Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/72879
Title: | กลยุทธ์การตัดบนโยโลวีสามสำหรับการตรวจจับวัตถุแบบทันกาล |
Other Titles: | Pruning strategy on YOLOv3 for real-time object detection |
Authors: | ณัฐนนท์ กฤตยานวัช |
Advisors: | พีรพล เวทีกูล |
Other author: | จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ |
Subjects: | การประมวลผลภาพ -- เทคนิคดิจิทัล การเรียนรู้ของเครื่อง แบบจำลองทางคอมพิวเตอร์ Image processing -- Digital techniques Machine learning Computer simulation |
Issue Date: | 2562 |
Publisher: | จุฬาลงกรณ์มหาวิทยาลัย |
Abstract: | ในงานตรวจจับวัตถุ แบบจำลอง YOLOv3 จัดว่าเป็นแบบจำลองที่มีประสิทธิภาพดีในด้านความแม่นยำ แต่ทว่าด้วยจำนวนตัวแปรในแบบจำลองที่มีมากกว่าสิบล้านตัวแปร ส่งผลให้ตัวแบบจำลองไม่เหมาะสมที่จะนำไปใช้งานบนกล้องหรืออุปกรณ์ขนาดเล็ก โดยงานวิจัยชิ้นนี้นำเสนอกลไกการบีบอัดแบบจำลองที่ออกแบบมาโดยเฉพาะสำหรับแบบจำลอง YOLOv3 เพื่อตัดตัวกรองที่ไม่จำเป็นออกจากตัวแบบจำลอง แต่เนื่องจากแบบจำลอง YOLOv3 นั้นประกอบไปด้วยองค์ประกอบ 2 ส่วน คือ โครงข่ายกระดูกสันหลัง และโครงข่ายพีระมิดฟีเจอร์ งานวิจัยชิ้นนี้จึงนำเสนอกลยุทธ์ 3 อย่างดังต่อไปนี้ 1) การตัดแบบแยกส่วน 2) การจำกัดการตัด และ 3) เกณฑ์การหยุด หลังจากนั้นจึงนำกลยุทธ์ทั้ง 3 อย่างมารวมกันเป็นกลไกการตัดแบบทนทานเพื่อตัดแบบจำลองแบบแยกส่วนกัน ด้วยวิธีการนี้ สามารถช่วยป้องกันการตัดส่วนใดส่วนหนึ่งของแบบจำลองมากเกินไป ส่งผลให้แบบจำลองมีเสถียรภาพมากขึ้น |
Other Abstract: | For object detection, YOLOv3 has shown promising accuracy. Since the number of parameters in this network can be more than ten million parameters, it cannot be fit into a commodity camera or small devices. In this research, we propose a compression mechanism designed specifically for YOLOv3’s network by removing unnecessary filters. Since YOLOv3 composes of two network components: backbone and pyramid networks, we propose the following techniques, (1) separated pruning, (2) minimum filter constraint, and (3) stopping criteria. Then, we combined these three mechanisms as a robust pruning mechanism to prune filters of each network separately. This can help to avoid over-pruning the network in some parts of the model making our model more robust |
Description: | วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2562 |
Degree Name: | วิทยาศาสตรมหาบัณฑิต |
Degree Level: | ปริญญาโท |
Degree Discipline: | วิทยาศาสตร์คอมพิวเตอร์ |
URI: | http://cuir.car.chula.ac.th/handle/123456789/72879 |
URI: | http://doi.org/10.58837/CHULA.THE.2019.1133 |
metadata.dc.identifier.DOI: | 10.58837/CHULA.THE.2019.1133 |
Type: | Thesis |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
6071010621.pdf | วิทยานิพนธ์ฉบับเต็ม | 2.36 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.