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CHAPTER I

INTRODUCTION

This chapter delves into the significance of machine learning, the concept of clas-

sification, and class imbalance problems. It will also cover the nearest neighbor classifier

and fundamental principles of density-based learning. Additionally, an overview of the

thesis will be provided.

1.1 Machine learning, Classification, Class imbalance

In the contemporary world, where the generation and utilization of vast amounts

of data, often referred to as “big data”, is prevalent, the essential task is to employ

algorithms and computational procedures for effective data management. An algorithm

can be defined as a sequence of instructions that must be executed to convert input into

output. The primary objective is to enable computers or machines to perform various

tasks, encompassing learning, problem-solving, prediction, pattern recognition, and the

facilitation of robotics.

Machine learning, as described in [1], encompasses the process of instructing com-

puters to enhance their performance by using either example data or prior experiences.

Typically, this process entails the definition of a model with specific parameters, followed

by the execution of a computer program to optimize those parameters using training data.

Machine learning leverages statistical theory to construct mathematical models that aid in

drawing inferences from a given dataset. Within this context, computer science assumes

a dual role. Firstly, it is responsible for developing efficient algorithms to address opti-

mization problems and for managing and storing large data volumes during the training

phase. Secondly, it is concerned with designing computationally efficient representations

and algorithmic solutions to extract insights from the learned model. In certain scenar-

ios, the efficiency of the learning or inference algorithm, as gauged by its space and time

complexity, can be as critical as its accuracy in predicting outcomes.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Machine learning is categorized into three primary domains, as outlined in [17]:

supervised learning, unsupervised learning, and reinforcement learning. In supervised

learning, the machine learning approach is applied to problems where the provided data

includes labeled instances. Conversely, unsupervised learning is a machine learning

paradigm employed to discern patterns from unlabeled data, with the aim of grouping

similar instances or reducing the dimensionality of the input data. Lastly, reinforcement

learning constitutes a distinct realm within machine learning, focused on the strategies

intelligent agents should adopt in their environments to optimize the cumulative reward

they accrue.

Classification entails the task of assigning a class label to an instance within a

provided dataset through a classifier. This classifier is constructed from training data

using a classification algorithm. The primary objective of a classifier is to deduce a model

from the data, allowing it to assign a class label based on the characteristics of instances.

Various known classifiers are nearest neighbor, decision tree, and support vector machine.

Presently, classification problems often grapple with the challenge of class imbal-

ance, as highlighted in [5], [9], [10], , and this issue has garnered considerable attention due

to its prevalence in real-world scenarios, such as fraud detection, anomaly detection, and

medical diagnosis. In such situations, the minority class, which is one of the two classes,

contains significantly fewer instances compared to the majority class. As depicted in Fig-

ure 1.1, the data illustrates an instance of data imbalance, featuring two distinct groups.

The larger of the two groups is referred to as the “majority,” characterized by its blue

color, while the smaller group is denoted as the “minority,” represented by the color red.
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Figure 1.1: Example of imbalance data

Approaches to address class imbalance generally fall into one of three categories

[11]: data sampling, algorithmic modification, and cost-sensitive methods. Sampling

techniques aim to mitigate class imbalance by either oversampling the minority class

instances or undersampling the majority class instances. Notably, a well-known oversam-

pling technique is SMOTE [3], which enhances the representation of the minority class by

generating synthetic examples along line segments connecting the minority class samples

with their k nearest neighbors from the same class. In Figure 1.2, the sampling technique

is illustrated. Figure 1.2(a) provides an instance of augmenting the sample size in smaller

groups to approximate the quantity found in the larger group. Meanwhile, Figure 1.2(b)

demonstrates a scenario where the sample size in a larger group is diminished to align

with that of the smaller group.

(a) Oversampling method (b) Undersampling method

Figure 1.2: Concept visualization of the oversampling and the undersampling method
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Conversely, algorithmic modification methods adapt existing classification algo-

rithms to bolster their effectiveness in handling imbalanced data. For example, the kENN

approach [10] introduced an algorithm that identifies pivotal positive instances and uti-

lizes them to accurately delineate the positive class boundary. The authors conducted

a comparative analysis of their method against various k-NN-based classification tech-

niques on diverse imbalanced datasets, demonstrating the superior performance of their

approach in terms of classification accuracy, F-measure, and G-mean. Furthermore, the

authors explored the impact of different parameters, such as the number of exemplars

and the value of k on classification performance.

Zahra Hajizadeh, Mohammad Taheri, and Mansoor Zolghadri Jahromi [5] presented

a method for classifying imbalanced data using nearest neighbor classification with locally

weighted distance. This method addresses the challenge by assigning greater weight to

the nearest neighbors belonging to the minority class. Comparative assessments against

several other classification methods on diverse imbalanced datasets revealed that the

locally weighted distance method excels in terms of classification accuracy and F-measure.

Cost-sensitive methods focus on assigning more weight to errors made on the mi-

nority class and may be applied either to the data or integrated into the classification

algorithms themselves.

1.2 Nearest neighbor Literature

The fundamental principle of the nearest neighbor approach, as summarized by the

statement “similar things are likely to be similar” [4], underlies its enduring popularity in

classification. The enduring popularity of k-nearest neighbors (K-NN) can be attributed

to four key factors, as outlined below.

Firstly, the flexibility of defining similarity in nearest neighbor methods involves

choosing a feature space for data representation and an associated distance metric, such

as Euclidean space and Euclidean distance.
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Secondly, their efficiency in approximating nearest neighbor searches makes them

well-suited for handling large, high-dimensional datasets, ensuring scalability.

Thirdly, these methods embrace a nonparametric approach, relying on data-driven

predictions rather than rigid model assumptions.

Lastly, nearest neighbor methods support their decisions by revealing the nearest

neighbors found in the dataset.

The Nearest Neighbor classifier (NN) [5] is particularly renowned in the field of data

mining for its simplicity and impressive performance. In situations with a substantial

number of training instances, the classification error rate of the nearest neighbor classifier

typically remains only about twice that of the Bayes classifier.

The k-NN algorithm operates by identifying the k closest instances in the training

set to a given query instance, based on a distance metric like Euclidean distance. For

classification tasks, the predicted label for the query instance is determined by a majority

vote among the labels of the k nearest neighbors. The choice of the value of k is a

critical parameter for the k-NN algorithm, as it can significantly impact its performance.

A smaller value of k increases sensitivity to local data variations, while a larger value

of k enhances robustness to noise and outliers but may reduce sensitivity to local data

structures.

The nearest neighbor algorithm, also referred to as the 1-nearest neighbor (1-NN),

is a specific case of the k-nearest neighbor (k-NN) algorithm, where k is set to 1. In other

words, the nearest neighbor algorithm identifies the single closest instance in the training

set to a given query instance.

1.3 Review of density-based scoring

Hawkins [12] has put forth a common definition for outliers, characterizing them

as observations that significantly deviate from the norm within a dataset. Outliers rep-

resent data points that are divergent, incongruous, inconsequential, or even potentially
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malevolent when compared to the majority of the data in a dataset. Detecting outliers

[15] holds particular importance in various applications, including network intrusion de-

tection, identifying fraudulent transactions, and aiding in medical diagnostics.

Over recent decades, numerous approaches for detecting outliers have emerged.

These methods can be categorized into distribution-based, distance-based, clustering-

based, and density-based techniques.

Within distribution-based approaches, an object is identified as an outlier when

it exhibits a substantial deviation from a predefined standard distribution, such as the

normal distribution or Poisson distribution.

In distance-based methods, the distance between an instance and its neighbors is

calculated, and objects far removed from their group are identified as outliers. This is

the most widely used technique for outlier detection, with various methods developed to

compute distances between instances.

In cluster-based methods identify outliers during the process of forming clusters,

where instances not assigned to any cluster are considered outliers.

In density-based method, the density of a specific object is assessed in relation to

neighboring instances. The density of an instance is computed and compared with that

of neighboring instances, yielding an outlier score in the density-based method. In this

approach, normal instances and their neighbors exhibit similar densities, while outliers

deviate from this density pattern. By evaluating the density of an instance in relation to

that of its neighbors, this approach provides an effective means of detecting outliers in

large datasets. As an example, consider the Local Outlier Factor (LOF), which provides

a measure of how much an object deviates from its locally reachable neighborhood. An

outlier is determined by selecting the instance with the highest local outlier factor, while
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objects with low LOF values are considered normal.

1.4 Thesis Overview

The remaining sections of this thesis book are structured as follows. The subsequent

chapter will provide an overview of background knowledge and related work. Chapter III

will delve into the conglomerate nearest neighbor classifier and its associated algorithm.

Chapter IV will thoroughly explore the MOF guided classifier and its corresponding al-

gorithm. The final chapter will serve as a conclusion to this research and will outline

potential issues for future work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE AND

RELATED WORKS

This chapter will delve into the essential principles of the k-nearest neighbor (k-NN)

classifier, elucidate the process of evaluating its classification performance, and provide

an overview of related research.

2.1 k-Nearest Neighbor classifier

The k-Nearest Neighbors (k-NN) algorithm [8], [16] is a popular instance-based

learning approach used in machine learning. The k-NN classifier operates by determining

the class label of a query instance based on its proximity to labeled instances in a training

set. Specifically, the algorithm identifies the k nearest instances to the query instance

using a distance metric, such as Euclidean. The class label of the query instance is

then determined by identifying the single most frequent class label among the k nearest

neighbors.

Consider a dataset denoted as D split as Dtrain, representing the training dataset,

and Dtest, representing the testing dataset. Further, let ntrain be the number of instances

in the training dataset, ntest be the number of instances in the testing dataset, and d be

the dimension, referring to the number of attributes or features. To gain a comprehensive

grasp of the algorithm’s functioning, the algorithm breaks down the steps as follows:

• Given the training dataset:

(x11, x
2
1, ..., x

d
1, y1), (x

1
2, x

2
2, ..., x

d
2, y2), ..., (x

1
ntrain

, x2ntrain
, ..., xdntrain

, yntrain) ∈ Dtrain

1. Collect labeled training data.

2. Store the training data in a data structure that allows for efficient distance
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calculations.

3. Determine the value of k, the number of nearest neighbors to consider.

• Given the testing dataset:

(x11, x
2
1, ..., x

d
1, y1), (x

1
2, x

2
2, ..., x

d
2, y2), ..., (x

1
ntest

, x2ntest
, ..., xdntest

, yntest) ∈ Dtest.

For each test instance

1. Calculate Euclidean distance with all training instances.

2. Find the k nearest neighbors.

3. Determine the majority class among the k nearest neighbors.

4. Assign the majority class as the predicted output for the test instance.

This algorithm offers several advantages [13],[14], including ease of implementation,

efficient performance with small training sets, independence from prior knowledge about

the data’s structure within the training set, no need for retraining when adding new

training patterns, and an easily interpretable output.

However, the k-NN classification algorithm has limitations. It involves computing

distances between the training data and a test instance, requiring additional computation

to identify the k nearest neighbors. This negatively impacts the algorithm’s scalability.

Depending on the composition of a test instance’s neighborhood, the appropriate k value

for classification may vary significantly. A high k value can yield good accuracy, but it

results in increased computational cost for nearest neighbor searching. Conversely, using

a small k value reduces computational cost but may adversely affect accuracy.

The k-nearest neighbor (k-NN) algorithm is recognized to be afflicted by two pri-

mary issues [18],[19]:

1. It entails significant computational time and storage space, particularly when han-

dling substantial datasets.
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2. The effectiveness of classification relies on a single parameter, namely, k.

To tackle the initial challenge, researchers delve into potential solutions by consid-

ering techniques that reduce dimensionality or select pertinent features. This may involve

the application of self-organizing feature maps (SOM) [7] or the incorporation of forward

and backward sequential selection.

This research emphasizes on addressing the second challenge, wherein each test

instance should not be restricted to consistently employing a fixed number of neighbors.

Earlier k-NN classification approaches typically determine the value of k either

by assigning a constant fixed value for all test data or by employing cross-validation to

estimate the k value for each test data point. This approach often results in a suboptimal

prediction rate in practical classification scenarios because it does not account for the

underlying data distribution. An example to illustrate this point is given below.

Figure 2.1 illustrates a k-NN classifier scenario with two distinct groups. The blue

group is denoted as group 1, and the red group is referred to as group 2. The yellow

instance represents the test instance, and there are two test instances, namely t1 and

t2. Let’s focus on t1. When using k=3, the prediction correctly identifies it as group

1. However, considering the example of t2, with k=3, the prediction mistakenly labels

it as group 1. In contrast, when t2 is evaluated with k=5, the prediction is accurate,

categorizing it as group 2. This highlights the importance of adapting the number of

nearest neighbors for different test instances.
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Figure 2.1: Example of k nearest neighbor for k=3 and k=5

2.1.1 The ensemble K-NN classifier

In 2014, A. B. Hassanat et al [6] introduced a novel approach to address the issue of

classification performance dependency on the selection of an optimal number of neighbors,

eliminating the necessity for specifying a fixed ‘k’ value in the classifier. Their proposal

involves employing ensemble learning based on the nearest neighbor rule. Essentially,

they utilize the traditional k-Nearest Neighbors (k-NN) classifier multiple times, each

time with a different ‘k’ value. The range of ‘k’ values considered typically starts from

1, 3, 5, and extends up to the square root of the training set size. Each classifier in this

ensemble contributes its vote for a particular class, and the final classification decision is

made using a majority rule, wherein the class with the highest number of votes is selected.

Figure 2.2 shows the algorithm of this classifier.
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Figure 2.2: ensemble knn Algorithm

2.2 Mass-ratio-variance Outlier Factors

In 2021, a parameter-free outlier score called mass-ratio-variance outlier factor

(MOF) [2] was introduced. This method is density-based approach, calculates the variance

of the mass-ratio distribution of a given data instance, where the density of the instance

is first computed and then compared to the densities of its neighboring instances. The

resulting outlier score indicates the extent to which the instance deviates from the norm

in terms of its density. Normal instances and their neighbors have similar densities,

whereas outliers have densities that differ significantly from those of their neighbors. By

evaluating the density of an instance in relation to that of its neighbors, this approach

provides an effective means of detecting outliers in a large dataset. The mass-ratio of

other instances is defined as the ratio of the number of instances within the sphere of the
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distance from the computed instance to that of other instances. The main mathematical

notations are defined as described in [2]:

Definition 1. (Distance between p and q) Given a dataset D ⊆ Rd, the Euclidean

distance of data point p = (p1,…, pd) ∈ D to data point q = (q1,…, qd) ∈ D denoted as

d(p, q) is defined as

d(p, q) =

√√√√
d∑

i=1

(pi − qi)2.

Definition 2. (Neighborhoods of data point q with respect to data point p) Given

a dataset D ⊆ Rd, the set of all data points within the neighborhood of data point q ∈ D

with respect to data point p ∈ D is define as the set of points that lies within the ball

centered at data point q with the radius d(q,p):

Np(q) = {o ∈ D | d(q,o) ! d(q,p)}.

Definition 3. (The mass-ratio of data point q with respect to data point p) Given

a dataset D ⊆ Rd and data point p ∈ D for any data point q ∈ D − {p}, the mass-ratio

of data point q with respect to data point p is defined as

massRp(q) =
| Np(q) |
| Nq(p) |

.

Definition 4. (MOF of data point p) Given a dataset D ⊆ Rd and the number

of data points in D is n for data point p ∈ D, µp is defined as mean of mass-ratio

distribution of data point p and MOF of data point p is defined as the variance of the

mass-ratio distribution of data point p:
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µp =

∑n
i=1,qi ̸=pmassRp(qi)

n− 1
.

MOF (p) =
∑n

i=1,qi ̸=p(massRp(qi)− µp)2

n− 1
.

Figure 2.3 shows the algorithm of MOF. Commence by computing the distances

between all instances in the dataset, proceed to determine the neighborhoods of data

point q with respect to data point p (Np(q)) and the neighborhoods of data point p

with respect to data point q (Nq(p)) , then calculate the mass-ratio of data point q with

respect to data point p, and ultimately compute the MOF using the provided formula.

Figure 2.3: MOF Algorithm

2.3 Evaluation

The metrics used to evaluate the quality of classification are derived from a confusion

matrix [5],[17] as depicted in Table 2.2, which tabulates the number of correctly and

incorrectly classified instances for each class. The rows in this matrix represent the true
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or actual class assignments of instances, while the columns display the predicted class

assignments made by the algorithm. The sum of all the entries within the confusion

matrix equals the total population of the test set. In other words, every sample in the

test set must be categorized within one of the matrix’s entries.

Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

Table 2.1: Confusion matrix for a two-class problem.

2.3.1 Precision

The precision [17] is defined as the number of true positives divided by the number

of all samples that were classified as positive

Precision =
TP

TP + FP
.

2.3.2 Recall

The recall [17], also called true positive rate (TPR) or sensitivity, is the number of

true positives divided by all samples that are actually positives

Recall =
TP

TP + FN
.

2.3.3 F1-score

To penalize false positives (also known as type I errors) and false negatives (also

known as type II errors), a new metric that takes into account these values merges the

precision and the recall (sensitivity) together. The Fβ-score creates a trade-off between

these two metrics [17]. it is defined as
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Fβ-score = (1 + β2)
Precision×Recall

(β2 × Precision) +Recall
.

which in terms of TP, FN, and FP, it goes as

Fβ-score = (1 + β2)× TP

(1 + β2)× TP + β2 × FN + FP
.

A particular case of the Fβ-score is the F1-score; this happens when β = 1, that

is

F1-score = 2× TP

2× TP + FN + FP
.

2.3.4 Accuracy

The accuracy [17] of a machine learning algorithm is one of the most simple metrics;

it is calculated by taking all the samples that were correctly predicted by the algorithm

and dividing them by the total number of samples. Using the notation of the confusion

matrix, the accuracy is

Accuracy =
TP + TN

TP + TN + FP + FN
.

2.3.5 Example

Here’s an example of a confusion matrix for a binary classification problem, such

as determining whether an email is spam or not.
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Positive prediction Negative prediction

Positive class 120 20

Negative class 10 900

Table 2.2: example of a confusion matrix for a binary classification problem

In this example:

• The top-left cell (120) represents the number of emails that were correctly classified

as “Spam” (True Positives).

• The bottom-left cell (10) represents the number of emails that were actually “No

Spam” but were incorrectly classified as “Spam” (False Positives).

• The top-right cell (20) represents the number of emails that were actually “Spam”

but were incorrectly classified as “No Spam” (False Negatives).

• The bottom-right cell (900) represents the number of emails that were correctly

classified as “No Spam” (True Negatives).

To calculate precision, recall, F1-score, and accuracy using the values from the

provided confusion matrix, apply the following formulas.

Precision =
TP

TP + FP
=

120

120 + 10
= 0.9231.

Recall =
TP

TP + FN
=

120

120 + 20
= 0.8571.

F1-score = 2× TP

2× TP + FN + FP
=

2× 120

2× 120 + 20 + 10
= 0.8889.
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Accuracy =
120 + 900

120 + 900 + 10 + 20
= 0.9643.

In this example, while the accuracy is relatively high at approximately 96.43%, it’s

important to understand why accuracy alone may not be the best metric to evaluate the

performance of a classification model. The reason lies in the class imbalance present in

the data. In the provided confusion matrix:

• There are 900 true negatives (No Spam correctly classified as No Spam).

• There are 120 true positives (Spam correctly classified as Spam).

• There are 20 false negatives (Spam incorrectly classified as No Spam).

• There are 10 false positives (No Spam incorrectly classified as Spam).

The class distribution is skewed because there are many more “No Spam” instances (920)

compared to “Spam” instances (130).

Accuracy is the ratio of correctly classified instances to the total number of in-

stances. In this case, it gives a high accuracy score because the model correctly classifies

a majority of the “No Spam” instances.

The problem with using accuracy in this scenario is that it doesn’t take into account

the consequences of misclassifying the minority class (in this case, “Spam”). A high

accuracy can be misleading when dealing with imbalanced datasets because the model

may appear to perform well due to the dominant class, while it might perform poorly in

correctly identifying the minority class.

This is where precision, recall, and the F1-score come into play. Precision and recall

provide insights into the model’s performance on the positive class (“Spam” in this case).

Precision tells you how many of the predicted positive instances were actually positive,

and recall tells you how many of the actual positive instances were correctly predicted.
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In this example, the precision and recall values help assess the model’s ability to correctly

identify “Spam” emails without being overly biased by the large number of “No Spam”

emails.

In summary, accuracy can be misleading when dealing with imbalanced datasets,

so it’s important to consider multiple metrics like precision, recall, and F1-score to have

a more comprehensive evaluation of a model’s performance, especially in situations where

class distribution is uneven.

2.4 Data used

This section provides an overview of the data utilized in the experiment, en-

compassing both synthesized data and information sourced from the UCI dataset.

2.4.1 Synthesized datasets

The synthesized data is divided into three categories based on the level of

sample overlap between the two groups, as delineated follow: 1. No overlap 2.

Slight overlap 3. Large overlap. Within each category, data is created using three

different patterns: Gaussian, moon shaped, and circle. Each pattern is produced

with five unique instances for each class, facilitating a comparison between bal-

anced and imbalanced datasets. Specifically, Class 0 consistently comprises 500

instances, while Class 1 varies from 100 to 500 instances, representing different

degrees of class imbalance. In this context, the color blue is used to signify Class

0, while the color red is employed to denote Class 1.

2.4.1.1 No overlap

1. Gaussian format

Figure 2.4 presents a Gaussian plot of the synthesized data, demonstrating a
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complete absence of overlap between the two classes. In Figure 2.4(a), Class

0 comprises 500 instances, and Class 1 consists of 100 instances. Figure

2.4(b) displays Class 0 with 500 instances and Class 1 with 200 instances.

Figure 2.4(c) illustrates Class 0 with 500 instances and Class 1 with 300

instances. In Figure 2.4(d), Class 0 contains 500 instances, and Class 1

encompasses 400 instances. Finally, Figure 2.4(e) portrays Class 0 with 500

instances and Class 1 with 500 instances.

(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.4: Visualization of synthesized Gaussian data with no overlap

2. Moon shaped format

Figure 2.5 showcases a moon-shaped plot of the synthesized data, revealing a

complete absence of overlap between the two classes. In Figure 2.5(a), Class

0 consists of 500 instances, while Class 1 comprises 100 instances. Figure
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2.5(b) exhibits Class 0 with 500 instances and Class 1 with 200 instances.

Figure 2.5(c) depicts Class 0 with 500 instances and Class 1 with 300 in-

stances. In Figure 2.5(d), Class 0 encompasses 500 instances, and Class 1

includes 400 instances. Finally, Figure 2.5(e) illustrates Class 0 with 500

instances and Class 1 with 500 instances.

(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.5: Visualization of synthesized moon shaped data with no overlap

3. Circle format

Figure 2.6 displays a circular plot of the synthesized data, clearly indicating

the absence of overlap between the two classes. In Figure 2.6(a), Class 0 is

represented by 500 instances, while Class 1 comprises 100 instances. Figure

2.6(b) presents Class 0 with 500 instances and Class 1 with 200 instances.

Figure 2.6(c) showcases Class 0 with 500 instances and Class 1 with 300
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instances. In Figure 2.6(d), Class 0 encompasses 500 instances, while Class

1 includes 400 instances. Finally, Figure 2.6(e) illustrates Class 0 with 500

instances and Class 1 with 500 instances.

(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.6: Visualization of synthesized circle data with no overlap

2.4.1.2 Slight overlap

1. Gaussian format

Figure 2.7 depicts a Gaussian plot of the synthesized data, showcasing a

subtle overlap between the two classes. In Figure 2.7(a), Class 0 is repre-

sented by 500 instances, and Class 1 comprises 100 instances. Figure 2.7(b)

presents Class 0 with 500 instances and Class 1 with 200 instances. Figure

2.7(c) illustrates Class 0 with 500 instances and Class 1 with 300 instances.

In Figure 2.7(d), Class 0 consists of 500 instances, while Class 1 encompasses
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400 instances. Finally, Figure 2.7(e) portrays Class 0 with 500 instances and

Class 1 with 500 instances.

(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.7: Visualization of synthesized Gaussian data with slight overlap

2. Moon shaped format

Figure 2.8 illustrates a moon-shaped plot of the synthesized data, high-

lighting a subtle degree of overlap between the two classes. Within Figure

2.8(a), Class 0 is represented by 500 instances, while Class 1 consists of 100

instances. In Figure 2.8(b), Class 0 comprises 500 instances, and Class 1 in-

cludes 200 instances. Figure 2.8(c) demonstrates Class 0 with 500 instances

and Class 1 with 300 instances. Meanwhile, Figure 2.8(d) displays Class 0

encompassing 500 instances, with Class 1 totaling 400 instances. Finally, in

Figure 2.8(e), Class 0 is depicted with 500 instances, and Class 1 with 500
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instances.”

(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.8: Visualization of synthesized moon shaped data with slight overlap

3. Circle format

Figure 2.9 showcases a circular plot of the synthesized data, emphasizing

a subtle level of overlap between the two classes. In Figure 2.9(a), Class

0 comprises 500 instances, while Class 1 is represented by 100 instances.

Figure 2.9(b) presents Class 0 with 500 instances, and Class 1 includes 200

instances. Figure 2.9(c) illustrates Class 0 with 500 instances and Class

1 with 300 instances. Concurrently, Figure 2.9(d) reveals Class 0 encom-

passing 500 instances, while Class 1 totals 400 instances. Finally, in Figure

2.9(e), Class 0 is portrayed with 500 instances, and Class 1 consists of 500

instances.
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(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.9: Visualization of synthesized circle data with slight overlap

2.4.1.3 Large overlap

1. Gaussian format

Figure 2.10 displays a Gaussian plot of the synthesized data, highlighting

a significant overlap between the two classes. Within Figure 2.10(a), Class

0 is represented by 500 instances, while Class 1 comprises 100 instances.

Figure 2.10(b) presents Class 0 with 500 instances, and Class 1 includes 200

instances. Figure 2.10(c) illustrates Class 0 with 500 instances and Class 1

with 300 instances. Meanwhile, in Figure 2.10(d), Class 0 consists of 500

instances, while Class 1 encompasses 400 instances. Finally, Figure 2.10(e)

portrays Class 0 with 500 instances and Class 1 with 500 instances.
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(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.10: Visualization of synthesized Gaussian data with large overlap

2. Moon shaped format

Figure 2.11 showcases a moon-shaped plot of the synthesized data, empha-

sizing a significant overlap between the two classes. Within Figure 2.11(a),

Class 0 is represented by 500 instances, while Class 1 comprises 100 in-

stances. Figure 2.11(b) presents Class 0 with 500 instances, and Class 1

includes 200 instances. Figure 2.11(c) illustrates Class 0 with 500 instances

and Class 1 with 300 instances. Meanwhile, in Figure 2.11(d), Class 0 con-

sists of 500 instances, while Class 1 encompasses 400 instances. Finally,

Figure 2.11(e) portrays Class 0 with 500 instances and Class 1 with 500

instances.
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(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.11: Visualization of synthesized moon shaped data with large overlap

3. Circle format

Figure 2.12 presents a circular plot of the synthesized data, emphasizing a

significant overlap between the two classes. Within Figure 2.12(a), Class

0 is represented by 500 instances, while Class 1 comprises 100 instances.

Figure 2.12(b) displays Class 0 with 500 instances, and Class 1 includes 200

instances. Figure 2.12(c) illustrates Class 0 with 500 instances and Class 1

with 300 instances. Meanwhile, in Figure 2.12(d), Class 0 consists of 500

instances, while Class 1 encompasses 400 instances. Finally, Figure 2.12(e)

portrays Class 0 with 500 instances and Class 1 with 500 instances.
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(a) 500 Class 0 instances and 100 Class 1 instances (b) 500 Class 0 instances and 200 Class 1 instances

(c) 500 Class 0 instances and 300 Class 1 instances (d) 500 Class 0 instances and 400 Class 1 instances

(e) 500 Class 0 instances and 500 Class 1 instances

Figure 2.12: Visualization of synthesized circle data with large overlap

2.4.2 UCI datasets

In this part, we present the outcomes derived from ten real-world datasets

sourced from the UCI repository. These datasets include the Wine dataset, the

Sonar dataset, the Glass dataset, the Harberman dataset, the Liver dataset,

the ionosphere dataset, the Wholesale dataset, the Cancer dataset, the German

dataset, and the QSAR dataset, all of which consist of only two classes. The table

labeled as 2.3 provides essential information for each dataset, including its name,

the number of instances denoted in the “#Inst” column, the number of instances

in majority in the “#maj”, the number of instances in minority in the “#min”,

and the number of attributes specified in the “#Att” column.
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No. Name #Inst #Maj #Min #Att

1 wine 178 107 71 13

2 Sonar 208 111 97 50

3 Glass 214 197 17 9

4 Haberman 306 225 81 3

5 Liver 345 200 145 6

6 Ionosphere 351 225 126 34

7 Wholesale 440 316 124 6

8 Cancer 709 458 251 9

9 German 1000 700 300 24

10 QSAR 1055 699 356 41

Table 2.3: Description of the dataset used

This chapter explores the algorithm that will be compared with the method

presented in the subsequent chapter and outlines the methodology for evaluat-

ing the classifier’s performance. The performance metrics employed in this study

include precision, recall, and F1-score, along with accuracy. Additionally, discus-

sions encompass the datasets utilized in the experiments, comprising both synthe-

sized datasets and real-world datasets sourced from the UCI dataset.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

CONGLOMERATE NEAREST NEIGHBOR

CLASSIFIER

This chapter elucidates the Conglomerate Nearest Neighbor Classifier, en-

compassing the algorithm itself, experimental findings derived from both synthe-

sized data and the UCI dataset, and concludes with a comprehensive discussion.

3.1 Conglomerate Nearest Neighbor Classifier (CNNC) algorithm

The suggested composite nearest neighbor classifier involves two distinct

learning phases:

1. the training phase, which involves assigning the number of nearest neighbors

to all instances, and

2. the testing phase, where the class of an instance is determined.

During the training phase, the conglomerate nearest neighbor algorithm es-

tablishes the maximum number of nearest neighbors for the dataset. This is

achieved by determining an odd integer, denoted as K, which is less than or equal

to the square root of the number of instances in each class. MOF is subsequently

computed for each class and partition, considering odd integers ranging from 1 to

K to determine the number of nearest neighbors assigned to each instance. It is

important to note that the choice of the number of neighbors is influenced by the

instance’s location within the dataset. For instances situated within the interior,

where they are surrounded by other instances, a higher number of neighbors is
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assigned to enhance predictive accuracy. Conversely, for instances positioned at

the dataset’s border, a smaller number of neighbors is utilized to mitigate mis-

classification. If an instance is far from any cluster, a small number of neighbors

(i.e., 1) is considered effective.

To ascertain the number of neighbors based on MOF, the range of MOFs for

each class, derived from the training dataset, is divided into segments, with each

segment spanning from the smallest to the largest MOF values. These segments

are evenly divided into the largest integer less than or equal to the square root

of the number of instances in the respective class (kc). For example, the highest

MOF range is assigned a value of k=1, the next highest range is assigned a value

of k=3, and this pattern continues until the lowest MOF range, which is assigned

a value of k = kc.

In the testing phase, when predicting the class of an unknown instance,

denoted as x, the conglomerate nearest neighbor algorithm initially identifies the

closest instance, xc. It then extracts the MOF value associated with xc and uses

it to determine the number of neighbors (kx) to be utilized. Finally, the class of

x is determined by assessing the majority class among the kx nearest neighbors of

x.

The algorithm for the conglomerate nearest neighbor classifier is illustrated

in Figure 3.1.
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Figure 3.1: The conglomerate nearest neighbor algorithm

3.2 Experimental results of the conglomerate nearest neighbor classi-

fier

The performance of both the Best k-NN algorithm which is selecting the k

that yields the highest F1-score among k values from 1, 3, ..., the square root of the

training data and the ensemble NN algorithm will be compared using the precision,

recall, F1-score, and accuracy obtained from both the synthesized datasets and

UCI datasets, to determine which algorithm outperforms the other.

3.2.1 Synthesized Dataset

Numerical results, initially documented in tables within Appendix A, are

now visually represented in this section through bar graphs. This graphical pre-

sentation aims to enhance the clarity of distinctions in numbers. The bar graphs

illustrate variations in precision, recall, F1-score, and accuracy between the en-
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semble Nearest Neighbor (ensemble NN) and Best k-NN, as well as between Con-

glomerate Nearest Neighbor Classifier (CNNC) and Best k-NN. A negative value

on the bar graph signifies that the ensemble NN or CNNC exhibits lower perfor-

mance than Best k-NN, while a positive value indicates that the ensemble NN or

CNNC surpasses Best k-NN.

3.2.1.1 No overlap

• Gaussian format

In scenarios where data is significantly imbalanced, that is, when Class 0

comprises 500 instances and Class 1 has 100 and 200 instances, the precision,

recall, F1-score, and accuracy metrics for Best k-NN, Ensemble NN, and

CNNC all equal to 1.

As the data distribution becomes more balanced, Best k-NN consistently

maintains precision, recall, F1-score, and accuracy at 1. However, Ensemble

NN and CNNC exhibit values that deviate from 1, yet remain close to or

equal to 1.

In Figure 3.2, precision, recall, F1-score, and accuracy metrics are illustrated

for a dataset containing 300 class 1 instances. It is evident that Conglom-

erate Nearest Neighbor Classifier (CNNC) exhibits slightly lower values in

precision, recall, F1-score, and accuracy compared to both Best k-NN and

Ensemble NN.
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(a) Differences in precision, and F1-score between the Ensemble NN and
Best k-NN, as well as between CNNC and Best k-NN

(b) Differences in recall and accuracy between the Ensemble NN and
Best k-NN, as well as between CNNC and Best k-NN

Figure 3.2: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 300 class 1 instances.

When Class 1 comprises 400 instances, both Ensemble NN and CNNC ex-

hibit only marginal decreases in precision, recall, F1-score, and accuracy

compared to Best k-NN as shown in figure 3.3.
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Figure 3.3: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 400 class 1 instances.

In Figure 3.4, precision, recall, F1-score, and accuracy metrics are illustrated

for a dataset containing 500 class 1 instances. It is evident that both CNNC

and Best k-NN outperform Ensemble NN in terms of precision, recall, F1-

score, and accuracy.

Figure 3.4: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 500 class 1 instances.

• Moon shaped format

In the scenario with 100 class 1 instances, the precision and accuracy for
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Best k-NN, Ensemble NN, and CNNC are all perfect with a score of 1.

Nevertheless, Figures 3.5 illustrate that the recall and F1-score of CNNC

surpass those of Ensemble NN but are slightly less than those of Best k-NN.

(a) Differences in recall between the Ensemble NN and Best k-NN, as
well as between CNNC and Best k-NN

(b) Differences in F1-score between the Ensemble NN and Best k-NN,
as well as between CNNC and Best k-NN

Figure 3.5: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 100 class 1 instances.

In the case of data featuring 200 class 1 instances, the precision and accuracy

of both the ensemble NN and CNNC are marginally lower than those of Best

k-NN, as illustrated in Figure 3.6(a). Meanwhile, Figure 3.6(b) highlights

that the recall of CNNC is higher than Ensemble NN but lower than Best

k-NN. Additionally, Figure 3.6(c) showcases the F1-score, revealing that the

values for Ensemble NN and CNNC are slightly lower than those of Best

k-NN.
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(a) Differences in precision and accuracy between the Ensemble NN and
Best k-NN, as well as between CNNC and Best k-NN

(b) Differences in recall between the Ensemble NN and Best k-NN, as
well as between CNNC and Best k-NN

(c) Differences in F1-score between the Ensemble NN and Best k-NN,
as well as between CNNC and Best k-NN

Figure 3.6: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 200 class 1 instances.

In the context of data comprising 300 class 1 instances, Figure 3.7(a) illus-

trates that the precision of CNNC is slightly lower than both Ensemble NN

and Best k-NN. However, in Figure 3.7(b), it is observed that the recall,

F1-score, and accuracy of both Ensemble NN and CNNC are equivalent to
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each other but slightly lower than those of Best k-NN.

(a) Differences in precision between the Ensemble NN and Best k-NN,
as well as between CNNC and Best k-NN

(b) Differences in recall, F1-score, and accuracy between the Ensemble
NN and Best k-NN, as well as between CNNC and Best k-NN

Figure 3.7: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 300 class 1 instances.

In the case of data featuring 400 class 1 instances, the precision, recall,

F1-score, and accuracy of CNNC are identical to those of Best k-NN, all

scoring 1. This performance is superior to that of Ensemble NN, as depicted

in Figure 3.8.
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Figure 3.8: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

In the dataset with 500 class 1 instances, precision, recall, F1-score, and

accuracy of CNNC were found to be lower than those of Ensemble NN and

Best k-NN, as illustrated in Figures 13 and 14.
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(a) Differences in precision, recall, and accuracy between the Ensemble
NN and Best k-NN, as well as between CNNC and Best k-NN

(b) Differences in F1-score, and between the Ensemble NN and Best
k-NN, as well as between CNNC and Best k-NN

Figure 3.9: Differences in results between the Ensemble NN and Best k-NN, as well
as between CNNC and Best k-NN for a dataset containing 500 class 1 instances.

• Circle format

The precision, recall, F1-score, and accuracy of Best k-NN, Ensemble NN,

and CNNC exhibited perfect scores of 1 when evaluated on circle format

with no overlap.

3.2.1.2 Slight overlap

• Gaussian format In datasets with 100, 300, 400, and 500 class 1 instances,

it is evident that the precision, recall, F1-score, and accuracy of CNNC are

consistently lower than those of Ensemble NN, and both are inferior to Best

k-NN. This comparison is depicted in Figures 3.10, 3.11, 3.12, and 3.13,
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respectively.

Figure 3.10: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.

Figure 3.11: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.
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Figure 3.12: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

Figure 3.13: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.

In the dataset featuring 200 class 1 instances, the precision, recall, and F1-

score of CNNC are lower than those of Ensemble NN, and both are inferior

to Best k-NN. Meanwhile, the accuracy of Ensemble NN surpasses that of

Best k-NN, whereas the accuracy of CNNC is equal to that of Best k-NN,

as depicted in Figure 3.14.
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Figure 3.14: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.

• Moon shaped format

In datasets featuring 100, 300, and 500 class 1 instances, the precision, recall,

F1-score, and accuracy of CNNC are higher than those of Ensemble NN but

remain inferior to Best k-NN. This comparison is illustrated in Figure 3.15,

3.16, and 3.20, respectively.

Figure 3.15: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.
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Figure 3.16: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.

Figure 3.17: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.

In the dataset with 200 class 1 instances, the precision, recall, F1-score, and

accuracy of CNNC are found to be lower than those of Ensemble NN, and

both are inferior to Best k-NN, as indicated in Figure 3.18.
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Figure 3.18: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.

In the dataset featuring 400 class 1 instances, CNNC’s precision, recall, F1-

score, and accuracy are observed to be lower than Ensemble NN. While

CNNC’s recall is equal to the Ensemble NN. However, precision, recall, F1-

score, and accuracy of CNNC and Ensemble NN are both lower than Best

k-NN, as depicted in Figure 3.19.

Figure 3.19: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

• Circle format



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

In datasets with class 1 instances numbering 100, 200, and 500, it is evident

that the precision, recall, F1-score, and accuracy of CNNC are consistently

lower than those of Ensemble NN. Additionally, both CNNC and Ensemble

NN exhibit values that are inferior to Best k-NN, as depicted in Figures

3.20, 3.21, and 3.25.

Figure 3.20: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.

Figure 3.21: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

Figure 3.22: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.

In the dataset with 300 instances of class 1, it is apparent that the precision,

recall, F1-score, and accuracy of CNNC are equal to those of Ensemble NN.

However, both CNNC and Ensemble NN display values lower than those of

Best k-NN, as depicted in Figure 3.23.

Figure 3.23: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.

In the dataset with 400 instances of class 1, the precision, F1-score, and

accuracy of CNNC were observed to be lower than those of Ensemble NN.

Nevertheless, the recall values of CNNC and Ensemble NN were identical.

However, both CNNC and Ensemble NN exhibited values lower than those
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of Best k-NN, as demonstrated in Figure 3.24.

Figure 3.24: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

3.2.1.3 Large overlap

• Gaussian format

In the dataset with 100 instances of class 1, it is evident that the precision

and accuracy of CNNC are lower than those of Ensemble NN. The recall

of CNNC is higher than that of Ensemble NN, and the F1-score of CNNC

is equal to Ensemble NN. However, both precision, recall, F1-score, and

accuracy of both CNNC and Ensemble NN are lower than those of Best

k-NN, as illustrated in Figure 3.25.
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Figure 3.25: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.

In the dataset featuring 200 instances of class 1, it is evident that the pre-

cision, F1-score, and accuracy of CNNC are lower than those of Ensemble

NN. However, the recall of CNNC equals that of Ensemble NN. Yet, both

precision, recall, F1-score, and accuracy of both CNNC and Ensemble NN

are lower than those of Best k-NN, as illustrated in Figure 3.26.

Figure 3.26: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.

In datasets with 300, 400, and 500 instances of class 1, it is apparent that the

precision, recall, F1-score, and accuracy of CNNC surpass those of Ensemble

NN. However, both precision, recall, F1-score, and accuracy of both CNNC

and Ensemble NN are lower than those of Best k-NN, as depicted in Figures
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3.27, 3.28, and 3.29, respectively.

Figure 3.27: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.

Figure 3.28: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

Figure 3.29: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.
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• Moon shaped format

In the dataset with 100 instances of class 1, the precision and accuracy

of CNNC are observed to be lower than those of Ensemble NN. However,

the recall and F1-score of CNNC are higher than those of Ensemble NN.

Nonetheless, all precision, recall, F1-score, and accuracy metrics for both

CNNC and Ensemble NN are lower than those of Best k-NN, as demon-

strated in Figure 3.30.

Figure 3.30: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.

In the dataset with 200 instances of class 1, it is evident that the precision

and F1-score of CNNC surpass both Best k-NN and Ensemble NN. Addi-

tionally, the accuracy of CNNC is equal to that of Best k-NN and higher

than Ensemble NN. Meanwhile, the recall of CNNC is higher than Ensemble

NN but lower than Best k-NN, as illustrated in Figure 3.31.
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Figure 3.31: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.

In the dataset with 300 instances of class 1, it is observed that the precision,

recall, F1-score, and accuracy of CNNC are lower than those of Ensemble

NN, and both are lower than those of Best k-NN, as depicted in Figure 3.32.

Figure 3.32: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.

In datasets with 400 and 500 instances of class 1, it is observed that the

precision, recall, F1-score, and accuracy of CNNC are higher than those of

Ensemble NN. However, both are lower than those of Best k-NN, as depicted
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in Figures 3.33 and 3.34, respectively.

Figure 3.33: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

Figure 3.34: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.

• Circle format

In the dataset with 100 instances of class 1, it is observed that the precision

of CNNC is lower than that of Ensemble NN. The precision of Ensemble

NN is higher than that of Best k-NN. Moreover, the recall, F1-score, and

accuracy of CNNC are lower than those of Ensemble NN, and both are lower
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than those of Best k-NN, as depicted in Figure 3.35.

Figure 3.35: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 100 class 1 instances.

In the dataset with 200 and 500 instances of class 1, it is observed that the

precision, recall, F1-score, and accuracy of CNNC are lower than those of

Ensemble NN, and both are lower than those of Best k-NN, as depicted in

Figures 3.36 and 3.37, respectively.

Figure 3.36: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 200 class 1 instances.
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Figure 3.37: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 500 class 1 instances.

In the dataset with 300 instances of class 1, it is observed that the precision

and accuracy of CNNC are lower than those of Ensemble NN. However, the

F1-score of CNNC is equal to that of Ensemble NN, and the recall of CNNC

is higher than that of Ensemble NN. Nevertheless, precision, recall, F1-score,

and accuracy of both CNNC and Ensemble NN are lower than those of Best

k-NN, as shown in Figure 3.38.

Figure 3.38: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 300 class 1 instances.
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In datasets with 400 instances of class 1, it is observed that the precision,

recall, F1-score, and accuracy of CNNC are higher than those of Ensemble

NN. However, both are lower than those of Best k-NN, as depicted in Figure

3.39.

Figure 3.39: Differences in precision, recall, F1-score, and accuracy between the En-
semble NN and Best k-NN, as well as between CNNC and Best k-NN for a dataset
containing 400 class 1 instances.

3.2.2 UCI Dataset

In this subsection, the outcomes of the experiments conducted on the UCI

dataset by each classifier are outlined across four tables. Specifically, Table 3.1

showcases Precision, Table 3.2 features Recall, Table 3.3 presents the F1-score,

and Table 3.4 displays accuracy. The values within each table represent the mean

± standard deviation, derived from 10 repetitions of the experiment.
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Data Best k-NN The ensemble NN CNNC

Wine 0.93±0.024 0.918±0.026 0.899±0.047

Sonar 0.828±0.042 0.768±0.044 0.685±0.043

Glass 0.853±0.085 0.827±0.084 0.776±0.16

Haberman 0.69±0.044 0.641±0.1 0.65±0.065

Liver 0.699±0.049 0.684±0.063 0.659±0.065

Ionosphere 0.899±0.024 0.873±0.023 0.879±0.026

Wholesale 0.894±0.034 0.876±0.037 0.877±0.04

Cancer 0.971±0.014 0.964±0.015 0.962±0.015

German 0.639±0.045 0.643±0.071 0.617±0.062

QSAR 0.804±0.019 0.778±0.026 0.747±0.031

Table 3.1: The Precision of the CNNC compared to other classifiers in UCI datasets.

Data Best k-NN The ensemble NN CNNC

Wine 0.924±0.039 0.898±0.035 0.893±0.043

Sonar 0.823±0.038 0.738±0.04 0.669±0.045

Glass 0.831±0.065 0.748±0.042 0.717±0.041

Haberman 0.624±0.019 0.57±0.035 0.584±0.019

Liver 0.683±0.042 0.656±0.06 0.645±0.061

Ionosphere 0.834±0.035 0.773±0.027 0.785±0.032

Wholesale 0.899±0.029 0.877±0.027 0.877±0.03

Cancer 0.973±0.012 0.959±0.015 0.958±0.014

German 0.613±0.036 0.542±0.024 0.54±0.02

QSAR 0.816±0.02 0.789±0.025 0.765±0.031

Table 3.2: The recall of the CNNC compared to other classifiers in UCI datasets.
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Data Best k-NN The ensemble NN CNNC

Wine 0.924±0.031 0.904±0.025 0.893±0.04

Sonar 0.821±0.041 0.733±0.046 0.662±0.051

Glass 0.839±0.066 0.761±0.053 0.727±0.061

Haberman 0.632±0.022 0.565±0.059 0.584±0.027

Liver 0.682±0.041 0.654±0.066 0.643±0.063

Ionosphere 0.853±0.032 0.793±0.034 0.806±0.034

Wholesale 0.895±0.03 0.875±0.032 0.876±0.034

Cancer 0.972±0.012 0.961±0.015 0.96±0.014

German 0.615±0.038 0.511±0.036 0.514±0.031

QSAR 0.808±0.019 0.781±0.026 0.751±0.031

Table 3.3: The F1-score of the CNNC compared to other classifiers in UCI datasets.

Data Best k-NN The ensemble NN CNNC

Wine 0.935±0.019 0.918±0.016 0.908±0.032

Sonar 0.824±0.037 0.745±0.044 0.674±0.051

Glass 0.921±0.032 0.92±0.024 0.921±0.022

Haberman 0.759±0.027 0.742±0.035 0.744±0.029

Liver 0.702±0.041 0.685±0.056 0.666±0.057

Ionosphere 0.876±0.026 0.834±0.026 0.842±0.028

Wholesale 0.909±0.026 0.892±0.028 0.893±0.031

Cancer 0.975±0.011 0.965±0.013 0.964±0.013

German 0.699±0.039 0.706±0.03 0.7±0.024

QSAR 0.825±0.019 0.8±0.024 0.768±0.029

Table 3.4: The accuracy of the CNNC compared to other classifiers in UCI datasets.

As evident from the data presented in Table 3.1-3.4, our method demon-
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strates superior accuracy compared to both the bestk-NN, and the ensemble NN

in the Glass dataset. It also outperforms the ensemble NN in the Harberman

dataset and the Ionosphere dataset. Our method exhibits higher precision and

recall than the ensemble NN in the Harberman dataset, Ionosphere dataset, and

Wholesale dataset. Moreover, our method achieves a higher F1-score than the en-

semble NN across several datasets, including the Harberman dataset, Ionosphere

dataset, Wholesale dataset, and German dataset. This could be attributed to the

arrangement of these datasets in edge-like structures, enhancing the efficiency of

MOFs in approximating the location of instance. Notably, there is not a significant

distinction between the performance of the Best k-NN and the ensemble NN.

3.3 The discussion of the conglomerate nearest neighbor classifier

This chapter introduces the conglomerate nearest neighbor algorithm, which

operates without requiring any specific parameters. The assignment of different

nearest neighbors for each instance is based on Mass-ratio-variance Outlier Fac-

tors (MOF), which adapts to the density of instances in a dataset. In experiments

conducted with synthesized datasets, this algorithm demonstrates similar perfor-

mance to the traditional k-NN and the ensemble NN approaches.

For two-class synthesized datasets, including the k-NN algorithm, the en-

semble NN algorithm, and the conglomerate nearest neighbor algorithm, all three

exhibit comparable precision, recall, F1-score and accuracy when classifying un-

known instances in the testing set. However, the conglomerate nearest neighbor

consistently lags behind the performance of the k-NN, irrespective of whether the

dataset exhibits issues related to overlapping or class imbalance.

When applied to real-world datasets, the conglomerate nearest neighbor al-

gorithm effectively predicts the class of unknown instances, performing at a com-
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parable level to the k-NN. It is worth noting that in specific datasets, such as the

German dataset and the Glass dataset, the conglomerate nearest neighbor out-

performs the k-NN in terms of accuracy. Additionally, the conglomerate nearest

neighbor achieves a higher F1-score than the ensemble NN in various datasets,

including the Harberman dataset, Ionosphere dataset, Wholesale dataset, and

German dataset.

What sets the conglomerate nearest neighbor apart is its ability to deliver

comparable performance to the k-NN without the need for fine-tuning specific

parameters. In contrast, the k-NN may require parameter optimization for optimal

results. Furthermore, the conglomerate nearest neighbor algorithm demonstrates

similar performance to the ensemble NN.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

MOF-GUIDED CONGLOMERATE NEAREST

NEIGHBOR CLASSIFIER

This chapter provides an overview of the classifier based on MOF (Mass-

ratio-variance Outlier Factors), encompassing detailed algorithms and pseudocode.

4.1 MOF-guided conglomerate nearest neighbor classifier (MNNC) al-

gorithm

MNNC’s method bears resemblance to kNN, necessitating the storage of

training instances for subsequent retrieval during the testing phase. During test-

ing, MNNC dynamically determines the number of neighbors for each test instance

based on MOF. Upon the arrival of a new test instance, MOF is computed, leading

to three distinct cases:

In Case 1, when MOF is greater than or equal to 1, a single neighbor is

employed. This choice is based on the understanding that a high MOF value

indicates that the test instance is distantly positioned from other clusters. Opting

for a small number of neighbors in this scenario helps mitigate the risk of inaccurate

predictions.

In Case 2, if MOF falls within the range [a, 1), the number of neighbors is

configured as
√
n
2 , where ‘a’ takes values from the range 0.01 to 0.7, and ‘n’ signifies

the number of instances in the training set. This adjustment is made considering

the likelihood that a test instance resides on the periphery of one of the clusters.
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By utilizing a number of neighbors greater than 1 but not excessively high, more

effective predictions can be achieved.

In Case 3, when MOF is less than ‘a’, the number of neighbors is set to
√
n. This choice is motivated by the scenario where the test instance is positioned

within cluster. Here, using a larger number of neighbors proves beneficial for

enhancing the accuracy of predictions.

Each specific value of ‘a’ is denoted as follows: When a = 0.1, it is referred

to as MNNC(1); when a = 0.3, it is denoted as MNNC(2); when a = 0.5, it is

labeled as MNNC(3); when a = 0.7, it is designated MNNC(4); when a = 0.01, it

is named MNNC(5); when a = 0.03, it is assigned the label MNNC(6); when a =

0.05, it is termed MNNC(7); and when a = 0.07, it is recognized as MNNC(8).

4.2 Experimental results of the MOF-guided conglomerate nearest

neighbor classifier

The performance of both the k-NN algorithm and the ensemble k-NN algo-

rithm will be compared using the precision, recall, F1-score, and accuracy obtained

from both the synthesized datasets and UCI datasets, to determine which algo-

rithm outperforms the other.

4.2.1 Synthesized Dataset

Similar to Chapter 3, numeric outcomes can be found in Appendices B, C,

D, and E. Precision is depicted in Appendix B, recall in Appendix C, F1-score in

Appendix D, and accuracy in Appendix E.

4.2.1.1 Precision

• No overlap
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– Gaussian format

For datasets comprising 100, 200, 300, and 400 instances of class 1, the

precision values for all iterations of ensemble NN and MNNC are con-

sistent with the Best k-NN, both registering a precision of 1. However,

when the dataset size is 500 instances of class 1, only ensemble NN and

MNNC(6) demonstrate precision values equal to the Best k-NN. The

remaining versions of MNNC exhibit lower precision values compared

to Best k-NN and ensemble NN, as depicted in Figure 4.1.

Figure 4.1: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Moon shaped format

For datasets with 100 and 500 instances of class 1, the precision of

both ensemble NN and all versions of MNNC is lower than that of Best

k-NN, as illustrated in Figures 4.2 and 4.3, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

Figure 4.2: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.

Figure 4.3: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

For datasets comprising 200 instances of class 1, the precision values

for ensemble NN, MNNC(2), MNNC(3), MNNC(4), MNNC(7), and

MNNC(8) are equivalent to that of Best k-NN, while the precision of

the remaining versions of MNNC is lower than Best k-NN, as illustrated

in Figure 4.4.
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Figure 4.4: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.

For datasets comprising 300 instances of class 1, the precision values for

ensemble NN, MNNC(2)and MNNC(6) are equivalent to that of Best

k-NN, while the precision of the remaining versions of MNNC is lower

than Best k-NN, as illustrated in Figure 4.5.

Figure 4.5: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

For datasets comprising 400 instances of class 1, the precision values

for ensemble NN, MNNC(3), MNNC(4), and MNNC(8) are equivalent

to that of Best k-NN, while the precision of the remaining versions of
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MNNC is lower than Best k-NN, as illustrated in Figure 4.6.

Figure 4.6: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.

– Circle format

The precision of Best k-NN, Ensemble NN, and all MNNC exhibited

perfect scores of 1 when evaluated on circle format with no overlap.

• Slight overlap

– Gaussian format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.7 to 4.11,

respectively.
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Figure 4.7: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.

Figure 4.8: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.
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Figure 4.9: Differences in precision, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

Figure 4.10: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.11: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.12 to

4.16, respectively.

Figure 4.12: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.13: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.14: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.15: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.16: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.17 to

4.21, respectively.
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Figure 4.17: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.18: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.19: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.20: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.21: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

• Large overlap

– Gaussian format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.22 to

4.26, respectively.

Figure 4.22: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.23: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.24: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.25: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.26: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.27 to

4.31, respectively.
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Figure 4.27: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.28: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.29: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.30: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.31: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The precision of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.32 to

4.36, respectively.

Figure 4.32: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.33: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.34: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.35: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.36: Differences in precision, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

4.2.1.2 Recall

• No overlap

– Gaussian format

For datasets comprising 100, 200, 300, and 400 instances of class 1,

the recall values for all iterations of ensemble NN and MNNC are con-

sistent with the Best k-NN, both registering a recall of 1. However,
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when the dataset size is 500 instances of class 1, only ensemble NN

and MNNC(6) demonstrate recall values equal to the Best k-NN. The

remaining versions of MNNC exhibit lower recall values compared to

Best k-NN and ensemble NN, as depicted in Figure 4.37.

Figure 4.37: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Moon shaped format

For datasets with 100 and 500 instances of class 1, the recall of both

ensemble NN and all versions of MNNC is lower than that of Best

k-NN, as illustrated in Figures 4.38 and 4.39, respectively.

Figure 4.38: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.
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Figure 4.39: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

For datasets comprising 200 instances of class 1, the recall values for

ensemble NN, MNNC(3), MNNC(4), and MNNC(7) are equivalent to

that of Best k-NN, while the recall of the remaining versions of MNNC

is lower than Best k-NN, as illustrated in Figure 4.40.

Figure 4.40: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.

For datasets comprising 300 instances of class 1, the recall values for en-

semble NN, MNNC(2), MNNC(3), MNNC(4), MNNC(6) and MNNC(7)

are equivalent to that of Best k-NN, while the recall of the remaining
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versions of MNNC is lower than Best k-NN, as illustrated in Figure

4.41.

Figure 4.41: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

For datasets comprising 400 instances of class 1, the recall values for en-

semble NN, MNNC(2), MNNC(3), MNNC(4), MNNC(5), and MNNC(8)

are equivalent to that of Best k-NN, while the recall of the remaining

versions of MNNC is lower than Best k-NN, as illustrated in Figure

4.42.

Figure 4.42: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

– Circle format

The recall of Best k-NN, Ensemble NN, and all MNNC exhibited perfect

scores of 1 when evaluated on circle format with no overlap.

• Slight overlap

– Gaussian format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.43 to 4.47,

respectively.

Figure 4.43: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.
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Figure 4.44: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.

Figure 4.45: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.
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Figure 4.46: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.

Figure 4.47: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Moon shaped format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.48 to 4.52,

respectively.
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Figure 4.48: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.

Figure 4.49: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.
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Figure 4.50: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

Figure 4.51: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.
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Figure 4.52: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Circle format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.53 to 4.57,

respectively.

Figure 4.53: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.
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Figure 4.54: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.

Figure 4.55: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.
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Figure 4.56: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.

Figure 4.57: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

• Large overlap

– Gaussian format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.58 to 4.62,

respectively.
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Figure 4.58: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.

Figure 4.59: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.
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Figure 4.60: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

Figure 4.61: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95

Figure 4.62: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Moon shaped format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.63 to 4.67,

respectively.

Figure 4.63: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.
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Figure 4.64: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.

Figure 4.65: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.
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Figure 4.66: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.

Figure 4.67: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

– Circle format

The recall of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.68 to 4.72,

respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98

Figure 4.68: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 100 class
1 instances.

Figure 4.69: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 200 class
1 instances.
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Figure 4.70: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 300 class
1 instances.

Figure 4.71: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 400 class
1 instances.
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Figure 4.72: Differences in recall, between the Ensemble NN and Best k-NN, as well
as among various versions of MNNC and Best k-NN for a dataset containing 500 class
1 instances.

4.2.1.3 F1-score

• No overlap

– Gaussian format

For datasets comprising 100, 200, 300, and 400 instances of class 1, the

F1-score values for all iterations of ensemble NN and MNNC are con-

sistent with the Best k-NN, both registering a F1-score of 1. However,

when the dataset size is 500 instances of class 1, only ensemble NN and

MNNC(6) demonstrate F1-score values equal to the Best k-NN. The

remaining versions of MNNC exhibit lower F1-score values compared

to Best k-NN and ensemble NN, as depicted in Figure 4.73.
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Figure 4.73: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

For datasets with 100 instances of class 1, the F1-score of both ensemble

NN and all versions of MNNC is lower than that of Best k-NN, as

illustrated in Figures 4.74.

Figure 4.74: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

For datasets comprising 200 instances of class 1, the F1-score values

for ensemble NN, MNNC(3), MNNC(4), and MNNC(7) are equivalent

to that of Best k-NN, while the F1-score of the remaining versions of
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MNNC is lower than Best k-NN, as illustrated in Figure 4.75.

Figure 4.75: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

For datasets comprising 300 instances of class 1, the F1-score values

for ensemble NN, MNNC(2), MNNC(4), and MNNC(5) are equivalent

to that of Best k-NN, while the F1-score of the remaining versions of

MNNC is lower than Best k-NN, as illustrated in Figure 4.76.

Figure 4.76: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

For datasets comprising 400 instances of class 1, the F1-score values

for ensemble NN, MNNC(2), MNNC(3), MNNC(4), and MNNC(8) are
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equivalent to that of Best k-NN, while the F1-score of the remaining

versions of MNNC is lower than Best k-NN, as illustrated in Figure

4.77.

Figure 4.77: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

For datasets comprising 500 instances of class 1, the F1-score values for

ensemble NN is equivalent to that of Best k-NN, while the F1-score of

all versions of MNNC is lower than Best k-NN, as illustrated in Figure

4.78.

Figure 4.78: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.
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– Circle format

The F1-score of Best k-NN, Ensemble NN, and all MNNC exhibited

perfect scores of 1 when evaluated on circle format with no overlap.

• Slight overlap

– Gaussian format

The F1-score of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.79 to 4.83,

respectively.

Figure 4.79: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.80: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.81: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.82: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.83: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The F1-score of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.84 to 4.88,

respectively.
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Figure 4.84: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.85: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.86: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.87: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.88: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The F1-score of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.89 to 4.93,

respectively.

Figure 4.89: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.90: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.91: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.92: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.93: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

• Large overlap

– Gaussian format

The F1-score of both ensemble NN and all versions of MNNC is consis-

tently lower than that of Best k-NN across varying numbers of class 1

instances, ranging from 100 to 500, as depicted in Figures 4.94 to 4.98,

respectively.
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Figure 4.94: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.95: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.96: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.97: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.98: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The F1-score of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.99 to

4.103, respectively.

Figure 4.99: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.100: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.101: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.102: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.103: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The F1-score of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.104 to

4.108, respectively.
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Figure 4.104: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.105: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.106: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.107: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.108: Differences in F1-score, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

4.2.1.4 Accuracy

• No overlap

– Gaussian format

For datasets comprising 100, 200, 300, and 400 instances of class 1, the

accuracy values for all iterations of ensemble NN and MNNC are con-

sistent with the Best k-NN, both registering a accuracy of 1. However,

when the dataset size is 500 instances of class 1, only ensemble NN and

MNNC(6) demonstrate accuracy values equal to the Best k-NN. The

remaining versions of MNNC exhibit lower accuracy values compared

to Best k-NN and ensemble NN, as depicted in Figure 4.109.
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Figure 4.109: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

For datasets with 100 and 500 instances of class 1, the accuracy of

both ensemble NN and all versions of MNNC is lower than that of Best

k-NN, as illustrated in Figures 4.110 and 4.111, respectively.

Figure 4.110: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.111: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

For datasets comprising 200 instances of class 1, the accuracy values

for ensemble NN, MNNC(3), MNNC(4), and MNNC(7) are equivalent

to that of Best k-NN, while the accuracy of the remaining versions of

MNNC is lower than Best k-NN, as illustrated in Figure 4.112.

Figure 4.112: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

For datasets comprising 300 instances of class 1, the accuracy values for

ensemble NN, MNNC(2), MNNC(3), MNNC(4), MNNC(5), MNNC(6)

and MNNC(7) are equivalent to that of Best k-NN, while the accu-
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racy of the remaining versions of MNNC is lower than Best k-NN, as

illustrated in Figure 4.113.

Figure 4.113: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

For datasets comprising 400 instances of class 1, the accuracy values

for ensemble NN, MNNC(2), MNNC(3), MNNC(4), and MNNC(8) are

equivalent to that of Best k-NN, while the accuracy of the remaining

versions of MNNC is lower than Best k-NN, as illustrated in Figure

4.114.

Figure 4.114: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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– Circle format

The accuracy of Best k-NN, Ensemble NN, and all MNNC exhibited

perfect scores of 1 when evaluated on circle format with no overlap.

• Slight overlap

– Gaussian format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.115 to

4.119, respectively.

Figure 4.115: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.116: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.117: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.118: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.119: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.120 to

4.124, respectively.
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Figure 4.120: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.121: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.122: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.123: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.124: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.125 to

4.129, respectively.

Figure 4.125: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.126: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.127: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.128: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.129: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

• Large overlap

– Gaussian format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.130 to

4.134, respectively.
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Figure 4.130: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.131: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.132: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.133: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.134: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Moon shaped format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.135 to

4.139, respectively.

Figure 4.135: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.
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Figure 4.136: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.

Figure 4.137: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.
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Figure 4.138: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.

Figure 4.139: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

– Circle format

The accuracy of both ensemble NN and all versions of MNNC is con-

sistently lower than that of Best k-NN across varying numbers of class

1 instances, ranging from 100 to 500, as depicted in Figures 4.140 to

4.144, respectively.
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Figure 4.140: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 100
class 1 instances.

Figure 4.141: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 200
class 1 instances.
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Figure 4.142: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 300
class 1 instances.

Figure 4.143: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 400
class 1 instances.
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Figure 4.144: Differences in accuracy, between the Ensemble NN and Best k-NN, as
well as among various versions of MNNC and Best k-NN for a dataset containing 500
class 1 instances.

4.2.2 UCI Dataset

In this subsection, the outcomes of the experiments conducted on the UCI

dataset by each classifier are outlined across four tables. Specifically, table 4.1

showcases precision, table 4.2 features recall, table 4.3 presents the F1-score, and

table 4.4 displays accuracy. The values within each table represent the mean ±

standard deviation, derived from 10 repetitions of the experiment.

Data Best k-NN The ensemble NN MNNC(1) MNNC(2) MNNC(3) MNNC(4) MNNC(5) MNNC(6) MNNC(7) MNNC(8)

Wine 0.928±0.029 0.913±0.035 0.904±0.041 0.895±0.041 0.904±0.032 0.885±0.049 0.893±0.027 0.905±0.052 0.903±0.02 0.896±0.059

Sonar 0.848±0.041 0.821±0.057 0.736±0.073 0.765±0.056 0.786±0.074 0.816±0.047 0.807±0.045 0.738±0.053 0.717±0.059 0.713±0.051

Glass 0.869±0.036 0.849±0.037 0.862±0.039 0.867±0.049 0.869±0.052 0.867±0.046 0.869±0.067 0.867±0.061 0.869±0.039 0.865±0.041

Haberman 0.716±0.051 0.673±0.071 0.669±0.08 0.617±0.072 0.612±0.067 0.661±0.091 0.724±0.1 0.632±0.052 0.699±0.061 0.676±0.059

Liver 0.724±0.037 0.701±0.042 0.663±0.036 0.642±0.042 0.636±0.033 0.661±0.038 0.65±0.069 0.659±0.044 0.622±0.039 0.629±0.064

Ionosphere 0.884±0.027 0.865±0.027 0.896±0.023 0.883±0.025 0.896±0.025 0.882±0.04 0.885±0.031 0.889±0.039 0.882±0.04 0.881±0.034

Wholesale 0.891±0.016 0.875±0.018 0.881±0.023 0.845±0.031 0.861±0.037 0.867±0.022 0.855±0.031 0.848±0.036 0.866±0.037 0.87±0.024

Cancer 0.968±0.012 0.96±0.013 0.958±0.019 0.964±0.016 0.955±0.013 0.959±0.015 0.958±0.016 0.951±0.013 0.959±0.011 0.957±0.017

German 0.629±0.021 0.639±0.049 0.624±0.06 0.627±0.03 0.594±0.027 0.634±0.044 0.64±0.039 0.638±0.066 0.636±0.063 0.636±0.044

QSAR 0.798±0.019 0.772±0.02 0.737±0.025 0.768±0.017 0.774±0.022 0.767±0.025 0.769±0.033 0.747±0.016 0.767±0.027 0.756±0.022

Table 4.1: The precision of all version of the MNNC compared to other classifiers in
UCI datasets.
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Data Best k-NN The ensemble NN MNNC(1) MNNC(2) MNNC(3) MNNC(4) MNNC(5) MNNC(6) MNNC(7) MNNC(8)

Wine 0.921±0.045 0.904±0.045 0.888±0.034 0.908±0.036 0.895±0.042 0.875±0.039 0.875±0.035 0.881±0.048 0.911±0.036 0.902±0.052

Sonar 0.842±0.039 0.81±0.054 0.726±0.069 0.761±0.059 0.77±0.063 0.802±0.045 0.677±0.051 0.727±0.054 0.695±0.053 0.702±0.055

Glass 0.839±0.054 0.777±0.046 0.818±0.043 0.84±0.061 0.844±0.043 0.832±0.04 0.841±0.072 0.825±0.067 0.817±0.07 0.832±0.046

Haberman 0.647±0.028 0.61±0.049 0.597±0.045 0.563±0.033 0.566±0.04 0.591±0.053 0.596±0.045 0.567±0.032 0.592±0.03 0.567±0.036

Liver 0.704±0.031 0.677±0.036 0.651±0.041 0.64±0.042 0.624±0.031 0.645±0.03 0.612±0.064 0.648±0.038 0.612±0.032 0.621±0.056

Ionosphere 0.821±0.03 0.771±0.025 0.827±0.037 0.81±0.05 0.827±0.042 0.801±0.019 0.814±0.061 0.817±0.069 0.806±0.046 0.802±0.036

Wholesale 0.888±0.015 0.869±0.021 0.869±0.024 0.851±0.026 0.867±0.034 0.867±0.027 0.859±0.039 0.876±0.024 0.88±0.041 0.874±0.038

Cancer 0.971±0.014 0.959±0.014 0.961±0.02 0.969±0.015 0.956±0.018 0.959±0.012 0.958±0.014 0.96±0.015 0.965±0.009 0.965±0.015

German 0.607±0.021 0.55±0.02 0.55±0.023 0.555±0.016 0.543±0.014 0.562±0.014 0.559±0.014 0.556±0.023 0.537±0.019 0.563±0.019

QSAR 0.806±0.02 0.787±0.022 0.754±0.029 0.785±0.014 0.79±0.02 0.782±0.022 0.765±0.037 0.761±0.014 0.784±0.026 0.757±0.02

Table 4.2: The recall of all version of the MNNC compared to other classifiers in UCI
datasets.

Data Best k-NN The ensemble NN MNNC(1) MNNC(2) MNNC(3) MNNC(4) MNNC(5) MNNC(6) MNNC(7) MNNC(8)

Wine 0.921±0.037 0.904±0.04 0.891±0.033 0.897±0.035 0.897±0.03 0.875±0.041 0.884±0.026 0.893±0.048 0.907±0.029 0.899±0.053

Sonar 0.841±0.04 0.807±0.056 0.723±0.068 0.76±0.057 0.769±0.067 0.802±0.046 0.736±0.052 0.732±0.056 0.706±0.056 0.707±0.056

Glass 0.845±0.05 0.794±0.049 0.829±0.044 0.849±0.053 0.854±0.044 0.843±0.037 0.855±0.07 0.845±0.064 0.842±0.063 0.848±0.039

Haberman 0.662±0.032 0.615±0.063 0.605±0.053 0.559±0.042 0.564±0.04 0.592±0.064 0.654±0.063 0.598±0.042 0.641±0.042 0.617±0.044

Liver 0.704±0.032 0.678±0.038 0.648±0.047 0.638±0.041 0.622±0.03 0.645±0.03 0.63±0.069 0.653±0.04 0.617±0.035 0.625±0.057

Ionosphere 0.837±0.03 0.788±0.028 0.844±0.035 0.825±0.047 0.844±0.038 0.819±0.03 0.848±0.054 0.851±0.069 0.842±0.044 0.84±0.037

Wholesale 0.888±0.012 0.871±0.018 0.873±0.021 0.847±0.028 0.862±0.03 0.865±0.022 0.857±0.033 0.862±0.029 0.873±0.039 0.872±0.03

Cancer 0.969±0.012 0.959±0.013 0.96±0.019 0.967±0.015 0.955±0.013 0.959±0.013 0.958±0.015 0.955±0.014 0.962±0.01 0.961±0.015

German 0.61±0.021 0.526±0.027 0.529±0.03 0.537±0.029 0.526±0.019 0.55±0.022 0.597±0.019 0.594±0.032 0.582±0.023 0.597±0.026

QSAR 0.8±0.019 0.777±0.02 0.742±0.026 0.772±0.016 0.779±0.022 0.772±0.024 0.767±0.034 0.754±0.016 0.775±0.027 0.756±0.026

Table 4.3: The F1-score of all version of the MNNC compared to other classifiers in
UCI datasets.

Data Best k-NN The ensemble NN MNNC(1) MNNC(2) MNNC(3) MNNC(4) MNNC(5) MNNC(6) MNNC(7) MNNC(8)

Wine 0.929±0.031 0.913±0.034 0.902±0.028 0.913±0.03 0.911±0.03 0.901±0.041 0.923±0.02 0.902±0.042 0.929±0.025 0.913±0.05

Sonar 0.842±0.04 0.81±0.056 0.727±0.067 0.771±0.059 0.775±0.067 0.808±0.045 0.789±0.05 0.729±0.059 0.756±0.059 0.71±0.054

Glass 0.87±0.048 0.837±0.046 0.859±0.044 0.88±0.04 0.874±0.044 0.874±0.027 0.869±0.046 0.872±0.055 0.861±0.049 0.882±0.032

Haberman 0.79±0.033 0.764±0.053 0.766±0.045 0.723±0.033 0.721±0.04 0.752±0.043 0.762±0.037 0.742±0.038 0.762±0.038 0.738±0.034

Liver 0.722±0.032 0.7±0.034 0.668±0.037 0.655±0.039 0.645±0.03 0.666±0.028 0.631±0.064 0.669±0.041 0.633±0.04 0.645±0.053

Ionosphere 0.858±0.026 0.823±0.025 0.866±0.028 0.85±0.037 0.867±0.038 0.846±0.037 0.867±0.036 0.86±0.05 0.86±0.033 0.853±0.031

Wholesale 0.903±0.013 0.888±0.017 0.891±0.017 0.865±0.024 0.881±0.03 0.88±0.022 0.876±0.031 0.889±0.028 0.899±0.033 0.887±0.025

Cancer 0.973±0.01 0.964±0.011 0.964±0.017 0.97±0.013 0.96±0.013 0.963±0.011 0.961±0.014 0.963±0.012 0.966±0.009 0.968±0.015

German 0.691±0.015 0.698±0.012 0.694±0.018 0.697±0.032 0.686±0.019 0.704±0.02 0.716±0.015 0.703±0.019 0.706±0.019 0.712±0.016

QSAR 0.82±0.016 0.796±0.019 0.762±0.025 0.786±0.017 0.794±0.022 0.789±0.024 0.773±0.031 0.767±0.014 0.789±0.025 0.776±0.022

Table 4.4: The accuracy of all version of the MNNC compared to other classifiers in
UCI datasets.

As evident from the data present in Table 4.1-4.4, the precision values for

MNNC(1), MNNC(3), and MNNC(7) exceed those of the Best k-NN in the Glass
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dataset. Similarly, in the Haberman dataset, MNNC(5) demonstrates higher preci-

sion compared to the Best k-NN. Moving on to the Ionosphere dataset, MNNC(1),

MNNC(3), MNNC(5), and MNNC(6) all exhibit higher precision than the Best k-

NN. In the German dataset, precision values for MNNC(4), MNNC(5), MNNC(6),

MNNC(7), and MNNC(8) surpass those of the Best k-NN.

Remarkably, all versions of MNNC outperform the ensemble NN in both the

Glass and Ionosphere datasets. In the case of the Haberman dataset, MNNC(5),

MNNC(7), and MNNC(8) exhibit higher precision than the ensemble NN. Fur-

thermore, MNNC(1) surpasses the ensemble NN in the Wholesale dataset, while

MNNC(2) outperforms it in the Cancer dataset. For the German dataset, MNNC(4)

to MNNC(8) demonstrate higher precision than the ensemble NN. Notably, in the

QSAR dataset, MNNC(3) outshines the ensemble NN.

The recall values for MNNC(2), MNNC(3), and MNNC(5) surpass those of

the Best k-NN in the Glass dataset. In the Ionosphere dataset, MNNC(1) and

MNNC(3) exhibit higher recall compared to the Best k-NN.

The recall values for MNNC(2), and MNNC(7) surpass those of the ensem-

ble NN in the Wine dataset. Impressively, all versions of MNNC outperform

the ensemble NN in both the Glass and Ionosphere datasets. Moving on to the

Wholesale dataset, MNNC(1), MNNC(6), MNNC(7), and MNNC(8) demonstrate

higher recall than the ensemble NN. Similarly, in the Cancer dataset, MNNC(1),

MNNC(2), MNNC(4), MNNC(6), MNNC(7), and MNNC(8) outshine the ensem-

ble NN. In the German dataset, MNNC(1), MNNC(2), MNNC(4), MNNC(5),

MNNC(6), and MNNC(8) exhibit higher recall than the ensemble NN. Lastly, in

the QSAR dataset, MNNC(3) surpasses the recall of the ensemble NN.

The F1-score for MNNC(2), MNNC(3), MNNC(5), MNNC(6), and MNNC(8)
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exceeds that of the Best k-NN in the Glass dataset. In the Haberman dataset,

MNNC(5), and MNNC(7) showcase higher F1-scores compared to the Best k-NN.

Turning to the Ionosphere dataset, MNNC(1), MNNC(3), MNNC(5), MNNC(6),

MNNC(7), and MNNC(8) all demonstrate higher F1-scores than the Best k-NN.

Notably, in the Wine dataset, MNNC(7) exhibits a higher F1-score than the

ensemble NN. Impressively, all versions of MNNC outperform the ensemble NN in

the Glass, Ionosphere, and German datasets. In the Haberman dataset, MNNC(5),

MNNC(7), and MNNC(8) surpass the ensemble NN in terms of F1-score. Simi-

larly, in the Wholesale dataset, MNNC(1), MNNC(7), and MNNC(8) outshine

the ensemble NN. For the Cancer dataset, MNNC(1), MNNC(2), MNNC(4),

MNNC(7), and MNNC(8) exhibit higher F1-scores than the ensemble NN.

The accuracy of MNNC(7) surpasses that of the Best k-NN in the Wine

dataset. In the Glass dataset, MNNC(2), MNNC(3), MNNC(4), MNNC(6), and

MNNC(8) exhibit higher accuracy compared to the Best k-NN. Moving on to the

Ionosphere dataset, MNNC(1), MNNC(3), MNNC(5), MNNC(6), and MNNC(7)

showcase higher accuracy than the Best k-NN. In the German dataset, all versions

of MNNC, except MNNC(3), demonstrate higher accuracy than the Best k-NN.

In the Wine dataset, MNNC(2), MNNC(5), MNNC(7), and MNNC(8) out-

perform the ensemble NN in terms of accuracy. Similarly, in the Glass and

Ionosphere datasets, all versions of MNNC surpass the ensemble NN in accu-

racy. In the Haberman dataset, MNNC(1) exhibits higher accuracy than the

ensemble NN. For the Wholesale dataset, MNNC(1), MNNC(6), MNNC(7), and

MNNC(8) showcase higher accuracy compared to the ensemble NN. In the Cancer

dataset, MNNC(1), MNNC(2), MNNC(7), and MNNC(8) outshine the ensemble

NN. Lastly, in the German dataset, MNNC(4), MNNC(5), MNNC(6), MNNC(7),
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and MNNC(8) demonstrate higher accuracy than the ensemble NN.

4.3 The discussion of the MOF-guided conglomerate classifier

This chapter introduces the Mass ratio-variance Outlier Factors (MOF)-

guided conglomerate nearest neighbor algorithm, a parameter-free approach for

determining the number of neighbors. The MOF algorithm is employed to gauge

the density of each test instance in the dataset, eliminating the need for man-

ual parameterization. In experiments using synthesized datasets, the proposed

algorithm demonstrates performance comparable to both the Best k-NN and the

ensemble NN.

For two-class synthesized datasets, including the k-NN algorithm, the en-

semble NN algorithm, and the MOF-guided conglomerate nearest neighbor algo-

rithm, all exhibit similar precision, recall, F1-score, and accuracy when classifying

unknown instances in the testing set. Although the MOF-guided conglomerate

nearest neighbor consistently trails behind the k-NN in performance, particularly

in datasets with overlapping or class imbalance issues.

In real-world datasets, the MOF-guided conglomerate nearest neighbor algo-

rithm proves effective in predicting the class of unknown instances, performing at a

level comparable to the Best k-NN. Notably, in specific datasets like Glass, Haber-

man, Ionosphere, and German, the MOF-guided conglomerate nearest neighbor

classifier version 5 (MNNC(5)) outperforms the Best k-NN in precision. Further-

more, all versions of the MOF-guided conglomerate nearest neighbor classifier

surpass the ensemble NN in terms of precision, recall, F1-score, and accuracy in

the Glass and Ionosphere datasets.

The distinguishing feature of the conglomerate nearest neighbor lies in its

ability to deliver competitive performance to the Best k-NN without the need
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for fine-tuning specific parameters, unlike the Best k-NN, which may require pa-

rameter optimization for optimal results. Additionally, the conglomerate nearest

neighbor algorithm exhibits similar performance to the ensemble NN.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION

5.1 Conclusion and Discussion

This thesis introduces two algorithms based on the k nearest neighbor con-

cept, with the objective of determining the optimal number of neighbors for each

test instance, a factor influenced by the instance’s position. The inclusion of Mass

ratio-variance Outlier Factors (MOF), a density-based outlier search, enhances the

algorithms.

In the CNNC method, the conglomerate nearest neighbor, the number of

neighbors is established during the training phase by calculating MOF for each

instance in the training dataset, with separate calculations for each class. The

range of MOFs for each class is then segmented, and these segments are evenly

divided into the largest integer less than or equal to the square root of the instances

in the respective class, assigning values ranging from k = 1 to the square root of

the number of instances in the respective class.

The inability of CNNC to predict classification results as anticipated may

stem from the fact that calculating the MOF at a point in the training dataset,

rather than at a point in the datatest set, does not effectively convey the location

information of the test set. Consequently, the MNNC method, which calculates

the MOF specifically for each test instance, addresses this limitation by providing

a more accurate representation of the lacation of test instance test.

In the MNNC method, the MOF-guided conglomerate nearest neighbor, the
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number of neighbors is determined during the testing phase. When a test instance

arrives, MOF is calculated without class separation and is considered in three

cases:

In Case 1, when MOF is greater than or equal to 1, a single neighbor is

employed, given that a high MOF value suggests the test instance is distantly

positioned from other clusters. Opting for a small number of neighbors in this

scenario mitigates the risk of inaccurate predictions.

In Case 2, if MOF falls within the range [a, 1), the number of neighbors

is set as
√
n
2 , with ‘a’ ranging from 0.01 to 0.7 and ‘n’ representing the instances

in the training set. This adjustment considers the likelihood that a test instance

resides on the periphery of clusters, allowing for more effective predictions with a

moderate number of neighbors.

In Case 3, when MOF is less than ‘a’, the number of neighbors is set to √
n,

beneficial for instances within a cluster where using a larger number of neighbors

enhances prediction accuracy.

Experimental results on synthesized datasets demonstrate that both methods

predict test instance classes with performance similar to the Best k-NN and the

ensemble NN. Our proposed method demonstrates predictive performance on par

with the Best k-NN in non-overlapping data types. The effectiveness arises from

the clear separation of data into distinct groups, a characteristic that significantly

enhances the performance of classification in this type of data. In real-world

datasets from the UCI dataset, both methods exhibit comparable performance to

the Best k-NN and the ensemble NN. MNNC(5) stands out as the optimal choice

among all experimental versions. It demonstrates precision that is superior to or

equal to the best KNN in four datasets, greater or equal recall in two datasets,
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and greater or equal accuracy to the best KNN in two datasets, surpassing other

MNNC versions.

Importantly, neither method requires parameter determination, addressing

the need to choose the number of neighbors in traditional kNN algorithms, where

different neighbor numbers yield varying results. In our current information-rich

world where data evolves swiftly, the process of identifying optimal parameter

values for each dataset could be a time-consuming endeavor. Thus, the absence

of parameters in these methods translates to time savings during the parameter

tuning phase.

The computational speed of each method varies, ranging from the fastest to

the slowest as follows: the Best k-NN, ensemble NN, CNNC, and MNNC. The Best

k-NN method is straightforward, selecting the k that yields the highest F1-score

among k values from 1, 3, ..., the square root of the training data. The ensemble

NN iteratively adjusts k continuously from 1, 3, ..., the square root of the training

data, and then votes based on the majority of prediction results, making it more

complex than the Best k-NN method. The CNNC method involves calculating

the MOF for every instance in the training data, including range division and

determining the number of neighbors, contributing to increased processing time.

Lastly, MNNC takes the longest time, as it requires recalculating the MOF for

each test instance when it is presented.

5.2 Future work

Future research efforts could investigate expanding this study to include

multiclass classification, incorporating categorical datasets, and applying it to dif-

ferent metrics, such as weighted-attribute distance.
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APPENDIX A : The result of synthesized dataset in chapter 3, conglomerate nearest neighbor classifier.

No overlap

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 1 1 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1 1 1

500 300 1 1 0.998±0.002 1 1 0.999±0.001 1 1 0.998±0.002 1 1 0.999±0.002

500 400 1 0.999±0.001 0.999±0.001 1 0.999±0.001 0.999±0.001 1 0.999±0.001 0.999±0.001 1 0.999±0.001 0.999±0.001

500 500 1 0.999±0.002 1 1 0.999±0.002 1 1 0.999±0.002 1 1 0.999±0.002 1

Table 1: The precision, recall, F1-score, and accuracy of CNNC in Gaussian with no overlap compared to other classifiers.

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.998±0.002 0.998±0.002 0.998±0.002 0.992±0.011 0.989±0.014 0.991±0.011 0.995±0.006 0.993±0.009 0.995±0.006 0.997±0.003 0.997±0.004 0.997±0.003

500 200 1 0.999±0.001 0.999±0.001 1 0.998±0.004 0.99±0.004 1 0.998±0.002 0.998±0.002 1 0.999±0.002 0.999±0.002

500 300 1 0.999±0.002 0.998±0.003 1 0.999±0.001 0.999±0.002 1 0.999±0.002 0.999±0.002 1 0.999±0.001 0.999±0.002

500 400 1 0.999±0.001 1 1 0.999±0.002 1 1 0.999±0.001 1 1 0.999±0.001 1

500 500 1 0.998±0.002 0.997±0.002 1 0.998±0.002 0.997±0.003 1 0.999±0.002 0.997±0.003 1 0.998±0.002 0.997±0.003

Table 2: The precision, recall, F1-score, and accuracy of CNNC in moon shaped with no overlap compared to other classifiers.
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Synthesized data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 1 1 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1 1 1

500 500 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: The precision, recall, F1-score, and accuracy of CNNC in circle with no overlap compared to other classifiers.

Slight overlap

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.979±0.015 0.978±0.014 0.976±0.014 0.988±0.013 0.984±0.012 0.975±0.019 0.983±0.012 0.981±0.010 0.975±0.013 0.990±0.007 0.989±0.006 0.986±0.008

500 200 0.978±0.011 0.978±0.012 0.976±0.012 0.981±0.010 0.976±0.011 0.973±0.011 0.979±0.010 0.977±0.010 0.974±0.013 0.98±0.008 0.982±0.008 0.98±0.011

500 300 0.980±0.010 0.978±0.010 0.972±0.009 0.980±0.011 0.975±0.013 0.972±0.010 0.980±0.010 0.976±0.011 0.972±0.009 0.982±0.009 0.978±0.010 0.97±0.008

500 400 0.987±0.007 0.981±0.009 0.980±0.008 0.988±0.007 0.980±0.010 0.979±0.008 0.987±0.007 0.981±0.009 0.980±0.008 0.988±0.007 0.981±0.009 0.980±0.008

500 500 0.986±0.006 0.979±0.008 0.978±0.011 0.986±0.006 0.979±0.007 0.978±0.011 0.986±0.006 0.979±0.008 0.978±0.011 0.986±0.007 0.979±0.008 0.978±0.011

Table 4: The precision, recall, F1-score, and accuracy of CNNC in Gaussian with slight overlap compared to other classifiers.
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Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.926±0.031 0.904±0.035 0.907±0.036 0.899±0.030 0.866±0.042 0.875±0.045 0.911±0.025 0.881±0.031 0.888±0.033 0.952±0.013 0.938±0.015 0.941±0.016

500 200 0.901±0.017 0.893±0.019 0.891±0.024 0.892±0.020 0.884±0.023 0.879±0.023 0.896±0.018 0.888±0.019 0.884±0.022 0.918±0.013 0.912±0.014 0.909±0.016

500 300 0.919±0.014 0.909±0.016 0.911±0.013 0.915±0.014 0.900±0.00716 0.905±0.015 0.916±0.013 0.903±0.015 0.906±0.014 0.921±0.013 0.909±0.015 0.912±0.014

500 400 0.916±0.023 0.909±0.023 0.906±0.022 0.916±0.021 0.90±0.0208 0.90±0.0205 0.915±0.022 0.908±0.022 0.905±0.021 0.916±0.022 0.909±0.021 0.906±0.021

500 500 0.908±0.020 0.897±0.017 0.900±0.016 0.908±0.020 0.89±0.016 0.900±0.016 0.908±0.020 0.897±0.017 0.900±0.016 0.908±0.020 0.897±0.016 0.900±0.016

Table 5: The precision, recall, F1-score, and accuracy of CNNC in moon shaped with slight overlap compared to other classifiers.

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.915±0.026 0.910±0.023 0.903±0.028 0.933±0.028 0.907±0.037 0.903±0.041 0.924±0.026 0.908±0.028 0.902±0.033 0.957±0.017 0.95±0.017 0.947±0.021

500 200 0.919±0.017 0.911±0.018 0.908±0.014 0.911±0.019 0.902±0.021 0.902±0.023 0.914±0.017 0.906±0.019 0.904±0.017 0.933±0.012 0.926±0.014 0.925±0.013

500 300 0.924±0.014 0.916±0.017 0.916±0.019 0.927±0.011 0.917±0.013 0.917±0.014 0.925±0.012 0.916±0.014 0.916±0.016 0.93±0.012 0.922±0.014 0.922±0.015

500 400 0.929±0.013 0.920±0.013 0.917±0.013 0.927±0.013 0.917±0.012 0.917±0.013 0.927±0.012 0.918±0.012 0.916±0.013 0.928±0.012 0.92±0.011 0.917±0.012

500 500 0.928±0.018 0.921±0.016 0.920±0.019 0.928±0.018 0.922±0.016 0.920±0.018 0.928±0.018 0.921±0.016 0.920±0.018 0.928±0.018 0.921±0.016 0.920±0.018

Table 6: The precision, recall, F1-score, and accuracy of CNNC in circle with slight overlap compared to other classifiers.

Large overlap
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Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.931±0.030 0.919±0.037 0.909±0.027 0.931±0.019 0.904±0.032 0.91±0.031 0.931±0.023 0.911±0.032 0.911±0.027 0.962±0.013 0.952±0.017 0.950±0.015

500 200 0.942±0.022 0.932±0.024 0.925±0.021 0.931±0.024 0.911±0.029 0.911±0.028 0.936±0.020 0.921±0.025 0.916±0.022 0.947±0.018 0.935±0.021 0.932±0.019

500 300 0.924±0.018 0.915±0.022 0.921±0.019 0.924±0.019 0.912±0.022 0.920±0.020 0.923±0.018 0.913±0.022 0.920±0.020 0.928±0.017 0.919±0.021 0.925±0.019

500 400 0.923±0.016 0.916±0.013 0.919±0.018 0.923±0.014 0.913±0.014 0.917±0.016 0.923±0.015 0.915±0.013 0.917±0.017 0.924±0.015 0.917±0.013 0.919±0.017

500 500 0.914±0.014 0.908±0.014 0.91±0.012 0.914±0.013 0.907±0.014 0.909±0.012 0.914±0.013 0.907±0.014 0.909±0.012 0.914±0.013 0.907±0.014 0.909±0.011

Table 7: The precision, recall, F1-score, and accuracy of CNNC in Gaussian with large overlap compared to other classifiers.

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.788±0.052 0.767±0.058 0.747±0.05 0.714±0.054 0.65±0.044 0.662±0.036 0.734±0.046 0.676±0.048 0.684±0.036 0.865±0.029 0.852±0.023 0.847±0.023

500 200 0.766±0.019 0.708±0.024 0.767±0.026 0.729±0.016 0.708±0.018 0.727±0.027 0.742±0.015 0.721±0.018 0.741±0.027 0.803±0.016 0.791±0.015 0.803±0.022

500 300 0.764±0.027 0.761±0.025 0.754±0.031 0.751±0.028 0.736±0.025 0.734±0.03 0.755±0.029 0.743±0.026 0.74±0.032 0.777±0.031 0.771±0.027 0.766±0.034

500 400 0.785±0.017 0.774±0.014 0.779±0.022 0.779±0.019 0.765±0.016 0.773±0.024 0.78±0.018 0.767±0.016 0.774±0.023 0.784±0.017 0.772±0.013 0.779±0.021

500 500 0.758±0.013 0.744±0.014 0.746±0.017 0.759±0.012 0.743±0.015 0.746±0.017 0.758±0.013 0.741±0.015 0.745±0.017 0.758±0.012 0.742±0.015 0.745±0.017

Table 8: The precision, recall, F1-score, and accuracy of CNNC in moon shaped with large overlap compared to other classifiers.

Data Precision Recall F1-score Accuracy

#C0 #C1 Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN Ensemble NN CNNC Best k-NN The ensemble NN CNNC

500 100 0.818±0.045 0.824±0.069 0.81±0.057 0.77±0.04 0.716±0.048 0.712±0.04 0.788±0.035 0.748±0.043 0.742±0.038 0.889±0.018 0.881±0.018 0.877±0.019

500 200 0.82±0.043 0.811±0.036 0.803±0.045 0.783±0.037 0.757±0.038 0.756±0.042 0.796±0.037 0.773±0.037 0.77±0.042 0.839±0.041 0.827±0.038 0.823±0.043

500 300 0.831±0.019 0.823±0.018 0.819±0.025 0.818±0.022 0.805±0.019 0.807±0.024 0.823±0.02 0.811±0.018 0.811±0.024 0.837±0.017 0.827±0.017 0.826±0.021

500 400 0.83±0.021 0.816±0.024 0.821±0.02 0.832±0.022 0.815±0.025 0.822±0.02 0.83±0.021 0.815±0.024 0.821±0.019 0.832±0.021 0.817±0.024 0.823±0.02

500 500 0.833±0.023 0.821±0.026 0.819±0.029 0.832±0.023 0.82±0.026 0.817±0.029 0.832±0.023 0.819±0.026 0.816±0.029 0.832±0.023 0.82±0.026 0.817±0.029

Table 9: The precision, recall, F1-score, and accuracy of CNNC in circle with large overlap compared to other classifiers.
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APPENDIX B : The precision of synthesized dataset in chapter 4, MOF-guided conglomerate nearest

neighbor classifier.

No overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1±0

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 0.999±0.002 0.999±0.002 0.998±0.002 0.999±0.002 0.999±0.002 1 0.999±0.002 0.999±0.002

Table 10: The precision of MNNC in Gaussian with no overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.998±0.002 0.998±0.003 0.998±0.002 0.999±0.002 0.999±0.002 0.998±0.003 0.996±0.004 0.999±0.002 0.998±0.002 0.998±0.004

500 200 1 1 0.999±0.002 1.002 1 1 0.998±0.002 0.998±0.002 1 1

500 300 1 1 0.997±0.003 1 0.999±0.002 0.999±0.002 0.999±0.002 1 0.999±0.002 0.998±0.003

500 400 1 1 0.998±0.003 0.999±0.002 1 1 0.998±0.002 0.998±0.003 0.999±0.002 1

500 500 1 0.998±0.002 0.997±0.003 0.999±0.002 0.999±0.002 0.998±0.003 0.998±0.002 0.998±0.003 0.999±0.002 0.999±0.002

Table 11: The precision of MNNC in moon shaped with no overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 1 1 1 1 1 1 1 1

Table 12: The precision of MNNC in circle with no overlap compared to other classifiers.

Slight overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.984±0.016 0.982±0.018 0.979±0.018 0.977±0.018 0.967±0.017 0.979±0.015 0.977±0.021 0.979±0.015 0.982±0.012 0.975±0.02

500 200 0.985±0.007 0.979±0.009 0.981±0.008 0.985±0.011 0.979±0.008 0.984±0.01 0.982±0.007 0.986±0.011 0.979±0.008 0.98±0.008

500 300 0.98±0.01 0.974±0.011 0.972±0.011 0.98±0.01 0.974±0.011 0.98±0.01 0.981±0.006 0.977±0.01 0.975±0.01 0.979±0.015

500 400 0.986±0.008 0.978±0.009 0.975±0.012 0.978±0.009 0.98±0.011 0.982±0.01 0.974±0.009 0.983±0.008 0.974±0.009 0.979±0.011

500 500 0.983±0.007 0.976±0.008 0.974±0.008 0.974±0.006 0.974±0.008 0.981±0.005 0.983±0.005 0.974±0.011 0.98±0.01 0.977±0.01

Table 13: The precision of MNNC in Gaussian with slight overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.914±0.033 0.896±0.032 0.901±0.042 0.896±0.04 0.89±0.046 0.907±0.042 0.902±0.034 0.911±0.042 0.9±0.041 0.893±0.043

500 200 0.9±0.018 0.894±0.018 0.89±0.026 0.895±0.019 0.888±0.022 0.895±0.02 0.886±0.027 0.881±0.018 0.886±0.025 0.888±0.018

500 300 0.918±0.02 0.907±0.022 0.911±0.022 0.917±0.016 0.905±0.017 0.9±0.021 0.907±0.014 0.908±0.014 0.911±0.011 0.908±0.028

500 400 0.93±0.019 0.923±0.018 0.92±0.014 0.918±0.02 0.905±0.014 0.911±0.018 0.91±0.013 0.907±0.012 0.915±0.013 0.909±0.015

500 500 0.911±0.01 0.901±0.009 0.896±0.01 0.896±0.02 0.893±0.011 0.898±0.027 0.894±0.02 0.9±0.025 0.896±0.02 0.894±0.016

Table 14: The precision of MNNC in moon shaped with slight overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.925±0.035 0.903±0.05 0.899±0.05 0.897±0.03 0.891±0.016 0.905±0.029 0.889±0.038 0.898±0.034 0.908±0.028 0.899±0.035

500 200 0.922±0.022 0.916±0.023 0.915±0.017 0.916±0.031 0.923±0.025 0.926±0.025 0.917±0.019 0.929±0.028 0.907±0.019 0.917±0.019

500 300 0.924±0.011 0.916±0.013 0.912±0.011 0.92±0.015 0.916±0.015 0.915±0.014 0.92±0.017 0.91±0.02 0.918±0.021 0.916±0.02

500 400 0.933±0.009 0.923±0.012 0.922±0.012 0.923±0.026 0.923±0.01 0.919±0.01 0.93±0.015 0.919±0.016 0.924±0.014 0.93±0.019

500 500 0.929±0.011 0.921±0.012 0.92±0.015 0.923±0.013 0.922±0.012 0.918±0.012 0.914±0.011 0.921±0.008 0.925±0.007 0.916±0.014

Table 15: The precision of MNNC in circle with slight overlap compared to other classifiers.

Large overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.931±0.032 0.915±0.041 0.914±0.045 0.925±0.032 0.897±0.03 0.899±0.026 0.911±0.038 0.912±0.04 0.894±0.036 0.914±0.032

500 200 0.933±0.018 0.924±0.023 0.925±0.021 0.922±0.021 0.924±0.028 0.93±0.018 0.928±0.009 0.931±0.013 0.913±0.021 0.913±0.026

500 300 0.934±0.016 0.927±0.016 0.93±0.015 0.923±0.023 0.92±0.012 0.922±0.019 0.927±0.018 0.91±0.02 0.925±0.012 0.916±0.015

500 400 0.923±0.014 0.915±0.011 0.915±0.01 0.92±0.012 0.908±0.015 0.908±0.011 0.912±0.025 0.913±0.013 0.917±0.013 0.906±0.01

500 500 0.93±0.012 0.922±0.013 0.922±0.015 0.921±0.016 0.917±0.01 0.909±0.01 0.916±0.011 0.92±0.025 0.913±0.015 0.928±0.012

Table 16: The precision of MNNC in Gaussian with large overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.781±0.064 0.76±0.06 0.733±0.053 0.751±0.063 0.714±0.074 0.766±0.071 0.77±0.086 0.732±0.05 0.787±0.074 0.751±0.069

500 200 0.764±0.032 0.747±0.027 0.746±0.038 0.732±0.045 0.731±0.049 0.737±0.04 0.749±0.025 0.726±0.04 0.733±0.031 0.756±0.025

500 300 0.787±0.031 0.758±0.03 0.763±0.041 0.738±0.038 0.756±0.035 0.738±0.031 0.74±0.021 0.758±0.02 0.734±0.024 0.742±0.027

500 400 0.795±0.025 0.783±0.026 0.776±0.029 0.759±0.017 0.768±0.026 0.775±0.026 0.77±0.018 0.753±0.04 0.773±0.027 0.762±0.026

500 500 0.758±0.013 0.746±0.019 0.738±0.02 0.744±0.029 0.745±0.015 0.747±0.029 0.735±0.02 0.738±0.011 0.74±0.02 0.741±0.025

Table 17: The precision of MNNC in moon shaped with large overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.806±0.036 0.794±0.042 0.781±0.036 0.789±0.055 0.795±0.031 0.795±0.051 0.802±0.035 0.79±0.055 0.778±0.032 0.782±0.063

500 200 0.835±0.029 0.818±0.028 0.809±0.029 0.813±0.043 0.802±0.033 0.797±0.038 0.795±0.033 0.809±0.034 0.814±0.026 0.793±0.04

500 300 0.847±0.024 0.831±0.018 0.829±0.031 0.832±0.03 0.817±0.02 0.839±0.022 0.824±0.04 0.831±0.025 0.83±0.03 0.814±0.024

500 400 0.833±0.028 0.815±0.03 0.814±0.034 0.816±0.016 0.809±0.023 0.823±0.016 0.823±0.015 0.817±0.028 0.81±0.023 0.806±0.019

500 500 0.823±0.022 0.807±0.025 0.805±0.026 0.803±0.022 0.804±0.017 0.815±0.015 0.803±0.012 0.799±0.022 0.804±0.015 0.805±0.014

Table 18: The precision of MNNC in circle with large overlap compared to other classifiers.
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APPENDIX C : The recall of synthesized dataset in chapter 4, MOF-guided conglomerate nearest neighbor

classifier.

No overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 0.999±0.002 0.999±0.002 0.998±0.002 0.999±0.002 0.999±0.002 1 0.999±0.002 0.999±0.002

Table 19: The recall of MNNC in Gaussian with no overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.993±0.009 0.991±0.013 0.991±0.009 0.995±0.01 0.996±0.009 0.991±0.013 0.991±0.017 0.995±0.008 0.992±0.01 0.991±0.015

500 200 1 1 0.998±0.005 0.999±0.002 1 1 0.999±0.003 0.996±0.005 1 0.999±0.003

500 300 1 1 0.997±0.003 1 1 1 0.999±0.002 1 1 0.999±0.002

500 400 1 1 0.998±0.003 1 1 1 1 0.998±0.002 0.999±0.002 1

500 500 1 0.998±0.002 0.997±0.003 0.999±0.002 0.999±0.002 0.998±0.003 0.999±0.002 0.998±0.003 0.999±0.002 0.999±0.001

Table 20: The recall of MNNC in moon shaped with no overlap compared to other classifiers.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

159

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 1 1 1 1 1 1 1 1

Table 21: The recall of MNNC in circle with no overlap compared to other classifiers.

Slight overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.983±0.014 0.983±0.014 0.971±0.019 0.967±0.028 0.97±0.019 0.979±0.013 0.982±0.014 0.972±0.029 0.97±0.022 0.97±0.026

500 200 0.988±0.009 0.981±0.009 0.981±0.009 0.984±0.01 0.977±0.012 0.985±0.01 0.988±0.014 0.979±0.009 0.981±0.011 0.982±0.007

500 300 0.979±0.01 0.972±0.013 0.97±0.013 0.978±0.012 0.974±0.012 0.978±0.009 0.975±0.01 0.979±0.009 0.976±0.005 0.98±0.013

500 400 0.986±0.008 0.978±0.011 0.974±0.013 0.977±0.009 0.981±0.012 0.982±0.01 0.984±0.008 0.974±0.009 0.975±0.009 0.978±0.011

500 500 0.983±0.007 0.977±0.008 0.975±0.008 0.974±0.006 0.974±0.008 0.982±0.005 0.974±0.011 0.983±0.005 0.98±0.01 0.977±0.01

Table 22: The recall of MNNC in Gaussian with slight overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.895±0.025 0.875±0.03 0.847±0.045 0.883±0.055 0.877±0.052 0.876±0.043 0.869±0.027 0.85±0.042 0.874±0.028 0.871±0.043

500 200 0.895±0.021 0.882±0.018 0.882±0.025 0.877±0.016 0.89±0.033 0.893±0.036 0.879±0.028 0.875±0.035 0.88±0.024 0.876±0.026

500 300 0.917±0.019 0.904±0.021 0.907±0.021 0.912±0.022 0.907±0.021 0.898±0.026 0.911±0.012 0.911±0.014 0.91±0.013 0.908±0.022

500 400 0.932±0.019 0.924±0.018 0.921±0.015 0.917±0.021 0.904±0.014 0.912±0.019 0.91±0.013 0.91±0.013 0.916±0.015 0.91±0.014

500 500 0.912±0.01 0.901±0.01 0.896±0.01 0.895±0.02 0.893±0.012 0.897±0.026 0.9±0.025 0.896±0.02 0.896±0.02 0.893±0.015

Table 23: The recall of MNNC in moon shaped with slight overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.913±0.035 0.89±0.037 0.886±0.035 0.892±0.025 0.883±0.03 0.897±0.04 0.904±0.042 0.895±0.038 0.896±0.03 0.907±0.023

500 200 0.912±0.019 0.904±0.021 0.903±0.018 0.902±0.035 0.906±0.025 0.915±0.03 0.914±0.022 0.912±0.026 0.9±0.015 0.909±0.018

500 300 0.929±0.012 0.922±0.017 0.918±0.014 0.923±0.014 0.923±0.018 0.917±0.015 0.913±0.019 0.922±0.022 0.92±0.019 0.922±0.02

500 400 0.935±0.007 0.925±0.008 0.926±0.008 0.922±0.026 0.923±0.009 0.919±0.009 0.918±0.017 0.927±0.017 0.925±0.013 0.929±0.018

500 500 0.929±0.012 0.92±0.012 0.918±0.016 0.923±0.013 0.922±0.012 0.918±0.011 0.922±0.011 0.914±0.01 0.924±0.008 0.916±0.014

Table 24: The recall of MNNC in circle with slight overlap compared to other classifiers.

Large overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.913±0.037 0.894±0.048 0.886±0.053 0.873±0.041 0.879±0.028 0.886±0.042 0.894±0.031 0.872±0.043 0.882±0.022 0.864±0.027

500 200 0.927±0.02 0.922±0.021 0.921±0.026 0.903±0.02 0.915±0.039 0.899±0.03 0.912±0.013 0.908±0.023 0.91±0.034 0.906±0.025

500 300 0.928±0.015 0.918±0.016 0.923±0.013 0.922±0.019 0.916±0.021 0.917±0.02 0.906±0.018 0.924±0.017 0.922±0.015 0.916±0.015

500 400 0.92±0.012 0.912±0.01 0.911±0.009 0.92±0.013 0.905±0.018 0.907±0.012 0.913±0.014 0.913±0.026 0.916±0.014 0.906±0.011

500 500 0.93±0.011 0.921±0.013 0.922±0.014 0.92±0.015 0.918±0.018 0.908±0.01 0.92±0.025 0.917±0.012 0.912±0.014 0.927±0.013

Table 25: The recall of MNNC in Gaussian with large overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.712±0.033 0.667±0.027 0.647±0.04 0.665±0.046 0.66±0.058 0.667±0.035 0.661±0.045 0.632±0.052 0.683±0.046 0.645±0.03

500 200 0.724±0.031 0.712±0.033 0.713±0.04 0.692±0.028 0.689±0.036 0.696±0.025 0.682±0.033 0.707±0.021 0.694±0.025 0.713±0.04

500 300 0.765±0.026 0.741±0.027 0.745±0.033 0.72±0.037 0.741±0.036 0.724±0.032 0.741±0.025 0.725±0.028 0.719±0.022 0.728±0.022

500 400 0.79±0.025 0.776±0.024 0.769±0.027 0.756±0.015 0.763±0.029 0.774±0.025 0.751±0.039 0.766±0.021 0.769±0.027 0.759±0.027

500 500 0.758±0.011 0.746±0.017 0.737±0.017 0.743±0.028 0.746±0.016 0.747±0.029 0.737±0.011 0.735±0.02 0.74±0.021 0.741±0.025

Table 26: The recall of MNNC in moon shaped with large overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.756±0.038 0.731±0.046 0.723±0.044 0.725±0.033 0.705±0.028 0.716±0.049 0.723±0.053 0.733±0.063 0.732±0.044 0.737±0.057

500 200 0.792±0.03 0.776±0.027 0.768±0.03 0.768±0.024 0.763±0.039 0.765±0.026 0.771±0.024 0.774±0.027 0.778±0.028 0.772±0.034

500 300 0.83±0.022 0.816±0.012 0.814±0.029 0.816±0.028 0.8±0.021 0.82±0.027 0.82±0.03 0.809±0.041 0.821±0.029 0.802±0.02

500 400 0.834±0.027 0.816±0.029 0.815±0.032 0.813±0.015 0.808±0.021 0.822±0.016 0.816±0.03 0.819±0.017 0.811±0.023 0.805±0.019

500 500 0.822±0.022 0.807±0.024 0.805±0.026 0.803±0.022 0.803±0.018 0.815±0.016 0.799±0.022 0.801±0.01 0.805±0.014 0.804±0.014

Table 27: The recall of MNNC in circle with large overlap compared to other classifiers.
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APPENDIX D : The F1-score of synthesized dataset in chapter 4, MOF-guided conglomerate nearest

neighbor classifier.

No overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 0.999±0.002 0.999±0.002 0.998±0.002 0.999±0.002 0.999±0.002 1 0.999±0.002 0.999±0.002

Table 28: The F1-score of MNNC in Gaussian with no overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.995±0.006 0.994±0.008 0.994±0.006 0.997±0.006 0.997±0.005 0.994±0.008 0.997±0.005 0.988±0.013 0.995±0.006 0.994±0.011

500 200 1 1 0.998±0.003 0.999±0.003 1 1 0.997±0.004 0.997±0.003 1 0.999±0.002

500 300 1 1 0.997±0.003 1 0.999±0.002 1 1 0.999±0.002 0.999±0.002 0.998±0.003

500 400 1 1 0.998±0.003 1 1 1 0.998±0.002 0.998±0.002 0.999±0.002 1

500 500 1 1 0.997±0.003 0.999±0.002 0.999±0.002 0.998±0.003 0.998±0.003 0.998±0.002 0.999±0.002 0.999±0.002

Table 29: The F1-score of MNNC in moon shaped with no overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1±0

500 200 1 1 1 1 1 1 1 1±0 1 1±0

500 300 1 1 1 1 1 1 1 1±0 1 1±0

500 400 1 1 1 1 1 1 1 1±0 1 1±0

500 500 1 1 1 1 1 1 1 1±0 1 1±0

Table 30: The F1-score of MNNC in circle with no overlap compared to other classifiers.

Slight overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.983±0.012 0.982±0.014 0.975±0.016 0.972±0.022 0.968±0.01 0.979±0.01 0.98±0.011 0.974±0.021 0.976±0.015 0.972±0.018

500 200 0.986±0.007 0.98±0.008 0.981±0.008 0.984±0.01 0.978±0.009 0.985±0.009 0.987±0.011 0.98±0.007 0.98±0.009 0.981±0.005

500 300 0.979±0.01 0.973±0.012 0.971±0.011 0.979±0.011 0.974±0.011 0.979±0.009 0.976±0.01 0.98±0.007 0.975±0.008 0.98±0.014

500 400 0.986±0.008 0.978±0.01 0.974±0.013 0.977±0.009 0.981±0.011 0.982±0.01 0.983±0.008 0.974±0.009 0.975±0.009 0.978±0.011

500 500 0.983±0.007 0.976±0.008 0.974±0.008 0.974±0.006 0.974±0.008 0.981±0.005 0.974±0.011 0.983±0.005 0.98±0.01 0.976±0.01

Table 31: The F1-score of MNNC in Gaussian with slight overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.902±0.02 0.883±0.02 0.868±0.038 0.887±0.044 0.879±0.042 0.888±0.034 0.886±0.021 0.871±0.03 0.885±0.027 0.88±0.039

500 200 0.897±0.018 0.887±0.016 0.885±0.024 0.884±0.014 0.888±0.024 0.893±0.027 0.879±0.023 0.88±0.031 0.882±0.023 0.881±0.022

500 300 0.918±0.019 0.906±0.021 0.909±0.021 0.914±0.019 0.906±0.019 0.899±0.024 0.909±0.012 0.908±0.013 0.91±0.011 0.908±0.025

500 400 0.931±0.019 0.923±0.018 0.92±0.014 0.917±0.021 0.904±0.014 0.911±0.019 0.908±0.012 0.909±0.013 0.915±0.014 0.909±0.014

500 500 0.911±0.01 0.9±0.01 0.895±0.01 0.895±0.021 0.893±0.011 0.897±0.026 0.899±0.025 0.894±0.021 0.896±0.02 0.893±0.015

Table 32: The F1-score of MNNC in moon shaped with slight overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.918±0.032 0.895±0.037 0.89±0.035 0.892±0.013 0.886±0.019 0.9±0.031 0.898±0.027 0.89±0.033 0.886±0.023 0.902±0.024

500 200 0.915±0.017 0.908±0.019 0.907±0.014 0.908±0.032 0.914±0.023 0.92±0.026 0.921±0.024 0.914±0.02 0.911±0.027 0.912±0.018

500 300 0.926±0.01 0.918±0.014 0.914±0.011 0.922±0.015 0.919±0.016 0.915±0.013 0.911±0.019 0.921±0.019 0.923±0.013 0.918±0.02

500 400 0.933±0.008 0.923±0.01 0.924±0.011 0.922±0.026 0.923±0.01 0.919±0.01 0.918±0.017 0.928±0.016 0.916±0.014 0.929±0.019

500 500 0.929±0.011 0.92±0.012 0.919±0.016 0.923±0.013 0.921±0.012 0.917±0.012 0.921±0.012 0.914±0.01 0.912±0.015 0.916±0.014

Table 33: The F1-score of MNNC in circle with slight overlap compared to other classifiers.

Large overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.921±0.033 0.903±0.043 0.899±0.048 0.895±0.032 0.886±0.026 0.89±0.026 0.901±0.027 0.888±0.039 0.882±0.052 0.884±0.017

500 200 0.929±0.016 0.922±0.02 0.922±0.021 0.911±0.018 0.919±0.034 0.912±0.025 0.921±0.011 0.917±0.017 0.902±0.027 0.909±0.023

500 300 0.931±0.015 0.922±0.016 0.926±0.013 0.922±0.021 0.918±0.022 0.919±0.019 0.907±0.017 0.925±0.017 0.917±0.022 0.915±0.013

500 400 0.921±0.012 0.913±0.01 0.912±0.009 0.92±0.012 0.906±0.018 0.907±0.012 0.912±0.014 0.913±0.025 0.907±0.027 0.906±0.01

500 500 0.929±0.012 0.921±0.013 0.921±0.015 0.92±0.015 0.917±0.018 0.908±0.01 0.92±0.025 0.916±0.011 0.914±0.021 0.927±0.012

Table 34: The F1-score of MNNC in Gaussian with large overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.733±0.031 0.693±0.026 0.67±0.043 0.688±0.045 0.673±0.055 0.694±0.041 0.681±0.046 0.658±0.065 0.688±0.032 0.67±0.034

500 200 0.737±0.032 0.723±0.033 0.724±0.041 0.705±0.032 0.7±0.04 0.709±0.028 0.722±0.035 0.72±0.021 0.721±0.026 0.724±0.037

500 300 0.772±0.027 0.746±0.028 0.751±0.035 0.724±0.037 0.746±0.036 0.729±0.03 0.745±0.024 0.728±0.025 0.724±0.03 0.732±0.023

500 400 0.791±0.025 0.777±0.024 0.77±0.027 0.757±0.016 0.764±0.029 0.773±0.025 0.751±0.039 0.766±0.019 0.75±0.023 0.76±0.027

500 500 0.757±0.012 0.744±0.018 0.736±0.018 0.742±0.028 0.745±0.016 0.746±0.028 0.737±0.011 0.733±0.019 0.743±0.016 0.74±0.025

Table 35: The F1-score of MNNC in moon shaped with large overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.776±0.035 0.753±0.042 0.744±0.039 0.746±0.033 0.735±0.026 0.739±0.046 0.756±0.052 0.747±0.053 0.748±0.032 0.767±0.057

500 200 0.808±0.029 0.79±0.026 0.782±0.029 0.783±0.027 0.776±0.034 0.777±0.029 0.782±0.028 0.784±0.025 0.791±0.026 0.784±0.037

500 300 0.836±0.022 0.821±0.014 0.82±0.03 0.821±0.028 0.805±0.021 0.826±0.025 0.814±0.041 0.823±0.027 0.824±0.03 0.806±0.02

500 400 0.833±0.028 0.815±0.03 0.813±0.033 0.814±0.015 0.808±0.022 0.821±0.015 0.819±0.016 0.815±0.03 0.81±0.023 0.805±0.019

500 500 0.822±0.022 0.807±0.025 0.805±0.026 0.802±0.022 0.803±0.018 0.815±0.016 0.801±0.011 0.797±0.021 0.803±0.016 0.804±0.014

Table 36: The F1-score of MNNC in circle with large overlap compared to other classifiers.
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APPENDIX E : The accuracy of synthesized dataset in chapter 4, MOF-guided conglomerate nearest

neighbor classifier.

No overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 0.999±0.002 0.999±0.002 0.998±0.002 0.999±0.002 0.999±0.002 1 0.999±0.002 0.999±0.002

Table 37: The accuracy of MNNC in Gaussian with no overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.997±0.003 0.997±0.005 0.997±0.004 0.999±0.003 0.999±0.003 0.997±0.005 0.998±0.003 0.994±0.007 0.997±0.003 0.997±0.007

500 200 1 1 0.999±0.002 0.999±0.001 1 1 0.998±0.003 0.998±0.003 1 0.999±0.002

500 300 1 1 0.998±0.003 1 1 1 1 1 1 0.999±0.002

500 400 1 1 0.998±0.003 1 1 1 0.998±0.002 0.998±0.002 0.999±0.002 1

500 500 1 0.998±0.002 0.997±0.003 0.999±0.002 0.999±0.002 0.998±0.003 0.998±0.003 0.998±0.002 0.999±0.002 0.999±0.002

Table 38: The accuracy of MNNC in moon shaped with no overlap compared to other classifiers.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

167

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 1 1 1 1 1 1 1 1 1 1

500 200 1 1 1 1 1 1 1 1 1 1

500 300 1 1 1 1 1 1 1 1 1 1

500 400 1 1 1 1 1 1 1 1 1 1

500 500 1 1 1 1 1 1 1 1 1 1

Table 39: The accuracy of MNNC in circle with no overlap compared to other classifiers.

Slight overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.991±0.007 0.99±0.008 0.986±0.009 0.985±0.011 0.984±0.005 0.989±0.006 0.989±0.006 0.986±0.011 0.987±0.008 0.985±0.009

500 200 0.989±0.006 0.985±0.006 0.985±0.006 0.987±0.008 0.982±0.007 0.987±0.008 0.99±0.009 0.984±0.006 0.984±0.008 0.984±0.005

500 300 0.981±0.009 0.975±0.011 0.973±0.011 0.98±0.01 0.976±0.011 0.98±0.009 0.978±0.009 0.982±0.007 0.977±0.007 0.981±0.013

500 400 0.986±0.008 0.978±0.01 0.975±0.013 0.978±0.009 0.981±0.011 0.982±0.01 0.984±0.008 0.974±0.009 0.975±0.009 0.978±0.011

500 500 0.983±0.007 0.976±0.008 0.974±0.008 0.974±0.006 0.974±0.008 0.981±0.005 0.974±0.011 0.983±0.005 0.98±0.01 0.976±0.01

Table 40: The accuracy of MNNC in Gaussian with slight overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.947±0.012 0.937±0.012 0.932±0.018 0.94±0.024 0.937±0.023 0.941±0.016 0.941±0.013 0.931±0.016 0.939±0.016 0.938±0.02

500 200 0.913±0.017 0.906±0.015 0.904±0.022 0.906±0.014 0.908±0.025 0.912±0.022 0.902±0.018 0.908±0.023 0.904±0.019 0.905±0.018

500 300 0.923±0.018 0.912±0.02 0.915±0.02 0.919±0.018 0.912±0.017 0.906±0.021 0.916±0.011 0.915±0.013 0.915±0.011 0.914±0.023

500 400 0.932±0.019 0.924±0.018 0.921±0.014 0.919±0.02 0.906±0.014 0.912±0.019 0.909±0.012 0.91±0.013 0.916±0.013 0.91±0.013

500 500 0.911±0.01 0.901±0.01 0.896±0.01 0.895±0.021 0.893±0.011 0.897±0.026 0.9±0.025 0.895±0.021 0.896±0.02 0.894±0.016

Table 41: The accuracy of MNNC in moon shaped with slight overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.957±0.017 0.944±0.02 0.941±0.02 0.94±0.01 0.936±0.008 0.945±0.017 0.943±0.018 0.943±0.014 0.944±0.012 0.945±0.014

500 200 0.931±0.016 0.926±0.018 0.925±0.014 0.926±0.023 0.931±0.018 0.933±0.022 0.936±0.022 0.931±0.017 0.923±0.015 0.929±0.015

500 300 0.93±0.009 0.923±0.014 0.919±0.012 0.926±0.013 0.925±0.014 0.921±0.012 0.917±0.017 0.925±0.017 0.925±0.018 0.924±0.017

500 400 0.935±0.008 0.925±0.01 0.925±0.011 0.923±0.025 0.924±0.01 0.92±0.01 0.92±0.016 0.929±0.016 0.925±0.013 0.93±0.019

500 500 0.929±0.011 0.92±0.012 0.919±0.016 0.923±0.013 0.922±0.012 0.917±0.012 0.922±0.011 0.914±0.01 0.924±0.008 0.916±0.014

Table 42: The accuracy of MNNC in circle with slight overlap compared to other classifiers.

Large overlap

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.959±0.018 0.949±0.024 0.948±0.024 0.945±0.016 0.937±0.018 0.943±0.011 0.951±0.015 0.939±0.021 0.937±0.013 0.938±0.013

500 200 0.945±0.011 0.939±0.013 0.939±0.013 0.928±0.017 0.934±0.022 0.931±0.018 0.934±0.009 0.934±0.015 0.929±0.021 0.927±0.018

500 300 0.936±0.015 0.928±0.015 0.931±0.013 0.928±0.019 0.924±0.02 0.925±0.018 0.913±0.016 0.93±0.016 0.928±0.012 0.921±0.011

500 400 0.922±0.012 0.914±0.01 0.914±0.009 0.92±0.012 0.907±0.018 0.909±0.011 0.914±0.014 0.914±0.024 0.917±0.013 0.907±0.01

500 500 0.93±0.012 0.921±0.012 0.922±0.015 0.92±0.015 0.917±0.018 0.908±0.01 0.92±0.025 0.916±0.011 0.912±0.015 0.928±0.012

Table 43: The accuracy of MNNC in Gaussian with large overlap compared to other classifiers.

#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.869±0.019 0.858±0.018 0.851±0.015 0.867±0.021 0.847±0.025 0.858±0.021 0.845±0.029 0.853±0.037 0.864±0.025 0.844±0.028

500 200 0.802±0.023 0.792±0.023 0.792±0.029 0.781±0.029 0.772±0.039 0.775±0.028 0.762±0.034 0.791±0.021 0.779±0.022 0.788±0.031

500 300 0.796±0.026 0.772±0.027 0.776±0.034 0.748±0.034 0.774±0.029 0.757±0.026 0.768±0.025 0.753±0.024 0.748±0.021 0.756±0.02

500 400 0.795±0.025 0.782±0.025 0.775±0.027 0.761±0.016 0.768±0.03 0.778±0.025 0.757±0.037 0.772±0.018 0.774±0.026 0.763±0.027

500 500 0.758±0.012 0.745±0.018 0.737±0.018 0.743±0.027 0.746±0.016 0.746±0.028 0.738±0.011 0.734±0.019 0.739±0.02 0.741±0.026

Table 44: The accuracy of MNNC in moon shaped with large overlap compared to other classifiers.
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#C0 #C1 Best k-NN The ensemble NN MCCN (1) MCCN (2) MCCN (3) MCCN (4) MCCN (5) MCCN (6) MCCN (7) MCCN (8)

500 100 0.882±0.029 0.875±0.026 0.869±0.025 0.878±0.018 0.869±0.018 0.869±0.023 0.875±0.03 0.883±0.03 0.88±0.02 0.887±0.027

500 200 0.854±0.021 0.841±0.018 0.834±0.021 0.829±0.026 0.83±0.022 0.829±0.022 0.834±0.016 0.828±0.028 0.837±0.022 0.833±0.031

500 300 0.852±0.02 0.839±0.015 0.837±0.028 0.838±0.025 0.819±0.019 0.842±0.025 0.837±0.026 0.83±0.035 0.84±0.028 0.822±0.018

500 400 0.834±0.027 0.816±0.029 0.815±0.033 0.818±0.015 0.813±0.02 0.824±0.015 0.817±0.029 0.822±0.016 0.813±0.021 0.807±0.02

500 500 0.823±0.022 0.807±0.024 0.805±0.026 0.803±0.022 0.804±0.018 0.815±0.015 0.798±0.021 0.802±0.011 0.804±0.015 0.804±0.014

Table 45: The accuracy of MNNC in circle with large overlap compared to other classifiers.
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