nsdnfsandudusnuuusiulidviugudeyadaing

[

UNeL WHleEl NFNFUNAT L

3‘1/1mﬁwuiﬁlﬂmquuﬁwmﬂq@ﬁﬂmmwﬁnzﬂmﬁ?mmﬁmmmmmm‘@wﬁﬁmeﬁm
A1 TNIAINIINABNAIARS NIATNIAINTIHABNNIALT
ARMTIAINITNANAAT . AraINIinnIINenge
tn9finen 2544
ISBN 974-03-0892-9

-

AUANTVBINAINTUNMNAINENAY

ACCESS METHOD OF AGGREGATION HIERARCHY AS A TREE IN OODB

Mr. Pichayotai Mahatthanapiwat

A Dissertation. Submitted:in-Partial Fulfilment-of the Requirements
for the Degree of Doctor of Philosophy in Computer Engineering
Department-of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2001
ISBN 974-03-0892-9

Thesis Title Access Method of Aggregation Hierarchy as a Tree in OODB

By Mr. Pichayotai Mahatthanapiwat
Field of Study Computer Engineering
Thesis Advisor Associate Professor Wanchai Rivepiboon, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor 's Degree

.. Dean of Faculty of Engineering

(Professor Somsak Panyakeow, D.Eng.)

THESIS COMMITTEE

.. Chairman

(Associate Professor Somchai Prasitjutakul, Ph.D.)

.. Thesis Advisor

(Associate Professor Wanchai Rivepiboon, Ph.D.)

(Associate Professor Supachai Tangwongsan, Ph.D.)

.. Member

(Assistant Professor Pornsiri Muenchaisri, Ph.D.)

(Lecturer Twittie Senivongse, Ph.D.)

falediy winsuAdmd nasdateddutusanuuusiulidmiugudeyadeing.
(ACCESS METHOD OF AGGREGATION HIERARCHY AS A TREE IN OODB)

.71 : 989A18R9Na9e m3. Jude Salwyadl, 106 win. ISBN 974-03-0892-9.

a a r-lf v aal ¥ KX v 1 aal ¥ =K %3 A
Inentinusiliiauedsnisdndedeyady sn1adnnadunislansaioulaamsg,
Anudndryaneoiuaniau LazisnsTiianan A uiunistssutanagaun N UaIALEuIIN

[

wuusnlidmiugudeyadeing wazthiauedanesnudmiunszuaunisaieananain

q

¥

paranNglutuafudusnuuusiulilugiudeya duiudeyarecudazaian aziiniaiu

o o

¥ o dl 1 z’/ d‘ -&l dl o 1o
foyarasingainaananasluaimntuaznisaasloslifingauaesnaiaduninliflian
3| % vaa ¥ ¥ = o = o o
Husesliiaviesnanalugudaya naslinssalinuanszuacnsssiigtnesaudminanan
1 b A ¥ o Y @ dp
azaqelinszuaunsduAuiabiEan
dp o v a =2 =K v ¥ o o aal v K
uananil faldinigafuaenennsnsdeyauaznisuiladayadmiuadsnisdinneuu
sineduFuanAutusanuuuauld uaztiauelugnszesgluundnldanelunisdaiv, nas
=KX v 17 a o dl = = 1 ¥ v asl
aedeya uaznisudladags anuannstassl edniswssinaugluuuA ldanaiing
pesrtinauunIdunedmiunatedunns wudne ldanelunisdniuresnssatianan
¥ 1 aa = 9 1 F =K v = = ddg(£
AztiaanddanssrinauIynaiidunie wazAtldanelunishsdeyanaunnnstiazhdy ul
daanlganslunsuiiladayad miudsassaiiaianazgandnaenanaununssidunieiaadou
ny wsiAnldanalunnsudladeyasedisassaiiaisnazandidanaunynsuduniedninig

= N
LLﬁbL“llﬂ’]?Leﬁ‘ﬂﬁJIﬂ\‘i?:in’N(FI’NZQ”PII’]

eV % oI VeV by NI ok A LoV L - ARG AV G R
a a a c = dl o‘dl
ANUNATN AAANTIHNARNNIALART @Wﬂwﬂﬂﬂ'ﬂﬂﬂﬂﬁ‘ﬂﬂlﬁ‘ﬂﬂﬂ

UnnsAnmn_ 2544 ANtNaTaa1an e NUTNEu

##4171818021 : MAJOR COMPUTER ENGINEERING

KEYWORD : ACCESS METHOD / QUERY PROCESSING / BRANCH INDEX / VIRTUAL
PATH / SIGNATURE / OBJECT-ORIENTED DATABASE
PICHAYOTAI MAHATTHANAPIWAT : ACCESS METHOD OF
AGGREGATION HIERARCHY AS A TREE IN OODB. THESIS ADVISOR :
ASSOC. PROF. WANCHAI RIVEPIBOON, Ph.D.106 pp.ISBN 974-03-0892-9.

This research proposed access methods such as the Direct Access to
Terminal Virtual Path, the Virtual Path Signature and the Branch Index for query
processing of the aggregation hierarchy as a tree in object-oriented databases. The
algorithm of branch generation will be proposed to generate all branches for the tree
aggregation of classes in the database. For each branch, the information of linking
objects is stored so that class traversal methods can be eliminated. Using a set of
attribute indexes and identity indexes for each branch, associative searching can be
conveniently performed.

The discussion of the retrieval and update operation is performed among
the access methods of aggregation hierarchy as a tree. Then, cost models in terms of
storage overhead, retrieval cost and update cost are formulated. When compared with
the Path Dictionary Index for multiple paths, the result shows that the Branch Index has
less storage overhead and the retrieval cost is improving in most cases. Although most
of the update cost of the Branch Index is higher than that of the Path Dictionary Index, It
will be better than that of the Path Dictionary Index when the update is performed on the

reference between different branches.

Vi

ACKNOWLEDGEMENTS

| would like to thank my advisor, Assoc. Prof. Wanchai Rivepiboon, Ph.D.
for his useful advice and his help in doing the research. | am indebted to Assoc. Prof.
Supachai Tangwongsan, Ph.D. for his teaching not only in the academic account but
also in the lifestyle. | would like to thank all members of the committee for their
suggestions and all members in Software Engineering Laboratory. | also owe a debt of
thanks to the reviewers whose suggestions added immensely to the comprehensiveness

of the research.

Finally, | would like to thank all persons that | cannot mention here and
dedicate this dissertation to my parent and especially my wife who encourage me while |

am doing the research.

TABLE OF CONTENTS

PAGE
AB ST RACT IN THA e v
ABSTRACT IN ENGLISH. ... Vv
ACKNOWLED GEMENT S . ..t e eee e Vi
TABLE OF CONTENT S, .ttt vii
TABLE OF TABLES .. Xi
TABLE OF FIGURES. ...ttt e et e Xii
LIST OF NOTATION. L.ttt e e e e XV
CHAPTER

1. INTRODUCTION.......... g 5 FFE B B s e ., 1
1.1 Problem Statements. ... e 1

1.2 The Purpose of the ResearCh. 6

1.3 The Scope of the RESEarCh.o 6

1.4 The Benefits of the Research.o, 6

1.5 The Method of the ResearCh........coooovoiiin i 7

2. RELATED WORKS L. e e 8
2.1 Theory Y el e eeeeeeereeeanass 8

2.1.1 Object and Object [dentifier.........ccoviiii i 8

2.1.2 Attributes and Methods.o.iuiie o 9

2 @ass L LS Y LY) 10

2.1.4 Class Hierarchy and.Inheritance. ...co.....oooiiiiiiii il 10

2.1.5 Aggregation HierarChy.......ocooooi i i 10

2.1.6 QUENY PrOoCESSING. ..ttt 11

2.2 Related WOrKS. ...t 11

2.2.1 Indexing TEChNIQUES. ... i, 12

2210 MU INABX. e e 12

2.2.1.2 Nested INABX. ... e 12

viii

TABLE OF CONTENTS (CONTINUE)

PAGE

2.2.1.3 Path INAEX.....uiviiii i 13

2.2.1.4 Index of Direct LinK.......ccooviiiii 13

2.2.1.5 Path Dictionary INdeX..........cooviiiiiiiiiii 14

2.2.1.6 Other Researches............cooiiiiiiiiiiii 14

2.2.2 Signature TEChNIQUE. ... 16

3. DIRECT ACCESS TO TERMINAL VIRTUAL PATH. ..o e 20
3.1 0rganization. ... oo78, .. . T onins < ee e e e ee e e e e 20
3.1.1 Terminal Virtual Path..........cooiiiii 20

3.1.2 Root-Terminal Virtual Path...........cccocooii, 22

3.1.3 Attriiite JNAEXA e N N 22

3.2 Database Operation.o i 23
3.2.1 Retrieval Operation......c....cooiie i 23

3.2.2 Update Operation.o 23

3.3 COSEMOTEL. ... 24
3.3.1 The Parameters of Cost Model................coviiiiiii. 24

3.3.2 | StofageCost it i, .). . 25

3.3.3 Retrieval CoSt. ..o 26

3.3.4 Update COSt. .. 27

4. VIRTUAL PATH SIGNATURE . ..o it et 28
4.1 OrganiZation. ... e 28
4.1.1 Terminal Virtual Path..........oci 28

4.1.2 Non-Terminal Virtual Path..............o 29

4.1.3 Virtual Path Signature........c.oooiiiiiiii 29

4.2 Database Operation.o 31
4.2.1 Retrieval Operation........ccoiiiii 31

4.2.2 Update Operation.........c.oooiiii i 31

4.3 COSt MO .o 32

TABLE OF CONTENTS (CONTINUE)

PAGE

4.3.1 The Parameters of Cost Model.........cocovviiiiiiiiiii, 32

4.3.2 StOrage CoOSt. . e 33

4.3.3 Retrieval CoSt.. ..o 33

4.3.4 Update CoSt....oiiii i, 34

5. BRANCH INDEX. ..ottt e et e 36
5.1 OrganiZation. ... 36
5.1.1 DefinitOTIS ™. . .. T . .. Wi tioetns -« <« e eeeeeeneneeenenaneneens 36

5.1.2 Algorithm of Branch Generation..............cooooiiiiiiiiiiien. 38

5.1.3 Branch Index Organization............cccoii oo, 39

5.1.4 Details of the Branch Information...............cccoocoiiiii, 41

5.2 Implementation. ... o e 43
5.3 Retrieval and Update Operation............cooiiiiiiiiiiiiiiicceeeee a7
5.3.1 Retrieval Operation.o 47

5.3.2 Update Operation........c.oieee i 49

5.4 COSEMOUEBL. ...t e 51
5.4.1 StOrage COSt.....uvuieiiii e 52

5.4.2 Retrieval COSt......oviiiii i 56

5.4.3 Update CoOSt. ... 57

5.4.3.1 Update the Reference on the Same Branch............... 57

5.4.3.2 Update the Reference on Different Branches.............. 59

6. COMPARISON OF ACCESS METHODS. . ..ot et e 60
6.1 Scope of the ComPariSON......o.v i 60
6.1.1 The Number of Access Methods Used in Comparison............... 60

6.1.2 The Queries Used in Comparison...........cocoviiiiiiiiiiiiiiaane 61

6.1.3 The Parameters Used in Comparison..........ccoevviiiiinnnnnnnn. 62

B.2 StOrage COSt. ottt 62

0.3 RetiEVal COSt. .. 69

TABLE OF CONTENTS (CONTINUE)

PAGE

6.3.1 The Predicate Class is the Root Class...........coooovviiiiiiiiininn, 69

6.3.2 The Predicate Classisa Leaf Class..........cocoviiiiiiiiiiiiinnnnn, 77

6.4 UpPAate COSt. .t 82

7. CONCLUSION AND PERSPECTIVE. ..ot 90
7.1 CONCIUSION. .t e 90

7.2 Perspective...... ..o 92
REFERENCES.............. .o 8 B e e 93
APPENDICES................. . & FFF 8 RN e 97
APPENDIX | Cost model of the Path Dictionary IndeX.............ccoovvvviiiinnn . 98
APPENDIX Il Letter of Acceptance from IJIT........oooo e 103
APPENDIX 11l Abstract of Paper from [JIT..........oooiiiiii e 104

BIOGRAPHY ...l e 106

TABLE OF TABLES

TABLE PAGE
Table 2.1 Signature generation example (incase b =16, Kk =4)........ccccoevviiiiiiennn. 17
Table 6.1 Parameters of COSt MOAEIS.o 62

AONUUINYUINNS)
RN ITNINENAY

TABLES OF FIGURES

FIGURE PAGE
Figure 1.1 Aggregation hierarchy a@s atree..........ooooiiiiiiiiiiiiiii 3
Figure 2.1 Example of an object-oriented logical schema............ocooovviiiiiiiiiiiiin, 9
Figure 3.1 Aggregation hierarchy as atree..........ooooi i 21

Figure 3.2 The structure of Terminal Virtual Path................oooi 21

Figure 3.3 The structure of root class-Terminal Virtual Path linking........................... 22
Figure 4.1 The structure of the Terminal Virtual Path.................coooi, 28
Figure 4.2 The structure of the Non-Terminal Virtual Path......................... 29
Figure 4.3 The structure of the Virtual Path Signature................ooooiii . 30
Figure 4.4 The signature of the Terminal Virtual Path..................on . 30
Figure 5.1 Aggregation hierarchy as a tree............oooiiiiiiii i 37
Figure 5.2 The BranCh INAEX. ... e 41

Figure 5.3 An example of object instantiation.................coi 42
Figure 5.4 The structure of an entry of abranch.................oc 43
Figure 5.5 An example of the structure of an entry of the main branch...................... 43
Figure 5.6 The structure of an information of a class in an entry of a branch............... 44

Figure 5.7 An example of the information for all classes of an entry of the main branch45

Figure 5.8 An example of the information for all classes of an entry of the child branch45

Figure 5.9 Non-leaf nod record of the identity index and the attribute index............... 46
Figure 5.10 Leaf node record of the-identity index and the attribute index................. 47
Figure 6.1 Aggregation hierarchy as a tree. e 60
Figure 6.2 The storage cost.of access Methods. .ovu. vivu i s bumin i i F e 68

Figure 6.3 The retrieval cost when the predicate class is the Person class

and the target class is the Vehicle Class..........ocovii i 71
Figure 6.4 The retrieval cost when the predicate class is the Person class

and the target class is the Company Class..........cooviiiiiii i 71
Figure 6.5 The retrieval cost when the predicate class is the Person class

and the target class is the Course Class..........cooviiiiiiic i 7

xiii

TABLE OF FIGURES (CONTINUE)

FIGURE PAGE
Figure 6.6 The retrieval cost when the predicate class is the Person class

and the target class is the Bank Class..........coooovi e, 74
Figure 6.7 The retrieval cost when the predicate class is the Person class

and the target class is the Engine Class.......c.oooiiiiiii i 74
Figure 6.8 The retrieval cost when the predicate class is the Person class

and the target class is the University €1ass...........coooviiiiiiiiiie 75
Figure 6.9 The retrieval cost when the predicate class is the Person class

and the target class is the Computer Class........c.coovvviiiiiiiee 75
Figure 6.10 The retrieval cost when the predicate class is the University class

and the target class is the Vehicle Class. ... 77
Figure 6.11 The retrieval cost when the predicate class is the University class

and the target class is the Company Class. ..o 78
Figure 6.12 The retrieval cost when the predicate class is the University class

and the target class is the Course Class....;...cocoovviiiiiiiii i 78
Figure 6.13 The retrieval cost when the predicate class is the University class

and the target class is the Bank Class.........ccoooiiii i 80
Figure 6.14 The retrieval cost when the predicate class is the University class

and the target class is the ENgiNe Class.o, 80
Figure 6.15 The retrieval costwhen the predicate class is the University class

and the target class is the Computer Class. 81
Figure 6.16 The retrieval cost when the predicate class is the University class

and the target class is the Person Class..........c. i 82
Figure 6.17 The update cost of reference between the Person class

and the VEICIE ClassS.......o.iui i 85
Figure 6.18 The update cost of reference between the Vehicle class

and the ComMPaNY ClasSS... ...t 85
Figure 6.19 The update cost of reference between the Company class

ANA the BankK Class. ... 86

Xiv

TABLE OF FIGURES (CONTINUE)

FIGURE PAGE
Figure 6.20 The update cost of reference between the Vehicle class

and the ENGINE ClasS. 86
Figure 6.21 The update cost of reference between the Person class

ANA the COUMNSE ClaSS. . e ettt it e 87
Figure 6.22 The update cost of reference between the Course class

and the UNIVErsity Class. ... i 87
Figure 6.23 The update cost of reference between the Person class

and the ComMPUIET ClaSS ittt e 88

OFFL.:
PL
SAj k
Uijk
i j.«
Pk

nib;;
LP
NLP
XP
X
Niden
hattr
nLC
NNLC:

LIST OF NOTATIONS

: The number of objects in class | of branch | or path dictionary i.
: The complex attribute of Classj of branch i or path dictionary I.

- Distinct value of complex attribute A,J

The length of Object Identifier.

. Page size.

: The size of page pointer.

: Average fan out from a non-leaf node.

: Average length of a key value in attribute index.
: Average key value for attribute index.

: The length of start field in the branch information and s-expression.

The length of offset field in path dictionary.

: The length of pointer in branch information.

: Simple attribute K of class | on branch .

: The number of distinct value for simple attribute.

: The ratio of shared attribute value.

: Reference sharing of the parent class of class I.

: Reference sharing of class J on branch I.

: The number of leaf branches of classj on branch i.
. Leaf page of the identity index or attribute index.

: Non-leaf page of the identity index or attribute index.
: Leaf node record of the attribute index.

. Leaf node record of the identity index.

: Height of the identity index.

: Height of the attribute index.

: The number of leaf classes of the aggregation hierarchy.

The number of non-leaf classes of the aggregation hierarchy.

: The length of link number.

XVi

LIST OF NOTATIONS (CONTINUE)

cl : The length of link counter.

S : The size of a signature.

S/ :The size of an object.

E : The average size of an entry in the signature file.

Ks : The average size of a signature file.
SEBi : The entry size of branch Bi.

$:>i : The size of s-expression of path dictionary Pi.

R : The average matching rate of a query signature.
H; - The number of ancestor classes from the root class to i” class.
Npar : The average number of parent objects for an object.

Np : The number of objects in the predicate class.
DTVP: The Direct Access to Terminal Virtual Path.
VPS : The Virtual Path Signature.

Bl : The Branch Index.

PDI : The Path Dictionary Index.

SC : The storage cost.

RC : The retrieval cost.

UC : The update cost.

CHAPTER 1
INTRODUCTION

The first chapter states the problem statements, which describe the
motivation of this research, the purposes, scope and benefits of the research. Finally,

the last section explains the method of this research.

1.1 Problem Statements

At present, object-oriented databases have been widely used in most
engineering applications, such as Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM) and Geographical Information System (GIS). The complexity of
data in these applications makes the conventional database, such as the relational
database cumbersome to manage them. One of the benefits of the object-oriented
database is from its data model [19]. In the object data model, the value of an attribute
does not limit to a primitive value, such as integer, real or string, but the value of an
attribute can be either a primitive value or a complex value. The complex value of an
attribute is a unique Object Identifier (OID) of an object in a class [19]. If class C
consists of an attribute A whose domain is class C’, class C can reference class C' from
the attribute A. We call this relation of classes as an aggregation hierarchy. In the same
way, class C' consists of an attribute A’ whose domain is class C" so that class C' can
link to class C" directly and class C can link tocclass C" indirectly. |If class N is
referenced by class C either directly or indirectly and class N does not reference any
classes, class N is called a leaf class of the aggregation hierarchy. On the other hand,
class C is called the root class of the aggregation hierarchy if it references other
classes, but it is not referenced by any classes. Any classes in the aggregation
hierarchy that are between the root class and the leaf class are called intermediate
classes. Class traversal methods for an aggregation hierarchy can be performed
as forward traversal and reverse traversal. In the forward traversal approach, we start

from one class and traverse to its child class by using the value of the complex attribute.

On the other hand, the reverse traversal approach traverses up to the parent classes.
Usually, the forward traversal approach can perform well especially when the selection
operation is performed on the start of the path expression [37] and by using the inherent
pointer of the complex attributes. However, the reverse traversal approach has more
trouble unless reverse pointers are implemented between classes. When there is a
query, the class that the predicate is involved is called the predicate class and the class
of the target objects is called the target class.

If the predicate class and the target class are far apart, i.e. there are
several intermediate classes between the target class and the predicate class, cost of
traversal will be high because of intermediate classes traversal. Therefore, many
researches have been performed to reduce cost of class traversal whereas the
associative searching is also in consideration. The indexing techniques are considered
to accelerate database operations by constructing efficient access structures on a
database given a certain physical implementation of the database. Secondary index on
an attribute or a combination of attributes is useful for evaluating queries on a nested
class in an object-oriented database. A classic research on index [6] has been done on
an aggregation hierarchy, for example, multi index, nested index, path index. A join
index hierarchy method [14] and [38] is proposed by extending the join index structure
studied in relational databases. Other researches [5], [9], [15], [32], [33] on the
aggregation hierarchy attempted to improve the performance of searching by using the
concept form [6]. The researches on indexing technique of the inheritance hierarchy
have been proposed in [18], [27]-and [35]. Indexing techniques on both aggregation
hierarchy and inheritance hierarchy are proposed by [3], [10], [12] and [13].

Most indexing techniques that are used for the aggregation hierarchy are
proposed as a path scheme. However, for the application that a class schema is more
complicated than a path, such as a tree, a new access method should be considered to
cope with all classes in the aggregation hierarchy. An example of the aggregation
hierarchy that forms a tree of linking classes is shown in Figure 1.1. It consists of eight

classes, Person, Vehicle, Company, Bank Engine, Course, University and Computer.

Bank

Company

Name
Name . Address
Connection

Vehicle

Manufacture Capital
Person Color Address P
Driver
Engine
Course
Model
Name HP
Credit
Computer Taught
University
Name
os Name
Address

Figure 1.1 Aggregation hierarchy as a tree

The Person class is the root class of the aggregation hierarchy, while
Bank, Engine, University and Computer are leaf classes. The other classes; Vehicle,
Course and Company are intermediate classes. We can create four possible paths from

the root class to its leaf classes as follows.

Path 1: Person — Vehicle — Company —» Bank
Path 2: Person — Vehicle — Engine
Path 3: Person — Course —» University

Path 4: Person — Computer

When we specify an object of the Person class, using the forward
traversal method can retrieve the corresponding objects of the nested classes for each
path. It is also noticeable from Figure 1.1 that the join classes are the Person class and
the Vehicle class. The Path'2 can be reduced to Vehicle=—> Engine because the
corresponding objects of the Vehicle class from Path 1 are sufficient for further retrieval
of objects from the classes of Path 2. We classify the queries by the following factors.

1. The class traversal methods from the predicate class to the target class are as
follows.
F(A,B) : Forward traversal from class A to Class B.

R(A,B) : Reverse traversal from class A to class B.

2. The number of paths involved for the predicate class and the target class are.
SP: The predicate and the target class are on the same path.

MP: The predicate class and the target class are on different paths.

The examples of queries are given from the classification above. The
symbol PC, TC and JC are denoted for the predicate class, the target class and the join

class respectively.

Q1: Retrieve persons who own cars that are made by the companies that connect to
Bangkok Bank.

(R(PC,TC), SP)

Q2: Retrieve banks connected by the companies that manufacture cars owned by
persons at the age of 40.

(F(PC,TC), SP)

Q3: Retrieve engines of the cars owned by the persons who take course at
Chulalongkorn University.

(R(PC,JC), F(UC,TC), MP")

Most indexing techniques can tackle the problem such as Q1 when the
predicate is specified on the indexed attribute of the leaf class and the target class is
the root class. A few techniques are proposed to eliminate the forward traversal between
classes of the single path for the. query Q2. Although applying the combination of
various indexes can solve the query Q3, the joining between paths is still required and
overhead occurred is considerable. The detail of overhead analysis-will be discussed
later.

The access methods of the aggregation hierarchy as a tree have been
proposed recently. Direct Access to Terminal Virtual Path [28] is as follows. For each
object in the root class Person, there will be corresponding objects in leaf classes Bank,
Engine, University and Computer. Associated objects in leaf classes are stored together
as if there were a path between them. This path is called Terminal Virtual Path (TVP).

Therefore, the information in TVP consists of OIDs of the leaf classes that associate with

the object in the root class. OID of the object in the root class is stored with the
associated TVP as an entry in the linking file structure. Index can be created on simple
attributes of the root class and map to the associated entries in the linking file. This
access method shows that linking between objects in the root class and corresponding
objects in the leaf classes stored in TVP can reduce cost of intermediate classes
traversal. However, it is only suitable for the query that the predicate class and the target
class are on leaf classes or the root class. Virtual Path Signature [29] is proposed to
handle multi key indexing. For each aggregation of objects from the class schema from
Figure 1.1, associated objects in leaf classes are stored together in a virtual path called
Terminal Virtual Path (TVP) and associated objects in non-leaf classes are stored in a
virtual path called Non-Terminal Virtual Path (NTVP). Signature is generated for objects
in TVP and NTVP. The Virtual Path Signature shows significant improvement in retrieval
when compared with Tree Signature [23], especially when the number of classes
between the target class and the predicate class is high. However, its retrieval
performance is lower when compared with the indexed attributes of the indexing
techniques. Therefore a new approach should be proposed to tackle limitation
mentioned above. It should have the characteristics as follows.

1. lIts structure should be stored in the secondary storage other than OODB.

It should support traversal of classes in the aggregation hierarchy.

It should support associative searching.

> N

It should support various kinds of queries for the aggregation hierarchy; i.e. the
predicate class and the target.class can be anywhere in the aggregation hierarchy.
5. Its cost model in terms of storage overhead and retrieval cost should be lower than
other approaches when applied as multi paths, for example, the Path Dictionary
Index [26].

In conclusion, this new approach with 5 characteristics is the motivation

of this research.

1.2 The Purpose of the Research

1.

2.

To propose a new access method for aggregation hierarchy as a

tree in object-oriented database.

To formulate cost models of the new access method in terms of

storage cost, retrieval cost and update cost.

1.3 The Scope of the Research

1.

An access method will be built by using the data from the object-

oriented database.

The logical linking of classes in object-oriented database is an

aggregation hierarchy as a tree.

The value of an attribute is a single value.

The access method can handle a simple predicate and a complex

predicate.

All objects in the child class are referenced by the objects in the

parent class.

Cost models of the new approach will be compared with that of the

previous approaches.

1.4 The Benefits of the Research

1.

The new access method that is suitable for the aggregation hierarchy

as a tree in object-oriented database.

2. The cost model that is better than the traditional approaches.

1.5 The Method of the Research

1. Study related works.

2. Design a new access method.

3. Consider the database operation on the new structure.

4. Analyze the cost models in terms of

4.1 The storage cost.

4.2 The retrieval cost.

4.3 The update cost.

5. Make the comparison with other models.

6. Conclusions.

The next chapter will contribute to the related theories and related works,

especially various techniques of access methods.

CHAPTER 2
RELATED WORKS

This chapter contributes to the related theory and researches. The
theory starts from the object data model and ends with the query processing. The
related works of access methods are classified as the indexing techniques and the

signature techniques.

2.1 Theory

There are many object-oriented database systems that have been
developed and implemented such as Gemstone [31], O, [11] and etc. Object-oriented
databases have been widely used because they have the capabilities to handle the
complex applications, such as Computer Aided Design/Computer Aided Manufacturing
(CAD/CAM) design, office automation and Very Large Scale Integration (VLSI) design.
Object — oriented data model is a logical organization of the real world object (entities),
constraints on them, and relationships among objects. The following is an object-
oriented data model [19] and most of the concepts are accepted as the Object

Database standard by the Object Database Management Group (ODMG) [2].

2.1.1 Object and Object Identifier (OID)

The uniform treatment of any real — world entity as an object simplifies
the user’ s view-of the.real world. The object identifier (OID)-is used to pinpoint an object
to retrieve. Two methods are possible to represent OID, namely, physical address and
logical-address.

The 'method of physical address representation provides the good
retrieval performance. However, as an object relocates, retrieval performance becomes
worse and OID may not be unique. By using logical address representation for OIDs,
called surrogate, the objects are independent on storage structures. Yet, there must be
a mapping table called OID table that maps each surrogate to its physical address.

The object identifier (OID) is not reused even when the object with which

it was associated is deleted from the system.

2.1.2 Attributes and Methods

Every object has a state and a behavior. The state of an object is the set

of values for the attributes of the object, and the behavior of an object is the set of

methods (program code) which operate on the state of the object. An attribute of an

object may have a single value or a set of values. The domain of an attribute may be any

class, user defined or primitive. An example of an object-oriented schema is shown in

Figure 2.1 adopted from [10].

Person

Vehicle

~ Company

Division

fname :string
Iname : string
own+

birth-date : string
address : string

manufacture
model : string
color : string
doors : integer
body : string

name : string

division+
size : string

name : string
location : string
function : string
size : string

7

Bus

Nnuck

n-seats : integer
length : integer
max-speed : integer

weight : integer
height : integer
availability: string

Figure 2.1 Example of an object-oriented logical schema

The domain of the fname attribute of the Person class is the primitive

class string; and the value of the fname attribute of an instance of the Person class may

be string “Somsak’ . In contrast, the domain of the own attribute of the Person class is

the Vehicle class; the value of the own attribute of a Person instance may then be the

object identifier (OID) of several instances of the Vehicle class. Multi — value attributes

are marked by‘ +°.

2.1.3 Class

10

A class is specified as a mean of grouping all the objects that share the
same set of attributes and methods; (there are six classes in the Figure 2.1). An object
must belong to only one class as an instance of that class. The relationship between an
object and its class is the instance — of relationship. A class may also be primitive. A
primitive class is one which has associated instances, but which has no attribute.

The value of an attribute of an object, since it is an object, also belongs

to some class. This class is called the domain of the attribute of the object.

2.1.4 Class Hierarchy and Inheritance

Object-oriented systems allow the user to derive a new class from an
existing class. The new class, called a subclass of the existing class, inherits all
attributes and methods from the existing class, called a superclass of the new class.
The Bus class in Figure 2.1 is a class derived from the Vehicle class. It has the same
attributes and methods as in the Vehicle class. Moreover, it has additional attributes,
namely, n- seats, length and max-speed.

A class may have any number of subclasses. The Vehicle class has two
subclasses: Bus and Truck. Some systems allow a class to have only one superclass,
while others allow a class to _have any number of superclasses. In the former, a class
inherits attributes and methods from only one class; this is called single inheritance. In
the latter, a class inherits attributes and methods from more than one superclass; this is
called multiple inheritance. In a system that supports single inheritance, the class forms
a hierarchy called a class hierarchy or inheritance hierarchy. If a system supports

multiple inheritance, the class forms a rooted directed graph called a class lattice.

2.1.5'Aggregation Hierarchy

The fact that the domain of an attribute may be an arbitrary class gives
rise to the nested structure of the definition of a class.

That is, a class consists of a set of attributes; the domain of some or all of
the attributes may be classes with their own set of attributes, and so on. Then the
definition of a class is a directed graph of classes rooted of that class. If the graph for

the definition of a class is restricted to a strict hierarchy, it is called class — composition

1"

hierarchy or aggregation hierarchy. In Figure 2.1, the aggregation hierarchy has the
Person class as the root class and the Division class as a leaf class. An attribute of any
class on aggregation hierarchy is logically an attribute of the root of the hierarchy, i.e.
the attribute is a nested attribute of the root class. For example, in Figure 2.1, the name

attribute of the Company class is a nested attribute of the Person class.

2.1.6 Query Processing

Banerjee [1] developed a model for queries in object—oriented
databases and illustrated the model using a version of the query language implemented
in ORION. A query may be formulated against an object—oriented schema, which will
fetch instances of a class, which satisfy certain search criteria. A query may restrict the
instances of a class to be fetched by specifying predicates against any attributes of the
class. Another research on query languages [7] pointed to the characteristics of an
object-oriented data model, such as object identity, complex object structure, methods,
and class hierarchies, have an impact on the design of a query language. Furthermore,
Kim [20] investigated cyclic query processing and developed cost model to determine
the cost for each access plan generated. Given a query, there are many access plans
that a database management system (DBMS) can follow to process it and produces its
answer. All plans are equivalent in terms of their final output but vary in their cost, i.e. the
amount of time that they need to run. A module called the query optimizer [16] can

examine all alternatives and choose the plan that needs the least amount of time.

2.2 Related Works

In this subsection, several access methods of aggregation hierarchy will
be briefly described. We can divide access methods into two groups, i.€. the indexing

technique and the signature technique.

2.2.1 Indexing Techniques

Much research has been done and is still going on to develop well-

founded data models. To be viable, not only the concept of OODB have to be supported

12

by an architecture that directly implements them but querying and maintaining the
database should require an acceptable amount of time.

The indexing technique is considered to accelerate database operations
by constructing efficient access structures on a database given a certain physical
implementation of the database. Secondary index on an attribute or a combination of
attributes is useful for evaluating queries on a nested class in an object-oriented
database. Classic research on index [6] has been performed on aggregation hierarchy,

for example, multi index, nested index, path index.

2.2.1.1 Multi Index

Multi index [6] is created for two classes that linked by the inherent
pointer of the complex attribute. If there is a relation of classes from C,C,C,...C,, where
C, is the root class and C, is the leaf class and C, has an attribute whose domain is
class C, and so on, and there are n classes in this relation, then there will be n multi
index. For n"” multi index, index will be created on a simple attribute of class C,and the
key will link to associated OIDs of objects in class C.. For i" multi index, index will be
created on a complex attribute of class C, and the key will link to associated OIDs of
objects in class C. If predicate is on indexed attribute of class C, and the target is on
class C,and there is a relation from class C, to class C,, = (n- i+1) index lookup will be
required. Therefore, this index is not suitable for the query when the predicate class
and the target class are far away. However, multi index has the flexibility for the update

because it is easy to update link between key index-and associated OIDs.

2.2.1.2 Nested Index

This index [6] is created from the principle that there is a relation of
classes from C,C,C,...C_, where C, is the root class and C, is the leaf class. The index
is created on a simple attribute of the leaf class and the key will link to associated OIDs
of objects in the root class. We can see that it is suitable for the query that the predicate
is specified on the indexed attribute of the leaf class and the target is on the root class.

However, it is not suitable to use this index if the predicate class and the target class are

13

anywhere. Furthermore, the update requires the reverse traversal from the updated
object to its parent objects in the root class. Therefore, the reverse pointer should be

implemented in the aggregation hierarchy to support the update operation.

2.2.1.3 Path Index

Path index [6] is similar to nested index. The index is created on a
simple attribute of the leaf class and this key will link to associated paths from class C,
to class C,. The information stored in a path is the linking of OIDs of objects from
classes on the path so that if the predicate is specified on the indexed attribute of the
leaf class, the target class can be any classes. Although the path index can support

more queries than the nested index, it requires more storage overhead.

2.2.1.4 Index of Direct Link
Direct link [24] is the structure stored in the secondary storage. The
information of an entry in this structure is OIDs of objects of the root class and OIDs of
objects of the leaf class. There are two kinds of the direct link as follows.
- Forward Direct Link
Each entry in the direct link is OID of an object in the root class and
associated OID of an object in the leaf class. The number of entries in the
forward direct link is equal to the number of objects in the root class.

- Reverse Direct Link

Each entry in-the direct link is OID of an object in the leaf class and
associated OID of an object in the root class. The number of entries in the

reverse direct link is equal to the number of objects in the leaf class.

Index can be created for both forward direct link and reverse direct link
and the clustering technique could be considered for low retrieval cost. However, this
index is only suitable when the predicate class and the target class are on the root class

or the leaf class.

2.2.1.5 Path Dictionary Index

14

Path dictionary [21], [25], [26] is proposed in the concept of grouping all
objects in the path that link to the same object in the leaf class. Information that store in
an entry of path dictionary is sufficient for the traversal of objects between classes in the
path. Redundancy of objects can be eliminated from this concept so that the identity
index can be easily built on this path dictionary. For associative search, the attribute
index will be created on the path dictionary. So, for the key index, the target object from
the qualified entry can be retrieved. When compared with path index, Path dictionary
index has lower cost in cost model. Furthermore, it can cover more queries in such a

way that the predicate class and the target class can be any classes in the path.

2.2.1.6 Other Researches

Bertino [5] considered the usage of the path index from [6] in the
framework of more general queries containing several predicates. Implicit joins over
both overlapping and non-overlapping paths are analyzed to find the most suitable
index along a path. A graph-theoretic approach to the path indexing [33] is proposed
later. Finally, a set of parameters able to exactly model topologies of object references
in object-oriented databases and their mathematical derivations are shown in [4].

Although path indexes have been proposed for efficient processing of
object-oriented queries, conventional join algorithms do not effectively utilize them. Cho
[20] proposed a new join algorithm called OID join algorithm that effectively utilizes path
indexes in object-oriented ‘databases.

The research from [3] extended work from [6] by providing an integrated
support for queries involving both “nested attributes of objects-'and inheritance
hierarchies. It allows a query containing a predicate on a nested attribute and involving
several'classes in a given inheritance hierarchy to be solved with a single index lookup.

It is concluded from [3] that the nested inherited index offers the best
retrieval performance (compared with multi-index and nested inherited multi index) in
most cases. It is outperformed by the other organizations only when queries are mainly
on the last class of the indexed path. Therefore, the nested inherited index organization

should be mainly used when the number of nested predicates in queries is high.

15

Also the cost of modification of nested inherited index has better
performance than other organizations.

Similar work, but a different technique, Uniform indexing (U-index)
proposed by [13] combines the hierarchical and nested indexing scheme. It provides
path indexing with better retrieval performance than the original scheme (path index)
and better performance. This scheme provides in one uniform index, combined class-
path-hierarchy index, and with that it is able to answer queries which are not answerable
with the previous indexing schemes (nested index, path index and multi index).

Fotouhi [12] proposed a hybrid indexing technique called a generalized
index, which can support class hierarchy (inheritance hierarchy) and aggregation
hierarchy. This index method can share the value among the classes whose domains
are identical and can be processed in parallel.

Later, the research in [10] attempted to select optimal index
configuration in object oriented database from previous works [3], [6]. This research
addressed the problem optimal index configuration for a single path and a path can be
achieved by splitting the path into subpaths and by indexing each subpath with the
optimal index organization. Algorithm for selection indexes is presented and existing
indexing techniques were considered (simple index, inherited index, nested inherited
index, multi index and multi inherited index). The body of the algorithm mainly consists
of 3 procedures

- computes the process costs for all possible subpaths with each index
organization and-represent it in a matrix.

- determines the minimal costs in each row which indicates the best indexing
technique for a subpath.

- determines the optimal index configuration for a path. The idea of this
procedure is based on the consideration of all possible ways to recombine
the original path from subpaths

Seo [32] proposed the research that is similar to [10]. Their approach is

to reduce the problem to that of selecting indexes in such a way that the sum of the cost

savings is maximized subject to a given storage capacity.

16

Several indexing schemes mentioned above have been developed to
evaluate predicate to identify complex object. However, support structures called object
skeletons [15] are developed for the efficient execution of traversal to retrieve the
required components. Skeletons of complex objects contain only the semantic
information (OIDs of the component objects and the semantic links between them) but
the descriptive information of an object is stored separately from its object identifier.
Traversal through the semantic links can be performed inexpensively because each
node in the OID network is very small, a very large number of objects can fit in a disk
page to facilitate efficient object navigation. Once a skeleton has been loaded into
memory, navigation along the skeleton can be done with no further disk accesses.

Indexing techniques can efficiently support backward traversals. But this
requires high storage and maintenance costs. These overheads may constrain to limit
indices for multiple attributes of the classes. Therefore, on the whole, indices are

maintained only for important attributes.

2.2.2 Signature Technique

The signatures can be used instead of index. Signhature is rooted from
applications in text databases, which require an efficient search method. The principles
required by signatures are:

- The method should be fast, requiring a few disk accesses to respond
to simple queries

- The method should not require rewriting on insertion

- The method should handle insertion efficiently, without the need to
excessively reorganize the database

Signature 'is created by encoding the textual document using the
hashing and superimposed coding method. By using superimposed coding (SC), the
collection of document signatures gives a bit matrix, the way this bit matrix is stored
affects the time on retrieval and insertion. There are several techniques about
signatures, such as, sequential signature file, bit-sliced signature file and frame-slice

signature file.

17

We can use the signature for object-oriented database as in [23] and
[39] and many researchers recently interested in using it instead of using indexing
scheme. The research about applying signatures for forward traversal query processing
in object oriented database [39] is one of the researches that use a signature to
expedite the forward traversal. Signature generation procedure through superimposed
coding from data D = { G.D.Hong,25, Seoul } for the signature of D, S, is shown in
Table 2.1 adopted from [39].

Value Hashing result

G.D.Hong 1001 0000 1000 0001
25 1000 1100 0000 0100
Seoul 1000 0000 1100 1000

Signature S, 1001 1100 1100 1101

Table 2.1 Signature generation example (in case b = 16, k = 4)

In this process, each value of the data (this value of attribute in one
class) is hashed using a function having two parameters b and k, which represents
hashing size of bits-and number of bits to be set as ‘1’ respectively. The signature is
then simply derived from ORing all these hashing results.

Using this signature, we can check whether the given value is in a
signature or not. This checking procedure (called signature matching) selects candidate
signatures to.be examined. A signature S is qualified if and only if, for all bit-1 positions

in the query signature, the corresponding bit positions in S are also setto 1. To evaluate

the query, we AND the query object signature with an instance’s object signature and
compare the result with the query object signature. If the result is the same as the query
object signature, the instance may satisfy the predicate specified in the query and we
need to retrieve and examine the instance. If it is not the required instance we call this

matching a false drop.

18

In the research [39], the object signature of the referred object is stored
into the referring object so nested predicates can be checked without inspecting
referred objects, supporting for forward traversals. Paper [8] used the technique similar
to [39], but extended object signature for the generalization hierarchy (inheritance
hierarchy). This object signature consists of two parts; a reference signature and a
structure signature. Like [39], a reference signature can be used to eliminate objects
that do not match the nested predicates specified in the query. A structure signature
can be used to eliminate objects that do not belong to the target classes. So object
signature is generated from reference signature concatenated with structure signature.
The research in [8] and [39] pointed out that object signatures could be used to
eliminate objects that do not satisfy the predicates before we really retrieve and examine
them from disk. Thus, this mechanism can greatly reduce the number of disk accesses.

Using other signature techniques also interest researchers in [22], [34]
and [36]. In [36], three organizations (path index, path table, signature file with path
table) based on multi attribute hashing for using in efficient evaluation of a query are
considered. The researchers pointed out that a path index is not suitable for the queries
that start at any intermediate positions. A path table based on hashing techniques may
require the number of buckets retrieved but if signature file is used with path table, the
retrieval will speed up (signature file eliminate most of the unqualified bucket).
Furthermore, they showed from the experiment that storage cost for path table is the
lowest (compared with path index and signature file with path table) and the retrieval
cost is the lowest for signature file-with path table (except for query on the last class,
path index is the lowest).

For aggregation hierarchy, using the: signature path-dictionary [22] is
extended from the path dictionary. Path.dictionary is a secondary organization, which
extracts the complex attribute from the database to represent the connection between
objects. This structure is proposed to support efficient object traversal for nested query
processing. An object signature is generated by superimposing only the bit strings
generated from the simple attributes of the object (not OID referred by attribute not in
the path). Instead of associating the signature files with classes, the signatures are

associated with the OIDs of their corresponding objects in the path dictionary. The

19

comparison between signature path dictionary and signature path shows that the
signature path dictionary yields a dramatic improvement on the storage, retrieval and
update cost.

In [34], a new signature scheme, called the s-signature on the path
dictionary is proposed to efficiently support query processing of different types of
queries. The s-signature provides an efficient filtering mechanism so that accessing the
database at the initial stage of query processing is unnecessary. In other word, s-
signature provides an efficient access method for the path dictionary instead of the

sequential scanning.

Ishikawa [17] considered retrieval of nested objects based on the set
comparison operators such as 2D and C. The paper proposed four set access facilities
for nested objects and compare their performance in terms of retrieval cost, storage
cost and update cost. The combination of the signature file method and the nested

index is very promising for set retrieval of nested objects.

The next chapter will describe one of the access methods of the
aggregation hierarchy as a tree called Direct Access to Terminal Virtual Path (DTVP).

Also, the database operation and cost models will be presented.

CHAPTER 3
DIRECT ACCESS TO TERMINAL VIRTUAL PATH

This chapter describes the Direct Access to Terminal Virtual Path
(DTVP) for query processing of the aggregation hierarchy as a tree. Its organization
and database operation will be presented. Finally, the cost models in terms of the

storage cost, the retrieval cost and the update cost will be formulated.

3.1 Organization

When the class schema of the object-oriented database is formed as an
aggregation hierarchy as a tree, we will organize the structure to support query
processing so that the access method between the root class and the leaf classes can
be performed with efficiency. The necessary component used for supporting access

method between the root class and the leaf classes are as follows.

3.1.1 Terminal Virtual Path

The structure of the Terminal Virtual Path (TVP) [28] comes from the
concept that all leaf classes of the aggregation hierarchy as a tree is grouped together.
Therefore, when objects are instantiated, objects for the associated leaf classes will be

stored together.

21

Bank
Company

Vehicle

Person

Course Engine

niversity

Figure 3.1 Aggregation hierarchy as a tree

From Figure 3.1, Person is the root class while Computer, University,
Engine and Bank are leaf classes. All leaf classes will be organized as if there is a
linking path between them called the Terminal Virtual Path (TVP). Therefore the class
Computer, University, Engine and Bank will be grouped and their instances will be kept
together in the secondary storage. If & represents the object of a leaf class ti, then the

Terminal Virtual Path can be represented as follow.

Terminal Virtual Path (TVP) = {A1,82,8s,...,6n}when
6G1,62,8s,...,6n are_associated OIDs of objects of the leaf classes t1, t2, t3,..,tn
respectively in the aggregation hierarchy as a tree. The structure of the Terminal Virtual

Path is shown in Figure 3.2.

OID of t1 OID of t2 OIDoft3 | ... OID of tn

Figure 3.2 The structure of Terminal Virtual Path

22

3.1.2 Root-Terminal Virtual Path Linking

To handle the direct access between objects of the root class and the
associated objects in the Terminal Virtual Path, the representation will be described as

follow.
R — TVP = {(61,tvps.)} where

R — TVP represents the linking between the object of the root class and the

associated objects in Terminal Virtual Path.

01 is the OID of the object in the root class and tVpe:is the associated OIDs of the

objects in the Terminal Virtual Path.

The structure of Root Class-Terminal Virtual Path linking is shown in Figure 3.3.

OID of Root Class |OID of t1 OID of t2 OIDoft3 | ... OID of tn

Figure 3.3 The structure of root class-Terminal Virtual Path linking

3.1.3 Attribute Index

The attribute index is used for fast retrieving the qualified records of the
linking-file ' structure. Index will' be: created on-some attributes of the root class. The
linking -records that match the key index will be accessed so that the required target

objects of the Terminal Virtual Path will be achieved.

23

3.2 Database Operation

The database operation in this case includes the retrieval and the update
operation. The examples for these operations will be described in Section 3.2.1 and

Section 3.2.2.

3.2.1 Retrieval Operation

This access method is appropriate for the query that the predicate is
specified on the indexed attribute of the root class and target class is one of the leaf
classes in the Terminal Virtual Path. In the research, It is assumed that the predicate is
specified on the indexed attribute of the root class. Therefore, the key attribute is
scanned from the attribute index to obtain the records of the linking file. For the records
retrieved, the target objects are received from the target class. For example, the query "
To find that Somsak own a car that manufactured by the company that connect to which
bank". In this case, the predicate class is the Person class and the target class is the
Bank class. If the index is created on the Name attribute of the Person class, the index
will be scanned to achieve the qualified records of the linking file. Then for the qualified
records, the OIDs of the target objects from the Terminal Virtual Path can be obtained to
retrieve OID of the Bank class. Furthermore, from the structure of the Terminal Virtual
Path, the associated objects can be retrieved from the other leaf classes, such as the
Engine class, the University class-and the Computer class forithe object whose name is
Somsak. Therefore, by using this access method, class traversal of the intermediate

classes can be eliminated.

3.2.2 Update Operation

Objects of the leaf classes can be updated by specifying the object of
the root class and its relevant object of the leaf class that will be modified. For example,

if an object O, of a leaf class t, relate to object O, of the root class the object O, is

24

changed to object O, the object O, from the linking file will be searched and update the

qualified record of object O, of class t to O',.

3.3 Cost Model

In this section, the cost model will be formulated in terms of storage cost,

retrieval cost and update cost. The list of parameters is given below for the analysis.

3.3.1 The Parameters of Cost Model

C
Crli

Given an aggregation hierarchy as atree, the parameters of the cost model are listed below.

: The root class of the aggregation hierarchy T .

- The i" leaf class of the aggregation hierarchy T .

: The number of leaf classes of the aggregation hierarchy T .

: The number of objects in the class Ci.

: The attribute of the class Ci that is selected for indexing.

: The number of distinct values of A.

: The ratio of shared attribute values between objects in the class Ci1 and the

value for the attribute A. (q = N:./U)

UIDL : The length of Object Identifier.

pp

ki

. Page size.

: The size of page pointer.

: Average fan out of a non-leaf-node.

: Average length of a key value in attribute index.

: Average of a key valuein‘A.

: The length of the link number.
: The length of the link counter.

: The number of levels of non-leaf node, i.e. the height of the attribute index - 1.

25

Since page is a basic unit to access data in the secondary storage, so it

is used for cost estimation. All lengths and sizes above are in byte.

To simplify the cost model, it is assumed that

1. All attributes have a single value.

2. All key values have the same length.

3. Retrieval and update operation are performed on the objects of the classes on the

linking structure.

3.3.2 Storage Cost

To simplify the analysis, the clustering index will be created for the
attribute of the root class. There are 3 main parts for the storage cost, i.e. the linking file,

the non-leaf node and the leaf node of the index.

Linking file
A linking record consists of OID of the root class and NLC OIDs of leaf

classes. Therefore, the size of a linking record is

(nLC +1)*UIDL.

Each object in the root class can link directly to its Terminal Virtual Path.

Therefore, the size of the linking file (SF) is

S = Nu*(nLC +1)*UIDL.
The number of pages needed is
SFP =[Nu*(nLC +1)*UIDL/ P

Non-leaf nodes

The number of non-leaf pages can be derived from

26

NLP =[LO/ f |+[[LO/f |/ f |+..+1.

where LO = min(U , LP) and LPis the number of leaf pages for

index implementation.
Leaf nodes

Due to the clustering index, the length of a leaf node record is

XP =kl +kv+ pp+Il +cl.

Therefore, the number of leaf pages needed is
LP=[U /| P/XP]].

The total storage cost for implementation is

SC=SP+NLP+LP,

3.3.3 Retrieval Cost

It is assumed that the predicate is specified on the indexed attribute of
the root class and the target class is any classes of the leaf classes. The query is
tackled by searching through non-leaf nodes and leaf nodes of the attribute index. Then,
the pointer from the leaf node will point to the target records of the linking file. The

number of pages accessed is

RC =h+1+[q#*(nLC +1)*UIDL/P].

When the leaf page is less than the page size.

27

3.3.4 Update Cost
The update operation can be categorized as follows.
A. Update linking between objects of the root class and objects of the leaf class

B. Update the attribute index for objects of the root class

Case A: Update linking between objects of the root class and objects of the leaf class.

In this case, an object O, of the root class that previously points to an
object O, of a leaf class C,is changed to point to an object O', of the leaf class C,. It is
apparently that the information of the involved linking record must be modified. The
attribute index of the object in the root class can be used to search for the qualified
linking record of the linking file and then modify that record. Therefore, the update cost
consists of cost of the index scanning, cost of linking record retrieval and cost of linking

record modification.
UC =h+1+[q*(nLC+1)*UIDL/P |+[(nLC +1)*UIDL/P]|.

When the leaf page is less than the page size.

Case B: Update the attribute index for objects of the root class.
In this case, the involved objects of the root class will be affected with
the modified indexed attribute. Since two index scans are needed, the number of page

accesses for the update is:

UC = 2x(h+2x[XP/P])

It is noticeable that the Direct Access to Terminal Virtual Path has the
limit for the query that the target class is not the leaf class. In the next chapter, more

flexible access method called Virtual Path Signature (VPS) will be presented.

CHAPTER 4
VIRTUAL PATH SIGNATURE

This chapter proposes the application of the signature technique using
with the virtual path called the Virtual Path Signature. The database operations and the
cost models in terms of the storage cost, the retrieval cost and the update cost will be

formulated thoroughly.

4.1 Organization

This access method can support various kinds of queries by using the
signature technique on the virtual path [29]. The component of the Virtual Path Signature

is as follows.

4 1.1 Terminal Virtual Path

The structure of the Terminal Virtual Path is the same as mentioned in
Section 3.1.1. Therefore, the Terminal Virtual Path (TVP) = {&1,&2,&3,...,ﬁn}when
6G1,62,8s,...,6n are associated OIDs of objects of the leaf classes t1, t2, t3,..tn
respectively in the aggregation hierarchy as a tree. The structure of the Terminal Virtual

Path is shown in Figure 4.1.

OID of t1 OID of t2 OlDoft3 | = .. OID of tn

Figure 4.1 The structure of the Terminal Virtual Path

29

4.1.2 Non-Terminal Virtual Path

If G represents the object of a leaf class nti, then the Non-Terminal

Virtual Path can be represented as follow.

The Non-Terminal Virtual Path (NTVP) = {Gh1,6hz,6hs,...,Bum}when
Ohi1, G2, Brs,...,Bumare associated OIDs of objects of the non-leaf classes ntf, nt2,
nt3,..,ntm respectively in the aggregation hierarchy as a tree. The structure of the Non-

Terminal Virtual Path is shown in Figure 4.2.

OID of ntl OID of nt2 CUD) otk .. OID of ntm

Figure 4.2 The structure of the Non-Terminal Virtual Path

4.1.3 Virtual Path Signature

Non-Terminal Virtual Path and its associated Terminal Virtual Path are
kept in a structure called a Virtual Path. It is similar to -how to store tree of object
instantiation so that the object traversal can be eliminated. However, the associative
searching is also a crucial factor for query processing. It is possible that any attributes
of any classes in the aggregation hierarchy may be queried but impossible to create
index for every attribute. Therefore, the signature file-is—an alternative approach to
manage multi key indexing. Signatures will be generated for all objects in the Terminal
Virtual Path and all objects «in" the Non-Terminal Virtual Path. Then, the Virtual Path

structure and its signature will be stored in a structure called the Virtual Path Signature.

The definition of the Virtual Path Signature is as follows. For the
aggregation hierarchy of classes that form a tree, there will be only one signature file.
The number of entries in this signature file is equal to the number of objects in the root
class. Each entry consists of <Sig(TVP), TVP structure, Sig(NTVP), NTVP structure>
where Sig(TVP) is the signature of the Terminal Virtual Path and Sig(NTVP) is the

30

signature of the Non-Terminal Virtual Path. The structure of the Virtual Path Signature is

shown in Figure 4.3.

TVP Structure Sig(NTVP) NTVP Structure

Figure 4.3 The structure of the Virtual Path Signature

The signature of the Terminal Virtual Path is generated as follows.

1. The signature of the Terminal Virtual Path is obtained by superimposing the object
signatures for objects on the Terminal Virtual Path of associated aggregation

hierarchy.

2. The signature of an object is generated by superimposing the signatures of all of its

simple attributes.

3. The signature of a simple attribute is obtained by hashing on the attribute values.

The generation of the signature of the Terminal Virtual Path is shown in

Figure 4.4.

Sig(Attribute 1)
V Sig(Attribute 2)
Sig(Attribute k)

Object of Class t1 @ Signature of TVP
Object of Class t2

\ Object of Class t3
| Object of Class tn

Figure 4.4 The signature of the Terminal Virtual Path

The process how to generate the signature of the Non-Terminal Virtual Path is

similar to that of above but it performs with objects on the Non-Terminal Virtual Path.

31

4.2 Database Operation

The operation performed on the database will be presented such as the

retrieval operation and the update operation.

4.2.1 Retrieval Operation

A query of which values to be searched is transformed into a query
signature S,. If the query Q is on classes of TVP, S, will be compared with every
signature stored in Sig(TVPR); otherwise SQ will be compared with every signature in
Sig(NTVP). When the signature matches with the query signature, It will verified if that
entry of the signature file is not false drop by retrieving information in OODB using OID
of the predicate class stored in the Virtual Path. If it is a qualified object, the information

will be retrieved from the database by using the OID obtained.

From the characteristic of the Virtual Path Signature, searching in OODB
for the aggregation hierarchy as a tree can be performed with flexibility when compared

with indexing techniques as follows.

1. Associative searching can be performed with multi key on any attributes due to the

signature.

2. The cost of object traversal can be reduced due to the Virtual Path structure.

3. The storage overhead of ‘the signature is lower when compared with the index

structure.

4.2.2 Update Operation

The update operation can be categorized as follows.

32

A. Update the simple attribute of an object.

B. Update the complex attribute of an object.

Case A: Update the simple attribute of an object.

In this case, a simple attribute will be changed to a new value. Since the
simple attribute is used to generate the signature of an object, regenerating of the object
signature is required. If the modified object is in the class of the Terminal Virtual Path,
the signature of Terminal Virtual Path has to be regenerated. Similarly, the signature of
Non-Terminal Virtual Path has to be regenerated if the modified object is in the class of

Non-Terminal Virtual Path

Case B: Update the complex attribute of an object.

In this case, a complex attribute will be changed so that the associated

entries of the signature file will be modified.

4.3 Cost Model

In this section, the‘cost model in terms of storage cost, retrieval cost and
update cost for the Virtual Path Signature will be formulated. The parameters will be

given below.for the analysis.

4.3.1 The Parameters of Cost Model
Given an aggregation hierarchy as a tree, the parameters of the cost

model are listed below.

NNLC : The number of non-leaf classes of the aggregation hierarchy.

NLC : The number of leaf classes of the aggregation hierarchy.

33

Ni : The number of objects in the class Ci.
S : The size of a signature.

UIDL : The length of Object Identifier.

V4 : The average size of an object.

E : The average size of an entry in the signature file.

Ks : The average size of a signature file.

R : The average matching rate of a query signature.

P : Page size.

Hi : The number of ancestor classes from the root class to i" class.

N : The average number of parent objects for an object.

4.3.2 Storage Cost
The structure of the Virtual Path Signature consists of the signature of
Terminal Virtual Path, the TVP structure, the Signature of Non-Terminal Virtual Path and

the NTVP structure. Therefore, the size of an entry of the signature file is:

E = S+ (nLC *UIDL) + S+ (nNLC #*UIDL).
E = 2S+UIDL *(nLC +nNLC).

Thus, the size of the signature file is:

Ks= N1#(2S+UIDL *(nLC + nNLC)).

The storage cost of the Virtual Path Signature is:
SC=[Ks/P].

4.3.3 Retrieval Cost

The cost of retrieval cost consists of the following.

- Cost of scanning the signature file to check the query signature.

34

- Cost of accessing the candidate objects for the matching of the signature.

It is assumed that the candidate objects are in different pages.
Therefore, the number of page access is:

RC =[Ks/P|+(R*No| SZ/P].
When Npis the number of objects in the predicate class.

4.3.4 Update Cost
The update cost is formulated according to the category in Section 4.2.2.
| assume that the modified entries of the signature file are in different pages.

A. Update the simple attribute of an object.

It is assumed that the modified object in i" class of the aggregation

hierarchy. The update cost consists of the following.
1. Cost of scanning the signature file to find the specified object.

2. Cost of accessing the modified object and associated objects to re-compute
the object signature and the signature for the virtual path.

3. Cost of writing the associated entries back to the signature file.
UC =|Ks/P]+NH, #nC [SZ/P]+ NH, -

when nC =nNNLC if the modified object is in the class of NTVP,
nC =nLC if the modified object is in the class of TVP.

35

B. Update the complex attribute of an object.

The update cost consists of the following
1. Cost of scanning the signature file to find the specified object.

2. Cost of accessing the modified object and all associated objects to modify
the entries in the signature file.

3. Cost of writing the associated entries back to the signature file.

The modification of an entry in the signature file consists of modification

of TVP or NTVP structure and computation of the new signature for the virtual path.
UC =[Ks/P |+ Nt *(nLC+ nNLC)*[SZ /P |+ Nt .

Although, the Virtual Path Signature is flexible for the query that the
predicate can be specified on any attributes of a class, Its retrieval cost is still high when
compared with the indexing technique. The next chapter will contribute to the new
indexing technique called the branch index. The condition of reference sharing among

objects will be considered in the formulation of cost models.

CHAPTER 5
BRANCH INDEX

This chapter contributes to the new access method using the indexing
technique called the Branch Index. Its organization and database operations are
thoroughly explained. Like the previous chapters, the cost models in terms of the

storage cost, the retrieval cost and the update cost are formulated.

5.1 Organization

In this access method [30], various kinds of queries can be solved, for
example; the predicate class and the target class can be any classes of the aggregation
hierarchy as a tree. Furthermore, the reference sharing between objects is considered,

Several terms used in the analysis are defined as follows.

5.1.1 Definitions

In this section, several definitions will be given for the Branch Index.

Definition 1:

For an aggregation hierarchy as a tree, if C, is a non-leaf class or a leaf
class and C, is a leaf class andit is accessible from the class C, a relation from the
class C, to the class C, will be called a branch in the:aggregation hierarchy.

Example 1. Let us consider the aggregation hierarchy as a tree in Figure 5.1. The

following are possible branches for the aggregation hierarchy.

37

Compan Bank
Vehicle pany Y
Person :
Course Engine
C utet
niversity

Figure 5.1 Aggregation hierarchy as a tree

,. Person — Vehicle - Company — Bank
. Course — University

.. Engine

T T T

.. Computer

Note that each class in a branch cannot be a member of other branches.

The other possible branches can be as follows.

B',: Company — Bank
B',: Vehicle — Engine
B',: Course — University

B',: Person — Computer

Definition 2:

The branch length indicates the number of classes in a branch. A
branch will be called a complete branch if its branch length is greater than one. If there
is only one class in a branch, it will be called an incomplete branch.

Example 2: From Example 1, B, and B, are complete branches because their branch
length is 4 and 2 respectively. B, and B, have only one class, so they are incomplete

branches.

38

Definition 3:

For an aggregation hierarchy as a tree, the longest branch in the
aggregation hierarchy is called the main branch. If L is a set of leaf classes in the
aggregation hierarchy, the main branch will start from the root class C, to a leaf class C,;
when C, is a memberin L.

Example 3: The main branch from Example 1 is B, because it is the longest branch and

it starts from the root class Person to the leaf class Bank.

Definition 4:

For an aggregation hierarchy as a tree, if C, is a class in the main branch
B, that references a class C,,which is not on B, there will be a child branch of B, starting
from class C,, to its accessible leaf class in L. The class C, will be called a join class.
Therefore, a join class is a class of a branch that can link to its child branches.
Example 4: Let us consider the aggregation hierarchy as a tree in Figure 5.1 and the
example branches in Example 1. The branch B, can link to the branch B, by the join
class Vehicle. The branch B, and B, are linked to B, by the join class Person. Therefore,

B,, B, and B, are child branches of B,.

Definition 5:

For a branch B, of an aggregation hierarchy as a tree, if its child branch
is an incomplete branch, this child branch will be called a leaf branch of B..
Example 5: From Example 2, the branch B, and B, are incomplete branches. Since B,

and B, are child branches of the branch B,, they will-be leaf branches of B,.

5.1.2 Algorithm of Branch Generation

The purpose of the algorithm is to generate the minimum number of
complete branches. The smaller number of complete branches, the smaller joining
between them.

Given an aggregation hierarchy as a tree and L is a set of leaf classes in

the aggregation hierarchy. The procedure of the algorithm is as follows.

39

1. Find the main branch by considering a leaf class C in L that has the maximum
number of classes between the root class C, and the leaf class C,,.

2. If C_,is the result of the leaf class in the main branch from 1, then the new set L = L
-{C..}.

3. Repeat step 4 and 5 while L is not empty.

4. Consider a join class in an existing branch B, and find the new longest branch from
the child class of that join class of B, If a branch B;is a child branch of B,and C,is
the ending class of the branch B,

4.1 If the branch length of B is greater than 1, then the new set L = L — {Cnf}.
4.2 If the branch length of B, is equal to 1, then the new branch is a leaf branch
and will be combined to B. The new set L =L —{C }.

5. Go to step 3.

An example of this algorithm is as follows:

In Figure 5.1, L = {Bank, Engine, University, Computer}. It is apparently that the longest

branch is from the Person class to the Bank class. Therefore, the main branch will be

generated and Bank will be deleted from L. The new set of L = {Engine, University,

Computery}.

Since Course is the child of the Person class in the main branch, the new
branch will start from the Course class to the candidate leaf classes in L. So the new
branch is generated from the Course class to the University class. For the remaining
classes in L, the Engine class and the Computer class are direct child classes of the join
class Vehicle and Person respectively. Since they are incomplete branches, Engine and
Computer will be parts of the main branch. When set L is empty, the branch generation

will be terminated.

5.1.3 Branch Index Organization

The architecture of the Branch Index is shown in Figure 5.2. The Branch
Index is a separate structure from the object-oriented database and it is stored in the
secondary storage. After using the algorithm of branch generation, the number of

branches and the corresponding classes will be obtained. A set of attribute indexes and

40

identity indexes is on top of the branch. The Branch Index consists of the following

components.

Branch information

The information in the branch is OIDs linkage of objects for the classes in
the branch. Therefore, the class traversal can be handled in the branch information
instead of traversal in the database. In case of any child branches, the OIDs and
pointers of the parent branch are also included as the information of the child branch.

So, the traversal from the child branch to its parent branch can be easily managed.

Attribute Index

While the branch information can facilitate traversal among objects of
classes in the branch, it does not support predicate evaluation that involves searching
the object meeting the conditions specified on their attribute values. To facilitate the
associative searching, attribute indexes should be used to map attribute values to OIDs
in the branch information. For example, to tackle the query “Find the person who own
the vehicle manufactured by the company that connect to Bangkok Bank”, the attribute
index should be created for the Name attribute of the Bank class. To find the target
object of the Person class, the attribute index of the Name attribute of the Bank class is
scanned to obtain the qualified OIDs of the Bank class and the entry location of the
branch information that store those OIDs. Then, the OIDs linkage in the branch

information is used to retrieve the qualified OIDs from the target class.

Identity Index

Instead of creating the index by mapping the value of simple attributes to
OIDs in the branch information, the identity index uses the values of complex attributes.
Therefore, the branch information can be obtained with a given OIDs by using the
identity index. Since identity search is important for retrieval and update, the identity

index can reduce the cost for retrieval and update operations.

41

Query

identity
- - index I index I
identity — —
e | |J |J
attribute
index

, j child branch ‘

‘ main branch attribute identity
index II index II

% child branch

[e]e]b]=)

Figure 5.2 The Branch index

5.1.4 Details of the Branch Information

For a complete branch B, of the aggregation hierarchy as a tree, there is
a relation from the starting class to the ending class of this branch. When objects are
instantiated, in logical view, the objects of the starting class point to their child objects
until the objects of the ending class. The linking of objects is represented with linking of
their OIDs or OIDs linkage. Therefore, it is much faster to traverse by using OIDs linkage
in a branch than objects in the database. The necessary information that should be kept
in a complete branch consists of the following:
- OIDs of objects of the classes in the branch and the pointers to their child objects.
- OIDs of the parent objects for.the branch, in case it'is not the main branch, and the

corresponding pointers to the parent branch.

- OIDs of the leaf branch.

When several objects in one class reference the same object of the child
class, it is called the reference sharing. Therefore, OIDs linkage should be kept to save
the storage in case of the reference sharing. Figure 5.3 shows an example of object

instantiation and the reference sharing by using the information from Figure 5.1.

42

Person[1]

Person[2]

% Vehicle[1] Company[1]
Person[3] i Banicl
Vehlcle[z]% Company[2]
Person([4] Vehicle[3]

Person[5] /

Person[6]
Person[1]
Person[4[>% Course[1]
University[1]
Person[s] ? Course[2]
Person[9]

Vehicle[1
icle[1] Engine[1] Person[l]@rcamputer[l]

Vehicle[2] Engine[2] Person[2]

Vehicle[3]

Figure 5.3 An example of object instantiation

From Figure 5.3, the = object of the Person class will be denoted as
Person[i]. OIDs of objects of other classes will use the same notation. It is noticeable
that Person[1] and Person[2] reference the same object Vehicle[1].
From the algorithm of branch generation presented earlier, two complete
branches are obtained as the result as follows.
- The main branch that starts from the Person class to Vehicle, Company and Bank.
Since the Computer class and the Engine class are leaf branches of the main
branch, they are also part of the main branch.

- The child branch that starts from the Course class to the University class.

To cope with the reference sharing, the concept that is similar to that of
the path dictionaryis used for storing information. All ancestor objects of an object in the
ending class of the branch will be kept as an entry of the branch information. For
example, for the object Bank[71] of the-ending class, the entry of the main branch
consists of Person[1] to Person[6], Vehicle[1] to Vehicle[3], Company[1] to Company[2]
and Bank[1]. All linkages between objects are also kept, for example, pointer between
Person[1] and Vehicle[1], pointer between Person[2] and Vehicle[1] and so on. Since
the leaf branch Engine and Computer are parts of the main branch, their objects will

correspond to the main branch. Therefore, Engine[1] will be linked from Vehicle[1] and

43

Vehicle[2]; Engine[2] will be linked from Vehicle[3]. Finally, Computer[1] will be linked

from Person[1] and Person[2].

5.2 Implementation

The structure of an entry of a branch is shown in Figure 5.4.

™~

Bi,l offset
B, offset J ; .
' Information | Information Information
] . of B, of B, of B,
Bi,n offset

Figure 5.4 The structure of an entry of a branch

From Figure 5.4, B, denotes the starting class of i" branch while B,
denotes the ending class of i" branch. It is assumed that there are n classes that have
relation in i" branch. The relation is in the form that B, references B,, and B,, references

B B, ., references B ;. The offset for each class points to the location of 1" OID of

[P
the object in that class, for example, the offset of B, locates the address of 1% 0ID of

object of the starting class. The example of an entry of the main branch is shown in

Figure 5.5.
Person offset ¢ _
Vehicle offset Information | Information| orr;(atlon Information
Company | offset of Person ' |..of Vehicle of Bank
Bank offset Company

Figure 5.5 An example of the structure of an entry of the main branch

There are four classes of the main branch and their associated
information for each class. The offset will point to the first entry of the information for that
class. Therefore, given a specified class, the information can be determined
comfortably. The detail implementation of information for each class of a branch is

shown in Figure 5.6.

44

Object of C j Parent objects of the C j Leaf branch
this class parent branch objects

OID(B;,) PTR(Bi,Z,J) OID(PBLKI) PTR(PBLKI) OID(PBinm PTR(PijkIm) OID(Lijk)...OID(LBmVI)

0ID(B,,,) | PTR(B,,,) |OID(PB,,.,)| PTR(PB,,)| ...| OID(PB,,) | PTR(PB,,,) |OID(LB,))..| OID(LB,)

Figure 5.6 The structure of an information of a class in an entry of a branch

From Figure 5.6, B, , and B, , denotes the 1" object and the n"" object of
the starting class of the i" branch respectively. The n objects that belong to the starting
class of the i" branch may point directly or indirectly to the same object of the ending
class of the i" branch. Each object of the starting class is implemented as a record that
consists of members as follows.

1. OID of the object itself.

2. Pointer to OID's child object.

3. Multiple pairs of OID's parent object and its pointer to the parent branch (except the
main branch).

4. Multiple OIDs of leaf branch objects for the starting class in case that the starting
class has leaf branches.

In general, for the second class to the class before the ending class of a
branch, a record for each object of the class consists of members as follows.

1. OID of the object itself.
2. Pointer to OID's child abject.
3. Multiple OIDs of leaf branch objects for the class in case it has leaf branches.

Finally, for the ending- class, the information will be ‘only OID of the
ending class. The number of OIDs for the ending class will be only one for each entry of
the branch. Figure 5.7 shows an example of the information of the class Person, Vehicle,

Company and Bank for an entry of the main branch.

45

Object of C Leaf branch Object of Leaf branch
this class objects this class objects
Person[1] | PTR(Vehicle[1]) |Computer[1] Vehicle[1] | PTR(Company[1]) | Engine[1]

Person[2] | PTR(Vehicle[1]) | Computer[1] Vehicle[2] | PTR(Company[1]) | Engine[1]
Person[3] | PTR(Vehicle[2]) Vehicle[3] | PTR(Company[2]) | Engine[2]
Person[4] | PTR(Vehicle[2])

Person[5] | PTR(Vehicle[2]) (b)

Person[6] | PTR(Vehicle[3])

@)
Object of Object of
this class I:} this class
Company[1]| PTR(Bank[1]) Bank[1]
Company[2]| PTR(Bank[1])
(€) (d)

Figure 5.7 An example of the information for all classes of an entry of the main branch

From Figure 5.7, there is no information of the parent objects and the
parent pointers because it is the ancestor branch of all branches. However, for the other
branches, OID's parent objects and their pointers have to be kept as mentioned earlier.

An example of the information for the child branch is shown in Figure 5.8.

Object of % , Parent objects of the :}
this class

parent branch

Course[1]| PTR(University[1]} Person[1]| PTR(Person[1])| Person[4] |PTR(Person[4])
Course[2]| PTR(University[1]} Person[8] | PTR(Person[8] | Person[9] [PTR(Person[9])

(@)

Object of
this class

University[1]

(b)

Figure 5.8 An-example of the information for all classes of-an.entry of the child branch

The information of the Course class-and the University.class is shown in
Figure 5.8(a) and Figure 5.8(b) respectively. Notice that this child branch has no leaf
branch for all classes of the branch. However, since it is the child branch of the main
branch, the OIDs of the parent objects and pointers to the main branch have to be
stored.

At present time, the price of the media storage is decreasing and the

capacity of the storage is increasing. Therefore, the storage overhead of an access

46

method is not significant when compared with the retrieval performance. The branch
information will be created for every branch generated in case that the predicate class
and the target class can be any classes in the aggregation hierarchy. It will be stored
sequentially on the secondary storage. However, if it is known exactly where the
predicate class and the target class are, the branch information can be created for the
branches involved. An entry of the branch information is not allowed to cross page
boundaries unless its size is greater than the page size. Free space directory is required
for each page to inform the free space left. If there is not space enough left for an entry
of the branch, the new page will be allocated. Therefore, the free space directory will be
stored before the branch information.

The data structure that is used to model the various indexes is based on
tree-structures, such as B -trees. The format of a non-leaf node for the identity index is
similar to that of the attribute index. Figure 5.9(a) and Figure 5.9(b) shows the format of a

non-leaf node for the identity index and the attribute index respectively.

OID | Page pointer Key value | Page pointer

(a) (b)
Figure 5.9 Non-leaf node record of the identity index and the attribute index

The format of a non-leaf node record of the identity index consists of OID
and page pointer. The page pointer.contains the address of the next level non-leaf page
of the OID or the address of the leaf page of the QID. The format of a non-leaf node
record of the attribute index is similar-to that of the.identity index. Key value is used for
the attribute index instead of OID used for the identity index.

The format of a leaf node record of the identity index and the attribute

index is shown in Figure 5.10.

47

OID | Entry addr. OID | no.of entries (addr,| addr,| ...| addr,

(@) (b)

key length| key value [no. of entries OID,,addr > |<OID,,addr,>|...[<OID,,addr >

(©
Figure 5.10 Leaf node record of the identity index and the attribute index

The identity index is created for all objects for each class of a branch.
Therefore, if there are n classes involved in a branch, there will be n identity indexes for
each class in the branch. A leaf node record for the identity index of any classes is
shown in Figure 5.10(a). However, for the class that is a leaf branch, the identity index is
shown in Figure 5.10(b). The leaf node for the attribute index is shown in Figure 5.10(c)

of the corresponding OIDs and addresses for the indexed attribute.

5.3 Retrieval and Update Operation
In this section, the retrieval operation and the update operation are

discussed on the Branch Index.

5.3.1 Retrieval Operations

The -aggregation hierarchy as a tree shown in Figure 5.1 is used to
discuss the retrieval operation. As mentioned in Section 5.1, there will be two branches
generated when using the algorithm of branch generation. Therefore, B, and B, will
represent the main branch and the child branch respectively. A query that involves the
predicate class and the target class can be classified.as follows.
- The predicate class and the target class are on the same branch.

- The predicate class and the target class are on different branches.

A. The predicate class and the target class are on the same branch

In this case, the predicate class and the target class can be any classes
on the branch. For example, to find the owner of the car manufactured by the company

that connected to Bangkok bank. Therefore, the predicate class is the Bank class and

48

the target class is the Person class of branch B,. In this case, if an index is created on
the Name attribute of the Bank class, the qualified entries of the branch that associate
with the indexed key can be determined. Since the information of an entry of a branch
consists of OIDs of every class in the branch, OIDs of the objects in the Person class
can be easily retrieved. Furthermore, if the target objects are on any classes of the
branch, the OIDs of the objects for those classes can also be easily retrieved. Speaking
about the leaf branch, it is also a part of a complete branch. The query that the
predicate class or the target class are on the leaf branch is similar to that of discussion
above, for example, to find the manufacturer of the car that own by the person who use
the computer with OS UNIX. Therefore, the leaf branch, in this case, is the Computer
class that is a part of the main branch B,. The predicate class is the Computer class and
the target class is the Company class of branch B,. If an index is created on the Name
attribute of the Computer class, this index can be used to find the qualified entries of the
branch B, and Oaccess the qualified OIDs from the Company class. It can be
concluded that if the predicate class and the target class are on the same branch and
the predicate is specified on the indexed attribute, the qualified OIDs of the target class
can be accessed by scanning the indexed attribute. Several attribute indexes can be
created with low storage overhead because the overhead occurs only for the non-leaf

node records and leaf node records of the attribute indexes.

B. The predicate class and the target class are on different branches

In this case; the predicate class and the target class occurs on different
branches, for example, a predicate is on a class of branch B, and the target is on a
class of branch B,. From Figure 5.1, the query "to find the university of the person who
own the car manufactured by the company that connect to Bangkok bank" is an
example above. Therefore, the predicate occurs on the Bank class of the main branch
B, and the target class is the University class of the child branch B,. The main branch B,
connects to its child branch B, by the Person class. If an index is created on the Name
attribute of the Bank class, the OIDs of the Person class from the qualified entries of the
main branch will be obtained. Then, the forward traversal technique can be used from

each qualified OIDs of the Person class to the Course class and the University class of

49

branch B, and access the qualified objects from the University class. Also, an alternative
approach is to scan the identity index of the Person class for the qualified objects on the
branch B, to access the target objects of the University class from the qualified entries
of branch B,. On the contrary, the query "to find the bank that is connected by the
manufacturer of the car own by the person who take course at Chulalongkorn University"
is somewhat different. Although the predicate class and the target class are on different
branches, in this case, the join class cannot be used for the reverse traversal. If an index
is created on the Name attribute of the University class of branch B,, this index can be
scanned to obtain the qualified entries of the branch B,. Because the branch B, is the
child branch of B, and the information of branch B, consists of OIDs and the addresses
of the parent branch B,, these information can be used to determine the qualified entries
of branch B, and retrieve the OIDs from the Bank class. Therefore, it can be concluded
that the traversal from the child branch to its parent branch can be achieved easily by
using the information stored in the child branch. However, information is not stored from
the parent branch to its child branch because the forward traversal method can be used

from the join objects to the target objects directly.

5.3.2 Update Operations
Figure 5.1 and Figure 5.3 are used to discuss the update operations. The
update operation is‘considered only updating the complex attribute because it reflects
the information stored in the branch. The update operations can be specified as follows.
- Update the reference between-the parent object and the child object on the same
branch.
- Update the reference between the parent object and the child object on different

branches.

A. Update the reference on the same branch.

In this case, the parent object and its child object are on the classes of
the same branch. It is assumed that an object O of class C changes the reference from
an object O' of class C'to an object O" of class C'. The identity index of class C' has to

be searched to find the entries that associate with object O' and O". Furthermore, It is

50

assumed that £, and E, are the corresponding entries for O"and O" respectively. If E, is
equal to E,, the pointer that O points will be changed from O'to O". However, when E, is
not equal to E,, OIDs and the pointers of class C and its ancestor classes that associate
with object O'in E, have to be deleted and add these information in the entry £, that
associates with object O". Also, the information stored in the child branch for the moved
class has to be updated. Meanwhile, the associated identity indexes have to be
updated. For example, if Vehicle[1] that references Company[1] changes to
company[5], the entry of a branch for Company[1] and Company[5] has to searched. If
the entries are different, Vehicle[1] and the pointer to Vehicle[1] will be deleted from the
entry of Company/[1] and add this information in the entry of Company/[5]. Furthermore,
Person[1], Person[2] and corresponding pointers have to be moved from the entry of
Company[1] to the entry of Company[5]. All associated leaf branch objects for
Vehicle[1], Person[1] and Person[2] have to be moved. Therefore, Engine[1] and
Computer[1] will be moved to the entry of Company[5]. The child branch B, is affected
when the entry of its parent branch is updated. Therefore, the information that
associates with Person[1] in Course[1] will also be updated. Finally, the identity index for
Person[1], Person[2], Vehicle[1], Engine[1] and Computer[1] have to be updated.
Additionally, if the attribute index is created for the classes involved for the moving, the
attribute index will also be updated, for example, if an index is created for the Name
attribute of the Computer class, this attribute index has to be updated by removing the
associated addresses with corresponding to Company/[1] from the leaf node record and
insert the address of the-entry that corresponding. to Company[5] to that leaf node

record.

B. Update the reference on different branches.

It is assumed that an object O in a class C of branch B, changes the
reference from an object O' in a class C' of branch B, to an object O"in the class C' of
branch B,. Therefore, the identity index of the class C' of the branch B, has to be
searched to find the entries that associate with the object O' and O" and it is assumed
that they are E, and E, respectively. The branch B, will be performed by deleting OID of

O and the pointer of O from the entry of O' and insert them to the entry of O" For

51

example, Person[71] of branch B, that previously references Course[7] of branch B, is
updated to reference Course[2]. Therefore, Person[1] and its pointer from Course[7] will
be deleted and inserted to the entry of Course[2]. Finally, the identity index of Person[1]

and the attribute index involved on the branch B, will be updated.

5.4 Cost Model
In this section, the cost model in terms of storage overhead, retrieval
cost and update cost will be formulated. The parameters that are used in the analysis

will be given below.

Parameters:

Ni,j : The number of objects in class j of branch /.
A : The complex attribute of class j on branch /.
Di,; : Distinct value of complex attribute Ai, j.

UIDL : The length of Object Identifier.

P : Page size.

pp : The size of page pointer.

f : Average fan out from a non-leaf node.

ki : Average length of a key value in attribute index.

S : The length of start field in the branch information.

FSL :The length of free space in the branch information.

PL :The length of pointer in branch information.

SAi j.k : Simple attribute k of class j on branch i.

Ui j.k : The number of distinct values for simple attribute SAi, j « .

g.i.x : The ratio of shared attribute value =N, /Ui, j, k.

Pki . Reference sharing of the parent class of class i.
ki, : Reference sharing of class j on branch /.
nibi.j : The number of leaf branch of class j on branch /.

Performance is measured by the number of I/O accesses. A page is

used to estimate the storage overhead and the cost of performance because it is the

52

basic unit for data transfer between the main storage and the secondary storage. All

lengths and sizes above are in bytes.

Assumptions:
1. There are no partial instantiation. This implies that Di,j = Ni,j + 1.
2. All key values have the same length.

3. All attributes are single-valued.

5.4.1 Storage Cost

In this subsection, the information of Figure 5.1 is used in the analysis. All
branches are generated by using the algorithm of branch generation for the aggregation

hierarchy of Figure 5.1.

Branch Information

For an aggregation hierarchy as a tree and after applying the algorithm
of branch generation, It is assumed that m branches are generated.

Also, It is assumed that there are n classes in a branch B, These classes
are related as in the form C,C,C....C,. The size (SZ€c;1) that associates with one object
of the class C, of B, consists of the following:

- OID of this object for class C, and its pointer to the child-object.
- OIDs and pointers of the parent objects for the object in the first class of branch B.

- OIDs of leaf branch objects for class C, of branch B..

Szec; = (UIDL + PL) + Pk * (UIDL + PL) + (nlbis) #*UIDL.
Szes; = (Pk+1) * (UIDL + PL)+ (nlbi1) *UIDL:
Szec; = (Pk + nlbia+1) *UIDL + (Pk +1)* PL.

The size of an entry for one object in a class C, of branch B; when
2< j £n-1; consists of the following:
- OID of this object for class C, and its pointer to the child object.

- OIDs of leaf branch objects for class C, of branch B.

Size;=UIDL + PL + (nlbi, j) *UIDL.

The size of an entry for one object in the class C, of branch B;.

Szec,=UIDL.
The size of an entry for every object in class C, of branch B;.

SE(B.) = ([Tk.) *[(Pk + nib.+)*UIDL +(Pki+1* PL]+ <L

j

The size of an entry for every object in class C,of branch B, 2<j<n-1:
n-1

E(Bi)= (H ki) *[(nlb,j+D)*UIDL +PL]+ 9.
I=]

The size of an entry for every object in class C, of branch B:

SE(Bi.n) =UIDL + 9.

The total size of an entry of branch B

FE(B) = SE(Bin) +§ SE(Bi, i) + SE(Bi.n).

j=2

In case of the main branch B,.

The size of an entry for every object in class C,of branch B, 1<j<n-1:
n-1

SE(Buj) = ([] k) *[(nlbx; +) * UIDL + PL] + L.
=]

The size of an entry for every object in class C, of branch B;:

SE(B.n) =UIDL + SL.

The total size of an entry of branch B;:
n-1

SE(By) =) SE(Bu.j) + SE(Bun).
j=1

If BPiis the number of pages used for every entry in the branch B, then

BP: = [N/ P/SE(B)]]if SE(B)<P
P = {Ni,n*’—SE(Bi)/ P-‘. if SE(B) > P

53

54

The number of pages for the free space directory of branch B

FSDi =[BP:*(pp+ FL)/P].

The total size for all branches.

TBP =) (BP: + FSDi)

i=1

Identity Index

The identity index will be created for every object for each class of a

branch. The average length of a leaf node index record for the identity index of class C.

_ JUIDL + pp, if Cjisnot aleaf branch
~ |UIDL + Pk * pp. if G isaleat branch

The number of leaf pages for the identity index of class C, on branch B.
LPiden,i,j = |_Ni,j/|_P/ Xl ﬂ
The number of non-leaf pages for the identity index of class C, on branch B,

NLPiden,i, j = “.Piden,i, il f—‘+ WLPiden,i,j/ f—l/ f—‘ 2 X,
If x < fand X#1,1 will be added in NLPiden,i, j for the root node. Therefore, the number

of pages for the identity index of class C, on branch'B;:

[IPi,j = LPiden,i, j + NLPiden, i, j.

If there are n classes on the branch B, the number of pages for the identity index of

branch B

NP =>"1IP ;.
j=1

55

The number of of pages for the identity index of every branch is:

TIIP:iIIPi.

i=1

Attribute Index

When creating the attribute index on a primitive value of a class j of
branch B, SA, j k represents a primitive value k of the class j of branch B, and an index
is created on SAi, j.k. The average length of a leaf node index record for the attribute

index is:

XPsa i« =kl + g, j,x*(UIDL+ pp).
The number of leaf pages of the attribute index on branch B, is:

[Ui i k/[P/ XPsa. i |]if XPsaj <P

LPsA, j.«= 4
Ui, j,k*[XPsa. .« /P, if XPsai ;> P

The number of non leaf pages of the attribute index on branch B; is:

NLPs. .« = [LOsa .o/ f |+[[LOsa. o £]/ f]+ +x
when LOsa. .« = min(Ui, j,k, LPsa ;. «) and X< f. If X#1 add 1 to NLPsa.;.« for the root
node.

Therefore, the number of pages forindex on SA, j,kis:

Al PSAi,j,k = LPSAi,j,k+ NLPSA.Jk

Actually, many attribute indexes can be created. If there are n indexes

on the branch B, the number of pages for these indexes is:

TAIPi = > AP, indes

=

when AlPinges is the /" index of branch B,

The number of pages for the attribute index of every branch is:

TAIP = Zm:TAI Pi.

i=1

56

Finally, the storage cost is:

S =TBP+TIIP+TAIP.

5.4.2 Retrieval Cost

To simplify the analysis, It is assumed that there is only one predicate
attribute in the queries and the predicate is specified on the indexed attribute. Cost
formula will be classified as in the discussion in Section 5.3.1. Furthermore, the identity
index is chosen to scan for the required entries instead of the forward traversal

technique.

A. The predicate class and the target class are on the same branch

In this case, the predicate class and the target class are on the same
branch. Therefore, it'is convenient to perform the class traversal in the branch when

using the Branch Index.

The retrieval cost of the branch index consists of the following:
- Cost of the attribute index scanning.
- Cost of the accessing the target objects from the target class for the qualified

entries.

RC = Natr + [XPat / P |+ Ne /o[SEa /P,

is the height of the attribute index-1, XP

attr

when h is the length of a leaf node index

attr

record, N, is the number of the qualified entries of.a branch B, for the predicate P of

query Q.

B. The predicate and target class on different branches
In this case, the predicate class and the target class are on different
branches for the Branch Index. The retrieval cost of the Branch Index can be classified

on the location of the predicate class and the target class.

57

- The predicate class is on an ancestor branch of the target class

There is no information of the child branch stored in the parent branch.
Therefore, after scanning the attribute index and obtain the qualified join objects from
the join class, the identity index of the join class will be used to retrieve the qualified
entries of the child branch. The general formula for the branch index when the predicate

is on a branch j and the target class is on a branch k is:

RC = Nate + | XPatr / P |+ Neso*[SEa /P |+ [Ny -2 (hicen +1)

k-1
|

+ Njii oo * |_SEB| ol P—‘]

when N, .:are the qualified objects of the join class that link between the branch / and

the branch /[+7 and there are several branches between the branch j and branch k.

- The target class is on an ancestor branch of the predicate class

Because the information of the child branch can link directly to its parent
branch, the retrieval cost in this case is:
k-1
RC = haw +[XPas /P |+ Neso #[SEa /P [+ Y Nivi. ([SEa ./ P].
e

J

5.4.3 Update Cost

The update cost will be formulated-as discussed in Section 5.3.2. To
simplify the analysis, The cost due to page overflow caused by update operation will not
be included. When a complex attribute of one objectis updated, the possible result is as
follows.

- Update the reference on the same branch.

- Update the reference on different branches.

5.4.3.1 Update the Reference on the Same Branch

In this case, the update of the reference on the same branch of the branch index is

considered.

58
Four different cases are categorized as follows.

A. The class of the updated object or its ancestor classes have no attribute index, no
leaf branch and no child branch

In this case, It is assumed that the updated object is on the m" class of

branch i.

UC = 2+ (e 14 2+ [SEa/ PD) 4 (3. [T +2) * (oot 2).

1’ <

when h___is the height of the identity index - 1.

iden
B. The class of the updated object or its ancestor classes have an attribute index but no

leaf branch and no child branch

UC = 2 (i + 1+ 2% [SEa / P+ (3 [Tk 1) * (o + 2) +

=1 j=I

(hattr + 2|_Xpattr / P—I)

C. The class of the updated object or its ancestor classes have an attribute index and
leaf branches but no child branch.

The number of objects for the leaf branches from objects of the first class

to the updated objects is:

m-1

NLO =[5 (nlby * [T ku) + il .

Therefore, the update cost is:

m-1 m-1

UC = 2% (N +1+ 2% SEa /P)+ [k. i +1+ NLO) * (N + 2) +

=1 j=I

(hattr + 2% |_Xpattr / P—I)

D. The class of the updated object or its ancestor classes have an attribute index, leaf
branches and child branches.

Some parameters defined earlier will be used. So the update cost is:

59

UC = 2 (i + 1+ 25 SEa/ P))+ (3 [T k.1 + 1+ NLO) # (oot 2) +

=1 j=I

(atr + 2% XPar / P]) + iKﬁ ki | *ncbm) #[(Niaen + 1)+ 2% [SCB1.;/ P]]} .

=1 =1
when nchi,i1is the number of child branches of a branch i of class / and SCBi,j is the

entry size of a child branch j of class /.

5.4.3.2 Update the Reference on Different Branches

The update of the branch index is performed only on the object of the
first class of the child branch. The parent objects and associated pointers will be
updated for the branch information of the child branch. Therefore, the update cost
consists of the following:
- The scanning of the identity index for the old and new OID of object of the first class

of the child branch.

- The update of the qualified entries of the child branch.

- The update of the identity index of the parent object.

UC = 2 (N +1+ 2%[SE5 1 P |) + (higenz + 2).

when SEs; is an entry size of a branch j; the child branch of a branch .
h....; is the height of the identity index - 1; of the first class of the branch j

h...,is the height of the.identity index - 1; of the parent class.of the branch j

iden2

The-next chapter will compareall-access methods presented in Chapter
3, Chapter 4 and Chapter 5 with the Path Dictionary Index of multi paths. The
comparison of the storage cost, the retrieval cost and the update cost will be performed

by assigning the value for the parameters and then analyzed them.

CHAPTER 6
COMPARISON OF ACCESS METHODS

This chapter analyzes the comparison of cost models between those of
access methods presented in Chapter 3, Chapter 4, Chapter 5 and that of the Path
Dictionary Index for multi paths. The condition of the reference sharing between objects
is considered for all cases and the comparison is presented in the graphical form with

the analysis.

6.1 Scope of the Comparison

The aggregation hierarchy as a tree in Figure 6.1 will be used for the
analysis of cost models. The scope and various kinds of queries for the comparison of

access methods will be defined in subsection.

Bank
Company

=

Engine

Vehicle

Course

niversity

Figure 6.1 Aggregation hierarchy as a tree

6.1.1 The Number of Access Methods Used in Comparison

The access methods described in Chapter 3, Chapter 4 and Chapter 5
will be used in comparison because they are designed to cope with the aggregation
hierarchy as a tree. Since the Path Dictionary Index is proved to be the best for the

aggregation hierarchy in case of a path, multiple paths will be used to compare with the

61

three methods mentioned above. Therefore, the access methods used in comparison

consist of the following.

1. Direct Access to Terminal Virtual Path.

2. Virtual path Signature.

3. Branch Index.

4. Path Dictionary Index

6.1.2 The Queries Used in Comparison.

It is assumed that the query is specified on the indexed attribute in case that the
access method is one of the indexing techniques. The query will be categorized as

follows.

A. The predicate class is the root class and the target class is one of the remaining

classes of the aggregation hierarchy as a tree.

- The target class is an intermediate class.

- The target class is a leaf class.

B. The predicate class is a leaf class and the target class is one of the remaining

classes of the aggregation hierarchy as a tree.

- . The target classis an intermediate class:

- The target class is a leaf class.

- The target class is the root class.

62

6.1.3 The parameters used in comparison

All parameters from Chapter 3, Chapter 4 and Chapter 5 will be used to
analyze the cost models for the access methods. The chosen values of some

parameters are adopted from [26] as they are listed in Table 6.1.

UDL =8 OFFL =2 | =8
P =4096SL =2 SZ =320
pp =4 FSL E27..8 =

f s e W Z— =
Kol P L (S e =

Kl =1

Table 6.1 Parameters of cost models

Performance is measured by the number of I/O accesses. A page is
used to estimate the storage cost and the cost of performance because it is the basic
unit for data transfer between the storage and the secondary storage. All lengths and
sizes above are in bytes. To facilitate the cost models, these assumptions will be used

as follows.

Assumptions:

1. All key values have the same length.

2. All attributes are single-valued.

3. All child objects are referenced by the parent objects

6.2 Storage Cost

The formula developed in Chapter 3, Chapter 4 and Chapter 5 will be
used to compare the storage cost of these access methods with the path dictionary

index. The attribute index will be created on one of the attributes of the Person class and

63

one of the attributes of the University class for the Branch Index and the Path Dictionary

Index. The cardinality of the root class is fixed to 200,000.

Using the algorithm of branch generation for the aggregation hierarchy
as a tree from Figure 6.1, two branches will be generated for the Branch Index. The
main branch is from the Person class to the Bank class while the Engine class and the
Computer class are its leaf branches. The second branch, the child branch, is from the
Course class to the University class. Various paths of the Path Dictionary Index are

created to mimic those of the Branch Index as follows.
Path 1: Person — Vehicle — Company — Bank
Path 2: Vehicle — Engine
Path 3: Person — Course — University
Path 4: Person — Computer

It is assumed that all reference sharing of all classes and the shared key
values are set to the same value, which is represented as K . The impact of K to the

storage overhead and cost of performance will be used to observe.

The ‘storage cost of each access methods will be compared and
mathematical proved by replacing the constant value of parameters from Table 6.1. The
value of K that impacts: the storage cost will _be appeared in the formula for

comparison.
-~ . The Storage Cost of the Direct Access. to-Terminal Virtual-Path.

SC =[(Nz#(nLC +1)*UIDL)/P |+ NLP + LP.

P KP| f

SC:40N1+19N1(1 ;L %+J

Since the value of f is high, so the storage cost is:

< - Nl(40 19)
P K

- The Storage Cost of the Virtual Path Signature.

SC =[(N1#(2S+UIDL *(nLC +nNLC)))/ P].

N1
=

SC = —(68).

- The Storage cost of the Branch Index.
Branch Information
SE(B1)=18K 3+ 18K 2+10K +16.
SE(B2)=10K 2+ 10K + 2.

BP:= ':1(18 4o 3Q+16j

K 42> RE J4
BPo= NY(90,49, 2}
P et

The term of SFD is ignored because it is very small when compared

with BP . Therefore, the total branch information is:

index is:

TBP= [28428, 12 10}
P K k? k3

Attribute Index

XP=1+12K.

Lpzm(iﬂzj.
PlK

NLP is very small when compared with LP. Therefore, the attribute

Al person = &(i-f- 12) .
P {K

64

Al University = &[ig + 1—22) .
P LK K

TAIP=m i+£+i+12 .
P{kK® K? K

Identity Index

K?® K?

LPBa“k:& 12 : |-F’Company=m 12 : LPVehicIe:& 2 _
P P P\ K

LPperson = m(:I.Z) LPUniversity = m 12 . LPcourse = & 1—2 .
P PlK? P K

LPEngme—) ﬁﬁ-i ! LPComputer— b1 £+4 .
P{K? K PlK
TIp2 g, %0 ;32,121
P K K? K?

Therefore, the storage cost of the Branch Index is:

S =TBP+TAIP+TIIP.

o105, 8, %, 2)
P K

K> K*)
The Storage cost of the Path Dictionary Index.

S-Expression

SS(P1)=10K*+10K?+10K +10. SS(P2)=10K +16.

SS(Ps)=10K 2+ 10K +18. SS(P+)=10K +16.

s N (10 0, 1—0+10j. 92:&(1—%1—6).
P K2 K3 P K K2

sps= 10420, 18 sPa= (10422 |
P K K?) P K

The total s-expression is:

65

66

Attribute Index

XP=1+12K.
LP:E(1+12)
P K

NLP is very small when compared with LP. Therefore, the attribute
index is:

Al person = m(iﬁh 12j .
P K

Al University = m(% == 1—22j i
P LK K

Identity Index

The identity index is created for every object of all classes in the path

LP1=%[12+12 1K2 12) LP2=N1[2+E)

K® K? PlK? K
|_F>3=m i3 12 +12 LP4=& E+12 .
= KZ K P K
Tip = Nt 36+ P 36+12 .

P K2 K3

Therefore, the storage cost of the Path Dictionary Index is:

XL =TSS+TAIP+TIIP.

S)
P K2 K3

67

The upper bound and the lower bound of each access methods can be
obtained by considering the value of K. The lower bound occurs when the value of
K'is high and the upper bound occurs when the value of Kis equal to 1. Therefore the

boundary of the storage cost of each access method is as follows.

40PN1 < Comp < 59N1 '

C s = 68N1.

68N: _ o 218N:
P P

78N1£SCPD| - 288N1.

It is proved that the storage cost of the Direct Access to Terminal Virtual
Path is the lowest. The storage cost of the Virtual Path Signature is constant and it is the
second lowest. Although, the storage cost of the Branch Index is lower than that of the
Path Dictionary Index, it is never less than those of the Direct Access to Terminal Virtual

Path and the Virtual Path Signature for all ranges of K.

The analysis-by-using-graphical view-is-shown in Figure 6.2 by varying

the value of K from 2 to 10 at the x-axis.

68

Storage Cost

8000

7000

6000 ——D1vP
—-\vps
—A—sBl
—@—PDI

5000

4000

Pages

3000

2000

1000

Figure 6.2 The storage cost of access methods
- Comparison:

From Figure 6.2, the Direct Access to Terminal Virtual Path (DTVP) has
the lowest storage cost. Actually, the cost of the linking file structure is constant but the
cost of the attribute index of the root class is varied from the value of K. When K is
bigger, the cost of the attribute index is lower. The result why DTVP has the lowest
storage is due to its structure. As mentioned in Chapter 3, the structure of the linking file
structure is stored by OID of the root class and associated OIDs of the leaf classes in
Terminal Virtual Path. Therefore; less storage s required when the OIDs of the

intermediate classes are ignored.

The storage cost of Virtual Path Signature (VPS)'is constant and it is the
second lowest. As mentioned from Chapter 4, the structure of the signature file depends
on the signature of the Virtual Path and the number of classes in the aggregation
hierarchy as a tree. Since the cardinality of the Person class is constant and the number
of entries of the signature file is equal to the number of objects in the root class, so the

storage cost of the Virtual Path Signature is constant and it does not depend on K .

69

The storage cost of the Virtual Path Signature is higher than that of the Direct Access to

Terminal Virtual Path because of the additional cost from the Non-Terminal Virtual Path.

It is noticeable from Figure 6.2 that the storage cost of the Branch Index
is lower than that of the Path Dictionary Index. The result for the less storage is as

follows.

- The total cost of branch information for two branches is lower than the total

cost of s-expressions for four paths.

- The overall identity index of branch index is lower.

6.3 Retrieval Cost

The same parameters will be used as in the case of the analysis of the
storage cost. To simplify the analysis, It is assumed that there is only one predicate
attribute in the query and the predicate is specified on the indexed attribute. As
described in Chapter 3, the Direct Access to Terminal Virtual Path (DTVP) is applicable
when the predicate is specified on the indexed attribute of the root class and the target
class can be any leaf classes of the aggregation hierarchy as a tree. Therefore, there
will be only three access methods, i.e. the Virtual Path Signature (VPS), the Branch
Index (Bl) and the Path Dictionary Index (PDI) for the comparison of the retrieval cost
when the condition of the query ‘does not cover the Direct Access to Terminal Virtual

Path (DTVP). The comparison will be performed as mentioned in subsection 6.1.2.

6.3.1 The Predicate Class is the Root Class.

In this case, the predicate is specified on the indexed attribute of the Person

class and the target class is one of the remaining classes.

- The target class is an intermediate class.

70

From Figure 6.1, the intermediate classes are the Vehicle class, the
Company class and the Course class. The comparison of the retrieval cost will be
performed only for the Virtual Path Signature (VPS), the Branch Index (BI) and the Path

Dictionary Index (PDI).

- The Retrieval Cost of the Virtual Path Signature.

~ Nu

RC=—
P

(68)+ R*N1*[320/P].

- The Retrieval Cost of the Branch Index.
RC = hatr+ 1+ K *| SEe:/ P |.
When SEe.=18K>3+18K?+10K +16.
- The Retrieval Cost of the Path Dictionary Index.
RC = haw + 14 K [S5/ P .
When SS:=10K3+10K?+10K +10.

It is proved that the size of SEe:grows more quickly than that of SSe.

Therefore, it is concluded as follows.

SEe:. > Pwhen K > 6.

SS: > Pwhen K > 8.

The retrieval cost of the Virtual Path Signature.is constant.and it depends
on the number of objects of the root class. Since the value of Niis much bigger than
the value of Kin SEsior SSu, the retrieval cost of the Virtual Path Signature is the

highest.

The retrieval cost of the Branch Index is equal to that of the Path
Dictionary Index when SEs: is equal to SSei, i.e. when K <6.However, when

K > 6, the size of SEs:grows more quickly than that of SSe.. Therefore, it is proved that

71

the retrieval cost of the Branch Index is more than that of the Path Dictionary Index when

K>6.

Retrieval Cost

10000

| L L L L]]] |
1000
—-\vps
—A—Bl
(%]
> 100 —@—rDI
o
10 4
1 5
2 3 4 5 6 7 8 9 10
K

Figure 6.3 The retrieval cost when the predicate class is the Person class and the target

class is the Vehicle class

Retrieval Cost

10000 —= =

| i L L L L L L H
1000 -
—-ps
—A—sBl
(%]
% 100 4 —@—pDI
o
10 +
1
2 3 4 5 6 7 8 9 10

Figure 6.4 The retrieval cost when the predicate class is the Person class and the target

class is the Company class

72

Retrieval Cost

10000

1000 -

—-vpPs

—@—rDI
100 -

Pages

Figure 6.5 The retrieval cost when the predicate class is the Person class and the target

class is the Course class.
- Comparison:

The retrieval cost of the Virtual Path Signature (VPS) from Figure 6.3,
Figure 6.4 and Figure 6.5 is constant. It consists of scanning all entries of the signature
file and for the qualified entries, accessing the candidate objects from the Person class
to resolve the false drop. Since most of the retrieval cost of the Virtual Path Signature
comes from the scanning of the signature file, so the retrieval cost of the Virtual Path
Signature is much higher than the other two access methods. The retrieval cost of the
Branch Index (Bl) and the Path Dictionary Index (PDI) consists-of scanning the attribute
index and retrieve the qualified branch information or s-expression from the Branch
Index and the Path Dictionary Index respectively. It is noticeable from these figures that
the retrieval cost of the Branch Index is a little higher than that of the Path Dictionary
Index because there are more information in the main branch of the Branch Index than
in the Path1' s-expression of the Path Dictionary Index. However, the retrieval cost of the
Branch Index and Path Dictionary Index is the same when K is less than 6, because
the storage of the branch information and the s-expression are still less than a page

size.

73

- The target class is a leaf class.

The comparison of the retrieval cost will be performed for the Direct Access
to Terminal Virtual Path (DTVP), the Virtual Path Signature (VPS), the Branch Index (BI)
and the Path Dictionary Index (PDI). Four leaf classes in Figure 6.1; i.e. the Bank class,
the Engine class, the University class, the Computer class; will be considered as the

target class respectively.

When the target is at the leaf branch class such as the Engine class or the

Computer class, the retrieval cost of access methods is:

- The Retrieval Cost of the Direct Access to Terminal Virtual Path.
RC = haw 4+ 1+ K [40K / P].

- The Retrieval Cost of the Virtual Path Signature.

L\

RC=—
P

(68)+ R*Nax[320/ P].

- The Retrieval Cost of the Branch Index.
RC = hav + 1+ K [SEs,/ P |.
When SEe:=18K3+18K?+10K +16.
- The Retrieval Cost of the Path Dictionary Index.
RC = hatr + 1+ K *[S5/ P | + K ((hiden + 1)+ [SS: /P).
When SS:=10K*+10K?*+ 10K +10and S5 = 10K +16.

It is proved that the retrieval cost of the Direct Access to Terminal Virtual
path is the lowest because the value of the last term in the equation is much lower than
those of the remaining access methods. The retrieval cost of the Path Dictionary Index is
higher than that of the Branch Index because of the additional terms of the equation.

However, the retrieval cost of the Branch Index will close to that of the Path Dictionary

74

Index when the value of K is high because the value of SEs:grows more quickly than

that of SS: and S&.

Retrieval Cost

10000

l i i i i i i i |
1000 4 ——DTvP
—-vps
—A—Bl
3
2 100 —@—PDI
o
10 H
1 =
2 B 4 5 7 8 9 10

X o

Figure 6.6 The retrieval cost when the predicate class is the Person class and the target

class is the Bank class

Retrieval Cost

10000 e —

| i i]] L i L H
1000 ~ ——DTvP
—-vps
—A—Bl
(72}
% 100 —@— DI
o
10 +
1
2 3 4 5 6 7 8 9 10

Figure 6.7 The retrieval cost when the predicate class is the Person class and the target

class is the Engine class

Retrieval Cost

10000

1000

100 o

Pages

75

——DTVP
—-vps
—A—Bl
—@—rDI

xOo

Figure 6.8 The retrieval cost when the predicate class is the Person class and the target

class is the University class

Retrieval Cost

10000 ;

1000

100

Pages

——DTVP
—-vps
—A—Bl
—@—rDI

Figure 6.9 The retrieval cost when the predicate class is the Person class and the target

class is the Computer class

76

- Comparison:

From Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.9, the retrieval cost
of the Direct Access to Terminal Virtual Path (DTVP) is the best. As described from
Chapter 3, the information stored in an entry of the linking file structure is OID of the
Person class and associated OIDs of the leaf classes in the Terminal Virtual Path (TVP).
Since all entries of the linking file structure have the same space and they are less than
a page, retrieval of the qualified entries after obtaining the attribute index is done
efficiently. When the key shared value is more than 4, the retrieval cost is lower because

the leaf node record is reduced until there is only one root node left.

The retrieval cost of the Virtual Path Signature (VPS) is the same as in the
case that the target class is an intermediate class. It is noticeable that the location of the
target class and value of K do not affect its retrieval cost. However, if we do not know
what attribute will be involved in the predicate and that attribute is not indexed, the
signature technique would be an alternative approach for accessing the qualified

objects.

As the target class is the Engine class and the Computer class from
Figure 6.7 and Figure 6.9, the retrieval cost of the Branch Index (BI) is lower than that of
the Path Dictionary Index because the Engine class and the Computer class are leaf
branches of the main branch. However, for the Path Dictionary Index, the Engine class
and the Computer class are on-other path dictionaries so that more accesses are
required. The retrieval cost of the Branch Index is a little higher than that of the Path
Dictionary Index in Figure 6.6 and Figure 6.8 when K'is greater than 5. Since the Person
class and Bank class are in the same branch of the Branch Index and they are also in
the same path of the Path Dictionary Index, the Path Dictionary Index will gain a little
lower retrieval cost. As the target class is the University class, the child branch of the
Branch Index is required for obtaining the target objects so that a littler higher cost is

occurred.

77

6.3.2 The Predicate Class is a Leaf Class.

In this case, the predicate is specified on the indexed attribute of the
University class and the target class is one of the remaining classes. The mathematical

proof can be performed as the same way as in Section 6.3.1.

- The target class is an intermediate class.

The intermediate classes are the Vehicle class, the Company class and
the Course class. The comparison of the retrieval cost will be performed only for the

Virtual Path Signature (VPS), the Branch Index (Bl) and the Path Dictionary Index (PDI).

Retrieval Cost

10000 —m7m—-—— —— — —

1000

—-vps
—A—B
—@—PDI

100 o

Pages

Figure 6.10 The retrieval cost when the predicate class is the University class and the

target class is the Vehicle class

78

Retrieval Cost

10000

1000

—-vps
—A—BI
—@— DI

100

Pages

Figure 6.11 The retrieval cost when the predicate class is the University class and the

target class is the Company class

Retrieval Cost

10000 7L KR

1000

—-vps
—A—B
—@—rDI

100 o

Pages

Figure 6.12 The retrieval cost when the predicate class is the University class and the

target class is the Course class

79

- Comparison:

From Figure 6.10, Figure 6.11 and Figure 6.12, the retrieval cost of the
Virtual Path Signature (VPS) has tendency to lower when Kis higher because the
number of objects in the University class is lower when Kis higher and so do the
candidate objects. However, its retrieval cost is still high when compared with those of

the Branch Index (BI) and the Path Dictionary Index (PDI).

It is shown clearly that the retrieval cost of the Branch Index in Figure
6.10 and Figure 6.11 is lower than that of the Path Dictionary Index. As described from
Chapter 5, the child branch of the Branch Index can link to its parent branch so that cost
of object traversal is reduced. However, for the Path Dictionary Index, Path 3 has to be
considered first to obtain the qualified objects in the Person class. Then Path 1 has to be

searched next by using the identity index of the qualified objects from Path 3.

From Figure 6.12, the retrieval cost of the Branch Index and that of the
Path Dictionary is the same because the Course class and the University class are on
the same branch information and s-expression respectively. Furthermore, the storage of
each branch information and s-expression is not more than a page size so that only one

page is required to retrieve the branch information or the s-expression.

- The target class'is a leaf class.

The comparison of the retrieval cost will be performed. for the Virtual Path
Signature (VPS), the Branch Index (Bl) and the Path Dictionary Index (PDI). The three
remaining leaf classes in Figure 6.1; i.e. the Bank class, the Engine class, the Computer

class; will be considered as the target class respectively.

80

Retrieval Cost

10000

1000

—-vps
—A—BI
—@—PDI

100

Pages

Figure 6.13 The retrieval cost when the predicate class is the University class and the

target class is the Bank class

Retrieval Cost

10000 —FEd L\ ST ST

1000

—-vPs
—A—Bl
—@—rDI

100

Pages

Figure 6.14 The retrieval cost when the predicate class is the University class and the

target class is the Engine class

81

Retrieval Cost

10000

1000

—-vps
—A—Bl
—@—rDI

Pages

100 o

Figure 6.15 The retrieval cost when the predicate class is the University class and the

target class is the Computer class

- Comparison:

From Figure 6.13, Figure 6.14 and Figure 6.15, it is shown that the
retrieval cost of the Branch Index (BI) is lower than that of the Path Dictionary Index
(PDI). As explained previously, the Bank class, the Engine class and the Computer class
are on the same main branch butthey are on different paths of the Path Dictionary
Index. It is naticeable that the retrieval cost of the Branch Index and that of the Path
Dictionary Index will close to each other when the value of K increases. That is because
more objects of the Person class are required so that the accessing of the branch

information compensate the traversal of multiple paths of the Path Dictionary Index.

- The target class is the root class.

In this case, the Person class will be considered as the target class.

82

Retrieval Cost

10000

1000

—-vpPs

100 —@—FPDI

Pages

Figure 6.16 The retrieval cost when the predicate class is the University class and the

target class is the Person class

- Comparison:

The retrieval cost of the Branch Index (BI) and that of the Path Dictionary
Index is the same because the Person class and the University class are on the same

branch information and s-expression as explained earlier.

6.4 Update Cost

Update cost analysis will be considered only for the Branch Index and
the Path Dictionary Index because they are efficient for retrieval and they covers all
queries as analyzed in Section 6.3. Since update simple attributes does not affect the
data in the branch information or the s-expression, only update of the object reference
between classes of the aggregation hierarchy of Figure 6.1 will be considered. The
same parameters will be used to analyze as in the case of the storage cost and the

retrieval cost.

83

- Update the Reference of Class in the Same Branch.

In this case, the update of reference between the Vehicle class and the

Company class is used for the mathematical proof.
- Update Cost of the Branch Index.
UC = 23 (iden + 1+ 2| (18K >+ 18K 2+ 10K +16)/ P)+ 23 (1+ K)(hisen + 2)
+ (Pate + 2] XP/P)+ UCcs.
When UCes is the update cost of the child branch.
- Update Cost of the Path Dictionary Index.

UC = 23 (higen+ 1+ 2| (10K >+ 10K >+ 10K +10)/ P)+ (1+ K)(hicen + 2)
+ (hae + 2] XP/P]).

Since there are more terms in the formula of the update cost of the
Branch Index, especially the term of the update of the child branch, the update
cost of the Branch Index is proved to be higher than that of the Path Dictionary

Index.

However, If update is performed to the leaf branch such as the reference
between the Vehicle class-and the Engine class, the update cost of the Branch Index is

as follow.

UC = 2 (hisen142 | (18K3+18K 2+ 10K +16)/P [} (hiwes + 2).

It is proved that the update cost of the attribute index of the parent class
is unnecessary. Therefore when K <6, the update cost of the Branch Index will lower
than that of the Path Dictionary Index. However, as K > 6the benefit gains is not much

enough to compensate the higher value of SEs:.

84

- Update the Reference of Class in Different Branches.

In this case, the update is performed between the Person class and the

Course class.

- Update Cost of the Branch Index.

UC = 2 (hidem + 1+ 2] SEz2/ P |) + (igen: + 2).

When SEs: =10K2+10K + 2,
higens is the height of the identity index of the Course class,
hidenz is the height of the identity index of the Person class.

- Update Cost of the Path Dictionary Index.

UC = 2% (higen + 1+ 2% SSps/ P) + (higen + 2).

When SS:=10K?+10K +18,
hicen is the height of the identity index of the Path Dictionary P3.

As mentioned from the storage cost, the leaf page of the identity index of

Ni.(12
the Course class is ?1(?) and the leaf page of the identity index of the Person class

N
is 31(12), but the leaf page of the identity index of the Path Dictionary P3 is

P

case never lower than that of the Branch Index.

N 12 12
1(12+?+Fj. It is proved that the update cost of the Path Dictionary Index in this

Update Cost

40
35
30 -

25 4

Pages

20 +

85

—A—B
—@—PDI

—d

10

Figure 6.17 The update cost of reference between the Person class and the Vehicle

class

Update Cost

120 —FEd L\ ST ST

100

80

Pages

60

40

20 A

—A—Bl
—@—PDI

Figure 6.18 The update cost of reference between the Vehicle class and the Company

class

800

Update Cost

700 A

600

500

400

Pages

300 o

200

100

86

—@—PDI

Figure 6.19 The update cost of reference between the Company class and the Bank

Pages
S
L

class

Update Cost

—&— B
—@—PD

N

Figure 6.20 The update cost of reference between the Vehicle class and the Engine

class

Update Cost

Pages
(o)
L

| 2

87

—A— B
—@—rDI

N
w

10

Figure 6.21 The update cost of reference between the Person class and the Course

60

50 4

40 -

30 +

Pages

20 +

class

Update Cost

—A—B
—@—rDI

N
w

10

Figure 6.22 The update cost of reference between the Course class and the University

class

88

Update Cost

25

20 4
—A—BI
15
° ® ® ® e e ® ® ° -@—roi
1%2]
8 A A A A
8
10
5 4
0
2 3 4 3 6 7 8 9 10
K

Figure 6.23 The update cost of reference between the Person class and the Computer

class
- Comparison:

It is noticeable from Figure 6.17, Figure 6.18 and Figure 6.19 that the
update cost of the Path Dictionary Index (PDI) is better than that of the Branch Index
(Bl). Since the information stored in the s-expression of the Path Dictionary Index is
lower than those stored in the branch information of the Branch Index, update cost of the
Branch Index will be higher when we have to read and write back the branch
information. As the update is performed between the leaf branch as in Figure 6.20 and
Figure 6.23, the update cost of the Branch/Index is lower than that of the Path Dictionary
Index when the value of K is less than 6. That is because when K'is less than 6, the
storage of the branch information is not more than a page and only the identity index of
the leaf branch need to be updated. It is no need to update the ancestor objects.
However, as the value of K is more than 5, the benefit gained is not sufficient when
compared with the higher storage of the branch information. When update operation is
perform on the child branch as in Figure 6.21 and Figure 6.22, The update cost of the
Branch Index is lower than that of the Path Dictionary Index. That is because the level of

non-leaf node of the identity index of the University class and the Course class of the

89

Branch Index is smaller than that of the identity index of the path 3 of the Path Dictionary

Index.

The next chapter will conclude the research and give the perspective for

the further research.

AONUUINYUINNS)
RN ITNINENAY

CHAPTER 7
CONCLUSION AND PERSPECTIVE

This chapter concludes the research for the access methods of the
aggregation hierarchy as a tree and proposes the possible research in this area for the

future.

7.1 Conclusion

The aggregation hierarchy as a ftree is considered as a more
complicated form than a path. Therefore, the efficient access method to handle the
query on the aggregation hierarchy should be developed. This research introduced the
new access methods called the Direct Access to Terminal Virtual Path (DTVP), the
Virtual Path Signature (VPS) and the Branch Index (Bl) to evaluate the query on an
aggregation hierarchy as a tree and then compared them with the Path Dictionary Index
method for the path scheme. The reference sharing of classes and the shared key
values were varied to observe the storage cost, the retrieval cost and the update cost of
these access methods.

Path dictionaries were created to mimic the branches generated from the
algorithm of the branch generation for the comparison. The attribute indexes were
created on one of a simple attribute of the root class.and one of a simple attribute of the
leaf class of a sample of the aggregation hierarchy. The identity indexes were also
created for the objects of every class-on a branch of the Branch Index and on a path of
the Path Dictionary Index for the complex attribute searching. The result of the storage
cost is that the storage cost of the Direct Access to Terminal Virtual Path (DTVP) is the
lowest and the cost of the Virtual Path Signature (VPS) is the second lowest. The storage
cost of the Branch Index (BI) is much lower than that of the Path Dictionary Index (PDI)
because the information of the leaf branch can be stored as part of the complete branch

so that the redundant path is eliminated.

91

It can be concluded from the comparison of Chapter 6 that when the
predicate is specified on the index attribute of the root class and the target is on any leaf
classes, the Direct Access to Terminal Virtual Path is the most appropriate than any
other access methods. However, if the predicate is specified on other classes, the
Direct Access to Terminal Virtual Path is inapplicable. Although the retrieval cost of the
Virtual Path Signature is high when compared with other methods, the Virtual Path
Signature is the most flexible if we do not know if the predicate is specified on any
attributes of any classes. Comparing the retrieval cost of the Branch Index and the Path
Dictionary Index, the cost of the Branch Index is apparently lower than that of the Path
Dictionary Index when the target class is on the ancestor path or branch of the predicate
class. The retrieval cost of the Branch Index is slightly higher than that of the Path
Dictionary Index when the predicate class and the target class are on the same path
dictionary or branch and the entry size of the branch information is bigger than a page
size. Generally speaking, if we do know that the predicate and the target class are on
the same path, the Path Dictionary Index is more appropriate. However, if the predicate
can be specified on any classes of the aggregation hierarchy as a tree and the entry
size of the branch information is not more than a page size, the Branch Index is the most
suitable of all access methods mentioned earlier.

As explained in Chapter 6, the entry size of a branch may be bigger than
the s-expression of a compared path dictionary because more information, such as the
leaf branch and the associated parent branch, is stored in a branch. Therefore, the
update cost of the branch index is-higher than the update cost of the path dictionary
index when the update of reference.is performed on that branch. However, if the entry
size of the branch information is not more than a page size, the update of reference
between classes on different branches of the Branch Index is lower than that on a path
of the Path Dictionary Index.

It can be concluded that the Branch Index is more appropriate for the
aggregation hierarchy as a tree than the Path Dictionary Index, especially when the
retrieval operation is high and especially when the entry size of the branch information
involved is not bigger than a page size. The Branch Index can be reduced to the form of

the Path Dictionary Index when there is only one path of the aggregation hierarchy and

92

then all cost will be the same. Therefore, the Branch Index is more general than the Path

Dictionary Index.

7.2 Perspective

Throughout the research, there are some assumptions that limit the
general case for the access method. Actually the value of an attribute can be multi value
or a multiple sets of values. A complex query, such as those predicates with the logical
expression ‘AND’ or ‘OR’ are also a challenge ones for query processing on the
aggregation hierarchy. Furthermore, the access method for the most complicated form

of the aggregation hierarchy as a graph should be in consideration in the future.

REFERENCES

N

. Banerjee, J; Kim, W.; and Kim, K.-C. Queries in Object-Oriented Databases.

Proceedings of 4" International Conference on Data Engineering, pp. 31-38,

1988.

N

. Bartels, D. ODMG 93- The Emerging Object Database Standard. Proceedings of 12"

International Conference on Data Engineering, pp. 674-676, 1996.

w

. Bertino, E., and Foscoli, P. Index Organizations for Object-Oriented Database System.

I[EEE Transaction on Knowledge and Data Engineering, Vol. 7, No. 2, 1995:

193-209.

&

Bertino, E., and Foscoli, P. On Modeling Cost Functions for Object-Oriented

Databases. |EEE Transaction on Knowledge and Data Engineering, Vol. 9, No. 3,

1997: 500-508.
5. Bertino, E., and Guglielmina, C. Optimization of Object-Oriented Queries Using Path

Indices. Proceedings of 2™ International Workshop Research Issues on Data

Engineering, pp. 140-149, 1992.

[©))]

. Bertino, E., and Kim, W. Indexing Technique for Queries on Nested Objects. |EEE

Transaction on Knowledge and Data Engineering, Vol. 1, No. 2, 1989: 196-214.

~

Bertino, E.; Negri, M.; Pelagatti, G.; and Sbattella, L. Object-Oriented Query

Languages: The Notion and the Issues. |[EEE Transaction on Knowledge and

Data Engineering, Vol. 4, No. 3, 1992: 223-237.

8. Chen, Y.—H., and Chang, A.J.T.-Object Signatures for Supporting Efficient Navigation

in Object-Oriented Databases. Proceedings of 8" International Workshop on

Database and Expert System Application, pp--502-507, 1997.

9. Cho, W.-S.; Lee, S.-S.; and Yoon, Y.-l. A Join Algorithm Utilizing Multiple Path Indexes

in Object-Oriented Database Systems. Proceedings of 2" International

Conference on Engineering of Complex Systems, pp. 376-382, 1996.

10. Choenni, S.; Bertino, E.; Blahken, H.M.; and Chang, T. On the Selection of Optimal

Index Configuration in OO Databases. Proceedings of 10" _International

Conference on Data Engineering, pp. 526-537, 1994.

94

11. Deux, O. et al. The Story of O,. |IEEE Transaction on Knowledge and Data

Engineering, Vol. 2, No. 1, 1990: 91-108.
12. Fotouhi, F.; Lee, T.-G.; and Grosky, W.I. The Generalized Index Model for Object-

Oriented Database Systems. Proceedings of 10" _Phoenix Conference on

Computer and Communication, pp. 302-308, 1991.

13. Gude, E. A Uniform Indexing Scheme for Object-Oriented Databases. Proceedings

of 12" International Conference on Data Engineering, pp. 238-246, 1996.

14. Han, J.; Xie, Z.; and Fu, Y. Join Index Hierarchy: An Indexing Structure for Efficient

Navigation in Object-Oriented Databases. IEEE Transaction on Knowledge and

Data Engineering, Vol. 11, No. 2, 1999: 321-337.

15. Hua, KA., and Tripathy, C. Object Skeleton: An Efficient navigation Structure for

Object-Oriented Database System. Proceedings of 10" International Conference

on Data Engineering, pp. 508-517, 1994.

16. loannidis, Y.E. Query Optimization. ACM Computing Surveys, Vol. 28, No. 1, 1996:

121-123.
17. Ishikawa, Y., and Kitagawa, H. Analysis of Indexing Schemes to Support Set

Retrieval of Nested Objects. Proceedings of International Symposium on

Advanced Database Technologies and Their Integration, 1994.

18. Kilger, C, and Moerkotte, G. Indexing Multiple Sets. Proceedings of 20" International

Conference on VLDB, pp. 180-191, 1994.

19. Kim, W. Object-Oriented Databases: Definition and Research Directions. |IEEE

Transaction on Knowledge and Data Engineering, Vol. 2, No.3, 1990 : 327-341.

20. Kim, K.-C.; Kim, W.; and Dale, A. Cyclic Query Processing in Object-Oriented

. h . . .
Databases. Proceedings of 5" International Conference on Data Engineering,

pp. 564-571, 1989.
21. Lee, D.L., and Lee, W.-C. Using path Information for a Query Processing in Object-

Oriented Database Systems. Proceedings of Conference on Information and

Knowledge Management, pp. 64-71, 1994,

22. Lee, D.L.,, and Lee, W.-C. Signature Path Dictionary for Nested Object Query

. . h .
Processing. Proceedings of 15" International Conference on Computers and

Communications, pp. 275-281, 1996.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33

95

Lee, W.-C., and Lee, D.L. Signature File Methods for Indexing Object-Oriented

Database Systems. Proceedings of 2" International Computer _Science
Conference, pp. 616-622, 1992.
Lee, W.-C., and Lee, D.L. Short Cuts for Traversals in Object-Oriented Database

Systems. Proceedings of Internaitonal Computer Symposium, pp. 1172-1177,

1994.
Lee, W.-C., and Lee, D.L. Combining indexing Technique with Path Dictionary for

Nested Object Queries. Proceedings of 4" International Conference on

Database Systems for Advanced Applications, pp. 107-114, 1995.

Lee, W.-C., and Lee, D.L. Path Dictionary: A New Access Method for Query

Processing in Object-Oriented Databases. |EEE Transaction on Knowledge and

Data Engineering, Vol. 10, No.3, 1998: 371-388.

Low, C.C.; Ooi, B.C.; and Lu, H. H-trees: A Dynamic Associative Search Index for

OODB. Proceedings of SIGMOD International Conference on Management of

Data, pp. 134-143, 1992.
Mahatthanapiwat, P., and Rivepiboon, W. Direct Access to Terminal Virtual Path in

OODB. Proceedings of National Computer Science and Engineering, 1999.

Mahatthanapiwat, P., and Rivepiboon, W. Virtual Path Signature: An Approach for

Flexible Searching in OODB. Proceedings of International Conference on

Intelligent Technology, pp. 335-340, 2000.

Mahatthanapiwat, P., and Rivepiboon, W. Branch Index: An Approach for Query

Processing in OODB: International Journal of Information Technology, Vol. 7, No.

2,2001.
Maier, D.; Stein, J.; Otis, A.; and Purdy, A. Development of an Object-Oriented
DBMS. QOPSLA’ 86 Proceedings, pp. 472-482, 1986.

. Seo, S.K,, and Lee, Y.J. Optimal Configuration of Nested Attribute Indexes in Object-

Oriented Databases. Proceedings of 20" EUROMICRO Conference on System

Architecture and Integration, pp. 379-386, 1994.

. Shidlovsky, B., and Bertino, E. A Graph-Theoretic to Indexing in Object-Oriented

Databases. Proceedings of 12" International Conference on Data Engineering,

pp. 230-237, 1996.

34

35

36.

37

38

39

96

. Shin, H., and Chang, J. A New Signature Scheme for Query Processing in Object-

Oriented Database. Proceedings of 20" International Conference on Computer

Software and Applications, pp. 400-405, 1996.

. Sreenath, B., and Seshadri, S. The hcC-tree: An Efficient Index Structure for Object-

Oriented Databases. Proceedings of 20" International Conference on VLDB, op.

203-213, 1994.

Sung, S.Y., and Fu, J. Access Methods on Aggregation of Object-Oriented

Database. Proceedings of International Conference on Systems, Man and

Cybernetics, Vol. 2, pp. 977-982, 1996.

. Taniar, D. Forward vs. Reverse Traversal in Path Expression Query Processing.

Proceedings of Technology of Object-Oriented Languages, pp. 127-140, 1998.

. Xie, Z., and Han, J. Join Index Hierarchy for Supporting Efficient Navigation in

Object-Oriented Databases. Proceedings of 20" International Conference on

VLDB, pp. 522-533, 1994.

. Young, H.-S.; Lee, S.; and Kim, H.—J. Applying Signatures for Forward Traversal

Query Processing in Object-Oriented Databases. Proceedings of

1 Oth

International Conference on Data Engineering, pp. 518-525, 1994.

AONUUINYUINNS)
ANRINTUNAINENRE

98

APPENDIX |
COST MODEL OF THE PATH DICTIONARY INDEX

Parameters :

Ni.j : The number of objects in class j of path dictionary /.
Ai,j :The complex attribute of class j on path dictionary i.
Di,; : Distinct value of complex attribute A, j.

UIDL : The length of Object Identifier.

P : Page size.

pp : The size of page pointer.

f : Average fan out from a non-leaf node.

Kl : Average length of a key value in attribute index.
OFFL : The length of offset field in the path dictionary.
SR : The length of start field in the path dictionary.
FS. : The length of free space in path dictionary.

EL :Thelength of EOS in path dictionary.

SAij « : Simple attribute k of class j on path dictionary i.
Ui.j.k : The number of distinct values for simple attribute SAi, j « .
g.i.x : The ratio of shared attribute value =Ni, j /Ui j .

ki, : Reference sharing of class j on path dictionary /.

Storage Overhead

For the path dictionary i, the average number of objects in an s-expression is:

n-1 n-1
NOBJ =1+ k..

I=1 j=I

when there are n classes in the path dictionary /.

The average size of an s-expression is:

SS=9 *(n-1)+ (UIDL+ OFFL) * NOBJ + EL.

The number of pages needed for all of the s-expressions on the path is:

[Ni.n/|P/SS]|if SS<P,
:{Ni,n*fSS/P—‘ if SS> P,

The number of pages needed for the free space directory is:
FSD =SSP+ (pp+ FSL)/P].

The total number of objects in this path dictionary is:

TOBJ = NOBJ * Ni,n.

identity index:

The number of leaf pages needed for path dictionary i is:

LPiden = [TOBJ /| P/(UIDL + pp) |].

The number of non-leaf pages is:

NLPisen = [LPigen/ f |+[[LPigen/ £]/ |+

+.0L% X
where x < f. If X# 1, NLPicenis increased by 1 for the root node.

Therefore, the total.number of identity index is:

[IP = LPiden + NLPigen.

attribute index:

The average number of pages needed for a leaf node record is:

99

100
XPsa. i« =kl + @, k* (UIDL+ pp).

The number of leaf node pages is:

{]_Ui,j,k/LP/xpsm,,-,kﬂif XPsa. j.« < P.
LPSAi,j,k:
Ui, .k *[XPsa. i1/ P | if XPsa. i > P.

The number of non-leaf pages is:

NLPSA,j,kzl_LOSAi,j,k/ f—‘-f- H_LOSA.Jk/ f-‘/ f—‘+...+ X.

Where LOsa. .« = min (Ui, jk, LPsa i.«) and x< f. If Xx# 1, NLPsa. ;. «is increased by 1 for

the root node. Therefore, the total number of pages for attribute index is:

AlPsa. k= LPsa;, ikt NLPsa. i,

In case of m attribute indexes:

AIP = AlPindet + Al Pindex2 + ... + Al Pindexm.

Therefore, the storage cost for path dictionary / is:

Lroi = FDi + SSPi + 1P + AlP.

Retrieval Cost
It is assumed that there is only one predicate attribute. in the queries and
the predicate is specified on the indexed attribute. The retrieval cost of path dictionary
index consists of the following:
- Cost of attribute index scanning.
- Cost of accessing the target objects for the qualified s-expressions when the target
class is in the same s-expression as the predicate class, otherwise access the

qualified join objects to traverse to the target objects in the other path dictionary.

101

Case 1: the predicate class and the target class are on the same path dictionary

RCroi = hatr +[XPat / P |+ Np/o*[SS/ P

when hatr is the height of the attribute index -1; for the predicate class. XP

attr

is the leaf
node record of the attribute index. N, is the number of the qualified s-expressions for

the predicate P of query Q. SSis an s-expression of the path dictionary.

Case 2: the predicate class and the target class are on different path dictionaries

We can formulate the retrieval cost according to the location of the target class and join

class.

- The target class is an ancestor class of the join class

RCroi = hatr + [XParr / P |+ Nesox[SS/P] + Ny *[(higen +1) + (SS/ P)].

when SS, is an s-expression of path dictionary for the predicate class, SS,is an s-
expression of path dictionary for the target class. N, is the number of qualified join

objects of the join class. h,___ is the height of the identity index -1; of the join class.

iden

- The target class is a descendant class of the join class

We can use the same formula above. Furthermore, we can use the forward traversal
from the objects of the join class to the target objects of the target class. However, if the
distance between the join class and the target class-is high, we should use the identity

index-of the join class to retrieve the qualified s-expressions to access the target objects

Update Cost
When a complex attribute of one object is updated, Two different cases

are categorized as follows.

102

A. The class of the updated object or its ancestor classes have no attribute index

In this case, the update will be performed to the reference between
objects. We can use the identity index of the old and new child objects to retrieve the
qualified s-expressions and then update the information in the s-expressions. Finally,
update of the identity index for the updated object and its ancestor objects have to be

performed. We assume that the updated object is on the m" class of the path dictionary.

m-1 m-1
UCeoi = 2 (hiden + 1+ 2%[SS/P) + (O [[k.5 +1) * (higen + 2).

=1 j=I

when h,___is the height of the identity index - 1.

iden

B. The class of the updated object or its ancestor classes have an attribute index
In addition to all terms in previously cost model, cost for update attribute

index should be considered.

m-1 m-1
UCroi = 2% (higen +1+2%[SS/ P)+ (O_ [[k. i +2) * (hicen + 2) +

i o
(hattr + 2% |_XPattr / P—I)

when h.___is the height of the identity index-1and

iden

h_. is the height of the attribute index-1.

attr

103

APPENDIX I
LETTER OF ACCEPTANCE FROM UIT

AONUUINYUINNS)
ANRINTUNINEAE

APPENDIX Il

LETTER OF ACCEPTANCE FROM IJIT Chief Ednor
Robert K L Gay

ngapors Comgter Sodiety
- 31 October 2001

Prof Pichayotai Mahatthanapiwat
14/250 Moo 4 Ramindra 17
Amusowaree Bangkhen

Bangkok Thailand 10220

Dear Prof Pichayotai

PAPER TITLED "BRANCH INDEX: AN APPROACH FOR QUERY PROCESSING
IN OODB" : ~

Please be informed that your paper has been reviewed and accepted. It will be included in the
next volume of our online journal.

Thank you for submitting your paper for Intemnational Joumnal of Information Technology
(IJIT). We look forward to your continued support as we strive for greater excellence.

With best regards

Yours sincerely

Jane Chan
for Prof Robert Gay
Chief Editor, JIT

SINGAPORE COMPUTER SCCIETY
53/33A NEIL RCAD
SINGAPORE 053851

TEL: 2262-567 FAX: 2252-569

AONUUINYUINNS)
ANRINTUNINEAE

e momaran sasaemine 4 BAL WPPPAVIMLL WUL \ZUGLY §AIUVGODILE L AAJLID T vol. 7, No. 2

Branch Index: An approach for Query Processing in OODB

Pichayotai Mabatthanapiwat and Wanchai Rivepiboon
" Department of Computer Engineering
Chulalongkorn University
Bangkok Thailand 10330

p4lpmh@hotmail com,wanchai. r@chula.ac.th
Abstract

In this paper, we present an access method called branch index for query processing of the aggregation
hierarchy as a tree in object-oriented databases. The algorithm of branch generation will be proposed to
generate all branches for the tree aggregation of classes in the database. For each branch, the information of
linking objects is stored so that class traversal methods can be eliminated. Using a set of attribute indexes and
identity indexes for each branch, associative searching can be conveniently performed. We discuss the retrieval
and update operation and then develop cost models in terms of storage overhead, retrieval cost and update cost.

When compared with the path dictionary index for muliiple paths the result shows that our approach has less
storage overhead and the retrieval cost is improving.

Key words: access method, object-oriented database, aggregation hierarchy, query processing.

1. Introduction

At present, object-oriented databases have been widely used in most engineeting applications, such as Computer
Aided Design (CAD), Computer Aided Manufacturing (CAM) and Geographical Information System (GIS). The
complexity of data in these applications makes the comventional database, such: as the relational database
cumbersome to manage them. One of the benefits of the object-oriented database is from its data model [11]. In
the object data model, the value of an atiribute does not limit to a primitive value, such as integer, real or string,
but the value of an attribute can be either a primitive value or a complex value. The complex value of an aftribute
is a unique Object Identifier (OID) of an object in a class. If a class C consists of an attribute 4 whose domain is
a class ", the class C can reference the class C’ from the attribute 4. We call this relation of classes as an
aggregation hierarchy. In the same way, the class C’ consists of an attribute 4" whose domain is a class C” so
that the class C’ can link to the class C” directly and the class C can link to the class C” indirectly. If a class Vis
referenced by a class C either directly or indirectly and the class N does not reference any classes, the class N
will be called a leaf class of the aggregation hierarchy. On the other hand, a class C will be called the root class
of the aggregation hierarchy if it references other classes but it is not referenced by any classes. Any classes in
the aggregation hierarchy that are between the root class and the leaf class will be called intermediate classes.

Class traversal methods for an aggregation hierarchy can be performed as forward traversal and reverse
traversal. In the forward traversal approach, we start from one class and traverse to its child class by using the
value of the complex atiribute. On the other hand, the reverse traversal approach traverses up to the parent
classes. Usnally, the forward traversal approach can perform conveniently because of the inherent pointer of the
complex attributes. However, the reverse traversal approach has more trouble unless reverse pointers are
implemented between classes. When there is a guery, the class that the predicate is involved is called the
predicate class and the class of the target objects is called the target class.

If the predicate class and the target class are far away, i.c. there are several intermediate classes between
the target class and the predicate class, cost of traversal will be high because of intermediate classes traversal.
Therefore, much research has been performed to reduce cost of class traversal whereas the associative searching
is also in consideration. The indexing techmiques are comsidered to accelerate database operations by -
constructing efficient access structures on a database given a certain physical implementation of the database.
Secondary index on an attribute or a combination of attributes is useful for evaluating queries on a nested class
in an object-oriented database. A classic research on index [1] has been done on an aggregation hierarchy, for
example, multi index, nested index, path index. Other [3], [13], [14], [15], [16] researches on the aggregation
hierarchy attempted to improve the performance of searching by using the concept form [1]. Indexing technigues
on both aggregation hierarchy and inheritance hierarchy are proposed by [41, [8], [9] and [12].

Most indexing techniques that are used for the aggregation hierarchy are proposed as a path scheme.
However, for the application that a class schema is more complicated thar a path, such as a tree, 2 new access
method should be considered to cope with all classes in the aggregation hierarchy. An example of the
aggregation hierarchy that forms a tree of linking classes is shown in Figure 1. It conmsists of eight classes;
Person, Vehicle, Company, Bank Engine, Course, University and Computer.

Copyright © SCS 2001 1 November 200f

106

BIOGRAPHY

Mr. Pichayotai Mahatthanapiwat was born on November, 10 1964 and
got a Bachelor Degree in Mechanical Engineering (Hon.) at King Mongkut Institute of
Technology, Thonburi, Bangkok in 1987. He got a Master Degree in Computer Science
at Chulalongkorn University, Bangkok in 1991. At present, he works as a lecturer at
School of Computer Engineering, Institute of Engineering, Suranaree University of

Technology, Nakhonratchasima.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF NOTATIONS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 RELATED WORKS
	CHAPTER 3 DIRECT ACCESS TO TERMINAL VIRTUAL PATH
	CHAPTER 4 VIRTUAL PATH SIGNATURE
	CHAPTER 5 BRANCH INDEX
	CHAPTER 6 COMPARISON OF ACCESS METHODS
	CHAPTER 7 CONCLUSION AND PERSPECTIVE
	REFERENCES
	APPENDICES
	BIOGRAPHY

