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Chapter I

INTRODUCTION

1.1 Motivation
It takes a long time and expensive cost to ensure the medicine is safe during

the conventional drug development procedure. As a past few years, the intensity

of COVID-19 has had both direct and indirect impacts on every human worldwide.

To stop the disease more quickly, drug repositioning or using drugs for purposes

other than their original intent once they have been evaluated can be a big help (Ng

et al., 2021; Khataniar et al., 2022). In addition, as machine learning has progressed,

numerous computational techniques have been proven helpful in many applications.

Predicting drug-target binding affinity (DTA) is the task that produces a score

representing the strength of drug-target pair interaction and can assess how effec-

tively a potential drug binds with a target protein (Jarada et al., 2020). Binding

affinity has become a criterion for selecting candidate compounds, which can speed

up the drug development process. Using DTA prediction to pick and narrow down

the number of compounds for testing in the laboratory can help significantly reduce

time and budget. However, the properties of drug and protein in early computa-

tional models were manually extracted and required much biological knowledge.

Yet, some useful properties, such as edge features, are disregarded in the process.

Moreover, because the length of drugs and proteins can be arbitrarily long, the ear-

lier machine learning technique still has a limitation.

To overcome the limitation, this study aims to explore the use of a Graph Con-

volution Network (GCN) (Kipf and Welling, 2017) for predicting binding affinity

score by integrating an edge feature into the computational process and employing

the graph propagation technique that can overcome the fixed length problem and

accept arbitrary lengths of input in the model training process.
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Overall, we expect that the use of GCN for drug target binding affinity predic-

tion will revolutionize the drug discovery process. By improving the accuracy and

efficiency of this critical step, researchers can speed up the identification of promis-

ing drug candidates, ultimately leading to better treatment options for patients.

1.2 Objectives
The objectives of this study are as follows.

1. To design a deep learning model for binding affinity prediction that is fast and

simple, avoid using complex data such as protein structure to train the model

to make it simple to use for large-scale virtual screening.

2. To develop a deep learning model that can accurately predict the binding affin-

ity score and rank of drug-protein pairs, which has a performance comparable

with the state-of-the-art method.

1.3 Research Plan

1. Explore tools and frameworks (Deep learning).

2. Review the related works.

3. Reproduce the related work results.

4. Explore datasets and feature extraction methods.

5. Experiment new models, evaluate the results, and improve the models’ per-

formance.

6. Evaluate the effect of each proposed module.

7. Summarize and publish the research results.

8. Defend the thesis.
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Chapter II

BACKGROUND

2.1 Binding Affinity Measuring Score

The Inhibition Constant (Ki)
The inhibition constant is a measure of an inhibitor’s effectiveness at inhibiting

the activity of an enzyme or receptor. It is a constant representing the concentration

of the free inhibitor in an equilibrium of 50% inhibition. A lower Ki value indicates

that the drug has a stronger binding affinity for the target protein and is more potent

at inhibiting its activity.

The Dissociation Constant (Kd)
The dissociation constant measures the dissociation constant at equilibrium as

the proportion between koff/kon, where koff is the rate at which the molecule gets

out of the protein, and kon is the rate at which a molecule binds to the target protein.

The concentration of a drug affects the Kd. The lower the drug concentration, the

lower Kd suggests a greater binding strength between the drug and protein.

Half Maximal Inhibitory Concentration (IC50)
half maximal inhibitory concentration (IC50) measures the drug’s total con-

centration required to inhibit 50% of the target protein’s activity. It is often used to

measure a drug’s potency and efficacy in inhibiting the protein’s activity. A lower

IC50 value indicates the drug is more potent and effective at inhibiting the target

protein’s activity.

In summary, Ki, Kd, and IC50 are all essential measures of drug-protein in-

teractions that provide information on the strength of the binding affinity between a
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drug and its target protein and the potency and efficacy of the drug in inhibiting the

activity of the protein (scienesnail.com, 2019).

2.2 Simplified Molecular Input Line Entry Sys-

tem (SMILES)
The simplified molecular-input line-entry system, also known as SMILES

(Weininger, 1988), is a string representation of a chemical compound’s molecu-

lar structure. The SMILES format encodes and shares simple and clear structural

information about chemical molecules.

In the SMILES system, atomic symbols represent atoms, whereas symbols

such as ”-,” ”=,” and ”#” represent bonds to signify single, double, and triple bonds,

respectively. Based on the interconnectedness of the atoms in the molecule, the

atoms and bonds are then arranged as a linear string. Figure 2.1 shows an example

of how to construct a SMILES string.

Figure 2.1: An Illustration of how a SMILES sequence can be used to gen-

erate a molecule structure (Wikipedia, 2023).
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2.3 FASTA Format
The FASTA format begins with a single-line description signaled by a greater-

than symbol (”>”), followed by a brief sequence description. The protein sequence,

expressed as a string of letters, follows the description line. The letters stand for the

single-letter amino acid codes of the protein sequence, such as A for alanine, C for

cysteine, and D for aspartic acids. There are 20 typical amino acids used frequently

in protein sequences.

In general, neighboring amino acids in a protein sequence are more likely to

be physically close in the protein structure. This closeness is because the linear se-

quence of amino acids primarily determines the protein’s folding. However, many

factors can affect the spatial arrangement of amino acids in a protein structure, such

as local and global protein topology, solvent accessibility, hydrogen bonding, and

non-covalent interactions. Figure 2.2 shows an example of a FASTA protein se-

quence format.

Figure 2.2: Example of protein sequences in FASTA format (gensas.org,
2023).
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2.4 Graph Neural Network (GNNs)

Message Passing In GNNs
A Graph Neural Network is designed to function on graph-structured data.

Nodes (vertices) and edges connecting nodes make up a graph. GNNs use these

nodes and edges to discover patterns and relationships in graph data.

GNNs are useful for numerous applications, such as node classification, link

prediction, graph categorization, and recommendation systems. In addition to social

network analysis, drug discovery, and computer vision, they have been effectively

implemented in various fields.

GNNs use a message-passing rule to propagate the information in the learning

process. Given a graph G = (V ,E,X), where V is a set of vertices, E is a set of edges

and X are the node features. The message-passing rule is a function that takes as

input the features of a node and its neighbors and produces a message that is passed

from the neighbors to the node. This message is then aggregated with the node’s

feature representation to produce a new feature vector for the node, as shown in

Equation 2.1 with a simple summation as an aggregation function (Xu et al., 2018).

m(t)
v =

∑
uϵN(v)

h(t)u (2.1)

Suppose h
(t)
u represents node embeddings for some vertex u at iteration t. m(t)

v

is an output message of vertex v, and N(v) is a set of neighboring nodes of node

v. Then, the output message is passed to the update function that updates a node’s

feature vector based on the aggregated messages from its neighbors. The update

rule combines the original feature vector of the node with the aggregated messages

to generate a new feature vector for the node h
(t+1)
v depending on the design of the

GNN, but some common methods include concatenation, addition, or more complex

operations such as learnable weight. The message update with arbitrary update
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function ∅ is shown in Equation 2.2.

h(t+1)
v = ∅

(
h(t)v , m(t)

v

)
(2.2)

Graph Convolutional Network (GCN)
Similar to how convolutional neural networks (CNNs) learn feature represen-

tations of local patches in images (Figure 2.3), GCNs employ convolutional filters

learnable weight to learn localized feature representations of each node in a graph.

The filters are applied to each node’s neighborhood, which consists of the node it-

self and its adjacent neighbors. The propagation rule of GCN is as follows: message

passing, aggregation, and feature update, which can be formulated as Equation 2.3

(Kipf and Welling, 2017).

H(l+1) = σ(D̃− 1

2 ÃD̃− 1

2H(l)W (l)) (2.3)

In this context, Ã denotes the adjacency matrix of a graph featuring a self-

loop connection. D̃ corresponds to the diagonal node degree matrix of Ã, serving

to measure the degree of each node and preserves the scale of the output feature

vector. H(l) signifies the output from a previous hidden layer. W (l) stands for the

learnable parameters, and σ represents an activation function, such as ReLU.
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Figure 2.3: (Left) Convolution filter in CNN applied in image data (Right)

Convolution filter in GCN applied in graph data (Wu et al., 2021).

2.5 Transformer Protein Language Model
The transformer protein language model is a variant of the transformer archi-

tecture (Vaswani et al., 2017) designed explicitly for protein sequences. It is a deep

learning model that uses self-attention mechanisms to capture the relationships be-

tween amino acids in a protein sequence, enabling it to generate or accurately predict

a sequence of amino acids.

Evolutionary Scale Modeling (ESM) (Meier et al., 2021) and ProtTrans (El-

naggar et al., 2021) are examples of state-of-the-art models that worked on a trans-

former protein language model utilizing the capability of self-supervised learning

that can learn the representation on an unlabeled dataset, allowing this technique

to apply to a massive unlabeled amino acid sequence dataset from a variety of

sources, such as the Uniparc database (UniProt Consortium, 2007) and the BFD

dataset (Steinegger et al., 2019). Like a natural language model, the transformer

may learn a sequence of amino acid elements as a token where self-supervised is

achieved by the use of a masked language model that corrupts tokens by substitut-

ing them with special tokens, and then the network is trained to predict the missing

tokens from the corrupted sequences.
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The pre-trained feature is extracted through a model embedding vector, such

as the intermediate hidden layer of the protein language model (Figure 2.4), and

then this representation vector is used as an input for other tasks. In addition, they

assess the pre-trained model’s performance by predicting the protein’s secondary

and tertiary structures. Consequently, the prediction result is significantly more

accurate when pre-trained features are utilized, suggesting that pre-trained features

may contain information about protein structure.

Figure 2.4: The overview of pre-trained feature extraction from protein lan-
guage model (Elnaggar et al., 2021).

2.6 Batch Normalization
Due to memory and computational constraints, it may be impractical to train

a model and compute the gradient over the entire dataset; therefore, smaller mini-

batches (a small subset of the training data) may be used in practice. However,

there is a disadvantage to using a mini-batch because a model learns and updates

its weight based on a small sample of the entire dataset, and the distribution of the

sample dataset is continuously changed for each mini-batch. This change can result

in the learning algorithm attempting to pursue a moving target. The changes in

distribution are referred to as ”internal covariate shifts.”
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Batch normalization is a technique used in deep learning to enhance the train-

ing of neural networks by normalizing each layer’s inputs. During the training of

a neural network, the distribution of inputs to each layer changes, which can slow

down the training process. Batch normalization addresses this issue by standardiz-

ing the inputs to each layer, thereby stabilizing and accelerating the training process.

Batch normalization (Ioffe and Szegedy, 2015) involves calculating the mean

and variance of the inputs in a mini-batch for each layer and using these values to

normalize the inputs by making the mini-batch distribution have a mean of zero and

a variance of one. Batch normalization specifically applies the following Equation

2.4 to a mini-batch of inputs:

z =
x− E[x]√
Var[x] + ϵ

∗ γ + β (2.4)

where x is the input to a layer, the mean (Expectation E) and variance (Var) are

calculated per-dimension over the mini-batches, β and γ are learnable parameters,

ϵ is a small float added to avoid dividing by zero, and z is the normalized output

In addition to improving the training of neural networks, batch normalization

has been shown to have other benefits, such as reducing overfitting and improving

generalization performance, as it tries to estimate expectations and variance from

many small subsets of data.

Overall, batch normalization has several benefits, including faster training

times, improved generalization performance, and increased robustness to changes

in the input distribution. It also reduces the need for dropout and weight decay

techniques, commonly used to prevent overfitting in deep learning models.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

LITERATURE REVIEW
This chapter will summarize the current research results that use deep learning

techniques for drug target binding affinity prediction.

SimBoost
SimBoost (He et al., 2017) is a machine-learning-based method that uses

similarity-based features. SimBoost first calculates a similarity matrix that mea-

sures the similarity between each pair of drugs and targets using matrix factoriza-

tion (MF), which is very effective on recommendation tasks. The similarity matrix

is then used to generate the feature vector that feeds the gradient-boosting machine

model and the affinity score it has learned to predict.

DeepDTA
DeepDTA (Öztürk et al., 2018) is the prior work employing a Convolutional

neural network (CNN) to process the drug and target protein sequences and then

merge the feature vectors to predict their binding affinity. It has shown superior

performance in predicting binding affinity compared to traditional machine learning

methods such as SimBoost.

MT-DTI
MT-DTI (Shin et al., 2019) utilized a natural language processing (NLP) tech-

nique called ”Transformer” Vaswani et al. (2017) for the drug molecule to take ad-

vantage of the self-attention mechanism that can be used to capture relationships

across the sequences.
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GraphDTA
GraphDTA (Nguyen et al., 2020) employed a graph-based technique to per-

form the task of affinity prediction. By converting the representation of drug com-

pounds from a text sequence to a graph structure, they investigated many variants

of graph neural networks (GNNs) to find the best GNN variant for this task. How-

ever, for the protein branch, which informative feature is far more complex than the

drug’s compound, the same CNN technique as DeepDTA was used.

DgraphDTA
DGraphDTA (Jiang et al., 2020) model expanded upon the GraphDTA by rep-

resenting both drug compounds and protein sequences as a 2D graph by including a

protein structure prediction method called contact-map prediction. Then, drug and

protein graphs are fed to the independent GCN layer to extract their representation.

GEFA
GEFA (Nguyen et al., 2022) employed an ”early fusion” strategy, which means

that the model combined drug and target node input features first via a self-attention

mechanism to reflect a protein’s change in representation during the binding process,

and then a new representation was used as an input for GCN.

WGNN
WGNN (Jiang et al., 2022) focused on improving the speed and accuracy

of their previous work, DgraphDTA, by avoiding the use of complex and time-

consuming features such as PSSM (position-specific scoring matrix), which is ex-

tracted from MSA (multiple sequence alignment), and by providing a more infor-

mative structure of proteins by using the confidence score of contact map prediction

as a weighted score of graph edges (WGNN), considered as the importance of amino

acid connection.
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MGraphDTA
MGraphDTA (Yang et al., 2022) proposed a deep multiscale graph neural net-

work architecture consisting of a multiscale graph neural network (MGNN) in the

compound branch and a multiscale convolution neural network (MCNN) in the pro-

tein branch, each of which captures information at various scales of granularity.

These layers allow the model to learn hierarchical representations of the drug-target

interaction that incorporate local and global information.

SMT-DTA
SMT-DTA (Pei et al., 2022) employed a multi-task learning framework to

jointly learn multiple related tasks to enhance the performance of the primary task,

namely drug-target affinity prediction. In addition to predicting affinity with la-

beled data, the framework included auxiliary tasks like masked language modeling

(MLM) with unlabeled data in the training process. Simultaneously, training the

model on multiple tasks with more data sources allows it to learn shared represen-

tations that reflect the underlying relationships between drugs, protein targets, and

properties.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

PROPOSED METHOD
This chapter will explain the components and methodology of the proposed

deep learning framework architecture.

In our study, the proposed model takes two inputs: a drug compound and a

protein sequence represented in SMILES format and FASTA format, which are then

transformed into graph structures. The drug branch (Edge-GCN layer) constructs a

graph using the actual contacts, with edges representing atom-to-atom bonds (Fig-

ure 4.1).

Figure 4.1: Proposed drug feature extraction and molecular graph construc-
tion.

In contrast, the protein branch (GCN layer) generates a 1D graph from the

sequence by connecting each amino acid to its neighboring amino acids, thereby

avoiding complex contact information that would require more computational re-

sources. Since the length of input for drugs and proteins can vary, we utilized the

whole sequence for feature extraction and model computation using the GCN ap-

proach, which can take an arbitrary-length input rather than a fixed-length technique

like padding or truncating, as required by CNN and NLP. Additionally, to handle

potentially lengthy protein sequences, requiring many GCN layers for comprehen-

sive information gathering (since a single GCN can obtain the information with a
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single hop), we added an additional branch in the form of a Linear layer. This branch

is responsible for extracting a comprehensive, sequence-level feature by taking the

average of node-level features from sub-sequences within the entire sequence and

subsequently passing them through a linear layer for representation learning (Figure

4.2).

Figure 4.2: Proposed protein feature extraction and 1D-GCN graph construc-

tion.

We predicted the binding affinity score, a continuous value, by first employing

GCN as a feature extraction layer to extract a latent vector that learns node-level in-

formation and then passing this latent vector to a fully connected layer for prediction

(Figure 4.3).
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Figure 4.3: The overview of proposed model architecture.

Drug representation
Our model expects drug compounds in SMILE format, and we use the Torch-

Drug (Zhu et al., 2022) and RDKit libraries (Landrum et al., 2023) to extract the

node and edge features, including an adjacency matrix to construct a graph. Atomic

number, formal charge, explicit hydrogen, chiral tag, and radical electron are part

of the one-hot vector representing a node’s attributes. Compared to previous re-

search, we extract edge characteristics, which significantly increase the complexity

and insight of our data. Instead of using edges to link nodes or weighted edges to

convey the importance of each edge, as was done in some previous work, we inte-

grated a multidimensional edge feature into each convolution layer where our edge

feature comprises bond type, bond stereo, and stereo atom. The lists of node and

edge features used in this work are shown in Table 4.1.
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Table 4.1: Node and edge features for drug compound representation.

Name Definition Size

Node feature (66)

Atom symbol (char) Atomic symbol 18

Atomic chiral tag (type) Type of chirality 4

Degree of atom (integer) Number of directly-bonded neighbors in the molecule including Hs 8

Number of formal charges (integer) Number of formal charges in the molecule 11

Number of explicit and implicit Hs (integer) Total number of Hs (implicit and explicit) that this atom is bound to 7

Number of radical electron (integer) Number of unpaired electrons for an atom (radical) 8

Atom hybridization (type) Orbital hybridisation, introduced to explain molecular structure 8

Is aromatic (bool) Whether the atom is aromatic (molecule has cyclic; ring-shaped structures) 1

Is in ring (bool) Whether the atom is in an aromatic ring 1

Edge feature (18)

Bond type (type) A type of bond between atoms 4

Bond direction (type) The direction of the bond 7

Bond stereo configuration (type) The stereo configuration of the bond 6

Is bond conjugated (bool) Whether the bond is considered to be conjugated 1

Protein representation
The most challenging protein-related problem is how to derive the essential

protein characteristics from the string sequence alone. This challenge resulted from

proteins being much more complicated than drugs, of which the structures are de-

scribed in SMILE format. The properties of individual amino acids, such as residue-

symbol, aliphatic, and polarity, allow us to infer some aspects of a protein. However,

when these amino acids form a protein, a complex structure is generated, and the

function can be altered. In previous work, DGraphDTA contains 14 hand-crafted

features (Table 4.2) representing each amino acid node feature. These features, how-

ever, may not be sufficient to express a protein’s function and structure. In this work,

we are investigating and evaluating the effect of using a pre-trained model called
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”Evolutionary Scale Modeling,” or ”ESM” (Meier et al., 2021), a transformer pro-

tein language model, to extract the most valuable and dependable protein feature

from its sequence.

Table 4.2: Hand-crafted protein features of DGraphDTA (previous work).

Number Feature Dimension

1 One-hot encoding of the residue symbol 21

2 Position-specific scoring matrix (PSSM) 21

3 Whether the residue is aliphatic 1

4 Whether the residue is aromatic 1

5 Whether the residue is polar neutral 1

6 Whether the residue is acidic charged 1

7 Whether the residue is basic charged 1

8 Residue weight 1

9 The negative logarithm of the dissociation constant for the –COOH group 1

10 The negative logarithm of the dissociation constant for the –NH3 group 1

11 The negative logarithm of the dissociation constant for any other group in the molecule 1

12 pH at the isoelectric point 1

13 Hydrophobicity of residue (pH = 2) 1

14 Hydrophobicity of residue (pH = 7) 1

However, there is a limitation to using pre-trained models, which require a pro-

tein sequence length of fewer than 1024 amino acids. A large portion of our protein

sequence data is longer than 1000 amino acids (Figure 4.4). Therefore, we need a

solution to approximate long-sequence protein characteristics. One method is parti-

tioning a protein sequence into sub-sequences, which overlap the others for a better

approximation, and the final sequence feature is an average of all sub-sequences

(described in Figure 4.5 and Algorithm 1).
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Figure 4.4: Dataset distribution: (Left) Davis dataset contains around 25%
(109/442) of the protein sequences longer than 1024 amino acids, (Right)
KIBA dataset contains around 20% (42/229) of the protein sequences longer
than 1024 amino acids.

Moreover, as mentioned in the model overview earlier, given the complex na-

ture of proteins, it presents a significant challenge to deduce their overall represen-

tation solely from the node-level data. To address this, we utilized a pre-trained

model trained on a massive dataset with a highly complex model. Our approach

involved extracting a global feature by computing the average node feature from

this pre-trained model. This average node feature resulted in a per-sequence feature

of 1280 dimensions. Subsequently, we passed this feature through three fully con-

nected layers before concatenating it with the structural representation of the drug

and protein sequences.

Integrated multi-dimensional edge feature
Through the enhancement of the graph message passing procedure, we were

able to improve the representation of a drug compound that had additional multi-

dimensional edge features, which were extracted during the feature extraction step.

In order to achieve this improvement, the GCN propagation rule will be modified

to include edge features at every convolution step, as shown in Equation 4.1, and is

referred to as Edge-GCN.

H(l+1) = σ(D̃− 1

2 ÃD̃− 1

2 (H(l) + EW (l)
e )W (l)) (4.1)
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Figure 4.5: Long-sequence protein feature approximation.

In Equation 4.1, H(l) in Equation 2.3 is replaced with H(l)+EW
(l)
e , where E is

a multi-dimensional edge feature and W
(l)
e is a learnable parameter which serves the

purpose of transforming the edge feature dimension into the node feature dimension.

Figure 4.6: Illustration of the propagation rule applied to node v1 within an
existing GCN layer. Here, h represents the hidden state of each node, and W
is a learnable weight responsible for transforming the aggregated output into
a new hidden state.

Figures 4.6 and 4.7 depict a comparison between our Edge-GCN and an ex-

isting GCN where Edge-GCN integrated the hidden state of the neighboring node

with an edge feature, transformed it into a node dimension via learnable weight, and
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Algorithm 1 Overlapping protein’s feature approximation
Input: protein sequence: seq
Initialization: protein feature← zeros(Len(seq), 1280)

1: if Len(seq) ≤ 1024 then
2: protein feature← ESM-1v(seq)
3: Return: protein feature
4: else
5: stride← 5
6: weights← zeros(Len(seq), 1280)
7: windows← 500
8: N ← (Len(seq)− windows)/stride
9: for i = 0 to N step 1 do

10: start← i ∗ stride
11: end← min(start+ windows, Len(seq))
12: subseq← seq[start : end]
13: subseq feature← ESM-1v(subseq)
14: protein feature[start : end]← protein feature[start : end]
15: +subseq feature
16: weights[start : end]← weights[start : end] + 1
17: end for
18: protein feature← protein feature/weights
19: Return: protein feature
20: end if

implemented the same propagation rules as GCN.

In this architecture, both drug and protein sequences are first transformed into

graph representations, and then they are fed through two different networks, each

of which is composed of three-layer graph convolutional networks for the purpose

of extracting representations. Following the implementation of these networks, a

global pooling layer is introduced in order to guarantee that the feature dimension

is consistent. Various hyperparameters are available for global pooling operations,

including options such as sum, mean, or max. In this work, we adopted global mean

pooling as recommended in the DGraphDTA experiment, which is defined by the

Equation 4.2.

ri =
1

Ni

Ni∑
n=1

xn (4.2)
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Figure 4.7: Illustration of the propagation rule applied to node v1 within
our Edge-GCN layer. Here, h represents the hidden state of each node, e is
an edge feature for each edge, and W is a learnable weight responsible for
transforming the aggregated output into a new hidden state.

Where x represents the feature matrix corresponding to each node in the GCN

output, and N denotes the number of nodes in the graph. Subsequently, the model

acquires a latent representation sized (1, F), with F indicating the number of output

channels for the final layer..

In this work, Batch normalization (BatchNorm) (Ioffe and Szegedy, 2015) was

incorporated after each output layer in the fully connected layers, while graph nor-

malization (GraphNorm) (Cai et al., 2020) was applied to the GCN layers. We used

the Rectified Linear Unit (ReLU) as an activation function. Lastly, we combined the

drug’s latent features, the protein’s latent features, and the protein’s global features

and passed them through two fully connected layers to make predictions regarding

the affinity score.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

EXPERIMENT SETUP

5.1 Benchmark Dataset
To evaluate how well our model performs compared to others, we used the

Davis dataset (Davis et al., 2011), which includes 30056 drug-target interactions

for 68 inhibitors and 442 protein kinases. The interaction intensity is quantified by

the dissociation constant (Kd). The Kd value was translated into a log scale called

pKd in the same manner used in DeepDTA and other previous works.

Additionally, the KIBA dataset (Tang et al., 2014) includes 246088 drug-target

interactions of 52498 unique inhibitors and 467 protein kinases made from different

bioactivity sources, such as Ki, Kd, and IC50. He et al. (2017) filtered the original

KIBA dataset by removing all medicines and proteins with fewer than ten inter-

actions. We used this filtered KIBA dataset, containing 2111 and 229 drugs and

proteins with 118254 drug-target interactions for model training.

An approach known as five-fold cross-validation (illustrated in Figure 5.1)

was utilized for the purpose of evaluating and selecting candidate models. The

candidate model was selected based on the best-averaged performance across all

of the validation sets for each fold. After that, the model that was selected was

evaluated on the independence test set, and predictions were made by utilizing the

weights that were obtained from each particular fold. The final outcome, which is

illustrated in Figure 5.2, was achieved by calculating the average of the test results

obtained from each fold.
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Figure 5.1: Model selection procedure using five-fold cross-validation,

where the validation result is taken from an average of all folds.

Figure 5.2: Final evaluation procedure, where the candidate model is chosen

from the model with the best performance in cross-validation set.

5.2 Loss Function And Hyperparameter
During the training process, our primary objective was to minimize the dif-

ferences between the predicted affinity score generated by our model and the true

affinity score. Given that our objective involves regression, we choose the Mean
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Square Error (MSE) as our preferred loss function. The MSE measures the average

of the squared differences between the predicted (P ) and actual values (Y ) as shown

in Equation 5.1. providing a metric that aligns with our regression-focused training

objective.

MSE =
1

n

n∑
i=1

(Pi − Yi)
2 (5.1)

We employed AdamW optimization (Loshchilov and Hutter, 2017), an opti-

mization approach that enhances regularization by disentangling weight decay from

the gradient update. We also adjusted the weight decay parameter of both datasets

to 0.01 for overfit prevention. To facilitate the learning during the late iteration pro-

cess, we also employed the learning rate decay, which begins at 0.001 and decreases

to 80% for every 100 epochs. Note that we manually tuned most hyperparameters

because the training process takes a significant amount of time to complete. The

summary of the hyperparameter setting is shown in Table5.1.

Table 5.1: Hyperparameter setting.

hyperparameter setting

epoch 1000

optimizer AdamW

batchsize 128

learning rate 0.001

weight decay 0.01

latent size after GCN 128
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5.3 Evaluation metrics
In order to ensure consistency with the baseline and other state-of-the-art

methods, we utilized the same evaluation metrics consisting of the Mean Square

Error (MSE) and the Concordance Index (CI), where both were used as the main

metrics for DTA tasks. The Mean Squared Error (MSE), frequently employed in

regression situations, measures the difference between predicted and actual values.

A smaller MSE indicates that our model’s predictions are closer to the actual val-

ues. Conversely, the CI score prioritizes the ordering of predictions rather than their

predicted values, as defined by the equation 5.2.

CI =
1

Z

∑
di>dj

h (bi − bj) (5.2)

h(x) =


1, If x > 0

0.5, If x = 0

0, If x < 0

(5.3)

The variable bi denotes the expected value for the higher affinity di, whereas

bj reflects the predicted value for the smaller affinity dj . The symbol Z denotes a

normalization constant, while the function h(x) corresponds to the step function, as

seen in Equation 5.3.

The Pearson correlation coefficient, as defined in Equation 5.4, assesses the

linear association between two variables—in our case, the predicted and ground

truth values. Here, cov signifies the covariance between the predicted value (p) and

the actual value (y), while σ (p) and σ (y) represent the standard deviations of the

predicted and actual values, respectively.

Pearson =
cov(p, y)

σ(p)σ(y)
(5.4)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

RESULT
This chapter will show the experimental results of each component described

in the proposed method chapter, along with a preliminary result compared to other

related work.

Performance evaluation
We conducted a comparative analysis between our approach and the method-

ologies employed in previous research. In order to ensure an appropriate compari-

son, we analyzed the performance on a separate test set containing data that had not

been seen before. We then reported the assessment metrics, which included Mean

Squared Error (MSE), Concordance Index (CI), and Pearson correlation coefficient

along with its standard deviation. It is important to acknowledge that we replicated

the results of some previous research in order to ensure fairness.

In Tables 6.1 and 6.2, We present the results of our study, where we con-

ducted a comparison between our model and various existing approaches, includ-

ing CNN-based, graph-based, and transformer-based, to estimate drug and pro-

tein affinity scores. Our method, incorporating Edge-GCN, 1D-GCN, and global

features, demonstrated significant improvements across all metrics (MSE, CI, and

Pearson correlation) on the Davis dataset. Specifically, we achieved values of 0.216

for MSE, 0.897 for CI, and 0.855 for Pearson correlation on the independence test

set. Our model also exhibited superior performance on two metrics on the KIBA

dataset compared to other methods, achieving the lowest MSE and the highest Pear-

son correlation value. Additionally, it achieved the highest Concordance Index

(CI) score among graph-based approaches, on par with MGraphDTA. However,

the transformer-based model SMT-DTA surpassed all with the highest CI score of

0.894.
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Notably, our model surpassed existing graph-based techniques, including

GEFA, which previously achieved the lowest MSE of 0.228 on the Davis dataset. It’s

crucial to highlight that our model achieves this level of performance without requir-

ing knowledge of protein structure. This sets it apart from other graph-based meth-

ods that generate protein graphs based on predicted contact maps. This achievement

suggests that our pre-trained model, particularly ESM, may acquire an understand-

ing of protein function or certain structural information during its training process.

Table 6.1: Model performance on independence test set based on the Davis

dataset.

Model Compound Protein MSE (std) CI (std) Pearson (std)

SimBoost (He et al., 2017) MF MF 0.282 0.872(0.002) -

DeepDTA (Öztürk et al., 2018) CNN CNN 0.261 0.878(0.004) -

MT-DTI (Shin et al., 2019) Transformer CNN 0.245 0.887(0.003) -

GraphDTA (Nguyen et al., 2020)* GIN CNN 0.251(0.003) 0.882(0.003) -

DGraphDTA (Jiang et al., 2020)* GCN GCN(contact) 0.238(0.005) 0.888(0.004) 0.840(0.003)

GEFA (Nguyen et al., 2022) GCN GCN(contact) 0.228 0.893 0.846

WGNN (Jiang et al., 2022)* GNN WGNN(contact) 0.244(0.004) 0.888(0.002) 0.837(0.002)

MGraphDTA (Yang et al., 2022)* MGNN MCNN 0.233(0.005) 0.885(0.004) 0.843(0.004)

SMT-DTA (Pei et al., 2022) Transformer Transformer 0.219 0.890 -

Our (iEdgeDTA) Edge-GCN 1D-GCN 0.216(0.004) 0.897(0.001) 0.855(0.002)

* these results were taken from our reproduction.
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Table 6.2: Model performance on independence test set based on the KIBA

dataset.

Model Compound Protein MSE (std) CI (std) Pearson (std)

SimBoost (He et al., 2017) MF MF 0.222 0.836(0.001) -

DeepDTA (Öztürk et al., 2018) CNN CNN 0.194 0.863(0.002) -

MT-DTI (Shin et al., 2019) Transformer CNN 0.152 0.882(0.001) -

GraphDTA (Nguyen et al., 2020)* GCN GCN 0.186(0.009) 0.871(0.001) -

DGraphDTA (Jiang et al., 2020)* GCN GCN(contact) 0.148(0.002) 0.889(0.002) 0.885(0.002)

MGraphDTA (Yang et al., 2022)* MGNN MCNN 0.150(0.004) 0.890(0.002) 0.883(0.003)

SMT-DTA (Pei et al., 2022) Transformer Transformer 0.154 0.894 -

Our (iEdgeDTA) Edge-GCN 1D-GCN 0.142(0.004) 0.890(0.001) 0.888(0.001)

* these results were taken from our reproduction.

Module analysis with baseline
Batch normalization

Batch normalization was a valuable addition to our strategy for enhancing model reg-

ularization. It’s a common technique in deep learning to normalize input data within mini-

batches during training. Doing so mitigates the issue of internal covariate shift, which oc-

curs when the distribution of inputs to model layers changes as parameters are updated. This

stability aids in faster convergence during training. Furthermore, batch normalization intro-

duces a form of regularization by estimating expectations and variances from smaller data

subsets.

The influence of batch normalization is shown in Figure 6.1. In the initial stages of

training before the red dashed line, the model incorporating batch normalization achieves

convergence more quickly compared to the model without this feature. As training pro-

gresses, the mean squared error (MSE) consistently decreases for the model without batch

normalization, suggesting an improved fit to the training data. However, the outcomes on

the validation set, as shown in Figure 6.2, reveal inferior performance of the model without
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batch normalization relative to other models. This outcome implies the presence of overfit-

ting and emphasizes the importance of batch normalization in enhancing the model’s ability

to generalize.

Figure 6.1: The training performance of the model varies across different

batch normalization configurations, with the model without batch normal-

ization (depicted in blue) exhibiting the most favorable performance on the

training set (lower is better).
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Figure 6.2: The validation performance of the model varies across differ-

ent batch normalization configurations, the model with both BatchNorm and

GraphNorm (green) exhibiting the most favorable performance on the vali-

dation set (lower is better).

We experimented to investigate the potential regularization impact of introducing a

dropout layer to enhance the model’s generalization. As depicted in Figure 6.3, the ex-

periment’s findings indicate that increasing the dropout probability decreased the model’s

performance on the validation set, suggesting that the regularization effect provided by batch

normalization is sufficient for our model.
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Figure 6.3: The performance of different dropout probabilities is assessed

on Davis’s five-fold cross-validation set, with the error bars representing the

standard deviation. The left panel presents the averaged mean squared error

(MSE), while the right panel displays the averaged concordance index (CI)

scores.

Pre-trained model

This research utilizes a graph neural network to analyze proteins using their sequences,

assuming that acquiring the real or predicted protein structure is impractical. Therefore,

relying on a pre-trained model is dependable due to its comprehensive training on a vast

dataset, possibly encompassing implicit information about protein features and structures.

As a result, we selected two pre-trained models to generate an input features for our model.

We assessed their ability predictive capability using the Davis dataset, as indicated in Tables

6.3 in the Pre-trained choice section.

The findings demonstrated that both pre-trained models outperformed the baseline

model, which depended on manually crafted features for protein representation. ESM–1v

outperformed ProtT5, getting a lower MSE value of 0.202 and a higher CI value of 0.897.

Therefore, we decided to use ESM–1v as our selected pre-trained model for the final assess-

ment.
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Edge and Global features

By including edge features in the computation of the Graph Convolutional Network

(GCN) through the introduction of an Edge-GCN layer, we are able to increase the represen-

tation of the drug sequence. This is achieved by integrating edge features generated from the

drug sequence at each iteration of message-passing. However, acquiring the edge features

of proteins remains a complex and challenging task. Thus, to obtain a better representation

of proteins, an alternative approach was implemented. We created a global protein feature

by calculating the mean of its pre-trained node-level features and then fed it into a learning

process using three fully connected layers. The effect of incorporating the drug compound’s

edge features into the model is demonstrated in Table 6.3 in the Edge feature section. The

integration of protein global features is evaluated using a final model called iEdgeDTA, as

described in the Protein global feature section.

The results revealed that incorporating edge features exclusively from the drug branch

enhanced performance, resulting in an MSE value of 0.198 and a CI value of 0.899. Sub-

sequently, we evaluated the contribution of the protein’s global feature, demonstrating a

positive effect on prediction accuracy. This resulted in a reduction in MSE to 0.195 and an

increase in the CI score to 0.901.
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Table 6.3: Performance of model component on average five-fold Davis’s

cross validation set.

Model MSE(std) CI(std)

Baseline (DgraphDTA) 0.212(0.006) 0.885(0.004)

Pre-trained choice

ProtT5 0.206(0.008) 0.895(0.005)

ESM-1v 0.202(0.007) 0.897(0.005)

Edge feature

ESM-1v w/o edge feature 0.202(0.007) 0.897(0.005)

ESM-1v w/ edge feature 0.198(0.006) 0.899(0.002)

Protein global feature

ESM-1v w/ edge feature 0.198(0.006) 0.899(0.002)

iEdgeDTA(ESM+edge+global) 0.195(0.005) 0.901(0.002)

Furthermore, we conducted a comparison between our method, which integrates edge

features (Edge-GCN), and existing approaches such as RGCN (Schlichtkrull et al., 2018).

RGCN introduces the concept of relation-specific weights for edges in the graph. This means

that each type of relationship between nodes is associated with distinct weights, allowing the

model to learn and distinguish different types of connections within the graph. In this spe-

cific context, relation types correspond to various forms of chemical bonds, such as single

bonds, double bonds, triple bonds, aromatics, and self-loops, resulting in a total of five dis-

tinct weights. The results, as presented in Table 6.4, reveal that the incorporation of RGCN

does not lead to an improvement in model performance during the five-fold cross-validation.

This result can be attributed to our approach’s utilization of multidimensional edge features,
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whereas RGCN is limited to accommodating only a single feature as the relation type

Table 6.4: Comparison between the edge integration approach using a five-

fold Davis’s cross validation set.

Model Edge feature MSE(std)

RGCN relation 0.201(0.006)

Our (GCN) none 0.201(0.006)

Our (Edge-GCN) muti-dimension 0.198(0.006)

Moreover, we integrated the Edge-GCN technique into the baseline model,

DGraphDTA, to evaluate the effectiveness of including edge information in drug represen-

tations. In this experimental configuration, we replaced the original GCN layers in the drug

branch with our Edge-GCN layers, incorporating the edge feature proposed in this research

paper. The results, presented in Table 6.5, illustrate that incorporating an edge feature into

the graph neural network yields enhancements in both MSE and CI scores.

Table 6.5: Comparison between the original DGraphDTA and DGraphDTA

with edge integration approach using a five-fold Davis’s cross validation set.

Model MSE(std) CI(std)

DGraphDTA 0.212(0.007) 0.888(0.004)

w/ Edge-GCN 0.207(0.006) 0.895(0.002)

Protein node and sequence features analysis

We used a Convolutional Neural Network (CNN) architecture as our initial model

to evaluate the influence of node features and sequence features on protein feature extrac-
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tion. The selection was made based on its extensive utilization in previous studies and its

appropriateness for assessing the efficacy of our 1D-GCN in resolving the fixed-length is-

sue. The CNN hyperparameters were set according to the methodology described in the

GraphDTA(Nguyen et al., 2020) publication. More precisely, we ensured that all protein se-

quences had a consistent length of 1000 amino acids. For shorter sequences, we added extra

padding, while for longer sequences, we truncated them to fit the desired length. The re-

sults of the experiment are presented in Table 6.6, demonstrating the performance of specific

node-level and sequence-level features as independent versions. These studies emphasize

the individual gains gained by each feature, highlighting their separate contributions.

Furthermore, the incorporation of both node-level and sequence-level characteristics

in the 1D-GCN model resulted in substantial improvements, surpassing the performance

of the baseline model. This outcome highlights the benefits of integrating these features,

ultimately leading to enhanced precision in predicting affinity scores.

Table 6.6: Contribution of node-Level and sequence-Level features in com-

bination with a CNN baseline model on a five-fold cross-validation set from

Davis’s dataset.

Model Method MSE(std) CI(std)

CNN baseline CNN 0.210(0.007) 0.891(0.003)

Node feature 1D-GCN 0.198(0.005) 0.899(0.002)

Global feature Linear 0.202(0.005) 0.896(0.003)

iEdgeDTA 1D-GCN+Linear 0.195(0.005) 0.901(0.002)

Contact map performance

Finally, we conducted a further investigation to see how protein structure affects our

model. In particular, we replaced a 1D sequence graph with a contact map predicted by

different contact map models. We chose three sources for this experiment: pconsc4 (Michel

et al., 2018), which is used in our baseline model DGraphDTA; RaptorX (Wang et al., 2017)
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used by GEFA; and the ESM (Meier et al., 2021) contact map prediction model, with a

contact determination threshold of 0.5, the probability used by these models to indicate the

likelihood that a pair of amino acids is in contact.

To conduct this analysis, we ensured a uniform model architecture and maintained

constant hyperparameters while making adjustments to the protein graph construction. Fur-

thermore, we incorporated our 1D sequence graph into the DGraphDTA model to evaluate

the influence of 1D-GCN within an alternative model setup. The outcomes of this analysis

are presented in Table 6.7.

Table 6.7: Comparison of 1D-GCN performance with predicted contact

maps from different contact map prediction models on the average five-fold

cross-validation set of Davis’s dataset.

Contact map model MSE(std) CI(std)

DGraphDTA

pconsc4 0.212(0.006) 0.885(0.004)

1D-GCN 0.211(0.007) 0.893(0.001)

iEdgeDTA

pconsc4 0.197(0.005) 0.901(0.003)

RaptorX 0.196(0.006) 0.899(0.004)

ESM 0.198(0.004) 0.900(0.004)

1D-GCN 0.195(0.005) 0.901(0.002)

The results of our study reveal that the performance of the 1D-GCN is comparable to

that of a model employing a contact map, as observed in both our iEdgeDTA experiment

and the baseline DGraphDTA experiment. These findings suggest that information derived
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from contact map predictions may contain noise, potentially affecting model performance.

This emphasizes the necessity of having either an actual contact map or exceptionally accu-

rate predictions in order to achieve better performance. However, generating protein contact

maps is a challenging and complex operation that requires specialized equipment, experi-

ence, and resources. These obstacles hinder their accessibility and restrict them to research

facilities.

Our iEdgeDTA model, which relies on only protein sequence, possesses the potential

to be effectively utilized in practical applications, particularly in virtual screening. This

attribute gives it a valuable asset in scenarios where the majority of the data remains in the

sequential format rather than the structural format and the availability of actual contact maps

is still limited or requires significant computational resources.

Limitations

Nevertheless, iEdgeDTA does possess specific constraints. Firstly, using a one-

dimensional representation has a disadvantage since the folding of the protein determines the

position of the binding pocket, and the one-dimensional model does not ensure that the bind-

ing pocket aligns with a consecutive sequence of amino acids in the linear string. Therefore,

it is still difficult to see or predict the binding pocket merely based on the one-dimensional

depiction.

Furthermore, a constraint arises from the utilization of the pre-trained model, which

could potentially create a noisy feature when extracting lengthy protein sequences, as eval-

uated in Algorithm 1 (Chapter 4 Proposed approach). Using a more accurate pre-trained

model that can process sequences of any length might reduce its susceptibility to noise,

potentially improving its performance.

Conclusions
Accurate prediction of drug-target affinity plays a vital role in identifying promis-

ing candidates for new drug development and optimizing drug design. Additionally, it can

significantly reduce the time and costs associated with drug discovery by enabling drug

repositioning, which assesses whether existing drugs can effectively bind to specific pro-

tein targets. In this research, we introduced a graph-based deep learning model that en-
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hances prediction performance by incorporating background knowledge, introducing multi-

dimensional edge features, and utilizing more complex protein node features derived from

pre-trained models. Through a comparative analysis with recent studies employing various

methodologies, we demonstrated that our approach outperforms existing methods in terms

of prediction accuracy.

Furthermore, we assessed the model’s efficacy when incorporating protein structure

information based on contact maps. Interestingly, our findings suggested that protein struc-

ture is optional for achieving high prediction accuracy in our model. Given that our model

currently focuses on integrating edge features into the drug branch, future research could

enhance accuracy by improving the extraction of protein node and edge features.
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