- Chapter 11
The Logic

2.1 The Type System

Types are symbols used to separate the objects in the universe into different
groups. Every nonlogical symbol in this logic will have a fixed type and the type
associated with the symbol will not change. A type system is a collection of
types constructed from some predefined types—called primitive types—with
new types created from other types by type operators. In this thesis we will use
only two type operators: the function type operator (—) and the (Cartesian)
product type operator (). '

The formal definition of type system that we give is based on the type system
commonly used in functional languages, (see [2]).

Definition 2.1.1 (Type System) Let P, P,,..., P, be distinct symbols, called
the primitive types. The type system generated by Py, P,,...,P,, denoted by
(Py, Py, ..., P,), is a set of strings of symbols defined inductivly as follows.
Define Ty to be the set of all primitive types, i.e., Ty = {P, P,, ..., P,}.
Assume Ty is defined. We define Tr,; by

T =To V{(B>) | 11, T € Te} U{(Ty * .. Ty) | T4, ..., T € T}

Finally, we define the set of all types to be the set .

00

T'= (Py; oy Pa) = | J T

k=0

A type of the form (T} — T,) is called o function type, and a type of the
form (Ty = -+ - % T,) 43 called a product type.

Definition 2.1.2 Let T € T. The order of T, denoted by O(T), is defined
inductively as follows.

IfT €Ty, then O(T) = 1.

Assume k € N and that O(T}) is defined for every Ty € Tg.

IfT € Try1 \ Tk then T is either a function type or a product type. :

Case T is a function type. Then T is of the form (T} = T,) where Ty, Ty € Tg.
Define O(T) = O(T1) + O(Tz).

CaseT is a product type. ThenT is of the form (Ty*...xT,;) whereTy , ..., T, €
Tk. Define O(T) = maz{O(Ty),..., O(T}n)}.

MBAUANDY X0INNI Ny ey
' 4 - -
VIR nypy

5

Our type systems are w—order because they contain types of order k for every
kew.

We will leave out parentheses whenever it does not cause any confusion. In
addition, we will adopt the conventions that

i) i=2To—>- > Tymeans ((- (T} = 1) >) = Ty),
(ii) 71 = T2 * T; means (T} — (T> x T3)), and
(ili) Ty *T, — T3 means ((Th « o) = T3).

Example 2.1.3 Let N and Z be primitive types.
o N, Z, (N—2), (N+N+Z),and (N« N) = Z) are types in (N, Z).
o ((Z— (Z+N)) = (Z— N)) simplifiesto Z — Z« N = (Z = N).

o ((ZxNx2Z)— (N = (Z«N)))*Z*(N = 2)) simplifiesto (ZxN»Z —
(N = Z«N))*Zx(N— 2).

2.2 The syntax of predicate logic with types

Our syntax is similar to the syntax of traditional first-order logic, (see [3]). Thus,
the first step is to choose a language to use. For this we must start by choosing a
type system T = (P, P,, ..., P,). As we shall see later, every term will have a fixed
type associated with it. For brevity, we will denote the statement “The term t
has type T" by %.

There is a fixed set of logical symbols, which always remains the same. It
consists of an infinite set of variables

V={zz, | TeT,1eN}
together with the set whose members are the symbols |
SAV=a <= 3V (),
(including the commé.) and the set
{=7 |T € T}.

'For each type T the variables z(r,,), + € N, are all of type T. Thus for any type
T we have infinitely many variables of that type. For convenience we write 27
for z(7,). Note also that we have an equals sign for each type. Let us denote the
set of all Jogical symbols by S. A language also contains two kinds of nonlogical
symbols, the set of constant symbols C and the set of relation symbols R. The

6

sets S,C,R, and {P,,..., P,,—,*} must be pairwise disjoint, and each symbol
in C UR must have a type associated with it. Note that there are no function
symbols. Indeed, there is no need for function symbols, because we can have
constant symbols whose types are function types. Thus, all functions are included
in C.

The union £ = RUCUS is called a language over the type system T.
However, since S is fixed, to describe £ we only need to say what symbols are in
the sets R and C, and we will usually write, “Let £ = R UC be a language over
the type system T".

We use the symbol = for syntactic equality, i.e., for two strings of symbols
81 and sy, 8; = 8 will mean that s, and s, are exactly the same strings. This
symbol is not allowed in any of our languages.

2.2.1 Terms and formulas

Let £ be a language over a type system T. An expression over L is a finite
sequence of symbols from £. There are two special kinds of expressions we will
use in our logic, terms and formulas, which we will now define. Every term will
have a type associated with it, which we will define at the same time we define
terms.

Definition 2.2.1 We start by defining a sequence {Ti} of sets by induction, as
follows. Let Ty be the set VUC. The type of T € V is T, and the elements of C
already have types associated with them.

Assume k € N, and Ty is defined and the type of every term in Ty is also
defined. We define

Terr = Ti U {757 (5) | 1577, 85 € T} U{(£, . tT0) | £, . tT0 € Ty),

and deﬁne the type of the term 52T (s5) to be T, while the type of the term
(1, ..., tI) is (T) * ...« Ty,). Finally, we define the set of all terms over L to be

To make it easier to wnte our inductions, for each term tT € T let us define
the rank of ¢7 to be the smallest k such that ¢7 € Ty, and denote it by rank(¢T).
When we say “by induction on t7” , we will mean “by induction on rank(tT)”.
Then we have the following lemma.

Lemma 2.2.2 Let tT be a term.

(i) If rank(tT) =0, then either t € V or tT € C.

7

(ii) If rank(tT) is k, where k > 0, then either tT = (f5°7(s%)) for some
terms f5=7 and s° of rank less than k, or tT = (t7,...,Tn) for some terms
t1 ..., tTm of rank less than k.

Proof: Let t7 be a term. _
(i) If rank(tT) = 0, then t7 € Ty. Thus either t7 € V or tT € C.

(i) If rank(tT) is k, where k > 0, then tT € Ty. Since k > 0, Ty, = T, +1, where
£ > 0. Since k is the smallest number such that tT € Ty, t7 € T,. Thus
tT € Ty \ T,. Hence either t7 = f5°7(s5) for some terms f57 and 55 in
Ty, or t7 = (t]},...,tIm) for some terms #;*,...,£2» in Ty. Since £ < k, the
ranks of the terms f5—7, 55 ¢7' ... tT» are all less than k.

Our definition of formulas is very similar to the one in traditional predicate
logic because formulas have no types. (They can be considered as all having the
fixed type boolean.)

Definition 2.2.3 As in our definition of terms, we will define a sequence {Fy}.
Let : v
Bo = {7 Tn ()) | P € R, 2 € T)

u{(tr =" &) | £,83 € T}.
(Note: The case m =1 of rT*Tm(#10 $Tm) s just r7(t7*).) Assuming Fy has
already been defined, we define Fryq by
Fern =Fe U{(=¢) [p €F}IU{(0AY) | o, ¥ €Fe}
V{(3z7y) | 7 € V,p € Fy}.

Then the set of all formulas over £ is the union

(s o3
F= UFk.
k=0

We can give a definition of rank for formulas analogous to the way we gave one
for terms: The rank of ¢ € F, rank(y), is the smallest k£ such that ¢ € F;,. Then
we have a lemma similar to the lemma for terms.

Lemma 2.2.4 Let ¢ be a formula.

(i) Ifrank(p) =0, then either p = (rT*=Tn(tD . Tn}) for some rTi*-Tm ¢
R and th, ..., tIn € T, or p = (tF =T ¢]) for some terms tT and t7.

(ii) If rank(p) is k, where k > 0, then ¢ is in one of the following forms:

(=¥), (W Ax), or (3zTv), where ¢ and x are formulas of rank less than k
,and zT € V

Proof: Similar to the proof of Lemma 2.2.2.

In order to simplify the wntmg of formulas, we will introduce the followmg
abbreviations. For ,1 € F and zT € V,

(2) (e V) will abbreviate (=((-p) A (-1))),

(b) (zp‘=> 1) will abbreviate (('—u,o) V),

(c) (¢) will abbreviate ((p=>V)A (¥ = ¢)), and
(d) (vz ¢) will abbreviate (= (327 (=¢))). |

(e) We will leave out parentheses whenever it is clear how to put them back in
correctly. In addition, we will adopt the conventions that

(i) @1 A2 A+ Aoy means (-« (o1 Awa) A---) A pp), and
(i) @1V 2V eV pr means ((-+(p1V p2) V) V o).

Example 2.2.5 This ezample is based on group theory. Our objective is to create
a language which we can use to write statements about group homomorphisms —
something we cannot do in ordinary (first-order) predicate logic.

Let £ = {el,eZ,+N*N2N g22222 pNSZY je g language over the type system
T = (N, Z). Here are some terms and formulas in our language.

o e, 4N NIN(N V) §2+222 (52 4Z) gre terms.
o WN=Z(eNy, @Z-ZAZ(hNﬁz(xiV),ezz) are terms.

o VY (4N NN (N ey =N z}¥) is a formula.

o VrZ3zZ(@%*77%(2f,2¥) = e{') is a formula.

o Yz Vo (W= 2(+ VNN (@l 2ff)) =2 @7 722 (W2 (), a2 () s
a formula.

2.2.2 Free Variables

Free variables play important roles in substitution, so we will define free variables.
rigorously. We begin with the set of free variables for terms.

Definition 2.2.6 Let tT be a term over L. The set of free variables of t7,
FV (tT), will be defined by mductzon on tT. If rank(tT) =0, then either tT € V or
tT eC.
Case tT e V: FV(tT) = {tT}.
~CasetT € C: FV(¢T) =

9

Assume rank(tT) = k, where k > 0, and for all terms 5 with rank(s) < k,
FV (s%) is defined. '
Case tT = (fS5°7(s5)) for some terms f5=T and s° with rank less than k.
Define ’
FV() = FV(5-T) URV (s°)

Case tT = (1, ..., tIm) for some terms t1*,..., 4T with rank less than k. Define
CFV(ET) =FV() U UFV ().

Now we can define the set of free variables for a formula ¢ by induction on ¢,
as follows.

Definition 2.2.7 Let ¢ be a formula over L. The set of free variables of ¢,
FV (), will be defined by induction on . If rank(p) = 0, then there are two
cases.

Case p = (tT =T tT) for some terms t] ,t5. Define

FV() = V() UV
Case p = (rT*Tm (¢ ., 1Zm)) for some terms t11, ..., tT». Define
FV(p) = FV(i") U+-U FV (7).

Assume that rank(p) = k, where k > 0, and that for all formulas + with
rank(vy) < k, FV (1) is defined.
Case p = (—) for some formula ¢ with rank(y) < k. Define

FV(p) = FV (). |
Case ¢ = (Y A x) for some formulas 1) and x with rank less than k. Define
| FV () = FV () UFV (x).
Case p = (3zT9) for some variable z7 and some formula) with rank less

than k. Define
FV(p) =FV(y)\ {z"}.

2.2.3 Substitution

The definition of substitution that we want to use in this thesis is a little different
from the standard one. It is inspired by the definition used in the lambda calculus
(see [4]), and will simplify one of our axiom schemes, but complicate our semantics
a little bit. First, we need to define what it means to substitute the term t7 for
the variable v7 in the term s°, which is defined by induction as follows.

10

Definition 2.2.8 Let tT and s5 be terms and let v7 be a variable. The result of
substituting tT- for vT in s5, denoted by [tT/vT]s%, is defined by induction on 85,
as follows. If rank(s®) = 0, then either s° € V or 85 € C.

Case 35 € V. Define

T ¢ oSe—,T
[tT/UT]BSE{ zs :'; :s;::r'

" Case s° € C. Define
[t* /vT]s® = §5.

Assume rank(sS) = k, where k > 0, and for all terms uU with rank less than k,

[tT /vT|uY is defined.

Case s5 = fU=S(uY) for some terms fU=5S and u¥ with rank less than k.

Define '
7 /o7]s® = ([t /071 F U7 9) ([t 0T).

 Case s5 = (11, ..., tTm) for some terms t7, ..., tT with rank less than k. Define
[t /0T]s% = ([¢7 0TI, ..., [EF 0T 5.
Now we can define substitution into formulas.

Definition 2.2.9 Let tT be a term, v” a variable, and ¢ a formula. The result
of substituting t* for vT in p, denoted by [tT /vT)p, is defined by induction on ¢,
as follows. If rank(p) = 0, then there are two cases to consider.

Case ¢ = (t§ =% 13). Define

[t /o'l = (7 /07185 =5 [/07183).
Case p = rhi*+Tm(¢TV | ¥Tm), Define
(17 /0o = T (4T o IR o 7 [T,
Assume that rank(p) = k, where k> 0, and that for all formulas ¢ with

rank(v) < k, [tT /vT|¢ is defined.
Case ¢ = () for some formula 1. Define

(£ /v = (=7 /07 1).
Case ¢ = (Y A x) for some fprmulaa Y and x. Define
/07)e = (17 /0T A [t 0T).

Case p = (3z5¢) for some variable 25 and formula1p. There are three subcases

- to consider.

11
Subcase (i): vT =z5. Define [tT /vT|p = .
Subcase (11): T # z5 and 25 ¢ FV(tT) or T ¢ FV(y). Define
e)

Subcase (ii1): vT # 25, 0T € FV(9), andz° € FV(tT). Choose the variable
y° to be the first variable of type S not occurring in either ¢ ortT, and define

[t /o) = @y°[t" W7l /25 1)

Intustively, we change the 25 in @ to the new variable y° first, then substitute
tT for vT as in subcase (ii).

Example 2.2.10 Let £ = {e’, ef, +V*N=N 2222 pN=Z} pe o language over
the type system T = (N, Z).

® [+NtN—bN(xN’ ef/)/xN]QZiZ—bZ(hN—bZ(xiV)’ eZZ) =
@ZtZ—DZ(hN—FZ(_*_NmN—)-N(z?I, elN)) 322)

o (RN (ol o) vt (0NN gl of) =N o) =
Vaff 4V ol eff) = o),

o [2722%(cf, ef) [xf|Faf (@777 (af ,af) =7 €f) =
3ag@%77" (af, ef)/zs[zg 7] (@772 (af, of) =
3z (7777 (af, 07222 (af €f)) =7 €f).

Note. In the definitions above, the type of the term to substitue, tT, and the
type of the variable substituted for, v¥, must always be the same.

Lemma 2.2.11 Let vT be a variable, tT and s5 be terms, and ¢ be a formula.
Assume that vT ¢ FV(s%) and vT € FV(p). Then [t7/v7]s5 = &5 and [tT/vT)p =
®.

Proof: ‘We can prove the statement about terms by a simple induction. For
formulas, we need to prove something more general than what is stated.

(1) Let v” be a variable, and let tT and s% be terms. Assume that vT ¢ FV(s5).
If rank(s) = 0, then either s5 € V or 55 € C.

Case s5 € V Then s5 = 5 for some z° € V. Since vT ¢ FV(55), z5 # o7
So [tT /vT]sS = 5.

Case s5 € C : By definition, [t7 /v7]s® = 5%

Assume that rank(s%) = k, where k > 0, and that for all terms u¥ with

rank less than k, if vT ¢ FV(uY), then [tT/vT]u uY. There are two cases
that we must consider.

12

Case 35 = fU~S(uY) for some terms fU~° and uV of rank less than k.
Since vT ¢ FV(s%), vT ¢ FV(fU~5) and »7 ¢ FV(t]'). By induction,
[tT/vT)fU=S = fU-S and [tT/vTIuV = uU Hence [t /vT)fV>S(uY) =
([1725 ([o) = fU5 () =

Case s° = (tf‘,...,tfn"‘) for some terms tf‘,...,tzn"" of rank less than k.
Since vT ¢ FV(s¥), vT ¢ FV(th) for all » € {1,..,m}. By in-
duction, JtT/vT]tT' = t& for all 2 € {1,..,m}. Thus [tT/vT]s5 =
[tT JWT) (8]}, o tEm) = (872, oy tTm) = 85,

' (i) The statement that we need to prove is, “For all terms t7, all formulas ¢
and all variables o7, if ¥ & FV(y), then [tT /vT]p = ¢.” We will prove this
by induction on the rank of the formula ¢.

Let T be a term, ¢ a formula, and v7 a variable such that v7 & FV(¢). If
rank(p) = 0, then there are two cases that we must consider.

Case ¢ (t 5 £5) for some terms t7,t3. Since v7 & FV (p), vT ¢ FV(t7)
and o ¢ V(). By [/ol = (17 /07155 = [£7/o7eS) =
(tS T tS)

Case ¢ = rli* ‘T"‘ (t ..y tIm) for some r7**Tm € R and #],...,tT» € T.
Smce vT ¢ FV(p] for all 2 € {1,...,m}, vT ¢ FV(t1). By part(i),
[T /vT]e = rT“""T"'([tT/vT]tf‘, o [T 0T IE) = (81, .., t50) = o

Assume that rank(y) = k, where k > 0, and for all formulas 1) of rank less
than k and all variables y7, if y* & FV (%), then [t7/y7]y = w There are
three case that we must consider. '

Case @ = (—1) for some formula 4 of rank less than k. Since vT & FV (y),
vT € FV (). By induction, [t7/vT)p = (S[tT /v) = (=) =
Case ¢ = (Y A x) for some formulas 1, x of rank less than k. Since
T & FV (), vT € FV (1) and v7 ¢ FV(x). By induction, [t7/vT]p =
([T AT T = (W AX) =
Case v = (3z5%) for some z° € V and ¢ € F. Since v7 & FV(p), v7 = 2°
or v¥ # z5 and vT ¢ FV(v).

‘Subcase vT = z5 : By definition [t /vT](3z5y) = (3z5¢) = ¢
Subcase vT # z5 and vT ¢ FV(¢)) : By induction, [t /vT]y = 4. Thus
[t7 /071 (32%9) = (32517 /o7 Iy) = (3=5¢9) =

Lemma 2.2.12 Let tT be term, z5,v5 be variables, and ¢ be a formula. Then
(i) rank([z5 /v5)tT) = rank(tT), and
(ii) rank([z® /v5]p) = rank(e)

13

Proof:

(i) Let k = rank(tT). If k = 0, then either t7 € Cor tT € V. If T € C,
then [z5 /vS|tT = ¢7, so rank([z5 /v5)tT) = rank(tT). If 7 € V, then either
T = v5 or tT # v5. In both cases [z5/v5]tF € V. So rank([z%/v5]tT) =
rank(tT).

Assume k > 0, and that for all terms u¥ with rank(uY) < k, rank([z5 /v5]uY) =
rank(uY).

Case tT = fU~T(uY) for some terms fU=7 and u” of rank less than k. We
claim that either rank(fU=T) = k — 1 or rank(uY) = k — 1. Assume
for a contradiction that rank(fV=T) < k — 1 and ramk(u’) < k - 1.
Then by definition, fY2?7T(uY) € Ty_,. This contradicts the fact that
rank(fU=T (uY) = k. Without loss of generality, rank(fV=T) = k —
1. By induction, rank([z°/v5)fY=T) = rank(fU~7) = k-1 and
rank([z5 /vSJuY) = rank(u?) < k — 1. Then [z5/v5]fV"T € Ty-i.
This implies that [z° /5] fY~T(u") € Ty. Clearly rank([zS /v5]fV=T (u"))
= k.

Case tT = (t7,...,4Tn) for some #1*,...,tT terms of rank less than k. This
is similar to the previous case.

(ii) This is similar to (i).

' Lemma 2.2.13 Let vT be o variable, T and s° be terms, and ¢ be a for-
mula. Assume that vT € FV(s%) and v* € FV(p). Then

(i) FV([F/v7]s) = (FV(s5) \ {o7}) UFV({7) and
(ii) FV([ET /v]p) = (FV(p) \ {oT}) UFV(T).

Proof: As in the previous lemma, for formulas we need to prove something
more general than what is stated.

(i), Let v7 be a variable, tT and s be terms. Assume that v7 € FV(s5).
If rank(sS) = 0, then either s° € V or s° € C. Since we assume that
v € FV(s¥), s5 = oT. Hence FV(s5) = {vT} and [tT/07]s5 = ¢7.
Then FV ([tT /vT)s5) = FV(tT) = FV(s5) \ {vT} UFV (7).
Assume that rank(s5) = k, where k > 0, and that for all terms u¥ of
rank less than k, FV([tT/vT|uY) = (FV (uV) \ {vT}) UFV(T).
Case(i) s° = fU=5(uY): Since vT € FV(s%), vT € FV(fU~5) or

vT e FV(uY).

14

Subcase o7 € FV(fY~5) and vT € FV(uY): By induction,

FV({f7/07]s%) = V(T /07)f75) UV ([T /o7

(EV(F7)\ {oTYUFV(ET))

UV (u”) \ {v"} UFV (7))

(EV(F75) UFV(u”)) \ {v"}

uFv(tT)

FV(FS(u) \ (o7} UV ()

FV(s5) \ {7} UFV (7).

Subcase v € FV(fY~S) and vT ¢ FV(uY): By the previous
lemma, [t /vT|uY = uY. Thus FV([iT /vT|u?) = FV(uY) =
FV(uY) \ {vT}. So by induction,

FV ([/07]s%) = EV([t7/07]f77°) UFV([tT oT]u")
= (FV(f72%)\ (oY UFV(ET)) U (FV ()
= (FV(fU75) UFV (")) \ {v"} UFV ()
= FV(f77%") \ {v"}UFV(T)
= FV(s5)\ {+T}UFV(T).
Subcase vT ¢ FV(fV~) and v* € FV(uY): Similar to the previ-
ous subcase.

Case(ii) s = (t1 -y t2m) for some terms t',...,tI. Since T €

FV(s5),vT € UIFV(tT) Let I = {1 € {1,...,m} | vT € FV(tF})}.
Then I # 0. By 1nduct10n, for all s € I, FV([tT /oT]th) = FV(t1)\

{vT} U FV (7). By the previous lemme, for all 1 & I, [¢7 /oT}tTs =
%, 50 FV([{T/uT]t) = FV({F) = FV(¢5) \ {u7}. Hence

FV([t7/7]s5) = CJFV([t"/vT]tT')
= GW([tT/UT-]tT-) ulJFv (e e
= E:I(W(t,“)\{v"} U'];,(F))
:.EJILJFV(tf‘) \ {v"}
= LjTFV(tT) \ {v"}u | JFV(ET)\ {vT}

€l &I

FV(t7))

15

UFVE) \ "} uFV(ET)

1=1
= FV(s5)\ {T}UFV(T).

(ii) The statement that we need to prove is, “For all terms t7, and all
formulas ¢, and all variables v, if vT € FV(p), then FV([tT/vT|p) =
(FV (p)\{vT})UFV (tT).” We will prove this by induction on the formula
@.

Let T be a term, @ a formula, and v” a variable such that vT € FV(yp).
If rank(yp) = 0, then there are two cases that we must consider.
Case(i) ¢ = (tf =5 t3) for some t5,t; € T. Since vT € FV(yp),
vT € FV(t{) or vT € FV(¢5). This case is similar to the case
$5 = fU=S(uY) for terms.
Case(ii) ¢ = rT*Tn(th, .., tT») for some rT1*"*Tm € Rand t1, ..., tIm €

m
T. Since vT € , vT € {J FV(t™*). This case is similar to the case
1=1

sS.= (t, ..., tT") for terms.

Assume that rank(p) = k, where k& > 0, and that for all formu-
las 1 of rank less than & and all variables z7, if 27 € FV(¢), then
FV([t*/z7]y) = (FV (%) \ {z7}) UFV (7).
Case ¢ = () for some formula 9 of rank less than k. Since FV(p) =
FV (1), o7 € V(). By induction, FV{(T/u7]y) = FV($)\ {v7 }U
- FV(t7). Hence
FV([t"/oTlp) = FV([t" /oT](-9))
FV(~[7/0719)
= FV([t"/v"]y)
FV(y) \ ("} UFV(T)
= FV(=¢) \ {»T}UFV(T)
= FV()\{oTYUFV ().

N

~ ~~

Case ¢ = (¥ Ax) for some formulas 1 and x of rank less than k. Since
vT € FV(p), v7 € FV(y) or vT € FV(x). This case is similar to
the case fY~5(uY) for terms.

Case ¢ = (3z5¢) for some 25 € V and 1 € F. Since T € FV(p),
vT # 25 and vT € FV(¢). There are two cases that we must
consider.

Subcase z5 ¢ FV(tT) : By definition, [tT/vT]p = (3z°[tT /vT]v).
By induction,

FV(["/v"]e) = FVE2 [T /v p)

16

FV ([t /9" %) \ {=°}

EV(E)\ o }UFV(ED) \ {=°}
(FV() \ {z°}) \ {vT}UFV(T)
= FV(3zy)\ "} UFV ()

= FV(p)\ {v"}UFV(t")

Subcase z° € FV(tT) : Let y° be the first variable of type S
not occurring in either ¢ or tT. By definition, [tT/vT]p =
3yS[tT /o7 [y° /z5]y). Since vT # z5,vT € FV([y5/z5]y). Hence

V([T 07)p) = FVES[ET /07Nl /2% 1¥)
= FV([f"/o"ly* /=" 19) \ {s°}
(FV([y°/z°J) \ {#T} UFV(T)) \ {°}
= ((FV([y°/="I) \ {s°H) \ {+"})
U FV(ET)\ {s°})

= ((EV) \{z°} U {¥°D\ {#°}\ {v"}
U V(N \ 1))

= (FV(%)\ {z°}) \ {v"}UFV(tT)

FV(3z°9) \ {+" YU FV (")

= FV(p) \ {t"}UFV(")

In all cases, we have FV([tT /vT]p) = FV(p) \ {vT} UFV (7).

2.3 The semantics of predicate logic with types

The formulas we have defined are merely strings of symbols; they have no meaning
yet. It is the job of the semantics to give meaning to the formulas. This will be
done in two steps: The first step is to choose meanings for all of the symbols in
the language by choosing a structure for the language. The second step is to use
the structure we have chosen to detemine the meanings of all of the terms and
formulas that can be constructed from the language.

To save ourselves some writing in this section, let us fix a language L =CUR
over a type system (P, ..., P,) to use in all of our discussions.

2.3.1 The structures

It should not be surprising that the structures for this logic are more complicated
than the traditional ones. The purpose of a structure is to give meaning to all of

17

the symbols in £. In order to do that in a consistent way, we must give meaning
to all of the types in the type system first. And since types are interpreted as
sets, our very first step must be to choose a set from which to construct the
interpretations of the types.

Definition 2.3.1 A structure for the language £ over T is a fourtuple of the
form .
A= (4,P*RECH

where

A 138 a non-empty set,

P2 is a type assignment,

R? is an interpretation of R, and

C% is an interpretation of C.

Type assignments and the interpretations of relation and constant symbols are
defined as follows.

Definition 2.3.2 A type assignment P? is a mapping from {P,..., P} to
P(A). ie.
Pm : {Pl) "':Pn} = q}(A)‘

We denote P2(P,) by P2 for all 1 € {1, ...,n}.

Before we can define interpretations of relation and constant symbols, we need
to define the universe of a structure and the interpretation of a type system. We
use “the universe constructed from A” which is defined in Chapter 1 (Defini-
tion 1.2.1) to define the structure universe.

Definition 2.3.3 The universe of the structure 2, Uy, is defined to be the
- universe of the set A, Uy. i.e, '
UQ = Ll A

Now our types and type systems can be interpreted as follows.

Definition 2.3.4 An interpretation of a type system under a structure ¥ ,
denoted by T2, is a mapping from T to Uy. It is defined by induction as follows.
Let T € T, soT € Ty for somek € N. If k =0, then T = P, for some
1€ {1,...,n}, and we define

T(T) = P*(R).

Assume that k > 1, and that for all £ < k and all S € T(£), T*(S) is defined.
Since k > 1, T = (T} — T3) for some types Ty and T, € T({) where is £ < k, or
T = (Ty*---xTy) for some types Ty, ...,Try € T(£) where is £ < k.

18
Case T = (T} =+ T3): Define
TT) = {f : T*(Ty) » T(Tz)}.

Case T =(Ty*---%Ty): Define
T*(T) = T%(Ty) % +++ x T*(Tn).

In order to simplify the writing, we will introduce the following abbreviations.
For T, T],,Tz € T,

o T% will abbreviate T™(T),

o TP — T3 will abbreviate {f : T*(T;) — T%*(T32)}.
(Thus (T} = 1) = T9 = TX)

Note that it follows from corollary 1.2.3 and proposition 1.2.4 that T%(T') for
all types T'.
Now, we are ready to interpret relation and constant symbols.

Definition 2.3.5 An interpretation of the relation symbols under a struc-
ture A , R®, is o mapping from R to Uy satisfying the condition that for all
rT e R, :

R:(rT) C T,

Definition 2.3.6 An interpretation of the constant symbols under a struc-
ture 2, C¥, is a mapping from C to Uy satisfying the condition that for all cT € C,

C*(c") e T

2.3.2 Interpretations of terms and formulas

Once we have chosen a structure 2, we can use it to help determine the meanings
of all of the terms and formulas. A moment's thought shows that a structure is not
enough, because it does not determine the meaning of one of the simplest terms
we can have: a single variable. So, in addition to a structure, we must have a
variable assignment in order to determine the meanings of terms and formulas. A
variable assignment is just a function & : V — Uy such that for every z7 € V,
a(2zT) € T?. Given a structure 2 and a variable assignment o, we can determine
the meanings of terms and formulas, which are called their interpretations.

Definition 2.3.7 The interpretation of a term t7 in a structure U under o
variable assignment o, denoted by I%(iT,a), is defined by induction on tT as
follows. If rank(tT) = 0, then either tT € V or ¢T € C. :

19

Case tT € V: Define I%(t7,a) = a(t?).
Case tT € C: Define I%(t7,a) = C2(t7).

Assume that k > 0, and that for all £ < k and all s5 € T(£), I%(s%, @) is defined.
Since k > 0, there are two cases that we must consider.

Case tT = f5°T(s5) where f5°7, 5% € Ty—y. Define

It @) = I*(f577,0)(I%(s°, @)).

Case tT = (t'f‘, vy tEm) where 1, ... ,t0 € Ty_;. Define

(" ,e) = (I*(i1 a), ..., 12 (7,).
Note that for any term t7, I%(t7,) is an element of T%.

Definition 2.3.8 Let ¢ be a formula. The interpretation of a formula ¢ in
a structure A under an assignment o, denoted by I%(p,), is defined as follows.
If rank(yp) = 0, then there are two cases that we must consider.

"Case ¢ = (t] =T {7) where t7,t] € T. Define

*(p)a) = T ifI%(tT, a) is the same as I2(t],)
$1%) = F_otherwise
ase = piltTEm y ey Up™), where TH1TTNIm € an yun tym € 1.
of i (¢11) L t0m), where r71**Tm € R and ¢7',...,tT € T
Define

T 'if_l‘m'((t?‘1) 4§ tﬂm)’ a) € Rﬂ(rTl""‘Tm)
F otherwise.

e £

Assume that rank(p) > 0, and that for all variable assignments 3 and all formulas
¥ of rank less than k, I?(y, B) is defined. Since k > 0, there are three cases that
we must congsider.

.Case @ = (—y) where ¢ is a formula of rank less than k. Then
A — T iqu('w) Of) =F
I (()01 a) - { F ‘iflm('l,[), a) =T

Case ¢ = (Y Ax) where v and x are formulas of rank less than k. Then

2 _ | T ifI*¢,a)=T and I*(x,a) =T
(e 0) = { F otherwise '

20

Case ¢ = (3zTY), where 2T € V and ¢ is a formula of rank less than k.
Then

T if there ezists a variable assignment 3
(0, 0) = with B(v%) = a(vS) for all variables vs # =T
' such that I%(¢,8) =T
F otherwise

The following lemma. tells us how to interpret the abbreviations we introduced
above.

Lemma 2.3.9 Let ¢,, and @1, @2, ..., a be formulas, let A be a structure, and
let o be a variable assignment.

() The interpretation of (p V 1) is given by

_ | F ifI*(p,a) =F and I*(¢,a) = F
oV 9),a) = { T otherwise.

(ii) The interpretation of (¢ = 1) 18 given by

[F ifI*¢,e) =T and I*($,a)=F
Ple=9)a) = { T otherwise.

(iii) The interpretation of (¢ <) is given by

eena{F ISR

(iv) The interpretation of (VzT¢) is given by

T 1%, B) =T for all variable

AT) assignments B with f(v5) = a(v5)
F{(va"¢) @) = for all variables v5 # zT
F otherwise

(v) The interpretation of (o1 A p2 A+ A ©n) is given by

T ifI%p,a)=T for all
Im((¢1A(p2A"'A‘pn)9a)= z€{1,...,n} ‘
F otherwise.

(vi) The interpretation of (o1 V w2V -+-V pn) is given by

T ifI*p,a)=T for at
P Vi Ve V), a) = least one 1 € {1,...,n}
F otherwise.

- N -
NOBUANDT ANIUUINUUINIT
. d - -
SHININIUNKI NUIDY
v

21

Proof: Let ¢, v, and ¢y, ¢3, ..., ¢n be formulas, and let a be a variable assignment.
Parts (i) and (ii) follow directly from the definitions.

(iii) Since (p <> 1) abbreviates (¢ =) A (1 =), we can .argue as follows.

Case I%(yp,a) = I®(,a): There are two subcases that we must consider.
Subcase I*(p,a) = T: So I*(y),&) = T. By definition, I%(p = 1, a)
and I*(y = ¢, a) are true. Hence I%(p & ¢,0) =T.
Subcase I%(¢,) = F: So I*(,a) = F. By definition, %(p = ¢, a)
' and I%(1) = ¢, a) are true. Hence /%(p & 9,0) =T.
Case I*(p,a) # I%(1,a): Again, there are two subcases that we must
consider.
Subcase I%(p,a) = T: So I*(y,a) = F. Then I%*(p =>1,a) = F.
Hence I*(p < ,0) = F. |
Subcase I%(p,a) = F: So I%(y,¢) = T. Then I*(y = p,a) = F.
Hence I*(p <> ¢,0) = F.

(iv) Since (VzT¢p) abbreviates (n3z”(—p)), we can give the following proof.

Suppose I%(VzTp,a) = T, so that I*(3zTnegy),a) = F. Let § be any
variable assignment such that A(vS) = a(v5) for all variables v5 # zT.
Then I%(~p, 8) = F. So I*(yp, 8) = T. Hence for all a variable assignment
B with 8(v5) = a(v®) for all variables v5 # z7, I*(p, 8) =T,

Conversely, assume that I%(p,8) = T for all variable assignments § with
B(v5) = a(v®) for all variables v$ # zT. Then I*(—~p,3) = F for any
variable assignment g s.t. 8(v5) = a(v®) for all variables v5 # zT. Hence
I%*(327 (~p), a) = F. Thus J2(=3zT (-p),a) = T.

Parts (v) and (vi) can both be proved by induction on n.

The next proposition tells us that the interpretations of terms and formulas
only depend on the values assigned to their free variables.

Proposition 2.3.10 Let 2 be a structure and let o and (8 be variable assignments.

(i) Let t5 be a term and suppose that a(vT) = B(WT) for all vT € FV(t5).
Then I%(t5, 0) = I%(t5, B).

(ii) Let @ be a formula and suppose that a(vT) = B(vT) for all vT € FV(yp).
Then I%(p, @) = I*(p, B).

Proof: Let 2 be a structure.

22

(i) Let t5 be a term and let & and [be variable assignments. We will prove
this by induction on t5. Let k = rank(t5). If k = 0, then either t5 € V or
tfec.
Case t5 € V. Then FV(t5) = {t°}. Hence a(t5) = f(t5), so I%(t5,a) =
a(t%) = B(t°) = I*(t5, B). |
Case t° € C: We have I%(t5, a) = C%(t%) = I%(t5,).
Assume that k > 0 and that for all £ < k and all u¥ € Ty, if ¢(»7) = B(v7)

for all vT € FV(uY), then I*(u”, a) = I?*(uY, B). Since k > 0, there are two
cases that we must consider.

Case t§ = fU~S(uV) where fU~5 and uY are terms of rank less than k.
Since FV(fV=5) ¢ FV(¢5) and FV(uY) C FV(t5), then for all vT €
FV(5U~9), a(vT) = B(vT), and for all vT € FV(uY), a(vT) =.6(27).
By induction,

,I“(ts,a) o Iﬁ(fU—-)S(uU

= I*(t°,)

Case t5 = (th,...,4Tm) where #1!, ...,tT" are terms of rank less than k. For
allz € {1,...,m} we have that a(vT) = B(vT) for all v € FV(tT:), since
FV (tI*) C FV(t5). By induction,

Im(ts’a) q Iﬁ((tfli'“at?nm)’a)

= (M, a)y ., It a))
(Im(t:{1 ﬂ): -~-,I“(tfn“,ﬂ))
e, . to), B)
= I’(5,6)

(i) As usual for formulas, we need to prove something that is stronger than

' what we state in the proposition. The statement that we need to show is
true is “For any formula and any variable assignments o and (3 such that
a(vT) = B(v7T) for all variables vT € FV(p), I*(yp, a) = I%(p, §).” We will
prove this statement by induction on . '

Let ¢ be a formula and o and § be variable assignments such that for all
vT € FV (o), a(vT) = B(vT). Let k = rank(yp). If k = 0, then there are two
cases that we must consider.

23

Case p = (t7 =7 t}) where t7,t] are terms. By part(i),

I%p,a)=T iff I*({T="1]),0)=T
iff I*(tT,) is the same element as I%(¢], @)
iff I%(tT,) is the same element as I%(¢],)
iff 1% ="1),0)="T
iff I%p,8)=T

Case v = rT*Tm(tTt . 1Tn) where rTi**Tm € R, t1*,...,t7" € T. By
part(i),

*(p,0)=T if I*G¢T""T@t], . tr),0) =T
iff T2, ., thr), @) € RY(rTimTm)
iff I, ... 1), B) € RA(rTi+Tm)
iff 12T T (8,), B) =T
ifft %0, 8) =T

Assume that k > 0, and for all formulas v of rank less than k and all
variable assignments o and 8 with ap(vT) = By(v7) for all vT € FV(y),
I%(2, o) = I%(9),By). Since k > 0, there are three cases that we must
consider.

Case ¢ = (—), where 9 is a formula of rank less than k. Since FV(¢) =
FV (i), for all vT € FV (), a(vT) = B(vT). By induction,

I*(p,0) =T iff I*(,a)=F
iff I%(y,) =F
iff I*(p,8) =T

Case ¢ = (¥ A x), where ¢ and x are formulas of rank less than k. Since
FV(p) = FV(¢) UFV(x), a(®T) = B(wT) forall vT € FV(y) and
a(vT) = B(vT) for all vT € FV(x). By induction,

*e,0)=T iff I(¥Ax),@)=T
iff I%(,0) =T and I%(x,0) =T
iff I*(4,0) =T and I*(x,f) =T
iff I*(YAx),B)=T
iff 1%, f)=T

Case ¢ = (3z5¢), where 25 € V and % is a formula of rank less than k.

24

Assume that I?((325¢),a) = T. Then there exists a variable assign-
ment ag with ag(v?) = a(vT) for all variables T # z5 such that
I%(1,a) = T. Define a variable assignment Gy by Bo(v7) = B(vT) for
all v7 # z5 and Gy(z°) = ap(z®). Let vT € FV(y). If v7 = z5, then
ao(vT) = By (vT) by the definition of fo. If vT # 25, then vT € FV (),
so ap(v?) = a(¥T) = B(vT) = Bo(vT). Hence for all vT € FV (),
ag(vT) = Bo(vT). By induction I%(3, Bo) = I*(,00) = T. So there
exists a variable assignment Gy with By(vT) = B(vT) for all vT # 2°
such that I%(3), B) = T. Hence I*(p, 3) = T. The converse is similar.

Finally, we have a proposition relating interpretations and substitution.

Proposition 2.3.11 Let U be a structure, t* a term, z7 a variable, and o a
variable assignment. Let B be the variable assignment defined by A(vS) = a(v5)
for all variables v5 # 27 and B(zT) = I%({T,).

(i) If uU is a term, then I%([t” /zT|uY, a) = I2(4Y, B).
(i) If o is a formula, then I*([t7/27]p, o) = I%(p, B).

Proof: Let 2 be a structure, tT a term, z” a variable, and « a variable assignment.
Let 3 be the variable assignment defined by A(vS) = a(vS) for all variables v5 #
zT and 8(z7) = I2(tT,).

(i) Let uV be a term. Let n = rank(u”). If n = 0, then uY is a variable or a
constant. If u¥ € C, then I*([t/zT|uY, a) = C*(uY) = I?(uY, B). Assume
that u¥ € V. If uV = 27| then [t7/zT|u¥ = tT. Then I2([tT/z7]uY, a) =
I*tT,) = B(zT) = I*(uY,8). If u¥ # 27, then [tT/zT|u¥ = uV. Since
BuY) = a(u), I*([tT/zT]uY,) = a(u¥) = B(u¥) = I*(dY, B).

Assume that n > 0 and that for all terms u’* of rank less than n, we have
I*([t7 /2Ty, @) = I%(u;*, B).

Case u? = (1T, ..., tTn) where t1*, ..., #Tm are terms of rank less than n. Then
by induction,

Ia([tT/xT]uU») Im([tT/xT] (tilr1 e t?n'm)v 9
(Im(|:t‘11/$lr]“"irl) I Ig([tT/mT]tama @)
(I, B), - It B))

(D, . i), B)

= Iﬁ(uU’ ﬁ)

25

Case uU = fUr=U(u!") where f/1V and u}* are terms of rank less than n.

(/") = I /TN W),)
= I*({tT /27100,) (IH([tT /27 Tug, o))
f72Y, B) (I (u, 8))
(72 wi), B)
= I"(u”,B)

(ii) Let ¢ be a formula and let n = rank(p). If n =0, then there are two cases
that we must consider.

Case = rTiw*Tm(¢Ti | #Tn) where r7i**Tn & R and £7, ..., tT» € T. By
part (i),
I%([t7 2T |rTeesTm (tfx, ytIn),a) =T
i 13(rT T ([T 2| (D ..,), @) = T
i I /2TI (R e),) € RA(rTT)
iff Im((t'{l’ ~--’t;-'1‘tm)aﬂ) E Rm(TTﬂm*Tm)
iff 12T,), B) = T

Case ¢ = (t§ =t5) where tJ and ¢; € T. By part (i),
([T /2T)(4f = 13),0) =T ’
iff 1A /TN = [T /27]t))0) = T
iff I%([t7/z7)tS,a) is the same element as I%([tT /z7}t5, @)
iff I%(t3, B) is the same element as I%(t5, B)
iff I*(t7=135),8) =T.

Now assume that n > 0 and that for any formula 7 of rank less than n
and any variable assignment a; if f; is the variable assignment defined by
B1(v5) = oy (v5) for all v5 # 2T and Gy (z7) = I*(tT, 1), then I2([tT /zT], o)
= I*(¢, ;). Since n > 0, ¢ is in one of following forms: =1, Y Ax, or 3y54,
where 1 and y are formulas of rank less than n and y° a variable.

- Case ¢ = —): Then
([t /2T (), 0) =T iff I*([t"/a"]p, @) = F

if 1%y, =F
iff 1%(~y, 8) = T.

26

Case p =9 Ax: Then o
(T /2T Ax), @) =T

i I/ A) o) = T

i T2([¢7 /2T, 0) = T and I?([tT/z"]x,0) =T
iff 1%(,8) =T and I*(x,8) =T

iff I%(YAx,B)=T.

Case ¢ = JySy: First, suppose that 27 & FV(p). Then [t7/2T]p = ¢ and
a(vV) = B(vY) for all variables U € FV(y). Hence I*([t*/zT]p,a) =
I%(¢p,a) = I*(yp, B). Therefore, for the remainder of this case we way
assume z7 € FV(y), which implies that z7 # 5 and 27 € FV(¥).
There are two subcases to consider. -

Subcase ¥ @ FV(¢T). Then [tT /27]p = JyS[tT/zT]¢. Suppose

I*(3yS[tT /2Ty, a) = T, so that there is a variable assignment o,
with oy (v¥) = a(v?) for all v¥ # y° such that I*([tT /27|y, o) =
T. Let B, be the variable assignment defined by 8 (v¥) = oy (vY)
for all vU # 2T and B, (2T) = I*(t*, o4). By induction, I?*(, f1) =
T. Since y5 & FV({T), Bi(zT) = I%(tT, a1) = I%(¢T, @) = B(aT).
If w¥ # y5 and v¥ % 27, then Bi(v¥) = ou (W¥) = a(vY) = B(Y).
Thus, By (vY) = B(vY) for all variables vV # ¢, So I*(Jy5y, f) =
T. '
Conversely, suppose I%(3ySy,) = T, and let B, be a variable
assignment such that f,(v¥) = B(vY) for all variables vV # y5 and
I%(y, B)) = T. Define oy by a;(vY) = Bi(vV) for vV # 2T and
o1 (z7) = a(z7T). Note that oy (V) = a(vV) for all vV € FV(iT).-
Indeed, o (zT) = o(zT) by definition and for v¥ # zT, we must
have vV 2 35, so ey (vY) = B (vY) = B(vY) = a(vY). Thus, since
zT # 45, Bi(aT) = B(zT) = I*(tT, a) = I*(t7, ;). By induction,
I2([t% /27, ¢} = I%(4, Br) = T. Since we showed above that
o (vY) = a(v?) for all v¥ # y, this shows I2(FyS[tT /27|y, @) =
T. -

Subcase y° € FV(tT). Then let z° be the first variable of type S not
occuring in either 1 or tT. So [t7/zT]p = 325[t7 /z7|[25 /yS]. Let
x = [25/y5]Y. By the Lemma 2.2.12, rank(x) = rank(y). Since
25 @ FV(¢T), by the previous subcase, I%([tT/z7 |p, a) = I?(¢, B).

2.3.3 Sentences, models, and semantic implication.

All of the definitions and results in this section are identical to those in standard
first-order logic, so we will just state them briefly.

27

A formula o such that FV (o) = 0 is called a sentence. If o is a sentence
and 2 is a structure, then J%(o, &) is the same for all variable assignments o. If
I%(0,a) = T for all @, then we say o is true in 21, or that 2 is a model of o, and
write 2 |= 0. If I*(0,0a) = F for all a, we say that o is false in 2, or that o is not
a model of o, and write 2 }£ 0. Similarly, if T is a set of sentences and 2 |= o for
all 0 € T, then we say that 2 is a model of £ and write 2 |= X, whereas if there
is at least one o € ¥ such that 2% j~ o, then we say that 2 is not a model of £
and write 2 j& L.

The following lemma is a direct consequence of the definitions.

Lemma 2.3.12 Let U be a structure and let © and ® be sets of sentences such
that © C @. If A = ®, then 2 |= 1 also.

Let & be a set of sentences and ¢ a single sentence. If 2 |= ¢ for all structures
2 such that 2 |= X, then we say that ¥ semantically implies o, and write
¥ | 0. We also say that o is 2 consequence of ¥ in this case. We call ¢ valid
whenever 0 |= 0. Usually we just write |= o to indicate that o is valid. Note that
o is valid iff % |= o for all structures 2. Then we have the following lemma.

Lemma 2.3.13 Let £ and ® be sets of sentences, and let v be a sentence.
(i) T = o for allo € X.
(i) If S k= forallp € ® and ® =, then T = 1.

2.4 The Formal Proof

The definitions and basic results on formal proofs are also quite similar to those
for standard first-order logic, so we will often be brief in this section as well.

2.4.1 Deductive systems and formal proofs

A deductive system consists of two sets: a set of formulas, whose members are
called logical axioms, and a set of objects called inference rules. An inference
rule is a pair (P,), where P is a set of formulas and ¢ is a single formula. The
set P is called the set of premises of the rule, and the formula p is called the
conclusion of the rule. If R = (P,) is an inference rule, we say that ¢ follows
from P by R. The logical axioms and inference rules are used when writing formal
proofs.

Definition 2.4.1 Let & be a set of formulas and o a single formula. A formal
proof of o from T is a finite sequence 1, ..., pp of formulas (called the steps of
the proof) such that @, = o, and for each 1 € {1,...,n} we have that ¢, satisfies
one of the following conditions:

28

(i) ¢, is a logical aziom; or
(zt) Y, € E,‘ or

(iii) there are an inference rule R and formulas ;,, ..., p;, such that j, <1
for £ € {1,...,m} and o, follows from the formulas @;,, ..., p;, by the rule
R.

If there is a formal proof of ¢ from ¥, then we say ¥ proves o, and write
T I o. If 0} o, then we call o a theorem; usually we write - o to indicate that
o is a theorem.
' Note that for semantic implication we required that o and the elements of ¥ be
sentences, but for formal proofs there is no such requirement: o and the elements
of ¥ can be arbitrary formulas.

2.4.2 Our rules of inference and axioms.

There are many choices for the sets of inference rules and axioms which are usable,
‘and the particular choice made is often a matter of personal taste. The sets that
we will use in this thesis are as follows.

Inference rules.

We will follow a common convention and write inference rules as fractions, with
the premises above the bar and the conclusion below the bar, like this:
P,.,P,
C
Our inference rules are divided into three group: modus ponens rules, generaliza-
tion rules, and specialization rules.

.

i. Modus ponens rules (MP). This group is the set of all rules of the form

pp=>9
)
where ¢, € F.
ii. Generalization rules (GN). This group is the set of all rules of the form
' .
vzTp

where ¢ € F and zT € V.

iii. Specialization rules (SP). This group is the set of all rules of the form
| ' vzl
[t /= e
where p € F and 27 € V, and tT € T.

29

Logical Axioms

Our axioms are also divided into three group: propositional axioms, quantifier
axioms, and identity axioms.

i. Propositional axioms (PA). This group is the set of all formulas which
can be obtained from some tautology in propositional logic by substituting
a formula for each propositional variable in that tautology. We can make
this completely rigoruos as follows.

In order to define the substitution of formulas for the propositional variables
~ in a propositional formula, we need to select a formula for each propositional
variable that occurs in ®. To simplify the definition, in fact we select for-
mulas for all propositional variables by defining a formula selector to be
a function from VP to F. The substitution of formulas for propositional
variables in a propositional formula will be defined by induction as follows.

Definition 2.4.2 Let ® be a formula in propositional logic, n: VP = F a
formula selector. The subsititution of formulas for the propositional
variables in a propositional formula & under a formula selector
n, denoted by ®(n), is defined by induction on . Since & € P, there is
a smallest k € N such that ® € 5. If k = 0, then define &(n) = n(®).
Assume that k > 0, and that for all £ < k and all ¥ €), ¥(n) is defined.
Since k > 0, there are two cases that we must consider.

Case ® = -V for some ¥ € F},£ < k. Define

®(n) = (~¥(n)

Case ® = (WA O) for some¥,0 € Fy, L < k. Define
| ®(n) = (¥(n) A O(n))

Proposition 2.4.3 Let ® be a formula in propositional logic, n: V* = F a
formula selector. Then &(n) is a formula.

Proof: This is clear from the definitions.

This seems like an appropriate place to state the following proposition (which
we will need in our proof of the Soundness theorem).

~ Proposition 2.4.4 Let & be a formula in propositional logic, n a formula
selectvor, A a structure, and o a variable assignment. Then

I*(®(n),0) = I*(®,),

30

where p is the truth assignment defined by
u(P) = I*(n(P),)
for oll P, € VP,
Proof: This follows from the definitions by a straightforward induction on
k, where k is the smallest element of N such that & € V}.

ii. Quantifier axioms. (QA) This group is the set of all formulas of the form
(Vz'(p = ¥)) = (¢ = (¥279))
vzl = 9
(V2T (~9)) = (-32")
(-32T9) = (2" (=)
where ¢, € F and 27 is a variable not in FV ().

iii. Equality axioms (EA). This group is the set of all formulas of the form

oS

(@5 =y5) = (51 =[5 /0°)t")
(z5 = y5) = ([25/v5]p = [v°/v°]p)

where z°,y5,v5 € V, tT € T, and y is an atomic formula.

Example 2.4.5 This ezample will show how types can help us to write a homo-
mophism and prove some statements about it. Let £ = {eV,e?, +N*N=N gZ+Z-2,

hN=2} be a language over the type system T = (N, Z). Let T be the set conszstmg
of the following formulas.

o VI (+NN-N(gN V) = gy,

o V22 (@2°2~2(7, %) = 17),

o VoMV (BW2 (4NN (o N)) = @22 (hN-2 (o), N2 (o)),
o VoPVeIYE (8277 (af o) = ©752(af, af)) = (af = af).

We will show that T - hN2Z%(eN) = €2.

$1
P2
Y3
P4
¥Ps
Ys
P7
s
P9
$10
Pn
P12
Y13

14

P15

P16

P17
P18
19

P20
Yn

-

31

z =zl = W22 (zl) = V22 (z])) @1 18 an EA,
‘ tT = WN=Z(zd).
V$2 (z =zl = h.N"’Z(xN) = hN”Z() @1 and GN.
vz (z¥ =z = hN"Z(N) = AN=Z(zl)) ¢z and GN.
VxN(FNN=N (N Ny = g
NS (4NN (gl o)) = 42) s and SP.
(17N (ol) = o =
hN-»Z(+NtN—>N(z{V)eN]) = hN—»Z(miV)) _ 4 and SP.
Ve (+N NNz, eN) = 27') | s € T
(+NNoN (N eN) = zlV) s and SP.
hN—>Z(+N.N-+N(N N)) x N"z(:z:) s, w7 and MP.
(34_x3)=>((z4=x5)=>(x3“z5)) g is an EA.

Vaf (zf = zf) = ((af = z£) = (af = 2f)) g and GN.

Vx4Vx5(4-xs)=>((f—zs)=>(= zf)) 10 and GN.
ofVafvel of =of) = (of = af) = (e =4f) o ond ON.

V:c Vz#(zZ = V2 (z))) = ((af = 2f) =

(hN"Z (z?) = z?%)) 12 and SP.

fo(hN—)Z(_'_N-N-»N(x{V,eN)) = hN—bZ(x{V)) =

((hN—>Z(+N:N—vN(xiV,eN) iz .’L‘f) =

(hN_’Z(z{v) = Z?)) 13 and SP.

(hN—bZ(+N:N—>N(x11V’eN)) N hN—vZ(x_IlV)) =

((hN—)Z(_l_NaN—rN(xN, CN)) @Z*Z—)Z(hN—bZ(xN)’

hI;—v;(ez))) (hN_’Z(:E) @anz-bZ(hN—bZ(xl)

hN=2(eM)))) 14 and SP.

((I{ff;zs‘,-'-N*N_bN(ﬁf’zeN}v) = ezz-ZAZ(hN—p‘Z(xllV),

hN=Z(eN))) = (V=2 (2)) = @722 (hV=2(a]),

hN=Z(eN)))) ws, P15 and MP.
V:II VxN(hN—)Z(+NtN—>N(xN N)) L

@ZtZ—)Z(hN—bZ(xN) hN-iZ(zN))) P17 € p
Vo (RN =2 (NN (g, 237)) =

$Z-Z—>Z(hN—>Z(z{\I), hN-Z(zN))) @17 and SP.

hN—)Z(_,{_NnN—»N(z{V’ eN)) - ezﬁz—rZ(hN—»Z(m{V)’

hN=Z (eNY)) 18 and SP.
hN—»Z(z{V) —_ eZmZ—bZ(hN—)Z(z{V)’ hN—bZ(eN)) 016, P19 and MP.

fov:cf(zf = @222 (RNZ (g} pN=Z (V) =
((.’Bf — xg) = (ez-Z—M(hN—»Z(x{V)’ hN—rZ(cN))
= %)) 12 and SP.

P22

P23

P24

P25
P26
Y21
P28
P29
P30

P31

32
©a3
P34
©3s
P36
P37
P38
¥39
| Pa0
P41

Y42

e meonewem

maemowewm]

W n [

Va:z(hN"Z() ez-z—nZ(hN»Z(xN) hN"Z(eN)))

= ((hN—vz() _ :CZ) = (ez'z“’z(hN"z(.’L‘f’),
hN—»Z(eN)) = zZ))
(hN—)Z() eZ'Z—tZ(hN—bZ(N) hN-»Z(N)))

((hN—)Z(N) — GZ*Z—)Z(hN—oz(I) Z)) =
(ez-z-b.Z(hN—»Z(mfl)’ hN—)Z<eN)) r
eZanZ(hN—bZ(x{v')’ eZ)))
(hN—'Z(x{V) = eZtZ—bZ(hNaZ(x{V)’eZ)) =
(@Z-Z—M(hN-vZ() hN—)Z(eN)) —
@sz-)Z(hN—)Z(N) e))
V.’B (eZtZ—bZ(mZ Z) e)
ez-z—vZ(hN—»Z() Z) y 4 hN—»Z(ziV]
(2 = zf) = ((5‘75 = zf) = (2§ =If)
V2 ((zf = 2f) = (¢ =z§) = (2§ ==z
VafVaf (2§ = 2f) = ((zf =of) = (27
vaf ((zf = W22 (z))) = (2§ = =f) =
(RN=2(z)) = 2f)))
(@772 (WN=2(af), %) = WV 32(al) =
((eZ-Z—)Z(hN—M(z)) ®Z-Z-+Z(hN—>Z(x{V),eZ))
(hN->Z(N) = $Z:Z—&Z(hN—)Z() Z)))
(GBZ'Z"z(hN"Z(z!) Z) — ®Z-Z—+Z(hN—>Z(m{V)’ eZ))
= (hN-vZ(xIIV) = ez:z-»Z(hN»Z(x{V)’CZ))

vaf(zf =af)

($Z-Z—>Z(hN->Z(${V), eZ) = ®Z-Z—>Z(hN—)Z(
hN—bZ(mllV) v @Z-Z—yZ(hN—m(m{V)’ eZ)
ehZ—»Z(hN—bZ(x{V) hN"'Z(eN)) -
®Z¢Z->Z(hN—>Z (x{\l): eZ)
A LAL (Gt €
= (zf = z))

Vg Vag (@227 (BN 2 (a1'), f) =
&% 2 2(AN=2(x)'), af)) = (af = zf))
fo((@z*z"z(h’v"z(z{v), hN"Z(eN)) —

QU EZ(RN2 (g 2)) = (W2 (M) = 2f))
(QZ-Z—)Z(hNAZ(x{V)’ hN—)Z(eN)) =
@ZtZ#Z(hN—)Z(x{V/)’eZ)) = (hN"’z(eN) = eZ)
hN—kZ(eN) — eZ

z7'),€%))

) 3:42) = g%Z-2 (zf, xsz))

- 32
Y and SP.

a2 and SP.

P, p23 and MP.
s €L

o5 and SP.

"20%4 is an FA.
a7 and GN.

s and GN.

w9 and SP.

3o and SP.

026, P31 and MP.
a3 18 an EA.
33 and GN.

¢34 and SP.

¥a2, pas and MP.
P, p3s and MP.
P €L

p3s and SP.

w39 and SP.

40 and SP.
a7, pa1 and MP,

	Chapter 2 The Logic

