Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/65399
Title: | Generalization of an elliptic radial basis function neural network |
Other Titles: | นัยทั่วไปของโครงข่ายประสาทเทียมชนิดฟังก์ชันพื้นฐานแนวรัศมีแบบวงรี |
Authors: | Anocha Rugchatjaroen |
Advisors: | Chidchanok Lursinsap |
Other author: | Chulalongkorn University. Faculty of Science |
Advisor's Email: | Chidchanok.L@Chula.ac.th |
Subjects: | Neural networks (Computer science) นิวรัลเน็ตเวิร์ค (วิทยาการคอมพิวเตอร์) |
Issue Date: | 2002 |
Publisher: | Chulalongkorn University |
Abstract: | Radial Basis Function Neural Network (RBF NN) is one of the most considered neural networks with various data classification and function approximation applications. Here, we concern only the data classification applications. The classification correctness of an RBF network is defined by the data and the radius of the radial basis function. To cover a class of data, the data must be covered by the same neurons as much as possible without any data from the other classes. However, the correct classification of the training and testing data may not mean that the network can achieve its generalization. To overcome this, some statistical method for estimating the density distribution of the data must be applied to correctly adjust the center and radius of the RBF neuron. Bootstrap technique is considered and applied to estimate the center and size of each RBF neuron in this thesis. The experimental results show that this technique significantly increase the generalization. |
Other Abstract: | โครงข่ายประสาทเทียมชนิดฟังก์ชันพื้นฐานแนวรัศมีเป็นโครงข่ายประสาทเทียมที่ถูกนำมาประยุกต์ใช้อย่างหลากหลายในด้านการแบ่งกลุ่มข้อมูลและการประมาณค่าของฟังก์ชัน ในที่นี้เราพิจารณาเฉพาะปัญหาด้านการแบ่งกลุ่มข้อมูล ความถูกต้องในการแบ่งกลุ่มของโครงข่ายประสาทเทียมชนิดฟังก์ชันพื้นฐานแนวรัศมีนั้นถูกกำหนดโดยรัศมีของฟังก์ชันพื้นฐานแนวรัศมี เพื่อให้ครอบคลุมข้อมูลที่อยู่ในกลุ่มเดียวกัน ข้อมูลทั้งหมดจะต้องถูกคลุมโดยใช้ประสาทเทียมกลุ่มเดียวกันให้ที่น้อยที่สุดและต้องเลี่ยงไม่ให้กลุ่มข้อมูลอื่นเข้ามาปนอยู่ด้วย อย่างไรก็ตามการแบ่งกลุ่มที่ถูกต้องของการเรียนรู้และการทดสอบข้อมูลไม่ได้หมายความว่าโครงข่ายนั้นสามารถรองรับนัยทั่วไปของข้อมูลได้ เพื่อแก้ไขปัญหานี้กระบวนการทางสถิติบางกระบวนการที่ทำงานเกี่ยวกับการประมาณค่าความหนาแน่นของการกระจายของข้อมูลต้องถูกพัฒนาเพื่อที่จะปรับศูนย์กลางและรัศมีของโครงข่ายประสาทเทียมชนิดฟังก์ชันพื้นฐานแนวรัศมีแบบวงรีอย่างถูกต้อง กระบวนการบูตสแทรพถูกนำมาพิจารณาและประยุกต์ใช้ไนการประมาณค่าของศูนย์กลางและขนาดของ เซลล์ประสาทเทียมชนิดฟังก์ชันพื้นฐานแนวรัศมีในแต่ละตัว ผลการทดลองแสดงว่ากระบวนการนี้ได้แสดงถึงการเพิ่มขึ้นของนัยทั่วไปของโครงข่ายประสาทเทียม |
Description: | Thesis (M.Sc.)--Chulalongkorn University, 2002 |
Degree Name: | Master of Science |
Degree Level: | Master's Degree |
Degree Discipline: | Computational Science |
URI: | http://cuir.car.chula.ac.th/handle/123456789/65399 |
ISSN: | 9741709064 |
Type: | Thesis |
Appears in Collections: | Sci - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Anocha_ru_front_p.pdf | Cover Abstract and title of Contents | 747.68 kB | Adobe PDF | View/Open |
Anocha_ru_ch1_p.pdf | Chapter 1 | 654.71 kB | Adobe PDF | View/Open |
Anocha_ru_ch2_p.pdf | Chapter 2 | 920.16 kB | Adobe PDF | View/Open |
Anocha_ru_ch3_p.pdf | Chapter 3 | 966.78 kB | Adobe PDF | View/Open |
Anocha_ru_ch4_p.pdf | Chapter 4 | 1.23 MB | Adobe PDF | View/Open |
Anocha_ru_ch5_p.pdf | Chapter 5 | 605 kB | Adobe PDF | View/Open |
Anocha_ru_back_p.pdf | References and Appendix | 622.52 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.