Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/55593
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorพีรพล เวทีกูล-
dc.contributor.advisorกุลสวัสดิ์ จิตรขจรวานิช-
dc.contributor.advisorสยาม ลววิโรจน์วงศ์-
dc.contributor.authorธีรพงศ์ ปานบุญยืน-
dc.contributor.otherจุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์-
dc.date.accessioned2017-10-30T04:40:49Z-
dc.date.available2017-10-30T04:40:49Z-
dc.date.issued2559-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/55593-
dc.descriptionวิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2559-
dc.description.abstractการจำแนกถนนออกจากภาพถ่ายระยะไกล ได้แก่ ภาพถ่ายทางอากาศ และภาพถ่ายดาวเทียม นำมาใช้งานได้หลากหลายรูปแบบโปรแกรมประยุกต์ โดยเฉพาะอย่างยิ่งกับการสกัดถนนซึ่งจัดเป็นชั้นหนึ่งในการเก็บฐานข้อมูลเชิงพื้นที่ ปัจจุบันการเรียนรู้เชิงลึกถูกนำมาใช้ในการสกัดถนนออกจากภาพถ่ายระยะไกล แต่ยังมีข้อจำกัดเรื่องค่าความถูกต้องในการจำแนกถนนซึ่งยังไม่มากพอแก่การนำไปใช้งานเชิงโปรแกรมประยุกต์ วิทยานิพนธ์นี้เสนอวิธีการปรับปรุงโมเดลและเพิ่มประสิทธิภาพการเรียนรู้เชิงลึกเพื่อสกัดถนนออกจากภาพถ่ายระยะไกลร่วมกับการประยุกต์ใช้ตัวชี้วัดภูมิทัศน์และคอนดิชันนอลแรนดอมฟิลด์ส ผู้วิจัยเลือกใช้ฟังก์ชั่นกระตุ้นตัวใหม่ที่เรียกว่า หน่วยเอกซ์โพเนนเชียลเชิงเส้น เพื่อเพิ่มจำนวนผลลัพธ์ของวัตถุที่เป็นถนนให้มากขึ้น จากนั้นลดจำนวนวัตถุที่ไม่ใช่ถนนโดยใช้ตัวชี้วัดภูมิทัศน์เข้ามาตรวจสอบ สุดท้ายเพิ่มความคมและความถูกต้องให้แก่วัตถุที่เป็นถนนมากขึ้นด้วยวิธีคอนดิชันนอลแรนดอมฟิลด์ส ชุดข้อมูลที่ใช้ในงานวิจัยนี้ คือ ชุดข้อมูลภาพถ่ายทางอากาศ (ชุดข้อมูลถนนรัฐแมสซาชูเซตส์) และชุดข้อมูลภาพถ่ายดาวเทียมจากดาวเทียมไทยโชตหรือธีออส ผลการทดลองด้วยวิธีที่นำเสนอแสดงให้เห็นว่าประสิทธิภาพของการจำแนกที่ได้ดีกว่าวิธีการมาตรฐาน (เซกเน็ต) ทั้งค่า Precision Recall และ F1-
dc.description.abstractalternativeRoad segmentation on remote sensing images: aerial (or very high resolution) images and satellite (or high resolution) images, has been employed to various application domains, particularly road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts in applying deep convolutional neural network (DCNN) to extract roads from remotely-sensed images have been made; nevertheless, the accuracy is still restricted. This thesis presents an enhanced DCNN framework specifically tailored for road extraction on remotely-sensed images by applying landscape metrics (LMs) and conditional random fields (CRFs). To improve DCNN, a modern activation function; called exponential linear unit (ELU), is engaged in our architecture resulting in a higher number of and yet more accurate extracted roads. To further alleviate falsely classified road objects, a solution based on an adoption of LMs is proposed. Lastly, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as Thaichote/THEOS satellite imagery data sets. The results demonstrated that our proposed framework outperformed SegNet, the state-of-the-art object segmentation technique on any kinds of remotely-sensed imagery, in most of the cases in terms of precision, recall, and F1 scores.-
dc.language.isoth-
dc.publisherจุฬาลงกรณ์มหาวิทยาลัย-
dc.relation.urihttp://doi.org/10.58837/CHULA.THE.2016.980-
dc.rightsจุฬาลงกรณ์มหาวิทยาลัย-
dc.subjectถนน -- การวิเคราะห์ข้อมูลระยะไกล-
dc.subjectการวิเคราะห์ข้อมูลภาพระยะไกล-
dc.subjectRoads -- Remote-sensing-
dc.subjectRemote-sensing images-
dc.titleการแยกส่วนถนนทางความหมายออกจากภาพถ่ายระยะไกลโดยใช้โครงข่ายประสาทแบบคอนโวลูชันนอลเชิงลึกและตัวชี้วัดภูมิทัศน์-
dc.title.alternativeSemantic Road Segmentation on Remotely-Sensed Images Using Deep Convolutional Neural Networks and Landscape Metrics-
dc.typeThesis-
dc.degree.nameวิศวกรรมศาสตรมหาบัณฑิต-
dc.degree.levelปริญญาโท-
dc.degree.disciplineวิศวกรรมคอมพิวเตอร์-
dc.degree.grantorจุฬาลงกรณ์มหาวิทยาลัย-
dc.email.advisorPeerapon.V@chula.ac.th,Peerapon.V@chula.ac.th-
dc.email.advisorkulsawasdj@hotmail.com-
dc.email.advisorsiam@gistda.or.th-
dc.identifier.DOI10.58837/CHULA.THE.2016.980-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
5870406821.pdf8.55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.