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CHAPTER  1 

 
INTRODUCTION 

 

1.1 Computational Science  

 

It is generally agreed that rapid development in the field of computer 

technology plays a significant role in many fields of science. In the past, physical 

properties were characterized by experiments and theories. In experiment, a system 

is subjected to measurements and results. In theory, a model of the system is 

developed in form of a set of mathematical equations. Computational science 

techniques are used to simulate physical events and to process large amounts of 

generated or collected data. The use of simulation in research is now established as a 

third basic methodology of doing scientific research, joining theory and 

experiments.  

 
As such, computational science must be distinguished from computer 

science. Computer science focuses on the computer itself; it is the science and 

engineering of computer systems, including hardware and software. On the other 

hand, computational science refers to the application of computers solving problems 

in science and engineering. In addition to a particular scientific knowledge or 

engineering application, it includes mathematics (mathematical modeling, numerical 

analysis), computer science (computer architecture, programming, networks), and 

scientific visualization.  

 

Computational science refers to the knowledge and techniques required to 

perform computer simulations instead of experiments for evaluating interesting 

informations of systems, particularly, those systems for which experiments are 

prohibitive. Due to the rapid development of computer technology, computer 
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simulations have been expanded at a tremendous speed and application of these and 

other simulation methods have penetrated in almost every field of mathematics, 

physics, chemistry, biology, other applied science and engineering fields. Results of 

the simulations may also be compared with those of real experiments. In the first 

place, this is a test of the underlying model used in a computer simulation. 

Eventually, if the model is acceptable, the simulator hopes the model will offer 

insights to the experimentalist, and assist in the interpretation of new results. This 

dual roles of simulation, as a bridge between models and theoretical predictions on 

one hand, and between models and experimental results on the other, is illustrated in 

Figure 1.1. Because of this connecting role, and the way in which simulations are 

conducted and analysed, these techniques are often termed “computer experiments”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

Figure 1.1 The connection between experiment, theory, and computer  simulation [1].    
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1.2 Computer Simulations in Chemistry  

 

Quantum chemical investigations, which still have strong limits in the size of 

molecular system and the related computational time, have been a useful tool for 

predicting configurations of molecules, stabilization energies, excitation energies, 

force constants, and other physical data. Although they often produce data in good 

agreement with experiment, this approach is not reflect all properties of a condensed 

system with large amounts of particles. 

 

Models of chemical systems and specialized theoretical chemistry are mainly 

constructed in the form of quantum chemical calculations and statistical mechanics 

simulations. These tools are widely applicable for many systems, especially for 

investigation of microscopic properties and lead directly and perhaps easily to a set 

of interesting results or macroscopic properties of the system and can fill the gap 

between theory and experiment. 

 
Computer simulation methods, such as Monte Carlo practically introduced 

by Metropolis [2], and Molecular Dynamics introduced by Alder [3], are tools for 

studying statistical and dynamical properties of  rather large ensembles of molecules 

based on accurate potentials derived from quantum chemical calculations. Both 

simulation methods can be used to evaluate structural properties of systems, 

included some data unacquirable by experimental techniques. Therefore, theoretical 

investigations of the liquid state and solutions have rapidly developed and numerous 

studies based on these methods for solution have been published [4-18]. 
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1.3 Objectives of This Study 

 
As already mentioned, computer simulations is a powerful tool for 

developing our understanding of molecular systems at the atomic/molecular level. 

However, there is major limitation preventing computer simulations from fulfilling 

their true potential in providing scientific insights and aiding the industrial 

development of new materials. The problem is the accuracy of the fundamental 

input into the simulations, i.e., the intermolecular model potential, which quantifies 

the forces acting between the particles. In other word, due to the shortage of 

reasonable intermolecular potentials, the development in the field of solution 

research by means of computer simulations seem to be slower than it should be 

according to technological advances. 

 
Nowadays, many simulations are undertaken in order to model real systems. 

The simulations seek to produce results that are in agreement with experiment. The 

first stage in such a computer simulation is to find a model for the intermolecular 

interactions in the chosen system, which is sufficiently realistic to give acceptable 

results. Since the quality of the results from the simulations definitely depend on the 

quality of the input, it is important to be able to assess the accuracy of an 

intermolecular potential. The accuracy of intermolecular potentials is well known 

for the rare gases. Much current work on deriving accurate intermolecular potentials 

is concentrating on small rigid polyatomic molecules. There are, of course, 

difficulties to do so since there are no generally reliable simple procedures for 

developing intermolecular potentials.  

 
To improve this situation, it is the main objectives of this study, i.e., to 

develop part of the semi-automatic Fortran programming for the development of 

intermolecular pair potential function. In continuation from the first part which 

generates the stabilization energies of the complex, molecules and/or ions, in all 
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possible configurations [19], this work fits those interaction energies to a functional 

form and improves quality of the function. 

 

FORTRAN (FORmula TRANslation) has been the most common 

programming language for computer simulation, in view of its suitability for 

scientific applications, with a variety of mathematical functions, and the availability 

of FORTRAN compilers producing efficient code. In this study, FORTRAN-77 has 

been use to develop the program [20-21]. 
 

1.4 Scope of This Study 

  
Since the development of the potential function by means of quantum 

chemical calculations are divided into four consecutive steps, namely, (i) selection 

of representative geometries of the pairs; (ii) performance the ab initio calculations; 

(iii) fitting of pair interaction energies to a functional form and (iv) improving 

quaility of the function, the scope of this work is to write the second part of the 

semi-automatic Fortran programming regarding to steps (iii) and (iv). The Li+-NH3 

and NH3-NH3 systems are used to develop and test the performance of the program. 

 
This thesis is organized into 5 Chapters. After brief review of Computational 

Science, Computer Simulations in Chemistry, objectives and scope of this study in 

Chapter 1, theoretical background of the intermolecular potential function, and 

Nonlinear least squares are presented in Chapters 2 and 3, respectively. Then, 

detailed calculations, results and discussion are given in Chapters 4 and 5, 

respectively.  

 

 

 

 



CHAPTER  2 
 

 THE INTERMOLECULAR POTENTIAL FUNCTION: 

HEART OF THE SIMULATION 

 
2.1 Total Interaction Energy of the Simulated System 
 

The Monte Carlo (MC) and Molecular Dynamics (MD) simulation 

techniques have been well established and are used by numerous scientists at 

present. The most important factor, the results of calculations, depends undoubtedly 

on the potential functions used. At the same time, it is necessary to evaluate energy 

and force as rapidly as possible in the course of the simulation. A potential function 

describes the interaction energy among particles in that system. In general, the total 

configurational interaction energy of the N particles system can be written as   

 

             ...)r,r,r()r,r()r(E
N
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           (2.1) 

 

where the first term in the right hand side of equation (2.1), ν1(ri), represents the 

effect of an external field. The second term, ν2 called the pair potential, is the term 

with highest. The third term, ν3, called three-body connecting interaction that 

sometime becomes very significant in case of condensed systems. In most of 

published simulation, however, they were not included, due to the requirement of 

the large computer time. Four-body (and higher) terms are expected to be small in 

comparison to ν2 and ν3. In practice, one assumes to represent ∆E of the system by 

the pair potential only, known as the pair-wise additive approximation, whereas the 

remaining terms are often referred to as non-additive corrections. The basic idea is 

that the total configurational energy of the many particles system is approximately 

written as a sum of the individual interaction between the particles.  
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  The general procedures for developing the ab initio intermolecular potential 

function consist of four steps as illustrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1 The general procedure for constructing the intermolecular potential 

function (Steps 2 - 4 are executed more than once). 

 

 

 

 

 

 

 

4. Testing & Improving the Function

    3. Fitting Energies to the Function

     2. Ab initio Energy Computations 

          1. Selection of Geometries 
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2.2 Pair Potential 

 

 As mentioned above, majorities of simulations approximate ∆E simply by 

the pair potential term. So far, there have been several types of pair potentials used 

in computer simulations. The Lennard-Jones 6-12 pair potential [22], is one of the 

commonly used. It has the form as given bellows; 

 

        
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
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⎝
⎛ σ

−ε=
126

4
rr

(r)νLJ           (2.2). 

 

The function contains only two adjustable parameters: the collision diameter 

σ (the separation for which the energy is zero) and the well depth ε. Physical 

meaning of these parameters are graphically illustrated in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

   Figure 2.2  The Lennard-Jones potential. 
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The Lennard-Jones equation may also be expressed in term of the separation 

at which the energy passes through a minimum, rm. At this separation, the first 

partial derivative of the energy with respect to the internuclear distance is zero (i.e. 

0/ =∂∂ rν ) from which it can easily be shown that rm = 21/6σ. We can thus also 

write Lennard-Jones 6-12 potential function as follows, 
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or 

     126
LJ

r
B

r
A(r)ν +−=                       (2.4) 

 

where A is equal to 6
mr2ε  (or 64εσ ) and B is equal to 12

mrε  (or 124εσ ). 

  

 The Lennard-Jones potential is characterised by an attractive part that varies 

as r-6 and a repulsive part as r-12. These two components are drawn in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  The Lennard-Jones potential as a sum of attractive (Ar-6)  

and repulsive (Br-12) components. 

0 

r 
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The other forms of pair potential, which are very simple and convenient to 

implement in the computer simulation and the liquid-state theory, are:  

 
a) The hard-sphere potential 

 

    
⎩
⎨
⎧

≥
<∞

=
σ)(r  0
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(r)υHS                       (2.5) 

 

b) The square-well potential 
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c) The soft-sphere potential 

 

     κ
κ

SS ar
r
σε(r)υ −=⎟

⎠
⎞

⎜
⎝
⎛=                       (2.7) 

 

where κ is a parameter, often chosen to be an integer. The soft-sphere 

potentials contain no attractive part.  
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These three potentials are graphically shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

Figure 2.4  (a) the hard-sphere potential, (b) the square-well potential 

       and (c) the soft-sphere potential with repulsion parameter κ = 1. 
 

2.3 Analytical Form of Potential Functions 

 

Among the analytical forms of potential function, if the data points can be 

fitted into many forms, the simplest function is normally chosen. One of the 

necessary criteria is that the selected function must be differentiable; otherwise it 

will not able to be used in the molecular dynamics simulations in which force acting 

on each particle has to be derived from the function and its derivative. Given two 

molecules M and N, the pair interaction potential MN∆E  might contain explicitly 

both angular and radial dependency. Practically, one normally use only the radial 

function depending on the interatomic distance rij with i and j being atoms belonging 

to molecules M and N, respectively. For accuracy and flexibility reasons, one would 

like to use a fairly long series of terms. On the other hand, the longer the series, the 

larger the number of associated fitting parameters, and the larger the number of 

machine cycles required to compute interaction energies in the simulation.  

 

ε

σ 

r 

 

(a) 

σ1 

r 

 

σ2 
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r 
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κ=1 



 12

The two general forms of the potential functions are expressed as: 
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where k and l are the number of atoms on molecules M and N, respectively, Aij, Bij 

and Cij are fitting parameters which represent interaction between atom i of 

molecule M and atom j of molecule N, and qi, qj are the atomic net charges of each 

atom i and atom j of molecules M and N, respectively. These charges were normally 

taken from Mulliken populations analysis in the quantum chemical calculations [23]. 
In additions, although x and y are normally set at 6 and 12, respectively, however, 

these values can be adjust. MN∆E  is the interaction energy. The first two terms 

formally describe the short-range attractive and repulsive interactions, respectively. 

The third term describes the long-range Coulomb interaction, and the last terms, 

which has the form as in equation (2.10), will be added in order to obtain a good 

statistical fitting. 
 

                                       ...
r
G

r
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r
E

0Z o
ij

ij
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ij

ij
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ij

ij
ij ++++=                                           (2.10)                           

 
where Eij, Fij , and Gij are fitting parameters; m, n and o are integers which differ 

from x and y. 

 
Among the 2 forms, equation (2.8) is normally used for the pair of weak 

interactions (the stabilization energy is higher than –20 kcal.mol 1− ) such as ligand-
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ligand or ligand-solvent interactions. On the other hand, equation (2.9) is suitable for 

the pair of strong interactions such as ion-ion, ion-ligand or ion-solvent. 



CHAPTER  3 
 

NONLINEAR LEAST SQUARES 

 

3.1  Introduction 
  

Given a set of observations, one often wants to condense and summarize the 

data by fitting it to a “model” that depends on adjustable parameters. Frequently, the 

model is simply a convenient class of functions, such as polynomials or Gaussians, 

and the fit supplies the appropriate coefficients. Otherwise, the model’s parameters 

come from some underlying theory that the data are supposed to satisfy such as 

coefficients of rate equations in a complex network of chemical reactions, or orbital 

elements of a binary star. Modeling can also be used as a kind of constrained 

interpolation, where one wants to extend a few data points into a continuous 

function, but with some underlying idea of what that function should look like.  

 

The basic approach in all cases is usually the same: One chooses or designs a 

figure-of-merit function (“merit function”, for short) that measures the agreement 

between the data and the model with a particular choice of parameters. The merit 

function is conventionally arranged so that small values represent close agreement. 

The parameters of the model are then adjusted to achieve a minimum in the merit 

function, yielding best-fit parameters. The adjustment process is thus a problem of 

minimization in many dimensions.  

 

There are important issues that go beyond the finding of best-fit parameters. 

Data are generally not exact. They are subjected to measurement errors. Thus, 

typical data never exactly fit the model that is being used, even when that model is 

correct. One needs the means to assess whether or not the model is appropriate, that 

is, one needs to test the goodness-of-fit against some useful statistical standard.  
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One usually also needs to know the accuracy with which parameters are 

determined by the data set. In other word, one needs to know the likely errors of the 

best-fit parameters.  
 

The important message one wants to deliver is that fitting of parameters is 

not the end-all of parameter estimation. To be genuinely useful, a fitting procedure 

should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a 

statistical measurement of goodness-of-fit. When the third item suggests that the 

model is an unlikely match to the data, then items (i) and (ii) are probably worthless.  

 
Chi-Square Fitting 
 

Suppose that one fits N data points (xi,yi) i = 1,…, N, to a model that has M 

adjustable parameters aj, j = 1,…, M. The model predicts a functional relationship 

between the measured independent and dependent variables,  

 

y(x) = y(x; a1…aM)                                                        (3.1) 

 

where the dependence on the parameters is indicated explicitly on the right-hand 

side.  
 

One wants to minimize to get fitted values for the aj’s. The first thing that 

comes to mind is the familiar least-squares fit,  
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                      minimize over a ...1 a M  :     [ ]∑
=

−
N

1i

2
M1ii )a...a;x(yy                           (3.2). 

 

If each data point (xi,yi) has its own, known standard deviation σ i ,then the 

model parameters are obtained by minimizing the quantity  
 

            2χ  = [ ]2N

1i

)...aa; y(x y
i

M1ii∑
=

σ
−

                                        (3.3)  

 

called the “chi-square.”  
 

To whatever extent the measurement errors actually are normally distributed, 

the quantity 2χ  is corresponding to a sum of N squares of normally distributed 

quantities, each normalized to unit variance. Once one has adjusted the a ...1 a M  to 

minimize the value of 2
,χ  the terms in the sum are not all statistically independent. 

For models that are linear in the a’s, however, it turns out that the probability 

distribution for different values of 2χ  at its minimum can nevertheless be derived 

analytically, and is the chi-square distribution for N - M degrees of freedom. 

 

In some cases the uncertainties associated with a set of measurements are not 

known in advance, and considerations related to 2χ  fitting are used to derive a value 

for σ . If one assumes that all measurements have the same standard deviation, σ i = 

σ ,  and that the model fit well, then one can proceed by first assigning an arbitrary 

constant σ  to all points, next fit for the model parameters by minimizing 2
,χ  and 

finally recomputing,  
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                                         2σ  = N/)]x(yy[
2N

1i
ii∑

=

−                                     (3.4). 

 

If one takes the derivative of equation (3.3) with respect to the parameters ak, 

one obtains equations that must hold at the chi-square minimum,  

  

                               0 = ∑
= ∂
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σ

−N

1i a
...))a;...x(y(

2
i

)]i y(x iy[

k

ki                          (3.5)  

 

Equation (3.5) is, in general, a set of M nonlinear equations for the M 

unknown ak. 

 
Multidimensional Fits 
 

If one measures a single variable y as a function of more than one variable 

say, a vector of variables x, then basis functions will be functions of a vector, 

X1 (x),…,X M (x). The 2χ  merit function is now 

 

                               2χ   = 

2N

1i

)(xXa  y

i

ik
M

1k ki∑
=

σ

−
⎥
⎦

⎤
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⎡ ∑ =
                       (3.6). 

 
 
3.2  Nonlinear Models 
 

One now considers fitting when the model depends nonlinearly on the set of 

M unknown parameters ak, k = 1, 2,…, M. One uses the same approach as in 

previous section, namely to define a 2χ  merit function and determine best-fit 

parameters by its minimization. With nonlinear dependences, however, the 

minimization must proceed iteratively. Given trial values for the parameters, one 
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develops a procedure that improves the trial solution. The procedure is then repeated 

until 2χ  stops (or effectively stops) decreasing. 

 
Sufficiently close to the minimum, one expects the 2χ  function to be well 

approximated by a quadratic form, which one can write as 

 

                                     2χ (a) ≈ γ  - d . a + 
2
1 a . D . a                                        (3.7) 

 
where d is an M – vector (Gradient vector) and D is an M ×  M matrix (Hessian 

matrix).  

 
If the approximation is good, one knows how to jump from the current trial 

parameters a cur  to the minimizing ones a min  in a single leap, namely  

 
                              a min  = a cur  + D 1−  . [- 2χ∇ (a cur )]                                        (3.8). 

 
On the other hand, (3.7) might be a poor local approximation to the shape of 

the function that we are trying to minimize at a cur . In that case, one can do is taken a 

step down the gradient, as in the steepest descent method. In other words, 

 
                           a next  = a cur  - constant ×  2χ∇  (a cur )                                    (3.9) 

 
where the constant is small enough and the downhill direction is not exhausted. 
 

 
To use (3.8) or (3.9), one must be able to compute the gradient of the 2χ  

function at any set of parameters a. To use (3.8) one also needs the matrix D, which 

is the second derivative matrix (Hessian matrix) of the 2χ  merit function, at any a. 

One knows exactly the form of 2
,χ  since it is based on a model function that one has 

specified. Therefore the Hessian matrix is known to us. Thus one is free to use (3.8) 

whenever cares to do so. 
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Calculation of the Gradient and Hessian 
 

The fitted model is 
                                                        
                                                   y = y(x;a)                                                           (3.10) 

 
and the 2χ  merit function is 

         

                             2χ (a)  = [ ]
2N

1i

); y(x y
i

ii a∑
=

σ
−

                                    (3.11). 

 
The gradient of 2χ  with respect to the parameters a, which will be zero at the 2χ  

minimum, has components 
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Taking an additional partial derivative gives  
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It is conventional to remove the factors of 2 by defining 
 

                               ≡βk  -
2
1

k

2

a∂
χ∂             ≡αkl 2

1

kl

22

aa ∂∂
χ∂                                     (3.14) 

 
Making [ ]α = 2

1 D in equation (3.8), in terms of which that equation can be rewritten 

as the set of linear equations 
 

                                                  ∑
=

δα
M

1l
alkl  = kβ                                                     (3.15). 

 
This set is solved for the increments alδ  that, added to the current 

approximation, give the next approximation. In the context of least-squares, the 



 20

matrix [ ]α , equal to one-half times the Hessian matrix, is usually called the 

curvature matrix. 

 
Equation (3.9), the steepest descent formula, translates to 

         
                                                alδ  = constant ×  lβ                                               (3.16). 

 
Note that the components klα  of the Hessian matrix (3.13) depend both on 

the first derivatives and on the second derivatives of the basis functions with respect 

to their parameters.  

 
Second derivatives occur because the gradient (3.12) already has dependence 

on ka/y ∂∂ , so the next derivative simply must contain terms involving kl
2 aa/y ∂∂∂ . 

The second derivative term can be dismissed when it is zero, or small enough to be 

negligible when compared to the term involving the first derivative. It also has an 

additional possibility of being ignorable small in practice: The term multiplying the 

second derivative in equation (3.13) is [y i - y(x i ;a)]. For a successful model, this 

term should just be the random measurement error of each point. This error can have 

either sign, and should in general be uncorrelated with the model. Therefore, the 

second derivative terms tend to cancel out when summed over i. 

 
Inclusion of the second-derivative term can in fact be destabilizing if the 

model fits badly or is contaminated by outlier points that are unlikely to be offset by 

compensating points of opposite sign. From this point on, one will always use as the 

definition of klα  as 
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∂
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One should understand that minor (or even major) fiddling with [α ] has no 

effect at all on what final set of parameters a is reached, but affects only the iterative 
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route that is taken in getting there. The condition at the 2χ  minimum that 0k =β  for 

all k is independent of how [α ] is defined. 

 

3.3  Levenberg-Marquardt Method 

 
The Levenberg-Marquardt [24] is one of the most widely used non-linear 

curve fitting methods. It is very useful for finding solutions to complex fitting 

problems. Its utility is the way in which the fit method moves smoothly between the 

two extremes of the steepest descent method and the inverse-Hessian method [25-

31], for finding the next step. The algorithm uses the method of steepest descent to 

determine the direction and then step size when the results are far from the 

minimum. But as the solution approaches the minimum, the algorithm switches to 

the Hessian matrix for determining the step in order to zero in on the best fit.  

 
The method is based on two elementaries, but important, insights. Consider 

the “constant” in equation (3.16). There is no information about the answer in the 

gradient that tells only the slope, not how far that slope extends. Marquardt’s first 

insight is that the components of the Hessian matrix give some information about the 

order-of-magnitude scale of the problem.  

 
The quantity 2χ  is nondimensional, i.e., is a pure number; this is evident 

from its definition (3.11). On the other hand, kβ  has the dimensions of 1/a k ,which 

may well be dimensional. The constant of proportionality between kβ  and δ a k  must 

therefore have the dimensions of a 2
k . Scan the components of [α ] and one sees that 

there is only one obvious quantity with these dimensions, and that is 1/ kkα , the 

reciprocal of the diagonal element. So that must set the scale of the constant. But 

that scale might itself be too big. So let’s divide the constant by some 

(nondimensional) fudge factor λ , with the possibility of setting λ  >> 1 to cut down 

the step. In other words, replace equation (3.16) by 
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                                       δ al = 

l
ll

1
β

λα
    or    lll aδλα  = lβ                                    (3.18). 

 
It is necessary that llα  be positive, but this is guaranteed by definition (3.17) another 

reason for adopting that equation. 

 
Marquardt’s second insight is that equations (3.18) and (3.15) can be 

combined if we define a new matrix α′  by the following prescription 

  
                                      jjα′ ≡  jjα (1+ λ ) 
                                      jkα′ ≡  jkα                  (j ≠ k)                                          (3.19) 

 
and then replace both (3.18) and (3.15) by 
 
                                      ∑

=

δα′
M

1l
lkl a  = kβ                                                               (3.20) 

 
When λ  is very large, the matrix α′  is forced into being diagonally dominant, so 

equation (3.20) goes over to be identical to (3.18). On the other hand, as λ  

approaches zero, equation (3.20) goes over to (3.15).  

 
 Given an initial guess for the set of fitted parameters a, the recommended 

Marquardt recipe is as follows: 

 
•  Compute 2χ (a),          

•  Pick a modest value for λ ,say λ  = 0.001, 

•  (∗ ) Solve the linear equations (3.20) for δ a and evaluate 2χ (a + δ a),         

•  If 2χ (a + δ a) > 2χ (a) then increase λ  by a factor of 10 (or any other                           

substantial factor) and go back to (∗ ).           

else decrease λ  by a factor of 10, update the trial solution a ⎯⎯←  a + δ a, 

and go back to (∗ ). 
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Also necessary is a condition for stopping. Iterating to convergence (to 

machine accuracy or to the round off limit) is generally wasteful and unnecessary 

since the minimum is best only a statistical estimate of the parameters a. A change 

in the parameters that changes 2χ  by an amount << 1 is never statistically 

meaningful. 

 
Outright failure by a zero pivot is possible, but unlikely. More often, a small 

pivot will generate a large correction, which is then rejected, the value of λ  being 

then increased. For sufficiently large λ  the matrix [α′ ] can have no small pivots. 

Thus the method does tend to stay away from zero pivots.  

 
These considerations suggest that, in practice, one might as well stop 

iterating on the first or second occasion that 2χ  decreases by a negligible amount, 

say either less than 0.01 absolutely or (in case round off prevents that being reached) 

some fractional amount like 10 3− . Don’t stop after a step where 2χ  increases: That 

only shows that λ  has not yet adjusted itself optimally.  

 

Once the acceptable minimum has been found, one wants to set λ  = 0 and 

compute the matrix 

 
                                             [C] ≡  [α ] 1−                                                              (3.21) 
  
 
which is the estimated covariance matrix of the standard errors in the fitted 

parameters a. 

 
One hopes that this algorithm will converge to the desired solution, but it 

could also end up in a local minimum or diverge. This depends on the initial value. 

Since the Levenberg-Marquardt method is an iterative process that requires the 

initial input, any interpretations from the final results are only as good as the initial 
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input. Therefore the use of incorrect function forms can fit the data fine, but using 

the “fit parameters” for further interpretation would be erroneous. 



CHAPTER  4 
 

DETAIL  OF  CALCULATIONS 

 

4.1 Development of Intermolecular Potential Function  

 

As mentioned before that the following steps are required to develop the 

potential function by means of quantum chemical calculations:  

 
(i) selection of representative geometries of the pairs, 

(ii) the ab initio calculations, 

(iii) fitting of the computed interaction energies to the functional form, 

and      (iv) improving quality of the function which consists of 2 steps: 

 
- testing the quality of the function  

- search for false minima of the function. 

 

This procedure is schematically illustrated in Figure 4.1. 
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4.1.1 Selection of Representative Geometries of the Pairs 

 
The pair geometries were selected with regard to chemically representative 

conformations. The first molecule was fixed at the origin of the cartesian coordinate 

system and the second molecule was placed at numerous positions around the first 

molecule. The distance between atoms of two molecules should not be too close to 

No 

Yes

Yes 

Selection of representative geometries of the pairs 

The SCF calculations 

Fitting of the computed interaction 
energies to a functional form 

Testing the quality of the function

σadjust 

σtest

No 

Figure 4.1 The procedure for constructing the potential function 

 by means of quantum chemical calculations. 

Search for false minima 

σtest < 105%σadjust 

∆ EFIT <  ∆ ESCF min

The final optimized parameters and its function
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each other because this may lead to strong repulsive interaction. The symmetry of 

the molecules can reduce the repetition and save the calculated time of the 

interaction energies in the next step. Both molecules were treated as rigid throughout 

the calculations. 

 
4.1.2 The SCF Calculations 

 
In the SCF calculations, the interaction energy ∆ESCF between two molecules 

is determined as the difference of the supersystem energy (E12) and sum of the 

subsystem energies (E1, E2) 

 

         5.627)]EE(E[)mol/kcal(E 2112SCF ×+−=∆                      (4.1) 

 

where E12, E1 and E2 are total energy (in atomic units) obtained from quantum 

chemical calculations.  

 
In this study, part of the semi-automatic Fortran program has been developed 

to construct the intermolecular pair potential function in the steps (iii) and (iv), 

fitting of pair interaction energies to a functional form and improving quality of the 

function. Details of the program are given in the next section. 
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4.2 Program Implementation 

 

The program, “MRQFIT” version 1.0, has been developed and its source 

code has been written in Fortran language.  

 

 The program manual is given in Appendix I.  

 

Program Strategies 

 
 For easy understanding, the program can be separated into seven parts: 
 

1. Input Elementary Data,  

2. Selection of the Functional Form, 

3. Setting an Initial Guess of the Fitting Parameters, 

4. Fitting Energies to the Function, 

5. Testing the Quality of the Function, 

6. Search for False Minima, 

7. Write Output. 

 

The flowchart of MRQFIT program is shown in Figure 4.2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.1 PART 1: Input Elementary Data 
 

This part consists of two steps. The first step uses subroutine Indata to 

obtain input elementary data from user. The input elementary data is composed of 

four sections. 

 
The structure of input is shown in Figure 4.3. 

 

 

Part 1 Input Elementary Data 

Part 2 Selection of the Functional Form

Part 3 Setting an Initial Guess of the Fitting Parameters 

Part 4 Fitting Energies to the Function 

Part 5 Testing the Quality of the Function

Part 6 Search for False Minima 

Part 7 Write Output 

BEGIN

   Figure 4.2 The sequence of  MRQFIT program version 1.0. 
 

  END
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The variables of input elementary data are defined as follows: 
 
 
Section 1: 
 

fname:    Data filename, i.e., imrqfit 

natom1:  Number of atoms of molecule 1 

natom2:  Number of atoms of molecule 2  

maxiter:  Maximum number of iterations 

nset:        Number of types of subfunctions  

 

Section 2: 
 

charge1:  Atomic net charge of each atom of molecule 1 

charge2:  Atomic net charge of each atom of molecule 2 

 

  fname 
  natom1 natom2 
  maxiter nset 
 
 
  charge1 
  charge2 
   
   
  pair12 sset 
 
 
  comol1 
 
 
  thetha phi 
  ener   comol2 
 

Figure 4.3 The structure of input elementary data. 

   Section 1

    Section 2 

      Section 3 

     Section 4

      Section 5 
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Section 3: 
 

pair12, sset:     A positive interger which represents atom i and atom j of two             

    molecules and specify types of subfunctions 

 

Section 4: 
 

comol1:           Cartesian coordinates of molecule 1 

 

Section 5: 
 

thetha, phi:      Angles of each trajectories (see Figure 4.11, 4.12)  

ener, comol2:  Interaction energies and corresponding cartesian coordinates 

of molecule 2 

 

The second step, section 5 of input elementary data, is separated into two 

files using subroutine Isplit. The first file is for fitting and the second one is for 

testing the function.  

 
The criteria to separate file which implements in this program is to keep 

approximately one-fifth of the data for testing. Therefore, the trajectories are 

selected by choosing one and skiping four trajectories. The selected trajectories 

(tested set) which should be between 10 to 20 percent of all the data and 

corresponding cartesian coordinates are used for testing and the rests are used for 

fitting the function. The procedure of this part is shown in Figure 4.4.  
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4.2.2 PART 2: Selection of the Functional Form 

 
This part is designed for the user to select the function form suitable for the 

studying system. Power of denominator of each term can be also assigned. The 

functional form which available in the program are: 
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Part 1

Read input elementary data 

Separate data to be fitting and testing files

End

Figure 4.4 The flowchart of part 1; Input Elementary Data. 
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This procedure executes by subroutine Selectf. It starts with reading the 

selected choice (1-6), then, sets the power of denominater of each term to yield the 

functional form. 

 

The procedure of this part is shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
4.2.3 PART 3: Set an Initial Guess for the Parameters 

 
This part is designed to set an initial guess for the parameters. The procedure 

is given in subroutines Ranpar and Ran. 

 

This part begins with reading the functional form (the output of subroutine 

Selectf), then set the initial parameters which are corresponding to each function. 

 

Part 2

Read choice of function

 Read power of denominater

Write functional form

END

Figure 4.5 The flowchart of part 2; Selection of the Functional Form. 
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 Initial guess for the parameters are generated from the power of denominator 

of each parameters using the following expression, 

 

a(i) = (10.0+(40.0*Ran(iseed)))*(1.5)R                (4.8) 

 

where a(i) is ith initial parameter, R is its power of denominator. The subroutine 

Ran assigns real number between 0.0 and 1.0, and initial iseed  is 1.   

 

If the parameter is the power of exponential term, its initial value was 

assigned as a real number in an interval between 0.0 and 1.0,  

 

a(i) = Ran(iseed)                                    (4.9). 

  

 The main procedure of this part is shown in Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Part 3

   Read the function

Set initial guess for the  parameters 

Write set of parameters

END

Figure 4.6 The flowchart of part 3; Set an initial Guess for the Parameters. 
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4.2.4 PART 4: Fitting Energies to the Function 
 
 

This part is designed to fit the function by using a multidimensional non-

linear least-squares procedure, namely the Marquardt-Levenberg algorithm (See 

Chapter 3). This will minimize the 2χ  merit function until constancy of the fitting 

parameters is reached. 

 

In many applications, the data points will not be equally important, because 

some data points are known to be more important than others. The more important 

the data point, the larger the weight. To improve the fit, weighting factor is included 

in the fitting process. If the error in the jth data point is approximately e j  then 

choose w j  = 1/ e j , where w j  are the weights.  Thus the smaller the error, the larger 

the weight. Weighting can improve the statistical properties of the solution. Of 

course, the parameters obtained from the model will change as the weighting factor 

changes. 

 

In this study, weighting factor has been given to the most important 

configuration (which corresponds to the lowest SCF energy points). In addition, 

highly repulsive configurations are also excluded from the process.  

 
The 2χ  merit function that will be used to minimize to get goodness-of-fit in 

the program is: 

 

              df/)]j(w*)EE[()j( 2
nconf

1j
)j(FIT)j(SCF

2 ∑
=

∆−∆=χ                      (4.10) 

 

where w(j), )j(SCFE∆  and )j(FITE∆  are weight value, SCF energy and the energy 

which calculate from the function of jth data point, respectively, nconf is number of 

configurations and df is number of degree of freedom which is expressed as: 
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df = nconf-(npar+ncut)                            (4.11) 

 

where npar is number of parameter which will be used to adjust in fitting procedure 

and ncut is number of SCF energy data points which are excluded from the process. 

 

Input of this part consists of: 

 

1. An initial guess for the set of fitting parameters (the output from 

subroutine Ranpar), 

2. Functional form (the output from subroutine Selectf). 

 

The following is the steps inside this part: 

 

1. Read an initial guess of fitting parameters (a), 

2. Compute 2χ (a), 

3. Set λ  = 0.001, 

4. Solve δa and evaluate 2χ (a + δa) by following conditions: 

- If 2χ (a + δ a) > 2χ (a) then set λ  = λ  * 10 and go back to (4). 

else update the trial solution a ⎯⎯←  a + δa and go back to (4). 

 

 The step 4 will be repeated until consistency of the fitting parameters is 

reached. 

 
 The convergence criteria which implements in this program is to use the 

following equation: 

  

/anew – aold / <  /0.01*aold / and 2χ (a) < 0.5        (4.12) 

where anew and aold are the current and previous parameters, respectively.  
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Note that warning message will be given in the output file if the convergence is not 

reached. 

 

Thus, from the above procedure, the output consists of: 

 

1. Set of parameters,  

2. Standard deviation yielded from adjusting the function ( adjustσ ), 

3. Number of iterations. 

 

Beside subroutines Ranpar and Selectf, this part also uses: 

 

- Subroutine Gradhs to calculate matrix [ α ] (equation 3.17) and vector β  

(equation 3.12 and 3.14). 

- Subroutine Dev to calculate vector of derivatives (term 
k

i

a
)a;x(y

∂
∂  in 

equation 3.12). 

 

 Note that the program uses two different methods to compute derivative. 

They are the analytical derivative computation and the approximate derivative 

computation using central difference technique [32-33].  

 
 To calculate analytically, the partial derivative with respect to the parameters 

of two general forms of the potential functions (see equations 4.2 and 4.4) are 

expressed as: 
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Considering the partial derivative with respect to Aij and Bij of the first form 

and Aij of second form, only rij are involved. Because we fixed the distance in each 

calculation, therefore the derivative yields the same value. Considering the first 

form, this means that ∆EMN is a linear function in term of  Aij and Bij. 

 

- Subroutine Guassj, which perfoms with Guass-Jordan method [32-33], is 

used to calculate the matrix solution (δa in equation 3.20). 

 

 - Subroutine Statva to calculate the statistical value. 

 

 - Subroutine Funct to return the model function. 

  

The procedure of this part is shown in Figure 4.7. 
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4.2.5 PART 5: Testing the Quality of the Function 

 

Figure 4.7 The flowchart of part 4; Fitting Energies to the Function. 
 

   Yes 

λ  = λ *10 No 

No

Yes

2χ (a + δa) < 2χ (a)

Compute 2χ (a) 

Set λ = 0.001, l = 1 

Solve for δa 

Calculate 2χ (a + δa ) 

λ  = λ /10 
Set a ⎯⎯←  a + δa 

l = l+1 

Part 4

Read initial guess a, maxiter

Write “warnning”

/a new - a old /> /0.01*a old /or 2χ (a)>0.5 

l>maxiter 
Write parameters a, l, adjustσ  

2χ (a + δa) < 2χ (a) 

Yes

   No
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4.2.5 PART 5: Testing the Quality of the Function 
 

This part is designed to test the obtained function. The predictive capabilities 

of the potential functions are tested according to the procedure suggested by 

Beveridge et al. [6], i.e., namely, the SCF energies (outside the original set) are 

calculated and compared with the values predicted by the function. These points are 

then included in the fitting procedure and the whole process was repeated until 

constancy of the fitting parameters, fluctuated within a range of + 5%, is obtained 

and a sufficiently low standard deviation is reached.  

 

This part is examined using subroutine Testf. 
 

Input of this procedure consists of : 

 

1. The pair potential function (output from part 4), 

2. Standard deviation of the fit ( adjustσ , also output from part 4), 

3. The configurations (Cartesian coordinate of molecule 2 and 

corresponding interaction energy which yields from quantum chemical 

calculations ∆ ESCF), which have never been used in the fit (tested set). 

 

The following is the steps inside this procedure: 

 

1. Calculate the energy points using the pair potential function ( ∆ EFIT), 

2. Compare all ∆ ESCF and ∆ EFIT values and their standard deviation from 

each other ( testσ ) by following conditions: 

- If testσ  > 105 % of adjustσ  then go back to step of fitting function 

and included these points in the fitting procedure and the whole 

processes are repeated.                      

else go to the next step to search for false minima of the function.  
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Thus, from the above procedure, the output consists of: 
 

1. Standard deviation for the tested data set ( testσ ), 

2. ∆ ESCF and ∆ EFIT of the tested configurations. 

 

The procedure of this part is shown in Figure 4.8. 
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4.2.6 PART 6: Search for False Minima of the Function 

 
In this part, false minima that may be available in the function will be 

searched. This checking procedure is also essential as unwanted minima may take 

place in the function.  

Return to fit the function 

Part 5

Read function 

Read adjustσ  

Read configurations, ∆ ESCF

Calculate energy using function

Calculate testσ  

testσ  < 105 % adjustσ

Get testσ , adjustσ   

Get ∆ EFIT for the tested  configurations 

END

No

Yes

Figure 4.8 The flowchart of part 5; Testing the Quality of the Function. 
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The procedure for this part is in subroutines Sfmin and Genco. 

 

Input of this procedure consists of : 

 

1. The configurations, which different from the previous (the output from 

subroutine Genco), 

2. The pair potential function (the output from part 4). 

 

The following steps are in this procedure: 

 

1. Calculate the energy points for as many configurations of the dimer as 

possible using the pair potential function ( ∆ EFIT), 

2. Search for the false minima of the function by following conditions: 

- If the function contains artificial minima then go back to step of 

calculate SCF energy. Then these points are included in the fitting 

procedure and the whole processes are repeated. 

else write the pair potential function to the output file. 

 

Note that artificial minima are the energy points which are deeper or higher than 

those yielded from quantum chemical calculations at the nearest configuration. 

 

Thus, from above procedure, the output consists of the final fitting 

parameters and its function. 
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The procedure of this part is shown in Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.7 PART 7: Write Output 
 

This part is designed to write output of the calculations. The output consists 

of three files. The first file contains statistical values and adjusted parameters every 

iterations, the second one collects final values of the fitting parameters. The third file 

Go to step of calculate ∆ ESCF 

Part 6

Read configurations 

Read ∆ ESCF min  

Read function

Calculate energy using function

∆ EFIT < ∆ ESCF min

Write final parameters 

No

Yes

END

Figure 4.9 The flowchart of part 6; Search for False Minima of the Function. 
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keeps interaction energy of all configurations both those yield from quantum 

chemical calculations ( ∆ ESCF) and the pair potential function ( ∆ EFIT).  

 

The example of output files are given in Appendix II. 

  

The procedure of this part is shown in Figure 4.10. 

 
 

 

 

 

 

 

 

 

 

 

 

4.3 Specification of the systems for this study 

 

In this study, the Li+-NH3 and NH3-NH3 systems are used to develop and test 

the performance of the program. 
 

In the Li+-NH3 system, the nitrogen atom of the ammonia molecule was 

placed at the origin of cartesian coordinate and the lithium ion was placed at 

numerous positions within the space around ammonia, where 0° ≤ θ ≤ 180° and 0° ≤ 

φ ≤ 120° in steps of 30° and 1.20 < r < 10.00 Å, when r is distance between the 

nitrogen atom of ammonia molecule and the lithium ion. With this consideration 735 

configurations of the lithium ion have been generated. The corresponding interaction 

energies were calculated using DZP basis set (Double Zeta plus Polarization 

Part 7

Write output

Output files

END

Figure 4.10 The flowchart of part 7; Write Output. 
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Function) with BSSE corrections. Both molecules were treated as rigid throughout 

the calculations.  

 

The graphic drawing represented the definition of geometries variable for 

configurations of ammonia-lithium ion was shown in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

 

The atomic coordinates of ammonia molecule and the atomic net charges 

obtained from the Mulliken population analysis which are used in the Coulombic 

term in the pair potential were collected in Table 4.1. Due to the symmetry reason, 

all three hydrogen atoms of NH3 are treated equivalently. Therefore, only two types 

of subfunctions are available in the Li+-NH3 system, i.e., those for Li+-N and Li+-H 

pairs. 

 

 

 

 

 

Figure 4.11 Definition of geometries variable (θ,φ) for the 

configuration of ammonia-lithium ion. 
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Y
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XN 
φ 
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Table 4.1  Cartesian coordinates (in Angstroms) and atomic net charges (in a.u.) of 

ammonia molecule obtained from ab initio calculations using DZP basis set. 

 

For the NH3-NH3 system, the nitrogen atom of the first molecule was placed 

at the origin of cartesian coordinate and the second molecule was placed at 

numerous positions within the space around the first molecule, where 0° ≤ θ ≤ 180° 

and 0° ≤ φ ≤ 60° in steps of 30° and 2.30 < r < 10.00 Å, when r is distance between 

the nitrogen atoms of two molecules. Here, orientation of the second ammonia 

around its nitrogen atom using the same conditions for r, θ and φ, has been also 

taken into consideration. With this consideration 819 configurations of the second 

molecule have been generated. The corresponding interaction energies were 

calculated using DZP basis set (Double Zeta plus Polarization Function) with BSSE 

corrections. Both molecules were treated as rigid throughout the calculations.  

 

The graphic drawing represented the definition of geometries variable for the 

configurations of ammonia-ammonia was shown in Figure 4.12. 

 

 

 

 

 

 

  

Atom X Y Z Atomic Charge 

N 0.000000     0.000000     0.000000     -0.74207 

H 0.937760     0.000000      -0.381470 0.24736 

H -0.468880    -0.812120    -0.381470 0.24736 

H -0.468880     0.812120    -0.381470 0.24736 
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               = Nitrogen atom of the second molecule  

 

 

 

 

 

 

 

 

 

 

 

 

Due to the symmetry reason, all three hydrogen atoms of NH3 are treated 

equivalently. Therefore, only three types of subfunctions are available in the NH3-

NH3 system, i.e., N-N, N-H, H-H pairs. 

Figure 4.12 Definition of geometries variable (θ,φ) for the  

ammonia- ammonia configuration. 
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CHAPTER  5 
 

RESULTS AND DISCUSSION 
 

 In this Chapter, characteristics of the newly developed Fortran program, case 

studied for the lithium ion-ammonia and ammonia- ammonia potentials have been 

reported. Discussed has been made in terms of optimized parameters, the statistical 

values, number of iteration cycle, etc. 

 

5.1 Development of Lithium Ion - Ammonia Potential Function 

 

5.1.1 Input Elementary Data 
 

In this part, after user inputs elementary data, the program will count and 

report the number of all trajectories, SCF data points and the corresponding 

cartesian coordinates which will be included in the development of the function. In 

this example, the fitting procedure contains 35 trajectories and 735 SCF energy 

points in the geometries mentioned in Figure 4.11. Then, one-fifth of the trajectory, 

taking one every five lines, will be kept for testing.  

 

The selected 7 trajectories as well as the corresponding 147 SCF energies are 

shown in Table 5.1. Here, the other 28 trajectories with 588 SCF energy points were 

used for fitting.  
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Table 5.1 The selected trajectories, in term of θ and φ angles (see Figure 4.11), for 

lithium ion around ammonia. 

 

Trajectory θ φ 

1 

2 

3 

4 

5 

6 

7 

0 

30 

60 

90 

120 

150 

180 

0 

0 

0 

0 

0 

0 

0 

 

 
An input file for the Li+-NH3 system is shown in Figure 5.1. 
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  In this program, the input elementary data using free format.  
 
 
 
 

imrqfit 
   4    1 
 500    2 
 

-0.74207   0.24736  0.24736   0.24736 
1. 
 
     1,1,         1 
     2,1,         2 
     3,1,         2 
     4,1,         2 

 
 0.000000    0.000000    0.000000     
 0.937760    0.000000   -0.381470 
-0.468880   -0.812120   -0.381470 
-0.468880    0.812120   -0.381470 
 
thetha =     0  Phi =     0 
   :             
   55.044         0.000000   0.000000   1.300000 
   -6.330         0.000000   0.000000   1.500000 
  -21.772         0.000000   0.000000   1.600000 
  -31.266         0.000000   0.000000   1.700000 
    : 
thetha =     90  Phi =  90 
  : 
   -0.829         0.000000   2.549999   0.000000 
   -0.978         0.000000   2.599999   0.000000 
   -1.067         0.000000   2.649999   0.000000 
   -1.108         0.000000   2.699999   0.000000 
   : 
thetha =     180 Phi =  120 
 : 
   -1.169         0.000000   0.000000  -2.400000 
   -1.267         0.000000   0.000000  -2.450000 
   -1.283         0.000000   0.000000  -2.500000 
   -1.233         0.000000   0.000000  -2.549999 
 

 : 

Figure 5.1 An input file for the Li+-NH3 system (see Figure 4.3). 
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5.1.2 Selection of the Functional Form 
 

Here, the energy points for the lithium ion-ammonia dimer, with choice 3 of 

the functional form, x= 6 (see equation 4.4), were displayed, that is 
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where k = 4 (number of atoms of ammonia molecule) and l = 1 (number of atom of 

Li+), Aij, Bij and Cij are fitting parameters, rij is the distance between the ith atom of 

ammonia and lithium ion, qi = -0.74207 and 0.24736 atomic unit for atoms N and H 

of ammonia and qj = +1 atomic unit for Li+. 

 

5.1.3 Set an Initial Guess for the Parameters 
 

In this part, the program random set of an initial guess of the fitting 

parameters. In this example, equation (5.1) contains 6 parameters namely ANLi, BNLi, 

CNLi, AHLi, BHLi, CHLi. The first 3 parameters represents interaction between atom N 

and Li+ while the last 3 parameters for the H and Li+ pair. 

 

Note that due to symmetry reason, all 3 hydrogen atoms of NH3 are 

represented by the same set of fitting parameters. 

 

- The initial guess of parameters 
 

ANLi =  224.434555 

BNLi =  23.7004414 

CNLi =  0.13874417 

AHLi =  402.141846 

BHLi =  37.5042381 

CHLi =  0.91231015 
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5.1.4 Fitting Energies to the Functional Form 
 

With 588 ammonia-lithium interaction energies (see Section 5.1.1), the pair 

lower than 10 kcal.mol 1−  were fitted to the analytical function, equation 5.1. Note 

that repulsive interaction higher than 10 kcal.mol 1−  are excluded  from the fit 

because it is assumed that those configurations should be rarely detected in the 

simulation.  

 
In this program, the vector of derivatives (term 

k

i

a
)a;x(y

∂
∂  in equation 3.12) has 

been calculated by the two methods. The first method, the derivatives were 

approximated using the central different technique which the second one, the 

derivatives were calculated analytically.  

 

The optimized parameters of fit in which using the first method are given in 

the Table 5.2. 

 

Table 5.2. The optimized parameters (the derivatives were approximated using the 

central different technique) representing interaction of N and H atoms of ammonia 

with lithium ion (energy and r are in kcal.mol 1−  and angstroms, respectively). 

 
Atom A (Å6 kcal.mol-1) B (kcal.mol-1) C (kcal.mol-1) 

 
NLi 

 
HLi 

 

 
-0.10083546E+04 

 
-0.15106658E+04 

 
-0.36473591E+03 

 
-0.75820667E+05 

 
0.11088778E+01 

 
0.43180332E+01 

 
 

Characteristics of the fit in which the derivatives were approximated using the 

central different technique:  
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  Minimum energy included in the fit =       -40.83 kcal.mol 1− . 

  Maximum energy included in the fit =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =     4.54 kcal.mol 1− . 

Minimum absolute residual   =         0.001 kcal.mol 1− . 

Average absolute residual   =     0.61 kcal.mol 1− . 

  Number of iteration    =     47      cycle. 

Standard deviation ( 1fitσ )  =         0.196 kcal.mol 1− . 

 

The optimized parameters of fit in which using the second method are given 

in the Table 5.3. 

 

Table 5.3. The optimized parameters (the derivatives were calculated analytically) 

representing interaction of N and H atoms of ammonia with lithium ion (energy and 

r are in kcal.mol 1−  and angstroms, respectively). 

 

Atom A (Å6 kcal.mol-1) B (kcal.mol-1) C (kcal.mol-1) 
 

NLi 
 

HLi 
 

 
-0.80015872E+03 

 
0.58478275E+03 

 
-0.21806948E+03 

 
0.5649.9844E+04 

 
0.10526058E+01 

 
0.2.9654104E+01 

 

Characteristics of the fit in which the derivatives were calculated analytically: 

 

  Minimum energy included in the fit =       -40.83 kcal.mol 1− . 

  Maximum energy included in the fit =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =         16.91  kcal.mol 1− . 

Minimum absolute residual   =         0.005  kcal.mol 1− . 

Average absolute residual   =     1.19  kcal.mol 1− . 
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  Number of iteration    =     53      cycle. 

Standard deviation ( 1fitσ )  =     0.41 kcal.mol 1− . 

 

5.1.5 Testing the Quality of the Function 

 
The analytical potential function obtained from 588 SCF data points was 

carefully tested in order to make sure that it is possible to represent interactions of 

all lithium  ion positions and orientations relative to ammonia molecule. 

 
In this part, the 147 ammonia-lithium configurations (with the corresponding 

147 ∆ ESCF), which are different from the first 588 configurations, were used to test 

the quality of the function. The energy points ( ∆EFIT) due to the tested 

configurations were calculated using the pair potential with the optimal parameter 

for the two fitted methods shown in Table 5.2 and 5.3. 

  
The standard deviations for the tested data set ( testσ ) have been calculated 

for both methods, the values of 0.195 and 0.42 kcal.mol 1−  have, respectively 

yielded. 

 

Characteristics of the test in which the energy points ( ∆EFIT) were calculated using 

the pair potential with the optimal parameter shown in Table 5.2:  

 

  Minimum energy included in the test =       -4.928 kcal.mol 1− . 

  Maximum energy included in the test =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =     3.15 kcal.mol 1− . 

Minimum absolute residual   =         0.017 kcal.mol 1− . 

Average absolute residual   =         0.607 kcal.mol 1− . 

  Standard deviation ( testσ )  =         0.195 kcal.mol 1− . 
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Characteristics of the test in which the energy points ( ∆EFIT) were calculated using 

the pair potential with the optimal parameter shown in Table 5.3:  

 

  Minimum energy included in the test =       -4.928 kcal.mol 1− . 

  Maximum energy included in the test =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =     8.46 kcal.mol 1− . 

Minimum absolute residual   =         0.024 kcal.mol 1− . 

Average absolute residual   =           1.34 kcal.mol 1− . 

  Standard deviation ( testσ )  =     0.42 kcal.mol 1− . 

 

 The 147 ∆ ESCF were, then, added to the fit and the standard deviations 

( 2fitσ ) of 0.194 and 0.43 kcal.mol 1− , respectively observed. The final optimal 

parameters are given in table 5.4 and 5.5 for the method 1 and 2, respectively. 

 
Table 5.4. The final optimized parameters (the derivatives were approximated using 

the central different technique) representing interaction of N and H atoms of 

ammonia with lithium ion (energy and r are in kcal.mol 1−  and angstroms, 

respectively). 

 

Atom A (Å6 kcal.mol-1) B (kcal.mol-1) C (kcal.mol-1) 
 

NLi 
 

HLi 
 

 
 -0.10277754E+04 
 
-0.14943341E+04 

 
 -0.37715706E+03 
 
-0.73518057E+05 

 
0.11240189E+01 
 
0.43047872E+01 

 

 

Characteristics of the fit in which the derivatives were approximated using the 

central different technique:  
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  Minimum energy included in the fit =       -40.83 kcal.mol 1− . 

  Maximum energy included in the fit =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =     4.97 kcal.mol 1− . 

Minimum absolute residual   =     0.4E-03 kcal.mol 1− . 

Average absolute residual   =     0.60 kcal.mol 1− . 

  Number of iteration    =     48      cycle. 

Standard deviation ( 2fitσ )  =         0.194 kcal.mol 1− . 

 

Table 5.5. The final optimized parameters (the derivatives were calculated 

analytically) representing interaction of N and H atoms of ammonia with lithium ion 

(energy and r are in kcal.mol 1−  and angstroms, respectively). 

 

Atom A (Å6 kcal.mol-1) B (kcal.mol-1) C (kcal.mol-1) 
 

NLi 
 

HLi 
 

 
-0.78853383E+03 

 
0.43054531E+03 

 
-0.24192296E+03 

 
0.21654474E+04 

 
0.10348343E+01 

 
0.24836065E+01 

 

 

Characteristics of the fit in which the derivatives were calculated analytically: 

 

  Minimum energy included in the fit =       -40.83 kcal.mol 1− . 

  Maximum energy included in the fit =         10.00 kcal.mol 1− . 

  Maximum absolute residual     =         21.14  kcal.mol 1− . 

Minimum absolute residual   =      0.3E-03  kcal.mol 1− . 

Average absolute residual   =     1.25  kcal.mol 1− . 

  Number of iteration    =     67      cycle. 

Standard deviation ( 2fitσ )  =     0.43 kcal.mol 1− . 
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It can be seen from the characteristic data that both methods are well fit, 

especially the first method, with 1fitσ  of 0.196 and 0.41 kcal.mol 1− . Moreover, the 

quality of the fit is confirmed by the testing procedure. The standard deviations for 

the tested data set ( testσ ) for both methods are 0.195 and 0.42 kcal.mol 1− , 

respectively. After inclusion of the test set, the 2fitσ  for both methods are 0.194 and 

0.43 kcal.mol 1− , respectively.  

 

5.1.6 Search for False Minima of the Function 
 
 

Now come to the last step of the development of the potential function, false 

minima which lower than the global minimum of the pair was searched. In this step, 

subroutine Genco will be used to generated 2322 ammonia-lithium configurations, 

which different from those included in the fitted and tested sets, where 0° ≤ θ ≤ 150° 

and 0° ≤ φ ≤ 60° in steps of 10° and 1.20 < r < 10.00 Å (see Figure 4.11). Then, the 

2322 energy points have been calculated using the pair potential function.  

 
The results show that among the generated 2322 data points, all of them are 

higher than the global minimum of the pair (-40.83 kcal.mol 1− ). This means that no 

artificial minima were found in the fitted function. 

 
The minimum interaction energy between ammonia and lithium is found at 

the distance of 2.0 Å, θ = 0, φ = 0 as given in Table 5.6 (∆EFIT which the derivatives 

calculate using central different technique (∆EFIT
1) and calculated analytically 

(∆EFIT
2)). Some of the computed energies with different values of θ and φ are shown 

in Table 5.7 (a-c) and plotted in Figure 5.2 and Figure 5.3, respectively.  
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Table 5.6. The energies from ab intio calculations (∆ESCF) and from the pair 

potential function which the derivatives calculated using central different technique 

(∆EFIT
1) and calculated analytically (∆EFIT

2) (energy and r are in kcal.mol 1−  and 

angstroms, respectively). 

 

Distance  ∆ESCF ∆EFIT
1 ∆EFIT

2 

1.6000   

1.7000  

1.8000   

1.9000  

2.0000    

2.1000  

2.2000  

2.3000 

2.4000    

2.5000   

2.6000 

3.0000   

3.4000     

3.8000 

4.2000     

5.2000 

6.2000   

8.2000 

-22.933 

-32.262 

-37.558 

-40.115 

-40.834 

-40.347 

-39.099 

-37.397 

-35.451 

-33.401 

-31.337 

-23.812 

-18.005 

-13.780 

-10.787 

-6.5240 

-4.3980 

-2.3830 

-23.485 

-33.715 

-38.762 

-40.724 

-40.830 

-39.857 

-38.238 

-36.272 

-34.141 

-31.963 

-29.811 

-22.134 

-16.333 

-12.175 

-9.2376 

-5.0967 

-3.2107 

-1.6756 

-27.970 

-35.931 

-39.713 

-40.784 

-40.738 

-39.588 

-37.912 

-35.954 

-33.867 

-31.750 

-29.665 

-22.233 

-16.572 

-12.465 

-9.524 

-5.293 

-3.319 

-1.702 
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Table 5.7. Lithim ion-ammonia interaction energies from ab initio calculation 

(∆ESCF) and from the pair potential function which the derivatives calculated using 

central different technique (∆EFIT
1) and calculated analytically (∆EFIT

2), for (a) θ = 

90 and φ = 0, (b) θ = 60 and φ = 0, (c) θ = 30 and φ = 0 (energy and r are in 

kcal.mol-1 and angstroms, respectively). 

 

(a) θ = 90 and φ = 0 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

1.6000   

1.7000  

1.8000   

1.9000  

2.0000    

2.1000  

2.2000  

2.3000 

2.4000    

2.5000   

2.6000 

3.0000   

3.4000     

3.8000 

4.2000     

5.2000 

6.2000   

8.2000 

23.604     

12.233 

4.8870 

0.26600 

-2.5020 

-4.0320 

-4.7430 

-4.9280 

-4.7870 

-4.4580 

-4.0340 

-2.3070 

-1.1780 

-0.57000 

-0.25100 

0.17000E-01 

0.61000E-01 

0.56000E-01 

23.604 

12.233 

5.2584 

1.4556 

-0.57173 

-1.8079 

-2.6909 

-3.3928 

-3.9677 

-4.4253 

-4.7644 

-5.0375 

-4.2169 

-3.1199 

-2.1527 

-0.72141 

-0.19956 

0.11937E-01 

23.604 

12.233 

11.127 

7.261 

3.817 

0.873 

-1.540 

-3.442 

-4.876 

-5.900 

-6.578 

-6.996 

-5.738 

-4.223 

-2.944 

-1.070 

-0.357 

-0.21884E-01 
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(b) θ = 60 and φ = 0 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

1.6000   

1.7000  

1.8000   

1.9000  

2.0000    

2.1000  

2.2000  

2.3000 

2.4000    

2.5000   

2.6000 

3.0000   

3.4000     

3.8000 

4.2000     

5.2000 

6.2000   

8.2000 

-4.2320 

-12.605 

-17.471 

-20.026 

-21.059 

-21.118 

-20.568 

-19.655 

-18.545 

-17.346 

-16.131 

-11.774 

-8.6110 

-6.4490 

-4.9780 

-2.9630 

-1.9930 

-1.0870 

0.14441 

-10.418 

-16.176 

-19.203 

-20.641 

-21.127 

-21.025 

-20.554 

-19.845 

-18.986 

-18.036 

-14.023 

-10.471 

-7.7164 

-5.7054 

-2.8808 

-1.6766 

-0.81299 

1.383 

-8.293 

-14.278 

-17.916 

-20.011 

-21.062 

-21.395 

-21.231 

-20.726 

-19.990 

-19.106 

-15.056 

-11.325 

-8.393 

-6.232 

-3.150 

-1.809 

-0.843 
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(c) θ = 30 and φ = 0 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

1.6000   

1.7000  

1.8000   

1.9000  

2.0000    

2.1000  

2.2000  

2.3000 

2.4000    

2.5000   

2.6000 

3.0000   

3.4000     

3.8000 

4.2000     

5.2000 

6.2000   

8.2000 

-18.264 

-27.085 

-32.107 

-34.575 

-35.340 

-34.993 

-33.940 

-32.463 

-30.755 

-28.944 

-27.116 

-20.453 

-15.369 

-11.718 

-9.1480 

-5.5180 

-3.7220 

-2.0210 

-16.892 

-27.311 

-32.669 

-35.020 

-35.565 

-35.021 

-33.830 

-32.267 

-30.509 

-28.669 

-26.820 

-20.049 

-14.803 

-10.997 

-8.2964 

-4.4995 

-2.7952 

-1.4412 

-20.176 

-28.812 

-33.287 

-35.225 

-35.599 

-35.008 

-33.830 

-32.309 

-30.602 

-28.816 

-27.017 

-20.392 

-15.200 

-11.386 

-8.644 

-4.715 

-2.910 

-1.468 
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Figure 5.2 The stabilization energies obtained from the DZP-ab initio (∆ESCF)

and from the fitting analytical potential (∆EFIT), which the derivatives

calculated using central different technique, with the parameter given in Table

5.4 (φ = 0° see Figure 4.11). 
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It is clearly seen that distance to the energy minimum obtained from the two 

sources takes place at the same position. Good agreement was yielded, especially in 

the area around the minimum. In addition, all data points were, again, compared in 

Figure 5.4 and Figure 5.5. It is clearly seen that the energies, obtained from the 

functions are good agreement with the SCF energies, especially for the attractive 

regions, which is important for prediction of the simulation results. 
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Figure 5.3 The stabilization energies obtained from the DZP-ab initio (∆ESCF)

and from the fitting analytical potential (∆EFIT), which the derivatives

calculated analytically, with the parameter given in Table 5.5 (φ = 0° see

Figure 4.11). 
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Figure 5.4 Comparison of the stabilization energies from the DZP-ab initio

(∆ESCF) and the potential function (∆EFIT), which the derivatives calculated using

central different technique, with the final values of the fitting parameters given in

Table 5.4. 
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Figure 5.5 Comparison of the stabilization energies from the DZP-ab initio (∆ESCF) and

the potential function (∆EFIT), which the derivatives calculated analytically, with the

final values of the fitting parameters given in Table 5.5. 
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5.2 Development of Ammonia - Ammonia Potential Function 

 
5.2.1 Input Elementary Data 
 

In this example, the fitting procedure contains 21 trajectories and 819 SCF 

energy points in the geometries mentioned in Figure 4.12. Then, one-fifth of the 

trajectory, taking one every five lines, will be kept for testing.  

 

The selected 5 trajectories as well as the corresponding 195 SCF energies 

were used for testing. Here, the other 16 trajectories with 624 SCF energy points 

were used for fitting.  

 
5.2.2 Selection of the Functional Form 

 

Here, the energy points for the ammonia-ammonia dimer, with choice 2 of 

the functional form, x = 4, y = 7 and z = 12 (see equation 4.3), were displayed, that 

is 

                   ∑ ∑ ⎟
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qq
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A

E            (5.2) 

where k = 4 and l = 4 (number of atoms of ammonia molecule), Aij, Bij and Cij are 

fitting parameters, rij is the distance, qi = -0.74207 and 0.24736 atomic unit for atoms 

N and H of ammonia.  

 

5.2.3 Set an Initial Guess for the Parameters 
 

In this example, equation (5.2) contains 9 parameters namely ANN, BNN, CNN, 

ANH, BNH, CNH, AHH, BHH, CHH. The first 3 parameters represents interaction between 

atom N and N, the second one represents interaction between atom N and H while 

the last 3 parameters for the H and H pair. 

 



 68

Note that due to symmetry reason, all 3 hydrogen atoms of the two NH3 are 

represented by the same set of fitting parameters. 

 

- The initial guess of parameters 
 

ANN =  99.7486877 

BNN =    269.96283 

CNN =  2017.52527 

ANH =    147.81398 

BNH =  475.154297 

CNH =  2221.89502 

AHH =  68.1932144 

BHH =  251.712234 

CHH =  2970.36646 

 

5.2.4 Fitting Energies to the Functional Form 
 

With 624 ammonia-ammonia interaction energies (see Section 5.2.1), the 

pair lower than 5.2 kcal.mol 1−  were fitted to the analytical function, equation 5.2.  
 

The optimized parameters of fit in which using the first method are given in 

the Table 5.8. 
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Table 5.8. The optimized parameters (the derivatives were approximated using the 

central different technique) representing interaction of atoms between the two 

ammonia molecules (energy and r are in kcal.mol 1−  and angstroms, respectively). 

 

Atom A (Å4 kcal.mol-1) B (Å7 kcal.mol-1) C (Å12 kcal.mol-1) 
 

NN 
 

NH 
 

HH 
 

 
-0.32110724E+04 

 
0.85169143E+03 

 
-0.20315592E+03 

 
-0.72573423E+04 

 
0.51342317E+04 

 
-0.99981208E+03 

 
-0.25824919E+06 

 
-0.34077085E+05 

 
0.57742285E+04 

 
Characteristics of the fit in which the derivatives were approximated using the 

central different technique:  

 

  Minimum energy included in the fit =       -1.007 kcal.mol 1− . 

  Maximum energy included in the fit =          5.20 kcal.mol 1− . 

  Maximum absolute residual     =    0.66 kcal.mol 1− . 

Minimum absolute residual   =        0.001 kcal.mol 1− . 

Average absolute residual   =        0.089 kcal.mol 1− . 

  Number of iteration    =      7      cycle. 

Standard deviation ( 1fitσ )  =        0.129 kcal.mol 1− . 

 

The optimized parameters of fit in which using the second method are given 

in the Table 5.9. 
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Table 5.9. The optimized parameters (the derivatives were calculated analytically) 

representing interaction of atoms between the two ammonia molecules (energy and r 

are in kcal.mol 1−  and angstroms, respectively). 

 

Atom A (Å4 kcal.mol-1) B (Å7 kcal.mol-1) C (Å12 kcal.mol-1) 
 

NN 
 

NH 
 

HH 

 
-0.11872595E+04 

 
0.32843524E+03 

 
-0.60452460E+02 

 
0.10477691E+05 

 
0.11187137E+04 

 
-0.79040317E+02 

 
-0.35927283E+05 

 
-0.10420567E+04 

 
0.30113348E+04 

 
 

 

Characteristics of the fit in which the derivatives were calculated analytically: 

 

  Minimum energy included in the fit =        -1.007 kcal.mol 1− . 

  Maximum energy included in the fit =           5.20 kcal.mol 1− . 

  Maximum absolute residual     =           3.64  kcal.mol 1− . 

Minimum absolute residual   =      0.5E-03  kcal.mol 1− . 

Average absolute residual   =        0.17  kcal.mol 1− . 

  Number of iteration    =    500      cycle. 

Standard deviation ( 1fitσ )  =          0.246 kcal.mol 1− . 

 

5.2.5 Testing the Quality of the Function 

 
In this part, the 195 ammonia-ammonia configurations (with the 

corresponding 195 ∆ ESCF), which are different from the first 624 configurations, 

were used to test the quaility of the function. The energy points ( ∆EFIT) due to the 

tested configurations were calculated using the pair potential with the optimal 

parameter for the two fitted methods shown in Table 5.8 and 5.9. 
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  The standard deviations for the tested data set ( testσ ) have been calculated 

for both methods, the values of 0.23 and 0.414 kcal.mol 1−  have, respectively 

yielded.  

 

Characteristics of the test in which the energy points ( ∆EFIT) were calculated using 

the pair potential with the optimal parameter shown in Table 5.8:  

 

  Minimum energy included in the test =       -1.007 kcal.mol 1− . 

  Maximum energy included in the test =          5.20 kcal.mol 1− . 

  Maximum absolute residual     =    0.66 kcal.mol 1− . 

Minimum absolute residual   =        0.001 kcal.mol 1− . 

Average absolute residual   =        0.124 kcal.mol 1− . 

  Standard deviation ( testσ )  =    0.23 kcal.mol 1− . 

 

Characteristics of the test in which the energy points ( ∆EFIT) were calculated using 

the pair potential with the optimal parameter shown in Table 5.9:  

 

  Minimum energy included in the test =       -1.007 kcal.mol 1− . 

  Maximum energy included in the test =          5.20 kcal.mol 1− . 

  Maximum absolute residual     =    1.46 kcal.mol 1− . 

Minimum absolute residual   =    0.5E-03 kcal.mol 1− . 

Average absolute residual   =          0.17 kcal.mol 1− . 

  Standard deviation ( testσ )  =        0.414 kcal.mol 1− . 

 

The 195 ∆ ESCF were, then, added to the fit and the standard deviations 

( 2fitσ ) of 0.139 and 0.406 kcal.mol 1− , respectively observed. The final optimal 

parameters are given in Table 5.10 and 5.11 for the method 1 and 2, respectively. 
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Table 5.10. The final optimized parameters (the derivatives were approximated 

using the central different technique) representing interaction of atoms between the 

two ammonia molecules (energy and r are in kcal.mol 1−  and angstroms, 

respectively). 

 

Atom A (Å4 kcal.mol-1) B (Å7 kcal.mol-1) C (Å12 kcal.mol-1) 
 

NN 
 

NH 
 

HH 

 
-0.31868972E+04 
 
0.85014415E+03 
 
-0.20485087E+03 
     

 
-0.72983431E+04 
 
0.51776934E+04 
 
-0.10305909E+04 

 
-0.25665577E+06 
 
-0.349114735E+05 
 
0.61156608E+04 

 

 

Characteristics of the fit in which the derivatives were approximated using the 

central different technique:  

 

  Minimum energy included in the fit =       -1.007 kcal.mol 1− . 

  Maximum energy included in the fit =         5.20 kcal.mol 1− . 

  Maximum absolute residual     =    0.40 kcal.mol 1− . 

Minimum absolute residual   =        0.001 kcal.mol 1− . 

Average absolute residual   =        0.079 kcal.mol 1− . 

  Number of iteration    =      7      cycle. 

Standard deviation ( 2fitσ )  =    0.139 kcal.mol 1− . 
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Table 5.11. The final optimized parameters (the derivatives were calculated 

analytically) representing interaction of atoms between the two ammonia molecules 

(energy and r are in kcal.mol 1−  and angstroms, respectively). 

 

Atom A (Å4 kcal.mol-1) B (Å7 kcal.mol-1) C (Å12 kcal.mol-1) 
 

NN 
 

NH 
 

HH 
 

 
-0.11229922E+04 

 
0.31530579E+03 

 
-0.55114130E+02 

 
0.12181375E+05 

 
0.10815344E+04 

 
-0.401867519E+02 

 
-0.33087938E+06 

 
-0.12755814E+04 

 
0.30061042E+04 

 

 

Characteristics of the fit in which the derivatives were calculated analytically: 

 

  Minimum energy included in the fit =       -1.007 kcal.mol 1− . 

  Maximum energy included in the fit =          5.20 kcal.mol 1− . 

  Maximum absolute residual     =         4.06  kcal.mol 1− . 

Minimum absolute residual   =    0.8E-04  kcal.mol 1− . 

Average absolute residual   =    0.18  kcal.mol 1− . 

  Number of iteration    =  301      cycle. 

Standard deviation ( 2fitσ )  =        0.406 kcal.mol 1− . 

 
5.2.6 Search for False Minima of the Function 
 
 

Now come to the last step of the development of the potential function, false 

minima which lower than the global minimum of the pair was searched. In this step, 

subroutine Genco will be used to generated 3610 ammonia-ammonia configurations, 

which different from those included in the fitted and tested sets, where 0° ≤ θ ≤ 360° 
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and 0° ≤ φ ≤ 360° in steps of 20° and 2.30 < r < 10.00 Å. Then, the 3610 energy 

points have been calculated using the pair potential function.  

 
The results show that among the generated 3610 data points, all of them are 

higher than the global minimum of the pair (-1.007 kcal.mol 1− ). This means that no 

artificial minima were found in the fitted function. 

 
The minimum interaction energy between ammonia and ammonia is found at 

the distance of 3.8 Å, θ = 150, φ = 0 as given in Table 5.12 (∆EFIT which the 

derivatives calculate using central different technique (∆EFIT
1) and calculated 

analytically (∆EFIT
2)). Some of the computed energies with different values of θ and 

φ are shown in Table 5.13 (a,b) and plotted in Figure 5.6 and Figure 5.7, 

respectively.  
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Table 5.12. The energies from ab intio calculations (∆ESCF) and from the pair 

potential function which the derivatives calculated using central different technique 

(∆EFIT
1) and calculated analytically (∆EFIT

2) (energy and r are in kcal.mol 1−  and 

angstroms, respectively). 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

3.3000 

3.3500 

3.4000 

3.4500 

3.5000 

3.5500 

3.6000 

3.6500 

3.7000 

3.7500 

3.8000 

3.8500 

3.9000 

3.9500 

4.0000 

4.0500 

6.0500 

8.0500 

-0.377 

-0.537 

-0.665 

-0.765 

-0.843 

-0.902 

-0.945 

-0.975 

-0.994 

-1.004 

-1.007 

-1.004 

-0.997 

-0.985 

-0.970 

-0.953 

-0.307 

-0.127 

-0.297 

-0.475     

-0.617     

-0.729     

-0.816 

-0.882     

-0.931     

-0.965     

-0.987     

-0.999     

-1.004     

-1.002 

-0.994     

-0.983     

-0.968     

-0.950     

-0.280     

-0.103       

-0.28963     

-0.44531     

-0.57279     

-0.67636     

-0.75969     

-0.82588     

-0.87756     

-0.91697   

-0.94602     

-0.96633     

-0.97928     

-0.98605     

-0.98764     

-0.98491     

-0.97860      

-0.96932      

-0.35639  
-0.13848       
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Table 5.13. Ammonia-ammonia interaction energies from ab initio calculation 

(∆ESCF) and from the pair potential function which the derivatives calculated using 

central different technique (∆EFIT
1) and calculated analytically (∆EFIT

2), for (a) θ = 

150 and φ = 30, (b) θ = 150 and φ = 60 (energy and r are in kcal.mol 1−  and 

angstroms, respectively). 

 

(a) θ = 150 and φ = 30 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

3.3000 

3.3500 

3.4000 

3.4500 

3.5000 

3.5500 

3.6000 

3.6500 

3.7000 

3.7500 

3.8000 

3.8500 

3.9000 

3.9500 

4.0000 

4.0500 

6.0500 

8.0500 

-0.022 

-0.200 

-0.345 

-0.463 

-0.558 

-0.633 

-0.692 

-0.737 

-0.771 

-0.795 

-0.811 

-0.821 

-0.825 

-0.824 

-0.820 

-0.813 

-0.293 

-0.124 

-0.054 

-0.133 

-0.287 

-0.412 

-0.513 

-0.593  
-0.657 

-0.705 

-0.742 

-0.769 

-0.787 

-0.798 

-0.803 

-0.803 

-0.799 

-0.792 

-0.266 

-0.101 

 0.034 

-0.144 

-0.293 

-0.417 

-0.519 

-0.603 

-0.671 

-0.725 

-0.768 

-0.801 

-0.826 

-0.844 

-0.855 

-0.862 

-0.864 

-0.863 

-0.346 

-0.136 

 

 



 77

(b) θ = 150 and φ = 60 

 

Distance ∆ESCF ∆EFIT
1 ∆EFIT

2 

3.3000 

3.3500 

3.4000 

3.4500 

3.5000 

3.5500 

3.6000 

3.6500 

3.7000 

3.7500 

3.8000 

3.8500 

3.9000 

3.9500 

4.0000 

4.0500 

6.0500 

8.0500 

0.310 

0.116 

-0.044 

-0.178 

-0.288 

-0.378 

-0.451 

-0.510 

-0.558 

-0.595 

-0.623 

-0.645 

-0.660 

-0.670 

-0.676 

-0.678 

-0.278 

-0.121 

0.393 

0.196 

0.031 

-0.107 

-0.222 

-0.316 

-0.394 

-0.457 

-0.508 

-0.548 

-0.579 

-0.603  
-0.620 

-0.631 

-0.638 

-0.641 

-0.252 

-0.098 

0.337 

0.137 

-0.031 

-0.173 

-0.293 

-0.393 

-0.476 

-0.545 

-0.601 

-0.646 

-0.682 

-0.710 

-0.731 

-0.746 

-0.756 

-0.762 

-0.336 

-0.134 
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 It is clearly seen that distance to the energy minimum obtained from the two 

sources takes place at the same position. Good agreement was yielded, especially in 

the area around the minimum. 
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Figure 5.6 The stabilization energies obtained from the DZP-ab initio (∆ESCF)

and from the fitting analytical potential (∆EFIT), which the derivatives

calculated using central different technique, with the parameter given in Table

5.10 (θ = 150° see Figure 4.12). 
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In addition, all data points were, again, compared in Figure 5.8 and Figure 

5.9 for first and second method, respectively. In the first method, it is clearly seen 

that the energies, obtained from the functions are good agreement with the SCF 

energies, especially for the attractive regions, which is important for prediction of 

the simulation results. 

 

 

 

 

 

 

Figure 5.7 The stabilization energies obtained from the DZP-ab initio (∆ESCF)

and from the fitting analytical potential (∆EFIT), which the derivatives

calculated analytically, with the parameter given in Table 5.11 (θ = 150° see

Figure 4.12). 
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Figure 5.8 Comparison of the stabilization energies from the DZP-ab initio

(∆ESCF) and the potential function (∆EFIT), which the derivatives calculated using

central different technique, with the final values of the fitting parameters given in

Table 5.10. 
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As mention in Chapter 4 in section 4.2.4 (see equations 4.13 - 4.17) and 

taking into account all the characteristics data in term of statistical values, we found 

that the first method where the partial derivative with respect to the parameters (term 

k

i

a
)a;x(y

∂
∂

 in equation 3.12) are calculated analytically, is not appropriate especially 

in the first form because the obtained derivatives are constant for every fitting 

iterations. Hence, we should select more term and construct the Lagrange’s function 

for the 2χ  merit function that will be used to minimize to get goodness-of-fit (see 

equation 3.11, 3.12 and 4.10) and minimize it. It may give a better result. 

 

Figure 5.9 Comparison of the stabilization energies from the DZP-ab initio (∆ESCF) and

the potential function (∆EFIT), which the derivatives calculated analytically, with the

final values of the fitting parameters given in Table 5.11. 
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Another approach is approximated the partial derivative using the central 

different technique which is independent of the model we use. This method shows 

the reliable result so we suggest using this approximation to extract the parameter.  
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Appendix  I 

 

 

MRQFIT version 1.0 
 

Program Manual 
 

Program MRQFIT version 1.0 has been developed to fit the interaction 

energies to the functional form (the intermolecular potential function) and improve 

quality of the function. The source code has been written in Fortran language using 

FORTRAN-77. This compact manual provided step-by-step instructions, and 

demonstration with an example in an easy understanding. 

 

Running the MRQFIT Program 

 
 1.) If you have the source code of MRQFIT program, you should first 

compile the MRQFIT program by Fortran-77 (see the compile procedures in the 

FORTRAN-77 manual). In the other hand, if you already have execute file, i.e. 

MRQFIT.out, you can run the program by typing MRQFIT.out in the UNIX prompt 

as: 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
[fon@atc7 ~/MRQFIT]$ MRQFIT.out 
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After pressing the ENTER key, the program start to run as: 
 

  

 

 

 

 

 

 

 

 

 2.) Select a choice of functional form from the list by pressing a number such 

as: 

 

 

 

 

Note that the program should protect you to select unreasonable choice such as "0", 

"1.5", "8",   etc. 

 

3.) Select a power of denominater of each term such as: 

 

 

 

 

 

 

 

 
===================== 
  PROGRAM FOR FITTING 
 ===================== 
        MENU 
 
 
 1) -A/R^M + B/R^N + QiQj/R 
 2) -A/R^M + B/R^N + QiQj/R + C/R^Q 
 3) -A/R^M + B*EXP(-C*R) + QiQj/R 
 4) -A/R^M + B*EXP(-C*R) + QiQj/R + D/R^Q 
 5) -A/R^M + B*EXP(-C*R) + QiQj/R + D*EXP(-E*R) 
 6) -A*EXP(-B*R) + C*EXP(-D*R) + QiQj/R 
 7)  Exit 
 

 
SELECT NUMBER OF CHOICE (1,2,3,...,7): 
2 

 
PLEASE INPUT VALUE M, N AND Q OF THE FORM 
 M = 
4 
 N = 
7 
 Q = 
12 
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In this step, you must wait for the program optimization. When the program 

finish, the output which containing three files are obtained (see Appendix II). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
** NORMAL TERMINATION ** 
STOP  ** RUN COMPLETED ** statement executed 



Appendix  II 

 

 

Output Files for MRQFIT Program 

 
In this appendix, the example of output files in the NH3-NH3 system are 

shown as follow: 
 

Output I 

 
NUMBER OF ATOMS IN THE MOLECULES :      4 AND  4 
NUMBER OF PARAMETERS :                  9 
NUMBER OF TRAJECTORIES :                21 
NUMBER OF CONFIGURATIONS :              819 
POINTS ABOVE  5.20 KCAL/MOL WILL BE EXCLUDED 
DEGREES OF FREEDOM = 658      
ITERATION LIMIT : 500 STEPS 
FITTING STOP WHEN PARAMETERS CHANGE LESS THAN : 1.0000% 
       
 
INITIAL PARAMETER  :    99.7486877      269.9628300     2017.5252700 
                       147.8139800      475.1542970     2221.8950200 
                        68.1932144      251.7122340     2970.3664600 
 
 STEP        CHISQUARE         STD.              PARAMETERS 
 
   0       234.7740522     15.3223383      A 1 =       99.7486877 
                                           A 2 =      269.9628300 
                                           A 3 =     2017.5252700 
                                           A 4 =      147.8139800 
                                           A 5 =      475.1542970 
                                           A 6 =     2221.8950200 
                                           A 7 =       68.1932144 
                                           A 8 =      251.7122340 
                                           A 9 =     2970.3664600 
 
   1         0.0610427      0.2470682      A 1 =     -360.4981060 
                                           A 2 =    14378.2098057 
                                           A 3 =   277997.9301762 
                                           A 4 =       99.3577428 
                                           A 5 =     -455.0639601 
                                           A 6 =    11455.3803934 
                                           A 7 =        9.9939036 
                                           A 8 =      615.5520528 
                                           A 9 =    -6972.9668208 
 
   2         0.0461584      0.2148451      A 1 =     -413.0158797 
                                           A 2 =    20718.8714343 
                                           A 3 =  -197955.5697540 
                                           A 4 =      167.7351744 
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                                           A 5 =     -655.7845477 
                                           A 6 =    23978.3937696 
                                           A 7 =      -31.4595134 
                                           A 8 =      330.3055498 
                                           A 9 =    -4699.7399432 
 
   3         0.0274538      0.1656919      A 1 =    -1578.9455580 
                                           A 2 =    10314.9149489 
                                           A 3 =  -365361.8286861 
                                           A 4 =      472.6181664 
                                           A 5 =     1871.0328990 
                                           A 6 =     -176.8536728 
                                           A 7 =     -116.2371518 
                                           A 8 =     -354.3494743 
                                           A 9 =      939.6388911 
 
   4         0.0194550      0.1394812      A 1 =    -3005.5489237 
                                           A 2 =    -5298.0599896 
                                           A 3 =  -270375.5392072 
                                           A 4 =      807.7618914 
                                           A 5 =     4805.7010683 
                                           A 6 =   -30990.3440391 
                                           A 7 =     -194.9866118 
                                           A 8 =     -955.5774620 
                                           A 9 =     5544.2037413 
 
   5         0.0193528      0.1391142      A 1 =    -3184.6297120 
                                           A 2 =    -7273.3235584 
                                           A 3 =  -256828.2254227 
                                           A 4 =      849.6143362 
                                           A 5 =     5173.0427059 
                                           A 6 =   -34862.4426104 
                                           A 7 =     -204.7276204 
                                           A 8 =    -1029.6538041 
                                           A 9 =     6108.5231306 
 
   6         0.0193527      0.1391141      A 1 =    -3186.8943773 
                                           A 2 =    -7298.3114691 
                                           A 3 =  -256655.9947517 
                                           A 4 =      850.1434813 
                                           A 5 =     5177.6875303 
                                           A 6 =   -34911.4115434 
                                           A 7 =     -204.8507240 
                                           A 8 =    -1030.5897867 
                                           A 9 =     6115.6517797 
 
 
Maximum absolute residual =   0.4020830 kcal/mol 
Minimum absolute residual =   0.0017987 kcal/mol 
Average absolute residual =   0.0796535 kcal/mol 
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FINAL LAMBDA =   0.0000000010000001 
 
 
FINAL PARAMETERS AND STATISTICS VALUES: 
 
 STEP        CHISQUARE         STD.              PARAMETERS 
 
   7         0.0193527      0.1391141      A 1 =    -3186.8972441 
                                           A 2 =    -7298.3430995 
                                           A 3 =  -256655.7768786 
                                           A 4 =      850.1441511 
                                           A 5 =     5177.6934100 
                                           A 6 =   -34911.4735306 
                                           A 7 =     -204.8508799 
                                           A 8 =    -1030.5909715 
                                           A 9 =     6115.6608036 
 
 
Output II 
 
NUMBER OF ATOMS IN THE MOLECULES :      4 AND  4 
NUMBER OF PARAMETERS :                  9 
NUMBER OF TRAJECTORIES :                21 
NUMBER OF CONFIGURATIONS :              819 
POINTS ABOVE  5.20 KCAL/MOL WILL BE EXCLUDED 
DEGREES OF FREEDOM = 658      
ITERATION LIMIT : 500 STEPS 
FITTING STOP WHEN PARAMETERS CHANGE LESS THAN : 1.0000% 
       
 
INITIAL PARAMETER  :    99.7486877      269.9628300     2017.5252700 
                       147.8139800      475.1542970     2221.8950200 
                        68.1932144      251.7122340     2970.3664600 
 
 
Maximum absolute residual =   0.4020830 kcal/mol 
Minimum absolute residual =   0.0017987 kcal/mol 
Average absolute residual =   0.0796535 kcal/mol 
 
FINAL LAMBDA =   0.0000000010000001 
 
 
FINAL PARAMETERS AND STATISTICS VALUES: 
 
 STEP        CHISQUARE         STD.              PARAMETERS 
 
   7         0.0193527      0.1391141      A 1 =    -3186.8972441 
                                           A 2 =    -7298.3430995 
                                           A 3 =  -256655.7768786 
                                           A 4 =      850.1441511 
                                           A 5 =     5177.6934100 
                                           A 6 =   -34911.4735306 
                                           A 7 =     -204.8508799 
                                           A 8 =    -1030.5909715 
                                           A 9 =     6115.6608036 
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Output III 
 
   NO.        YREAL       YFIT      RESIDUAL   R of CENTERS                       
 
    1         34.559      34.559      0.0000      2.3000     
    2         18.728      18.728      0.0000      2.5000     
    3         16.026      16.026      0.0000      2.5500     
    4         13.695      13.695      0.0000      2.6000     
    5         11.684      11.684      0.0000      2.6500     
    6         9.9510      9.9510      0.0000      2.7000     
    7         8.4570      8.4570      0.0000      2.7500     
    8         7.1690      7.1690      0.0000      2.8000     
    9         6.0610      6.0610      0.0000      2.8500     
   10         5.1060      4.7897     0.31629      2.9000     
   11         4.2850      3.9788     0.30620      2.9500     
   12         3.5780      3.2575     0.32047      3.0000     
   13         2.9700      2.6159     0.35411      3.0500     
   14         2.4470      2.1446     0.30236      3.1000     
   15         1.9980      1.7354     0.26257      3.1500     
   16         1.6110      1.3807     0.23025      3.2000     
   17         1.2790      1.0739     0.20512      3.2500     
   18        0.99300     0.80888     0.18412      3.3000     
   19        0.74700     0.58048     0.16652      3.3500     
   20        0.53600     0.38403     0.15197      3.4000     
   21        0.35400     0.21545     0.13855      3.4500     
   22        0.19800     0.71163E-01 0.12684      3.5000     
   23        0.64000E-01-0.51964E-01 0.11596      3.5500     
   24       -0.51000E-01-0.15668     0.10568      3.6000     
   25       -0.14900    -0.24538     0.96376E-01  3.6500     
   26       -0.23300    -0.32015     0.87151E-01  3.7000     
   27       -0.30500    -0.38283     0.77832E-01  3.7500     
   28       -0.36600    -0.43501     0.69014E-01  3.8000     
   29       -0.41700    -0.47809     0.61088E-01  3.8500     
   30       -0.46000    -0.51327     0.53268E-01  3.9000     
   31       -0.49500    -0.54161     0.46612E-01  3.9500     
   32       -0.52500    -0.56404     0.39042E-01  4.0000     
   33       -0.54800    -0.58136     0.33362E-01  4.0500     
   34       -0.35300    -0.31273    -0.40270E-01  6.0500     
   35       -0.17000    -0.13340    -0.36595E-01  8.0500     
   36       -0.93000E-01-0.67282E-01-0.25718E-01  10.050     
   :  
   55         1.6110      1.3807     0.23025      3.2000     
   56         1.2790      1.0739     0.20512      3.2500     
   57        0.99300     0.80888     0.18412      3.3000     
   58        0.74700     0.58048     0.16652      3.3500     
   59        0.53600     0.38403     0.15197      3.4000     
   60        0.35400     0.21545     0.13855      3.4500     
   61        0.19800     0.71163E-01 0.12684      3.5000     
   62        0.64000E-01-0.51964E-01 0.11596      3.5500     
   63       -0.51000E-01-0.15668     0.10568      3.6000     
   64       -0.14900    -0.24538     0.96376E-01  3.6500     
   65       -0.23300    -0.32015     0.87151E-01  3.7000     
   66       -0.30500    -0.38283     0.77832E-01  3.7500     
   67       -0.36600    -0.43501     0.69014E-01  3.8000     
   68       -0.41700    -0.47809     0.61088E-01  3.8500     
   69       -0.46000    -0.51327     0.53268E-01  3.9000     
   70       -0.49500    -0.54161     0.46612E-01  3.9500     
   71       -0.52500    -0.56404     0.39042E-01  4.0000     



 94

   72       -0.54800    -0.58136     0.33362E-01  4.0500     
   73       -0.35300    -0.31273    -0.40270E-01  6.0500     
   74       -0.17000    -0.13340    -0.36595E-01  8.0500     
   75       -0.93000E-01-0.67282E-01-0.25718E-01  10.050     
   : 
  274         33.729      33.729      0.0000      2.3000     
  275         16.749      16.749      0.0000      2.5000     
  276         13.924      13.924      0.0000      2.5500     
  277         11.515      11.515      0.0000      2.6000     
  278         9.4660      9.4660      0.0000      2.6500     
  279         7.7250      7.7250      0.0000      2.7000     
  280         6.2480      6.2480      0.0000      2.7500     
  281         4.9990      5.3734    -0.37441      2.8000     
  282         3.9430      4.3340    -0.39103      2.8500     
  283         3.0540      3.4235    -0.36948      2.9000     
  284         2.3070      2.6371    -0.33007      2.9500     
  285         1.6810      1.9654    -0.28444      3.0000     
  286         1.1570      1.3971    -0.24009      3.0500     
  287        0.72200     0.91998    -0.19798      3.1000     
  288        0.36200     0.52236    -0.16036      3.1500     
  289        0.64000E-01 0.19336    -0.12936      3.2000     
  290       -0.17900    -0.76896E-01-0.10210      3.2500     
  291       -0.37700    -0.29714    -0.79858E-01  3.3000     
  292       -0.53700    -0.47504    -0.61963E-01  3.3500     
  293       -0.66500    -0.61722    -0.47778E-01  3.4000     
  294       -0.76500    -0.72940    -0.35602E-01  3.4500     
  295       -0.84300    -0.81645    -0.26553E-01  3.5000     
  296       -0.90200    -0.88253    -0.19472E-01  3.5500     
  297       -0.94500    -0.93116    -0.13836E-01  3.6000     
  298       -0.97500    -0.96534    -0.96596E-02  3.6500     
  299       -0.99400    -0.98757    -0.64258E-02  3.7000     
  300        -1.0040    -0.99999    -0.40139E-02  3.7500     
  301        -1.0070     -1.0044    -0.26391E-02  3.8000     
  302        -1.0040     -1.0022    -0.18052E-02  3.8500     
  303       -0.99700    -0.99474    -0.22559E-02  3.9000     
  304       -0.98500    -0.98306    -0.19412E-02  3.9500     
  305       -0.97000    -0.96802    -0.19833E-02  4.0000     
  306       -0.95300    -0.95035    -0.26502E-02  4.0500     
  307       -0.30700    -0.28070    -0.26301E-01  6.0500     
  308       -0.12700    -0.10353    -0.23465E-01  8.0500     
  309       -0.65000E-01-0.48859E-01-0.16141E-01  10.050     

: 
  781         45.411      45.411      0.0000      2.3000     
  782         22.513      22.513      0.0000      2.5000     
  783         18.789      18.789      0.0000      2.5500     
  790         4.7280      4.4235     0.30449      2.9000     
  791         3.7850      3.8080    -0.22954E-01  2.9500     
  792         2.9990      3.1211    -0.12213      3.0000     
   : 
  811       -0.34000    -0.74065     0.40065      3.8000     
  812       -0.34400    -0.73506     0.39106      3.8500     
  813       -0.34300    -0.72368     0.38068      3.9000     
  814       -0.33800    -0.70795     0.36995      3.9500     
  815       -0.33000    -0.68901     0.35901      4.0000     
  816       -0.31900    -0.66778     0.34878      4.0500     
  817       -0.18000E-01-0.10425     0.86249E-01  6.0500     
  818        0.70000E-02-0.20816E-01 0.27816E-01  8.0500     
  819        0.70000E-02-0.50074E-02 0.12007E-01  10.050     
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