Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/72879
Title: กลยุทธ์การตัดบนโยโลวีสามสำหรับการตรวจจับวัตถุแบบทันกาล
Other Titles: Pruning strategy on YOLOv3 for real-time object detection
Authors: ณัฐนนท์ กฤตยานวัช
Advisors: พีรพล เวทีกูล
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Subjects: การประมวลผลภาพ -- เทคนิคดิจิทัล
การเรียนรู้ของเครื่อง
แบบจำลองทางคอมพิวเตอร์
Image processing -- Digital techniques
Machine learning
Computer simulation
Issue Date: 2562
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: ในงานตรวจจับวัตถุ แบบจำลอง YOLOv3 จัดว่าเป็นแบบจำลองที่มีประสิทธิภาพดีในด้านความแม่นยำ แต่ทว่าด้วยจำนวนตัวแปรในแบบจำลองที่มีมากกว่าสิบล้านตัวแปร ส่งผลให้ตัวแบบจำลองไม่เหมาะสมที่จะนำไปใช้งานบนกล้องหรืออุปกรณ์ขนาดเล็ก โดยงานวิจัยชิ้นนี้นำเสนอกลไกการบีบอัดแบบจำลองที่ออกแบบมาโดยเฉพาะสำหรับแบบจำลอง YOLOv3 เพื่อตัดตัวกรองที่ไม่จำเป็นออกจากตัวแบบจำลอง แต่เนื่องจากแบบจำลอง YOLOv3 นั้นประกอบไปด้วยองค์ประกอบ 2 ส่วน คือ โครงข่ายกระดูกสันหลัง และโครงข่ายพีระมิดฟีเจอร์ งานวิจัยชิ้นนี้จึงนำเสนอกลยุทธ์ 3 อย่างดังต่อไปนี้ 1) การตัดแบบแยกส่วน 2) การจำกัดการตัด และ 3) เกณฑ์การหยุด หลังจากนั้นจึงนำกลยุทธ์ทั้ง 3 อย่างมารวมกันเป็นกลไกการตัดแบบทนทานเพื่อตัดแบบจำลองแบบแยกส่วนกัน ด้วยวิธีการนี้ สามารถช่วยป้องกันการตัดส่วนใดส่วนหนึ่งของแบบจำลองมากเกินไป ส่งผลให้แบบจำลองมีเสถียรภาพมากขึ้น
Other Abstract: For object detection, YOLOv3 has shown promising accuracy. Since the number of parameters in this network can be more than ten million parameters, it cannot be fit into a commodity camera or small devices. In this research, we propose a compression mechanism designed specifically for YOLOv3’s network by removing unnecessary filters. Since YOLOv3 composes of two network components: backbone and pyramid networks, we propose the following techniques, (1) separated pruning, (2) minimum filter constraint, and (3) stopping criteria. Then, we combined these three mechanisms as a robust pruning mechanism to prune filters of each network separately. This can help to avoid over-pruning the network in some parts of the model making our model more robust
Description: วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2562
Degree Name: วิทยาศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิทยาศาสตร์คอมพิวเตอร์
URI: http://cuir.car.chula.ac.th/handle/123456789/72879
URI: http://doi.org/10.58837/CHULA.THE.2019.1133
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2019.1133
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6071010621.pdfวิทยานิพนธ์ฉบับเต็ม2.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.