Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/35858
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEakalak Khan-
dc.contributor.advisorTawan Limpiyakorn-
dc.contributor.authorChaiwat Rongsayamanont-
dc.contributor.otherChulalongkorn University. Graduate School-
dc.date.accessioned2013-09-09T07:10:14Z-
dc.date.available2013-09-09T07:10:14Z-
dc.date.issued2010-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/35858-
dc.descriptionThesis (Ph.D.)--Chulalongkorn University, 2010en_US
dc.description.abstractShortcut biological nitrogen removal (SBNR) is a cost effective innovative process to treat low carbon or/and high nitrogen wastewater. Partial nitrification (PN) is believed to be the rate-limiting step of the overall SBNR and can be achieved by the oxidation of ammonia (NH₃) to nitrite (NO₂⁻) (or nitritation) without further oxidation of NO₂- to nitrate (or nitratation). The most two common strategies to promote activity of ammonia oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) under normal temperature condition are to maintain oxygen (O₂)-limiting or/and free ammonia (FA)-accumulating conditions in the systems. The study was divided into three main tasks. Task 1 is to examine whether and how the two most common strategies can be applied for entrapped cell system. Results from batch nitritation and nitratation kinetic study implied that FA inhibition or O₂ limitation can be used to maintain PN in entrapped cell but might not be effective strategy. Task 2 is to find out the strategies to achieve PN in continuous-flow entrapped cell nitritation reactors. This part of experiment was sectioned into two subtasks, the first subtask is to study the effect of different entrapped inoculums on accelerating PN during start-up periods. The results showed that high NOB entrapped cells inoculums, which has different ability to nitrifying and partial nitrifying, can achieve the stable PN at comparable level and timeframe (65 – 66% nitritation after 30 - 42 days of the start-up). This indicated that a step for preparing sludge which is readily for nitrifying or partial nitrifying, was not needed for entrapped cells. The control factor is expected to be the levels of O₂ in the gel beads under the presence of high NH₃ concentration. Therefore, cell entrapment can be an effective way to accelerate partial nitrification. The second subtask is to study effect of bulk dissolved oxygen (DO) or/and FA concentrations on PN during the long term operation period. Higher NO₂⁻ accumulation was found at the lower concentration of bulk DO and the higher concentration of FA. Because the accumulation of NO₂⁻ depended on both concentrations of bulk DO and FA, a relative ratio of both parameters (ratio of DO/effluent FA) rather than either one is recommended to use as a control parameter for PN. Task 3 is to study effect of heterotrophs on the activity of AOB in entrapped cell under condition simulated the shock load of a model toxic chemical, p-nitrophenol (PNP). Two sequentially tests, 1st and 2nd batch test, were used to investigate the PNP degradation and NH₃ oxidation under condition simulated the 1st and 2nd time of PNP shock load in batch reactor with nitritation entrapped cells which have a different amounts of heterotrophs in the gel beads. Results from task 3 (and a part of the results for suspended cells from task 1) implied that an inability to recover the AOB activity after experience with the toxic PNP shock can be partly prevented in the entrapped cell based-rather than the suspended cell based-reactor as a results from reducing the penetration of PNP by the outer layer of heterotrophs and subsequently reduce toxic sensitivity of AOB in the deeper part of the biofilm-like layer structure in the peripheral of the gel bead.en_US
dc.description.abstractalternativeการกำจัดไนโตรเจนทางชีวภาพแนวใหม่ที่ใช้ไนไตรท์เป็นตัวรับอิเล็กตรอนแทนการใช้ไนเตรทหรือ Shortcut Biological Nitrogen Removal สามารถบำบัดน้ำเสียที่มีปริมาณอินทรีย์คาร์บอนต่ำและ/หรือ มีปริมาณแอมโมเนียสูงได้อย่างประหยัดและมีประสิทธิภาพ หลักการของการกำจัดคือการสนับสนุนให้เกิดการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ ซึ่งหมายถึงการสนับสนุนให้เกิดการออกซิไดซ์แอมโมเนียเป็นไนไตรท์หรือการไนไตรเตชั่นโดยแอมโมเนียออกซิไดซิ่งแบคทีเรียหรือเอโอบี แทนการสนับสนุนให้เกิดการออกซิไดซ์ไนไตรท์เป็นไนเตรทหรือการไนเตรเตชั่นโดยไนไตรท์ออกซิไดซิ่งแบคทีเรียหรือเอ็นโอบี การศึกษาครั้งนี้ประยุกต์ใช้เซลล์ที่ตรึงด้วยวิธี phosphorylated-polyvinly alcohol เพื่อยับยั้งแอคทิวิตีของเอ็นโอบีภายใต้สองยุทธศาสตร์พื้นฐาน คือการจำกัดปริมาณออกซิเจนละลายและสนับสนุนการสะสมของระดับแอมโมเนียอิสระในถังปฏิกริยา ผลการศึกษาจลนศาสตร์ของกระบวนการไนไตรเตชั่นและไนเตรเตชั่นในถังปฏิกริยาแบบแบทช์พบว่าทั้งสองยุทธศาสตร์สามารถถูกใช้เพื่อสร้างกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ได้แต่การใช้เพียงยุทธศาสตร์เดียวอาจไม่สามารถรักษาสภาพของกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ให้คงอยู่ได้อย่างมีประสิทธิภาพ สำหรับผลการศึกษาปัจจัยของหัวเชื้อเซลล์ตรึงที่แตกต่างกันต่อการเร่งให้เกิดกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ในระหว่างการเริ่มเดินระบบในถังปฏิกริยาเซลล์ตรึงแบบไหลต่อเนื่อง พบว่าหัวเชื้อที่มีปริมาณเอ็นโอบีสูงและมีความสามารถในการสร้างกระบวนการไนตริฟิเคชั่นอย่างสมบูรณ์และไม่สมบูรณ์ที่แตกต่างกันจะสามารถสร้างกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ได้ในระดับที่ไม่แตกต่างกันและภายในระยะเวลาใกล้เคียงกัน (65 – 66% ของแอมโมเนียที่ถูกกำจัดถูกสะสมในรูปไนไตรท์ ภายใน 30 – 42 วันของการเริ่มเดินระบบ) ซึ่งน่าจะเป็นผลจากปัจจัยของระดับออกซิเจนภายในเซลล์ตรึงมีผลต่อประสิทธิภาพของกระบวนการฯ มากกว่าปัจจัยของหัวเชื้อ สำหรับผลการศึกษาปัจจัยของระดับออกซิเจนละลายและ/หรือระดับแอมโมเนียอิสระต่อระดับของการไนตริฟิเคชั่นอย่างไม่สมบูรณ์ในระหว่างการเดินระบบระยะยาวของถังปฏิกริยา ฯ พบว่าระดับของการไนตริฟิเคชั่นอย่างไม่สมบูรณ์จะสูงกว่าภายใต้สภาวะที่ออกซิเจนละลายต่ำกว่า 2 มก./ล. และระดับแอมโมเนียอิสระสูงกว่า 0.6 – 0.9 มก./ล. นอกจากนี้พบว่าระดับของการยับยั้งกระบวนการไนเตรเตชั่นด้วยแอมโมเนียอิสระจะขึ้นกับระดับของออกซิเจนละลายในถังปฏิกริยา เป็นผลทำให้อัตราส่วนของออกซิเจนละลายต่อแอมโมเนียอิสระคือพารามิเตอร์ที่เหมาะสมในการควบคุมระดับของการไนตริฟิเคชั่นอย่างไม่สมบูรณ์มากกว่าการใช้ระดับออกซิเจนละลายหรือระดับแอมโมเนียอิสระแต่เพียงอย่างเดียว สำหรับผลการศึกษาปัจจัยของเฮเทอโรทรอฟต่อแอคทิวิตีของเอโอบีในเซลล์ตรึงภายใต้สภาวะของการรับภาระบรรทุกสูงของสารพิษต้นแบบพาราไนโตรฟีนอลอย่างทันทีทันใด (shock load) พบว่าการลดลงของแอคทิวิตีของเอโอบีที่อาจนำไปสู่ความล้มเหลวของกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์สามารถป้องกันได้ด้วยการใช้เซลล์ตรึงแทนการใช้เซลล์แขวนลอยซึ่งอาจเป็นผลเนื่องจากการลดการแพร่ของสารพาราไนโตรฟีนอลด้วยชั้นของเซลล์เฮเทอโรทรอฟที่อยู่บริเวณขอบนอกของเซลล์ตรึง จึงทำให้ความอ่อนไหวต่อสารพิษของเอโอบีที่อยู่บริเวณชั้นที่ลึกกว่าลดลงen_US
dc.language.isoenen_US
dc.publisherChulalongkorn Universityen_US
dc.relation.urihttp://doi.org/10.14457/CU.the.2010.831-
dc.rightsChulalongkorn Universityen_US
dc.subjectSewage -- Purification -- Nitrogen removalen_US
dc.subjectNitrificationen_US
dc.subjectน้ำเสีย -- การบำบัด -- การกำจัดไนโตรเจนen_US
dc.subjectไนตริฟิเคชันen_US
dc.subjectปริญญาดุษฎีบัณฑิตen_US
dc.titleStrategies for achieving partial nitrification by immobilized cellsen_US
dc.title.alternativeกลยุทธ์ในการใช้เซลล์ตรึงเพื่อสร้างกระบวนการไนตริฟิเคชั่นอย่างไม่สมบูรณ์en_US
dc.typeThesisen_US
dc.degree.nameDoctor of Philosophyen_US
dc.degree.levelDoctoral Degreeen_US
dc.degree.disciplineEnvironmental Managementen_US
dc.degree.grantorChulalongkorn Universityen_US
dc.email.advisorEakalak.Khan@ndsu.edu-
dc.email.advisortawan.l@chula.ac.th-
dc.identifier.DOI10.14457/CU.the.2010.831-
Appears in Collections:Grad - Theses

Files in This Item:
File Description SizeFormat 
chaiwat_ro.pdf3.51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.