Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/67572
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | มานพ วราภักดิ์ | - |
dc.contributor.author | ยุพาภรณ์ อารีพงษ์ | - |
dc.contributor.other | จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยคาสตร์และการบัญชี | - |
dc.date.accessioned | 2020-08-18T07:04:03Z | - |
dc.date.available | 2020-08-18T07:04:03Z | - |
dc.date.issued | 2542 | - |
dc.identifier.isbn | 9743337156 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/67572 | - |
dc.description | วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2542 | - |
dc.description.abstract | การวิจัยครั้งนี้มีจุดประสงค์เพื่อการศึกษาวิธีการพยากรณ์ที่เหมาะสมสำหรับการพยากรณ์ ผลผลิต ราคาที่เกษตรกรขายได้ มูลค่าการส่งออก และปริมาณการส่งออกของผักและผลไม้ทั้ง 5 ชนิดได้แก่ ข้าวโพดฝักอ่อน ข้าวโพดหวาน มะม่วง มะพร้าวอ่อน และสับประรด ซึ่งจำแนกได้ทั้งหมด 20 ตัวแบบด้วยกัน โดยศึกษาเปรียบเทียบวิธีพยากรณ์ 5 วิธี และไค้นำเอาเทคนิค รวมทั้งทฤษฎี ทางสถิติมาช่วยในการวิเคราะห์ข้อมูลประกอบด้วยวิธีการวิเคราะห์การถดถอย วิธีการวิเคราะห์อนุกรมเวลาแบบคลาสสิค วิธีการปรับให้เรียบแบบเลขชี้กำลัง วิธีบอกซ์และเจนกินส์ และวิธีการพยากรณ์ของสำนักงานเศรษฐกิจการเกษตรใช้อยู่ปัจจุบัน ว่าวิธีใดเหมาะสมกับข้อมูลที่สุด ซึ่งจะพิจารณาจากค่าเฉลี่ยต่ำสดของเปอร์เซ็นต์ความคาดเคลื่อนสัมบูรณ์ โดยในการศึกษาครั้งนี้ข้อมูลที่ใช้เป็นข้อมูลทุติยภูมิระหว่างปี 2525-2541 ผลการศึกษาเปรียบเทียบตัวแบบพยากรณ์ที่ได้จากวิธีการพยากรณ์ทั้ง 5 วิธี พบว่าตัวแบบสำหรับพยากรณ์โดยส่วนใหญ่เหมาะกับการพยากรณ์โดยวิธีบอกซ์และเจนกินส์ ได้ตัวแบบพยากรณ์ดังต่อไปนี้ 1.ตัวแบบพยากรณ์สำหรับผลผลิตสินค้าเกษตรกรณี: ข้าวโพดฝึกอ่อน คือ ตัวแบบที่ได้จากวิธีการวิเคราะห์การถดถอย 2.ตัวแบบพยากรณ์สำหรับราคาสินค้าเกษตรกรณี : ข้าวโพดฝึกอ่อน คือ ตัวแบบ ARIMAC 1,1,0)(1,1,0)12 3.ตัวแบบพยากรณ์สำหรับมูลค่าการส่งออกสินค้าเกษตร กรณี : ข้าวโพดฝึกอ่อน คือ ตัวแบบ ARIMA(0,1,1) 4.ตัวแบบพบหารุณ์สำหรับปริมาณการส่งออกสินค้าเกษตร กรณี : ข้าวโพดฝึกอ่อน คือ ตัวแบบ ARIMA(0,1,1) 5.ตัวแบบพยากรณ์สำหรับผลผลิตสินค้าเกษตร กรณี : ข้าวโพดหวาน คือ ตัวแบบที่ไค้จากวิธีการ วิเคราะห์การถดถอย 6.ตัวแบบพยากรณ์สำหรับราคาสินค้าเกษตร กรณี : ข้าวโพดหวาน คือ ตัวแบบที่ได้จากวิธีการปรับให้เรียบสองครั้งแบบเลขชี้กำลัง 7.ตัวแบบพยากรณ์สำหรับมูลค่าการส่งออกสินค้าเกษตรกรณี : ข้าวโพดหวาน คือ ตัวแบบ ARIMA(0.1,1 ) 8.ตัวแบบพยากรณ์สำหรับปริมาณการส่งออกสินค้าเกษตร กรณี : ข้าวโพดหวาน คือ ตัวแบบ ARIMA(1,1,1)(0,1,1) 12 9.ตัวแบบพยากรณ์สำหรับผลผลิตสินค้าเกษตร กรณี : มะม่วง คือ ตัวแบบที่ได้จากวิธีการปรับให้เรียบสองครั้งแบบเลขชี้กำลัง 10.ตัวแบบพยากรณ์สำหรับราคาสินค้าเกษตร กรณี : มะม่วง คือ ตัวแบบที่ได้จากวิธีการวิเคราะห์การถดถอย 11.ตัวแบบพยากรณ์สำหรับมูลค่าการส่งออกสินค้าเกษตรกรณี : มะม่วงคือตัวแบบ ARIMA(0,1,1) (0,1,1)12 12.ตัวแบบพยากรณ์สำหรับปริมาณการส่งออกสินค้าเกษตรกรณี : มะม่วง คือ ตัวแบบ ARIMA(1,1,1)(0,1,0)12 13.ตัวแบบพยากรณ์สำหรับผลผลิตสินค้าเกษตร กรณี : มะพร้าวอ่อน คือ ตัวแบบที่ได้จากวิธีการวิเคราะห์การถดถอย 14.ตัวแบบพยากรณ์สำหรับราคาสินค้าเกษตร กรณี : มะพร้าวอ่อน คือ ตัวแบบ ARIMA(1,1,0)(1,1,0)12 15.ตัวแบบพยากรณ์สำหรับมูลค่าการส่งออกสินค้าเกษตร กรณี : มะพร้าวอ่อน คือ ตัวแบบ ARIMA(1,1,0)(1,1,0)12 16.ตัวแบบพยากรณ์สำหรับปริมาณการส่งออกสินค้าเกษตร กรณี : มะพร้าวอ่อน คือ ตัวแบบ ARIMA(2,1,0)(1,1,0)12 17. ตัวแบบพยากรณ์สำหรับผลผลิตสินค้าเกษตร กรณี : สับประรด คือ ตัวแบบที่ได้จากวิธีการปรับให้เรียบสองครั้งแบบเลขชี้กำลัง 18.ตัวแบบพยากรณ์สำหรับราคาสินค้าเกษตร กรณี : สับประรด คือ ตัวแบบ ARIMA(1,1,0)(0,1,0)12 19.ตัวแบบพยากรณ์สำหรับมูลค่าการส่งออกสินค้าเกษตร กรณี : สับประรด คือ ตัวแบบ ARIM AG,(1,1,1 ) 20.ตัวแบบพยากรณ์สำหรับปริมาณการส่งออกสินค้าเกษตร กรณี : สับประรด คือ ตัวแบบ ARIMA(0,1,1) (0,1,1)12 | - |
dc.description.abstractalternative | The purpose of this research was to study the proper methods to forecast the products and farm prices as well as the report values and quantities of 5 vegetables and fruits: young corn, sweet corn, mangoes, coconuts, and pineapples which, classified to 20 models. Data analysis of this research used Statistical Techniques and Statistical Theories consisted of Regression Analysis, Classical Decomposition Method, Exponential Smoothing Method, Box-Jenkins Method and Officer of Agricultural Economics Method. The research was to select suitable models, the Mean Absolute Percentage Errors (MAPEs) of forecast values were compared. This research used the secondary data during 1982-1998. The Results of forecasting methods by Box-Jenkins is almost suitable method forecasting model. The forecasting models are as follows: 1.Model of forecasting for product of young corn is Regression Analysis. 2.Model of forecasting for price of young corn is ARIMA (1,1,0) (1.1,0)12 3.Mode] of forecasting for value of young corn is ARIMA (0,1,1) 4.Model of forecasting for quantity young corn is ARIMA (0,1,1) 5.Model of forecasting for product of sweet corn is Regression Analysis. 6.Model of forecasting for price of sweet corn is Double Exponential Smoothing Method. 7.Model of forecasting for value sweet corn is ARIMA (0.1,1) 8.Model of forecasting for quantity of sweet corn is ARIMA (1,1.1X0.1,1)2 9.Model of forecasting for product of mangoes is Double Exponential Smoothing Method. 10.Model of forecasting for price of mangoes is Regression Analysis. 11.Model of forecasting for value of mangoes is ARIMA (0,1,1) (0,1,1)12 12.Model of forecasting for quantity of mangoes is ARIMA (1,1,1) (0,1,0)12 13.Model of forecasting for product of coconuts is Regression Analysis. 14.Model of forecasting for price of coconuts is ARIMA (1,1,0) (1,1,0)12 15.Model of forecasting for value of coconuts is ARIMA (1,1,0) (1,1.0)12 16.Model of forecasting for quantity of coconuts is ARIMA (2,1,0) (1,1,0)12 17.Model of forecasting for product of pineapples is Double Exponential Smoothing Method. 18.Model of forecasting for price of pineapples is ARIMA (1,1,0) (0,1,0)12 19.Model of forecasting for value of pineapples is ARIMA (1,1,1) 20.Model of forecasting for quality of pineapples is ARIMA (0.1,1) (0,1,1)12 | - |
dc.language.iso | th | - |
dc.publisher | จุฬาลงกรณ์มหาวิทยาลัย | - |
dc.rights | จุฬาลงกรณ์มหาวิทยาลัย | - |
dc.subject | พยากรณ์ | - |
dc.subject | สินค้าเกษตร | - |
dc.subject | ข้าวโพดฝักอ่อน | - |
dc.subject | ข้าวโพดหวาน | - |
dc.subject | มะปราง | - |
dc.subject | มะพร้าวอ่อน | - |
dc.subject | สับปะรด | - |
dc.subject | การวิเคราะห์การถดถอย | - |
dc.subject | การวิเคราะห์อนุกรมเวลา | - |
dc.subject | พยากรณ์แบบบอกซ์-เจนกินส์ | - |
dc.title | การพยากรณ์สินค้ายุทธศาสตร์เกษตร : กรณีผักและผลไม้ | - |
dc.title.alternative | Forecasting of strategy agriculture products : vegetables and fruits | - |
dc.type | Thesis | - |
dc.degree.name | สถิติศาสตรมหาบัณฑิต | - |
dc.degree.level | ปริญญาโท | - |
dc.degree.discipline | สถิติ | - |
dc.degree.grantor | จุฬาลงกรณ์มหาวิทยาลัย | - |
Appears in Collections: | Acctn - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yupaporn_ar_front_p.pdf | 1.18 MB | Adobe PDF | View/Open | |
Yupaporn_ar_ch1_p.pdf | 768.28 kB | Adobe PDF | View/Open | |
Yupaporn_ar_ch2_p.pdf | 2.39 MB | Adobe PDF | View/Open | |
Yupaporn_ar_ch3_p.pdf | 1.24 MB | Adobe PDF | View/Open | |
Yupaporn_ar_ch4_p.pdf | 8.6 MB | Adobe PDF | View/Open | |
Yupaporn_ar_ch5_p.pdf | 860.49 kB | Adobe PDF | View/Open | |
Yupaporn_ar_back_p.pdf | 9.55 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.