Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/61689
Title: | Invariance properties of dependence measures |
Other Titles: | สมบัติไม่แปรเปลี่ยนของตัววัดการขึ้นต่อกัน |
Authors: | Atiwat Kitvanitphasu |
Advisors: | Songkiat Sumetkijakan |
Other author: | Chulalongkorn University. Faculty of Science |
Advisor's Email: | Songkiat.S@Chula.ac.th |
Subjects: | Copulas (Mathematical statistics) Probabilities Measure theory คอปูลา (คณิตศาสตร์สถิติ) ความน่าจะเป็น ทฤษฎีการวัด |
Issue Date: | 2015 |
Publisher: | Chulalongkorn University |
Abstract: | Li gave a generalization of non-symmetric copula-based dependence measure, such as the Trutschnig\'s measure of dependence. A precise sufficient condition which makes Li\'s generalization a non-symmetric measure of dependence is given and proved rigorously. Supported by its non-symmetric dependence measure properties, we symmetrize the Li\'s non-symmetric measure of dependence and investigate its properties. Specifically, we analyze the key properties of dependence measures including well-defined property, abilities to detect independence and dependence at the two extreme values $0,1$ respectively, and invariance under the certain types of transformations. In particular, we find, via several examples, that a dependence measure possessing an ability to detect a larger class of dependences tends to be invariant under an accordingly large class of transformations. The probabilistic version of maximal information coefficient (MIC) is also proved to be a dependence measure. Lastly, we show that there does not exist a dependence measure which is both invariant under strictly monotonic transformations and able to catch complete dependence. |
Other Abstract: | ลีให้การวางนัยทั่วไปของตัววัดการขึ้นต่อกันชนิดไม่สมมาตรและมีพื้นจากคอปูลา ซึ่งรวมถึงมาตรวัดการขึ้นต่อกันของทรัตช์นิกด้วย เงื่อนไขพอเพียงที่ชัดเจนซึ่งทำให้มาตรวัดการขึ้นต่อกันของลีกลายเป็นมาตรวัดการขึ้นต่อกันอย่างถูกต้องได้ถูกให้ไว้และถูกพิสูจน์อย่างเคร่งครัด โดยข้อสนับสนุนของสมบัติของมาตรวัดการขึ้นต่อกันชนิดไม่สมมาตรของลี เราจึงทำการสมมาตรตัววัดไม่สมมาตรของลีพร้อมทั้งศึกษาสมบัติของมัน โดยเฉพาะอย่างยิ่ง เรายังวิเคราะห์สมบัติสำคัญของตัววัดการขึ้นต่อกัน ได้แก่ ความแจ่มชัด, ความสามารถในการตรวจจับความเป็นอิสระต่อกันหรือการขึ้นต่อกันด้วยค่าสุดขีด $0,1$ ตามลำดับ และการไม่แปรเปลี่ยนภายใต้ประเภทของการแปลง โดยกล่าวอย่างเฉพาะเจาะจง เราพบผ่านตัวอย่างหลายตัวอย่างว่าตัววัดการขึ้นต่อกันที่สามารถตรวจวัดการขึ้นต่อกันที่มีขนาดใหญ่กว่าจะมีแนวโน้มที่ไม่แปรเปลี่ยนภายใต้การแปลงชนิดที่กว้าง สัมประสิทธิ์ข้อมูลสูงสุดฉบับความน่าจะเป็น (MIC) ได้ถูกพิสูจน์ว่าเป็นตัววัดการขึ้นต่อกัน ท้ายที่สุด เราแสดงว่าไม่มีตัววัดการขึ้นต่อกันที่ทั้งไม่แปรเปลี่ยนต่อการแปลงทางเดียวโดยแท้และสามารถวัดการขึ้นต่อกันอย่างสมบูรณ์ได้ |
Description: | Thesis (M.Sc.)--Chulalongkorn University, 2015 |
Degree Name: | Master of Science |
Degree Level: | Master's Degree |
Degree Discipline: | Mathematics |
URI: | http://cuir.car.chula.ac.th/handle/123456789/61689 |
URI: | http://doi.org/10.14457/CU.the.2015.369 |
metadata.dc.identifier.DOI: | 10.14457/CU.the.2015.369 |
Type: | Thesis |
Appears in Collections: | Sci - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
5672130723.pdf | 541.72 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.