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CHAPTER I

INTRODUCTION AND PRELIMINARIES

An introduction of cancellation ideals may be found in [2]. Characterization

of cancellation ideals was given by D.D.Anderson and M.Roitman in [1], but

checking a given ideal is a cancellation ideal, or not, is not easy to show by using

their theorem. We can found some interesting notion for ideals in [3].

In this chapter, we give precise definitions, quoted results, and give some results

for using in the next two chapters.

Definition. Let R be a commutative ring with identity. An ideal I of R is called

a cancellation ideal if whenever IB = IC for ideals B and C of R, then B = C.

Definition. An integral domain R is a unique factorization domain provided

that:

(i) every nonzero nonunit element a of R can be written a = c1c2 · · · cn, with

c1, ..., cn irreducible,

(ii) if a = c1c2 · · · cn and a = d1d2 · · · dm (ci, di irreducible), then n=m and for

some permutation σ of {1, 2, ..., n}, ci and dσ(i) are associates for every i.

Definition. A ring R is called a Boolean ring if for every a ∈ R, a2 = a.

Definition. A ring R is Artinian if R satisfies the descending chain condition

on ideals.

The Theorem 1.1 is a well-know result.
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Theorem 1.1. If D is a unique factorization domain, then D[x] is a unique

factorization domain.

Since Z is a unique factorization domain, Z[x] and Z[x, y] are unique factor-

ization domain.

The next two results are given in [1]. The first lemma is easy to see and we

always refer to it in the next chapter.

Lemma 1.2. Let R be a commutative ring with identity and a ∈ R. Then 〈a〉 is

a cancellation ideal of R if and only if a is not a zero divisor of R.

Theorem 1.3. Let R be a commutative ring with identity . An ideal I of R is a

cancellation ideal of R if and only if I is locally a regular principal ideal.

From Lemma 1.2 , we have that every ideal of Z , except {0}, is a cancellation

ideal of Z. The following theorem is an interesting result.

Theorem 1.4. Every proper ideal in Zm is not a cancellation ideal of Zm.

Proof. Let I be an ideal in Zm such that I �= Zm and I �= {0̄}. Since Zm is a

principal ideal ring , I = 〈k̄〉 for some k̄ ∈ Zm� {0̄}. Let d be the g.c.d. of k and

m. Then d �= 1, d | k and d | m. There exist nonzero elements x and y of Z such

that k = dx and m = dy. Thus ky = dxy = xdy = xm, so k̄ȳ = ky = 0̄. Hence k̄

is a zero divisor of Zm. By Lemma 1.1, I = 〈k̄〉 is not a cancellation ideal of Zm .

Clearly, {0̄} is not a cancellation ideal of Zm for m〉1 and {0̄} is a cancellation

ideal of Zm for m = 1.

Next, we have to show that Zm is a cancellation ideal of Zm for m > 1.

Let n1 and n2 be elements of Zm such that Zm〈n1〉 = Zm〈n2〉. Since 1̄ is the

multiplicative identity of Zm , 〈n1〉 = Zm〈n1〉 = Zm〈n2〉 = 〈n2〉.
Therefore, Zm is a cancellation ideal of Zm .
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Theorem 1.5 is one that easy to prove but in order to check whether a given

ideal is a cancellation ideal, is not practical.

Theorem 1.5. Let R be a commutative ring and I an ideal of R such that I

contains an element which is not a zero divisor of R. Then I is a cancellation

ideal of R if and only if for every ideals A,B of R such that A∪B ⊆ I, IA = IB

implies A = B.

Proof. (→) Clearly.

(←) Let A and B be ideals of R such that IA = IB and k an element of I which

is not a zero divisor of R. Then 〈k〉IA = 〈k〉IB, so I〈k〉A = I〈k〉B. Since

k ∈ I, 〈k〉A ∪ 〈k〉B ⊆ I, so 〈k〉A = 〈k〉B . By Lemma 1.2, 〈k〉 is a cancellation

ideal of R, so A = B.

We give the precise definition for a cancellation ideal belonging to an ideal

which we consider in Chapter III here.

Definition. Let I be an ideal in the commutative ring R with identity.

A cancellation ideal J of R is said to be a cancellation ideal belonging to

ideal I if I ⊆ J.

The following statements are facts about cancellation ideals of some familiar

rings.

1. A maximal ideal in Z[x] need not be a cancellation ideal.

An example is the maximal ideal 〈2, x〉 of Z[x] (see Chapter II for 〈2, x〉 is not a

cancellation ideal).

2. For any field F, F [x] is a PID , so all ideals of F [x], except {0}, are cancellation

ideals of F [x](by Lemma 1.2).

3.For a ∈ Z, |a| ≥ 1 and a is not prime, the ideal 〈a〉 is a cancellation ideal but

not a maximal ideal of Z (by Lemma 1.2).
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4. Let R be a subring of an integral domain T . If I is a cancellation ideal of R,

then IT is a cancellation ideal of T. This fact is quoted from [1].

5. The ideal I = 〈2, x2〉 of Z[x] is not a cancellation ideal and a cancellation ideal

of Z[x] belonging to I must be Z[x], see Chapter III.



CHAPTER II

CANCELLATION IDEALS OF SOME RINGS

In this chapter, we consider ideals of arbitrary commutative ring in Theorem

2.1-2.3, and we consider ideals in some special forms of Z[x] and Z[x, y] in Theorem

2.4-2.16. Ideals of Boolean rings with identity and ideals of an Artinian rings with

identity have considered in Theorem 2.17-2.18.

Theorem 2.1. Let I1, I2, ..., In be ideals of a commutative ring R.

Then I1I2...In is a cancellation ideal of R if and only if Ij is a cancellation ideal

of R for each j ∈ {1, 2, ..., n}.

Proof. Assume that I1I2...In is a cancellation ideal of R.

Letj ∈ {1, 2, ..., n} and B and C be ideals such that IjB = IjC.

Then IjBI1...Ij−1Ij+1...In = IjCI1...Ij−1Ij+1...In, so I1I2...InB = I1I2...InC. Since

I1I2...In is a cancellation ideal of R, B = C. Thus Ij is a cancellation ideal of R.

Next , assume that for all j ∈ {1, 2, ..., n}, Ij is a cancellation ideal of R.

Let B and C be ideals such that I1I2...InB = I1I2...InC.

Since I1 is a cancellation ideal of R, I2I3...InB = I2I3...InC.

Since I2 is a cancellation ideal of R, I3I4...InB = I3I4...InC. By the same argu-

ment, we must have B = C .

Thus I1I2...In is a cancellation ideal of R.

Theorem 2.2. Let R be a commutative ring.

(i) If A,Band C are ideals of R such that A+B,A+C and B+C are cancellation
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ideals of R, then A + B + C is also a cancellation ideal of R.

(ii) If every ideal generated by two elements of R is a cancellation ideal, then every

finitely generated ideal of R is a cancellation ideal of R.

Proof. (i)Assume that A,B and C are ideals of R such that A + B,A + C and

B + C are cancellation ideals of R . By Theorem 2.1 , (A + B)(A + C)(B + C) is

a cancellation ideal of R. Since (A + B + C)(AB + AC + BC) = (A + B)(A +

C)(B + C) , A + B + C is a cancellation ideal of R.

(ii)Assume that each ideal generated by two elements of R is a cancellation ideal.

Let k be an integer greater than 1 and suppose that every ideal generated by

a set of k elements is a cancellation ideal of R. Let x1, x2, ..., xk+1 be arbitrary

elements in R. We have that 〈x1, x2, ..., xk+1〉 = 〈x1〉 + 〈x2, ..., xk〉 + 〈xk+1〉 and

by assumption 〈x1〉+ 〈x2, ..., xk〉, 〈x1〉+ 〈xk+1〉 and

〈x2, ..., xk〉 + 〈xk+1〉 are cancellation ideals of R. By (i) , 〈x1, x2, ..., xk+1〉 is a

cancellation ideal of R.

Theorem 2.3. Let I be a proper ideal of a commutative ring R with identity.

If I is a cancellation ideal of R, then I is not a minimal ideal .

Proof. Assume that I is a cancellation ideal of R. We have that {0} ⊆ I2 ⊆ I.

If I2 = {0},then II = {0} = I{0}, so I = {0}. A contradiction since {0} is

not a cancellation ideal of R. If I2 = I, then II = I = I〈1〉, so I = R,

a contradiction. Thus {0} � I2 � I, so I is not a minimal ideal.

Example. Every nonzero ideal of Z is a cancellation ideal of Z, so it is not a

minimal ideal.

Converse of Theorem 2.3 is not true . For example , {0} � 〈x〉 � 〈2, x〉 in Z[x]

and 〈2, x〉 is not a cancellation ideal of Z[x].

Theorem 2.4. 〈2, x〉 is not a cancellation ideal of Z[x].
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Proof. We have that

〈2, x〉〈4, x2〉 = 〈8, 2x2, 4x, x3〉

= 〈2, x〉〈4, 2x, x2〉.

Suppose that 2x ∈ 〈4, x2〉. Then there exist f(x), g(x) ∈ Z[x] such that

2x = 4f(x) + x2g(x).

Let f(x) =
m∑

i=0

aix
i and g(x) =

n∑
j=0

bjx
j where ai, bj ∈ Z and m,n ∈ N. Then

2x =
m∑

i=0

4aix
i +

n∑
j=0

bjx
j+2.

By comparing the coefficients, we get 2 = 4a1 which is impossible. Hence 2x /∈
〈4, x2〉, so 〈4, x2〉 �= 〈4, 2x, x2〉. Therefore 〈2, x〉 is not a cancellation ideal of

Z[x].

Theorem 2.5. Let a, b ∈ Z � {0}. Then 〈a, bx〉 is a cancellation ideal of Z[x] if

and only if a | b.

Proof. Assume that 〈a, bx〉 is a cancellation ideal of Z[x]. Since

〈a, bx〉〈a2, abx, b2x2〉 = 〈a3, a2bx, ab2x2, b3x3〉

= 〈a, bx〉〈a2, b2x2〉,

〈a2, abx, b2x2〉 = 〈a2, b2x2〉. So abx ∈ 〈a2, b2x2〉. There exist f(x), g(x) ∈ Z[x]

such that

abx = a2f(x) + b2x2g(x).

Then f(x) =
m∑

i=0

aix
i and g(x) =

n∑
j=0

bjx
j for some ai, bj ∈ Z and m,n ∈ N. Thus
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abx =
m∑

i=0

a2aix
i +

n∑
j=0

b2bjx
j+2 .

By comparing the coefficients, we get ab = a2a1, and so b = aa1, that is a | b.
Assume that a | b. We have 〈a, bx〉 = 〈a〉 which is a cancellation ideal of

Z[x] by Lemma 1.2.

In Theorem 2.4, we consider an ideal generated by two elements of Z[x] which

have no nonunit common factor. Next we will consider an ideal generated by two

elements of Z[x] which have a nonunit common factor.

Example. 〈(x− 1)2, x2 − 1〉 is not a cancellation ideal of Z[x].

Proof. We have

〈(x− 1)2, x2 − 1〉〈(x− 1)4, (x2 − 1)(x− 1)2, (x2 − 1)2〉
= 〈(x− 1)6, (x2 − 1)(x− 1)4, (x− 1)2(x2 − 1)2, (x2 − 1)3〉
= 〈(x− 1)2, x2 − 1〉〈(x− 1)4, (x2 − 1)2〉.

Suppose that (x2 − 1)(x− 1)2 ∈ 〈(x− 1)4, (x2 − 1)2〉. Then (x2 − 1)(x− 1)2

= f(x)(x− 1)4 + g(x)(x2 − 1)2 for some f(x), g(x) ∈ Z[x]. So

(x− 1)(x + 1) = f(x)(x− 1)2 + g(x)(x + 1)2,

(x− 1)((x + 1)− f(x)(x− 1)) = g(x)(x + 1)2. (2.1)

Since x−1 and (x+1)2 are relatively prime , x−1 | g(x). There exists h1(x) ∈ Z[x]

such that g(x) = h1(x)(x− 1).

From (2.1), we get

(x− 1)((x + 1)− f(x)(x− 1)) = h1(x)(x− 1)(x + 1)2,

(x + 1)− f(x)(x− 1) = h1(x)(x + 1)2,

(x + 1)(1− h1(x)(x + 1)) = f(x)(x− 1). (2.2)
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Since x− 1 and x + 1 are relatively prime, x + 1 | f(x). There exists h2(x) ∈ Z[x]

such that f(x) = h2(x)(x + 1).

From (2.2), we get

(x + 1)(1− h1(x)(x + 1)) = h2(x)(x + 1)(x− 1),

1 = h1(x)(x + 1) + h2(x)(x− 1).

Let h1(x) =
m∑

i=0

aix
i and h2(x) =

n∑
j=0

bjx
j where ai, bj ∈ Z and am, bn �= 0 and

m,n ∈ N.

Since 1 = (
m∑

i=0

aix
i)(x + 1) + (

n∑
j=0

bjx
j)(x− 1) , m = n and

1 = (a0 − b0) + (a0 + a1 + b0 − b1)x + (a1 + a2 + b1 − b2)x
2 + ...+

(an−1 + an + bn−1 − bn)xn + (an + bn)xn+1.

Thus

a0 − b0 = 1 ,

a0 + b0 + a1 − b1 = 0 ,

a1 + b1 + a2 − b2 = 0 ,

· · ·

an−2 + bn−2 + an−1 − bn−1 = 0 ,

an−1 + bn−1 + an − bn = 0 ,

an + bn = 0 ,

so 2(a0 + a1 + ... + an) = 2a0 + 2a1 + ... + 2an = 1, a contradiction. Then

(x2 − 1)(x− 1)2 /∈ 〈(x− 1)4, (x2 − 1)2〉.
Therefore, 〈(x− 1)2, x2 − 1〉 is not a cancellation ideal of Z[x].

Theorem 2.6 gives a necessary and sufficient condition for ideals generated by

two nonzero elements of a unique factorization domain to be cancellation ideals.
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Theorem 2.6. Let R be a unique factorization domain, a, b ∈ R � {0} and d

the greatest common divisor of a and b. Then 〈a, b〉 is a cancellation ideal of R if

and only if 〈a, b〉 = 〈d〉.

Proof. Assume 〈a, b〉 = 〈d〉. By Lemma 1.2, 〈d〉 is a cancellation ideal of R. Thus

〈a, b〉 is cancellation ideal of R.

Next, assume that 〈a, b〉 is a cancellation ideal of R. Since d is the greatest

common divisor of a and b, a = h1d and b = h2d for some h1, h2 ∈ R and h1 and

h2 have no common factor. We have

〈a, b〉〈a2, b2〉
= 〈a3, a2b, ab2, b3〉
= 〈a, b〉〈a2, ab, b2〉.

Since 〈a, b〉 is a cancellation ideal of R, ab ∈ 〈a2, b2〉. Thus ab = αa2 + βb2 for

some α, β ∈ R. So

d2h1h2 = αd2h2
1 + βd2h2

2,

h1h2 = αh2
1 + βh2

2 , since d �= 0,

h1(h2 − αh1) = βh2
2. (2.3)

Since h1 and h2 have no nonunit common factor , h1| β. There exists B ∈ R such

that β = h1B.

From (2.3),we get

h1(h2 − αh1) = h1Bh2
2,

h2 − αh1 = Bh2
2 , since h1 �= 0, and so

h2(1−Bh2) = αh1. (2.4)

Since h1 and h2 have no nonunit common factor , h2| α. There exists A ∈ R such

that α = h2A.
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From (2.4),we get

h2(1−Bh2) = h2Ah1,

1 = Ah1 + Bh2 , since h2 �= 0, and so

d = Ah1d + Bh2d

= Aa + Bb.

Hence 〈a, b〉 = 〈d〉.

Corollary 2.7. Let f(x), g(x) ∈ Z[x] � {0} and d(x) the greatest common

divisor of f(x)and g(x). Then 〈f(x), g(x)〉 is a cancellation ideal of Z[x] if and

only if 〈f(x), g(x)〉 = 〈d(x)〉.

Example. The ideal 〈f(x)n, f(x)n−1g(x), ..., f(x)g(x)n−1, g(x)n〉 is not a cancella-

tion ideal of Z[x] for all f(x), g(x) ∈ Z[x] such that 〈f(x), g(x)〉 is not a principal

ideal. This is because

〈f(x)n, f(x)n−1g(x), ..., f(x)g(x)n−1, g(x)n〉
= 〈f(x), g(x)〉 · · · 〈f(x), g(x)〉︸ ︷︷ ︸

n copies

and 〈f(x), g(x)〉 is not a cancellation ideal of Z[x] by Corollary 2.7 for all f(x), g(x) ∈
Z[x] such that 〈f(x), g(x)〉 is not a principal ideal.

Theorem 2.8. Let f(x), g(x), h(x) ∈ Z[x] � {0} be such that axm, bxn and cxl

are the minimum degree monomials in f(x), g(x), h(x),respectively. Suppose that

a �= 0, a � b and 0 ≤ m < n ≤ l. Then 〈f(x), g(x), h(x)〉 is not a cancellation ideal

of Z[x].

Proof. We have
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〈f(x), g(x), h(x)〉〈f(x)2, g(x)2, h(x)2, g(x)h(x)〉
= 〈f(x)3, f(x)g(x)2, f(x)h(x)2, f(x)g(x)h(x), g(x)f(x)2, g(x)3, g(x)h(x)2,

g(x)2h(x), f(x)2h(x), h(x)3〉
= 〈f(x), g(x), h(x)〉〈f(x)2, g(x)2, h(x)2, g(x)h(x), f(x)g(x)〉.

Suppose that f(x)g(x) ∈ 〈f(x)2, g(x)2, h(x)2, g(x)h(x)〉. Then there exist f1(x),

f2(x), f3(x), f4(x) ∈ Z[x] such that

f(x)g(x) = f1(x)f(x)2 + f2(x)g(x)2 + f3(x)h(x)2 + f4(x)g(x)h(x).

Note that the minimum degree monomial in f(x)g(x) is abxm+n.

Since each nonzero term in f2(x)g(x)2 + f3(x)h(x)2 + f4(x)g(x)h(x), if exist, has

degree at least 2n, we have that abxm+n is a term in f1(x)f(x)2. Since the mini-

mum degree monomial in f(x)2 is a2x2m and a �= 0, the minimum degree monomial

in f1(x) is dxn−m for some d ∈ Z. Thus ab = a2d, so a | b, a contradiction.

Hence f(x)g(x) /∈ 〈f(x)2, g(x)2, h(x)2, g(x)h(x)〉,
so 〈f(x)2, g(x)2, h(x)2, g(x)h(x)〉 �= 〈f(x)2, g(x)2, h(x)2, g(x)h(x), f(x)g(x)〉, that

is 〈f(x), g(x), h(x)〉 is not a cancellation ideal of Z[x].

Example. Let m ∈ N. Then 〈2, xm〉 = 〈2, xm, xm〉 is a cancellation ideal of Z[x]

by Theorem 2.8.

Example. Let h(x) ∈ Z[x]� {0} be such that its minimum degree monomial has

degree at least 2. We have

〈2 + x, 2x + 4x2, h(x)〉 = 〈2 + x, (2x + 4x2)− (2 + x)x, h(x)〉
= 〈2 + x, 3x2, h(x)〉.

Then 〈2 + x, 2x + 4x2, h(x)〉 is not a cancellation ideal of Z[x] by Theorem 2.8.

We consider ideals of Z[x, y] in Corollary 2.9-Theorem 2.16. Since Z is a unique

factorization domain, Z[x, y] is a unique factorization domain.Corollary 2.9 follows

from Theorem 2.6 directly.
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Corollary 2.9. Let f(x, y) , g(x, y) ∈ Z[x, y] � {0} and d(x, y) the greatest

common divisor of f(x, y)and g(x, y). Then 〈f(x, y), g(x, y)〉 is a cancellation ideal

of Z[x, y] if and only if 〈f(x, y), g(x, y)〉 = 〈d(x, y)〉.

Theorem 2.10. Let a, b, c ∈ Z � {0} and m,n ∈ N.

If a | b and a | c , then 〈a, bxm, cyn〉 and 〈a, cxm, byn〉 are cancellation ideals of

Z[x, y].

If a � b or a � c , then 〈a, bxm, cyn〉 and 〈a, cxm, byn〉 are not cancellation ideals of

Z[x, y] .

Proof. Clearly , if a | b and a | c , then 〈a, bxm, cyn〉 = 〈a〉 = 〈a, cxm, byn〉 is a

cancellation ideal of Z[x, y] by Lemma 1.2.

Consider the cases a � b and a � c.

Case 1: a � b.

We have

〈a, bxm, cyn〉〈a2, b2x2m, acyn, c2y2n〉
= 〈a3, ab2x2m, a2bxm, ac2y2n, b3x3m, c2bxmy2n, ca2yn, cb2ynx2m, abcxmyn, c3y3n〉
= 〈a, bxm, cyn〉〈a2, abxm, acyn, b2x2m, bcxmyn, c2y2n〉.

Suppose that abxm ∈ 〈a2, b2x2m, acyn, c2y2n〉. Then there exist f1(x, y),

f2(x, y), f3(x, y), f4(x, y) ∈ Z[x, y] such that

abxm = a2f1(x, y) + b2x2mf2(x, y) + acynf3(x, y) + c2y2nf4(x, y).

Since each term in b2x2mf2(x, y) has degree at least 2m and each term in acynf3(x, y)+

c2y2nf4(x, y) is a multiple of y , abxm must be a term of a2f1(x, y).

Let f1(x, y) =
l∑

j=0

k∑
i=0

aijx
iyj.

Then ab = am,0a
2, so b = am,0a which contradicts to the fact that a � b. Thus

〈a2, b2x2m, acyn, c2y2n〉 �= 〈a2, abxm, acyn, b2x2m, bcxmyn, c2y2n〉.
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Hence 〈a, bxm, cyn〉 is not a cancellation ideal.

By interchanging x and y we can also that 〈a, cxm, byn〉 is not a cancellation

ideal of Z[x, y].

Case 2: a � c.

By Case 1, we have immediately that 〈a, cxm, byn〉 and 〈a, bxm, cyn〉 are not can-

cellation ideal of Z[x, y].

Theorem 2.11. Let l = ni where i, n ∈ N and n ≥ 2. Then 〈xi − yi, xl, yl〉 is

not a cancellation ideal of Z[x, y].

Proof. We have

〈xi − yi, xl, yl〉〈(xi − yi)2, x2l, y2l, xlyl〉
= 〈(xi−yi)3, (xi−yi)x2l, (xi−yi)y2l, (xi−yi)2xl, x3l, xly2l, (xi−yi)2yl, x2lyl, y3l,

(xi − yi)xlyl〉
= 〈xi − yi, xl, yl〉〈(xi − yi)2, x2l, y2l, (xi − yi)xl, (xi − yi)yl, xlyl〉.

Suppose that (xi − yi)xl ∈ 〈(xi − yi)2, x2l, y2l, xlyl〉. Then there exist f1(x, y),

f2(x, y), f3(x, y), f4(x, y) ∈ Z[x, y] such that

(xi − yi)xl = f1(x, y)(xi − yi)2 + f2(x, y)x2l + f3(x, y)y2l + f4(x, y)xlyl.

Since each term in f2(x, y)x2l+f3(x, y)y2l+f4(x, y)xlyl has degree at least 2l , xl+i−
xlyi must be a term in f1(x, y)(x2i − 2xiyi + y2i).

Let f1(x, y) =
k∑

j=0

p∑
m=0

amjx
myj.

We may assume that k ≥ l

Note that for all 0 ≤ j ≤ k ,

a0,j = 0. (2.5)

By comparing the coefficients of xl+i and xlyi, we get

a(l−i),0 = a(n−1)i,0 = 1 (2.6)
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and a(l−2i),i − 2a(l−i),0 = a(n−2)i,i − 2a(n−1)i,0

= −1. (2.7)

From (2.6) and (2.7),we have

a(n−2)i,i = 1. (2.8)

Let r �= n and 2 ≤ r < n.

By comparing the coefficients of xl−(r−1)iyri = x(n−(r−1))iyri, we get

a(n−r−1)i,ri − 2a(n−r)i,(r−1)i + a(n−r+1)i,(r−2)i = 0,

a(n−r−1)i,ri = 2a(n−r)i,(r−1)i − a(n−r+1)i,(r−2)i.

If r = 2, then

a(n−3)i,2i = 2a(n−2)i,i − a(n−1)i,0 = 1, (2.9)

from (2.6) and (2.8).

If r = 3, then

a(n−4)i,3i = 2a(n−3)i,2i − a(n−2)i,i = 1, (2.10)

from (2.8) and (2.9).

Continue this process, if r = n− 1 , then a0,(n−1)i = 2ai,(n−2)i − a2i,(n−3)i = 1 ,

contradict to (2.5). Hence (xi − yi)xl /∈ 〈(xi − yi)2, x2l, y2l, xlyl〉 , so

〈(xi−yi)2, x2l, y2l, xlyl〉 �= 〈(xi−yi)2, x2l, y2l, (xi−yi)xl, (xi−yi)yl, xlyl〉 . There-

fore ,〈xi − yi, xl, yl〉 is not a cancellation ideal of Z[x, y].

Theorem 2.12. Let i, l ∈ N be such that i < l. If a ∈ Z � {1,−1}, then

〈xi + a, xl, yl〉 and 〈yi + a, xl, yl〉 are not cancellation ideals of Z[x, y].

Proof. Assume that a ∈ Z� {1,−1}. We prove only the case 〈xi + a, xl, yl〉 is not

a cancellation ideal of Z[x, y].

If a = 0 , then 〈xi + a, xl, yl〉 = 〈xi, yl〉. By Corollary 2.9,〈xi + a, xl, yl〉 is not a
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cancellation ideal of Z[x, y].

Consider the case a ∈ Z � {1,−1, 0}. We have

〈xi + a, xl, yl〉〈(xi + a)2, x2l, y2l, xlyl〉
= 〈(xi + a)3, (xi + a)x2l, (xi + a)y2l, (xi + a)xlyl, (xi + a)2xl, x3l, xly2l, x2lyl,

(xi + a)2yl, y3l〉
= 〈xi + a, xl, yl〉〈(xi + a)2, x2l, y2l, (xi + a)xl, (xi + a)yl, xlyl〉.

Suppose that (xi+a)yl ∈ 〈(xi+a)2, x2l, y2l, xlyl〉. Then there exist f1(x, y), f2(x, y),

f3(x, y), f4(x, y) ∈ Z[x, y] such that

(xi + a)yl = f1(x, y)(xi + a)2 + f2(x, y)x2l + f3(x, y)y2l + f4(x, y)xlyl,

xiyl + ayl = f1(x, y)(x2i + 2axi + a2) + f2(x, y)x2l + f3(x, y)y2l + f4(x, y)xlyl.

Since each term in f2(x, y)x2l + f3(x, y)y2l + f4(x, y)xlyl has degree at least 2l ,

xiyl + ayl must be terms in f1(x, y)(x2i + 2axi + a2).

Let f1(x, y) =
k∑

j=0

p∑
m=0

amjx
myj.

By comparing the coefficients of yl, we get a = a2a0,l. Since a �= 0, 1 = aa0,l.

This implies that a = 1 or a = −1, a contradiction.

Thus 〈(xi + a)2, x2l, y2l, xlyl〉 �= 〈(xi + a)2, x2l, y2l, (xi + a)xl, (xi + a)yl, xlyl〉.
Hence 〈xi + a, xl, yl〉 is not a cancellation ideal of Z[x, y].

Corollary 2.13. Let a ∈ Z, i ∈ N and l = 2i. Then 〈xi+a, xl, yl〉 is a cancellation

ideal of Z[x, y] if and only if a ∈ {1,−1}.

Proof. (→)Assume that a ∈ Z � {1,−1}. By Theorem 2.12 and l = 2i > i,

〈xi + a, xl, yl〉 is not a cancellation ideal of Z[x, y].

(←) Assume that a ∈ {1,−1}. Then xl − 1 = x2i − 1 = (xi − 1)(xi + 1)

∈ 〈xi + a, xl, yl〉, so 1 = xl − (xl − 1) ∈ 〈xi + a, xl, yl〉.
Thus 〈xi + a, xl, yl〉 = Z[x, y], which is a cancellation ideal of Z[x, y].
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Theorem 2.14. 〈xkyl , xm , yn〉 is not a cancellation ideal of Z[x, y] for

1 ≤ k < m and 1 ≤ l < n.

Proof. We have

〈xkyl, xm, yn〉〈x2ky2l, x2m, y2n, xk+myl〉
= 〈x3ky3l, x2m+kyl, xky2n+l, x2k+my2l, x3m, xmy2n, x2ky2l+n, x2myn,

y3n, xk+myl+n〉
= 〈xkyl, xm, yn〉〈x2ky2l, x2m, y2n, xk+myl, xkyl+n, xmyn〉.

Suppose that xkyl+n ∈ 〈x2ky2l, x2m, y2n, xk+myl〉.
Then there exist f1(x, y), f2(x, y), f3(x, y), f4(x, y) ∈ Z[x, y] such that

xkyl+n = f1(x, y)x2ky2l + f2(x, y)x2m + f3(x, y)y2n + f4(x, y)xk+myl. (2.11)

Since each term in f1(x, y)x2ky2l + f2(x, y)x2m + f4(x, y)xk+myl has degree of x

greater than k and each term in f3(x, y)y2n has degree of y greater than

l + n, it is impossible to write xkyl+n as the sum in (2.11), a contradiction.

Thus 〈x2ky2l, x2m, y2n, xk+myl〉 �= 〈x2ky2l, x2m, y2n, xk+myl, xkyl+n, xmyn〉,
so 〈xkyl, xm, yn〉 is not a cancellation ideal.

Theorem 2.15. Let f(x, y), g(x, y), h(x, y) ∈ Z[x, y]�{0} be such that axm1ym2 , bxn1yn2

and cxl1yl2 are the minimum degree monomials in f(x, y), g(x, y), h(x, y),respectively,

where a �= 0, a � b and 0 ≤ m1 + m2 < n1 + n2 ≤ l1 + l2.

Then 〈f(x, y), g(x, y), h(x, y)〉 is not a cancellation ideal of Z[x, y].

Proof. We have

〈f(x, y), g(x, y), h(x, y)〉〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y)〉
= 〈f(x, y)3, f(x, y)g(x, y)2, f(x, y)h(x, y)2, f(x, y)g(x, y)h(x, y), g(x, y)f(x, y)2,

g(x, y)3, g(x, y)h(x, y)2, g(x, y)2h(x, y), f(x, y)2h(x, y), h(x, y)3〉
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= 〈f(x, y), g(x, y), h(x, y)〉〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y),

f(x, y)g(x, y)〉

Suppose that f(x, y)g(x, y) ∈ 〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y)〉. Then there

exist f1(x, y), f2(x, y), f3(x, y), f4(x, y) ∈ Z[x, y] such that

f(x, y)g(x, y) = f1(x, y)f(x, y)2+f2(x, y)g(x, y)2+f3(x, y)h(x, y)2+f4(x, y)g(x, y)h(x, y)

Consider the term abxm1+n1ym2+n2 in f(x, y)g(x, y).

Since each nonzero term in f2(x, y)g(x, y)2+f3(x, y)h(x, y)2+f4(x, y)g(x, y)h(x, y),

if exist, has degree at least 2n1 + 2n2,we have abxm1+n1ym2+n2 is the term in

f1(x, y)f(x, y)2. Since the minimum degree monomial in f(x, y)2 is a2x2m1y2m2

and a �= 0 , the minimum degree monomial in f1(x, y) is dxn1−m1yn2−m2 for some

d ∈ Z. Thus ab = a2d , so a | b , a contradiction.

Hence f(x, y)g(x, y) /∈ 〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y)〉, so

〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y)〉 �=
〈f(x, y)2, g(x, y)2, h(x, y)2, g(x, y)h(x, y), f(x, y)g(x, y)〉,
that is 〈f(x, y), g(x, y), h(x, y)〉 is not a cancellation ideal.

Theorem 2.16. Let f(x), g(x), h(y) ∈ Z[x, y]� {0} be such that h(y) is a

polynomial which has no the constant term.

Assume that 〈f(x), g(x), h(y)〉 is not an ideal generated by one or two

polynomials in Z[x, y]. Then 〈f(x), g(x), h(y)〉 is not a cancellation ideal of Z[x, y].

Proof. We have

〈f(x), g(x), h(y)〉〈f(x)2, g(x)2, h(y)2, g(x)h(y)〉
= 〈f(x)3, f(x)g(x)2, f(x)h(y)2, f(x)g(x)h(y), g(x)f(x)2,

g(x)3, g(x)h(y)2, g(x)2h(y), f(x)2h(y), h(y)3〉
= 〈f(x), g(x), h(y)〉〈f(x)2, g(x)2, h(y)2, g(x)h(y), f(x)g(x)〉.

Suppose that f(x)g(x) ∈ 〈f(x)2, g(x)2, h(y)2, g(x)h(y)〉. Then there exist f1(x, y),



19

f2(x, y), f3(x, y), f4(x, y) ∈ Z[x, y] such that

f(x)g(x) = f1(x, y)f(x)2 + f2(x, y)g(x)2 + f3(x, y)h(y)2 + f4(x, y)g(x)h(y)

= (f1x(x, y) + f1y(x, y))f(x)2 + (f2x(x, y) + f2y(x, y))g(x)2+

f3(x, y)h(y)2 + f4(x, y)g(x)h(y),

where fix(x, y) is the partial polynomial of fi(x, y) which has no terms in y and

fiy(x, y) = fi(x, y)− fix(x, y) for all i =1,2.

Then f(x)g(x) = (f1x(x, y)f(x)2 + f2x(x, y)g(x)2) + (f1y(x, y)f(x)2

+f2y(x, y)g(x)2 + f3(x, y)h(y)2 + f4(x, y)g(x)h(y)).

This implies f1y(x, y)f(x)2 + f2y(x, y)g(x)2 + f3(x, y)h(y)2 + f4(x, y)g(x)h(y) = 0,

so

f(x)g(x) = f1x(x, y)f(x)2 + f2x(x, y)g(x)2. (2.12)

We can write that f(x) = d(x)α(x) and g(x) = d(x)β(x) for some d(x), α(x), β(x)

∈ Z[x, y], and α(x) and β(x) have no nonunit common factor in Z[x, y].

By (2.12),

d(x)α(x)d(x)β(x) = f1x(x, y)d(x)2α(x)2 + f2x(x, y)d(x)2β(x)2,

α(x)β(x) = f1x(x, y)α(x)2 + f2x(x, y)β(x)2,

α(x)(β(x)− f1x(x, y)α(x)) = f2x(x, y)β(x)2. (2.13)

Since α(x) and β(x) have no nonunit common factor , α(x) | f2x(x, y). Then

f2x(x, y) = α(x)h1(x, y) for some h1(x, y) ∈ Z[x, y].

By (2.13),

α(x)(β(x)− f1x(x, y)α(x)) = α(x)h1(x, y)β(x)2,

β(x) = f1x(x, y)α(x) + h1(x, y)β(x)2, since α(x) �= 0,

β(x)(1− h1(x, y)β(x)) = f1x(x, y)α(x). (2.14)

Since α(x) and β(x) have no nonunit common factor , β(x) | f1x(x, y).Thus

f1x(x, y) = β(x)h2(x, y) for some h2(x, y) ∈ Z[x, y].
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By (2.14),

β(x)(1− h1(x, y)β(x)) = β(x)h2(x, y)α(x),

1 = h1(x, y)β(x) + h2(x, y)α(x), since β(x) �= 0,

d(x) = h1(x, y)d(x)β(x) + h2(x, y)d(x)α(x),

d(x) = h1(x, y)g(x) + h2(x, y)f(x).

That is 〈d(x)〉 = 〈f(x), g(x)〉 , so 〈f(x), g(x), h(y)〉 = 〈f(x), g(x)〉+ 〈h(y)〉
= 〈d(x)〉+ 〈h(y)〉
= 〈d(x), h(y)〉 , a contradiction.

Then f(x)g(x) /∈ 〈f(x)2, g(x)2, h(y)2, g(x)h(y)〉,
so 〈f(x)2, g(x)2, h(y)2, g(x)h(y)〉 �= 〈f(x)2, g(x)2, h(y)2, g(x)h(y), f(x)g(x)〉.
Hence 〈f(x), g(x), h(y)〉 is not a cancellation ideal of Z[x, y].

Theorem 2.17. Every proper ideal I in any Boolean ring R with 1 is not a

cancellation ideal of R.

Proof. Let I be a proper ideal in a Boolean ring R with 1. Then I2 = I = IR.

But I �= R, so I is not a cancellation ideal of R.

Theorem 2.18. Let R be a commutative Artinian ring with 1 , and suppose that

R is not a field.Then the following statements hold.

(i) For all a ∈ R such that 〈a〉 �= R, 〈a〉 is not a cancellation ideal of R.

(ii)For all b, c ∈ R such that 〈b, c〉 �= R, 〈b, c〉 is not a cancellation ideal of R.

Proof. (i) Let a ∈ R . We have 〈a〉 ⊇ 〈a2〉 ⊇ 〈a3〉 ⊇ · · · . Since R satisfies

the descending chain condition, choose the smallest positive integer n such that

〈an〉 = 〈an+1〉.
Case 1: n = 1.
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Since 〈a〉R = 〈a〉 = 〈a2〉 = 〈a〉〈a〉 and 〈a〉 �= R , 〈a〉 is not a cancellation ideal

of R.

Case 2: n > 1.

Since 〈a〉〈an−1〉 = 〈an〉 = 〈an+1〉 = 〈a〉〈an〉 and

〈an−1〉 �= 〈an〉 , 〈a〉 is not a cancellation ideal of R.

(ii) We have 〈b, c〉 ⊇ 〈b2, bc, c2〉 ⊇ 〈b3, b2c, bc2, c3〉 ⊇ · · · . Since R satisfies

the descending chain condition , choose the smallest positive integer n such that

〈bn, bn−1c, ..., bcn−1, cn〉 = 〈bn+1, bnc, ..., bcn, cn+1〉.
Case 1: n = 1.

Since 〈b, c〉R = 〈b, c〉 = 〈b2, bc, c2〉 = 〈b, c〉〈b, c〉 and 〈b, c〉 �= R , 〈b, c〉 is not a

cancellation ideal of R.

Case 2: n > 1.

Since 〈b, c〉〈bn−1, bn−2c, ..., bcn−2, cn−1〉 = 〈bn, bn−1c, ..., bcn−1, cn〉
= 〈bn+1, bnc, ..., bcn, cn+1〉 = 〈b, c〉〈bn, bn−1c, ..., bcn−1, cn〉 and

〈bn−1, bn−2c, ..., bcn−2, cn−1〉 �= 〈bn, bn−1c, ..., bcn−1, cn〉, 〈b, c〉 is not a cancellation

ideal of R.



CHAPTER III

CANCELLATION IDEALS BELONGING TO IDEALS

In this chapter, we consider cancellation ideals of Z[x] belonging to ideals

〈2, xm〉, which we have already showed in the example follow from Theorem 2.8

that it is not a cancellation ideal of Z[x] for all m ∈ N.

Theorem 3.1. Let a ∈ Z � {0} and J a cancellation ideal belonging to ideal

〈x + a, x2〉. Suppose that J ∩ Z is a prime ideal of Z. Then J = Z[x].

Proof. Since x2 − a2 = (x + a)(x− a) and x2 ∈ J, a2 = x2 − (x2 − a2) ∈ J.

By the assumption, a ∈ J, so x = (x + a)− a ∈ J.

If a = 1 or a = −1, then J = Z[x].

Next, consider the case a ∈ Z � {0, 1,−1}.
Clearly, |a| ∈ J. Assume that |a| = pr1

1 pr2
2 · · · prn

n , where pi is a prime divisor of a,

and ri ∈ N for all i ∈ {1, 2, ..., n}.
Since pr1

1 pr2
2 · · · prn

n = |a| ∈ J, pi ∈ J for some i ∈ {1, 2, ..., n}, by the assumption.

Thus 〈pi, x〉 ⊆ J ⊆ Z[x]. By Theorem 2.5, 〈pi, x〉 is not a cancellation ideal

of Z[x]. Since J is a cancellation ideal of Z[x] and 〈pi, x〉 is a maximal ideal in

Z[x], J = Z[x].

The following two examples give us for the motivation of Theorem 3.2.

Example. Let J be a cancellation ideal belonging to ideal 〈2, x2〉. We claim that

J = Z[x].
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Let I = 〈2, x2〉. Since I is not a cancellation ideal of Z[x], I � J. Since x2 ∈ I,

there exists g(x) = a + bx ∈ J � I for some a, b ∈ Z.

Case 1: b is even.

Then a = a+ bx−2mx ∈ J� I where m = b
2
, so a must be odd and a ∈ J� I.

Now J is an ideal of Z[x] contains 2 and the odd number a, so 1 ∈ J. Thus

J = Z[x] as required.

Case 2: b is odd.

Subcase 2.1 : a is even.

Then bx ∈ J and x = bx − (b − 1)x ∈ J � I since b − 1 ∈ 〈2〉 ⊆ J. This implies

that the maximal ideal 〈2, x〉 is contained in J. Since 〈2, x〉 is not a cancellation

ideal of Z[x], J = Z[x].

Subcase 2.2: a is odd.

Then a− 1 , b− 1 ∈ 〈2〉 and 1 + x = a + bx− [(a− 1) + (b− 1)x] ∈ J � I. Now

1+x , x2 ∈ J and x = (1+x)x−x2 ∈ J, we have that 〈2, x〉 ⊆ J. Hence J = Z[x].

Therefore, Z[x] is the only cancellation ideal of Z[x] belonging to ideal I.

Example. Let J be a cancellation ideal belonging to ideal 〈2, x3〉. We claim that

J = Z[x].

As in the previous example, there exists a polynomial a + bx + cx2 ∈ J � I

where a, b, c ∈ Z. Since a + bx + cx2 /∈ I, at least one of integers a, b, c must be

odd.

Case 1: a is even.

Then bx + cx2 ∈ J � I and one of b or c must be odd. Since 2 ∈ J, we may

assume that b, c ∈ {0, 1}
Subcase 1.1: b = 1 and c = 0.

Then x ∈ J. Since 〈2, x〉 is a maximal ideal which is not a cancellation ideal,

〈2, x〉 � J. Thus J = Z[x].
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Subcase 1.2: b = 0 and c = 1.

Then x2 ∈ J, so J is a cancellation ideal belonging to the ideal 〈2, x2〉. By the

previous example, J = Z[x].

Subcase 1.3: b = c = 1

We have x + x2, x3 ∈ J. Since

〈x + x2, x3〉 = 〈x + x2, x3 − (x + x2)x〉

= 〈x + x2, x2〉

= 〈(x + x2)− x2, x2〉

= 〈x, x2〉

= 〈x〉,

x ∈ J.

Thus 〈2, x〉 � J, so J = Z[x].

Case 2: a is odd.

We may assume that a = 1 and b, c ∈ {0, 1}.
Subcase 2.1: b = c = 0.

Thus 1 = a + bx + cx2 ∈ J, so J = Z[x].

Subcase 2.2: b = 0 and c = 1.

We have 1 + x2, x3 ∈ J. Since

〈1 + x2, x3〉 = 〈1 + x2, x3 − (1 + x2)x〉

= 〈1 + x2, x〉,

x ∈ J. Then 〈2, x〉 � J and we get J = Z[x].

Subcase 2.3: b = 1 and c = 0.
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We have 1 + x ∈ J. Since 〈1 + x, x3〉 ⊆ J and

〈1 + x, x3〉 = 〈1 + x, x3 − (1 + x)x2〉

= 〈1 + x, x2〉,

x2 ∈ J. Thus 〈2, x2〉 ⊆ J , and we have J = Z[x] by the previous example.

Subcase 2.4: b = c = 1.

We have 1 + x + x2 ∈ J. Since

〈1 + x + x2, x3〉 = 〈1 + x + x2, x3 − (1 + x + x2)x〉

= 〈1 + x + x2, x + x2〉,

= 〈(1 + x + x2)− (x + x2), x + x2〉

= 〈1, x + x2〉

= Z[x],

J = Z[x].

Therefore, Z[x] is the only cancellation ideal of Z[x] belonging to I.

Theorem 3.2. Let m ∈ N and J a cancellation ideal belonging to the ideal 〈2, xm〉.
Then J = Z[x].

Proof. We will prove the theorem by induction on m. Assume that J is a cancel-

lation ideal belonging to ideal 〈2, xm〉.
The case of m = 1 is obtained from the fact that 〈2, x〉 is a maximal ideal which

is not a cancellation ideal of Z[x]. Next, let m ≥ 2. Suppose that the statement is

true for 〈2, xl〉 for all l ∈ {1, 2, ...,m− 1}.
Let I = 〈2, xm〉. Since I is not a cancellation ideal of Z[x], I � J. Then there

exists f(x) ∈ J � I, say f(x) =
n∑

i=0

aix
i , where ai ∈ Z for all i ∈ {0, 1, . . . , n}.

If n ≥ m, then let g(x) = am + am+1x + ... + anx
n−m.

Thus h(x) := f(x)− xmg(x) ∈ J � I and deg h(x) < m.
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If n < m , then let h(x) := f(x).

Assume that h(x) = bm−1x
m−1 + bm−2x

m−2 + ... + b1x + b0 , bj ∈ Z for all

j ∈ {0, 1, ...,m− 1}.
Since 2 ∈ J, we may assume that bj ∈ {0, 1} for all

j ∈ {0, 1, ...,m− 1}. Clearly, there exists p ∈ {0, 1, ...,m− 1} such that bp �= 0.

Let s = the number of nonzero coefficients of h(x).

Case 1: s = m.

Then xm − 1 = (x− 1)(xm−1 + xm−2 + ... + x + 1) = (x− 1)h(x) ∈ J.

Since xm − 1 ∈ J and xm ∈ J, 1 = xm − (xm − 1) ∈ J. Then J = Z[x].

Case 2: s = 1.

That is, there exists k ∈ {0, 1, ...,m − 1} such that bk = 1 and bj = 0 for all

j ∈ {0, 1, ...,m− 1}� {k}.
If k = 0 , then 1 = h(x) ∈ J, so J = Z[x].

If 1 ≤ k ≤ m− 1 , h(x) = bkx
k = xk, so 〈2, xk〉 ⊆ J. By induction hypothesis,

J = Z[x].

Case 3: 1 < s < m.

Let r = deg h(x). Since xm ∈ J and xm−rh(x) ∈ J, h1(x) := xm−rh(x)− xm ∈ J.

Let d1 be the number of nonzero terms of h1(x).

If d1 = 1 , then h1(x) = xi1 for some i1 ∈ {1, ...,m − 1} . Thus 〈2, xi1〉 ⊆ J, so

J = Z[x], by induction hypothesis.

If d1 > 1, let n1 = deg h1(x). Since xm ∈ J and xm−n1h1(x) ∈ J, h2(x) :=

xm−n1h1(x)− xm ∈ J. Thus the number of nonzero terms of h2(x) is less than the

number of nonzero terms of h1(x).

Let d2 be the number of nonzero terms of h2(x).

If d2 = 1 , then h2(x) = xi2 for some i2 ∈ {1, ...,m − 1}. Thus 〈2, xi2〉 ⊆ J , so

J = Z[x] , by induction hypothesis.
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Continue this process, there exists t ∈ N such that ht(x) = xit ∈ J for some

it ∈ {1, ...,m− 1} . Thus 〈2, xit〉 ⊆ J , so J = Z[x], by induction hypothesis.

Therefore, J = Z[x] for all m ∈ N.
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