.15, 57.58, 55.97.

|
c CHCl,

(1,3,3-trichloropropyl)benzene, 1f

'H NMR (400 MHz, DMSO-d,) & 7.54 (d, J = 6.8 Hz, 2H), 7.41 (m, 3H), 6.20 (dd, J = 8.5,
4.6 Hz, 1H), 5.24 (dd, J = 9.6, 4.7 Hz, 1H), 3.17-3.09 (m, 1H), 2.92 - 2.85 (m, 1H). °C
NMR (101 MHz, DMSO-dj) o) 139.94, 129.41, 129.30, 127.83, 71.95, 60.13, 51.34.
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Br
CHBr,

(1,3,3-tribromopropyl)benzene, 1g

'H NMR (500 MHz, CDCly) & 7.42 — 7.32 (m, 5H), 5.63 (dd, J = 8.1, 5.8 Hz, 1H), 5.11
(dd, J = 8.9, 5.7 Hz, 1H), 3.28 (ddd, J = 14.8, 9.0, 5.7 Hz, 1H), 3.07 (ddd, J = 15.2, 8.0,
5.7 Hz, 1H). *C NMR (126 MHz, CDCls) o) 139.61, 129.22, 129.20, 127.55, 53.94, 51.58,
42.42.

o~
(J

1-Chloro-1,3-diphenylpropane, 1h

'H NMR (500 MHz, CDCls) & 7.43 - 7.38 (m, aH), 7.36 — 7.32 (m, 3H), 7.26 — 7.22 (m,
3H), 4.86 (dd, J = 8.6, 5.8 Hz, 1H), 2.85 (ddd, J = 14.4, 9.0, 5.7 Hz, 1H), 2.76 (ddd, J =
13.9, 8.7, 6.7 Hz, 1H), 2.50 (dtd, J = 14.4, 8.7, 5.7 Hz, 1H), 2.37 (dddd, J = 14.4, 8.9, 6.8,
5.8 Hz, 1H). *C NMR (126 MHz, CDCly) & 141.76, 140.79, 128.85, 128.69, 128.50,
127.16, 126.34, 62.99, 41.53, 33.28.

CIY\CCIS
CN

2,4,4,4-tetrachlorobutanenitrile, 2a

'H NMR (500 MHz, CDCls) & 4.86 (dd, J = 8.6, 4.0 Hz, 1H), 3.60 (dd, J = 15.2, 8.6 Hz,
1H), 3.35 (dd, J = 15.2, 4.1 Hz, 1H). *C NMR (126 MHz, CDCls) & 115.87, 93.82, 77.44,
77.38, 77.18, 76.93, 59.17, 37.96.
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Brﬁ/\CBr?,
CN

2,4,4,4-tetrabromobutanenitrile, 2b

'H NMR (500 MHz, CDCly) & 4.65 (ddd, J = 9.3, 3.1, 0.6 Hz, 1H), 3.97 (ddd, J = 15.5,
9.2, 0.6 Hz, 1H), 3.75 (ddd, J = 15.5, 3.1, 0.6 Hz, 1H). *C NMR (126 MHz, CDCl;) &
116.40, 63.18, 31.84, 22.98.

Cl
T cC,Co0Me
CN

Methyl 2,2,4-trichloro-4-cyanobutanoate, 2c

'H NMR (500 MHz, CDCl;) & 4.83 (dd, J = 8.0, 5.5 Hz, 1H), 3.94 (s, 3H), 3.35 (dd, J =
15.1, 8.0 Hz, 1H), 3.19 (dd, J = 15.1, 5.5 Hz, 1H). *C NMR (126 MHz, CDCl;) & 165.00,
115.87, 79.36, 55.13, 50.16, 37.96.

Brj/\cm3
CN

2-bromo-4,4,4-trichlorobutanenitrile, 2da

'H NMR (500 MHz, CDCly) & 4.68 (ddd, J = 9.7, 3.5, 0.6 Hz, 1H), 3.64 (ddd, J = 15.0,
9.7, 0.6 Hz, 1H), 3.41 (ddd, J = 15.0, 3.5, 0.6 Hz, 1H). )C NMR (126 MHz, CDCl;) &
116.24, 94.65, 59.41, 20.23.

Cl

_0O

O CClg
Methyl-2,4,4,4-tetrachlorobutanoate, 3a
'H NMR (500 MHz, CDCls) 6 4.60 (dd, J = 8.0, 3.7 Hz, 1H), 3.81 (s, 3H), 3.75 (dd, J =

15.2, 8.0 Hz, 1H), 3.21 (dd, J = 15.2, 3.7 Hz, 1H). ®*C NMR (126 MHz, CDCl;) & 168.85,
95.45, 58.32, 53.63, 51.52.
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9N
O CBr3
Methyl-2,4,4,4-tetrabromobutanoate, 3b
'H NMR (500 MHz, CDCls) O 448 (dd, J = 9.1, 2.3 Hz, 1H), 4.20 (dd, J = 15.5, 9.1 Hz,

1H), 3.80 (s, 3H), 3.63 (dd, J = 15.6, 2.3 Hz, 1H). ®C NMR (126 MHz, CDCly) & 169.36,
62.47, 53.71, 40.09, 34.53.

Cl

_0O

O CClL,COOMe

Dimethyl-2,2,4-trichloropentanedioate, 3c

'H NMR (500 MHz, CDCly) & 4.64 — 4.57 (m, 1H), 3.88 (d, J = 0.5 Hz, 3H), 3.80 (d, J =
0.5 Hz, 3H), 3.37 (dd, J = 15.3, 6.8 Hz, 1H), 3.10 (dd, J = 15.3, 5.8 Hz, 1H).">C NMR (126
MHz, CDCl,) & 168.96, 165.66, 81.02, 54.85, 53.58, 52.01, 49.06.

Br

_0O

O CCly
Methyl-2-bromo-4,4,4-trichlorobutanoate, 3da

'H NMR (500 MHz, CDCl,) & 4.55 (ddd, J = 9.4, 2.7, 0.6 Hz, 1H), 3.85 (dd, J = 15.2, 9.4
Hz, OH), 3.79 (s, 2H), 3.28 (dd, J = 15.2, 2.7 Hz, 1H). *C NMR (126 MHz, CDCl) &
169.37, 96.10, 58.54, 53.61, 37.75.

Cl
_0O

O CCl

Methyl-2,4,4,4-tetrachloro-2-methylbutanoate, 4a

'H NMR (500 MHz, CDCls) & 3.98 (d, J = 15.3 Hz, 1H), 3.81 (d, J = 0.7 Hz, 3H), 3.45 (dd,
J = 15.3, 0.6 Hz, 1H), 2.00 (s, 3H). *C NMR (126 MHz, CDCly) & 170.22, 94.66, 64.67,
62.30, 53.64, 26.41.
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Br

S
O CBrs
Methyl-2,4,4,4-tetrabromo-2-methylbutanoate, 4b
'H NMR (500 MHz, CDCLs) 6 4.64(d, J = 155 Hz, 1H), 3.88 (d, J = 15.5 Hz, 1H), 3.80 (d,
J = 0.7 Hz, 3H), 2.23 (s, 3H). °C NMR (126 MHz, CDCls) & 17055, 65.91, 57.59, 53.65,

31.46, 26.26.

Cl

_0

O CClL,COOMe

Dimethyl-2,2,4-trichloro-4-methylpentanedioate, 4c

'H NMR (500 MHz, CDCls) & 3.87 (s, 3H), 3.78 (s, 3H), 3.53 (d, J = 15.2 Hz, 1H), 3.42
(dd, J = 15.1, 0.6 Hz, 1H), 1.79 (s, 3H). **C NMR (126 MHz, CDCly) & 170.72, 166.02,
80.76, 65.39, 54.84, 53.69, 28.20.

Br

_0O

O CClg
Methyl-2-bromo-4,4,4-trichloro-2-methylbutanoate, 4da
'H NMR (500 MHz, CDCl,) 6 4.20 (d, J = 153 Hz, 1H), 3.79 (s, 3H), 3.54 (d, J = 15.3 Hz,
1H), 2.18 (s, 3H). *C NMR (126 MHz, CDCl,) O 170.67, 95.14, 62.76, 55.39, 53.60, 26.63.

©:?---CCI3

Cl

anti-1-chloro-2-(trichloromethyl)-2,3-dihydro-1H-indene, 5a

'H NMR (500 MHz, CDCls) & 7.50 — 7.38 (m, 1H), 7.33 (td, J = 4.0, 1.1 Hz, 2H), 5.64 (dd,
J =43,1.0 Hz, 1H), 3.94 (dddd, J = 9.9, 5.3, 4.3, 0.8 Hz, 1H), 3.59 (ddd, J = 17.2, 9.2,
1.0 Hz, 1H), 3.34 (ddd, J = 17.3, 5.6, 1.0 Hz, 1H). *C NMR (126 MHz, CDCl;) & 141.23,
140.09, 129.65, 128.02, 125.75, 124.60, 101.43, 69.45, 64.07, 36.19.
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@Q-"CCI2CN

Cl

anti-2,2-dichloro-2-1-chloro-2,3-dihydro-1H-inden-2-yl)acetonitrile, 5b

'H NMR (500 MHz, CDCly) & 7.48 — 7.41 (m, 1H), 7.34 (dq, J = 5.2, 1.7 Hz, 2H), 7.30 —
7.25 (m, 1H), 5.58 (dd, J = 5.0, 1.7 Hz, 1H), 3.77 — 3.63 (m, 1H), 3.58 (dd, J = 16.8, 9.1
Hz, 1H), 3.27 (dd, J = 16.9, 6.2 Hz, 1H). >C NMR (126 MHz, CDCls) o 140.69, 138.95,
129.94, 128.38, 125.65, 124.69, 114.67, 70.65, 63.25, 62.27, 34.90.

Br

anti-1-bromo-2-(triboromomethyl)-2,3-dihydro-1H-indene, 5¢

'H NMR (500 MHz, CDCLs) 6 7.46 — 7.40 (m, 1H), 7.31 - 7.27 (m, 2H), 7.25 — 7.20 (m,
1H), 5.64 (dd, J = 3.0, 0.8 Hz, 1H), 4.20 (ddd, J = 9.1, 3.9, 3.0 Hz, 1H), 3.59 (ddt, J =
17.6, 9.1, 0.7 Hz, 1H), 3.32 — 3.18 (m, 1H). °C NMR (126 MHz, CDCl,) o) 141.30, 141.01,
129.31, 127.34, 125.43, 124.84, 88.62, 67.99, 46.96, 38.35.

+:CBra

OCHs

anti-1-methoxy-2-(tribromomethyl)-2,3-dihydro-1H-indene, 5’c

'H NMR (500 MHz, CDCly) & 7.42 (d, J = 7.4 Hz, 1H), 7.37 - 7.20 (m, 4H), 5.00 (d, J =
3.4 Hz, 1H), 3.74 (ddd, J = 8.9, 5.0, 3.5 Hz, 1H), 3.54 (s, 3H), 3.45 (ddd, J = 17.3, 8.8, 1.0
Hz, 1H), 3.09 (dd, J = 17.4, 5.0 Hz, 1H). *C NMR (126 MHz, CDCl;) & 141.31, 140.97,
129.31, 127.33, 125.43, 124.83, 88.70, 67.95, 56.51, 46.92, 38.33.
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Br

anti-1-bromo-2-(trichloromethyl)-2,3-dihydro-1H-indene, 5d

'H NMR (500 MHz, CDCly) & 7.50 - 7.39 (m, 1H), 7.36 — 7.27 (m, 3H), 7.25 — 7.17 (m,
2H), 5.79 (d, J = 3.4 Hz, 2H), 4.07 (ddd, J = 9.3, 4.4, 3.4 Hz, 1H), 3.63 (dd, J = 17.4, 9.3
Hz, 2H), 3.38 (dd, J = 17.5, 4.4 Hz, 2H). ®*C NMR (126 MHz, CDCls) o 141.99, 140.47,
129.60, 128.05, 126.11, 124.59, 101.67, 69.53, 53.15, 36.03.

:CCly

OCHj

anti-1-methoxy-2-(trichloromethyl)-2,3-dihydro-1H-indene, 5’d

'H NMR (500 MHz, CDCls) 8 7.45 - 7.40 (m, 1H), 7.36 - 7.24 (m, 3H), 5.14 (t, J = 3.7
Hz, 1H), 3.60 (dtd, J = 8.6, 5.0, 3.4 Hz, 1H), 3.57 - 3.52 (m, 3H), 3.52 - 3.45 (m, 1H),
3.23 (dt, J = 17.4, 4.2 Hz, 1H). *C NMR (126 MHz, CDCls) & 141.26, 140.98, 129.31,
127.34, 125.36, 124.80, 87.39, 65.34, 56.68, 35.76.

©:>—CCIZCOOMe

o]
anti-methyl-2,2-dichloro-2-1-chloro-2,3-dihydro-1H-inden-2-yl)acetate, 5e
'H NMR (500 MHz, CDCls) & 7.42 - 7.39 (m, 1H), 7.31 - 7.28 (m, 2H), 7.23 - 7.19 (m,
1H), 5.55 (d, J = 5.0 Hz, 1H), 3.92 (d, J = 0.6 Hz, 3H), 3.83 (dddd, J = 9.0, 6.1, 5.0, 0.6
Hz, 1H), 3.49 (ddd, J = 16.8, 9.2, 0.8 Hz, 1H), 3.16 (dd, J = 16.8, 6.2 Hz, 1H). °C NMR
(126 MHz, CDCly) O 165.84, 141.37, 140.01, 129.45, 127.88, 125.49, 124.57, 86.47,
63.15, 61.18, 54.77, 35.00.
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:CCI,COOMe

OCHs

anti-methyl-2,2-dichloro-2-1-methoxy-2,3-dihydro-1H-inden-2-yl)acetate, 5e,

'H NMR (500 MHz, CDCly) & 7.38 (ddd, J = 7.3, 1.4, 0.8 Hz, 1H), 7.37 — 7.17 (m, 4H),
5.08 (d, J = 4.7 Hz, 1H), 3.88 (s, 3H), 3.52 (ddd, J = 8.9, 6.0, 4.6 Hz, 1H), 3.46 (s, 3H),
3.41 - 3.32 (m, 1H), 3.01 (dd, J = 16.7, 6.0 Hz, 1H)."*C NMR (126 MHz, CDCls) & 166.42,
141.17, 141.02, 129.05, 127.23, 124.97, 124.89, 87.06, 86.26, 56.74, 56.42, 54.60, 34.11.

: ; “CCly

Cl

anti-1-chloro-2-(trichloromethyl)-1,2,3,4-tetrahydronaphthalene, 6a

'H NMR (500 MHz, CDCls) & 7.34 (dd, J = 7.2, 1.9 Hz, 1H), 7.25 (td, J = 7.3, 1.7 Hz, 2H),
7.18 (dd, J = 6.8, 1.8 Hz, 1H), 5.52 (d, J = 1.9 Hz, 1H), 3.68 (ddd, J = 9.2, 7.0, 1.9 Hz,
1H), 3.03 (ddd, J = 15.7, 11.8, 4.2 Hz, 1H), 2.87 (dt, J = 15.4, 4.7 Hz, 1H), 2.66 (ddt, J =
13.7, 7.0, 8.6 Hz, 1H), 1.91 — 1.81 (m, 1H). ®C NMR (126 MHz, CDCls) & 138.79, 136.04,
129.48, 128.95, 128.13, 127.20, 102.55, 64.33, 57.65, 26.86, 26.75.

: : “CCly

OMe

anti-1-methoxy-2-(trichloromethyl)-1,2,3,4-tetrahydronaphthalene, 6’a

'H NMR (500 MHz, CDCl,) 6 7.29 - 7.25 (m, 2H), 7.23 - 7.18 (m, 2H), 4.59 (d, J = 1.8
Hz, 1H), 3.31 (ddd, J = 10.2, 7.1, 1.9 Hz, 1H), 3.20 (s, 3H), 2.89 (dddd, J = 12.8, 11.8,
4.2,2.4 Hz, 1H), 2.71 (dt, J = 14.8, 4.0 Hz, 1H), 2.54 (ddt, J = 13.2, 7.5, 3.9 Hz, 1H), 1.68
(tdd, J = 13.1, 10.2, 4.0 Hz, 1H). *C NMR (126 MHz, CDCly) & 140.14, 134.67, 130.23,
128.54, 127.82, 126.13, 103.38, 79.94, 62.02, 55.56, 27.59, 27.34.
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anti-1-methoxy-2-(tribromomethyl)-1,2,3,4-tetrahydronaphthalene, 6’b

'H NMR (500 MHz, CDCly) & 7.29 — 7.25 (m, 2H), 7.21 (t, J = 6.7 Hz, 2H), 4.53 - 4.45
(m, 1H), 3.48 - 3.39 (m, 1H), 3.20 (d, J = 0.9 Hz, 3H), 2.98 - 2.90 (m, 1H), 2.75 - 2.64
(m, 2H). >C NMR (126 MHz, CDCl,) o) 140.41, 134.78, 130.54, 128.62, 127.70, 126.07,
81.68, 64.96, 55.53, 49.32, 30.17, 27.49.

2.10 General procedure for chlorosulfonylation under blue light

A flame dried Schlenk tube (10.0 mL) was equipped with a magnetic stirring
bar. The CuCl, (1.34 mg, 10.0 umol) and 1Q (3.26 mg, 10.0 umol) were dissolved in
anhydrous dichloromethane (2.00 mL) in a prepared Schlenk tube. Then sulfonyl
chloride (500 umol, 1.00 equiv) was added to the reaction for activated alkene.
Besides, sulfonyl chloride (500 umol, 1.00 equiv) and Na,CO; (500 pmol, 1.00 equiv)
were added to the reaction for inactivated alkene. The reaction was sealed with a
screwcap and subsequently degassed by three consecutive freeze-pump-thaw
cycles. After that, the alkene (0.500 - 1.00 mmol, 1.00 - 2.00 equiv) was added to the
reaction under nitrogen atmosphere and sealed with Teflon sealed inlet for a glass
rod. The reaction was stirred under light irritation at 455 nm in a cool water bath for
a given time as shown in Fig. Sla. The reaction was monitored by TLC. Afterward, the
reaction mixture was concentrated in vacuo and the residue was purified by flash
column chromatography on silica gel (hexane/EtOAC).

2.10.1 General procedure for chlorosulfonylation under white light

A test tube with a screwcap (10.0 mL) equipped with a magnetic stirring bar.
The CuCl, (1.34 mg, 10.0 umol) and 1Q (3.26 mg, 10.0 pmol) were dissolved in
anhydrous dichloromethane (2.00 mL) in a prepared tube. Then sulfonyl chloride
(500 pmol, 1.00 equiv), Na,COs3 (500 pmol, 1.00 equiv), and alkene (500 pumol, 1.00
equiv) was added to the reaction. The solution was bubbled under nitrogen gas for a
minute and sealed with a screwcap and wrapped with Teflon tape to ensure a tight
seal. The reaction tube was placed under a white light source with an electric

cooling fan to maintain a reaction temperature of 35 °C for the entire reaction period
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as shown in Fig. Slc. The reaction was monitored by TLC. Afterward, the reaction
mixture was concentrated in vacuo and the residue was purified by flash column
chromatography on silica gel (eluent hexane/EtOAC).

2.10.2 The large-scale synthesis of compound 3ja

A flame dried Schlenk tube (40.0 mL) was equipped with a magnetic stirring
bar. The CuCl, (13.4 mg, 100 umol) and 1Q (32.6 mg, 100 umol) were dissolved in
anhydrous dichloromethane (20.0 mlL) in a prepared Schlenk tube. Then
benzenesulfonyl chloride (883 mg, 5.00 mmol, 1.00 equiv) was added to the
reaction. The reaction was sealed with a screwcap and subsequently degassed by
three consecutive freeze-pump-thaw cycles. After that allyl methacrylate (757 mg,
6.00 mmol, 1.20 equiv) was added to the reaction under nitrogen atmosphere and
sealed with Teflon sealed inlet for a glass rod. The reaction was stirred with 4 times
irradiation at 455 nm for 16 hours in a cool water bath for a given time as shown in
Figure 2.5b. The reaction was monitored by TLC. Afterward, the reaction mixture was
concentrated in vacuo and the residue was purified by column chromatography on
silica gel (hexane:EtOAc = 9:1, Rf = 0.34) to afford 3ja as a clear oil (1.30 g, 86% vyield).
a) b)

Figure 2.5 Reaction set up for chlorosulfonylation.
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2.10.3 Spectroscopic data of chlorosulfonylation products

Cl o o

| “s"\©
(1-chloro-2-(phenylsulfonyl)ethyl)benzene, 3aa

Following the general procedure, 3aa was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and styrene (52.1 mg, 500 umol, 1.00 equiv) The
crude product was purified by flash column chromatography (hexane:EtOAc = 4:1, R¢
= 0.40) to afford 3aa as a white solid (92.7 mg, 66% vyield). 'H NMR (400 MHz, CDCls)
6774 (dd, J = 8.4, 1.3 Hz, 2H), 7.61 - 7.55 (m, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.26 (m,
5H), 5.35 (t, J = 6.9 Hz, 1H), 3.97 (dd, J = 14.8, 6.9 Hz, 1H), 3.87 (dd, J = 14.8, 7.0 Hz,
1H).®)C NMR (101 MHz, CDCl) & 139.24, 138.47, 133.84, 129.23, 129.19, 128.95,
128.15, 127.18, 64.10, 55.09. HRMS (ESI-TOF) m/z: [M+Nal* Calc. for CyuH;5ClO,SNa
303.0217 Found 303.0219.

Cloo

“ 1®

1-(1-chloro-2-(phenylsulfonyl)ethyl)-4-methoxybenzene, 3ba

Following the general procedure, 3ba was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and 4-methoxystyrene (67.1 mg, 500 pumol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc =9:1, R = 0.30) to afford 3ba as a clear oil (111.6 mg, 85% vyield). 'H
NMR (400 MHz, CDCls) 67112 (dd, J = 8.4, 1.3 Hz, 2H), 7.58 (ddt, J = 8.7, 7.1, 1.2 Hz,
1H), 7.49 — 7.40 (m, 2H), 7.18 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 5.33 (dd, J =
7.6, 6.5 Hz, 1H), 3.96 (dd, J = 14.8, 6.5 Hz, 1H), 3.88 (dd, J = 14.8, 7.6 Hz, 1H), 3.78 (s,
3H) ppm. C NMR (101 MHz, CDCls) o) 160.14, 139.29, 133.70, 130.40, 129.10, 128.55,
128.14, 114.23, 64.13, 55.36, 55.04.



67

)

Y

“ &

(E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene, (E)-4ba

Following the general procedure, 4ba was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and 4-methoxystyrene (67.1 mg, 500 pmol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Rf = 0.23) to afford d4ba as a brown solid (20.6 mg, 15% yield).
'H NMR (300 MHz, CDCls) 6 8.00 - 7.88 (m, 2H), 7.69 - 7.49 (m, 4H), 7.47 — 7.36 (m,
2H), 6.95 — 6.82 (m, 2H), 6.71 (d, J = 15.3 Hz, 1H), 3.83 (s, 3H) ppm.">C NMR (75 MHz,
CDCly) o) 162.11, 14233, 141.17, 133.21, 130.43, 129.31, 127.55, 124.99, 124.44,

114.55, 55.48. HRMS (ESI-TOF) m/z: [M+Na]™ Calc. for C;5H;405SNa 297.0561 Found
297.0556.

F R4
peans

F
1-(1-chloro-2-(phenylsulfonyl)ethyl)-2,3,4,5,6-pentafluorobenzene, 3ca
Following the general procedure, 3ca was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and 2,3,4,5,6-pentafluorobenzene (97.1 mg, 500
umol, 1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R = 0.40) to afford 3ca as a white solid (98.5 mg, 53% yield). 'H
NMR (400 MHz, CDCls) & 7.84 — 7.77 (m, 2H), 7.71 — 7.63 (m, 1H), 7.55 (t, J = 7.8 Hz,
2H), 5.62 (dd, J = 10.3, 4.9 Hz, 1H), 4.19 (dd, J = 14.6, 10.3 Hz, 1H), 3.91 (dd, J = 14.6,
4.9 Hz, 1H) ppm. C NMR (101 MHz, CDCLs) o) 146.08, 143.58, 140.70, 138.88, 138.39,
136.40, 134.43, 129.78, 127.92, 112.18, 60.46, 42.68. "*F NMR (376 MHz, CDCls) o -
140.76 (s, 2F), -151.69 (tt, J = 21.0, 3.2 Hz, 1F), -161.01 (td, J = 21.8, 8.1 Hz, 2F). °F
NMR is reported in comparison with previous report [90]. HRMS (ESI-TOF) m/z: [M+H]"
Calc. for C1gHoClFsO,S 370.9926 Found 370.9931.
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4-(1-chloro-2-(phenylsulfonyl)ethyl)phenyl acetate, 3da
2-chloro-1<(phenylsulfonylpropan-2Following the general procedure, 3da was
prepared from benzenesulfonyl chloride (88.3 mg, 500 pmol, 1.00 equiv) and 4-
methoxystyrene (67.1 mg, 500 pumol, 1.00 equiv). The crude product was purified by
flash column chromatography (hexane:EtOAc =4:1, Ry = 0.40) to afford 3da as a white
solid (64.9 mg, 38% yield). "H NMR (400 MHz, CDCl,) O 7.76 - 7.68 (m, 2H), 7.63 — 7.54
(m, 1H), 7.46 (ddd, J = 8.1, 6.9, 1.1 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.6 Hz,
2H), 5.35 (t, J = 7.0 Hz, 1H), 3.96 (dd, J = 14.8, 6.8 Hz, 1H), 3.85 (dd, J = 14.8, 7.2 Hz,
1H), 2.29 (s, 3H) ppm. *C NMR (101 MHz, CDCly) & 169.00, 151.09, 139.10, 135.88,
133.92, 129.26, 128.38, 128.07, 122.11, 64.14, 54.41, 21.12. HRMS (ESI-TOF) m/z:
[M+Na]* Calc. for C;gH;sCINaO,S 361.0272 Found 361.0271.

W,
(o}

methyl 2-chloro-3-(phenylsulfonyl)propanoate, 3ea

Following the general procedure, 3ea was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and methyl acrylate (86.1 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R¢ = 0.14) to afford 3ea as a clear oil (67.0 mg, 51% yield). 'H
NMR (400 MHz, CDCly) & 7.88 — 7.81 (m, 2H), 7.67 — 7.58 (m, 1H), 7.57 — 7.46 (m, 2H),
4.56 (dd, J = 8.4, 5.1 Hz, 1H), 3.94 (dd, J = 14.5, 8.4 Hz, 1H), 3.67 (s, 3H), 3.54 (dd, J =
145, 5.1 Hz, 1H) ppm. *C NMR (101 MHz, CDCl;) & 167.62, 138.69, 134.46, 129.54,
128.31, 59.66, 53.64, 48.66. HRMS (ESI-TOF) m/z: [M+H]" Calc. for CioHp,ClOsS
263.0139 Found 263.0146.
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Methy!l-(E)-3-(phenylsulfonyl)acrylate, (E)-4ea

Following the general procedure, 4ea was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and methyl acrylate (86.1 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R¢ = 0.10) to afford 4ea as a white solid (48.7 mg, 43% yield). 'H
NMR (400 MHz, CDCly) & 7.86 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.53 (t, J =
7.7 Hz, 2H), 7.28 (d, J = 15.2 Hz, 1H), 6.78 (d, J = 15.2 Hz, 1H), 3.74 (s, 3H) ppm. *C
NMR (101 MHz, CDCls) & 163.91, 143.46, 138.45, 134.42, 130.52, 129.66, 128.35, 52.81.
HRMS (ESI-TOF) m/z: [M+H]* Calc. for CyoH;:04S 227.0373 Found 227.0374 263.0146.

W ‘%,

e

(E)-3-(phenylsulfonylacrylonitrile, (E)-4fa

Following the general procedure, (E)-4fa was prepared from benzenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and acrylonitrile (53.1 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 4:1, Rf = £ 0.37, Z 0.13) to afford (E)-4fa as a white solid (55.1 mg,
78%).'H NMR (400 MHz, CDCls) & 8.00 — 7.93 (m, 2H), 7.84 — 7.75 (m, 1H), 7.73 - 7.64
(m, 2H), 7.28 (d, J = 15.7 Hz, 1H), 6.61 (d, J = 15.7 Hz, 1H) ppm. C NMR (101 MHz,
CDCls) o) 149.06, 137.30, 135.08, 129.97, 128.55, 113.31, 110.70. HRMS (ESI-TOF) m/z:
[M+H]" Calc. for CoHgNO,S 194.0270 Found 194.02609.
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1-chloro-2-(phenylsulfonyl)ethyl acetate, 3ga

Following the general procedure, 3ga was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and (86.1 mg, 1.00 mmol, 2.00 equiv). The crude
product was purified by flash column chromatography (hexane:EtOAc = 9:1, R = 0.18)
to afford 3ga as a white solid (111 mg, 85% vyield). 'H NMR (400 MHz, CDCl,) 6 7.89
(dt, J = 7.2, 1.4 Hz, 2H), 7.75 - 7.66 (m, 1H), 7.60 (dd, J = 8.5, 7.2 Hz, 2H), 6.76 (dd, J =
9.3, 2.6 Hz, 1H), 3.95 (dd, J = 14.8, 9.3 Hz, 1H), 3.72 (dd, J = 14.8, 2.6 Hz, 1H), 1.89 (s,
3H) ppm. C NMR (101 MHz, CDCly) & 167.46, 139.03, 134.37, 129.56, 128.18, 76.39,
62.31, 20.39. HRMS (ESI-TOF) m/z: [M+Na]" Calc. for CioHy;ClO4SNa 284.9959 Found
284.9958.

0° \\S,,o
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Methyl-2-chloro-2-methyl-3-(phenylsulfonyl)propanoate, 3ha

Following the general procedure, 3ha was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500 pmol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Rs = 0.34) to afford 3ha as a white solid (129 mg, 98% yield). 'H
NMR (300 MHz, CDCl;) & 7.99 — 7.87 (m, 2H), 7.74 — 7.62 (m, 1H), 7.59 (ddt, J = 8.3,
6.7, 1.3 Hz, 2H), 4.16 (d, J = 14.1 Hz, 1H), 3.83 (s, 3H), 3.76 (d, J = 14.1 Hz, 1H), 2.03 (s,
3H) ppm. C NMR (75 MHz, CDCly) & 169.19, 140.27, 134.19, 129.46, 128.03, 65.46,

62.24, 53.78, 26.82. HRMS (ESI-TOF) m/z: [M+H]* Calc. for Cy;1H;4ClO,S 277.0296 Found
277.0297.
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Ethyl-2-chloro-2-methyl-3-(phenylsulfonyl)propanoate, 3ia
Following the general procedure, 3ia was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and ethyl methacrylate (57.1 mg, 500 umol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Ry = 0.34) to afford 3ia as a yellow oil (142 mg, 97% yield). 'H-
NMR (300 MHz, CDCly): 6 7.88 - 7.91 (m, 2H), 7.68 - 7.63 (m, 1H), 7.59 - 7.54 (m, 2H),
4.29 - 4.21 (m, 1H), 4.14 (d, J = 14.1 Hz, 1H), 3.74 (d, J = 14.1 Hz, 1H), 2.01 (s, 2H)
ppm. *C NMR (75 MHz, CDCl;) & 168.59, 140.36, 134.17, 129.44, 127.96, 65.33, 63.00,

62.39, 26.70, 13.87. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Cy,H1,ClO,S 291.0452 Found
291.0456.

c, %.0
4\/oxn></s
AA®

Allyl 2-chloro-2-methyl-3-(phenylsulfonyl)propanoate, 3ja

Following the general procedure, 3ja was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and allyl methacrylate (63.1 mg, 500 pmol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:FtOAc = 9:1, R¢ = 0.34) to afford 3ja as a clear oil (149 mg, 99% yield). 'H
NMR (300 MHz, CDCl;) & 7.94 — 7.85 (m, 2H), 7.66 (ddt, J = 8.4, 6.6, 1.3 Hz, 1H), 7.62 —
7.50 (m, 2H), 5.95 (ddt, J = 17.2, 10.4, 5.4 Hz, 1H), 5.45 - 5.24 (m, 2H), 4.69 (ddt, J =
54,38, 1.4 Hz, 2H), 4.16 (d, J = 14.1 Hz, 1H), 3.76 (d, J = 14.1 Hz, 1H), 2.03 (s, 3H). 1*C
NMR (75 MHz, CDCls) & 168.31, 140.28, 134.21, 131.17, 129.46, 128.00, 119.20, 67.34,
65.34, 62.33, 26.72. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Cy3H;4ClO4S 303.0452 Found
303.0452.
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2-chloro-2-methyl-N-phenyl-3-(phenylsulfonyl)propenamide, 3ka

Following the general procedure, 3ka was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and N-phenyl methacrylamide (82.2 mg, 500 pmol,
1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 7:3, Rs = 0.36) to afford 3ka as a brown solid (169 mg, 100% yield).
'H NMR (400 MHz, CDCl,) 6 8.58 (s, 1H), 7.97 = 7.90 (m, 2H), 7.65 - 7.54 (m, 1H), 7.51
(m, 4H), 7.35 (dd, J = 8.5, 7.4 Hz, 2H), 7.22 — 7.13 (m, 1H), 4.24 (d, J = 14.6 Hz, 1H),
376 (d, J = 14.6 Hz, 1H), 1.94 (s, 3H) ppm. *C NMR (101 MHz, CDCl;) & 167.15,
140.57, 136.81, 133.95, 129.29, 129.08, 128.11, 125.40, 120.68, 66.30, 65.32, 30.98.
HRMS (ESI-TOF) m/z: [M+H]* Calc. for Cy4Hy7CINO,S 338.0612 Found 338.0617.

(¢]] O\‘S’,O

(2-chloro-1-(phenylsulfonyl)propan-2-yl)benzene, 3la

Following the general procedure, 3m was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and alpha methyl styrene (59.1 mg, 500 umol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R; = 0.24) to afford 3la as a pale-orange solid (105 mg, 71%
yield). 'H NMR (300 MHz, CDCls) 6757745 (m, 3H), 7.44 - 7.28 (m, 4H), 7.24 — 7.11
(m, 3H), 4.19 (d, J = 14.7 Hz, 1H), 4.01 (d, J = 14.7 Hz, 1H), 2.39 (s, 3H) ppm. >C NMR
(75 MHz, CDCly) o) 141.03, 140.01, 133.35, 129.04, 128.51, 128.26, 127.76, 126.55,
69.64, 67.59, 29.75. HRMS (ESI-TOF) m/z: [M+Na]" Calc. for Ci5H;5ClO,SNa 317.0373
Found 317.0373.
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2-chloro-1-(phenylsulfonyl)propan-2-yl acetate, 3ma

Following the general procedure, 3ma was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and isopropenyl acetate (100 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R; = 0.20) to afford 3ma as a brown solid (82.6 mg, 60% yield).
'H NMR (300 MHz, CDCl,) 6 7.96 - 7.86 (m, 2H), 7.74 — 7.62 (m, 1H), 7.59 (ddt, J = 8.4,
6.6, 1.4 Hz, 2H), 4.80 (d, J = 14.5, Hz, 1H), 3.65 (d, J = 14.5 Hz, 1H), 2.26 (s, 3H), 1.96 (s,
3H) ppm. BC NMR (75 MHz, CDCls) o) 168.46, 139.91, 134.21, 129.48, 128.19, 93.27,
63.57, 31.77, 21.78. HRMS (ESI-TOF) m/z: [M+Na]® Calc. for Cy;H;,ClOsSNa 299.0115
Found 299.0117.

(2-(phenylsulfonyl)ethene-1,1-diyl) benzene, 4na

Following the general procedure, 4na was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and 1,1-diphenylethylene (90.1 mg, 500 umol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAC = 9:1, R = 0.24) to afford 4na as a white solid (26.2 mg, 16% yield). 'H
NMR (400 MHz, CDCls) & 7.57 - 7.50 (m, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.36 - 7.20 (m,
8H), 7.20 — 7.11 (m, 2H), 7.07 = 7.00 (m, 2H), 6.98 (s, 1H). *C NMR (101 MHz, CDCls) &
155.23, 141.50, 139.12, 135.48, 132.85, 130.35, 129.79, 128.90, 128.79, 128.69, 128.62,
128.24, 127.88, 127.66. HRMS (ESI-TOF) m/z: [M+H]* Calc. for CyoH70,S 321.0944
Found 321.0946.



74

Cl o o

NP NP1
&

((2-chlorooctylsulfonyl)benzene, 30a

Following the general procedure, 30a was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and 1-octene (112 mg, 1.00 mmol, 2.00 equiv). The
crude product was purified by flash column chromatography (hexane:EtOAc = 9:1, R;
= 0.43) to afford 30a as a clear yellow oil (128 mg, 89% vyield). 'H NMR (300 MHz,
CDCls) 6 7.97 - 7.87 (m, 2H), 7.72 - 7.60 (m, 1H), 7.56 (td, J = 8.0, 2.3 Hz, 2H), 4.30
(dt, J = 8.4, 6.4 Hz, 1H), 3.57 (dd, J = 14.7, 6.4 Hz, 1H), 3.46 (ddd, J = 14.7, 6.4 Hz, 1H),
1.95 (m, 1H), 1.83 — 1.64 (m, 1H), 1.52 — 1.34 (m, 2H), 1.26 (m, 6H), 0.86 (td, J = 6.8,
2.5 Hz, 3H) ppm. *C NMR (75 MHz, CDCly) & 139.48, 134.12, 129.42, 128.18, 63.45,
54.52, 37.95, 31.56, 28.43, 25.73, 22.53, 14.06. HRMS (ESI-TOF) m/z: [M+H]" Calc. for
C14H2,ClO,S 289.1024 Found 289.1030.

((2-chlorocyclohexyl)sulfonyl)benzene, anti-3pa

Following the general procedure, anti-3pa was prepared from benzenesulfonyl
chloride (88.3 mg, 0.50 mmol, 1.00 equiv) and cyclohexene (82.1 mg, 1.00 mmol,
2.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R = 0.43) to afford anti-3pa as a white solid (87.7 mg, 68%
yield). 'H NMR (300 MHz, CDCls) 6 7.99 - 7.87 (m, 2H), 7.72 - 7.60 (m, 1H), 7.63 — 7.50
(m, 2H), 4.36 (m, 1H), 3.32 (m, 1H), 2.40 — 2.15 (m, 2H), 2.03 — 1.84 (m, 1H), 1.85 - 1.66
(m, 3H), 1.53 = 1.31 (m, 2H) ppm. *C NMR (75 MHz, CDCl;) & 138.99, 133.85, 129.18,
128.76, 77.28, 67.63, 55.64, 34.52, 23.76, 22.62. HRMS (ESI-TOF) m/z: [M+H]" Calc. for
C1,H16ClO,S 259.0554 Found 259.0554.
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Methyl-2-chloro-2-methyl-3-(phenylsulfonyl)butanoate, 3ga

Following the general procedure, 3gqa was prepared from benzenesulfonyl chloride
(88.3 mg, 0.50 mmol, 1.00 equiv) and methyl (£)-2-methylbut-2-enoate (114 mg, 1.00
mmol, 2.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc =9:1, Rf = 0.20) to afford 3qga as a white solid (117 mg, 80% yield). 'H
NMR (300 MHz, CDCl,) 6 7.93-783 (m, 2H), 7.73 - 7.61 (m, 1H), 7.64 — 7.51 (m, 2H),
4.20 (g, J = 7.1 Hz, 1H), 3.92 (s, 3H), 1.99 (s, 3H), 1.50 (d, J = 7.1 Hz, 3H) ppm. *C NMR
(75 MHz, CDCls) & 170.29, 139.00, 134.17, 129.39, 128.52, 67.06, 65.59, 53.70, 21.92,
10.78. HRMS (ESI-TOF) m/z: [IM+H]* Calc. for Cy,H;4ClO,S 291.0452 Found 291.0455.

pspae
5-(2-chloro-1-(phenylsulfonyl)propan-2-yl)-2-methylcyclohex-2-en-1-one, 3ra
Following the general procedure, 3ra was prepared from benzenesulfonyl chloride
(88.3 mg, 500 pmol, 1.00 equiv) and (R)-carvone (150 mg, 1.00 mmol, 2.00 equiv). The
crude product was purified by flash column chromatography (hexane:EtOAc = 9:1, Rs
= 0.21) to afford 3ra as a clear oil (159 mg, 98% vyield). 'H NMR (300 MHz, CDCLls) o
7.90 — 7.78 (m, 2H), 7.62 (m, 1H), 7.52 (tdd, J = 7.2, 3.3, 1.6 Hz, 2H), 6.74 - 6.64 (m,
1H), 3.69 (dd, J = 17.9, 14.3 Hz, 1H), 3.52 (dd, J = 14.3, 10.6 Hz, 1H), 2.94 (qt, J = 10.0,
4.1 Hz, 1H), 2.73 = 2.29 (m, 4H), 1.93 - 1.81 (d, J = 16.8, 3H), 1.72 (dt, J = 2.6, 1.3 Hz,
3H) ppm. Isomer 3ra-1 *C NMR (75 MHz, CDCl;) & 198.37, 143.86, 140.36, 135.11,
134.26, 129.60, 127.72, 72.40, 65.21, 43.65, 39.24, 28.96, 27.76, 15.57. Isomer 3ra-2
BC NMR (75 MHz, CDCls) o) 197.93, 143.68, 140.32, 135.25, 134.23, 129.57, 127.76,
72.37, 65.02, 43.41, 39.75, 28.88, 27.08, 15.60. HRMS (ESI-TOF) m/z: [M+H]" Calc. for
C1eH20ClO5S 327.0816 Found 327.0823.
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5-(phenylsulfonyl)-3,4-dihydro-2H-pyran, 4sa

Following the general procedure, 4sa was prepared from benzenesulfonyl chloride
(88.3 mg, 500 umol, 1.00 equiv) and 3,4-dihydro-2H-pyran (84.1 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Rs = 0.14) to afford 4sa as a white solid (56.3 mg, 43% vyield). 'H
NMR (400 MHz, CDCls) 6 7.93-7.77 (m, 2H), 7.62 (s, 1H), 7.63 — 7.54 (m, 2H), 7.56 -
7.47 (m, 2H), 4.06 — 3.99 (m, 2H), 2.17 (td, J = 6.3, 1.4 Hz, 2H), 1.92 - 1.80 (m, 2H)
ppm. C NMR (75 MHz, CDCly) & 153.82, 140.58, 132.88, 129.11, 127.47, 115.09,

66.62, 20.79, 18.89. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Cy3H,305S 225.0580 Found
225.0580.
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(B)-1-(2-(phenylsulfony)vinyD)pyrrolidin-2-one, (E)-4ta

Following the general procedure, (E)-4ta was prepared from benzenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and 1-vinyl-2-pyrrolidone (111 mg, 1.00
mmol, 2.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 4:1, Rf = 0.34) to afford (E)-4ta as a white solid (62.5 mg, 43% yield).
'H NMR (400 MHz, CDCL,) 6 8.09 (d, J =13.7 Hz, 1H), 7.93 - 7.86 (m, 2H), 7.63 - 7.54
(m, 1H), 7.52 (dd, J = 8.3, 6.6 Hz, 2H), 5.73 (d, J = 13.7 Hz, 1H), 3.50 (t, J = 7.2 Hz, 2H),
255 (, J = 8.2 Hz, 2H), 2.22 - 2.10 (m, 2H) ppm. *C NMR (101 MHz, CDCl;) & 174.22,
142.03, 136.16, 132.99, 129.24, 127.23, 110.30, 45.14, 30.69, 17.44. HRMS (ESI-TOF)
m/z: [M+H]" Calc. for C;,H14NOsS 252.0689 Found 252.0693.
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(E)-(1-chloro-2-(phenylsulfonyl)vinyl)benzene, (E)-6aa

Following the general procedure, (E)-6aa was prepared from benzenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and phenylacetylene (102 mg, 1.00 mmol,
2.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 5:1, R = 0.54) to afford (E)-6aa as a white solid (134 mg, 96% vyield).
'H NMR (400 MHz, CDCLy) & 7.52 (dd, J = 8.4, 1.3 Hz, 2H), 7.53 - 7.40 (m, 1H), 7.37 -
7.20 (m, 7H), 6.85 (s, 1H) ppm. *C NMR (101 MHz, CDCly) & 148.50, 140.51, 134.29,
133.55, 130.87, 130.75, 129.02, 128.85, 128.08, 127.74. HRMS (ESI-TOF) m/z: [M+H]"
Calc. for Ci4H1,ClO,S 279.0241 Found 279.0245.

((1-chloro-1-phenylprop-1-en-2-yDsulfonyl)benzene, (E)-6ba

Following the general procedure, (E)-6ba was prepared from benzenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and 1-phenyl-1-propene (116 mg, 1.00
mmol, 2.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R = 0.40) to afford (E)-6ba as a clear oil (129 mg, 88% yield). 'H
NMR (400 MHz, CDCls) O 7.56 - 7.46 (m, 3H), 7.41 — 7.30 (m, 3H), 7.33 — 7.23 (m, 2H),
7.24 - 7.16 (m, 2H), 2.38 (s, 3H) ppm. °C NMR (101 MHz, CDCly) & 144.43, 140.32,
137.84, 136.84, 133.20, 129.51, 128.87, 128.85, 127.94, 127.75, 18.02. HRMS (ESI-TOF)
m/z: [M+H]" Calc. for Cy5H;4ClO,S 293.0398 Found 293.0404.
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((2-chlorohex-1-en-1-yDsulfonyl)benzene, (E)-6ca

Following the general procedure, (E)-6ca was prepared from benzenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and 1-hexyne (82.1 mg, 1.00 mmol, 2.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Ry = 0.54) to afford (E)-6ca as a clear oil (86.9 mg, 67% yield). 'H
NMR (400 MHz, CDCls) & 7.95 - 7.87 (m, 2H), 7.70 — 7.61 (m, 1H), 7.62 - 7.52 (m, 2H),
6.53 (s, 1H), 2.99 — 2.91 (m, 2H), 1.64 — 1.52 (m, 2H), 1.44 — 1.31 (m, 2H), 0.93 (t, J =
7.3 Hz, 3H) ppm. BC NMR (101 MHz, CDCLs) o) 155.03, 141.37, 133.72, 129.45, 128.59,
127.38, 34.79, 29.69, 22.04, 13.81. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Cy,H5ClO,S
259.0554 Found 259.0557.

Methyl-2-chloro-2-methyl-3-tosylpropanoate, 3ib

Following the general procedure, 3ib was prepared from 4-toluenesulfonyl chloride
(95.3 mg, 500 umol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500 pmol, 1.00
equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, R¢ = 0.31) to afford 3ib as a white solid (125 mg, 86% yield). 'H
NMR (300 MHz, CDCl,) 6 7.84-773 (m, 2H), 7.42 - 7.32 (m, 2H), 4.14 (d, J = 14.1 Hz,
1H), 3.83 (s, 3H), 3.73 (d, J = 14.1 Hz, 1H), 2.46 (s, 3H), 2.02 (s, 3H) ppm. >C NMR (75
MHz, CDCls) & 169.22, 145.31, 137.37, 130.04, 128.06, 65.54, 62.29, 53.75, 26.78, 21.72
ppm. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Cy,H6ClO4S 291.0452 Found 291.0456.
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Methyl-2-chloro-3-((4-methoxyphenyl)sulfonyl)-2-methylpropanoate, 3ic
Following the general procedure, 3ic was prepared from 4-methoxybenzenesulfonyl
chloride (103.3 mg, 500 pmol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500
pumol, 1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Ry = 0.14) to afford 3ic as a clear oil (141 mg, 92% yield). 'H
NMR (300 MHz, CDCl,) 6 7.74 (d, J = 8.9 Hz, 1H), 6.95 (d, J = 8.9 Hz, 1H), 4.04 (d, J =
14.1 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 3.66 (d, J = 14.1 Hz, 1H), 1.93 (s, 3H) ppm. *C
NMR (75 MHz, CDCls) o) 169.26, 164.10, 131.77, 130.33, 114.58, 65.73, 62.36, 55.80,
53.76, 26.79. HRMS (ESI-TOF) m/z: [M+H]* Calc. for Cy,H;ClOsS 307.0401 Found
307.0407.
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Methyl 2-chloro-2-methyl-3-(thiophen-2-ylsulfonyl)propanoate, 3id

Following the general procedure, 3id was prepared from 2-thiophenesulfonyl
chloride (88.3 mg, 500 pmol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500
umol, 1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAcC = 4:1, R; = 0.37) to afford 3id as a white solid (159 mg, 98% yield). 'H
NMR (300 MHz, CDCl,) 6 7.80 - 7.68 (m, 2H), 7.16 (dd, J = 5.0, 3.8 Hz, 1H), 4.27 (d, J =
14.1 Hz, 1H), 3.88 (d, J = 14.1 Hz, 1H), 3.83 (s, 3H), 2.03 (s, 3H) ppm. °C NMR (75 MHz,
CDCly) & 169.04, 141.23, 134.84, 134.78, 128.08, 66.79, 62.17, 53.83, 26.74. HRMS (ESI-
TOF) m/z: [M+H]" Calc. for C;,H;4ClOsS 282.9860 Found 282.9861.



80

Methyl-2-chloro-2-methyl-3-((4-nitrophenyl)sulfonyl)propanoate, 3ie

Following the general procedure, 3ie was prepared from d4d-nitrobenzenesulfonyl
chloride (111 mg, 500 pymol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500
umol, 1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAC = 9:1, Re = 0.16). 'H NMR (300 MHz, CDCl;) & 8.37 (d, J = 8.9 Hz, 2H),
8.09 (d, J = 8.9 Hz, 2H), 4.10 (d, J = 14.4 Hz, 1H), 3.86 (d, J = 14.4 Hz, 1H), 3.82 (s, 3H),
1.96 (s, 3H). °C NMR (75 MHz, CDCL,) o) 169.12, 14581, 129.69, 129.16, 124.60, 65.58,
62.22, 54.05, 27.24. >C NMR (75 MHz, CDCls) o) 169.12, 145.81, 129.69, 129.16, 124.60,
65.58, 62.22, 54.05, 27.24. HRMS (ESI-TOF) m/z: [M+H]" Calc. for CyiH;3CINOgS
322.0147 Found 322.0148.
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Methyl 2-chloro-2-methyl-3-((perfluorophenyl)sulfonyl)propanoate, 3if
Following the general procedure, 3if was prepared from pentafluorobenzenesulfonyl
chloride (136 mg, 500 pmol, 1.00 equiv) and methyl methacrylate (50.1 mg, 500
umol, 1.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAC = 9:1, R = 0.16)."H NMR (300 MHz, CDCl;) & 4.23 (d, J = 14.8 Hz, 1H),
4.05 (d, J = 14.8 Hz, 1H), 3.86 (s, 3H), 2.02 (s, 3H). *C NMR (75 MHz, CDCl;) & 168.80,
146.99, 143.40, 139.77, 136.45, 66.84, 62.29, 54.07, 27.54. *’F NMR (376 MHz, CDCl,) o)
-135.86 — -136.13 (m, 2F), -142.81 (tt, J = 21.0, 7.8 Hz, 1F), -157.95 — -158.30 (m, 2F).
F NMR is reported in comparison with previous report [90]. HRMS (ESI-TOF) m/z:
[M+H]* Calc. for C;;HeClF5O,4S 366.9825 Found 366.9829.
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2-chloro-3-(isopropylsulfonyl)-2-methyl-N-phenylpropanamide, 3ug

Following the general procedure, 3ug was prepared from 4-isopropylbenzenesulfonyl
chloride (71.3 mg, 0.50 mmol, 1.00 equiv) and N-phenylmethacrylamide (82.2 mg,
500 pmol, 1.00 equiv). The crude product was purified by flash column
chromatography (Hexanes:EtOAc = 4:1, Rf = 0.14) to afford 3ug as an off-white solid
(130 mg, 86% yield). 'H NMR (400 MHz, CDCl;) & 8.47 (s, 1H), 7.47 - 7.40 (m, 2H), 7.31
- 7.22 (m, 2H), 7.08 (td, J = 7.2, 1.2 Hz, 1H), 3.99 (d, J = 14.4 Hz, 1H), 3.48 (d, J = 14.4
Hz, 1H), 3.13 (hept, J = 6.9 Hz, 1H), 1.90 (s, 3H), 1.29 (dd, J = 6.9, 2.6 Hz, 6H). °C NMR
(101 MHz, CDCl,) o) 167.47, 136.80, 129.10, 125.40, 120.76, 66.26, 58.74, 55.80, 31.13,
15.26, 15.10. HRMS (ESI-TOF) m/z: [M+H]" Calc. for Ci3HgCINO5S 304.0769 Found
304.0775.

1-((2-chloro-2-phenylethyl)sulfony)-4-methylbenzene, 3ab

Following the general procedure, 3ab was prepared from 4-methylbenzenesulfonyl
chloride (95.4 mg, 500 umol, 1.00 equiv) and styrene (52.1 mg, 500 pumol, 1.00 equiv)
The crude product was purified by flash column chromatography (hexane:EtOAc =
9:1, Re = 0.20) to afford 3ab as a white solid (146 mg, 99% yield). '"H NMR (500 MHz,
CDCly) 6 7.62 (d, J = 8.1 Hz, 2H), 7.26 (s, 5H), 7.23 (d, J = 8.1 Hz, 2H), 5.32 (t, J = 6.9
Hz, 1H), 3.93 (dd, J = 14.9, 6.9 Hz, 1H), 3.83 (dd, J = 14.9, 6.9 Hz, 1H), 2.40 (s, 3H). °C
NMR (101 MHz, CDCls) o) 144.88, 138.67, 136.32, 129.77, 129.05, 128.89, 128.19,
127.14, 64.22, 55.13, 21.59.
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1-((2-chlorocyclohexylsulfonyl)-4-methylbenzene, anti-3pb

Following the general procedure, anti-3pb  was prepared from 4-
methylbenzenesulfonyl chloride (95.4 mg, 500 umol, 1.00 equiv) and 1-cyclohexene
(82.1 mg, 1.00 mmol, 2.00 equiv) The crude product was purified by flash column
chromatography (hexane:EtOAc = 9:1, R = 0.30) to afford anti-3pb as a clear oil (114
mg, 82% yield). 'H NMR (500 MHz, CDCly) & 7.81 — 7.74 (m, 2H), 7.36 — 7.31 (m, 2H),
434 (td, J = 7.0, 4.0 Hz, 1H), 3.28 (ddd, J = 7.8, 6.5, 4.8 Hz, 1H), 2.43 (s, 3H), 2.38 -
2.29 (m, 1H), 2.25 - 2.16 (m, 1H), 1.89 (dddd, J = 16.8, 8.3, 4.9, 2.1 Hz, 1H), 1.78 - 1.70
(m, 3H), 1.46 - 1.36 (m, 2H).>C NMR (101 MHz, CDCLl,) o) 144.83, 13593, 129.78,
128.75, 67.59, 55.65, 34.34, 23.69, 22.50, 22.46, 21.62.

Cl

1-((2-chlorohexyl)sulfonyl)-4-methylbenzene, 3vb

Following the general procedure, 3vb was prepared from 4-methylbenzenesulfonyl
chloride (95.4 mg, 500 pmol, 1.00 equiv) and 1-hexene (84.2 mg, 1.00 mmol, 2.00
equiv) The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Re = 0.30) to afford 3vb as a clear oil (129 mg, 93% vyield). 'H
NMR (500 MHz, CDCl,) 6 7.80-7.74 (m, 2H), 7.34 (d, J = 8.2 Hz, 2H), 4.27 (dt, J = 6.3,
3.9 Hz, 1H), 3.54 (dd, J = 14.6, 6.3 Hz, 1H), 3.44 (dd, J = 14.6, 6.3 Hz, 1H), 2.42 (s, 3H),
1.94 (m, 1H), 1.77 = 1.67 (m, 1H), 1.47 - 1.24 (m, 4H), 0.86 (t, J = 7.2 Hz, 3H). "°C NMR
(101 MHz, CDCls) o) 145.11, 136.62, 129.98, 128.13, 63.51, 54.58, 37.58, 27.84, 21.86,
21.60, 13.79.
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1-chloro-2-tosyl-2,3-dihydro-1H-indene, 3wb

Following the general procedure, 3wb was prepared from 4-methylbenzenesulfonyl
chloride (95.4 mg, 500 umol, 1.00 equiv) and 3-phenyl-1-propene (59.1 mg, 500
pumol, 1.00 equiv) The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Rr = 0.20) to afford 3wb as a clear oil (129 mg, 83% yield). 'H
NMR (500 MHz, CDCly) & 7.82 — 7.77 (m, 2H), 7.37 = 7.27 (m, 5H), 7.24 — 7.19 (m, 2H),
4.50 (dq, J = 7.7, 6.2 Hz, 1H), 3.52 (d, J = 6.2 Hz, 2H), 3.29 (dd, J = 14.3, 5.5 Hz, 1H),
3.10 (dd, J = 14.3, 7.7 Hz, 1H), 2.45 (s, 3H). *C NMR (126 MHz, CDCly) & 145.35,
136.46, 136.01, 130.15, 129.74, 128.71, 128.30, 127.44, 62.43, 54.58, 43.96, 21.79.
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1-chloro-2-tosyl-2,3-dihydro-1H-indene, anti-3xb

Following the general procedure, anti-3xb  was prepared from 4-
methylbenzenesulfonyl chloride (95.4 mg, 500 umol, 1.00 equiv) and 1H-indene (58.1
mg, 500 pmol, 1.00 equiv) The crude product was purified by flash column
chromatography (hexane:EtOAc = 9:1, R; = 0.3) to afford anti-3xb as a white solid
(154 mg, 100% yield). 'H NMR (500 MHz, CDCl;) & 7.83 — 7.80 (m, 2H), 7.38 — 7.32 (m,
3H), 7.27 - 7.24 (m, 2H), 7.21 — 7.15 (m, 1H), 5.69 (d, J = 4.9 Hz, 1H), 4.15 (ddd, J =
9.0, 6.2, 4.9 Hz, 1H), 3.53 (dd, J = 17.0, 6.2 Hz, 1H), 3.44 (dd, J = 17.0, 9.0 Hz, 1H), 2.45
(s, 3H). °C NMR (101 MHz, CDCly) o) 145.33, 140.32, 138.91, 134.87, 130.03, 129.62,
128.80, 128.02, 125.24, 124.55, 72.69, 60.63, 31.91, 21.68.
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1-chloro-2-tosyl-2,3-dihydro-1H-indene, anti-3yb

Following the general procedure, anti-3yb was prepared from 4-
methylbenzenesulfonyl chloride (95.4 mg, 500 pmol, 1.00 equiv) and 1,2-
dihydronaphthalene (65.1 mg, 500 pumol, 1.00 equiv) The crude product was purified
by flash column chromatography (hexane:EtOAc = 9:1, R; = 0.30) to afford anti-3yb
as an eggshell color-solid (154 mg, 100% yield). *H NMR (500 MHz, CDCl;) & 7.80 -
7.74 (m, 2H), 7.35 (m, 3H), 7.24 — 7.20 (m, 2H), 7.07 (m, 1H), 5.57 (d, J = 3.5 Hz, 1H),
3.84 (ddd, J = 6.2, 5.1, 3.5 Hz, 1H), 3.07 (ddd, J = 16.9, 8.9, 5.1 Hz, 1H), 2.89 (dt, J =
16.9, 6.2 Hz, 1H), 2.56 (ddt, J = 14.6, 8.9, 5.6 Hz, 1H), 2.46 (s, 3H), 2.24 (dq, J = 14.6,
6.2 Hz, 1H). *C NMR (101 MHz, CDCls) o) 145.22, 135.96, 135.08, 133.60, 130.10,
129.98, 129.44, 128.82, 128.78, 126.81, 67.37, 54.05, 25.51, 21.66, 19.90.
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5-(4-methylbenzene)-3,4-dihydro-2H-pyran, 4sb

Following the general procedure, 4sb was prepared from 4-methylbenzenesulfonyl
chloride (95.4 mg, 500 pmol, 1.00 equiv) and 3,4-dihydro-2H-pyran (210.3 mg, 2.50
mmol, 5.00 equiv). The crude product was purified by flash column chromatography
(hexane:EtOAc = 9:1, Rs = 0.10) to afford 4sb as white solid (78.8 mg, 64% vyield). 'H
NMR (500 MHz, CDCls) b 7.73 - 7.70 (m, 2H), 7.58 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 4.02
—3.99 (m, 2H), 2.41 (s, 3H), 2.15 (td, J = 6.3, 1.4 Hz, 2H), 1.86 - 1.81 (m, 2H). °C NMR
(126 MHz, CDCl,) o) 153.47, 143.78, 137.70, 129.79, 127.59, 115.47, 66.62, 21.63, 20.87,
18.94.
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1-((2-chloro-2-phenylvinyl)sulfonyl)-4-methylbenzene, (E)-6ab

Following the general procedure, (E)-6ab was prepared from 4-
methylbenzenesulfonyl chloride (954 mg, 500 pmol, 1.00 equiv) and
ethynylbenzene (51.1 mg, 500 pmol, 1.00 equiv). The crude product was purified by
flash column chromatography (hexane:EtOAc = 9:1, R = 0.10) to afford (E)-6ab as
white solid (145 mg, 99% yield). *H NMR (500 MHz, CDCl,) O 7.52 - 7.48 (m, 2H), 7.45
— 7.40 (m, 1H), 7.40 - 7.33 (m, 4H), 7.23 — 7.19 (m, 2H), 6.92 (s, 1H), 2.40 (s, 3H). *°C
NMR (101 MHz, CDCl,) o) 147.93, 144,58, 137.71, 134.39, 131.04, 130.63, 129.63,
128.85, 127.99, 127.78, 21.57.

1-((1-chloro-1-phenylprop-1-en-2-ylsulfonyl)-4-methylbenzene, (E)-6bb
Following the general procedure, (E)-6bb  was prepared from 4-
methylbenzenesulfonyl chloride (95.4 mg, 500 pmol, 1.00 equiv) and prop-1-yn-1-
ylbenzene (58.1 mg, 500 umol, 1.00 equiv). The crude product was purified by flash
column chromatography (hexane:EtOAc = 9:1, R = 0.10) to afford (E)-6bb as eggshell
color- solid (134 mg, 87% yield). 'H NMR (500 MHz, CDCl,) O 7.42 - 7.38 (m, 2H), 7.37
- 7.32 (m, 1H), 7.31 — 7.26 (m, 2H), 7.22 — 7.19 (m, 2H), 7.18 — 7.14 (m, 2H), 2.38 (s,
3H), 2.33 (s, 3H). °C NMR (126 MHz, CDCls) o) 144.31, 144.09, 137.90, 137.37, 137.08,
129.56, 129.52, 128.87, 127.95, 21.69, 18.13. 'H NMR (500 MHz, acetone-dg) 6 7.46 -
7.43 (m, 2H), 7.38 — 7.34 (m, 1H), 7.33 = 7.27 (m, 4H), 7.23 - 7.19 (m, 2H), 2.38 (s, 3H),
2.28 (s, 3H). °C NMR (126 MHz, acetone-dy) 0 14456, 143.45, 138.18, 137.71, 137.33,
129.71, 129.37, 128.80, 127.90, 127.83, 20.67, 17.38.
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1-((2-chloro-1-octenyl)sulfonyl)-4-methylbenzene, (E)-6db

Following the general procedure, (E)-6db  was prepared from 4-
methylbenzenesulfonyl chloride (95.4 mg, 500 pmol, 1.00 equiv) and 1-octyne (110
mg, 1.00 mmol, 2.00 equiv). The crude product was purified by flash column
chromatography (hexane:EtOAc = 20:1, R; = 0.36) to afford (E)-6db as white solid
(148 mg, 96% yield). *H NMR (500 MHz, CDCly) & 7.77 (d, J = 8.3 Hz, 2H), 7.36 — 7.33
(m, 2H), 6.51 (s, 1H), 2.95 — 2.89 (m, 2H), 2.44 (s, 3H), 1.60 — 1.53 (m, 2H), 1.31 — 1.23
(m, 6H), 0.90 — 0.87 (m, 3H). *C NMR (101 MHz, CDCly) & 154.42, 144.74, 138.53,
130.01, 128.94, 127.40, 34.90, 31.44, 28.46, 27.51, 22.43, 21.59, 13.97.
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CHAPTER Il
RESULTS AND DISCUSSION
FOR COPPER CATALYZED HALOALKYLATION (C-C FORMATION)

The results of the development of Cu(ll) complexes containing quinoline
derivatives as photoredox catalysts in atom transfer radical addition (ATRA) for
haloalkylation (C-C formation) are discussed in 4 sections according to the following
order: synthesis and characterization of Cul(ll) complexes, photophysical and
electrochemical properties, study of catalytic properties for haloalkylation (C-C
formation), and proposed mechanism.

3.1 Synthesis and characterization of Cu(ll) complexes

This section is divided into 2 parts i.e., synthesis and characterization of
quinoline ligands (1Q, 2Q and 3Q) and synthesis and characterization of Cu(ll)
complexes. The numeric characterization data for 'H NMR, *C NMR, HRMS, and
elemental analysis are presented in the experimental section. The X-ray data,
elemental results, NMR, IR and HRMS spectra along with the signal assignments are
provided in appendix A.

3.1.1 Synthesis and characterization of quinoline ligands

The synthesis of ligand 1Q, 2Q, and 3Q are shown in Figure 3.1. The 1Q was
obtained via nucleophilic substitution of commercially available 8-aminoquinoline to
4.00 equivalent of 2-(chloromethylpyridine in the presence of base and Kl catalyst
for 48 hours. The 1Q was isolated by column chromatography in 48% yield along
with QP as a minor product. The QP was synthesized in the same reaction using 1.00
equivalent of 2-(chloromethyl)pyridine for 24 hours. The QP was obtained in 79%
yield. QP was used for further synthesis of ligand 2Q via Ullmann type coupling
reaction with 8-iodoquinoline using Cul and L-proline as a catalyst in the presence of
base. The 2Q was obtained in 80% vyield. The same reaction was applied for
preparing of licand 3Q from the coupling between 8-aminoquinoline and 8-

iodoquinoline. The 3Q was obtained in 33% vyield.
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Figure 3.1 Synthesis of ligand 1Q, 2Q and 3Q.

The "H NMR spectra of 8-aminoquinoline, 1Q, 2Q and 3Q are shown in Figure
3.2. The signals and integrations were assigned to all protons in the corresponding
ligand structures. The absence of primary amine in 8-aminoquinoline (H®) confirmed
the formation of tertiary amine in all ligands. The singlet signals of methylene proton
(H*) with corresponding to number of protons in ligand 1Q and 2Q appeared at 4.89
and 5.60 ppm, respectively. The aromatic protons (H*-H) were assigned according to
number of remained protons which suggested the ratio of 2:1 and 1:2 of picolyl and
quinoline moieties in ligand 1Q and 2Q, respectively. For the ligand 3Q, the aromatic
protons were downfield as the increasing of amino quinoline number which results

from shielding effect of adjacent quinoline moieties of this rigid structure. The



89

assigned protons were confirmed by the correlation of 'H NMR and *C NMR from 2D
NMR experiments (Figure A.2-A.20). The IR and HRMS spectra of synthesized ligands
are provided in Figure A21-A23 and Figure A27-A31, respectively.
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Figure 3.2 'H NMR spectra of 8-aminoquinoline, 1Q, 2Q and 3Q in DMSO-d..
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3.1.2  Synthesis and characterization of Cu(ll) complexes

The Cu(ll) complexes with the ligand 1Q-3Q were synthesized, for catalytic
comparison with in situ catalyst, using a modification of the procedure reported by
Tomislav group [41]. Generally, the complex was obtained simply by stirring a
mixture solution of an equimolar of CuCl, and the ligand in chloroform followed by
precipitation in hexane. The obtained complexes were characterized by X-ray
crystallography, IR, and HRMS spectroscopy. The IR and HRMS spectra are provided in
Figure A.24-26 and Figure A.32-34, respectively, and the X-ray crystallography results
are discussed here.

The crystallography was achieved to establish the stoichiometry and
coordination mode of the ligand in the complex. Single crystals of the complexes
CuCl,+1Q, CuCl,*2Q, and CuCl,#3Q, suitable for X-ray analysis were obtained through
slow evaporation of acetonitrile or methanol solutions of copper(ll) chloride with the
corresponding ligands at room temperature. The single crystal structures are shown
in Figure 3.3 and the selected bond lengths (A) and bond angles (°) were summarized
in Table 3.1 in comparison with CuCl,sTPMA complex [41]. The X-ray results revealed
the structures of CuCl,»1Q, CuCl,»2Q consist of discrete cationic complex
[Cu'(ligand)ClJ* and non-coordinating chloride anions, while for the CuCl,»3Q
complex, the non-coordinating tetrachlorocuprate anionic counterion was observed.
In all the complexes, the Cu(ll) centers of the cationic species are pentacoordinate
CuN4Cl coordination spheres and adopt distorted square pyramidal coordination
geometry with the N1, N2, N3, and Cl1 in the basal plane and atom N4 in the apical
position (Figure 3.3 and Figure A.1). The Cu-Cl bond lengths of these complexes are
similar to those reported for Cu(l)sTPMA complex [41], however, the Cu-N bond
lengths with the N-quinoline are slightly longer than the Cu-N bond lengths with the
N-pyridine and N-amino moiety (Table 3.1 and A.2) that may differentiate the

catalytic properties of these quinoline complexes from that of Cu(ll)sTPMA complex.
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Figure 3.3 The coordination environment around the Cu(ll) atom and coordination

geometry of ligands a) Cu(ll)sTPMA, b) Cu(ll)+1Q, c) Cu(l)«2Q, and d) Cu(l)*3Q.

Table 3.1 Selected bong lengths (A) and bond angles (°) for Cu(ll) complexes.

Complex Cu'-TPMA[41] Cu'-1Q Cu'-2Q

Cu-N1 2.0481 1.9986 2.0016 2.0960
Cu-N2 2.0759 2.0676 2.1034 2.1092
Cu-N3? 2.0759 1.9954 1.9981 2.0160
Cu-N4? 2.0759 2.2738 2.1361 2.0750
Cu-Cl 2.2369 2.2540 2.2573 2.2154
N1-Cu-N2 80.71 81.30 81.02 82.00
N1-Cu-N3® 80.71 150.36 152.77 79.40
N1-Cu-N4® 80.71 94.17 101.16 81.80
N2-Cu-N3? 117.45 83.77 83.62 103.8
N3® —Cu-N4° 117.45 107.66 98.70 130.6
N4? —Cu-N2 117.45 78.55 81.71 118.10
Cl-Cu-N1 180.00 97.68 97.43 98.24
Cl-Cu-N2 99.29 175.12 177.36 176.65
Cl-Cu-N3° 99.29 99.19 96.97 98.25
Cl-Cu-Ng* 99.29 97.31 100.73 100.91

2 N3 and N4 in Table 1 are N2' and N2" for TPMA complex in Figure 3.3.
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3.2 Photophysical and electrochemical properties

The photophysical properties and electrochemical properties of lisands and
their Cu(ll) complexes including UV-vis absorption, emission, molar absorption
coefficients (€), electrochemical data and excited state potential are discussed in this
section.

3.2.1 UV-vis absorption and emission

The UV-vis absorption and emission spectra of all ligands and CuCl,eligand
were recorded in acetonitrile (Figure 3.4) and molar absorption coefficients (€) were
summarized in Table 3.2. The spectrum of TPMA showed a single absorption band
with A, at 257 nm, corresponding to the m-n* transition in the pyridine rings (Figure
3.4a). The absorption bands of 1Q-3Q are around 350-400 nm, corresponding to the
n-t* transition in quinoline rings, being shifted considerably to longer wavelengths
compared to TPMA. The increase of the number of quinoline moieties in ligand 2Q
and 3Q slightly shifted the A,.. to the longer wavelengths (365 and 374 nm,
respectively) likely due to the increase of probability for the lone pair electron
delocalization from the amino group to the quinoline rings.

The spectrum of CuCl,sTPMA showed hypsochromic shift of TT-7T* transition in
pyridine rings to around 250 nm and shoulder at ~300 nm (Figure 3.4b). The result
indicated the coordinated of pyridine moieties with copper ions which decrease the
electron delocalization in pyridine molecule. The similar phenomena found in
Cu(l*1Q-3Q which the absorption of coordinated quinoline moieties blue shift to
~300 nm, along with a new weak absorption band around 600-900 nm corresponding
to d-d transition in Cu(ll) complexes. The emission spectra show complete quenching
of the fluorescence around 460-500 nm of 1Q-3Q in the corresponding Cu(ll)
complexes. However, only partial fluorescence quenching was observed for
Cu(l)sTPMA. These results suggest that Cu(ll)«1Q-3Q are more effective than
Cu(ll)sTPMA for ligand to metal charge transfer (LMCT) processes at higher

wavelengths.
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Figure 3.4 Normalized absorption (solid lines) and emission (dot lines) spectra
excited at absorption ., (See Table 3.2) of a) ligands and b) Cu(ll)sligand complexes

in CH5CN at ambient temperature.
Table 3.2 Summary of absorption of ligands and Cu(ll) complexes in CH5CN.

Ligand Cu(ll) Complex

}\max (nm) € (!\/\7l cmil) }\max (nm) € (f\/\il cmil)

TPMA 257 8611 295 2858
1Q 346 3703 291 5457
2Q 365 6151 292 6704

3Q 382 8878 294 7321
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3.2.2 Cyclic voltammetry and reduction potentials

The electrochemical data were obtained from the cyclic voltammetry
experiments of Cu(ll) complexes in comparison with CuCl,»TPMA and preformed
[Cu(N1QCUCL in acetonitrile using ferrocene as an external standard as shown in
Figure 3.5 and summarized in Table 3.3. The normalized currents show excellent
reversibility in all complexes. The cyclic voltammograms obtained from the
preformed and in situ generated Cu(ll) complexes of 1Q are essentially identical. The
results indicated efficient complexation between the Cu(ll) ion with 1Q. From Table
3.3, the reduction potential (Ey/, ) of CuCl,*TPMA is -0.74 V while the CuCl,21Q,
CuCl,+2Q, and CuCl,3Q sequentially decrease the reduction potential to -0.67 V, -
0.55 V and -0.41 V, respectively. This result indicates that the increase of quinoline

moieties decrease the reduction potential of the Cu(ll) complexes.
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Figure 3.5 Cyclic voltammogram of Cu(ll) complexes at 1.0 mM in CH5CN.

Table 3.3 Summary of electrochemical data for Cu-ligand complexes.

Complex AE, [mV] Teetllse Ei e (FO) (V)
CuCl,/TPMA 73 0.99 -0.74
CuCl,/1Q 71 0.94 0.67
CuCly/2Q 88 0.90 -0.55

CuCly/3Q 76 1.00 -0.41
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The standard reduction potentials (Vs SCE) of the Cu(ll) and Cu(l) complexes at
the ground state and excited state were estimated from the cyclic voltammetry and
absorption spectroscopy (Table 3.4). The reduction potentials in reference to the SCE
electrode, E/, (SCE), were calculated from equation (1). The energy gaps (Eq,) were
estimated from onset absorption wavelength (Ao, <o) Of the Cu(ll) complexes using

equation (2). The excited state of Cu(ll) and Cu(l) complexes were estimated from

reduction potentials and onset absorption wavelength (7\,On set) in equation (3) and (4),

respectively.
F1/s o(SCE) = Eyp o(FC) + 0.38 V (1)
Egap= 1280/Agn et (2)
Ey/a(CU® L) = EyptEeap (3)
E1o(Cu™L)* = Ey/p-Eenp (@)

The redox potentials at the ground state of all Culll) complexes are negative
indicating the complexes are more stable than the corresponding Cu(l) complexes.
However, according to their highly positive potentials, these Cu(ll) complexes should
be readily reduced to Cu(l) complexes in the excited state. Furthermore, the
replacement of one or two pyridine ring in TPMA with quinoline rings increases the
excited state redox potential of the Cu(l)«1Q and Cu(ll)»2Q complexes. The redox
potentials at the excited state of all Cu(l) complexes are more negative than the
reduction potentials of alkyl polyhalides (E°g. of CClg, CBrq, and CHCl; are -0.64, -0.48
and -0.90 V, respectively) [91] that should ensure effective photo-electron transfer

from the copper catalyst to these alkyl halide substrates.
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Table 3.4 The excited-state potential of copper complexes in CH;CN.

Cu(ll)«Ligand Cu(l)sLigand
Hgand B g £, D~ © e,
(V vs SCE) (V vs SCE) (V vs SCE)
TPMA -0.36 510 2.43 2.07 578 2.15 -1.79
1Q -0.29 520 2.38 2.10 603 2.06 -1.77
2Q -0.17 545 2.28 2.10 640 1.94 -1.77
3Q -0.03 600 2.07 2.04 756 1.64 -1.61

3.3 Study of catalytic properties for haloalkylation (C-C formation)

3.3.1 Screening of catalyst

The synthesized quinoline derivatives were studied in comparison with TPMA
as ligands in copper-catalyzed atom transfer radical addition (ATRA) reactions using
styrene and CCl, as the model substrates under white LED irradiation (Figure 3.6).
The screening condition was established following the reported protocol by Pintauer
and co-workers [35, 46, 53] which calls for the combination of Cu(ll)sTPMA and AIBN.
The operation involved an in situ generation of each copper complex from CuCl, and
the ligand (1.00 mol%) in the presence of 5.0 mol% AIBN in acetonitrile. The new
Cu(ll) complexes with ligand 1Q, 2Q and 3Q cleanly gave the ATRA product 1a with
'H-NMR yields above 90% within 24 hours. These vields are two times higher than
that obtained from the reaction with the Cu(ll)TPMA complex. In addition, the using
a preformed Cu(ll)»1Q complex was equally effective to in situ generated complex.
Thus, the in situ generation of the complex will be used for next study to avoid
complication associated with the preparation and isolation of the preformed

complex.
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Figure 3.6 'H NMR vyields of addition product from ATRA reactions between styrene
and CCly in the presence of Cu(ll) and various ligands using toluene as internal

standard (see Figure 2.3 for *H NMR spectra).

In line with these findings, the time dependence study displayed the faster
reaction rate of these quinoline complexes than that of TPMA ligand which almost
complete after 16 hours (Figure 3.7). From all results, the ligand 1Q showed slightly
faster reaction rate. Therefore, the ligand 1Q will be employed for further study of

the ATRA reaction.
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Figure 3.7 Time dependence study for reaction of styrene with CCl, catalyzed by
Cu(ll) complexes of various ligands. Yields were determined by 'H NMR with toluene

as internal standard.

3.3.2  Optimization

Having identified 1Q as the most suitable lisand, in terms of catalytic activity
and ease of synthesis, a set of perhaloalkanes (CClg, CBrs, CHCls, and CHBr3) was
briefly evaluated for the ATRA reaction with styrene (Figure 3.8). From the results,
high yields (> 90%) were obtained with CCl; and CBr,, while lower but still

appreciable yields were found with CHCl; and CHBr3

1.0 mol% CuCl, or CuBr, X
1.0 mol% Ligand 1Q
B 5.0 mol% AIBN R
+ R-X I
ACN, Ny, 24 h
White LEDs 1
X =BrorCl
Cl Br Cl Br
1a, 98% 1d, 90 % 11,57 % 1i, 73 %

Figure 3.8 'H NMR yields of screening reaction between styrene and various alky
halides catalyzed by a Cu(ll) complex of 1Q using toluene as internal standard.

CuCl, was used for CCly and CHCl; and CuBr, was used for CBr, and CHBrs.
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To study in detail the effects of the reaction conditions, the ATRA reaction of
styrene and CHCls, a less reactive alkyl halide, was used as a model reaction (Table
3.5). Changing the light source from white LEDs to a white CFL source (Figure 2.1, for
emission spectra of the light sources see Figure 2.2) under otherwise unchanged
conditions result in an increase of the yield from 53 to 64% (Entry 1). Screening of
solvents (Entry 2-5) indicated that methanol, being an ecologically benign solvent,
gave the highest yield, which may be attributed to the higher solubility of CuCl, in
this solvent. Notably, the use of methanol as the solvent gave even higher yield than
in chloroform, which also is the substrate for the reaction. The reaction in the
absence of both CuCl, and 1Q gave no addition product along with the formation of
a transparent gel that suggested polymerization of styrene (Entry 6). These results
revealed that the Cu(ll)»1Q complex was essential for promoting the ATRA and
inhibiting the radical polymerization reaction. Increasing the reaction time to 48 hours
(Entry 7) or employing 3 equivalents of CHCl; (Entry 8) resulted in a virtually
quantitative yield of the addition product 1f.

Nevertheless, the role of AIBN for these reactions remains puzzling: According
to previous studies, AIBN is assumed to be a reducing agent to convert the Cu(ll) to
Cu(l) complexes [46, 82]. The reducing agents such as hydrazine, glucose, ascorbic
acid, and sodium ascorbate for the Cu(ll)»1Q (Entry 9-12) were screened.
Unfortunately, the other reducing agents were less efficient than AIBN. 1f was also
formed in the absence of any reducing agent, however, in significantly lower yield
(Entry 13). Given the success of Culll)sphen as catalysts for ATRA reactions, [78, 79]
for which is shown that the corresponding Cu(l) complexes are readily formed by a
visible-light-induced homolysis (VLIH), [92] i.e. LCu(INCl, = LCu(DCl + Cle, [93] the
necessity for a reducing agent for [Cu(l)Cle1Q]Cl is not obvious (see mechanistic
discussion). When CuCl was used in place of CuCl,, the vyield for 1f indeed is

increased (Entry 16), suggesting that Cu(l) is the catalytically active species. Moreover,
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the ATRA reaction did not proceed in the absence of either ligand 1Q or copper
(Entry 14-15) confirming that a free radical process initiated by AIBN is not operating
and ligand 1Q is an important component for our copper catalyzed ATRA reaction
under white light. As the final controls, little or no reaction takes place in the dark
(Entry 18, 19) or under white light with CuCl alone (Entry 17). This result differed from
the study by the Mitani group who showed the feasibility of some ATRA reactions
being promoted by CuCl and UV irradiation [94]. The results also confirm the
involvement of both a photo-reduction of Cu(ll) to Cu(l) complex and photo-

activation of Cu(l) complex in the addition reaction catalysis.
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Table 3.5 Condition optimization for ATRA of CHCl; on styrene.
1.0 mol% CuCl,

1.0 mol% 1Q o]
©/§ + CHCl, 5.0 mol% Reducing ageg
s O b
1.5 equiv 1f
Entry Solvent Reducing agent Other variation Conv. Yield
[%]° [%]°
1 CDsCN AIBN - 65 64
2 (CD4),SO  AIBN - 43 43
3 (CD4),CO  AIBN - a6 46
a4 CDCly AIBN - 73 72
5  CDOD ABN 3 87 86 (82)°
6 CD;OD  AIBN No CuCl,+1Q 25 0
7 CD,OD  AIBN 48 h 99 98
8 CD;OD  AIBN 3 equiv CHCl, 100 100
9 CD;OD  Hydrazine > 74 73
10 CD;OD  D-glucose - 67 67
11 CD;OD  L-ascorbic acid - 61 60
12 CD;OD  Sodium-ascorbate - 57 55
13 cb,0oD - = 40 40
14  CD,OD - No 1Q 0 0
15 cb;,0D - No CuCl, 0 0
16  CD,OD - CuCl instead of CuCl, 73 71
17 cb;0D - CuCl instead of CuCl,/No 1Q 0 0
18 cb;0D - CuCl instead of CuCl,/Dark 11 5
19 cb,0D - Dark 0 0

2 Conversion and yield are determined from 'H NMR integrations of all alkene
protons of styrene and aliphatic protons of product, respectively, against methyl

protons of toluene internal standard (Figure 2.4). ° Isolated yield.
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3.3.3  Addition of various alkyl halides to terminal alkenes

To shed further light on the role of AIBN for the title reaction, several ATRA
reactions promoted by Cu(ll)X,/1Q in the absence of AIBN were eavaluated (Figure
3.9). Notably, halides such as CX; or CX;EWG (EWG = electron-withdrawing group)
that are particularly facile to be reduced by Cu(l) cave excellent yields in the
addition with styrene (la-1e). Obviously, the active Cu(l)-complex is efficiently
formed, presumably via light-induced homolysis, upon which facile electron transfer
to the halide initiates the ATRA reaction. These results suggest that AIBN is not
necessary for the reduction of Cu(ll)+1Q. The substrate scope of this ATRA reaction to
electron deficient alkenes, ie., acrylonitrile, methyl acrylate and methyl
methacrylate have extended. The addition of CCly and CBr4 to each alkene substrate
gives a single regioselective product in excellent yield (2a-4a and 2b-4b). The yields
of the addition products are virtually the same as the conversions of the substrates
in all reactions (Table A.3 and A.4) indicating no competitive polymerization occurred
which confirms the effective suppression of polymerization by the copper catalyst.
The addition of CCl;COOMe to methyl methacrylate gave an excellent yield of 4c
but the addition to the other two alkenes gave only low vyields of 2c and 3c.
Apparently, the success of this ATRA reaction depends largely on both the activity of
alkyl halide reagents and the stability of the carbon radical generated from the
alkene substrates.

Interestingly, the addition of the mixed halide reagent, CBrCls, to each of these
alkenes gave a mixture of products containing CCls/Br groups and CBrCl,/Cl groups as
well as their 2 crossover products in excellent total yield (Figure 3.10-Figure 3.12).

These results indicated the competition between C-Cl and C-Br bond dissociation.
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Figure 3.9 Copper catalyzed ATRAs of various alkyl halides to terminal alkenes. Yields

are determined from 'H NMR integrations of all alkene protons and aliphatic protons

of product, respectively, against methyl protons of toluene internal standard (Figure

2.3 and 2.4).

%solated vyield. °1.1136 g of product was isolated from 5 mmol scale reaction in

CH3OH after 24 h. 0.3 mol% of catalyst was used to prevent the formation of

CBrCl,/Cl addition products, 48h.
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Spectrum for 96% conversion and 94% vyield, calculated from 'H NMR integrations of

all alkene protons (red), aliphatic protons of product (black) and methylene protons

of toluene (pink).
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Spectrum for product ratio determination based on 94% vyield, calculated from *H

NMR integrations of aliphatic protons of each addition product.
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Figure 3.10 'H NMR spectra of crude product, after flash column chromatography,

from reaction between acrylonitrile and CBrCl; in CD5OD, in the presence of toluene

internal standard.
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Spectrum for 96% conversion and 95% yield, calculated from 'H NMR integrations of

all alkene protons (red) and aliphatic protons of product (black).
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Spectrum for product ratio determination based on 95% yield, calculated from 'H

NMR integrations of aliphatic protons of each addition product.
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Figure 3.11 'H NMR spectra of crude product, after flash column chromatography,

from reaction between methyl acrylate and CBrCl; in CD;OD, in the presence of

toluene internal standard.
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Spectrum for 100% conversion and 97% yield, calculated from 'H NMR integrations

of aliphatic protons of product (black) and methylene protons of toluene (pink).
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Spectrum for product ratio determination based on 97% vyield, calculated from 'H

NMR integrations of aliphatic protons of each addition product.
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Figure 3.12 'H NMR spectra of crude product, after flash column chromatography,

from reaction between methyl methacrylate and CBrCl; in CD;OD, in the presence of

toluene internal standard.
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As previously mentioned, the addition of CBrCl; to styrene gave only a single
product resulted from only the C-Br bond dissociation and Br abstraction but the
mixture of products was obtained from the addition to these electron deficient
alkenes. Since the addition of the alkyl radical to the electron deficient alkene
generates a less stable radical intermediate, this step may be the rate determining
step in the reactions of electron deficient alkenes. This in turn allows the previous
steps to establish the equilibrium between the copper catalyzed C-Br and C-Cl bond
dissociations. Furthermore, the C-Cl bond formation from the RE process of the
copper bound radical of the electron deficient alkene becomes more competitive in
comparison with the Br abstraction pathway. The mechanism explains the formations
of all products was proposed Figure 3.13.

The incorporation of CCls group into the product can occur either via the direct
photolysis or copper activated routes and the incorporation of Br group can occur
either via the reductive elimination or Br abstraction routes. The formation of the
major product is in good agreement with these many possible pathways. On the
other hand, the incorporation of CCL,Br group into the product can occur via the
copper activated route and the incorporation of Cl group can occur via the reductive

elimination route. These limited pathways lead to the other products.
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Figure 3.13 'H Proposed mechanism for reaction of terminal alkene with CBrCls

catalyzed by Cu(ll) complex.
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Since the addition reaction of CBrCl; to electron deficient alkene, methyl
methacrylate is not occurred without copper catalyst (Figure 3.14). This result
indicated the necessity of copper bound with radical intermediate throughout
addition process and prevent the polymerization. To avoid the addition of the CCl,Br
group from copper activated route, the catalyst amount was reduced from 1 to 0.3
mol%. The regioselectivity of the reaction was vastly improved that only 2d-4d
resulting from CCly/Br addition were obtained in excellent yields. These results

supported our hypothesis and proposed mechanism in Figure 3.13.

0 mol% cat. ‘ No Product 4d ‘ \ . ‘ ‘ H b
Ii | )| =5
| J y(val ) IR
- JS R 0 CCl
0.1 mol% cat. 81:2:0:2 .
Br, ’
’J ] JA,_L_NA_.__/J' /O\n)g a
0.3 mol% cat. 85:1:0:1 O  CClBr
Cl °
i | 1) Y § W [ /o%a
1 mol% cat. 59:12:5:21 O  CClBr
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| b
— L P JLUHM cl
o ’ a' O a
3 mol% cat. 54:11:3:10 o con
i 3/ |

T T T T T T T T
7.0 65 60 55 50 45 40 35 30 25 20
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Figure 3.14 "H NMR spectra of crude product, after flash column chromatography,
from reaction between methyl methacrylate and CBrCl; with 0 — 3.0 mol% of

CuCl,+1Q loading in CD50D, in the presence of toluene internal standard.
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3.3.4  Addition of various alkyl halides to internal alkenes

Next, the additions between a various alkyl halides and cyclic alkenes (1H-
indene and 1,2-dihydronaphthalene) were investigated (Figure 3.15). The reactions of
1H-indene with CClg or CCl;CN gave a single regioselective addition product, 5a or 5b,
respectively. Surprisingly, the reaction with CCl;COOMe, CBrCl; and CBrq in methanol
gave not only the expected alkyl halide addition products but also the methoxy
ether products (5’c — 5’e). These methoxy products were higher with the alkyl
bromide, in comparison with the alkyl chloride, suggesting that the original addition
products reacted with methanol solvent via a nucleophilic substitution.

n CuCl, orCuBr2/ 1Q
SO
MeOH or i-PrOH

rt, 24 h

White CFL 32W X
n=1;5 n=1;5’
n=2; 6 n=2; 6’
RX C(:l4 RX=CCI;CN RX=CBr,
Cl Br OMe
MeOH: 5a, 100% MeOH; 5b, 83% [76%]° MeOH; 5c¢, 52% [47%]° 5°c, 46% [43%]°
[PrOH; 5¢, 99% 5'c, -
RX=CBrCls, RX=CCl;COOMe
(D:?---cm3 + ©:?---CCI3 @Q---CCIZCOOMe + ©:?-"CCI2000M6
Br OMe Cl OMe
MeOH; 5d, 56% [48%]°  5°d, 32% [25%]° MeOH; 5e, 78% 5%, 14%
-PrOH; 5d, 89% [80%]° 5, - PrOH; 5e, 94% [94%]°° 5, -
RX CCI4 RX=CBr,
+
“CCly c0|3 “CBr, “CBrg
Br OMe
MeOH; 6a, 36% [34%]° 6a, 27% [23 %]° MeOH: 6b, - MeOH: 6’b, 41%

P . ) o/1b R’4 .
+PrOH; 6a, >90% [85%]" 6'a, -PrOH; Complicated mixtures

Figure 3.15 Copper catalyzed ATRAs of various alkyl halides to internal alkenes.
?Yields were determined from 'H NMR integrations of aliphatic protons of product,
against methyl protons of toluene internal standard. ° Isolated vield. € 1.4014 g of

product was isolated after 48h of a reaction at 5 mmol scale.
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To confirm this hypothesis, the isolated 5e was stirred in methanol for 24
hours. A substantial amount of the methoxy product was formed, especially at

elevated temperatures (Figure 3.16).

+CClL,COOMg — ++CCl,COOMe
MeOH, rt, 24h

i Heat 40°C OMe

5e 5e’
White CFL; 29% Yield (71% 5e remained)
Dark (40 °C); 75% Yield (25% 5e remained)

Figure 3.16 Substitution reaction test of halide product in methanol

To mitigate the nucleophilic substitution reaction, a less nucleophilic alcohol,
isopropanol was used. The reactions efficiently gave only alkyl halide addition
products (5c-5e) in excellent NMR yields and some products were isolated with
similar yields to demonstrate the usefulness of this reaction in synthesis. It is
important to note that the methoxy substituted product was not observed for the
reactions of all alkyl halides with acyclic alkenes. The substitution reactions may thus
be facilitated by the precipitation of the neighboring group presumably located at
the anti-position to the halide leaving group on the cyclopentane ring. Therefore, the
original addition product was likely the anti-diastereomer and this copper catalyzed
ATRA reaction is diastereoselective. The stereoisomers of the addition products were
confirmed by NOESY NMR spectra in Figure 3.17. The retention products observed for
the methoxy substituted products by NOESY NMR spectra in Figure 3.18.



112

HY  HY

e f g g
Hf 4J
“"CClL,COOMe )
b w

o

‘He Ty

Toi]
4 106]
106

Ha CI

50
f1dppm)

Se
HY HY
Hf
/ “‘ccl,coOMe
Ha Cl '}He -*"”J””s:S.o

e |

tojs1

y T y 7 T T T
5.

f1dppm)
s=62
HO HI " \s=02
Hf/
/ ""CCI;COOMe
k4 1
ol He
a
H Is=50 s
f1dppm)
Js=16.8
"
HIHI \ as=02
Hf
/ "CCl,COOMe
.
e
Ha Cl H
7‘5 7‘u 6‘5 E‘U S‘S S‘D 4‘5 4‘0
f1dppm)
f1dppm)

Figure 3.17 NOESY-NMR spectra of 5e.
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The additions on less rigid cyclic alkene, 1,2-dihydronaphthalene, in methanol

showed more tendency to form the methoxy substituted products (6’a and 6’b) for

both CCly and CBry. These results may be attributed to that 1,2-dihydronaphthalene

can easily adapt the anti-periplanar positions of the leaving group (Cl or Br) and the

neighboring group (CCl; or CBrs). Again, these substitution reactions could be

efficiently suppressed by using isopropanol instead of methanol. Therefore, the

addition product from CCly was selectively obtained in excellent yield in isopropanol

(Figure 3.19). Unfortunately, the addition of CBr4to 1,2-dihydronaphthalene in j-PrOH

gave a mixture of a few i-propoxy substituted products along with other by-products

(Figure 3.20).
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Spectrum for reaction in methanol, 81% conversion, 34% yield of 6a and 27% yield

of 6’a
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Figure 3.19 'H NMR spectra of crude product, after flash column chromatography,

from reaction between 1,2-dihydronaphthalene and CCl, in the presence of toluene

internal standard.
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Spectrum for reaction in methanol, 80% conversion and 41% yield of 6’b
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Figure 3.20 'H NMR spectra of crude product, after flash column chromatography,
from reaction between 1,2-dihydronaphthalene and CBrqin the presence of toluene

internal standard.
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3.3.5 Addition of inactive alkyl halide to styrene

Even though the reaction of active alkyl halide to various alkenes in the
absence of AIBN obtained the addition product in good to excellent yields. An
inactive halide such as CHCl;, CHBr;, CBrF,COOEt and benzyl chloride, however, give
significantly lower yields under the same reaction conditions when AIBN is omitted
(Figure 3.21). However, performing these reactions in the presence of Na,COs; (0.2
equiv) greatly increased the yield (1f, 1g and 1i) to very high levels. The role of base
additive in ATRA reaction has been attributed to scavenging HX arising via hydrogen
atom transfer (HAT) from initially formed Xe that causes protonation of the nitrogen

lisand and thus deterioration of the copper complexes [78].

X

1.0 mol% CuCl, or CuBr, R
B 1.0 mol% 1Q
+ R-X >
CD;0D, Ny, 24 h
White CFL 1
X =ClorBr
cl Br Br
mHCIZ ©)\CHBr2 mFZCOOEt
1f 1g 1h
cu-1Q 95% 79% 9%
cu'-1Q 53% 49% 15%
cu'-1Q, 0.05 equiv AIBN 100% 74% 1%
Cu"-1Q, 0.2 equiv Na,CO;  85% [97]2 73% [95]2 -
Cl cl
1i 1j
cu-1Q 34% 40%
cu'-1Q 32% 35%
Cu'"-1Q, 0.05 equiv AIBN 31% 44%
cu'-1Q, 0.2 equiv Na,CO;  54% [59]2 41% [47%]?

Figure 3.21 Copper catalyzed ATRAs of inactive alkyl halide (1.50 mmol, 3.00 equiv)
to styrene (500 timol, 1.00 equiv).

Yields were determined from 'H NMR integrations of all alkene protons and aliphatic
protons of product, respectively, against methyl protons of toluene internal

standard. *72h reaction.
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3.3.6  Addition of various alkyl halides to alkenes in the absence of
catalyst

The additions of active alkyl bromides (CBr4) to styrene and indene in the
absence of copper catalyst or radical initiator under this photoreaction condition still
efficiently gave the addition products in high yields (Table 3.6, Entry 1 and 2), while
the active alkyl chlorides (CCly CCLLCN, and CCl3COOMe) did not react without the
copper catalyst (Entry 4-7). These results suggest that the active alkyl bromides (C-Br
dissociation energy = 285 kJ/mol, A = 420 nm) can also undergo a direct photolysis
to initiate the free radical chain addition reaction [34]. However, the C-Cl bond (327
kJ/mol, A = 366 nm) was too strong to be directly dissociated by white light. These

results in agreement with previous observation by Zeitler group [95].

Table 3.6 Comparison of alkyl chloride with alkyl bromide in the addition reaction to

alkenes in the absence of photocatalyst under white light.

X
RN+ RX solvent, 24h ’R)\’R
1.5 eq. athitp OFL X = Bror Cl
Entry Alkene R-X Solvent %Con %Yield
1 Styrene CBrq CD;0OD 68 58
2 1H-Indene CBry i-PrOH 100 90
3 Methyl methacrylate CBry CD;0D 70 0
4 Styrene CCl, CD50D N.R.
5 1H-Indene CCly CH-OH N.R.
6 1H-Indene CCL,COOMe CH;OH N.R.
7 1H-Indene CCL,CN CH5OH N.R.

®The reactions were performed under white CFL at ambient temperature for 24h.
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3.3.7 Cyclization reaction of diene

For the cyclization reaction, the reaction between 1,6-heptadiene and CCl,
were used as model reactants. The preliminary screening results are shown in Table
3.7. The reaction gave a mixture of the cyclization product 7a along with the addition
products 7b and 7b’ (Entry 1). When the reaction concentration and equivalent of
CCly were decreased, the reaction selectivity toward cyclization was improved (Entry
2-4). However, the reaction conversion and yield dramatically dropped at the lowest
concentration tested (Entry 4) probably due to insufficient amount of the catalyst. By
increasing the catalyst loading from 1.00 mol% to 2.50 mol%, the conversion and
yields of the reaction improved (Entry 5 and 6). However, the high catalyst loading
decrease the cyclization selectivity. For further optimization, increasing the reaction
time for entry 4 may improve the reaction conversion and yields. Changing the

reaction solvent may also affect the reaction selectivity.

Table 3.7 Optimization for ATRC reaction.

1.0 mol% CuCl,

1.0 mol% Ligand 1Q Cl Cl Cl
O ¢ GOl > or | e A~ or St A~ A cch

£ g
MeOH, 24 h, N, Ol S
White CFL

5-exo-trig
7a 7b 70’

%Yield"
[M] CCl(eq.) Cat.(mol%) % Con®
7a
1 1.00 1.5 1.0 92 39 40
2 0.50 1.2 1.0 86 a8 22
3 0.25 1.1 1.0 91 60 15
a4 0.10 1.1 1.0 29 24 2
5 0.10 1.1 2.5 80 59 7
6 0.10 1.1 5.0 92 54 29

%Conversion was calculated from 'H NMR signals of remaining alkene. "%Yield were
estimated from CHCl and CH,CCl; 'H NMR signals of the products. Toluene was used

as an internal standard.
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3.4 Proposed mechanism

From the catalytic reaction study, a mechanism is proposed for the copper-
catalyzed photo-addition of an alkyl halide to an alkene as shown in Figure 3.22.
First, Cu(l) complex was generated from Cu(ll) complexes via visible-light-induced
homolysis (VLIH) or halogen atom transfer XAT process. For VIHC, the base additive
was used to scavenging HX arising via hydrogen atom transfer (HAT). For the reaction
using AIBN as the additive, AIBN acts as a halogen atom transfer (XAT) reagent, rather
than forming Cu()X by the homolytic cleavage of Cu(l)X, complex. By this way, the
active Cu(l) complex is generated without the build-up of HX in the course of the
reaction. Next, the generated Cu(l) complex is subsequently photo-activated to enter
the photoredox catalytic cycle. The photo activated Cu(l) complex then reduces the
alkyl halide via a single electron transfer (SET), followed by the R-X bond dissociation
to form the Cul(ll) bound radical to be consistent with the observation of the

polymerization of styrene in the absence but not in the presence of the copper

catalyst.
Generation of Cu(l) via XAT Generation of Cu(l) via VLIH
AIBN —X—» -C(CHg),CN
[X-CuM(L)](X) [Cul(L)](X)« hv [X-Cu"(L)1(X)
or s
[Cul(L)(X)] X
X-C(CHa)ON R-H—> R+ H*X Cu(iX,
hv (HAT)

+

catalyst poisoning

[Cu
(SET) \(
[Cu||I I
[Cu™(L)(X)(X)

[Cu''(L)(X)] S . R\/\R

R
o /
\[Cu“m(xnm
.

Figure 3.22 Proposed mechanism.

X =BrorCl
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To support the proposed mechanism, a kinetic study and spectroscopy study
(UV-Vis, NMR and EPR) were performed. The results gave strong evidences for Cu(l)
generation from Cu(ll) via VIHC and Cu(l) generation from Cu(ll) via XAT using AIBN as a
reducing agent, which are presented and discussed in the following sections.

3.4.1 Kinetic study

The kinetic study between styrene and CCl; using CuCl/1Q in methanol
without AIBN under CFL light revealed the high efficiency of Cu(l) complex that
photocatalyzed the reaction to be completed within 9 hours (Figure 3.23a). Switching
the light on and off every 3 hours showed that the reaction proceeded much faster
in the presence of light. In addition, the reaction in the dark at 40°C showed slower
reaction and lower final yield (50%). These results suggest that the activation of the
Cu(l) complex for SET is a photo process. The similar results, with slightly slower
reaction rate, were observed with the experiments using CuCl,/1Q (Figure 3.23b)
consistent with the requirement of Cu(ll) to Cu(l) conversion in the reaction
mechanism. The very low final yield (<10%) obtained from the reaction using
CuCly/1Q conducted in the dark also confirmed that the generation Cu(l) complex is

also a photo process.
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Figure 3.23 Kinetic plots for ATRA of styrene and CCl, catalyzed by a) CuCl/1Q b)
CuCl,21Q with [Styrene]:[CClg]:[Cu] = [1.00]:[1.50]:[0.01] under light, heat, or light/dark

condition standard.
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3.4.2  Evidences for Cu(l) generation from Cu(ll) via VIHC

The UV absorption experiment was set up to establish the generation of active
Cu(l) from Cu(ll) under this condition (Figure 3.24). From the beginning, absorption
spectrum of CuCl/1Q and CuCl,+1Q in methanol are shown in red line and blue line,
respectively. The absorption spectrum of CuCl/1Q showed an absorption peak
around 460 nm. The irradiation of the solution of CuCl,»1Q in methanol with CFL
lisht resulted in an increase of an absorption peak at the same position observed in
the spectrum of CuCl/1Q solution. These results confirmed the generation of active
under this condition. These results strongly support our hypothesis that the VLIH of

Cu(ll to Cu(l) complex can effectively proceed in methanol.

P r F CuCl2_1Q
0.4 @ W ——15 Min Light
i . =30 Min Light
51 cuct” N@ ‘ﬂ ———45 Min Light
5 0.3 N @@ "'rl‘ » 60 Min Light
= \ o R CuCl 1Q
Z0.2 Omin 60 min
<
0.1
------ L At Kl S
0
350 450 550 650 750 850

Wavelength (nm)

Figure 3.24 Absorption spectra of copper complex solutions before and after being
placed under white light a) 1.0 mM CuCl,+1Q in methanol (blue lines) compared with
0.1 mM CuCl/1Q in methanol (red line).

For more evidence, the ATRA reaction between CHCl; and styrene in various
solvents were studied in Table 3.8. The addition products were observed in various
polar solvents such as dichloromethane or dimethyl sulfoxide. The highest yield was
found when using chloroform, reagent as a solvent. For the low polarity solvent,
acetone and benzene showed no conversion which due to the low solubility of
catalyst. The addition yield in methanol and tert-Butanol gave a similar yield indicate
that the methanol is not reducing agent for this reaction. These results strongly

support the photo-generation of Cu(l) complex via visible-light-induced homolysis
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(VLIH). Lastly, the addition in acetonitrile was drop from 64% vyield in the presence of
AIBN (Table 3.5, Entry 1) to 2% yield in the absence of AIBN (Table 3.8, Entry 2). This
result somehow suggested the disruption of acetonitrile to catalyst and prevent the

photo cleavage process.

Table 3.8 ATRA of CHCl; on styrene in various solvents in the absence of reducing

agent.
1.0 mol% CuCl, Cl

1. 1% 1
S n CHCIS 0 mol% 1Q .
Solvent, rt., Ny, 24 h CHCI
2

White CFL 32W

3.0 eq. 1f
Entry Solvent %Con. %Yield
1 Methanol 56 53
2 Acetonitrile 4 2
3 Dimethyl sulfoxide 38 24
4 Acetone 0 0
5 Chloroform 68 63
6 Benzene 0 0
7 Dichloromethane - a7
8 tert-Butyl alcohol - 52

3.4.3  Evidences for Cu(l) generation via XAT using AIBN as reducing
agent

The UV absorption experiment in acetonitrile solution supported this
observation. The absorption peak around 460 nm was only observed when the
solution of CuCl,»1Q was irradiated in the presence of AIBN (Figure 3.25a) while very
small peak was observed in the absence of AIBN (Figure 3.25b).
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Figure 3.25 Absorption spectra of copper complex solutions before and after being
placed under white light a) 2mM CuCl,#1Q in CHsCN in the presence of 15 eq. AIBN
b) 2mM CuCl,»1Q in CH5CN in the absence of AIBN.

The in situ generated complexes of CuCl,e1Q in the presence and absence of
AIBN in CD,Cl, showed no observable signals corresponding to the complex (Figure
3.26) mainly due to its paramagnetic nature. In the absence of ABN, the 'H NMR
spectrum after 7 hours of white light irradiation showed similar pattern of the Cu(l)
complex but not at the same chemical shifts implying that another form of Cu(l)
complex was generated. In the presence of AIBN, the irradiation gave a 'H NMR
signals at the same position with those of in-situ generated Cu(l) complex. It is also
interesting to note that stronger and cleaner signals of the Cu(l) complex was

obtained in the presence of AIBN confirming that AIBN facilitated the generation of
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Cu(l) complex from Cu(ll) complex. Furthermore, the "H NMR signals in the aliphatic
region corresponding to AIBN showed a new signal at 1.90 ppm corresponding to

CCU(CH;),CN [96] that can confirm the role of AIBN in the halogen abstractor process.
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Figure 3.26 The 'H NMR spectra for Cu(l) complex generation from Cu(ll) complex.
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The EPR spectrum of in situ generated CuCl,#1Q complexes in the presence
and absence of AIBN in dried CHsCN were investigated in comparison with CuCle1Q
(Figure 3.27). In the presence of AIBN, the decrease of Culll) complex signal after
irradiation confirmed the generation of Cu(l) complex. In the absence of AIBN, the
Cu(ll) complex spectrum shows less change of the signal. The EPR results thus agree

well with the *H NMR results.

= CuCl,¢1Q

= CuCl,¢1Q-Light 12 hrs

e CuCl,*1Q-AIBN-Light 12 hrs
—CuCle1Q

1.8 1.9 2 21 [G] 22 2.3 2.4 2.5

Figure 3.27 The EPR spectra for Cu(l) complex generation from Cu(ll) complex.
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CHAPTER IV
RESULTS AND DISCUSSION
FOR COPPER CATALYZED CHLOROSULFONYLATION (C-S FORMATION)

The results of the development of copper complexes containing quinoline
derivatives as photoredox catalysts in atom transfer radical addition (ATRA) for
chlorosulfonylation (C-S formation) are discussed in 4 sections according to the
following order: synthesis and characterization of ligands, photophysical and
electrochemical properties, study of catalytic properties for chlorosulfonylation (C-S
formation), and study of other ligands.s
4.1 Synthesis and characterization of ligands

The synthesis and characterization of C5-substituted 1Q derivatives (1Q-l, 1Q-
CN and 1Q-OMe) are discussed here. The numeric characterization data for 'H NMR,
BC NMR, and HRMS of the are presented in the experimental section. The 'H NMR,
13C NMR, COSY, HSQC, HMBC, IR and HRMS spectra along with the signal assignments
are provided in the appendix B.

The synthesis of 1Q derivatives with different substituent on quinoline ring at
C5, ligand 1Q-l, 1Q-CN and 1Q-OMe are shown in Figure 4.1. The 1Q-l was obtained
from iodination in the presence of Lewis base under the low temperature. The
product 1Q-l was isolated in good yield and used for further synthesis of 1Q-CN. The
licand 1Q-CN could be prepared from the Rosenmund-Von Braun reaction with
sodium cyanide in the presence of Cu(l) as a catalyst. The quantitative yield was
obtained. The 1Q-OMe was synthesized via a nucleophilic substitution of
commercially available 5-methoxy-8-aminoquinoline and 2-(chloromethyl)pyridine

in the presence of base and Kl catalyst in 39% yield.
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Figure 4.1 Synthesis of ligand, 1Q-I, 1Q-CN and 1Q-OMe.

The 'H NMR spectra of 1Q-l, 1Q-CN and 1Q-OMe are shown in Figure 4.2 in
comparison with ligand 1Q. The integrations of all aliphatic and aromatic signal were
corresponded to number of assigned protons with absence of doublet signal of H®
proton at C5 position in all ligands. The changing of coupling signal of proton H® from
triplet to doublet in all spectra confirmed the substituent at C5 position. For 1Q-
OMe, the new signal of H' proton appeared at 3.86 ppm. The assigned protons were
confirmed by the correlation of 'H NMR and >C NMR from 2D NMR experiments
(Figure B2-B15).
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Figure 4.2 'H NMR spectra of 1Q, 1Q-l, 1Q-CN and 1Q-OMe in DMSO-d.

4.2 Photophysical and electrochemical properties
The photophysical and electrochemical properties of ligands and their Cu(ll)
complexes including UV-vis absorption, molar absorption coefficients (E),

electrochemical data and excited state potential are discussed in this section.
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4.2.1 UV-vis absorption spectroscopy

The UV-vis absorption spectra of ligands were recorded in acetonitrile (Figure
4.3a) and molar absorption coefficients (E€) were summarized in Table 4.1. With the
substitution on C5 of the quinoline ring, the absorption spectra of 1Q-l, 1Q-CN and
1Q-OMe showed red shift of quinoline absorption band with the A, around 350-380
nm. The Ligand 1Q-CN showed longest wavelength from longer conjugation of nitrile
group. The results indicate that the heavy atom, electron withdrawing group,
electron donating group slightly lower the band gap of the aminoquinoline moiety.
Upon complexation with Cu(ll), the absorption spectra of 1Q-l, 1Q-CN and 1Q-OMe
showed the hypsochromic shifts of the quinoline ring TT-7T* transitions to around
310-320 nm (Figure 4.3b). The hypsochromic shifts are consistent with the lower
HOMO of the complexes in comparison with the ligands due to the coordination of N

lone pair electrons with the positively charged Cu(ll) ion.
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Figure 4.3 Absorption spectra of a) 0.1 mM 1Q, 1Q-l, 1Q-CN and 1Q-OMe b)
CuClye1Q, CuCle1Q-l. CuClLe1Q-CN and CuCl,e1Q-OMe in CH5CN.
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Table 4.1 Summary of absorption of ligands and Cu(ll) complexes in CH;CN.

Ligand Cu(ll) Complex
A (hm) EM cm) A, (nm) EM cm)
1Q 342 3336 294 5891
1Q- 369 5050 319 7016
1Q-CN 378 9591 321 6334
1Q-OMe 351 4209 312 6002

4.2.2  Cyclic voltammetry and reduction potentials

The electrochemical data were obtained from the cyclic voltammetry
experiments. The voltammogram of Cu(ll) complexes in comparison with CuCl,e1Q
using ferrocene as an external standard are shown in Figure 4.4. The normalized
currents show excellent reversibility in all complexes. The reduction potentials, Ey
(Vs Fc), were determined from the cyclic voltammogram and summarized in Table
4.2. The standard reduction potentials (Vs SCE) of the Cu(ll) and Cu(l) complexes at
the ground state and excited state were estimated from the cyclic voltammetry and
absorption spectroscopy. The reduction potentials (Vs SCE) of CuCl,e1Q-I, CuCl,e1Q-
CN and CuCl,01Q-OMe are -0.24, -0.14 and -0.32 V, respectively. The results showed
that the reduction potentials of Cu(ll) complexes with electron deficient ligands
became less negative with the ligand having an electron withdrawing group
(CuCl,#1Q-CN) but more negative with the ligand having an electron donating group
(CuCl,#1Q-OMe). The excited state potential (E,,*) of Cu(ll) complexes were
calculated from energy gaps and redox potentials. The results showed that the
reduction potentials of Cu(ll) complexes with electron deficient ligands became more
positive with the ligand having an electron withdrawing group (CuCl,e1Q-CN) but less
positive with the ligand having an electron donating group (CuCl,e1Q-OMe). These
results suggested the greater reducing abilities of Cu(ll) complex with less electron
density ligand. Lastly, the excited potential (E,,*) of Cu(l) complexes were estimated.
The results showed that the excited potentials of Cu(l) complexes more negative

with the ligand having an electron donating group (CuCl,®1Q-OMe, -1.79 V) and less
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negative with the ligand having an electron withdrawing group (CuCl,®1Q-CN, -1.75
V).
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Figure 4.4 Cyclic voltammogram of Cu(ll)eligand complexes at 1.0 mM in CH5CN.

Table 4.2 The electrochemical data of Cu(ll) complexes generated in situ from CuCl,

and various ligands in CH5CN.

Cu(ll)sLigand Cu(l-Ligand
Ligand  Eipee 27T VT - Eize®  Agyeer  Eomp Evzre
(VvsFo)  (Vvs SCE) V) (V vs SCE) W) (V vs SCE)
1Q -0.67 -0.29 520 2.38 2.10 603 2.06 -1.77
1Q- -0.62 -0.24 556 2.23 1.99 635 1.95 -1.63
1Q-CN -0.52 -0.14 521 2.38 2.24 600 2.07 -1.75
1Q-OMe -0.70 -0.32 520 2.38 2.07 643 1.93 -1.79

aEgaP: 1240/ Aon set- bE1/2 ««(SCE) = By o(FC) - 0.38 V. B = Egap_El/Z
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4.3 Study of catalytic properties for chlorosulfonylation (C-S formation)

4.3.1 Optimization

To expand the scope of photo-mediated ATRA reaction, photo-mediated
chlorosulfonylation was studied. Following our previously reported method
successfully used in the copper-catalyzed haloalkylation [97], the addition of
benzenesulfonyl chloride (2a) to styrene (1a) using 2.0 mol% of CuCl, and the
tested ligand in acetonitrile under blue LED (455 nm, 2.5w) irradiation at room
temperature for 24 hours was used as an initial model reaction condition (Table
4.3). Simple 1,10-phenanthroline (phen) and tris(2-pyridylmethyl)amine (TPMA)
lisands were used for comparison with our quinoline based ligands. The reaction
using either phen or TPMA provided the addition product 3aa at very low yields (<
10%) (Entry 1 and 2) while those using our quinoline ligands gave significantly higher
yields (Entry 3-8). The results clearly demonstrated that these tetradentate quinoline
based ligands provided more catalytically favorable electronic and steric
environment for the copper-metal center than the simple bidentate phen ligand.
Furthermore, the presence of quinoline moiety increases the light absorption in the
visible range in comparison with TPMA that enhances the VLIH conversion of the
Cu(ll) complex to Cu(l) complex. However, the reaction using ligand containing three
units of quinoline (3Q) gave significantly lower yield (Entry 5) probably due to the
steric hindrance around the copper center that prevent an efficient catalytic cycle.
The substituent on C5 of the quinoline ring, including heavy atom, electron
withdrawing group and electron donating group, (1Q-l, 1Q-CN and 1Q-OMe) showed
little effect to the reaction yield (Entry 6-8) thus the more readily synthesized ligand
1Q was further optimized. When the reaction was performed by using 1Q, no
product was observed for the LED 530 nm (Entry 9) and comparable vyield
(56%) was obtained for the LED 367 nm (Entry 10). The results are consistent
with the electronic absorption band of Cu-1Q which appears at the energy
higher than the green light (Figure B.41a).

Our previous study showed that the VLIH conversion of Cu(ll) to active Cu(l)
complex was more effective in CH3;OH in comparison with CHsCN [97]. This catalytic

reaction was thus tested in CH;OH. However, no addition product was observed
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due to rapid methanolysis of benzenesulfonyl chloride to form methyl
benzenesulfonate (Entry 11). Nevertheless, when the reaction was conducted in
CH,Cl,, a reliably improved vyield was obtained (Entry 12). The reaction yields
appreciably increased with the increase of the catalyst amount or the alkene
equivalent (Entry 13-14). Moreover, the extension of the reaction time to 48 hours
improved the product yield up to 91% (Entry 15). This result indicates robustness of
the catalytic activities of the Cu(ll)¢1Q under prolong irradiation. In the absence of
copper or the ligand (Entry 16-17), no product was observed that clearly confirmed
the essential role of the copper complex for this reaction. In addition, the reaction
did not proceed under the dark condition (Entry 18-19) consistent with the
mechanism in which both generation and activation of the Cu(l) complex are photo

processes.
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Table 4.3 Catalytic activity screening of Cu(ll) complexes with various ligands.

N O\‘S/,O 2.0 mol% CuCly/Ligand a O\\ ,,O
+ o’ - S
Solvent (1.0 mL), rt, N,
LED,g5, 24h

1a 2a 3aa
(0.5 mmol) (0.5 mmol)
Solvent Condition variation Yield [%]°

1 Phen CH5CN - q

2 TPMA CH5CN - 7

3 1Q CH3CN - 53
4 2Q CH3CN - 57
5 3Q CH3CN - 16
6 1Q-I CH5CN - 35
7 1Q-CN CH3CN - 45
8 1Q-OMe CH3CN - a4
9 1Q CH5CN LED 530 nm ND
10 1Q CH3CN LED 367 nm 56
11 1Q CH,OH - NDP
12 1Q CH,CL, - 60
13 1Q CH,CL, 4.0 mol% CuCl,+1Q 73
14 1Q CH,CL, 3.0 equiv 1a 80
15 1Q CH,CL, 48 h 91
16 1Q CH,CL, No CuCl, ND
17 1Q CH,CL, No 1Q ND
18 1Q CH,CL, dark ND
19 1Q CH,CL, CuCle1Q, dark ND

%Yield determined by 'H NMR using 1,3,5-trimethoxybenzene as the standard added

after product purification. °ND = not detected.

4.3.2  Chlorosulfonylation of various alkenes

Next, the reactions between benzenesulfonyl chloride and various
alkenes were investigated using 2.0 mol% of CuCl,1Q in CH,Cl, under blue
LED light (Figure 4.5). The monosubstituted ethylenes (1a-1g) were used as the
first set of alkene substrates. As described previously, the chlorosulfonylation
of styrene gave 60% and 91% of the addition product (3aa) with the reaction
time of 24 and 48 hours, respectively. The reaction of 4-methoxy styrene

proceeded faster to give a quantitative combined yield of addition and
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substitution products (3ba and 4ba) within 24 hours. The substitution product
4ba is a result of dehydrohalogenation of the initially formed addition product
3ba during the reaction work up [80]. It is important to note that 1b was
previously reported as an unsuccessful substrate using another catalytic
system due to the competitive polymerization of this highly active alkene [59,
78]. The successful addition using this Cu-1Q complex may be attributed to
the stronger interaction between the alkyl radical intermediate with the copper
metal center that prevent the polymerization. The reactions of relatively
electron deficient styrene derivatives were more sluggish giving moderate to
low vyields of the addition products 3ea-3fa. These results are likely due to the
electrophilic nature of the radical intermediate [76]. Under this reaction
condition, the alkene having heteroatom directly attached to the double bond
(3g) did not give any addition product (3ga). This result is initially quite
surprising as the addition radical intermediate is expected to gain resonance
stabilizing effect from an unshared electron on the heteroatom [98]. The
absence of addition product observed in the case of this alkene may thus be
attributed to the catalyst poisoning by HCl which formed via Cle abstracting a-
hydrogen atom from the addition product [97].

For 1,1-disubstituted ethylenes 1h-1m, the reaction proceeded smoothly

to produce good to excellent yields of 3ha-3ma. These disubstituted alkenes

lack of Ol-hydrogen that effectively preclude the formation of HCL. In addition,
the methyl substituent also provides stabilizing effect to the radical
intermediate. This methyl stabilizing effect was confirmed by the high
chemoselectivity observed in the chlorosulfonylation of the diene 1j to
produce 3ja exclusively. The gram scale reaction of this alkene also gave 3ja in
excellent isolated yield. The catalytic activity also shows amide functional
group tolerance that quantitative yield of 3ka was obtained from 1k without N-
sulfonylation. Interestingly, the beneficial effect of the extra methyl substituent
on styrene was lower that the reaction of O-methylstyrene (1) gave slightly

higher yield of 3la in than that of styrene. Furthermore, the methyl substituent
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also has little beneficial effect on the reaction of methyl substituted vinyl
acetate which still gave poor yield of 3ma. This result can again be attributed
to the catalyst poisoning by the acid formed by the H abstraction from the
acetyl group. The reaction of 1,1-diphenyl substituted ethylene was rather
ineffective giving low vyield of the addition-elimination product 4na. Two
phenyl substituents may provide stabilizing effect to the radical intermediate,
but their bulkiness probably prevent effective coordination between the
radical intermediate with the copper metal center. The isolated substitution
product 4na is the result of dehydrochlorination of the initially formed

addition product 3na (unobserved).
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Figure 4.5 Isolated yields of products from chlorosulfonylation of various alkenes.
Determined by 'H NMR yield using toluene as an internal standard. °1.2 equivalent
of alkene was used. “Benzenesulfonyl chloride (5.00 mmol) and alkene (6.00 mmol)

were used for gram scale synthesis, 1.30 g of isolated 3ja was obtained.
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4.3.3 Chlorosulfonylation of various alkenes and alkynes in the
presence of Na,CO; additive.

In order to prevent catalyst poisoning by acid, the reactions in the
presence of Na,CO; base additive which has been reported to promote the
catalytic efficiency for ruthenium [1] and copper catalyzed ATRA reactions by
alleviating catalyst poisoning via acid scavenging effect were investigated [78,
97]. Satisfyingly, the reactions of all previously unsuccessful alkene substrates
le-1g and 1m were dramatically improved to sive significantly higher yields of
the addition products 3ea-3ga and 3ma (Figure 4.6). Unfortunately, the base
additive has no effect on the reaction of highly steric 1,1-diphenyl substituted
ethylene (1n in Figure 4.5). Under this basic condition, the yields of addition-
elimination products i.e., 4ea and 4fa became more pronounced for certain
electron deficient alkenes. The formation of single E-sterecisomer of 4dea
(confirmed by X-ray structure) suggests an E2 process for the
dehydrohalogenation. The elimination process could be avoided or promoted
by using different bases (Table 4.4) and the reversibility of the complexation
and decomplexation between Cu(l) and 1Q under basic and acidic conditions
observed by UV-Vis spectroscopy also confirmed the role of base (Figure B.41).

The basic reaction condition was also wused for testing the
chlorosulfonylation of other challenging alkenes (10-1t) and alkynes (5a-5c).
The addition of 1l-octene, a simple unactivated terminal aliphatic alkene, gave
good vyield of 3oa. Remarkably, the reaction of internal alkenes such as
cyclohexene and 2-methyl-2-butenoate ester, previously unsuccessful or
unreported substrates, [78, 80] gave respectable yields of diastereoselective
anti-3pa and 3qga. The results demonstrated superior catalytic activity of Cu-
1Q, in comparison with Cu(dap)Cl, and Cu(dmp),Cl catalysts for the addition
of internal olefins (see Table B.1 for more results), presumably due to less
clouded 1Q ligand allowing greater accessibility to the copper metal center.
For the substrate containing both terminal and internal alkene (1r), the
addition gave excellent yield of 3ra indicating high selectivity toward terminal

over internal double bond. In addition, the double bond with etherate-O and
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amido-N substituents (1s and 1t), also previously unsuccessful or unreported
substrates, gave significant yields of the addition-elimination product 4sa and
(E)-4ta. These results are promising for further optimization and expanding the
substrate scope for this catalytic system.

The substrate scope of the reaction using Cu-1Q catalyst was extended
to various alkynes. Beside the generally high yield of products 6aa-6ca, two
more beneficial effects on the chlorosulfonylation of alkynes were observed.
First, the previously reported inactive aliphatic alkyne, [62, 80] 1-hexyne, gave
a satisfactory yield of 6ca. Second, only E-alkene was obtained from the

addition of all alkynes using this catalytic system.
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Figure 4.6 Isolated yields of products from chlorosulfonylation of various alkenes in

the presence of Na,CO; additive.

°F and Z isomers were identified by 'H NMR in comparison with the previous

literature reports [3a, 5f] and toluene was used as an internal standard for

determining E:Z ratio.



143

Table 4.4 Reaction optimization for base additives.

O\\ ,/O

Cl o 0 o.,0
S \Y/i \ /,
/O\n/\ , o \© 2 mol% CuCly1Q . /O\n)\/S . /O\"/\/\S’
0 s 1
3ea 4ea

CH,Cl, (2 mL), rt, Np
LEDA455, 16h
1e 2a Additive

0.6 mmol 0.5 mmol

Yield (%)?

Entry Additive (equiv) 3ea dea
1 no 26 -
2 Na,CO; (1) 51 43
3 NaHCO5 (1) 94 6
il NaHCO5 (0.2) 92° -
5 NaOAc (1) 18 70
6 NaOAc (2) - 80P

*Determined by 'H NMR yield using toluene as an internal standard. Pisolated yield.

4.3.4 Chlorosulfonylation of various sulfonyl chlorides

The scope of sulfonyl chloride for this new photocatalytic system using
methyl methacrylate (1i) as the alkene substrate are investigated (Figure 4.7). The
chlorosulfonylation of all sulfonyl chlorides (2b-2f) gave respectable yields of the
addition products (3ib-3if) within 16 hours. Some of the addition products 3ie and
3if were prone to elimination that also gave substitution products 4ie and 4if after
purification. The aliphatic sulfonyl chloride 2g also efficiently added to an alkene
(1u) affording the expected addition product 3ug. These results demonstrated a wide

scope of sulfonyl chloride.
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s
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Figure 4.7 Isolated yields of products from chlorosulfonylation using various sulfonyl
chlorides.
*Determined by 'H NMR yield using 1,3,5-trimethoxybenzene as an internal standard.

4.3.5  Chlorosulfonylation of various olefins under white light.

To extend the application of our new photocatalyst, the addition reaction
between various olefins (1 or 5) and 4-toluenesulfonyl chloride (2b) were
investigated using commonly available white light source, a 32w commercial
compact fluorescent lamp (CFL). The reactions generally gave excellent yields of the
expected products for many types of alkenes and alkynes (Figure 4.8). First, the
addition of styrene under this white light cleanly proceeded to give virtually
quantitative yield of 3ab in 16 hours which is significantly faster than the reaction
using blue LED light source (cf. Figure 4.5, 3aa). The faster reaction is likely due to
the higher luminous flux of the commercial CFL (~2000 lm) in comparison with the
blue LED (~200 lm) light source. The result confirmed robustness of this catalytic
system under intense irradiation of visible light. For more challenging unactivated
terminal and internal aliphatic alkenes, the reactions proceeded smoothly to give
high yields of the expected addition products (anti-3pb, 3vb and 3wb). Interestingly,
the addition of cyclic alkenes selectively gave only anti-product 3xb and 3yb (X-ray
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structures included in Figure 4.8) that is consistent with the inner sphere mechanism
previously proposed for other copper catalysts [80, 99]. The mechanism is involved
the insertion of alkene to generate the carbon coordinated copper intermediate,
followed by the reductive elimination. Under this white light condition, the yield of
addition-elimination product 4sb could be improved by using higher equivalents of
dihydropyran 1s (cf. 4sa in Figure 4.6). For addition of both terminal and internal
alkyne also gave high yields of diastereoselective (E)-products (6ab, 6bb and 6db).
Notably, the reactions of inactive aliphatic alkynes gave similar yields with the active
aromatic alkynes.

O\\S«,O 2 mol% CuCl,HQ JC[\S\ 0 Q,,0

Olefin  + 7 —_— S or R/\/S
0.5 mmol Na,CO3

CH,Clp (2 mL), 1t, N,

lors 2b White light 3or6 4
0.5 mmol 0.5 mmol
Alkene
Cl

C| o 0 1P ', q\f“s?o :

3ab, 99%, 16 hel 3pb, 82%, 48 hibl 3vb, 92%, 24 hi]
cl O‘ o \//
O 7@\ {b f:ff' '

3wb, 83%, 24 h anti-3xb, 100%, 24 h
@O/ \@\ \\ 0
anti-3yb, 96%, 24 h 4sb, 64%, 48 hlc]
Alkyne

(¢]] cl

oy oo
-S .S

(E)-6ab, 99%, 24 h (E)-6bb, 87%, 24 h (E)-6db, 96%, 24 hiv!

Figure 4.8 Isolated yields of products from chlorosulfonylation of various olefins
under white light.
°0.2 equivalent NaHCO; was used. °2.00 equivalent of olefin was used. 5.0

equivalent of olefin was used.
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4.3.6 Proposed mechanism
A mechanism has been proposed to involve a visible-light-induced homolysis
(VLIH) of Cu(ll) to Cu(l) without any external reducing agent (Figure 4.9). These Cu(ll)
complexes are described to be more stable and conveniently prepared under less
rigorous condition in comparison with the Cu(l) complexes.
LCu''Cly
hy i Photoinduced homolysis

=y
<
I
O
N
wn
3—9
5

RE
[Leu'el’ X.
Cu”'LCI LCu'Cl,
ROz -« RO,S._ _A
RSOLCI ~\ (seT) ~R
Il
LCu"Cl, 4\R’

- SO,R

Figure 4.9 Simplified mechanism for Cu(ll) catalyzed chlorosulfonylation via initial

visible-light-induced homolysis (VLIH) of Cu-Cl bond.

4.4 Study of other ligands

To tuning of photophysical properties of ligand 1Q, the extended conjugation
at C5 position, ligands 1Q-Ph and 1Q-DMAP were prepared. This section is divided
into 3 parts which are synthesis and characterization of 1Q-Ph and 1Q-DMAP,
photophysical and electrochemical properties and preliminary study of catalytic

properties for chlorosulfonylation (C-S formation).



147

4.4.1 Synthesis and characterization

The synthesis of 1Q derivatives with different substituent on quinoline ring at
C5, ligand 1Q-Ph and 1Q-DMAP are shown in Figure 4.10. The 1Q-Ph and 1Q-DMAP
were synthesized via Suzuki-Miyaura reaction by coupling of 1Q-I to phenylboronic
acid and 4-(N,N-dimethylamino)phenyl boronic acid, pinacol ester, respectively. The
1Q-Ph and 1Q-DMAP were obtained after recrystallization in 37% and 34% vyield,
respectively. The numeric characterization data for 'H NMR, *C NMR, and HRMS of
the are presented in the experimental section. The 'H NMR, *C NMR, COSY, HSQC,

HMBC, IR and HRMS spectra along with the signal assignments are provided in the

appendix B.
HO. ,.OH B
~N
@ N
> _N Nz
e
| X
~N

N
N/\O Pd(Cl)(PPhy),
N N #_k Ph-1Q, 37% Yield

THF/H,0
X Na,COs, 12h, 60°C 0...0

@ '

7N

DMAP-1Q, 34% Yield

Figure 4.10 Synthesis of ligand 1Q-Ph and 1Q-DMAP.

The 'H NMR spectra of 1Q-Ph and 1Q-DMAP are shown in Figure 4.11 in
comparison with ligand 1Q. The integrations of all aliphatic and aromatic signal were
corresponded to number of assigned protons with absence of doublet signal of H®
proton at C5 position in all ligands. The changing of coupling signal of proton H® from
triplet to doublet in all spectra confirmed the substituent at C5 position. For ligand

1Q-Ph, the extra signals of extended phenyl proton H' and H" appeared at 7.36-7.43
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ppm and H™ at 7.45-751 ppm. In 'H NMR spectrum of ligand 1Q-DMAP, the
extended dimethylaminophenyl group showed a singlet signal of methyl protons (H")
at 2.96 ppm and doublet signals of H' and H™ at 7.23 ppm and 6.84 ppm,
respectively. The assigned protons were confirmed by the correlation of 'H NMR and

C NMR from 2D NMR experiments (Figure B16-B25).
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Figure 4.11 'H NMR spectra of 1Q, 1Q-Ph and 1Q-DMAP in DMSO-dj.

4.4.2 Photophysical and electrochemical properties
The photophysical properties and electrochemical properties of ligands and
their Cu(ll) complexes including UV-vis absorption, molar absorption coefficients (€),

electrochemical data and excited state potential are discussed in this section.
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4.4.2.1 UV-vis absorption spectroscopy

The UV-vis absorption spectra of ligands 1Q-Ph and 1Q-DMAP were recorded
in acetonitrile in comparison with ligand 1Q (Figure 4.12a) and the molar absorption
coefficients (E€) were summarized in Table 4.5. With the extend conjugation on C5 of
the quinoline ring, 1Q-Ph and 1Q-DMAP showed red shift of absorption band with
the A,.. around 340-375 nm. The results indicate the TT-conjugation extension can
lower the band gap of the aminoquinoline moiety by the resonance effect.

The spectrum of Cu(ll) complexes with extended conjugate in CuCl,®1Q-Ph
and CuCl,®1Q-DMAP showed the hypsochromic shift of TT-TT* transition of quinoline
rings to around 310-317 nm (Figure 4.12b). For CuCl,®1Q-DMAP, new broad peak in

visible range around 400nm was observed.
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Figure 4.12 Absorption spectra of a) 0.1 mM 1Q, 1Q-Ph and 1Q-DMAP b) 0.1 mM
CuCl,®1Q, and CuCl,91Q-Ph and CuCl,®1Q-DMAP in CH5CN.
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Table 4.5 Summary of absorption of ligands and Cu(ll) complexes in CH;CN.

Ligand Cu(ll) Complex
Ao (0m) €M cm ) A (nm) EM cm )
1Q 346 3703 291 5457
1Q-Ph 358 6642 317 10358
1Q-DMAP 378 8662 398 7600

4.4.2.2 Cyclic voltammetry and reduction potentials

The electrochemical data of CuCl,#1Q-Ph and CuCl,e1Q-DMAP were obtained
from the cyclic voltammetry experiments ferrocene as an external standard as
shown in Figure 4.13. The normalized currents show excellent reversibility in all
complexes. The reduction potentials, the energy gaps and the excited state potential
(E,,*) were summarized in Table 4.6. The CuCl,01Q-Ph and CuCl,e1Q-DMAP showed
negative reduction potential similar to CuCl,e1Q. At the excited state, the reduction
potential (E,,*) of CuCl,#1Q-Ph and CuCl,e1Q-DMAP are slightly less positive than
that of CuCl,e1Q. The reduction potential of the excited state (E,,*) of CuCle1Q-Ph
and CuCle1Q-DMAP are slightly less negative than that of CuCle1Q.

€
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©

()

N

E CuClz01Q

S ——CuCly*1Q-Ph
CuCly ®1Q-DMAP

-1200 -1000 800 600 -400 -200

E (mV vs Fc)

Figure 4.13 Cyclic voltammogram of Cu(ll)}sligand complexes at 1.0 mM in CH;CN.
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Table 4.6 The electrochemical data of Cu(ll) complexes generated in situ from CuCl,

and various ligands in CH5CN.

Cu(ll)sLigand Cu(l)sLigand
Ligand Eizre Evoe® Ay  Eop
(Vvs Fc)  (V vs SCE) V)
1Q -0.67 -0.29 520 2.38 2.10 603 2.06 -1.77
1Q-Ph -0.66 -0.28 511 2.43 2.06 611 2.07 -1.75
1Q-DMAP  -0.67 -0.29 567 2.19 1.90 620 2.00 -1.71

aEgap: 1240/7\’01’1 set: bE1/2 re(SCE) = E1/2 re(FC) -0.38 V. E* = Egap_El/Z
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4.43  Preliminary study of catalytic properties for chlorosulfonylation
(C-S formation)

The Cu(ll) complexes with ligands Ph-1Q and Ph-DMAP were studied for
the photo-mediated chlorosulfonylation of styrene in comparison with
Cu(l)+1Q (Figure 4.14). Interestingly, the addition yields were improved to 68%
and 89% when using Cu(l)¢1Q-Ph and Cu(l)«1Q-DMAP, respectively. The

extension of TT-conjugation increases the absorptivity of the ligands in the

visible range (Figure 4.12). Therefore, these Tl-conjugated extended ligands are

promising for copper catalyzed photo ATRA reactions.
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Figure 4.14 Photocatalytic activity study of Cu(ll) complexes with 1Q, 1Q-Ph and 1Q-
DMAP in chlorosulfonylation of styrene.
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CHAPTER V
CONCLUSIONS

In the first part of this dissertation, a series of aminoquinoline-methylpyridine
conjugates containing one (1Q), two (2Q), and three quinoline rings (3Q) were
successfully synthesized and used as ligands for preparation of Cu(ll) complex
photocatalysts in atom transfer radical addition (ATRA) reaction. The Cull)+1Q
complex was found to have the highest catalytic activity for haloalkylation of alkenes
(> 20 examples) giving good to excellent yields of the addition products via C-C bond
formation. The reaction proceeds with high chemo- regio- and stereoselectivity
without observable polymerizations of alkenes. The mechanistic study are consistent
with the visible-light-induced homolysis (VLIH) of Cu(l)eX bond to Cu(l) complex
which subsequently reduces the alkyl halide via a single electron transfer (SET) to
form the Cu(ll) bound radical. The role of commonly employed additives AIBN and
Na,COs is evaluated, suggesting that these additives alleviate catalyst poisoning by
preventing the build-up of HX in the course of the reactions. This quinoline based
ligand thus offers a robust environment for Cu(ll) to effectively promote photo-
mediated ATRA reactions for haloalkylation of alkenes.

In the second part, the Cu(ll) complexes of C5 substituted-1Q derivatives,
including a heavy atom (1Q-l), electron withdrawing group (1Q-CN) and electron
donating group (1Q-OMe), were prepared, and studied for C-S bond formation via
photocatalytic chlorosulfonylation of olefins. The simple quinoline based ligand 1Q
was proven to be suitable ligand for Cu(ll) in generating a robust and highly active
photocatalyst for chlorosulfonylations of various olefins. The Cu(l)e1Q complex can
catalyzed the chlorosulfonylation of activated and unactivated olefins which have
been previously reported as unsuccessful substrates. The addition of base additive
can prevent acid poisoning of the catalyst. This Cu(ll)-1Q was also the first copper
homoleptic complex that gave diastereoselective additions of alkyne substrates to
give only the E alkene products. The extended conjugation at C5 position of 1Q
licands, namely 1Q-Ph and 1Q-DMAP, showed potential improvement of the
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catalytic activity in comparison with Cu(l)e1Q complex probably due to higher
absorptivity in the visible range.

All in all, This study has demonstrated that Cu(ll) complexes with
tetradentate quinoline ligands are effective and robust catalysts for photo-mediated
haloalkylation and chlorosulfonylation of olefins. In the future, evaluation of these

lisand series for other ATRA reactions will be interesting.
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APPENDIX A

The Atom transfer radical addition (ATRA) for haloalkylation (C-C formation)

A.1 Synthesis and characterization of Cu(ll) complexes

A.1.1  X-ray crystallography

Table A.1 Crystal data and structure refinement for all the complexes.

Identification code [cu'(1Q)cuct [cu'2Q)cuct

[Cu"(3Q)CU[CuCly]

Empirical formula CoH5CLCUN,O CagHaoCliCuU,NgO,  CogH3cCliCusNg

Formula weight 478.85 1029.76 1200.23

Temperature/K 296 100 296

Crystal system monoclinic monoclinic triclinic

Space group P2./c P2./n P-1

a/A 16.6661(8) 13.3798(14) 13.9396(18)

b/A 9.3649(5) 24.690(3) 15.824(2)

/A 14.0474(8) 14.1358(14) 16.096(2)

(o Vs 90 90 111.357(4)

B/ 109.943(2) 108.542(2) 98.835(4)

y/° 90 90 115.205(4)

Volume/A® 2060.99(19) 4427.3(8) 2783.9(6)

Z 4 4 2

Peacg/cm’ 1.543 1.545 1.432

W/mm™ 1339 3.816 1.466

F(000) 980.0 2104.0 1210.0

Crystal size/mm’ 0.38 x 0.34d x 0.3 0.26 x 0.26 x 0.21 0.34 x 0.32 x 0.19

fdlintion MoKat (7\0 = CuKaL (7\0: MokKat O\O =
0.71073 A) 1.54178 A) 0.71073 A)

20 range for data collection/® 6.378 to 56.656  7.506 to 144.96  5.842 to 57.642

Reflections collected 40421 52938 76310

Independent reflections 5132 8704 14494

Rt Reigma 0.0556, 0.0309  0.0308, 0.0209  0.0475, 0.0353

Data/restraints/parameters 5132/0/265 8704/0/583 14494/92/686

Goodness-of-fit on F* 1.035 1.036 1.028

Ry, wR, [l 2 20 ()]
R, WR, [all data]

Largest diff. peak/hole / e A”

0.0317, 0.0725
0.0441, 0.0776
0.31/-0.39

0.0248, 0.0659
0.0257, 0.0666
0.37/-0.49

0.0420, 0.1124
0.0631, 0.1251
0.66/-0.63
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Table A.1

Cul-Cl1
Cul-N1
Cul-N2
Cl1-Cul-N4
N1-Cul-Cl1
N1-Cul-N2
N1-Cul-N4
N2-Cul-Cl1

Cul-Cl1
Cul-N1
Cul-N2
Cul-N3
Cul-N4g
N1-Cul-Cl1
N1-Cul-N2
N1-Cul-N4
N2-Cul-Cl1
N2-Cul-N4
N3-Cul-Cl1
N3-Cul-N1
N3-Cul-N2
N3-Cul-N4
N4-Cu1-Cl1

Cul-Cl1
Cul-N1
Cul-N2
Cul-N3
Cul-N4
Cu2-Cl2
Cu2-N5
Cu2-N6
Cuz2-N7
N1-Cul-Cl1
N1-Cul-N2
N2-Cul-Cl1

[cu'(1Q)cyct

2.2540 (5) Cul-N3
1.9986 (15) Cul-Na
2.0676 (13)
97.31 () N2-Cul-N4
97.68 (5) N3-Cu1-Cl1
81.30 (6) N3-Cul-N1
107.66 (6) N3-Cu1-N2
175.12 (4) N3-Cul-N4
[Cu"(2Q)cyct
2.2573 (4) Cu2-Cl2
2.0016 (12) Cu2-N5
2.1034 (12) Cu2-N6
1.9981 (13) Cu2-N7
2.1361 (13) Cu2-N8
97.43 (4) N5-Cu2-Cl2
81.02 (5) N5-Cu2-N6
101.16 (5) N5-Cu2-N8
177.36 (3) N6-Cu2-Cl2
81.71 (5) N6-Cu2-N8
96.97 (4) N7-Cu2-Cl2
152.77 (5) N7-Cu2-N5
83.62 (5) N7-Cu2-N6
98.70 (5) N7-Cu2-N8
100.73 (4) N8-Cu2-Cl2
[CU"(3Q)CUICUCl,]
2.2154 (8) Cu2-N8
2.096 (2) Cu3-Cl3
2.1092 (19) Cu3-Cld
2.016 (2) Cu3-Cl5
2.075 (2) Cu3-Cl6
2.2267 (8) Cu3A-Cl3A
1.997 (2) Cu3A-CUA
2.1279 (19) Cu3A-Cl5A
2.034 (2) Cu3A-Cl6A
98.24 (6) N7-Cu2-Né
79.36 (8) N7-Cu2-N8
176.65 (6) N8-Cu2-Cl2

1.9954 (15)
2.2738 (15)

78.55 (5)
99.19 (4)
150.36 (6)
83.77 (6)
94.17 (6)

2.2385
1.9947
2.1222 (12)
1.9944 (12)
2.1445 (12)
96.16 (4)
81.19 (5)
100.17 (5)
171.05 (3)
81.32 (5)
96.75 (4)
156.39 (5)
83.01 (5)
94.65 (5)
107.59 (4)

4)
13)

—~ o~ o~ o~

2.077 (2)
2.2371 (18)
2.271 (2)
2.2720 (18)
2.2383 (17)
2.248 (11)
2.398 (13)
2.144 (8)
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Selected bong lengths (A) and bond angles (°) for all the complexes.
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A.1.2 M NMR and 'C spectra
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Figure A.15 HMBC spectrum of ligand 2Q.
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Figure A.27 Mass spectrum of ligand 1Q.
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Figure A.28 Mass spectrum of ligand QP.
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Figure A.29 Mass spectrum of ligand I-Q.
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Mass Spectrum List Report

Analysis Info

Analysis Name

Method

Sample Name

Comment

D:AData\Data Service\171103_pos_2QP.d

NV_pos_0.3min_profile_1segment_lowNubulizerDrygas.m

171103_pos_2QP

Acquisition Date

Operator
Instrument / Ser#

11/3/2017 11:19:46 AM

Cu.
micrOTOF-Q Il 10335

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.4 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200 T
Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF~ 150.0 Vpp Set Divert Valve Waste
Intens. ]
x105]
1.259 363.16147
1.004
0.754
[).50%
0.25;
0.007 - L. ‘ : : : , .
200 400 600 800 1000 1200 1400 miz
[—— +MS, 0.3-0.3min #(15-17) \
Intens. +MS, 0.3-0.3min #(15-17)
x105.
363.16147
1.04
0.8 385.14297
0.6
0.44
0.2
0.0 ; —t | ; - ; e : —
350 355 360 365 370 375 380 385 390 395 m/z

Figure A.30 Mass spectrum of ligand 2Q.
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Mass Spectrum List Report

Analysis Info Acquisition Date  9/8/2017 10:42:40 AM
Analysis Name  D:\Data\Data Service\170908_pos_NC3_3Q.d

Method NV_pos_0.3min_profile_1segment_lowNubulizerDrygas.m Operator Chem CU.

Sample Name 170908_pos_NC3_3Q Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.4 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200 C
Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 4.0 Vmin
Scan End 1500 m/z Set Collision Cell RF 150.0 Vpp Set Divert Valve Waste
Intens.
x1053
3 399.16802
43
3 819.30669
2
E
E 946.34551
0t— - b e - - — - - - - -
200 400 600 800 1000 1200 1400 miz
[— +MS, 0.2-0.2min #(11-13) |
Intens. +MS, 0.2-0.2min #(11-13)|
x105
5 399.16802
4+
34
819.30669
2
14
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0 “‘ L l L s L i 1
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Intens. +MS, 0.2-0.2min #(11-13),
X109
5 399.16802
4
3
o
14
G T T T T T T T T T T T T T T T T T
380.0 382.5 385.0 3875 400.0 402.5 405.0 407.5 4100 m/iz

Figure A.31 Mass spectrum of ligand 3Q.



Mass Spectrum List Report

Analysis Info Acquisition Date  11/29/2016 3:21:55 PM
Analysis Name  D:\Data\Data Service\20161129_pos_CP&(Q2P).d

Method NV_pos_0.3min_profile_1segment.m Operator Chem CU.

Sample Name  20161129_pos_CP6(Q2P) Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 3.0 Bar
Focus Mot active Set Capillary 4000 V Set Dry Heater 200C
Scan Begin 50 miz Set End Plate Offset -500 V Set Dry Gas 8.0 limin
Scan End 1500 miz Set Collision Cell RF~ 150.0 Vpp Set Divert Valve Waste
Intens. {
x108
1 42406370
0.8
0.6
0.4
0.2+
0 ] 296.02783
’ I 2(‘]0 I 4{‘]] I B[IJU BIIIID IDIEH] I 1 ZICH] I 14‘00 rrlflz
[— +MsS, 0.0-0.3min #{1-17) |
Intens. +MS, 0.0-0.3min #(1-17)
x105
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8
6
4
2
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Intens. +MS, 0.0-0.3min #(1-17)
x 42406370
8_
6
4
24
ol : UL . ‘ : . , .
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Figure A.32 Mass spectrum of [Cu'(1Q)CU]".
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Mass Spectrum List Report

Analysis Info
Analysis Name

OSCUPC27082019001_1.d

Acquisition Date  8/27/2019 7:43:30 AM

Method Tune_wide_POS_Tawatchai_05Feb2016.m Operator Administrator
Sample Name CuCl2.2Q Instrument micrOTOF 72
CuCl2.2Q
Acquisition Parameter Set Corrector Fill 50 V
Source Type ESI lon Polarity Positive Set Pulsar Pull 337V
Scan Range nfa Capillary Exit 150.0 vV Set Pulsar Push 337V
Scan Begin 50 m/z Hexapole RF 400.0V Set Reflector 1300V
Scan End 3000 m/z Skimmer 1 70.0V Set Flight Tube 9000 V
Hexapole 1 250V Set Detector TOF 2295V
Intens, +MS, 0.2min #(12)
x106] 460.0519
1.01
0.81
0.6
0.44
021 368.0001
100 200 300 400 500 600 700 800 miz
# miz | | % S/IN  Res.
1 296.9008 5476 0.5 10.3 23151
2 333.0319 5884 0.5 114 5075
3 346.0384 9990 0.9 19.9 5098
4  368.0001 211546 18.0 4386 4986
5  369.0031 41795 3.6 864 5229
6 369.9983 161308 13.7 3349 5014
7 371.0005 31159 2.7 64.4 5093
8  371.9967 30408 26 62.9 4985
9  372.9977 5955 0.5 12.0 4906
10 3741757 5625 0.5 113 21871
11 4240745 113782 9.7 2482 4989
12 425.0770 35889 31 78.0 5013
13 426.0729 56355 48 1229 5214
14 427.0758 15653 1.3 33.8 5043
15  459.7671 7892 0.7 17.4 2043
16  460.0519 1173304 100.0 2653.6 4914
17 460.6254 7272 0.6 16.0 1205
18  461.0550 310534 265 7026 4981
19  461.6411 5428 0.5 118 1782
20 462.0499 931582 794 21109 4951
21 463.0528 230935 19.7 5234 5080
22  464.0476 179830 153 4079 5280
23 465.0491 41714 3.6 943 5434
24 466.0531 5649 0.5 124 4695
25  474.0656 14261 1.2 322 4990
26  476.0640 12179 1.0 275 5149
27  957.0695 9725 0.8 206 5745
28  959.0666 7176 0.6 15.0 5179
29 1443.1434 5513 0.5 11.2 51376
30 2339.4275 5642 0.5 122 67064

Figure A.33 Mass spectrum of ligand [Cu'(2Q)CUJ*.
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Mass Spectrum List Report

Analysis Info Acquisition Date  4/20/2018 9:11:21 AM
Analysis Name  D:\Data\Data Service\180419_pos_CuCI2(3Q)-2.d

Method NV_pos_0.3min_profile_1segment_lowNubulizerDrygas.m  Operator Cu.

Sample Name  180419_pos_CuCl2(3Q)-2 Instrument / Ser# micrOTOF-Q Il 10335
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.4 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 200C
Scan Begin 50 m/z Set End Plate Offset ~ -500 V Set Dry Gas 4.0 l/min
Scan End 1500 m/z Set Collision Cell RF  800.0 Vpp Set Divert Valve Waste
Intens.
x1057]
1.55 496.05531
1.09
0.5
1 L 716.31588
0.0 T T T k T T T T
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Figure A.34 Mass spectrum of ligand [Cu'(3Q)CUJ*.
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A.1.5 Elemental analysis

The sample code Q2P, 2QP and 3Q are ligand 1Q, 2Q and 3Q, respectively.

RESULT FROM CHN ELEMENTAL ANALYSIS

Sender Ch.pawittra Date 17-07-2018
Sample code Analysis required Remark
NO.

C oH N
1 Q2p 77.02 S8 17.30
2 20P 78.22 439 15.84
3 WQ 8115 420 14.56

OPERATER 1D NATTHAPAT

Perkin-Elmer 2400 Secies CHAS/O Analyser



A.1.6 UV-Visible spectroscopy
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Figure A.35 Absorption spectrum of TPMA and
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Figure A.36 Absorption spectrum of 1Q and CuCl,®1Q.
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Figure A.37 Absorption spectrum of 2Q and
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Figure A.38 Absorption spectrum of 3Q and CuCl,®3Q.
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A.2  Study of catalytic properties for haloalkylation (C-C formation)

Table A.2 Conversions, yields and turn over numbers obtained from addition

reaction of CClg to various alkenes catalyzed by Cu(ll) complexes of various ligands

CuCly/Ligand
_\R' + CCl, —_— CI\ (CCI3
CD30D, Np 24 h o
15equy White CFL
Mol% 1Q 2Q 3Q TPMA
cat. %Con. %Yield %Con. %Yield %Con. %Yield %Con. %Yield
(TON) (TON)
2 100 71
1.0 1.0 100 100 100 65 65 71
(100) (100)
3.0 0.3 94 89 (267) 19 13 (39)
3.0 0.1 27 17 (170)
4.8 0.1 37 16 (160) 7 4 (40)
1.0 1.0 95 95 99 99 54 53 73 73
)wr"\
o 3.0 0.3 99 95 (285)
1.0 1.0 89 88 71 66 17 14 66 64
2 CN
3.0 0.3 86 83 (249)
o
Y 10 10 90 88 68 64 0 0 64 63
o]
3.0 0.3 90 80 (240)

.l | 1.0 1.0 96 91 98 96




Table A.3
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Substrate conversions and product yields for reactions of styrene with

various alkyl halides in methanol with and without AIBN.

CUC|2 or CUBr2 /1Q
—_——

z
+ R-X
CDZ0D, Ny, 24 h
White CFL
1.5 equiv
Alkyl halide With AIBN (5 mol %)
(equiv) %Con % Yield
CBr, 100 98
CBrCl, 100 100
CCl,COOMe 100 100
CCLCN 100 94
CHCL® 100 100
CHBry’ 75 74

R
X
X =BrorCl
Without AIBN

%Con % Yield
100 99
100 100
100 100
100 90
54 53
51 49

*The reactions were performed under white CFL at ambient temperature for 24h.

3.0 equivalent of alkyl halide was used.

Table A.4

Comparison of alkyl chloride with alkyl bromide in the addition

reaction to alkenes in the absence of photocatalyst under white light.

Entry

6

7

%Yield

58

90

0

X
RO+ RX solvent, 24 h > ’R)\/R
1.5€q. ORINVE X =Bror Cl
Alkene R-X Solvent %Con
Styrene CBr, CD,0OD 68
1H-Indene CBr, i-PrOH 100
Methyl methacrylate  CBry CD,0OD 70
Styrene CCly CD;0OD N.R.
1H-Indene CCl, CH5OH N.R.
1H-Indene CCl,COOMe CH,OH N.R.
1H-Indene CCLCN CH,OH N.R.

*The reactions were performed under white CFL at ambient temperature for 24h.
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Figure A.39 "H NMR spectrum of (1,3,3,3-tetrachloropropyl)benzene, 1a.
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Figure A.40 13C NMR spectrum of (1,3,3,3-tetrachloropropyl)benzene, 1a.
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Figure A.41 "H NMR spectrum of (1,3,3,3-tetrabromopropyl)benzene, 1b.
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Figure A.42 13C NMR spectrum of (1,3,3,3-tetrabromopropyl)benzene, 1b.
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Figure A.43 'H NMR spectrum of (1-bromo-3,3,3-trichloropropyl)benzene, 1c.
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Figure A.44 >C NMR spectrum of (1-bromo-3,3,3-trichloropropylbenzene, 1c.
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Figure A.45 'H NMR spectrum of methyl 2,2 4-trichloro-4-phenylbutanoate, 1d.
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Figure A.46 >C NMR spectrum of methyl 2,2,4-trichloro-4-phenylbutanoate, 1d.
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Figure A.47 'H NMR spectrum of 2,2-dichloro-2-(1-chloro-2,3-dihydro-1H-inden-2-yl)
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Figure A.48 >C NMR spectrum of 2,2-dichloro-2-(1-chloro-2,3-dihydro-1H-inden-2-yl)

acetonitrile, le.
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Figure A.49 'H NMR spectrum of (1,3,3-trichloropropyl)benzene, 1f.
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Figure A.50 >C NMR spectrum of (1,3,3-trichloropropyl)benzene, 1f.
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Figure A.52 >C NMR spectrum of (1,3,3-tribromopropyl)lbenzene, 1g.
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Figure A.53 'H NMR spectrum of 1-Chloro-1,3-diphenylpropane, 1h.
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Figure A.54 >C NMR spectrum of 1-Chloro-1,3-diphenylpropane, 1h.
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Figure A.55 "H NMR spectrum of 2,4,4,4-tetrachlorobutanenitrile, 2a.
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Figure A.56 *C NMR spectrum of 2,4,4,4-tetrachlorobutanenitrile, 2a.
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Figure A.57 H NMR spectrum of 2,4,4,d-tetrabromobutanenitrile, 2b.
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Figure A.58 13C NMR spectrum of 2,4,4 d-tetrabromobutanenitrile, 2b.
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Figure A.59 H NMR spectrum of methyl 2,2,4-trichloro-4-cyanobutanoate, 2c.
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Figure A.60 13C NMR spectrum of methyl 2,4,4,4-tetrachlorobutanoate, 2c.
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Figure A.61 H NMR spectrum of 2-bromo-4,4,4-trichlorobutanenitrile, 2da.
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Figure A.62 >C NMR spectrum of 2-bromo-4,4,4-trichlorobutanenitrile, 2da.
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Figure A.63 H NMR spectrum of methyl 2,4,4,4-tetrachlorobutanoate, 3a.
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Figure A.64 >C NMR spectrum of methyl 2,4,4,4-tetrachlorobutanoate, 3a.
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Figure A.65 "H NMR spectrum of methyl 2,4,4 d-tetrabromobutanoate, 3b.
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Figure A.66 13C NMR spectrum of methyl 2,4,4,4-tetrabromobutanoate, 3b.
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Figure A.67 H NMR spectrum of dimethyl 2,2,4-trichloropentanedioate, 3c.
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Figure A.68 13C NMR spectrum of dimethyl 2,2,4-trichloropentanedioate, 3c.
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Figure A.69 H NMR spectrum of methyl-2-bromo-4,4,4-trichlorobutanoate, 3da.
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Figure A.70 13C NMR spectrum of methyl-2-bromo-4,4,4-trichlorobutanoate, 3da.
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Figure A.71 H NMR spectrum of methyl-2,4,4,4-tetrachloro-2-methylbutanoate, 4a.
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Figure A.72 °C NMR spectrum of methyl-2,4,4 d-tetrachloro-2-methylbutanoate, 4a.
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Figure A.73 H NMR spectrum of methyl 2,4,4,4-tetrabromo-2-methylbutanoate, 4b.
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Figure A.74 >C NMR spectrum of methyl 2,4,4,4-tetrabromo-2-methylbutanoate, 4b.
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Figure A.75 'H NMR spectrum of dimethyl 2,2,4-trichloro-4-methylpentanedioate, 4c.
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Figure A.76 >C NMR spectrum of dimethyl 2,2,4-trichloro-4-methylpentanedioate,
4c.
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Figure A.77 'H NMR spectrum of methyl-2-bromo-4,4,4-trichloro-2-methylbutanoate,

4da.
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Figure A.78 >C NMR spectrum of methyl-2-bromo-4,4,4-trichloro-2-methylbutanoate,
4da.
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Figure A.79 'H NMR spectrum of anti-1-chloro-2-(trichloromethyl)-2,3-dihydro-1H-

indene, 5a.
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Figure A.80 >C NMR spectrum of anti-1-chloro-2-(trichloromethyl)-2,3-dihydro-1H-

indene, 5a.
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Figure A.81 'H NMR spectrum of anti-2,2-dichloro-2-(1-chloro-2,3-dihydro-1H-inden-2-

yl) acetonitrile, 5b.
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Figure A.82 13C NMR spectrum of anti-2,2-dichloro-2-(1-chloro-2,3-dihydro-1H-inden-

2-yl) acetonitrile, 5b.
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Figure A.83 'H NMR spectrum of anti-1-bromo-2-(tribromomethyl)-2,3-dihydro-1H-

indene, 5c.
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Figure A.84 >C NMR spectrum of anti-1-bromo-2-(tribromomethyl)-2,3-dihydro-1H-

indene, 5c.
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Figure A.85 'H NMR spectrum of anti-1-methoxy-2-(tribromomethyl)-2,3-dihydro-1H-

H b
indene, 5’c.
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Figure A.86 >C NMR spectrum of anti-1-methoxy-2-(tribromomethyl)-2,3-dihydro-1H-

indene, 5’°c.
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Figure A.87 'H NMR spectrum of anti-1-bromo-2-(trichloromethyl)-2,3-dihydro-1H-
indene, 5d.

2020-12-25-PCH102_TSP1-T

o Suaa 5
oS ©own © @ o) o
- o o %O T o v b =4
39 QEEI g a o 3
AN T T T T
i
i
i
i | L
: T ; : , , . T : : : . . : : : : T
170 160 150 140 130 120 110 100 80 70 60 50 40 30 20 10 0

90
f1 (ppm)

Figure A.88 *C NMR spectrum of anti-1-bromo-2-(trichloromethyl)-2,3-dihydro-1H-
indene, 5d.
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Figure A.89 'H NMR spectrum of anti-1-methoxy-2-(trichloromethyl)-2,3-dihydro-1H-
indene, 5°d.
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Figure A.90 >C NMR spectrum of anti-1-methoxy-2-(trichloromethyl)-2,3-dihydro-1H-
indene, 5°d.
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Figure A.91 'H NMR spectrum

inden-2-yl) acetate, 5e.
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Figure A.92 >C NMR spectrum of anti-methyl 2,2-dichloro-2-(1-chloro-2,3-dihydro-1H-

inden-2-yl) acetate, 5e.
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Figure A.93 'H NMR spectrum of anti-methyl 2,2-dichloro-2-(1-methoxy-2,3-dihydro-

1H-inden-2-ylacetate, 5’e.
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Figure A.94 >C NMR spectrum of anti-methyl 2,2-dichloro-2-(1-methoxy-2,3-dihydro-

1H-inden-2-ylacetate, 5’e.
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Figure A.95 H NMR spectrum of anti-1-chloro-2-(trichloromethyl)-1,2,3,4-
tetrahydronaphthalene, 6a.
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Figure A.96 >C NMR spectrum of anti-1-chloro-2-(trichloromethyl)-1,2,3,4-

tetrahydronaphthalene, 6a.
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Figure A.97 H NMR spectrum of anti-1-methoxy-2-(trichloromethyl)-1,2,3,4-
tetrahydronaphthalene, 6’a.
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Figure A.98 >C NMR spectrum of anti-1-methoxy-2-(trichloromethyl)-1,2,3,4-
tetrahydronaphthalene, 6’a.
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Figure A.99 'H NMR spectrum of anti-1-methoxy-2-(tribromomethyl)-1,2,3,4-
tetrahydronaphthalene, 6’b.
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Figure A.100 °C NMR spectrum of anti-1-methoxy-2-(tribromomethyl)-1,2,3,4-
tetrahydronaphthalene, 6’b.
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Figure A.101 X-ray crystallography of product 4c.
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APPENDIX B
The atom transfer radical addition (ATRA) for halosulfonylation (C-S formation)

B.1 Ligands and Cu(ll) complexes

1 1
B.1.1 H NMR and '*C spectra
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Figure B.2 *C NMR spectrum of ligand 1Q-l.
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Figure B.3 COSY spectrum of ligand 1Q-l.
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Figure B.6 'H NMR spectrum of ligand 1Q-CN.
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Figure B.7 *C NMR spectrum of ligand 1Q-CN.
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Figure B.8 COSY spectrum of ligand 1Q-CN.
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Figure B.9 HSQC spectrum of ligand 1Q-CN.
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Figure B.10 HMBC spectrum of ligand 1Q-CN.
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Figure B.11 'H NMR spectrum of ligand 1Q-OMe.
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Figure B.12 *C NMR spectrum of ligand 1Q-OMe.
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Figure B.13 COSY spectrum of ligand 1Q-OMe.
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Figure B.14 HSQC spectrum of ligand 1Q-OMe.
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Figure B.15 HMBC spectrum of ligand 1Q-OMe.
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Figure B.18 COSY spectrum of ligand 1Q-Ph.

234

r5.0

r5.5

r6.0

r6.5

r7.0

r7.5

r8.0

r8.5

r9.0

6.8

r7.0

r7.2

r7.4

r7.6

r7.8

r8.0

r8.2

r8.4

r8.6

r8.8

r9.0

1 (ppm)

f1fppm)



235

50
15 — < 160
r70
L8o
i h 90
12 | A 10 i | A 9 F100
N N i~NzN L1o é
7— o N N =
16311611% e° o ' BN/U k N/\O 120
1817 —5= /N N\ NS a | N\e NF 120
12T: © 2 S > 6 b = e r140
8— 3 16 c
10— ° © 17 I F150
14—— O 18 O m r160
19 n
r170
916 914 9‘.2 9.‘0 818 816 814 812 810 7.‘8 7.‘6 7.‘4 712 710 618 616 614 6‘.2 6.‘0 518 516 514 512 510 4.‘8 4.‘6 4.‘4 412
f2 (ppm)
Fi1s
71— 710
Z‘F 13i 2b 11h k120
13,11 : o
19n 6e r125
6,16,19 — o ©
%; 18m ©) ) 130
g‘ , 171
3 a | _
C 12i 135 g
12 © g
43 Fi40
g3
8‘ 145
1 1la O
10 109 © 1150
155
14— 160

. .
90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68
f2@ppm)

Figure B.19 HSQC spectrum of ligand 1Q-Ph.
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Figure B.21 'H NMR spectrum of ligand 1Q-DMAP.
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Figure B.22 *C NMR spectrum of ligand 1Q-DMAP.
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Figure B.23 COSY spectrum of ligand 1Q-DMAP.
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Figure B.24 HSQC spectrum of ligand 1Q-DMAP.
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B.1.2 IR spectra
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Figure B.27 IR spectrum of ligand 1Q-CN.
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Figure B.30 IR spectrum of ligand 1Q-DMAP.
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Figure B.31 Mass spectrum of licand 1Q-I.
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Figure B.32 Mass spectrum of ligand 1Q-CN.
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Figure B.33 Mass spectrum of ligand 1Q-OMe.
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Figure B.34 Mass spectrum of ligand 1Q-Ph.
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Figure B.35 Mass spectrum of lisand 1Q-DMAP.
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Figure B.36 Absorption spectrum
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Figure B.38 Absorption spectrum of 1Q-OMe and CuCl,®1Q-OMe.
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Figure B.39 Absorption spectrum of 1Q-Ph and CuCl,®1Q-Ph.
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Figure B.40 Absorption spectrum of 1Q-DMAP and CuCl,®1Q-DMAP.
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Study of catalytic properties for chlorosulfonylation (C-S formation)

B.2.1 Reversibility study of complexation and decomplexation
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Figure B.41 Absorption spectra of a) 0.1 mM 1Q, CuCle1Q and CuCl,»1Q complexes
and absorption spectra of b) 0.1 mM 1Q, ¢) CuCle1Q and d) CuCl,»1Q in CH,Cl, in

reversibility study of complexation and decomplexation under acidic and basic

conditions.
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Table B.1 Catalyst comparison for chlorosulfonylation of activated and
inactivated alkene in various conditions.®

o, 0
N7 cl

N 0,
S, ol o]
7 photocatalyst )\/\\ & W
+ C s S
Alkene Q R \C or R/\, < :

solvent, rt, Ny
R LED

1 2a; R=H 3 4
2b; R=Me
Activated alkene (Condition A) Unactivated alkene (Condition B)
T 9.0 ¢ 0.0
:/k,‘s'; & m)\,:
cl g
s} w0
o . N g
cl 9,,0 9.0 [ :l 9.0
Q.S,p S /O\nxi-/s -4
T OO o0
Photocatalyst
Solvent (mul%)w LED 3aa 3ba : (E}-4ba 3ea: (E)-dea 3ob anti-3pa
[Cu'(dap)CL] (1) 530 nm 95%, 24 hicl Polymerized 64% (64:0), 16 h 86%,1° 83%, 48 h N.R.I
ACN [Cudmp),CIICI (2)  455nm  97%, 30 hdl 15% 48 il
cu'ClL(2)1Q (2) 455nm  49%,24h, B83%, 48h  52% (41:11), 24 hiv) 92% (54:38), 16 h 95%, 24 hiv) 35%, 48 h
[Cu'(dap)Ck) (1) 530 nm  58%,24h 6%, 48 h
DCM [Cu(dap)Cl] (2) 455 nm 100%, 24 h 35%+polymerized, 24 h 60% (58:2), 16 h 27%, 24 h 11%, 48 h
cu'CL(2)1Q (2) 455 nm 60%, 24 h, 91%, 48 h 100% (85:15), 24 h 94% (51:43), 16 h 96%, 24 hi) 68%, 48 hil

“General reaction conditions: 2a or 2b (500 pmol, 1.00 equiv.), photocatalyst
(2.00 mol%), in CH,CL, (dry, degassed, 2.00 mL) irradiation under specified LED
under N, atmosphere for giving reaction time. Condition A; 1.00 equivalent of
Olefin (500 pumol) was used. Condition B; Olefin 2.00 equivalent of Olefin (1.00
mmol), and 1.00 equivalent of Na,CO; (500 pmol) were used. Determined by
'H NMR vyield using 1,3,5-trimethoxybenzene or toluene as an internal
standard. Plsolated yields are given. ‘ref. ACS Catal. 2019, 9, 1103-1109. dref.
Eur. J. Org. Chem. 2020, 1523-1533.
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Figure B.42 'H NMR spectrum of (1-chloro-2-(phenylsulfonylethyl)benzene, 3aa.
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Figure B.44 'H NMR spectrum of 1<(1-chloro-2-(phenylsulfonyllethyl)-4-
methoxybenzene, 3ba.
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Figure B.46 'H NMR spectrum of (£)-1-methoxy-4-(2-(phenylsulfonyl)vinylbenzene,
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Figure B.48 'H NMR spectrum of 1-(1-chloro-2<(phenylsulfonyl)ethyl)-2,3,4,5,6-

pentafluorobenzene, 3ca.
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Figure B.49 >C NMR spectrum of 1-(1-chloro-2-(phenylsulfonylethyl)-2,3,4,5,6-

pentafluorobenzene, 3ca.
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Figure B.50 F NMR spectrum of 1-(1-chloro-2-(phenylsulfonylethyl)-2,3,4,5,6-

pentafluorobenzene, 3ca.
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Figure B.51 'H NMR spectrum of 4-(1-chloro-2-(phenylsulfonylethyl)phenyl acetate,

3da.
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Figure B.52 *C NMR spectrum of 4-(1-chloro-2-(phenylsulfonyllethyl)phenyl acetate,

3da.
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Figure B.53 'H NMR spectrum of methyl 2-chloro-3-(phenylsulfonyl)propanoate, 3ea.
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Figure B.54 >C NMR spectrum of methyl 2-chloro-3-(phenylsulfonyl)propanoate,

3ea.
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Figure B.55 'H NMR spectrum of methyl-(F)-3-(phenylsulfonylacrylate, (E)-dea.
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Figure B.56 °C NMR spectrum of methyl-(E)-3-(phenylsulfonylacrylate, (E)-dea.
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Figure B.57 "H NMR spectrum of (E)-3<(phenylsulfonylacrylonitrile, (E)-4fa.
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Figure B.58 °C NMR spectrum of (E)-3-(phenylsulfonylacrylonitrile, (E)-4fa.
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Figure B.59 'H NMR spectrum of 1-chloro-2-(phenylsulfonyl)ethyl acetate, 3ga.
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Figure B.60 >C NMR spectrum of 1-chloro-2-(phenylsulfonylethyl acetate, 3ga.
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Figure B.62 C NMR  spectrum  of  methyl-2-chloro-2-methyl-3-

(phenylsulfonylpropanoate, 3ha.
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Figure B.63 H NMR spectrum of ethyl-2-chloro-2-methyl-3-
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(phenylsulfonyl)propanoate, 3ia.
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Figure B.64 e NMR spectrum of ethyl-2-chloro-2-methyl-3-
(phenylsulfonyl)propanoate, 3ia.
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Figure B.65 H NMR spectrum of allyl-2-chloro-2-methy!-3-
(phenylsulfonyl)propanoate, 3ja.
PAWITTRA, PCHO52_T3, CDC13
rau_C1l3CPD_256 CDC13 {C:\Bruker\TOPSPINZ.1PL3} ARK_Reiser 15
BRUKER
Current Data Parameters
NAME PCHI
EXPNO
PROCNO 1
giL; Acquisition Pa:
I;g'aIRL'H
PROBHD
FPULFROG
;IC:);‘J'EI\'T
NS
FIDRES
2
o
DE
IE
Dl
Dii
00
NUC1
Pl
PL1
SFO1
CPDPRG[2 o nNT'wifLAlG
NUC2 H
PCPD2
PL2
PL12
PL13 60 dB
SFO2 300.1312005 MHz
F2 - Processing parameters
SI 32768
SF 75.4677490 MHz
. 4 WDW EM
i EgB o 1.00 Hz
GB o
T T T T T T T EC 1.40
180 160 140 120 100 80 60 40 20 ppm
. 13
Figure B.66 C NMR spectrum of allyl-2-chloro-2-methy!-3-

(phenylsulfonyl)propanoate, 3ja.
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Figure B.67 'H NMR spectrum of 2-chloro-2-methyl-N-phenyl-3-
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(phenylsulfonyl)propenamide, 3ka.

PAWITTRA, PCHO75_T1, CDC13
rau_sCl3CPD_256 CDCl3 {C:\Bruker\TopSpin3.5pl7} AK_Reiser 11

9 Hl dQ\s,,O a

180 160 140 120 100 80 60 40 20 ppm

Figure B.68 e NMR spectrum of  2-chloro-2-methyl-N-phenyl-3-

(phenylsulfonyl)propenamide, 3ka.
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Figure B.69 'H NMR spectrum of (2-chloro-1-(phenylsulfonyl)propan-2-yl)benzene,

3la.
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Figure B.70 >C NMR spectrum of (2-chloro-1-(phenylsulfonyl)propan-2-y)benzene,

3la.
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Figure B.71 'H NMR spectrum of 2-chloro-1-(phenylsulfonyl)propan-2-yl acetate,

3ma.
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Figure B.72 >C NMR spectrum of 2-chloro-1-(phenylsulfonyl)propan-2-yl acetate,

3ma
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Figure B.73 'H NMR spectrum of (2-(phenylsulfonylethene-1,1-diyl)dibenzene, 4na.
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Figure B.75 'H NMR spectrum of ((2-chlorooctyl)sulfonyl)benzene, 3oa.
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Figure B.76 >C NMR spectrum of ((2-chlorooctyl)sulfonyl)benzene, 3oa.
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Figure B.77 'H NMR spectrum of ((2-chlorocyclohexyl)sulfonyl)benzene, anti-3pa.
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Figure B.78 >C NMR spectrum of ((2-chlorocyclohexyl)sulfonyl)benzene, anti-3pa.
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Figure B.79 H NMR spectrum of methyl-2-chloro-2-methyl-3-

(phenylsulfonyl)butanoate, 3qa.
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Figure B.80 2C NMR spectrum of methyl-2-chloro-2-methyl-3-
(phenylsulfonyl)butanoate, 3qa.
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Figure B.81 "H NMR spectrum of (5R)-5-(2-chloro-1-(phenylsulfonyl)propan-2-yl)-2-

methylcyclohex-2-en-1-one, 3ra.
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Figure B.82 >C NMR spectrum of (5R)-5-(2-chloro-1-(phenylsulfonyl)propan-2-yl)-2-

methylcyclohex-2-en-1-one, 3ra.
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Figure B.83 'H NMR spectrum of 5-(phenylsulfonyl)-3,4-dihydro-2H-pyran, 4sa
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Figure B.84 >C NMR spectrum of 5-(phenylsulfonyl)-3,4-dihydro-2H-pyran, 4sa
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Figure B.85 'H NMR spectrum of (E)-1-(2-(phenylsulfonyl)vinyDpyrrolidin-2-one, (E)-

4ta
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Figure B.86 >C NMR spectrum of (E)-1-(2-(phenylsulfonylvinylpyrrolidin-2-one, (E)-
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Figure B.87 'H NMR spectrum of (1-chloro-2-(phenylsulfonylviny)benzene, (E)-6aa
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Figure B.88 >C NMR spectrum of (1-chloro-2-(phenylsulfonylvinyl)benzene, (E)-6aa
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Figure B.89 'H NMR spectrum of ((1-chloro-1-phenylprop-1-en-2-yl)sulfonylbenzene,

(E)-6ba
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70

60

T T T

T
50 40 30 20  ppm

31.49099922 W
0.57866001 W
0.46871001 W

400.1316005 MHz

F2 - Processing parameters
sI 131072

sF 100.6127690 MHz
WDwW A

sSB 0

L3 1.00 Bz
GB 0

B 1.40



278

PAWITTRA, PCHO072_T2.,CDC13
rau_sPROTON_16 CDC13 {C:\Bruker\TopSpin3.0} AK_Reiser 20

Current Data Parameters
NAME 400MHz

‘ EXENC S0
PROCNO 1
. ¢ Cl Name  Shift H's Class Is £2 - ncquisition Parameters
\/\)\\ld The 202?2%2
1 a 7.91 2 m INSTRUM spect
g e a PROBHD 5 mm PABBO BB-
o’r.s. b 2 c 7.65 1 m EULEROG (2530
O 3 b 7 57 2 m ﬁELVL‘[\"l CUC%%
[ ’ DS 2
4 d 653 1 s Mhes TR
p.e] 2.7262976 sec
5 e 2.95 2 m EG 128
o 41.600 usec
6 1.58 2 m i 2si K
? e 2.00000000 sec
7 137 2 m = CHANNEL f1 =
8 h 0.93 3 t 7.3 12.20 vase
31.4939;9;2 W
400.1320007 MHz
F2 - Processing parameters
T 65536
SF 400.1300174 MHz
WDW EM
SSB 2
LB 0.20 Hz
GB 0
BC 1.00
J J
) TJ I Il | SV
Dot (=] o' (] =)
g|3|a 2 S g (=

T T T T T T T T T T T T T
90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 ppm

Figure B.91 'H NMR spectrum of ((2-chlorohex-1-en-1-yl)sulfonyl)benzene, (E)-6ca
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Figure B.92 *C NMR spectrum of ((2-chlorohex-1-en-1-ylsulfonyl)benzene, (E)-6ca



279

PAWITTRA, PCH045_T3, CDC13
rau_PROTONLF_16 CDC13 {C:\Bruker\TOPSPIN2.1PL3} AK_Reiser 21

d
/O;')C%s,,o .
£ > Name  Shift H's Class Js
o b 1 a 7.79 2 m
2 b 7.37 2 m
¢ 3 e 414 1 dd 141
4 f 3.83 3 s
5 ¢ 3.73 1 d 141
6 ¢ 2.46 3 s
7 d 2.02 2 s
| a
)\ L P N, AN
g CEE N

85 80 75 70 65 60 55 50 45 40 35 3.0 25 20 1.5 1.0 ppm

Figure B.93 'H NMR spectrum of methyl-2-chloro-2-methyl-3-tosylpropanoate, 3ib
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Figure B.94 >C NMR spectrum of methyl-2-chloro-2-methyl-3-tosylpropanoate, 3ib
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Figure B.95 'H NMR spectrum of methyl-2-chloro-3-((4-methoxyphenyl)sulfonyl)-2-
methylpropanoate, 3ic
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Figure B.97 'H NMR spectrum of methyl 2-chloro-2-methyl-3-(thiophen-2-

ylsulfonylpropanoate, 3id

PAWITTRA, PCHO52_T1(Thio), CDC13
rau_C13CPD_256 CDC13 {C:\Bruker\TOPSPINZ.1PL3} AK_Reiser 34

180 160 140 120 100 80 60 40 20

<)
BRUKER
(>

Current Data Parameters
NAME

EXBNO 191
BROCNO

3
300.1300121 MH:

EM

£z - hoguisition Parameters
t 202

00313

spect
5 mm Smm 1H-13

-1.0
75.477937L
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Figure B.100 *C NMR spectrum of methyl-2-chloro-2-methyl-3-(z4-
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Figure B.127 X-ray crystallography of product (E)-dea.

B.2.3 X-ray Crystallography of Products
Formula C10H1004S
Dcalc./ g cm3 1.447
p#/mm-1 2.732
Formula Weight 226.24
Colour clear colourless
Shape prism
Size/mm3 0.35x0.10x0.07
T/K 123.00(10)
Crystal System triclinic
Space Group P-1
a/A 5.6396(3)
b/A 7.7098(3)
c/A 12.5575(5)
af 86.092(3)
B/ 86.490(3)
v/ 72.547(4)
V/A3 519.18(4)
VA 2
A 1
Wavelength/A 1.54184
Radiation type CuKa
@min/c 3.531
Omax/* 72.895
Measured Refl's. 10867
Indep't Refl's 2047
Refl's 122 o(]) 1876
Rint 0.0330
Parameters 138
Restraints 0
Largest Peak 0.400
Deepest Hole -0.373
GooF 1.056
WR: (all data) 0.0696
WR2 0.0678
R;: (all data) 0.0302
R: 0.0272
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