Chapter III
Results about the logic

Many results in traditional predicate logic are preserved in our logic but not the
Completeness theorem. In this chapter, we will state and prove some of them and
show why Completeness theorem is not true.

3.1 Basic results on formal proofs.
We start with a proposition listing a few basic results about pfoofs.
Proposition 3.1.1 Let ¥ and T be sets of formulas, and let T be a formula.

(i) £+ o for allo € ¥. |

(it) If 7 and E CT, then L' - 7 also.

(iii)) If S for ally €T and T - 7, then T |- 7 also.

Proof: |
(i) Note that o is a proof of ¢ from ¥.
(i) Note that a proof of 7 from ¥ is also a proof from T', since £ C T..

(iii) Since ' - 7, there exists a proof of 7 from I'. Let 7y,..., 7 = 7 be a proof
of 7 from I'. Let 2y,...,3 € {1,...,k} be such that ,, € T for =1, ...,£. By
assumption, for each j € {1;...;£} there is a proof g;1,...,0pm, = 7, of 7,
from X. Then '

O11y o3 Olmy o081y eoey Otmys T1y ooy Tk

is a proof of 7 from X.

3.2 Meta-Theorems

Many important rneta.-theorem.s are preserved. They are stated and proved here.
Theorem 3.2.1 (Generalization Theorem) If &+ ¢, then £+ VzTop.

Proof: This is obvious, because of the generalization rules of inference.

Deﬁn%tion 3.2.2 Let ¢1,...,¢Pn, p be formulas. We say {¢y,..., pn} tautologi-
cally implies ¢ iff ((--- (1 A p2) A--+) Aws) = @ i3 a propositional aziom.
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Theorem 3.2.3 (Tautology Theorem) If T+ ¢y,..,Z b ¢n and {41, ..., Pn}
tautologically implies @, then ¥ = .

Proof: Assume that & F ¢;,...,= b @, and {¢1,...,n} tautologically implies
@. Then 9 = ((+- (1 A w2) A-*) A ) = p is a logical axiom. Note that
o= (((+ (1 A@2) Ar) Ap) = @) = (1 = (2 => -+ (pn = 9) -+ ) is also
a logical axiom and 3 = @1 = (92 = +*+(¢n = ¢) - ) can be deduced from 7,
and 9, by modus ponens. :

For each 1 € {1,...,n}, let ¥, ..., ¥, be a proof of ¢, from . Now the fol-
" lowing is a proof of ¢ from ¥ :
¢1) ¢2) '¢3’
V11, V12, oo Y1my, 1 = P2 = (93 = -+ (9 = @) +*))  (¥3,%1m,, and MP),
a1y W22y ooy Vamgy T2 =03 = (04 = - (@ 2 90)+++)) (71, Y2m,, and MP),

d”n—l.la wn-lﬁa sesy ¢n—1,m,...n Ta-1 EPn=> ¢ (Tn—2: ¢n-1,m,.-u and MP))
¢n,1,1/«'n.2,~-~,1/)n.m,.,€0 (Tn—hwnl,m..,a and MP)-

Theorem 3.2.4 (Deduction Theorem) Let L be a set of sentences, o a sen-
tence, and ¢ e formula. If SU{a} - ¢, then T+ (o0 = ¢).

Proof: We will prove this theorem by induction on the length of a shortest proof
of ¢ from T U {c}. Let ¢y, ..., ¢n be a shortest proof of ¢ from T U {}.

If n = 1, then ¢ = @y, 80 ¢ is a logical axiom or p € TU {¢}. f o =0,
then 0 = ¢ = 0 = ¢ is a logical axiom, so it is a proof of ¢ = ¢ from L, and
hence £+ o = ¢. If o € T or ¢ is a logical axiom, then since ¢ = (0 = ¢) is a
propositional axiom, ¢, ¢ = (0 = ¢), 0 = ¢ is a proof of 0 = ¢ from L.

~ Assume that n > 1 and that for all formulas 1-in £ such that there is a proof
of 1 from LU {o} of length less than 1, we have £+ o = 4. Since n > 1, ¢ = ¢q
must follow from some formula(s) in {3, .., n=1} by a rule of inference.

Case (i): There exist k,£ € {1;...,n — 1} such that ¢, follows from ¢, and ¢, by
modus ponens. Without loss of generality we may assume @y = @ = @n.
Then ¢y, ..., ¢ and @1, ..., @y are proofs of ¢, and ¢, from T U {o} of length
less than n. By induction ¥ F o = ¢, and £ - 0 = ¢, Let 91,..,%
be a proof of ¢ = ¢ from £ and xi,...,xq be a proof of o = ¢, from
L. Since (P = Q) = (P = (Q = R)) = (P = R)) is a tautology,
= (0 = @) = ((6d = (px = ¢n)) = (0 = ©n)) is a propositional axiom.
Hence1 ¢1,---,¢p,7’, (0 = ((pk = (Pﬂ)) = (U = wn)) X1y Xy T = Pn is a
proof of o = ¢ from L.

Case (ii): There exists k € {1,...,n — 1} such that y, follows from ¢, by gen-
eralization. So ¢, = VzTy, for some z7 € V. As in case (i), by in-
duction £ + ¢ = ;. Since o is a sentence, 27 ¢ FV (o). Thus 7 =
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(VzT(c = @) = (0 = VaTyr)) = (Val(o = ¢x)) = (0 = ¢n) I8
a quantifier axiom. Let %,...,%, be a proof of o = ¢, from . Then
W1y evey Ypy VIT (0 = @), 7,0 = pn i8 a proof of o = ¢ from L.

Case (iii): There exists k € {1,...,n— 1} such that ¢, follows from ¢, by special-
ization. So, there exists x € F, z7 € V, and T € T such that ¢, = Vz7x
and @, = [tT/2T)x. As in case (i), £ F o = VzTx. Let 4,..., 9, be a proof
of 0 = VzTx from =. Since (P = Q) = (R=>P)=> (R=>Q)) isa
tautology, T = (VzTx = %) = ((¢ = VzTx) = (0 = X)) is a logical axiom.

Hence,
W1, e Yp = 0 = Y2Tx
Yps1 =7 (PA)

Yp42 = vzTx = x (QA)

Ypsa = (0 2> V2Tx) = (0 = X) - (¥p+1, Yps2, and MP)

Ypsa =0 > X (Up, Ppta, and MP)

Yors =V2T(0 = %) (¥p44, and GN)

Ypi6 = [tT/2T](0 = X) (Yp+s, and SP). :

By the definition of substitution, [t7/z7](c = x) = ([t¥/zT]o = [t7/z7]X).
Since z7 € FV(0), ([t¥/zT)o = [{T/2T]x) = ¢ = [tT/z7|x. Then yp4 =
o = [t7/zT]x. Hence, we have a proof of & = ¢ from X.

Theorem 3.2.5 (Contrapositive Theorem) Let £ be a set of sentences and
let p and v be sentences. Then U {p} F 0 iff TU{Y} F —p.

Proof: Because of the symmetry between ¢ and %, it suffices to prove that if
TU{yp} F —9, then SU{Y} I —p. Assume that £U{p} F —¢. By the Deduction
theorem, & - ¢ = —). Let x1,..., Xn be a proof of ¢ => =) from I. Note that
(p = ) = (.= ~p) is a propositional axiom. Then

X1y o Xn = (0 = ), (p = ) = (¥ = —9), % = ~p, 9%, ~p

is a proof of = from T U {1}.

3.3 The Soundness theorem

The Soundness theorem is still true in our logic. This theorem must be true;
otherwise our logic has some problems.

Lemma 3.3.1 If x is a logical aziom, then for all structures A and all variable
assignments a, I?*(x,a) =T.

Proof: Let x be a logical axiom. There are three case that we need to consider.
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Case i: x is a propositional axiom. This case follows directly from Proposi-
tion 2.4.4

Case ii: y is a quantifier axiom. Let ¢ and 1 be formulas and zT a variable not
in FV ().

Subcase: x = (V2T (¢ = ¥)) = (¢ = YzTy). Let % be a structure and o a
variable assignment. By Lemma 2.3.9, it suffices to show that we cannot
have I2(VzT (o = 1), a) = T and I*(p = V2T9,a) = F. Assume fora
contradiction that 12(VzT (v = 1), a) = T and I%*(¢ = VzTy,a) = F.
Then I%(p,0) = T and I%(Vz"4,a) = F. Thus, there is a variable
assignment [ with 8(v5) = a(v®) for all v¥ # zT such that I*(y, ) =
F. Since zT € FV (o), I*(p,f) =T, so I%(p => 4, 8) = F. 1t follows
that I%(VzT (¢ = ¥),e) = F, a contradiction.

Subcase: x = VzTy = 1 Let U be a structure and « a variable assignment.
Assume that I%(¥zTy, ) = T. Then for all variable assignments 3 s.t.
B(v®) = a(v®) for all vs # zT, I*(3, ) = T. Since o is such variable
assignment, I%(1), @) = T. So we have I*(x,a) =T.

Subcase: x = (Vz7—¢) = (-3z7¢): Let U be a structure and o a vari-
able assignment. As with the first subcase, it suffies to show that
I1%(VzT—, ) = T and I*(=3z7+),@) = F leads to a contradiction.
Suppose I%(VzT—), a) = T and I*(-3z79,a) = F. Then I*(32T¢, a)
= T, so there is a variable assignment £ such that §(v5) = a(v®)
for all v5 # 2T and I%(y,B) = T. Hence I?*(—y,0) = F, so that
I%(VzT -9, @) = F, a contradiction.

Subcase: x = (~3zT%) = (VzT—): This is similar to the previous subcase.

Case iii: ¢ is an equality axiom. Let z5,y5,v5 € V,tT € T, and ¢ be an atomic
formula.

Subcase: x = (z5 = 25); Trivial.

Subcase: x = (25 = %) = ([z5/v5]tT = [yS /v5)tT): Let A be a structure
and o a variable assignment. Assume that I2((z5 =y5),a)=T. Let 8
be the variable assignment defined by 8(zY) = a(2Y) for all variables
2V # v% and B(v5) = a(zf) = I*(z%,a). Since I%((z° =y%),a) =
T, B(vS) = a(z’) = a(y’) = I*(y5,a). By Proposition 2.3.11,
I%([z5 /vS)tT, @) = I%(¢7, B) = I*([y®/v°]t", @). Thus,

I*[z5 /vS)tT = [y5/v5]tT, @) = T.

Subcase: x = (25 = %) = ([z5/v5]p = [y5/v5]¢): This subcase is similar

to the previous subcase.

Theorem 3.3.2 Let T be a set of sentences, @ a sentence. IfZ F ¢, then T = .
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Proof: We will prove this theorem by induction on the length of a shortest proof
of ¢ from . However, since some steps in the proof of ¢ may not be sentences,
we will need to prove the following stronger result: Let X be a set of sentences and
¢ a formula. If = F ¢, then for all structures 2, if 2 |= L, then for all variable
assignments o we have that I%(p,a) =T

Assume that & F . Let 2 be a structure such that % = L, a a variable
assignment, and let ¢y, ..., o, be a shortest proof of ¢ from L. If n = 1, then
v € T or p is a logical axiom. If ¢ € T, then ¢ is a sentence and A E . So we
have I%(p,a) = T. The case that ¢ is a logical axiom is handled by the previous -
lemma.

Assume that n > 1 and that for all formulas 1) such that there is a proof of ¥
from ¥ of length less than n, we have IB(y, §) = T for all variable assignments 3
and structures B which are models of £. Since n > 1, ¢ = ¢, must follow from
some formula(s) in {1, ..., Pn—1} by a rule of inference.

Case(i): There exist k,£ € {1,...,n — 1} such that ¢, follows from ¢, and ¢, by
modus ponens. Without lose of generality, we may assume @, = @x => ©n.
Then ¢y, ..., ¢ and @1, ..., @, are proofs of ¢, and ¢, from ¥ of length less
than n. By induction, I*(¢x, @) = T and I%(¢,, @) = T. Then I*(p,, @) =
T.

Case(ii): There exists k € {1,...,n — 1} such that ¢, follows from ¢, by general-
ization. Then ¢, = VzTy; for some variable 27. As in Case(i), we can use
induction to conclude that I%(i, 8) = T for all variable assignments 5. In
particular, I%(k, o) = T for all variable assignments (3 such that A(vS) =
a(v5) for all variables v # zT. This implies that I*(VzT ¢y, o) = T.

Case(iii): There exists k € {1, ...,n.— 1} such that ¢, follows from ¢; by special-
ization. So, there exists 1 € F, zT € V, and t7 € T such that ¢, = VzT¢
and ¢, = [tT/zT]y. Define a variable assignment 3 by §(vS) = a(v") for all
variables vS 2 2T and B(z7) = I*(tT, ). As in Case(ii) I*(vzTy,8) =T.
This implies that 1%(%,8) = T. By Proposition: 2.3.11, I%([t* /zT]y, a) =
1*(y,8) =T.

3.4 Failure of the Compactness and Complete-
ness theorems

3.4.1 A counterexample to the Compactness theorem.

Recall that the Compactness theorem states that if ¥ is a set of sentences such
that every finite subset of ¥ has a model, then X itself has a model. We will show
that the Compactness theorem fails in our logic, by giving a counterexample.
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Let £ be a language over a type system T. Fix P a primitive type in P. Let
o be a sentence which says that “Every one-to-one mapping from P to P must
also be onto”, and for each n € N, let o, be a sentence which says that “There
are at least n distinct elements of type P”. These can all be written as sentences
in our logic, as follows:

o =VfPoP((Vefval (FP2F (ef) =F P77 (a7) = of =" 2)) =
(V273zg (2] = f775(22))))-

and for each n € N, »

op = cP3zE - 3P (xF # of Al # a5 Ao Al # DA

| xb # 25 Ao Azf # A

ATy # 3.

Let £ = {0,01,02,...}.
Lemma 3.4.1 Every finite subset of © has a model.

Proof: Let T’ be a finite subset of Z. If &' = {c}, then any structure % with P*(P)
finite will be a model of &'. Now suppose &’ # {o}. Then] = {n € N| 0, € L'} is
finite. Let m = maz I. Choose a structure 2 with P%(P) finite and | P2(P) |> m.
Then Al=cand Ao, foralln <m. Thus A = T'.

Lemma 3.4.2 The set ¥ has no models.

Proof: Let 2 be a structure for £ over T.
Case P?(P) is finite: Say m =| P%(P) | . Then A ¥ o1

Case P%(P) is infinite: Define g + N — P¥(P) by induction as follows. Since
P2(P) # 0, let a; € P2(P), and define g(1) = a;. ‘Assume that n > 1
and that for all m < n, g(m) is defined. Since P#(P) is infinite, P2(P) \
{9(1), - 9(n — 1)} # 0. Let ay € PHP)\ {g(1), -, g(n — 1)}, and define
g(n) = a,. Clearly g is one-to-one. = =
Let R, = {a1,0y,...}. Define h: Ry = R, by h(a,) = an4; for each n € N.
Clearly h is one-to-one but not onto.

Finally, define f : P*(P) — P%(P) by

_ | h(z) ifzeR,
fz) = { T otherwise.

Then f is one-to-one but not onto. Thus 2 |~ 0.
The two previous lemmas show that every finits subset of £ has a model but

¥ itself has no model. This shows that the Compactness theorem is not true in
our logic. : '
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3.4.2 A counterexample to the Completeness theorem.

Recall that the Completeness theorem states that for any set of sentences T and
any sentence @, if £ = ¢, then ¥ F ¢. In this section we will show that the
Completeness theorem fails in our logic also, by giving a counterexample based
on the example in the previous section. First, we observe that the “Compactness
theorem for proofs” is true.

Theorem 3.4.3 Let ¥ be a set of formulas and @ e formula. If T & ¢, then there
ezist a finite subset &' of T such that T' F .

Proof: Let ¢ be a formula, & a set of formulas such that T - . Say ¢y, ..., ¢n i8
a proof of ¢ from E. Let £’ = N {¢1,...,¢n}. Then T’ is a finite subset of X,
and it is clear from the definition that X' F ¢.

Now we can use the example of the previous section to construct a counterex-
ample to the Completeness theorem. Let ¢ be the formula 3zP—(zF = zP) and
let = be as in the previous section. Since ¥ has no models, = . Suppose that
T + ¢. By the above theorem there would exists a finite subset X’ of L such that
Y’ + ¢. By the Soundness theorem, we would have £’ |= ¢. But Lemma 3.4.1
tells us that ¥’ has a model, say 2, so we would have % |= ¢, which is clearly
impossible. Thus, we must have that £ I/ ¢.
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