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CHAPTER 1

INTRODUCTION

This thesis is concerned with the approximation of fixed points for
nonexpansive self-mappings. The problem of this kind has widely been studied.
By a nonexpansive mapping we mean a map 7' from a normed linear space X

into itself such that
| Tz= Tyl < ||z= vyl for every x,y € X.

A nonexpansive mapping 7' is said to have the fixzed point property if the set
{z : Tx = z} is nonempty.

In 1965, Browder [1] established that a nonexpansive mapping from the unit
ball of a real Hilbert space into itself always possesses at least one fixed point. In

1967, Browder [2] used the Banach Fixed Point Theorem to prove the following :

Let H < be  a  Hilbert space, and U~ the “unit. ball of H, i.e.,
U={xeH:|z||<1},and T : U — U a nonexpansive mapping with the
fixed point property and y; the unique element of U satisfying vy, = kTyx

for k € (—1,1). Then
lim g, =y,

where y is the unique fixed point of 7" with the smallest norm.

In 1967, Halpern [3] gave a simple iterative method for approximating fixed

points of such map. In fact, he generated a sequence (x,,) by the recursive formula

Tni1l = Qi1 T Tp, for n € Ny,



where T is the nonexpansive mapping and («,) is an appropriate sequence of
real numbers. Also he introduced the definition of an acceptable sequence as
follows : A sequence (o) is said to be acceptable if, for any Hilbert space H,
any nonexpansive mapping 7' : U — U with the fixed point property, where U is

the unit ball of H, and for any point a € U, the sequence (z,), defined by
20 = Qy2n = 0T 2p—q, for n € N,

converges to y, where y is the fixed point of 7" with the smallest norm.
Moreover, by using the above result of Browder, Halpern [3] gives necessary
conditions and sufficient conditions on (a;) to insure that the sequence of (x,)

converges to a fixed point of T'. The statements are the followings :
The necessary conditions for the sequence (a,,) to be acceptable are

n—00

(i) an € (—1,1), (i) lim a, =1, and (iii) [Jan =0.
n=1

The sufficient conditions for («,) to be acceptable are

(i) a,<1lforallneN, (i) a, is an increasing sequence,

(iii) lim «, =1 and

(iv) there exists an increasing sequence (k) of positive integers such that

1—a, .
(@) im % =1 ' and ¢ () lim k,(1 = a;) = 0.

Let C be a closed convex subset of a normed linear space X and T a
nonexpansive mapping from C' into itself, with the fixed point property.

Define a sequence (x,,) in C' recursively by
Tpt1 = apxo + (1 — a,)Tx,, for n € Ny, (1.1)

where «,, € [0,1] for each n and xy € C is arbitrary.



In 1980, Reich [4] showed that if X is a uniformly smooth Banach space, i.e.,

the limit
t —
o 2+ 00~ sl )
t—0 t
is attained uniformly for z,y € S, where S = {z € X : ||z|| = 1}, and a sequence

(o) in [0,1] satisfies

Oén:i, where 0 < a < 1,
na
then the sequence (x,,) defined as in (1.1) converges to a fixed point of T
In 1992, Wittmann [5] proved that if X is a Hilbert space and a sequence («,)
in [0, 1] satisfies

o0 o0
lim a,, = 0, E oy, = 00 and E |1 — | < 00,
n—oo

n=0 n=0
then the sequence (x,,) in €' defined as in (1.1) converges to a fixed point of 7.

In 1997, Shioji and Takahashi [6] obtained the same result as Wittmann’s in the
case when X is a Banach space whose norm is uniformly Gateaux differentiable,
i.e., for each y € S, the limit (1.2) is attained uniformly for x € S, where
S={zreX:|z| =1}

In our work, we-confine our study on Banach spaces whose norm is uniformly
Gateaux differentiable and we find conditions on (av,) weaker than those of Shioji

and Takahashi [6] that also give the same conclusion.



CHAPTER II

PRELIMINARIES

In this chapter, in order to make the subject more complete and
understandable definitions, theorems and propositions whose results will be
needed in our work will be stated, and examples of some definitions are also

given.

Notation

Let N, Ny and R denote the set of all positive integers, the set of all nonnegative
integers and the set of all real numbers, respectively. The set B stands for a real
Banach space and B* is its dual. For each x in B, ||z| and (x) denote the norm
of x and the subspace of B spanned by z. If z € B and f € B*, the value of f at

x is denoted by (z, f), and by || f|| we mean the norm of the linear functional f.

Hahn-Banach Theorem

2.1 Definition Let X be a real vector space and p : X — R.
(i) If for any z,y in X , p(x + y) < p(x) + p(y) then p is said to be
subadditive.

(ii) If for any x in X and for any a > 0, p(ax) = ap(x) then p is said to

be positively homogeneous.

(iii) If p is subadditive and positively homogeneous then p is called a

sublinear functional on X.



2.2 Theorem (Hahn-Banach Theorem) Let X be a real vector space, p: X — R
a sublinear functional on X and f : M — R a linear functional on a subspace
M of X satisfying

f(z) < p(x), for all x € M.

Then f has a linear extension ]?from M to X such that

f(z) < p(x), forall x € X.

2.3 Definition Let (X, d) be a metric space and f : X — X. If there is a positive

real number k such that
d(f(@), f(y)) < kd(z,y), forall z,y € X,

then f is said to be a contraction mapping if k < 1 and f is said to be

a nonexpansive mapping if k = 1.

2.4 Theorem (Banach Fized Point Theorem) Let (X, d) be a complete metric
space and f : X — X a contraction mapping on X. Then f has precisely

one fixed point.

Duality Mapping and Differentiability of the Norm in

Banach Spaces

We will introduce the notion of a duality mapping of a Banach space
and state some relation between the duality mapping and the differentiability
of the norm of the Banach space. We present here the definitions of the terms
which will be used in our work and some of their examples, and also state some
important propositions concerning duality mapping and differentiability of the
norm of the Banach space but the proofs of them will be omitted, since they can

be found in Takahashi [7].



2.5 Definition Let B be a Banach space. For each x € B, let
Je={feB": (x,f) = |=|* = If]I"}.

The mapping J defined above is called the duality mapping of B.

J can be considered as a multi-valued mapping from B into B*.

The following proposition give some basic properties of the duality mapping.

These properties play an important role in the proof of our main theorem.

2.6 Proposition Let B be a Banach space and let J be the duality mapping of

B. Then for each z € B,

(i) Jz # o,
(ii) for each a € R, J(ax) = aJw, and

(iii) for each f € Ja, |[«]|* = ||y||* € 2(x — y, f), for all y € B.

The differentiability of the norm of the Banach space has an interesting relation
to the property that the duality mapping of B is single-valued. Now we present

the definitions of some types of differentiability on Banach spaces.
2.7 Definition For a Banach space B, let S = {z-€ B : ||z| = 1}-

(1) If the limit

t .
byl — o]
t—0 t

, (2.1)

exists for each x,y € S, then the norm of B is said to be Gateaux

differentiable and B is said to be smooth.

(i) If for each y € S, the limit (2.1) is attained uniformly for x € S, then
the norm of B is said to be uniformly Gateaux differentiable and

B is said to have a uniformly Gateaux differentiable norm.



(iii) If for each x € S, the limit (2.1) is attained uniformly for y € S, then
the norm of B is said to be Fréchet differentiable and B is said to

have a Fréchet differentiable norm.

(iv) If the limit (2.1) is attained uniformly for z,y € S, then the norm of
B is said to be uniformly Fréchet differentiable and B is said to

be uniformly smooth.

2.8 Remark In the definitions of differentiability of the norms of Banach spaces

above, we can see that

(i) if the norm of B is uniformly Fréchet differentiable, then it is
Fréchet differentiable, uniformly Gateaux differentiable and Gateaux

differentiable.

(ii) if the norm of B is uniformly Gateaux differentiable, then it is Gateaux

differentiable.
(iii) if the norm of B is Fréchet differentiable, then it is Gateaux
differentiable.

2.9 Example Every Hilbert space has a uniformly Fréchet differentiable norm.

Proof. Let H be a Hilbert space, S := {z € H: ||z| =1}
We shall show that the limit

ety ]
t—0 t

exists uniformly for z,y € S and equals to (z,y), the inner product of

x and .

Let € > 0. Choose § = min{l, %}



For 0 < |t| < §, we have for each z,y € S

[l + tyll = ll=ll
t

Viet+tyz+ty) —1

(z,y)| = (z,y)

t

] (@, z) + 2t(x,ty) + 3y, y) -1 1)

V142t (x,y) + 2 -1
2(z,y) +1
== 5 - <fL’,y> .
V14 2t(z,y) + 2+ 1

Let g(t) = \/1+ 2t(z,y) + t2+ 1. Then

[l + tyll =l

| )| = [P )

IN

= 2o +l| = 5] + 31
< @lellll + )50 = + 31
’g(t) — 2| 1| |

= IS Lmr T2



It is easy to see that 2 — |t]| <

Lo 89 L) <o,
||y

since

[yl
1 < 1
g = 2-T0

Since [t| <1 and ||z]| = 1 = ||y||, we have

We note that

l9(t)=2] =v/1 +2t(z,y) + 2= 1]

< WA+ 2tz y) + 12 — 1| [/1 + 2t(z, y) + 2 + 1]

= |2t(z,y) + 1|

< 2ltllelllyll + 1 = 2f) + [*

< 3|tk
2+ |t
Since il < 3, we have
2 = |t
|z + tyll — [|l]] lg(t) —2| | 1
—(zy)| S @+ ) o
3]t 1
<2+ t) 77—+ =|t
3 2;
< =(3]|t =\t
< Sl + 5l
=5lt| <e.
t —
Hence }iné =+ ?Jt” Il = (z,y) uniformly for z,y € S and thus

|| - || is uniformly Fréchet differentiable. O
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2.10 Proposition If B is a smooth Banach space, then the duality mapping J

of B is single-valued.

2.11 Corollary Let B be a Banach space.

(i) If B has a uniformly Gateaux differentiable norm, then the duality

mapping J of B is single-valued.

(ii) If B has a Fréchet differentiable norm, then the duality mapping J of

B is single-valued.

(iii) If B has a uniformly Fréchet differentiable norm, then the duality

mapping J of B is single-valued.

2.12 Proposition If the norm of B is uniformly Gateaux differentiable then the
single-valued duality mapping .J is (norm to weak star) uniformly continuous

on each bounded subset of B.

Banach Limits

Since a Banach limit is an important tool of the proof in our main theorem,
in this section, we give a definition and some remarks on Banach limits.
We denote by [*° the space of all real bounded functions on the nonnegative

integers.

2.13 Definition Let p be a bounded linear functional on {* and (x,) € [*.
We write u(x,) instead of p((x,)). If u satisfies p(z,) = p(x,41) for all

(x,) € 1> and u(1) = 1, then we call 4 a Banach limit.



11

2.14 Proposition There exists a Banach limit .

Proof. Let q:1*° — R be defined by

$0+J]1+"'+$n_1

q(z,) = limsup , for (z,) € ™.

n—00 n
Let ¢ := {z = (x,) € [® : z is a convergent sequence}. Then c is a

subspace of [°°.

If (z,) € ¢, then the map [ : ¢ — R with I(z,,) = lim =z, is defined,

n—oo

and [ is a linear functional on c.

A . . XTot+x1 A+ X
Moreover, it is known that I{z,) = lim ——— L
n— 00 n

Clearly, q is a sublinear functional on [>°.

By the Hahn-Banach theorem, there exists a linear functional

i 1% — R such that u(x,) = I(x,) on ¢ and

p(zy,) < q(xy,) for all (z,,) € I°°.

Next, we will show that p is a Banach limit.

Since it is obvious that (1) = (1) =1 = ||u]|, it suffices to show that
pu(xnyr) = plxy,), forall (z,) €1°.

We note that

/L(fl’n+1 — $n) = —M(—(l‘m-l - «'L’n)) > _Q[_(xn—&-l - xn)]

— lim inf (w) >0,

n—00 n -

and

(ZTn1 — Tn) < q(Tpga — x,) = limsup <w> <0.

n—o0 n

Thus p(z,41) = p(z,). Hence p is a Banach limit. O
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2.15 Proposition For every Banach limit p,

liminfz, < p(z,) <limsupz,, for (z,) € I*.

n—oo n—o0

Proof. Let © = (x,) be arbitrary in [*°. First, we shall show that

w(zy,) > 0 if z, >0 for all n € Ny.

If 2, =0, for all n € Ny, then the inequality is immediately obtained,

since p(0) = 0.
Assume that there exists n € Ny such that @, # 0. Then ||z|| > 0.
Suppose that p(z,) < 0.

Let y = (yn) € > be such that for each n € Ny,

Ln
Yn=1— 7.
]
Then ||yl < 1 but u(y) > 1.
Hence ||u|| = sup |u(2)] > 1, a contradiction.
ZASVSS
=<1

Now we have p(z,) > 0 if z,, > 0 for all n € Ny.

Next, we shall show that inf z, < p(z,) < supx,.
n€eNg n€Ng

We shall show only ian Ty < (Zy)-
neNp

For € > 0, choose ng so that

inf z, <z, < inf z, +¢,
n&ENp neNg

Then x,, + ¢ — x,, > 0 for all n € Ny.

By wu(x,) > 0if 2, > 0 and p(1) = 1, we have

inf z, < n .
jnf < u(zy) +¢
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Since € > 0 is arbitrary, ing Ty < p(Ty,).
n&Ng
Similarly, sup x,, > p(z,).
n€eNg

Hence, we have for each k£ € Ny,

inf x,, < p(rg) < supz,

n>k n>k
By w(z,) = p(@ns), for all n € Ny, we then obtain that
liminf z,, < p(z,) < limsup z,. O

2.16 Proposition For every Banach limit p, if (a,) and (b,,) in [*° are such that

an > by, for every n € Ny, then u(a,) > 1(by,).

Proof. Let (a,) and (b,) be sequences in (> such that a, > b, for all

n/EEFQO
Then for each n € Ny, a,, — b, > 0.
By Proposition 2.15, we have u(a,) — n(b,) = p(a, — by) >0

Hence p(a,) > pu(by,). O



CHAPTER III
APPROXIMATED SEQUENCES FOR

NONEXPANSIVE MAPPING

In this chapter, we will prove our main result which can be stated as follows :

Let B be a Banach space whose norm is uniformly Gateaux differentiable, C'

a closed convex subset of B. Let T': C' — C be a nonexpansive mapping, i.e.,
[Tz =Tyl <f{lz—yll,  forallz,y € C.
Let (o) be any sequence in [0, 1] satisfying
nh—>r{>lo a, =0, ian = 0o and i(l — Qpro)|Anp1 — ap| < 0. (3.1)
n=0 n=0
Let o € C be arbitrary. Define (z,) in C' by
Tpa1 = oo + (1 — )Tz, forn € Np. (3.2)
For each t € (0,1), define z; to be the unique element in C' such that
2z =txg + (1 —t)T2. (3.3)

If T has a fixed point and ling |z — z|| = 0 for some fixed point z of T' then

lim ||z, — z|| = 0.
n—oo
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The following lemma guarantees the existence of z; in (3.3), for each ¢t € (0, 1).

3.1 Lemma Let (X, || -]|) be a Banach space and C' a closed convex subset of X.
If T:C — C is a nonexpansive mapping, then for any xo € C and for any
t € (0,1), the mapping ¢; : C' — C defined by ¢;(x) = tzg + (1 — t)Tx, for
each x € (|, is a contraction. Hence by the Banach fixed point theorem g;

has a unique fixed point.

Proof. The conclusion that g; is a contraction is immediately obtained

from the assumption that 7' is nonexpansive and 0 < 1 —t < 1. O

From the above lemma, we have that for each zy € C, for each t € (0, 1), there

is a unique z; in C' such that

zi =trg+ (1 = )T 2.

3.2 Definition Let 7" : X = X . A subset A of X is said to be T-2nvariant if

Tx € A for every x € A.

It is noticed that if C' has some additional condition, then there will be a fixed
point z of T such that Pn% |ze = z|| = 0. This result is shown in Takahashi and

Ueda [8]. The statement is as-follows :

3.3 Lemma Let B be a Banach space whose norm is uniformly Gateaux
differentiable, let C' be a weakly compact, convex subset of B and let
T : C — C be a nonexpansive mapping with fixed point property. Let
x € C and for each 0 < t < 1, let z; be the unique element of C' which
satisfies z; = tx + (1 — t)T'z,. Assume that each nonempty, T-invariant,
closed convex subset of C' contains a fixed point of 7. Then there is a fixed

point z of T such that Pr% |z — z|| = 0.
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The next two Lemmas state key properties of a Banach limit which are used
in the proof of our main theorem. The idea of the proofs are based on those of

Shioji and Takahashi [6]. We present here the proofs in detail.

3.4 Lemma Let a € R and let (a,) € {*°. Then p(a,) < a for all Banach limits

w if and only if for each £ > 0, there exists py € N such that

Qp + Qpy1 F oot Qnip
p

< a+e, forall p>pyand n € Ny.

Proof. To prove the necessity, assume that p(a,) < a for all Banach
limits p.
Define ¢ : {** — R by

n+p—1

q((z,)) = limsup sup — Z x;, forall (z,) €.

p—=oo  neN P i—n

Then ¢ is a sublinear functional on [*°.

Clearly, ((,) 1s a linear functional on ((a,)), the subspace of B

generated by (a,).

By the Hahn-Banach. Theorem, there exists a linear functional

w:l® =R such that p(z,) < q(z,) for all (z,) € [* and
#] o= iy

Claim that p is a Banach limit.

Since p(zn) < g@n) on 1%, —q(—z,) < —p(—zn) = p(zn) < gl@n).

Thus for all (z,) € [*,

n+p—1 n+p—1

1
liminf inf — x; < p(x,) < limsup sup — ;.
p—oo  neN p Z ( ) p—00 neN p

=n =n
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So
np—1
P Tps1 — Tn) > li;x_{ioglf Tlllellfwg ; (2541 — ;)
= liminf inf l(xnﬂ, —x,) >0
p—oo neEN P
Similarly,

P(Tpgt — 2,) < limsup sup —(zp4p — ) < 0.
p—00 neN P

This implies that p(z,.1) = u(x,), for all (x,) € I*.

It is clear that w(l) = 1 and |u(z,)| < 1, for any (z,) € [*° and

[zal] = 1.

Hence ||u]] = sup |u(z,)| =1 = wu(1). Therefore we have the claim.
(zn) € 1°°
znll =1

Since q‘«an)) = u|<(an)> and g is a Banach limit, then ¢(a,) < a.
Then for each € > 0, there exists pg € N such that

(7% + Ap+1 + -+ an+p—1
p

<a+e, forall p>pyand n € Ny.

To prove the sufficiency, we assume that for each ¢ > 0, there exists

po € N which satisfies

Gp + Qpp1 + -+ Qpypt
p

<a+e, (3.4)

for all p > py and for all n € Ng.
Let p be a Banach limit and € > 0 be given.

By the hypothesis, there exists py € N which satisfies (3.4), for all

p > po and for all n € Nj.
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Since p is a Banach limit,
,U(anﬂoofl) == ﬂ(an+2) = N(anJrl) = M(an)-

Then by Proposition 2.16 and the properties of Banach limit,

)

plan) = p_o(pOﬂ(an))

- pio[,u(an) + ptlangs) + -+ 1(anspo1)]

7 (an +ap1+ -+ an+p0_1)
Po

< p(a +¢€)

= (@ +&)p(1)

vt =2

Since £ > 0 is arbitrary, we get u(a,) < a. O

3.5 Lemma Let a be a real number and (a,) € {* be such that p(a,) < a for

all Banach limits p and limsup(a,+1 — a,) < 0. Then limsupa, < a.

n—oo n—oo

Proof. Let ¢ > 0 be given. Since p(a,) < a for all Banach limit u, by

Lemma 3.4, there exists p € N such that

@p F Qi+ - Qg <CL—|—§,
P 2

for all n € N.

If p=1, it is obvious that limsupa, < a.

n—oo

Assume that p > 2.

Since lim sup(a,+1 — a,) < 0, there exists ng € Ny such that

n—o0

€
Gpi1 — G < ——, for all n > ny.
(p—1)
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Let n > ng + p. Then for each i € {0,1,...,p — 1}, we have

Ap = Qp—; + (an—i—i-l - a'n—i) + (an—i+2 — an—i-i—l) +oee (a’n - a'n—l)

S (p—i + .
(p—1)

So we get

pan S (an+avz—1+an-2+' 1 +anfp+1)+(o+1+2+ ' +(p_1))

€
(p—1)
Thus

< An, HOpL G2+ -2 Gppri 1]7(]9— 1) €
p p 2 (-1

Qp

<a+e.

Hence limsupa, <a+ ¢.

n—oo

Since € > 0 is arbitrary, limsup a, < a. Il

n—oo

In case that the Banach space B has a uniformly Geteaux differentiable norm
we have a nice result on the convergence of nets in each bounded subset of B.
This is because in such a Banach space the duality mapping J is single-valued
and norm to weak star uniformly continuous on each bounded subset of B. We

state precisely the following lemma :

3.6 Lemma Let B be a Banach space such that the duality mapping J is
single-valued and norm to weak star uniformly continuous on each bounded
subset of B. For each t € (0,1), let z; be a point in B. If z € B is such that

lir% 2y = z, then for any z,y in B

linl%(x -z, J(y—z)) = (& — 2, J(y — 2)).

t—
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Proof. First we show that Pn&(x -y, Jly—2z)) ={(x—y,J(y — 2)).
Without loss of generality, we may assume that = # y. Therefore

|z =yl > 0.

Let € > 0 be given. Since J is uniformly continuous on each bounded

subset of B, it is continuous at y — z.

There exists a 0 > 0 such that for every v € B, |jv— (y — 2)|| < ¢
implies

E

{w, Jv =J(y —2))] for every w € B with ||w| < 1.

< p- ¥ 1 K
lz =yl
Since 11_1(1&@ = 2, 11_I)%y =2y =4y — 2.
Let v be a positive real number such that [¢| <+, implies

Iy —2) = (y — 2l < 0.

Then for ¢ € (0,1) with |t| < 7, [[(y — 2:) — (¥ — 2)|| < ¢ and hence

(=t =)=t )| < 1=

lz =yl [ =yl

That is if t € (0,1) is'such that |¢| <=, then
o=y, (y— 2) — Jy — 2))| <e.

Therefore Pna(x -y, Jy—2z)) =(x—y,J(y — 2)).

Next, we shall show that

lirr&(x -z, J(y—z)) = (x — 2, J(y — 2)).

t—

I

Since || - ||? is continuous and lim z; = 2z, lim |ly — z||* = |ly — z||*.
t—0 t—0
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We have for each ¢ € (0, 1),

(=20, J(y — 2)) = (& — 2, J(y — 2))|
=l —yry—2Jy—2) - (@-y+y—2zJy—2)
=z =y, J(y —2)) + ly = all* — lly — 2I° — (@ —y, J(y — 2))|
< Ko —y, Hy=2)) — (z =y Ty=2)| + |y — 2/ = lly — =I°|-
Then 0 < 1ii%|<x—zt,(](y—zt))—(:B—z,J(y—z))]

< P_I}I(%K:E—y,a](y_zt» —(z =y, J(y — 2))]

L1 1y~ 2% lly = =l =0.

That is Pn&(x —ziy J(y = z)) = (x — 2, J(y — 2)).

The following Lemma obtains some idea from Wittmann [5].

3.7 Lemma Let B be a Banach space and C' a closed convex subset of B. Let

T : C — C be a nonexpansive mapping such that the set F' of all fixed

points of T" is nonempty. Let (a,) be a sequence in [0, 1] satisfying (3.1), i.e.

(e.9] o
nh—>nc>10 a, =0, Zan = 00 and Z(l — Qpro) |1 — Q| < 00.

Let 29 € C and define (z,,) asin (3.2), i.e.

Tpr1 = oo + (1 — ay,)Tx,, forn € Ny.

Then the sequence (z,) and (Tx,) are bounded.

Proof. In proving this lemma, we have two cases to consider :

Case 1. 0 € F.

For eachn € No, | T2, = | T20—0|| = ||[T20—T0| < [|2n—0|| = ||z2]-
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Let n € Ny be such that ||x,| < ||zo]|. Thus

[2n1ll = [lanzo + (1 = n)Twn|] < anllzoll + (1 = )|z,

< ag|lzol| + (1 = an)[o| = [lo]-

Then ||z, || < ||zol| for all n € Ny. Hence (z,,) and (Tx,,) are bounded.
Case 2. 0 ¢ F.

Let p be a pointin F. Letéz{az—p:xeC} and define T : C — C

by

T(z) =T(z+p) —p, forall z € C.
Then | Tz — Ty| = ||(L(x +p)=p) — (T(y +p) — )
< @ +p) =y +p)l = |z —yl, for all z,y € C.

Then T is nonexpansive and 0 € F(T), where F(T) is the set of all

fixed points of T.

Set Ty =@y — p and for each n € Ny, let Z,11 = a,To + (1 — an)ffén.
From Case 1, we have (i,) and (TZ,) are bounded.

We claim that z,, = x,, — p, for all n € N,.

We already have g = x¢ — p.

Let n € Ny be such that z,, = x,, — p. Then

Fnsr = nFo + (1 — )T 70 = an(zo — p) + (1 — )T (20 — D)
= an(zo —p) + (1 — a){T[(xn — p) + 1] — p}
= o — anp + (1 — o) [T () — p)
= apzo+ (1 — )T, —p

= Tpy1 — D
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Thus z,, = z,, — p, for all n € Ny, and we have the claim.

So we have ||z, || = ||&n + p|| < ||Z.]| + [|p|| and

[T nll = 1T (@n + p)| = 1T + pll < T2l + [Ipll

Hence our requirement is proved. O]

The following two Lemmas are based on the idea of the work of Shioji and
Takahashi [6].
The first lemma states some asymptotic behavior of (z,), defined in

Lemma 3.7.

3.8 Lemma With the same hypothesis as in Lemma 3.7, we have
lim ||z, —an| = 0.

Proof. By Lemma 3.7, we obtain that (x,) and (Tx,) are bounded.

Let M := sup{||Tz,|| : n € No}. Then for each n € Ny, we have

[#nt1 = 2|l = [llomzo + (1 — an)Ten] — [an-120 + (1 — 1) TTp—1]]]
= |[(an — an1)zo + (T, — Ty q)
— (T, — Txp 1)+ (a1 — ) TTy1]|
= |[(atn = an_1)(wo — Txp1) + (1 = ) (T — Ty q) ||

< Jom = apa|(fJzoll + M) + (1 = o)y — zna |
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Since for each k € Ny, zp1 = agzo + (1 — ag)Txy, we have for each

m,n € Ny,

| Tntmt1 — Togml|

< |an+m - an+m_1|(||x0|| + M) + (1 - O‘n-i—m)”mn—i-m - xn-l—m—l”

n-+m—2
S |an—|—m = an+m—1| + Z (]- = Oék+2)|0ék+1 - akl] (HIOH + M)
k=m
n+m—1
+ H (A= as1) || Tmy1 — T
k=m
n+m—2
< |an+nz, F Oén—!—m—ll + Z (]- o\ ak+2)|ak+1 - akl] (HIOH + M)
k=m

n+m—1
+ €xp <_ Z ak+1> me+1 L% xm” (35)
k=m

o0
Since lim «,, = 0 and Z @, = 00, we have for each m € Ny,

n—00
n=0

n+m—1
lim | im — Qngm—1] = 0 and lim exp | — E a1 | =0.
k=m

n—od n—oo

Therefore for each m € Ny, we have from (3.5) that

lim sup {|zn 11 — o

n—oo

= lim sup |Zptmi1 — Zotml|

n—oo
n+m—2
< limsup 9 f|@nim = Qagmor |+ Y A1 = apa)|arin = axl | ([|zofl + M)
n—oo k‘:m
n+m—1
+ exp <_ Z Oék+l> | Tt —ImH}
k=m
o0
= (lzoll + M) > (1 — apra)lnn — oul. (3.6)
k=m

Let € > 0 be arbitrary. We can choose m large enough that

oo
9

(1 — agio)|agsr — g < 7——— and then
,;1 (ol + M)
lHm sup || Zp1m+1 — Tnam|| < €. This implies that lim ||z,41 — x,] = 0.

n—oo

]
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The next lemma is an essential result needed in proving our theorem.

3.9 Lemma Let B be a Banach space such that the duality mapping J is
single-valued and norm to weak star uniformly continuous on each bounded
subset of B. Let C' be a closed convex subset of B and zy be arbitrary in
C. Let T, (cv,) and () be as in the hypothesis of Lemma 3.7, and for each

t € (0,1) defined z; as in (3.3), i.e.,
2 = taog + (1 —t)T 2.

Then

limsup(zy — 2, J(z, — 2)) < 0.

n—:~o0

Proof. Let j be a Banach limit and ¢ € (0, 1).
By the boundedness of (z,,), we have {||x,, — 2| : n € Ny} is bounded.
It implies that {||z, — 2| : n € Ny} is also bounded. Then for each
n € Ny,
2, —T2))* = llan-120 + (1 — 1) Tay—1 — T2|?
<donallzom Top sl + [Ty =T2l])*
< (an-1(]|zoll + M) + [[zn-1 — 2l])*
< ansa (ol + M) + 2an L (lloll + M) 201 — 2l

+ |1 — 2l

From the assumption that lim «,, = 0, we have

n—oo

e = Tzll* < llwn-1 — 2|

Since p is a Banach limit, from Proposition 2.16, we obtain

plllzn = Tzell*) < pllln — 2. (3.7)
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Since (1 —t)(x,, — T'z) = (2, — 2) — t(x, — x0), we have that
(L= )2 = Tzell* = [[(@n — 20) =tz — 20)|” (3.8)
By Proposition 2.6(iii) and J is single-valued we have for each y € B,
lzn = 2ell* = lyl* £ 2(za — 2 — y, J (20 — ).
Or for each y € B,

111%2 lln = 2ll* = 2020 — 2=y, (20 — 21)). (3.9)

Hence from (3.8) and (3.9) with y = (z,, — 2z;) — t(x,, — zo) we have

(1 =) llen = Tall* = llen = 2] = 20t (20 — 20), J (20 — 2))
="z, — Zt”2 — 26Ty, — 2t — To + 21, S (@, — 22))
=@, —z|2% 2tlx,, — 2, J(zr — 2))
+ 2t(xo = 24, I (T, — 2¢))
==zl =2t =2 + 2t{zo — 2, J(zn — 2))

= (1 =2t)||zn — 2| + 2t{zo — 2, I (Tp — 2)).
By Proposition 2.16 and (3.7) we get

(1= ulllwn—20l*) 2> (=26 pu(llwn —2ell*) +-2t p{zo =24, J (20 —2)))-

Hence

t
5 #lllzn = 201%) 2 pl(zo = 21, (20 = 20)))- (3.10)
Since p and || - ||? are continuous, we have
. t 2 . t . 2
limsup 2 p(|[zn — 27) = limsup = limsup p([lz, — 2%
t—0 2 t—0 2 t—0
=0 - p(limsup [z, — z?)
t—0

=0 p(Jzn — 2|I*) = 0. (3.11)
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By Lemma 3.6 we have for each n € Ny,

lim(zg — 2t, J(xn, — 20))) = (xo — 2, J (2, — 2)). (3.12)

t—0

From p is continuous and (3.12), we obtain

lim sup pe( (2 — 2 J (0 — 26))) = pallimsup(ag — 24, J (@0 — 7))

t—0 t—0

= pl{zo — 2z, J(zn —2))).  (3.13)
By (3.10), (3.11) and (3.13), we have
0> ul{xg — 2z, J(x, — 2))).

We claim that lim |(zg — 2, J(xps1 — 2)) — (0 — 2, J(x, — 2))| = 0.

n—00

Let € > 0 be given.

Since J is norm to weak star uniformly continuous on each bounded
subset of B and .J is norm to weak star uniformly continuous on

{z, — 2z :m € Np}.
Then there exists a 6 > 0, such that for every n € Ny if
|(Zny1 —12) = (2, — 2)|| < 0 then

{zo= 25 (@n g1 2)) = A@o= 2, I (B0 =2 <.
From Lemma 3.8, there exists an N € N; such that for any
n > N, ||xne1 — z,|| < 9. Hence we have the claim.

By Lemma 3.5, we get

limsup(zg — z, J(x, — z)) < 0.

n—oo
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This Theorem is developed from some proof of Shioji and Takahashi’s work [6]

under our sufficient conditions.

3.10 Theorem Let B be a Banach space whose norm is uniformly Gateaux
differentiable and 7' a nonexpansive mapping on a closed convex subset
C of B such that the set F' of all fixed points of T" is nonempty. Let () be

a sequence in [0, 1] which satisfies
nh_}ngo ay, = 0, ian = oo and i(l — Qpia2)|ani — ap] < o0.
n=0 Ay
Let 29 € C and define a sequence (z,,) in C recursively by
Tnp1 = anzo + (1= a,)Tx,, forn e Ng.
For each t € (0,1), let z; be the unique element in C' such that
Ze = txg F(T—1)1 2.

Assume that there is a fixed point z of 7" such that %ir% |zt — z|| = 0. Then

lim e, — 2 =0,
Proof. By Proposition 2.6(iii) we have for each f € J(x,41 — 2),
Hor = 2P = (@nt 5 2orenter @) S Aanlzo12), f).
Since the duality mapping is single-value, we have

(@1 = 2) = an(zo = 2)II* > [lwnss — 2II° — 20 (w0 — 2, J (w041 — 2)).
(3.14)
From the identity (1 — a,)(Tx, — 2) = (xpe1 — 2) — an(zo — 2) , We

have from (3.14) for each n € Ny

(1= o) 1(T2n — 2)I* 2 N2 — 2lI* = 200 (@0 — 2, J (@0s1 — 2))-
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Thus for each n € Ny,

[E—— zH2 <(1- ozn)ZHTJ:n — TZ||2 + 20, (xo — 2, J (Tpi1 — 2))
< (1 —ap)|lzn — 2> +2(1 = (1 — an)) {20 — 2, J(Tny1 — 2)).
(3.15)

Let € > 0 be given. Since limsup(zy — 2, J(z, — 2)) < 0, there exists

n—oo

an m € Ny such that for n > m,

(xo= 2z, J(x, — 2)) <

DO ™

Thus for n € Ny, (3.15) implies

| Znsm — Z”2 < (L~ im-llZarmr1 = ZH2 + (1= (1= anym-1))e

< 11 <1—ak>||xm—z\12+<1— 1 <1—ak>>e

k=m k=m

n+m—1
< exp (— Z ak> |Zm = 2JI? + €. (3.16)

k=m

Since Z a,, = 00, we obtain from (3.16) that
n=0

lim sup || zp. — 2|2 = limsup ||y em —2|]* < e.

n—oo n—00

Because ¢ > 0 is arbitrary, limsup|z, — 2||* = 0 and this implies

n—00
lim ||z, — 2||* = 0"and thus
n—oo
lim ||z, — 2| = 0.
n—oo
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3.11 Corollary Let B be a Banach space whose norm is uniformly Gateaux
differentiable, C' a weakly compact convex subset of B, and ¢ be any point
in C. If T: C — (' is a nonexpansive mapping such that every nonempty,
T-invariant, closed convex subset of C' contains a fixed point of 7', and («v,)

is a sequence in [0, 1] such that

(0.0) o0
lim a,, =0, g a,, = oo and E (1 = avpi2)|ant — an| < oo,
n—oo

(=(0) 7=

then the sequence (z,) in C' defined by
g1 = ap@o + (1 — a,)Tx,, forn € Ny,
converges strongly to a fixed point z of 7.

Proof. The result is obtained immediately from Lemma 3.3 and

Theorem 3.10. O

From the proof of Theorem 3.10 we note that the condition that the norm of
B is uniformly Gateaux differentiable is used only to make sure that the duality
mapping of B is single-valued and norm to weak star uniformly continuous on

each bounded subset of B, so we have the immediate corollary.

3.12 Corollary Let B be a Banach space such that the duality mapping J is
single-valued and norm to weak star uniformly continuous on every bounded
subset of B. Let T be a nonexpansive mapping on a closed convex subset
C of B such that the set F' of all fixed points of T" is nonempty. Let () be

a sequence in [0, 1] which satisfies

o0 o0
lim o, =0, Zan = 0o and Z(l — Qpi2) |1 — ap| < o0.
e n=0 n=0

Let o € C and define a sequence (z,,) in C recursively by

Tpi1 = apro+ (1 — a,)Tx,, forn € Ng.
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For each t € (0,1), let z be the unique element in C' such that
Zt = two + (1 — t)TZt
Assume that there is a fixed point z of 7" such that %ir% ||zt — z|| = 0. Then

lim ||z, — 2| = 0.
n—oo

Proof. The result is obtained from the proof of Theorem 3.10. O]

The assumption that the sequence (ay,) in [0,1] satisfying

o0 o0
lim o, = 0, E a, = 0o and E (1 — apya)|ani — an| < 00
n= n=

can be obtained if (a,) is a decreasing sequence in [0,1] with lim «, =0,

n—oo

o
Z o, = 00. Hence we have the following corollary.
n=0

3.13 Corollary Let B be a Banach space such that the duality mapping J is
single-valued and norm to weak star uniformly continuous on every bounded
subset of B. Let T" be a nonexpansive mapping on a closed convex subset
C' of B such that the set F' of all fixed points of 7" is nonempty. Let () be

a decreasing sequence in [0, 1] which satisfies

o0
lim o, =0, “and E Qy, = 00.
n—oo 0

n—=

Let xy € C and define a sequence (z,) in C recursively by
Tpi1 = auro + (1 — a,)Tx,, forn € Ng.
For each t € (0,1), let z; be the unique element in C' such that
2z =twg+ (1 — )Tz

Assume that there is a fixed point z of 7" such that %ir% ||zt — z|| = 0. Then

lim ||z, — 2| = 0.
n—oo
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