Chapter I

Background

1.1 Notation

As is usual for a mathematics thesis, we use many symbols here. Most of them are
notation for new objects, and will be defined in later chapter. However, there is
some special notation for well-known objects that we will use, which we list here.

N = set of all nonnegative integers.

P(A) = power set of the set A.

A — B = the set of all functions from the set A to the set B.

1.2 TUniverse construction

In Chapter 2 we will define type systems which include function and tuple types.
To simplify our definition of the interpretation of such type systems we introduce
the universe constructed from a set.

Definition 1.2.1 Let A be a set. The universe constructed from A, denoted
by Uy, is defined as follows. We start by defining a sequence {Ax} of sets by
induction. Let Ay = A. If Ay is defined for some k € N, then we define Axyq =
P(Ax) U Ag. Finally, we let

[>2]
Up = | A
k=0

In set theory, see [1], the order pair (a, b) is typically defined to be {{a}, {a, b}}.
From this definition, we have the following lemma.

Lemma 1.2.2 If X;, X5 C Ai for some k'€ N, then X; X X5 C Az

Proof: Let (z,y) € X1XxX,. By definition, (z,y) = {{z}, {z,y}}. Since X; and X;
are subsets of Ax, {z} and {z, y} are also subsets of A;. Impliy that {z} and {z, y}
are in Agyi. Hence, {{z}, {z,y}} C Aks1. It follows that {{z},{z,y}} € Axs2.
That is, (z,y) € Ar+2. So we have X; X X, C Agys.

One simple way to define the arbitrary finite Cartesian product X; x X, X
o X Xpis a8 ((+++ (X1 x X3) x +++) X Xp,). Using this definition it is easy to
prove the following corollary by induction.

Corollary 1.2.3 If X3, X>,..., X C Ag for some k € N, then (X; x X3 x +++ X
Xm) - Ak+2(m-l)~ :

Proposition 1.2.4 If X;, X; C Ax for some k € N, then X; = X3 C Ap.s.

- Proof: Let f € X; = X,. By definition and Lemma 1.2.2 f C X X X3 C Agia.
Then f €C Ak+3. Hence X; = X, C Ak+3.

1.3 Propositional logic

We will use propositional logic to help define our set, of logical axioms in chapter
2, so we will give a regorous definition of propositional formulas here. Let VP =
{Py, Py, Ps, ...} be the set of all propositional variables. A formula in propositional
logic is constructed from V? using logical operators as follows.

Definition 1.3.1 The set of all propositional formulas, denoted by F?, is de-
fined by induction as follows. Let Fy = VP, Let k € N, and assume F}, is already
defined. Define

Fen=FRU{-2|2eFR}U{2AY]|® T cF}
Finally, define

If we want to know whether a formula ® € F? is true or false, we need to
assign a truth value to each propositional variable that occurs in &. We can do
this by using a truth assignment, which is a functions from V? to {T, F'}. The
interpretation of a propositional formula ¢ under a truth assignment o,
denoted by I*(®, o), is defined inductively as follows.

Definition 1.3.2 Let & € F* and let o be a truth assignment. If ® € FY, then
define I¥*(®,a) = a(®). Assume that ® € ¥, for some k > 0, and that for all
£ < kandall ¥ € F,, IP(V,q) is defined. There are two cases that we must
consider. :

Case ® = -V for some ¥ € F), £ < k. Define

T ifI™V,0)=F
B - y
I (@0) = { F otherwise.

Case ® = (\II A ©) for some U,0 € I, ¢ < k. Define

T fIP(V,a)=T and I*(0,0)=T
P U _ 1)
I(®,0) = { F otherwise.

If I*(®,a) =T for all truth assignments a, then we call ® a tautology.

	Chapter 1 Background

