Chapter I

Background

1.1 Notation

As is usual for a mathematics thesis, we use many symbols here. Most of them are notation for new objects, and will be defined in later chapter. However, there is some special notation for well-known objects that we will use, which we list here.

N = set of all nonnegative integers.

 $\mathfrak{P}(A)$ = power set of the set A.

 $A \rightarrow B$ = the set of all functions from the set A to the set B.

1.2 Universe construction

In Chapter 2 we will define type systems which include function and tuple types. To simplify our definition of the interpretation of such type systems we introduce the universe constructed from a set.

Definition 1.2.1 Let A be a set. The universe constructed from A, denoted by U_A , is defined as follows. We start by defining a sequence $\{A_k\}$ of sets by induction. Let $A_0 = A$. If A_k is defined for some $k \in \mathbb{N}$, then we define $A_{k+1} = \mathfrak{P}(A_k) \cup A_k$. Finally, we let

$$\mathcal{U}_A = \bigcup_{k=0}^{\infty} A_k.$$

In set theory, see [1], the order pair (a, b) is typically defined to be $\{\{a\}, \{a, b\}\}$. From this definition, we have the following lemma.

Lemma 1.2.2 If $X_1, X_2 \subseteq A_k$ for some $k \in \mathbb{N}$, then $X_1 \times X_2 \subseteq A_{k+2}$.

Proof: Let $(x, y) \in X_1 \times X_2$. By definition, $(x, y) = \{\{x\}, \{x, y\}\}\}$. Since X_1 and X_2 are subsets of A_k , $\{x\}$ and $\{x, y\}$ are also subsets of A_k . Implies that $\{x\}$ and $\{x, y\}$ are in A_{k+1} . Hence, $\{\{x\}, \{x, y\}\} \subseteq A_{k+1}$. It follows that $\{\{x\}, \{x, y\}\} \in A_{k+2}$. That is, $(x, y) \in A_{k+2}$. So we have $X_1 \times X_2 \subseteq A_{k+2}$.

One simple way to define the arbitrary finite Cartesian product $X_1 \times X_2 \times \cdots \times X_m$ is as $((\cdots (X_1 \times X_2) \times \cdots) \times X_m)$. Using this definition it is easy to prove the following corollary by induction.

Corollary 1.2.3 If $X_1, X_2, ..., X_m \subseteq A_k$ for some $k \in \mathbb{N}$, then $(X_1 \times X_2 \times \cdots \times X_m) \subseteq A_{k+2(m-1)}$.

Proposition 1.2.4 If $X_1, X_2 \subseteq A_k$ for some $k \in \mathbb{N}$, then $X_1 \to X_2 \subseteq A_{k+3}$.

Proof: Let $f \in X_1 \to X_2$. By definition and Lemma 1.2.2 $f \subseteq X_1 \times X_2 \subseteq A_{k+2}$. Then $f \in \subseteq A_{k+3}$. Hence $X_1 \to X_2 \subseteq A_{k+3}$.

1.3 Propositional logic

We will use propositional logic to help define our set of logical axioms in chapter 2, so we will give a regorous definition of propositional formulas here. Let $V^p = \{P_1, P_2, P_3, ...\}$ be the set of all propositional variables. A formula in propositional logic is constructed from V^p using logical operators as follows.

Definition 1.3.1 The set of all propositional formulas, denoted by \mathbb{F}^p , is defined by induction as follows. Let $\mathbb{F}^p_0 = \mathbb{V}^p$. Let $k \in \mathbb{N}$, and assume \mathbb{F}^p_k is already defined. Define

$$\mathbb{F}_{k+1}^p = \mathbb{F}_k^p \cup \{\neg \Phi \mid \Phi \in \mathbb{F}_k^p\} \cup \{\Phi \land \Psi \mid \Phi, \Psi \in \mathbb{F}_k^p\}$$

Finally, define

$$\mathbb{F}^p = \bigcup_{k=0}^{\infty} \mathbb{F}_k^p$$

If we want to know whether a formula $\Phi \in \mathbb{F}^p$ is true or false, we need to assign a truth value to each propositional variable that occurs in Φ . We can do this by using a truth assignment, which is a functions from V^p to $\{T, F\}$. The interpretation of a propositional formula Φ under a truth assignment α , denoted by $I^{\mathfrak{P}}(\Phi, \alpha)$, is defined inductively as follows.

Definition 1.3.2 Let $\Phi \in \mathbb{F}^p$ and let α be a truth assignment. If $\Phi \in \mathbb{F}_0^p$, then define $I^{\mathfrak{P}}(\Phi, \alpha) = \alpha(\Phi)$. Assume that $\Phi \in \mathbb{F}_k^p$ for some k > 0, and that for all $\ell < k$ and all $\Psi \in \mathbb{F}_\ell^p$, $I^{\mathfrak{P}}(\Psi, \alpha)$ is defined. There are two cases that we must consider.

Case $\Phi \equiv \neg \Psi$ for some $\Psi \in \mathbb{F}_{\ell}^{p}, \ell < k$. Define

$$I^{\mathfrak{P}}(\Phi, \alpha) = \left\{ egin{array}{ll} T & \textit{if } I^{\mathfrak{P}}(\Psi, \alpha) = F \\ F & \textit{otherwise.} \end{array} \right.$$

Case $\Phi \equiv (\Psi \wedge \Theta)$ for some $\Psi, \Theta \in \mathbb{F}_{\ell}^{p}, \ell < k$. Define

$$I^{\mathfrak{P}}(\Phi, \alpha) = \left\{ egin{array}{ll} T & \textit{if } I^{\mathfrak{P}}(\Psi, \alpha) = T & \textit{and } I^{\mathfrak{P}}(\Theta, \alpha) = T \\ F & \textit{otherwise.} \end{array}
ight.$$

If $I^{\mathfrak{P}}(\Phi, \alpha) = T$ for all truth assignments α , then we call Φ a tautology.