
 
การประมาณคาจุดตรึงของการสงแบบนอนเอ็คซแพนซีฟ 

 
 
 
 
 
 
 
 
 
 

นางสาวเยาวลักษณ แซซอร 
 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 
สาขาวิชาคณิตศาสตร       ภาควิชาคณิตศาสตร  
คณะวิทยาศาสตร   จฬุาลงกรณมหาวิทยาลัย 

ปการศึกษา  2544 
ISBN  974-03-0251-3 

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั 
 



ON THE APPROXIMATION OF FIXED POINTS OF

NONEXPANSIVE MAPPINGS

Miss Yaowaluk Saesor

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Mathematics

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2001

ISBN 974-03-0251-3



Thesis Title On the Approximation of Fixed Points of Nonexpansive  
 
Mappings 

 
By 

 
Miss Yaowaluk Saesor 

 
Field of Study 

 
Mathematics 

 
Thesis Advisor 

 
Assistant Professor Imchit Termwuttipong, Ph.D. 

  
 
 
 
  Accepted by the Faculty of Science, Chulalongkorn University in Partial  
 
Fulfillment of the Requirements for the Master ’s Degree 
 
 
  ……………………………………………….. Dean of Faculty of Science 
   
             (Associate  Professor  Wanchai  Phothiphichitr, Ph.D.) 
 
 
 
THESIS COMMITTEE 
 
 
   ……………………………………………….. Chairman 
 
   (Associate Professor Kritsana Neammanee, Ph.D.) 
 
 
   ………………………………………….……. Thesis Advisor 
 
   (Assistant Professor Imchit Termwuttipong, Ph.D.) 
 
 
   ……………………………………………….. Member 
 
   (Wicharn Lewkeeratiyutkul, Ph.D.) 



 iv

เยาวลักษณ แซซอร    :   การประมาณคาจุดตรึงของการสงแบบนอนเอ็คซแพนซีฟ    
(ON THE APPROXIMATION OF FIXED POINTS OF NONEXPANSIVE MAPPINGS)     
อ.ที่ปรึกษา : ผูชวยศาสตราจารย ดร. อิ่มจิตต เติมวุฒิพงษ, 33 หนา  ISBN 974-03-0251-3 

 
 
 ให B  เปนปริภูมิบานาคซึ่งมีนอรมที่หาอนุพันธแบบยูนิฟอรมในเชิง Gâteaux ได และให  T  เปนการ
สงแบบนอนเอ็คซแพนซีฟบนเซตนูนปด C  ของ B  ไปยัง C โดยที่ T  มีจุดตรึง  เราจะสรางลําดับ (xn)ใน C  

แบบเวียนเกิด  โดยกําหนดให 
nnnn Txxx )1(01 α−+α=+ ,  สําหรับ  n  = 0, 1, 2, 3, … 

โดยที่สําหรับแตละ n      αn ∈ [0,1]  ในงานวิจัยนี้เราหาเงื่อนไขที่เพียงพอของลําดับ (αn )  ที่ทําใหลําดับ(xn)
ลูเขาแบบเขมสูจุดตรึงของ T    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ภาควิชา  คณิตศาสตร          ลายมือช่ือนิสิต…………………..………………………… 
สาขาวิชา  คณิตศาสตร          ลายมือช่ืออาจารยที่ปรึกษา………………………………… 
ปการศึกษา  2544              ลายมือช่ืออาจารยที่ปรึกษารวม - 



  v 

  

# # 4172401023  :  MAJOR  MATHEMATICS 
KEYWORD : BANACH SPACE / UNIFORMLY GÂTEAUX DIFFERENTIABLE   
                       NORM / NONEXPANSIVE MAPPING / FIXED POINT 

YAOWALUK SAESOR : ON THE APPROXIMATION OF FIXED POINTS  
OF NONEXPANSIVE MAPPINGS.  THESIS ADVISOR : ASSISTANT  
PROFESSOR  IMCHIT TERMWUTTIPONG, Ph.D., 33 pp.  ISBN 974-03-
0251-3. 

  
 

Let B  be a Banach space whose norm is uniformly Gâteaux  differentiable and 
T a nonexpansive mapping on a closed convex set  C  of  B  into itself with the fixed 
point property. Define a sequence ( xn ) in C  recursively by 

 
nnnn Txxx )1(01 α−+α=+ ,  for  n  = 0, 1, 2, 3, …, 
 

where αn ∈ [0,1] for each  n and Cx ∈0  is arbitrary. In our investigation, we find a 
sufficient condition on (αn )  to assure that ( xn ) converges strongly to a fixed point of  
T. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Department  Mathematics  Student’s signature…………………………….. 
Field of Study  Mathematics  Advisor’s signature……………………………. 
Academic year  2001   Co-advisor’s signature - 



vi

Acknowledgements

I am greatly indebted to Assistant Professor Dr. Imchit Termwuttipong, my

thesis advisor, for her untired offering me some thoughtful and helpful advice

in preparing and writing this thesis. I would like to thank Associate Professor

Dr. Kritsana Neammanee and Dr. Wicharn Lewkeeratiyutkul, the chairman and

member of my thesis committee for making my complete thesis. I wish to express

my sincere thanks to Associate Professor Dr. Naoki Shioji for giving advice in

some proof of his paper and this paper became the main thing to develop my

theorem in this thesis. I would also like to thank all of my kind friends in the

United States of America for sending some reference papers to me. I am also

grateful to all teachers who have taught me for my knowledge and skills.

I would also like to express my sincere gratitude to the Development and

Promotion of Science and Technology Talents Project (DPST) for providing me

support throughout my graduate study.

A special word for appreciation also goes to my friends for their help as well

as their friendship. In addition, I got support and endurance from my beloved

family for the whole time. Finally, I would like to thank every one, who supported

me, but I did not refer to the above-mentioned.



TABLE OF CONTENTS

PAGE

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

HAHN-BANACH THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DUALITY MAPPING AND DIFFERENTIABILITY

OF THE NORM IN BANACH SPACES . . . . . . . . . . . . . . . . . . . . . . . . . 5

BANACH LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

III APPROXIMATED SEQUENCES FOR

NONEXPANSIVE MAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



CHAPTER I

INTRODUCTION

This thesis is concerned with the approximation of fixed points for

nonexpansive self-mappings. The problem of this kind has widely been studied.

By a nonexpansive mapping we mean a map T from a normed linear space X

into itself such that

‖Tx− Ty‖ ≤ ‖x− y‖, for every x, y ∈ X.

A nonexpansive mapping T is said to have the fixed point property if the set

{x : Tx = x} is nonempty.

In 1965, Browder [1] established that a nonexpansive mapping from the unit

ball of a real Hilbert space into itself always possesses at least one fixed point. In

1967, Browder [2] used the Banach Fixed Point Theorem to prove the following :

Let H be a Hilbert space, and U the unit ball of H, i.e.,

U = {x ∈ H : ‖x‖ ≤ 1}, and T : U → U a nonexpansive mapping with the

fixed point property and yk the unique element of U satisfying yk = kTyk

for k ∈ (−1, 1). Then

lim
k→1

yk = y,

where y is the unique fixed point of T with the smallest norm.

In 1967, Halpern [3] gave a simple iterative method for approximating fixed

points of such map. In fact, he generated a sequence (xn) by the recursive formula

xn+1 = αn+1Txn, for n ∈ N0,
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where T is the nonexpansive mapping and (αn) is an appropriate sequence of

real numbers. Also he introduced the definition of an acceptable sequence as

follows : A sequence (αn) is said to be acceptable if, for any Hilbert space H,

any nonexpansive mapping T : U → U with the fixed point property, where U is

the unit ball of H, and for any point a ∈ U , the sequence (zn), defined by

z0 = a, zn = αnTzn−1, for n ∈ N,

converges to y, where y is the fixed point of T with the smallest norm.

Moreover, by using the above result of Browder, Halpern [3] gives necessary

conditions and sufficient conditions on (αn) to insure that the sequence of (xn)

converges to a fixed point of T . The statements are the followings :

The necessary conditions for the sequence (αn) to be acceptable are

(i) αn ∈ (−1, 1), (ii) lim
n→∞

αn = 1, and (iii)
∞∏

n=1

αn = 0.

The sufficient conditions for (αn) to be acceptable are

(i) αn < 1 for all n ∈ N, (ii) αn is an increasing sequence,

(iii) lim
n→∞

αn = 1 and

(iv) there exists an increasing sequence (kn) of positive integers such that

(a) lim
n→∞

(1− αn+kn)

(1− αn)
= 1 and (b) lim

n→∞
kn(1− αn) = ∞.

Let C be a closed convex subset of a normed linear space X and T a

nonexpansive mapping from C into itself, with the fixed point property.

Define a sequence (xn) in C recursively by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0, (1.1)

where αn ∈ [0, 1] for each n and x0 ∈ C is arbitrary.
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In 1980, Reich [4] showed that if X is a uniformly smooth Banach space, i.e.,

the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

, (1.2)

is attained uniformly for x, y ∈ S, where S = {x ∈ X : ‖x‖ = 1}, and a sequence

(αn) in [0,1] satisfies

αn =
1

na
, where 0 < a < 1,

then the sequence (xn) defined as in (1.1) converges to a fixed point of T .

In 1992, Wittmann [5] proved that if X is a Hilbert space and a sequence (αn)

in [0, 1] satisfies

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

|αn+1 − αn| < ∞,

then the sequence (xn) in C defined as in (1.1) converges to a fixed point of T .

In 1997, Shioji and Takahashi [6] obtained the same result as Wittmann’s in the

case when X is a Banach space whose norm is uniformly Gâteaux differentiable,

i.e., for each y ∈ S, the limit (1.2) is attained uniformly for x ∈ S, where

S = {x ∈ X : ‖x‖ = 1}.
In our work, we confine our study on Banach spaces whose norm is uniformly

Gâteaux differentiable and we find conditions on (αn) weaker than those of Shioji

and Takahashi [6] that also give the same conclusion.



CHAPTER II

PRELIMINARIES

In this chapter, in order to make the subject more complete and

understandable definitions, theorems and propositions whose results will be

needed in our work will be stated, and examples of some definitions are also

given.

Notation

Let N,N0 and R denote the set of all positive integers, the set of all nonnegative

integers and the set of all real numbers, respectively. The set B stands for a real

Banach space and B∗ is its dual. For each x in B, ‖x‖ and 〈x〉 denote the norm

of x and the subspace of B spanned by x. If x ∈ B and f ∈ B∗, the value of f at

x is denoted by 〈x, f〉, and by ‖f‖ we mean the norm of the linear functional f .

Hahn-Banach Theorem

2.1 Definition Let X be a real vector space and p : X → R.

(i) If for any x, y in X , p(x + y) ≤ p(x) + p(y) then p is said to be

subadditive .

(ii) If for any x in X and for any α > 0, p(αx) = αp(x) then p is said to

be positively homogeneous .

(iii) If p is subadditive and positively homogeneous then p is called a

sublinear functional on X.
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2.2 Theorem (Hahn-Banach Theorem) Let X be a real vector space, p : X → R

a sublinear functional on X and f : M → R a linear functional on a subspace

M of X satisfying

f(x) ≤ p(x), for all x ∈ M.

Then f has a linear extension f̃ from M to X such that

f̃(x) ≤ p(x), for all x ∈ X.

2.3 Definition Let (X, d) be a metric space and f : X → X. If there is a positive

real number k such that

d(f(x), f(y)) ≤ kd(x, y), for all x, y ∈ X,

then f is said to be a contraction mapping if k < 1 and f is said to be

a nonexpansive mapping if k = 1.

2.4 Theorem (Banach Fixed Point Theorem) Let (X, d) be a complete metric

space and f : X → X a contraction mapping on X. Then f has precisely

one fixed point.

Duality Mapping and Differentiability of the Norm in

Banach Spaces

We will introduce the notion of a duality mapping of a Banach space

and state some relation between the duality mapping and the differentiability

of the norm of the Banach space. We present here the definitions of the terms

which will be used in our work and some of their examples, and also state some

important propositions concerning duality mapping and differentiability of the

norm of the Banach space but the proofs of them will be omitted, since they can

be found in Takahashi [7].
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2.5 Definition Let B be a Banach space. For each x ∈ B, let

Jx = {f ∈ B∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}.

The mapping J defined above is called the duality mapping of B.

J can be considered as a multi-valued mapping from B into B∗.

The following proposition give some basic properties of the duality mapping.

These properties play an important role in the proof of our main theorem.

2.6 Proposition Let B be a Banach space and let J be the duality mapping of

B. Then for each x ∈ B,

(i) Jx 6= ∅,

(ii) for each α ∈ R, J(αx) = αJx, and

(iii) for each f ∈ Jx, ‖x‖2 − ‖y‖2 ≤ 2〈x− y, f〉, for all y ∈ B.

The differentiability of the norm of the Banach space has an interesting relation

to the property that the duality mapping of B is single-valued. Now we present

the definitions of some types of differentiability on Banach spaces.

2.7 Definition For a Banach space B, let S = {x ∈ B : ‖x‖ = 1}.

(i) If the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

, (2.1)

exists for each x, y ∈ S, then the norm of B is said to be Gâteaux

differentiable and B is said to be smooth .

(ii) If for each y ∈ S, the limit (2.1) is attained uniformly for x ∈ S, then

the norm of B is said to be uniformly Gâteaux differentiable and

B is said to have a uniformly Gâteaux differentiable norm .
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(iii) If for each x ∈ S, the limit (2.1) is attained uniformly for y ∈ S, then

the norm of B is said to be Fréchet differentiable and B is said to

have a Fréchet differentiable norm .

(iv) If the limit (2.1) is attained uniformly for x, y ∈ S, then the norm of

B is said to be uniformly Fréchet differentiable and B is said to

be uniformly smooth .

2.8 Remark In the definitions of differentiability of the norms of Banach spaces

above, we can see that

(i) if the norm of B is uniformly Fréchet differentiable, then it is

Fréchet differentiable, uniformly Gâteaux differentiable and Gâteaux

differentiable.

(ii) if the norm of B is uniformly Gâteaux differentiable, then it is Gâteaux

differentiable.

(iii) if the norm of B is Fréchet differentiable, then it is Gâteaux

differentiable.

2.9 Example Every Hilbert space has a uniformly Fréchet differentiable norm.

Proof. Let H be a Hilbert space, S := {x ∈ H : ‖x‖ = 1}.

We shall show that the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly for x, y ∈ S and equals to 〈x, y〉, the inner product of

x and y.

Let ε > 0. Choose δ = min
{

1,
ε

5

}
.
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For 0 < |t| < δ, we have for each x, y ∈ S

∣∣∣∣
‖x + ty‖ − ‖x‖

t
− 〈x, y〉

∣∣∣∣ =

∣∣∣∣∣

√
〈x + ty, x + ty〉 − 1

t
− 〈x, y〉

∣∣∣∣∣

=

∣∣∣∣∣

√
〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉 − 1

t
− 〈x, y〉

∣∣∣∣∣

=

∣∣∣∣∣

√
1 + 2t〈x, y〉+ t2 − 1

t
− 〈x, y〉

∣∣∣∣∣

=

∣∣∣∣∣
2〈x, y〉+ t√

1 + 2t〈x, y〉+ t2 + 1
− 〈x, y〉

∣∣∣∣∣ .

Let g(t) =
√

1 + 2t〈x, y〉+ t2 + 1. Then

∣∣∣∣
‖x + ty‖ − ‖x‖

t
− 〈x, y〉

∣∣∣∣ =

∣∣∣∣
2〈x, y〉+ t

g(t)
− 〈x, y〉

∣∣∣∣

≤
∣∣∣∣
2〈x, y〉+ t

g(t)
− 2〈x, y〉+ t

2

∣∣∣∣

+

∣∣∣∣
2〈x, y〉+ t

2
− 2〈x, y〉

2

∣∣∣∣

= |2〈x, y〉+ t|
∣∣∣∣

1

g(t)
− 1

2

∣∣∣∣ +
1

2
|t|

≤ (2‖x‖‖y‖+ |t|) |g(t)− 2|
2|g(t)| +

1

2
|t|

= (2 + |t|) |g(t)− 2|
2|g(t)| +

1

2
|t|.
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It is easy to see that 2− |t| ≤
∣∣∣∣∣

√
1 + 2t

〈x, y〉
‖x‖‖y‖ + t2 + 1

∣∣∣∣∣ ≤ 2 + |t|,

since

∣∣∣∣
〈x, y〉
‖x‖‖y‖

∣∣∣∣ ≤ 1.

Since |t| ≤ 1 and ‖x‖ = 1 = ‖y‖, we have
1

|g(t)| ≤
1

2− |t| .

We note that

|g(t)− 2| = |
√

1 + 2t〈x, y〉+ t2 − 1|

≤ |
√

1 + 2t〈x, y〉+ t2 − 1||
√

1 + 2t〈x, y〉+ t2 + 1|

= |2t〈x, y〉+ t2|

≤ 2|t|‖x‖‖y‖+ |t|2 = 2|t|+ |t|2

< 3|t|.

Since
2 + |t|
2− |t| < 3, we have

∣∣∣∣
‖x + ty‖ − ‖x‖

t
− 〈x, y〉

∣∣∣∣ ≤ (2 + |t|) |g(t)− 2|
2|g(t)| +

1

2
|t|

< (2 + |t|) 3|t|
2(2− |t|) +

1

2
|t|

≤ 3

2
(3|t|) +

1

2
|t|

= 5|t| ≤ ε.

Hence lim
t→0

‖x + ty‖ − ‖x‖
t

= 〈x, y〉 uniformly for x, y ∈ S and thus

‖ · ‖ is uniformly Fréchet differentiable.
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2.10 Proposition If B is a smooth Banach space, then the duality mapping J

of B is single-valued.

2.11 Corollary Let B be a Banach space.

(i) If B has a uniformly Gâteaux differentiable norm, then the duality

mapping J of B is single-valued.

(ii) If B has a Fréchet differentiable norm, then the duality mapping J of

B is single-valued.

(iii) If B has a uniformly Fréchet differentiable norm, then the duality

mapping J of B is single-valued.

2.12 Proposition If the norm of B is uniformly Gâteaux differentiable then the

single-valued duality mapping J is (norm to weak star) uniformly continuous

on each bounded subset of B.

Banach Limits

Since a Banach limit is an important tool of the proof in our main theorem,

in this section, we give a definition and some remarks on Banach limits.

We denote by l∞ the space of all real bounded functions on the nonnegative

integers.

2.13 Definition Let µ be a bounded linear functional on l∞ and (xn) ∈ l∞.

We write µ(xn) instead of µ((xn)). If µ satisfies µ(xn) = µ(xn+1) for all

(xn) ∈ l∞ and µ(1) = 1, then we call µ a Banach limit .



11

2.14 Proposition There exists a Banach limit .

Proof. Let q : l∞ → R be defined by

q(xn) = lim sup
n→∞

x0 + x1 + · · ·+ xn−1

n
, for (xn) ∈ l∞.

Let c := {x = (xn) ∈ l∞ : x is a convergent sequence}. Then c is a

subspace of l∞.

If (xn) ∈ c, then the map l : c → R with l(xn) = lim
n→∞

xn is defined,

and l is a linear functional on c.

Moreover, it is known that l(xn) = lim
n→∞

x0 + x1 + · · ·+ xn−1

n
.

Clearly, q is a sublinear functional on l∞.

By the Hahn-Banach theorem, there exists a linear functional

µ : l∞ → R such that µ(xn) = l(xn) on c and

µ(xn) ≤ q(xn) for all (xn) ∈ l∞.

Next, we will show that µ is a Banach limit.

Since it is obvious that µ(1) = l(1) = 1 = ‖µ‖, it suffices to show that

µ(xn+1) = µ(xn), for all (xn) ∈ l∞.

We note that

µ(xn+1 − xn) = −µ(−(xn+1 − xn)) ≥ −q[−(xn+1 − xn)]

= lim inf
n→∞

(
xn+1 − x0

n

)
≥ 0,

and

µ(xn+1 − xn) ≤ q(xn+1 − xn) = lim sup
n→∞

(
xn+1 − x0

n

)
≤ 0.

Thus µ(xn+1) = µ(xn). Hence µ is a Banach limit.
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2.15 Proposition For every Banach limit µ,

lim inf
n→∞

xn ≤ µ(xn) ≤ lim sup
n→∞

xn, for (xn) ∈ l∞.

Proof. Let x = (xn) be arbitrary in l∞. First, we shall show that

µ(xn) ≥ 0 if xn ≥ 0 for all n ∈ N0.

If xn = 0, for all n ∈ N0, then the inequality is immediately obtained,

since µ(0) = 0.

Assume that there exists n ∈ N0 such that xn 6= 0. Then ‖x‖ > 0.

Suppose that µ(xn) < 0.

Let y = (yn) ∈ l∞ be such that for each n ∈ N0,

yn = 1− xn

‖x‖ .

Then ‖y‖ ≤ 1 but µ(y) > 1.

Hence ‖µ‖ = sup
z ∈ l∞
‖z‖ ≤ 1

|µ(z)| > 1, a contradiction.

Now we have µ(xn) ≥ 0 if xn ≥ 0 for all n ∈ N0.

Next, we shall show that inf
n∈N0

xn ≤ µ(xn) ≤ sup
n∈N0

xn.

We shall show only inf
n∈N0

xn ≤ µ(xn).

For ε > 0, choose n0 so that

inf
n∈N0

xn ≤ xn0 < inf
n∈N0

xn + ε,

Then xn + ε− xn0 > 0 for all n ∈ N0.

By µ(xn) ≥ 0 if xn ≥ 0 and µ(1) = 1, we have

inf
n∈N0

xn ≤ µ(xn) + ε.
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Since ε > 0 is arbitrary, inf
n∈N0

xn ≤ µ(xn).

Similarly, sup
n∈N0

xn ≥ µ(xn).

Hence, we have for each k ∈ N0,

inf
n≥k

xn ≤ µ(xk) ≤ sup
n≥k

xn

By µ(xn) = µ(xn+1), for all n ∈ N0, we then obtain that

lim inf
n→∞

xn ≤ µ(xn) ≤ lim sup
n→∞

xn.

2.16 Proposition For every Banach limit µ, if (an) and (bn) in l∞ are such that

an ≥ bn for every n ∈ N0, then µ(an) ≥ µ(bn).

Proof. Let (an) and (bn) be sequences in l∞ such that an ≥ bn for all

n ∈ N0.

Then for each n ∈ N0, an − bn ≥ 0.

By Proposition 2.15, we have µ(an)− µ(bn) = µ(an − bn) ≥ 0

Hence µ(an) ≥ µ(bn).



CHAPTER III

APPROXIMATED SEQUENCES FOR

NONEXPANSIVE MAPPING

In this chapter, we will prove our main result which can be stated as follows :

Let B be a Banach space whose norm is uniformly Gâteaux differentiable, C

a closed convex subset of B. Let T : C → C be a nonexpansive mapping, i.e.,

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C.

Let (αn) be any sequence in [0, 1] satisfying

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞. (3.1)

Let x0 ∈ C be arbitrary. Define (xn) in C by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0. (3.2)

For each t ∈ (0, 1), define zt to be the unique element in C such that

zt = tx0 + (1− t)Tzt. (3.3)

If T has a fixed point and lim
t→0

‖zt − z‖ = 0 for some fixed point z of T then

lim
n→∞

‖xn − z‖ = 0.
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The following lemma guarantees the existence of zt in (3.3), for each t ∈ (0, 1).

3.1 Lemma Let (X, ‖ · ‖) be a Banach space and C a closed convex subset of X.

If T : C → C is a nonexpansive mapping, then for any x0 ∈ C and for any

t ∈ (0, 1), the mapping gt : C → C defined by gt(x) = tx0 + (1 − t)Tx, for

each x ∈ C, is a contraction. Hence by the Banach fixed point theorem gt

has a unique fixed point.

Proof. The conclusion that gt is a contraction is immediately obtained

from the assumption that T is nonexpansive and 0 < 1− t < 1.

From the above lemma, we have that for each x0 ∈ C, for each t ∈ (0, 1), there

is a unique zt in C such that

zt = tx0 + (1− t)Tzt.

3.2 Definition Let T : X → X. A subset A of X is said to be T -invariant if

Tx ∈ A for every x ∈ A.

It is noticed that if C has some additional condition, then there will be a fixed

point z of T such that lim
t→0

‖zt − z‖ = 0. This result is shown in Takahashi and

Ueda [8]. The statement is as follows :

3.3 Lemma Let B be a Banach space whose norm is uniformly Gâteaux

differentiable, let C be a weakly compact, convex subset of B and let

T : C → C be a nonexpansive mapping with fixed point property. Let

x ∈ C and for each 0 < t < 1, let zt be the unique element of C which

satisfies zt = tx + (1 − t)Tzt. Assume that each nonempty, T -invariant,

closed convex subset of C contains a fixed point of T . Then there is a fixed

point z of T such that lim
t→0

‖zt − z‖ = 0.
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The next two Lemmas state key properties of a Banach limit which are used

in the proof of our main theorem. The idea of the proofs are based on those of

Shioji and Takahashi [6]. We present here the proofs in detail.

3.4 Lemma Let a ∈ R and let (an) ∈ l∞. Then µ(an) ≤ a for all Banach limits

µ if and only if for each ε > 0, there exists p0 ∈ N such that

an + an+1 + · · ·+ an+p−1

p
< a + ε, for all p ≥ p0 and n ∈ N0.

Proof. To prove the necessity, assume that µ(an) ≤ a for all Banach

limits µ.

Define q : l∞ → R by

q((xn)) = lim sup
p→∞

sup
n∈N

1

p

n+p−1∑
i=n

xi, for all (xn) ∈ l∞.

Then q is a sublinear functional on l∞.

Clearly, q
∣∣〈(an)〉 is a linear functional on 〈(an)〉, the subspace of B

generated by (an).

By the Hahn-Banach Theorem, there exists a linear functional

µ : l∞ → R such that µ(xn) ≤ q(xn) for all (xn) ∈ l∞ and

µ
∣∣〈(an)〉 = q

∣∣〈(an)〉 .

Claim that µ is a Banach limit.

Since µ(xn) ≤ q(xn) on l∞, −q(−xn) ≤ −µ(−xn) = µ(xn) ≤ q(xn).

Thus for all (xn) ∈ l∞,

lim inf
p→∞

inf
n∈N

1

p

n+p−1∑
i=n

xi ≤ µ(xn) ≤ lim sup
p→∞

sup
n∈N

1

p

n+p−1∑
i=n

xi.
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So

µ(xn+1 − xn) ≥ lim inf
p→∞

inf
n∈N

1

p

n+p−1∑
i=n

(xi+1 − xi)

= lim inf
p→∞

inf
n∈N

1

p
(xn+p − xn) ≥ 0

Similarly,

µ(xn+1 − xn) ≤ lim sup
p→∞

sup
n∈N

1

p
(xn+p − xn) ≤ 0.

This implies that µ(xn+1) = µ(xn), for all (xn) ∈ l∞.

It is clear that µ(1) = 1 and |µ(xn)| ≤ 1, for any (xn) ∈ l∞ and

‖xn‖ = 1.

Hence ‖µ‖ = sup
(xn) ∈ l∞
‖xn‖ = 1

|µ(xn)| = 1 = µ(1). Therefore we have the claim.

Since q
∣∣〈(an)〉 = µ

∣∣〈(an)〉 and µ is a Banach limit, then q(an) ≤ a.

Then for each ε > 0, there exists p0 ∈ N such that

an + an+1 + · · ·+ an+p−1

p
< a + ε, for all p ≥ p0 and n ∈ N0.

To prove the sufficiency, we assume that for each ε > 0, there exists

p0 ∈ N which satisfies

an + an+1 + · · ·+ an+p−1

p
< a + ε, (3.4)

for all p ≥ p0 and for all n ∈ N0.

Let µ be a Banach limit and ε > 0 be given.

By the hypothesis, there exists p0 ∈ N which satisfies (3.4), for all

p ≥ p0 and for all n ∈ N0.
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Since µ is a Banach limit,

µ(an+p0−1) = · · · = µ(an+2) = µ(an+1) = µ(an).

Then by Proposition 2.16 and the properties of Banach limit,

µ(an) =
1

p0

(p0µ(an))

=
1

p0

[µ(an) + µ(an+1) + · · ·+ µ(an+p0−1)]

= µ

(
an + an+1 + · · ·+ an+p0−1

p0

)

≤ µ(a + ε)

= (a + ε)µ(1)

= a + ε.

Since ε > 0 is arbitrary, we get µ(an) ≤ a.

3.5 Lemma Let a be a real number and (an) ∈ l∞ be such that µ(an) ≤ a for

all Banach limits µ and lim sup
n→∞

(an+1 − an) ≤ 0. Then lim sup
n→∞

an ≤ a.

Proof. Let ε > 0 be given. Since µ(an) ≤ a for all Banach limit µ, by

Lemma 3.4, there exists p ∈ N such that

an + an+1 + · · ·+ an+p−1

p
< a +

ε

2
,

for all n ∈ N0.

If p = 1, it is obvious that lim sup
n→∞

an ≤ a.

Assume that p ≥ 2.

Since lim sup
n→∞

(an+1 − an) ≤ 0, there exists n0 ∈ N0 such that

an+1 − an <
ε

(p− 1)
, for all n ≥ n0.
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Let n ≥ n0 + p. Then for each i ∈ {0, 1, . . . , p− 1}, we have

an = an−i + (an−i+1 − an−i) + (an−i+2 − an−i+1) + · · ·+ (an − an−1)

≤ an−i +
iε

(p− 1)
.

So we get

pan ≤ (an+an−1+an−2+· · ·+an−p+1)+(0+1+2+· · ·+(p−1))
ε

(p− 1)

Thus

an ≤ an + an−1 + an−2 + · · ·+ an−p+1

p
+

1

p
.
p(p− 1)

2
.

ε

(p− 1)

≤ a + ε.

Hence lim sup
n→∞

an ≤ a + ε.

Since ε > 0 is arbitrary, lim sup
n→∞

an ≤ a.

In case that the Banach space B has a uniformly Gêteaux differentiable norm

we have a nice result on the convergence of nets in each bounded subset of B.

This is because in such a Banach space the duality mapping J is single-valued

and norm to weak star uniformly continuous on each bounded subset of B. We

state precisely the following lemma :

3.6 Lemma Let B be a Banach space such that the duality mapping J is

single-valued and norm to weak star uniformly continuous on each bounded

subset of B. For each t ∈ (0, 1), let zt be a point in B. If z ∈ B is such that

lim
t→0

zt = z, then for any x, y in B

lim
t→0
〈x− zt, J(y − zt)〉 = 〈x− z, J(y − z)〉.
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Proof. First we show that lim
t→0
〈x− y, J(y − zt)〉 = 〈x− y, J(y − z)〉.

Without loss of generality, we may assume that x 6= y. Therefore

‖x− y‖ > 0.

Let ε > 0 be given. Since J is uniformly continuous on each bounded

subset of B, it is continuous at y − z.

There exists a δ > 0 such that for every v ∈ B, ‖v − (y − z)‖ < δ

implies

|〈ω, Jv − J(y − z)〉| < ε

‖x− y‖ for every ω ∈ B with ‖ω‖ ≤ 1.

Since lim
t→0

zt = z, lim
t→0

y − zt = y − z.

Let γ be a positive real number such that |t| < γ, implies

‖(y − zt)− (y − z)‖ < δ.

Then for t ∈ (0, 1) with |t| < γ, ‖(y − zt)− (y − z)‖ < δ and hence

∣∣∣∣
〈

x− y

‖x− y‖ , J(y − zt)− J(y − z)

〉∣∣∣∣ <
ε

‖x− y‖ .

That is if t ∈ (0, 1) is such that |t| < γ, then

|〈x− y, J(y − zt)− J(y − z)〉| < ε.

Therefore lim
t→0
〈x− y, J(y − zt)〉 = 〈x− y, J(y − z)〉.

Next, we shall show that

lim
t→0
〈x− zt, J(y − zt)〉 = 〈x− z, J(y − z)〉.

Since ‖ · ‖2 is continuous and lim
t→0

zt = z, lim
t→0

‖y − zt‖2 = ‖y − z‖2.
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We have for each t ∈ (0, 1),

|〈x− zt, J(y − zt)〉 − 〈x− z, J(y − z)〉|

= |〈x− y + y − zt, J(y − zt)〉 − 〈x− y + y − z, J(y − z)〉|

= |〈x− y, J(y − zt)〉+ ‖y − zt‖2 − ‖y − z‖2 − 〈x− y, J(y − z)〉|

≤ |〈x− y, J(y − zt)〉 − 〈x− y, J(y − z)〉|+ | ‖y − zt‖2 − ‖y − z‖2|.

Then 0 ≤ lim
t→0

|〈x− zt, J(y − zt)〉 − 〈x− z, J(y − z)〉|
≤ lim

t→0
|〈x− y, J(y − zt)〉 − 〈x− y, J(y − z)〉|

+ lim
t→0

| ‖y − zt‖2 − ‖y − z‖2| = 0.

That is lim
t→0
〈x− zt, J(y − zt)〉 = 〈x− z, J(y − z)〉.

The following Lemma obtains some idea from Wittmann [5].

3.7 Lemma Let B be a Banach space and C a closed convex subset of B. Let

T : C → C be a nonexpansive mapping such that the set F of all fixed

points of T is nonempty. Let (αn) be a sequence in [0, 1] satisfying (3.1), i.e.

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞.

Let x0 ∈ C and define (xn) as in (3.2), i.e.

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0.

Then the sequence (xn) and (Txn) are bounded.

Proof. In proving this lemma, we have two cases to consider :

Case 1. 0 ∈ F .

For each n ∈ N0, ‖Txn‖ = ‖Txn−0‖ = ‖Txn−T0‖ ≤ ‖xn−0‖ = ‖xn‖.
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Let n ∈ N0 be such that ‖xn‖ ≤ ‖x0‖. Thus

‖xn+1‖ = ‖αnx0 + (1− αn)Txn‖ ≤ αn‖x0‖+ (1− αn)‖xn‖

≤ αn‖x0‖+ (1− αn)‖x0‖ = ‖x0‖.

Then ‖xn‖ ≤ ‖x0‖ for all n ∈ N0. Hence (xn) and (Txn) are bounded.

Case 2. 0 /∈ F .

Let p be a point in F . Let C̃ = {x− p : x ∈ C} and define T̃ : C̃ → C̃

by

T̃ (x) = T (x + p)− p, for all x ∈ C̃.

Then ‖T̃ x− T̃ y‖ = ‖(T (x + p)− p)− (T (y + p)− p)‖
≤ ‖(x + p)− (y + p)‖ = ‖x− y‖, for all x, y ∈ C̃.

Then T̃ is nonexpansive and 0 ∈ F (T̃ ), where F (T̃ ) is the set of all

fixed points of T̃ .

Set x̃0 = x0 − p and for each n ∈ N0, let x̃n+1 = αnx̃0 + (1− αn)T̃ x̃n.

From Case 1, we have (x̃n) and (T̃ x̃n) are bounded.

We claim that x̃n = xn − p, for all n ∈ N0.

We already have x̃0 = x0 − p.

Let n ∈ N0 be such that x̃n = xn − p. Then

x̃n+1 = αnx̃0 + (1− αn)T̃ x̃n = αn(x0 − p) + (1− αn)T̃ (xn − p)

= αn(x0 − p) + (1− αn){T [(xn − p) + p]− p}

= αnx0 − αnp + (1− αn)[T (xn)− p]

= αnx0 + (1− αn)Txn − p

= xn+1 − p.
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Thus x̃n = xn − p, for all n ∈ N0, and we have the claim.

So we have ‖xn‖ = ‖x̃n + p‖ ≤ ‖x̃n‖+ ‖p‖ and

‖Txn‖ = ‖T (x̃n + p)‖ = ‖T̃ x̃n + p‖ ≤ ‖T̃ x̃n‖+ ‖p‖.

Hence our requirement is proved.

The following two Lemmas are based on the idea of the work of Shioji and

Takahashi [6].

The first lemma states some asymptotic behavior of (xn), defined in

Lemma 3.7.

3.8 Lemma With the same hypothesis as in Lemma 3.7, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

Proof. By Lemma 3.7, we obtain that (xn) and (Txn) are bounded.

Let M := sup{‖Txn‖ : n ∈ N0}. Then for each n ∈ N0, we have

‖xn+1 − xn‖ = ‖[αnx0 + (1− αn)Txn]− [αn−1x0 + (1− αn−1)Txn−1]‖

= ‖(αn − αn−1)x0 + (Txn − Txn−1)

− αn(Txn − Txn−1) + (αn−1 − αn)Txn−1‖

= ‖(αn − αn−1)(x0 − Txn−1) + (1− αn)(Txn − Txn−1)‖

≤ |αn − αn−1|(‖x0‖+ M) + (1− αn)‖xn − xn−1‖.



24

Since for each k ∈ N0, xk+1 = αkx0 + (1 − αk)Txk, we have for each

m,n ∈ N0,

‖xn+m+1 − xn+m‖

≤ |αn+m − αn+m−1|(‖x0‖+ M) + (1− αn+m)‖xn+m − xn+m−1‖

≤
[
|αn+m − αn+m−1|+

n+m−2∑

k=m

(1− αk+2)|αk+1 − αk|
]

(‖x0‖+ M)

+
n+m−1∏

k=m

(1− αk+1)‖xm+1 − xm‖

≤
[
|αn+m − αn+m−1|+

n+m−2∑

k=m

(1− αk+2)|αk+1 − αk|
]

(‖x0‖+ M)

+ exp

(
−

n+m−1∑

k=m

αk+1

)
‖xm+1 − xm‖. (3.5)

Since lim
n→∞

αn = 0 and
∞∑

n=0

αn = ∞, we have for each m ∈ N0,

lim
n→∞

|αn+m − αn+m−1| = 0 and lim
n→∞

exp

(
−

n+m−1∑

k=m

αk+1

)
= 0.

Therefore for each m ∈ N0, we have from (3.5) that

lim sup
n→∞

‖xn+1 − xn‖

= lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ lim sup
n→∞

{[
|αn+m − αn+m−1|+

n+m−2∑

k=m

(1− αk+2)|αk+1 − αk|
]

(‖x0‖+ M)

+ exp

(
−

n+m−1∑

k=m

αk+1

)
‖xm+1 − xm‖

}

= (‖x0‖+ M)
∞∑

k=m

(1− αk+2)|αk+1 − αk|. (3.6)

Let ε > 0 be arbitrary. We can choose m large enough that

∞∑

k=m

(1− αk+2)|αk+1 − αk| < ε

(‖x0‖+ M)
and then

lim sup
n→∞

‖xn+m+1 − xn+m‖ < ε. This implies that lim
n→∞

‖xn+1 − xn‖ = 0.
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The next lemma is an essential result needed in proving our theorem.

3.9 Lemma Let B be a Banach space such that the duality mapping J is

single-valued and norm to weak star uniformly continuous on each bounded

subset of B. Let C be a closed convex subset of B and x0 be arbitrary in

C. Let T, (αn) and (xn) be as in the hypothesis of Lemma 3.7, and for each

t ∈ (0, 1) defined zt as in (3.3), i.e.,

zt = tx0 + (1− t)Tzt.

Then

lim sup
n→∞

〈x0 − z, J(xn − z)〉 ≤ 0.

Proof. Let µ be a Banach limit and t ∈ (0, 1).

By the boundedness of (xn), we have {‖xn− zt‖ : n ∈ N0} is bounded.

It implies that {‖xn − zt‖2 : n ∈ N0} is also bounded. Then for each

n ∈ N0,

‖xn − Tzt‖2 = ‖αn−1x0 + (1− αn−1)Txn−1 − Tzt‖2

≤ (αn−1‖x0 − Txn−1‖+ ‖Txn−1 − Tzt‖)2

≤ (αn−1(‖x0‖+ M) + ‖xn−1 − zt‖)2

≤ αn−1(‖x0‖+ M)2 + 2αn−1(‖x0‖+ M)‖xn−1 − zt‖

+ ‖xn−1 − zt‖2

From the assumption that lim
n→∞

αn = 0, we have

‖xn − Tzt‖2 ≤ ‖xn−1 − zt‖2.

Since µ is a Banach limit, from Proposition 2.16, we obtain

µ(‖xn − Tzt‖2) ≤ µ(‖xn − zt‖2). (3.7)
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Since (1− t)(xn − Tzt) = (xn − zt)− t(xn − x0), we have that

(1− t)2‖xn − Tzt‖2 = ‖(xn − zt)− t(xn − x0)‖2 (3.8)

By Proposition 2.6(iii) and J is single-valued we have for each y ∈ B,

‖xn − zt‖2 − ‖y‖2 ≤ 2〈xn − zt − y, J(xn − zt)〉.

Or for each y ∈ B,

‖y‖2 ≥ ‖xn − zt‖2 − 2〈xn − zt − y, J(xn − zt)〉. (3.9)

Hence from (3.8) and (3.9) with y = (xn − zt)− t(xn − x0) we have

(1− t)2‖xn − Tzt‖2 ≥ ‖xn − zt‖2 − 2〈t(xn − x0), J(xn − zt)〉

= ‖xn − zt‖2 − 2t〈xn − zt − x0 + zt, J(xn − zt)〉

= ‖xn − zt‖2 − 2t〈xn − zt, J(xn − zt)〉

+ 2t〈x0 − zt, J(xn − zt)〉

= ‖xn − zt‖2 − 2t‖xn − zt‖2 + 2t〈x0 − zt, J(xn − zt)〉

= (1− 2t)‖xn − zt‖2 + 2t〈x0 − zt, J(xn − zt)〉.

By Proposition 2.16 and (3.7) we get

(1−t)2µ(‖xn−zt‖2) ≥ (1−2t)µ(‖xn−zt‖2)+2t µ(〈x0−zt, J(xn−zt)〉).

Hence

t

2
µ(‖xn − zt‖2) ≥ µ(〈x0 − zt, J(xn − zt)〉). (3.10)

Since µ and ‖ · ‖2 are continuous, we have

lim sup
t→0

t

2
µ(‖xn − zt‖2) = lim sup

t→0

t

2
lim sup

t→0
µ(‖xn − zt‖2)

= 0 · µ(lim sup
t→0

‖xn − zt‖2)

= 0 · µ(‖xn − z‖2) = 0. (3.11)
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By Lemma 3.6 we have for each n ∈ N0,

lim
t→0
〈x0 − zt, J(xn − zt)〉) = 〈x0 − z, J(xn − z)〉. (3.12)

From µ is continuous and (3.12), we obtain

lim sup
t→0

µ(〈x0 − zt, J(xn − zt)〉) = µ(lim sup
t→0

〈x0 − zt, J(xn − zt)〉)

= µ(〈x0 − z, J(xn − z)〉). (3.13)

By (3.10), (3.11) and (3.13), we have

0 ≥ µ(〈x0 − z, J(xn − z)〉).

We claim that lim
n→∞

|〈x0 − z, J(xn+1 − z)〉 − 〈x0 − z, J(xn − z)〉| = 0.

Let ε > 0 be given.

Since J is norm to weak star uniformly continuous on each bounded

subset of B and J is norm to weak star uniformly continuous on

{xn − z : n ∈ N0}.

Then there exists a δ > 0, such that for every n ∈ N0 if

‖(xn+1 − z)− (xn − z)‖ < δ then

|〈x0 − z, J(xn+1 − z)〉 − 〈x0 − z, J(xn − z)〉| < ε.

From Lemma 3.8, there exists an N ∈ N0 such that for any

n ≥ N, ‖xn+1 − xn‖ < δ. Hence we have the claim.

By Lemma 3.5, we get

lim sup
n→∞

〈x0 − z, J(xn − z)〉 ≤ 0.
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This Theorem is developed from some proof of Shioji and Takahashi’s work [6]

under our sufficient conditions.

3.10 Theorem Let B be a Banach space whose norm is uniformly Gâteaux

differentiable and T a nonexpansive mapping on a closed convex subset

C of B such that the set F of all fixed points of T is nonempty. Let (αn) be

a sequence in [0, 1] which satisfies

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞.

Let x0 ∈ C and define a sequence (xn) in C recursively by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0.

For each t ∈ (0, 1), let zt be the unique element in C such that

zt = tx0 + (1− t)Tzt.

Assume that there is a fixed point z of T such that lim
t→0

‖zt − z‖ = 0. Then

lim
n→∞

‖xn − z‖ = 0.

Proof. By Proposition 2.6(iii) we have for each f ∈ J(xn+1 − z),

‖xn+1 − z‖2 − ‖(xn+1 − z)− αn(x0 − z)‖2 ≤ 2〈αn(x0 − z), f〉.

Since the duality mapping is single-value, we have

‖(xn+1 − z)− αn(x0 − z)‖2 ≥ ‖xn+1 − z‖2 − 2αn〈x0 − z, J(xn+1 − z)〉.
(3.14)

From the identity (1 − αn)(Txn − z) = (xn+1 − z) − αn(x0 − z) , we

have from (3.14) for each n ∈ N0

(1− αn)2 ‖(Txn − z)‖2 ≥ ‖xn+1 − z‖2 − 2αn〈x0 − z, J(xn+1 − z)〉.
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Thus for each n ∈ N0,

‖xn+1 − z‖2 ≤ (1− αn)2‖Txn − Tz‖2 + 2αn〈x0 − z, J(xn+1 − z)〉

≤ (1− αn)‖xn − z‖2 + 2(1− (1− αn))〈x0 − z, J(xn+1 − z)〉.
(3.15)

Let ε > 0 be given. Since lim sup
n→∞

〈x0 − z, J(xn − z)〉 ≤ 0, there exists

an m ∈ N0 such that for n ≥ m,

〈x0 − z, J(xn − z)〉 ≤ ε

2
.

Thus for n ∈ N0, (3.15) implies

‖xn+m − z‖2 ≤ (1− αn+m−1)‖xn+m−1 − z‖2 + (1− (1− αn+m−1))ε

≤
n+m−1∏

k=m

(1− αk)‖xm − z‖2 +

(
1−

n+m−1∏

k=m

(1− αk)

)
ε

≤ exp

(
−

n+m−1∑

k=m

αk

)
‖xm − z‖2 + ε. (3.16)

Since
∞∑

n=0

αn = ∞, we obtain from (3.16) that

lim sup
n→∞

‖xn − z‖2 = lim sup
n→∞

‖xn+m − z‖2 ≤ ε.

Because ε > 0 is arbitrary, lim sup
n→∞

‖xn − z‖2 = 0 and this implies

lim
n→∞

‖xn − z‖2 = 0 and thus

lim
n→∞

‖xn − z‖ = 0.
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3.11 Corollary Let B be a Banach space whose norm is uniformly Gâteaux

differentiable, C a weakly compact convex subset of B, and x0 be any point

in C. If T : C → C is a nonexpansive mapping such that every nonempty,

T-invariant, closed convex subset of C contains a fixed point of T , and (αn)

is a sequence in [0, 1] such that

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞,

then the sequence (xn) in C defined by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0,

converges strongly to a fixed point z of T .

Proof. The result is obtained immediately from Lemma 3.3 and

Theorem 3.10.

From the proof of Theorem 3.10 we note that the condition that the norm of

B is uniformly Gâteaux differentiable is used only to make sure that the duality

mapping of B is single-valued and norm to weak star uniformly continuous on

each bounded subset of B, so we have the immediate corollary.

3.12 Corollary Let B be a Banach space such that the duality mapping J is

single-valued and norm to weak star uniformly continuous on every bounded

subset of B. Let T be a nonexpansive mapping on a closed convex subset

C of B such that the set F of all fixed points of T is nonempty. Let (αn) be

a sequence in [0, 1] which satisfies

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞.

Let x0 ∈ C and define a sequence (xn) in C recursively by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0.
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For each t ∈ (0, 1), let zt be the unique element in C such that

zt = tx0 + (1− t)Tzt.

Assume that there is a fixed point z of T such that lim
t→0

‖zt − z‖ = 0. Then

lim
n→∞

‖xn − z‖ = 0.

Proof. The result is obtained from the proof of Theorem 3.10.

The assumption that the sequence (αn) in [0,1] satisfying

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞ and
∞∑

n=0

(1− αn+2)|αn+1 − αn| < ∞

can be obtained if (αn) is a decreasing sequence in [0,1] with lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞. Hence we have the following corollary.

3.13 Corollary Let B be a Banach space such that the duality mapping J is

single-valued and norm to weak star uniformly continuous on every bounded

subset of B. Let T be a nonexpansive mapping on a closed convex subset

C of B such that the set F of all fixed points of T is nonempty. Let (αn) be

a decreasing sequence in [0, 1] which satisfies

lim
n→∞

αn = 0, and
∞∑

n=0

αn = ∞.

Let x0 ∈ C and define a sequence (xn) in C recursively by

xn+1 = αnx0 + (1− αn)Txn, for n ∈ N0.

For each t ∈ (0, 1), let zt be the unique element in C such that

zt = tx0 + (1− t)Tzt.

Assume that there is a fixed point z of T such that lim
t→0

‖zt − z‖ = 0. Then

lim
n→∞

‖xn − z‖ = 0.
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