Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/82999
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorประภาส จงสถิตย์วัฒนา-
dc.contributor.authorสุปัญญา อภิวงศ์โสภณ-
dc.contributor.otherจุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์-
dc.date.accessioned2023-08-04T07:35:11Z-
dc.date.available2023-08-04T07:35:11Z-
dc.date.issued2561-
dc.identifier.urihttps://cuir.car.chula.ac.th/handle/123456789/82999-
dc.descriptionวิทยานิพนธ์ (วศ.ด.)--จุฬาลงกรณ์มหาวิทยาลัย, 2561-
dc.description.abstractวิทยานิพนธ์นี้นำเสนอวิธีการตรวจจับข่าวปลอมบนเครือข่ายสังคมออนไลน์ทวิตเตอร์ด้วยวิธีการเรียนรู้ด้วยเครื่อง โดยใช้การเรียนรู้ด้วยเครื่องสามวิธี ได้แก่ Naïve Bayes, Neural Network และ Support Vector Machine โดยเก็บข้อมูลจากหัวข้อข่าวที่เป็นภาษาไทย ในระหว่างเดือนตุลาคมถึงพฤศจิกายน พ.ศ. 2560  ผลการวิจัยพบว่าทั้งสามวิธีสามารถตรวจจับข่าวปลอมในชุดข้อมูลได้อย่างถูกต้อง ร้อยละความถูกต้องของวิธี Naïve Bayes คือ 96.08 เปอร์เซ็นต์ Neural Network 99.89 เปอร์เซ็นต์ และ Support Vector Machine 99.89 เปอร์เซ็นต์ นอกจากนี้ได้ทำการวิเคราะห์ข้อมูลข่าวปลอมและชี้ให้เห็นลักษณะของข่าวปลอมที่พบในชุดข้อมูล-
dc.description.abstractalternativeThis dissertation proposes a machine learning method which can identify fake news from Twitter data. The experiment is carried out with three widely used machine learning methods: Naïve Bayes, Neural Network and Support Vector Machine using Thai’s topic and collected from October to November 2017.  The results show that all three methods can detect fake news in this data set accurately. The accuracy of Naïve Bayes method is 96.08 percent, Neural Network 99.89 percent and Support Vector Machine 99.89 percent. Furthermore, we analyze the data of fake news and point out some of its characteristics.-
dc.language.isoth-
dc.publisherจุฬาลงกรณ์มหาวิทยาลัย-
dc.relation.urihttp://doi.org/10.58837/CHULA.THE.2018.1266-
dc.rightsจุฬาลงกรณ์มหาวิทยาลัย-
dc.titleการตรวจสอบข่าวปลอมด้วยวิธีการเรียนรู้ด้วยเครื่อง-
dc.title.alternativeDetecting fake news with machine learning method-
dc.typeThesis-
dc.degree.nameวิศวกรรมศาสตรดุษฎีบัณฑิต-
dc.degree.levelปริญญาเอก-
dc.degree.disciplineวิศวกรรมคอมพิวเตอร์-
dc.degree.grantorจุฬาลงกรณ์มหาวิทยาลัย-
dc.identifier.DOI10.58837/CHULA.THE.2018.1266-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
5771425821.pdf1.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.