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CHAPTER 1 
INTRODUCTION 

   

The first chapter states the problem statements, which describe the 
motivation of this research, the purposes, scope and benefits of the research. Finally, 
the last section explains the method of this research. 

 

1.1 Problem Statements 
 

At present, object-oriented databases have been widely used in most 
engineering applications, such as Computer Aided Design (CAD), Computer Aided 
Manufacturing (CAM) and Geographical Information System (GIS). The complexity of 
data in these applications makes the conventional database, such as the relational 
database cumbersome to manage them. One of the benefits of the object-oriented 
database is from its data model [19].  In the object data model, the value of an attribute 
does not limit to a primitive value, such as integer, real or string, but the value of an 
attribute can be either a primitive value or a complex value. The complex value of an 
attribute is a unique Object Identifier (OID) of an object in a class [19]. If class C 
consists of an attribute A whose domain is class C', class C can reference class C' from 
the attribute A. We call this relation of classes as an aggregation hierarchy.  In the same 
way, class C' consists of an attribute A' whose domain is class C'' so that class C' can 
link to class C'' directly and class C can link to class C'' indirectly.  If class N is 
referenced by class C either directly or indirectly and class N does not reference any 
classes, class N is called a leaf class of the aggregation hierarchy.  On the other hand, 
class C is called the root class of the aggregation hierarchy if it references other 
classes, but it is not referenced by any classes. Any classes in the aggregation 
hierarchy that are between the root class and the leaf class are called intermediate 
classes. Class traversal methods for an aggregation hierarchy can be performed 
as forward traversal and reverse traversal.  In the forward traversal approach, we start 
from one class and traverse to its child class by using the value of the complex attribute. 
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On the other hand, the reverse traversal approach traverses up to the parent classes.  
Usually, the forward traversal approach can perform well especially when the selection 
operation is performed on the start of the path expression [37] and by using the inherent 
pointer of the complex attributes.  However, the reverse traversal approach has more 
trouble unless reverse pointers are implemented between classes.  When there is a 
query, the class that the predicate is involved is called the predicate class and the class 
of the target objects is called the target class. 

If the predicate class and the target class are far apart, i.e. there are 
several intermediate classes between the target class and the predicate class, cost of 
traversal will be high because of intermediate classes traversal. Therefore, many 
researches have been performed to reduce cost of class traversal whereas the 
associative searching is also in consideration. The indexing techniques are considered 
to accelerate database operations by constructing efficient access structures on a 
database given a certain physical implementation of the database. Secondary index on 
an attribute or a combination of attributes is useful for evaluating queries on a nested 
class in an object-oriented database. A classic research on index [6] has been done on 
an aggregation hierarchy, for example, multi index, nested index, path index. A join 
index hierarchy method [14] and [38] is proposed by extending the join index structure 
studied in relational databases. Other researches [5], [9], [15], [32], [33] on the 
aggregation hierarchy attempted to improve the performance of searching by using the 
concept form [6]. The researches on indexing technique of the inheritance hierarchy 
have been proposed in [18], [27] and [35]. Indexing techniques on both aggregation 
hierarchy and inheritance hierarchy are proposed by [3], [10], [12] and [13]. 

Most indexing techniques that are used for the aggregation hierarchy are 
proposed as a path scheme. However, for the application that a class schema is more 
complicated than a path, such as a tree, a new access method should be considered to 
cope with all classes in the aggregation hierarchy. An example of the aggregation 
hierarchy that forms a tree of linking classes is shown in Figure 1.1. It consists of eight 
classes, Person, Vehicle, Company, Bank Engine, Course, University and Computer. 
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Figure 1.1 Aggregation hierarchy as a tree 

   
The Person class is the root class of the aggregation hierarchy, while 

Bank, Engine, University and Computer are leaf classes.  The other classes; Vehicle, 
Course and Company are intermediate classes.  We can create four possible paths from 
the root class to its leaf classes as follows. 
 
Path 1: Person → Vehicle → Company → Bank 
Path 2: Person → Vehicle → Engine 
Path 3: Person → Course → University 
Path 4: Person → Computer 
 
  When we specify an object of the Person class, using the forward 
traversal method can retrieve the corresponding objects of the nested classes for each 
path. It is also noticeable from Figure 1.1 that the join classes are the Person class and 
the Vehicle class. The Path 2 can be reduced to Vehicle → Engine because the 
corresponding objects of the Vehicle class from Path 1 are sufficient for further retrieval 
of objects from the classes of Path 2. We classify the queries by the following factors. 
1. The class traversal methods from the predicate class to the target class are as 

follows. 
F(A,B)  : Forward traversal from class A to Class B. 
R(A,B)  : Reverse traversal from class A to class B. 
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2. The number of paths involved for the predicate class and the target class are. 
SP:  The predicate and the target class are on the same path. 
MP: The predicate class and the target class are on different paths. 
 

The examples of queries are given from the classification above. The 
symbol PC, TC and JC are denoted for the predicate class, the target class and the join 
class respectively. 
 
Q1: Retrieve persons who own cars that are made by the companies that connect to 
Bangkok Bank.    
( R(PC,TC), SP ) 
Q2: Retrieve banks connected by the companies that manufacture cars owned by 
persons at the age of 40. 
( F(PC,TC), SP ) 
Q3: Retrieve engines of the cars owned by the persons who take course at 
Chulalongkorn University. 
( R(PC,JC), F(JC,TC), MP ) 
 
  Most indexing techniques can tackle the problem such as Q1 when the 
predicate is specified on the indexed attribute of the leaf class and the target class is 
the root class. A few techniques are proposed to eliminate the forward traversal between 
classes of the single path for the query Q2. Although applying the combination of 
various indexes can solve the query Q3, the joining between paths is still required and 
overhead occurred is considerable. The detail of overhead analysis will be discussed 
later. 
  The access methods of the aggregation hierarchy as a tree have been 
proposed recently.  Direct Access to Terminal Virtual Path [28] is as follows. For each 
object in the root class Person, there will be corresponding objects in leaf classes Bank, 
Engine, University and Computer. Associated objects in leaf classes are stored together 
as if there were a path between them. This path is called Terminal Virtual Path (TVP). 
Therefore, the information in TVP consists of OIDs of the leaf classes that associate with 
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the object in the root class. OID of the object in the root class is stored with the 
associated TVP as an entry in the linking file structure. Index can be created on simple 
attributes of the root class and map to the associated entries in the linking file. This 
access method shows that linking between objects in the root class and corresponding 
objects in the leaf classes stored in TVP can reduce cost of intermediate classes 
traversal. However, it is only suitable for the query that the predicate class and the target 
class are on leaf classes or the root class. Virtual Path Signature [29] is proposed to 
handle multi key indexing. For each aggregation of objects from the class schema from 
Figure 1.1, associated objects in leaf classes are stored together in a virtual path called 
Terminal Virtual Path (TVP) and associated objects in non-leaf classes are stored in a 
virtual path called Non-Terminal Virtual Path (NTVP). Signature is generated for objects 
in TVP and NTVP. The Virtual Path Signature shows significant improvement in retrieval 
when compared with Tree Signature [23], especially when the number of classes 
between the target class and the predicate class is high. However, its retrieval 
performance is lower when compared with the indexed attributes of the indexing 
techniques. Therefore a new approach should be proposed to tackle limitation 
mentioned above. It should have the characteristics as follows. 
1. Its structure should be stored in the secondary storage other than OODB. 
2. It should support traversal of classes in the aggregation hierarchy. 
3. It should support associative searching. 
4. It should support various kinds of queries for the aggregation hierarchy; i.e. the 

predicate class and the target class can be anywhere in the aggregation hierarchy. 
5. Its cost model in terms of storage overhead and retrieval cost should be lower than 

other approaches when applied as multi paths, for example, the Path Dictionary 
Index [26]. 

In conclusion, this new approach with 5 characteristics is the motivation 
of this research. 
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1.2 The Purpose of the Research 

1. To propose a new access method for aggregation hierarchy as a 
tree in object-oriented database. 

2. To formulate cost models of the new access method in terms of 
storage cost, retrieval cost and update cost. 

 

1.3 The Scope of the Research 

1. An access method will be built by using the data from the object-
oriented database. 

2. The logical linking of classes in object-oriented database is an 
aggregation hierarchy as a tree. 

3. The value of an attribute is a single value. 

4. The access method can handle a simple predicate and a complex 
predicate. 

5. All objects in the child class are referenced by the objects in the 
parent class. 

6. Cost models of the new approach will be compared with that of the 
previous approaches. 

 

1.4 The Benefits of the Research 

1. The new access method that is suitable for the aggregation hierarchy 
as a tree in object-oriented database. 
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2. The cost model that is better than the traditional approaches. 

 

 

1.5 The Method of the Research 

1. Study related works. 

2. Design a new access method. 

3. Consider the database operation on the new structure. 

4. Analyze the cost models in terms of 

4.1 The storage cost. 

4.2 The retrieval cost. 

4.3 The update cost. 

5. Make the comparison with other models. 

6. Conclusions. 

 

The next chapter will contribute to the related theories and related works, 
especially various techniques of access methods.  

 

 

 

 
 



 

CHAPTER 2 
RELATED WORKS 

 

  This chapter contributes to the related theory and researches. The 
theory starts from the object data model and ends with the query processing. The 
related works of access methods are classified as the indexing techniques and the 
signature techniques. 

 

2.1 Theory 
There are many object-oriented database systems that have been 

developed and implemented such as Gemstone [31], O2 [11] and etc.  Object-oriented 
databases have been widely used because they have the capabilities to handle the 
complex applications, such as Computer Aided Design/Computer Aided Manufacturing 
(CAD/CAM) design, office automation and Very Large Scale Integration (VLSI) design. 
Object – oriented data model is a logical organization of the real world object (entities), 
constraints on them, and relationships among objects. The following is an object- 
oriented data model [19] and most of the concepts are accepted as the Object 
Database standard by the Object Database Management Group (ODMG) [2]. 
 
2.1.1 Object and Object Identifier (OID) 
  The uniform treatment of any real – world entity as an object simplifies 
the user’s view of the real world. The object identifier (OID) is used to pinpoint an object 
to retrieve. Two methods are possible to represent OID, namely, physical address and 
logical address. 
  The method of physical address representation provides the good 
retrieval performance. However, as an object relocates, retrieval performance becomes 
worse and OID may not be unique. By using logical address representation for OIDs, 
called surrogate, the objects are independent on storage structures. Yet, there must be 
a mapping table called OID table that maps each surrogate to its physical address. 
  The object identifier (OID) is not reused even when the object with which 
it was associated is deleted from the system. 
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2.1.2 Attributes and Methods 
  Every object has a state and a behavior. The state of an object is the set 
of values for the attributes of the object, and the behavior of an object is the set of 
methods (program code) which operate on the state of the object. An attribute of an 
object may have a single value or a set of values. The domain of an attribute may be any 
class, user defined or primitive. An example of an object-oriented schema is shown in 
Figure 2.1 adopted from [10]. 

fname :string
lname : string
own+
birth-date : string
address : string

manufacture
model : string
color : string
doors : integer
body : string

name : string
headquarters : string
division+
size : string

name : string
location : string
function : string
size : string

n-seats : integer
length : integer
max-speed : integer

weight : integer
height : integer
availability: string

Person Vehicle Company Division

Bus Truck

 
Figure 2.1 Example of an object-oriented logical schema 

 
  The domain of the fname attribute of the Person class is the primitive 
class string; and the value of the fname attribute of an instance of the Person class may 
be string “Somsak”. In contrast, the domain of the own attribute of the Person class is 
the Vehicle class; the value of the own attribute of a Person instance may then be the 
object identifier (OID) of several instances of the Vehicle class. Multi – value attributes 
are marked by ‘ + ‘. 
 
2.1.3 Class 
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  A class is specified as a mean of grouping all the objects that share the 
same set of attributes and methods; (there are six classes in the Figure 2.1). An object 
must belong to only one class as an instance of that class. The relationship between an 
object and its class is the instance – of relationship. A class may also be primitive. A 
primitive class is one which has associated instances, but which has no attribute.  
  The value of an attribute of an object, since it is an object, also belongs 
to some class. This class is called the domain of the attribute of the object. 
 
2.1.4 Class Hierarchy and Inheritance 
  Object-oriented systems allow the user to derive a new class from an 
existing class. The new class, called a subclass of the existing class, inherits all 
attributes and methods from the existing class, called a superclass of the new class.  
The Bus class in Figure 2.1 is a class derived from the Vehicle class. It has the same 
attributes and methods as in the Vehicle class. Moreover, it has additional attributes, 
namely, n- seats, length and max-speed. 
  A class may have any number of subclasses. The Vehicle class has two 
subclasses: Bus and Truck. Some systems allow a class to have only one superclass, 
while others allow a class to have any number of superclasses. In the former, a class 
inherits attributes and methods from only one class; this is called single inheritance. In 
the latter, a class inherits attributes and methods from more than one superclass; this is 
called multiple inheritance. In a system that supports single inheritance, the class forms 
a hierarchy called a class hierarchy or inheritance hierarchy. If a system supports 
multiple inheritance, the class forms a rooted directed graph called a class lattice. 
 
2.1.5 Aggregation Hierarchy 
  The fact that the domain of an attribute may be an arbitrary class gives 
rise to the nested structure of the definition of a class. 
  That is, a class consists of a set of attributes; the domain of some or all of 
the attributes may be classes with their own set of attributes, and so on. Then the 
definition of a class is a directed graph of classes rooted of that class. If the graph for 
the definition of a class is restricted to a strict hierarchy, it is called class – composition 
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hierarchy or aggregation hierarchy. In Figure 2.1, the aggregation hierarchy has the 
Person class as the root class and the Division class as a leaf class. An attribute of any 
class on aggregation hierarchy is logically an attribute of the root of the hierarchy, i.e. 
the attribute is a nested attribute of the root class. For example, in Figure 2.1, the name 
attribute of the Company class is a nested attribute of the Person class. 
 
2.1.6 Query Processing 

Banerjee [1] developed a model for queries in object–oriented 
databases and illustrated the model using a version of the query language implemented 
in ORION. A query may be formulated against an object–oriented schema, which will 
fetch instances of a class, which satisfy certain search criteria. A query may restrict the 
instances of a class to be fetched by specifying predicates against any attributes of the 
class. Another research on query languages [7] pointed to the characteristics of an 
object-oriented data model, such as object identity, complex object structure, methods, 
and class hierarchies, have an impact on the design of a query language. Furthermore, 
Kim [20] investigated cyclic query processing and developed cost model to determine 
the cost for each access plan generated. Given a query, there are many access plans 
that a database management system (DBMS) can follow to process it and produces its 
answer. All plans are equivalent in terms of their final output but vary in their cost, i.e. the 
amount of time that they need to run. A module called the query optimizer [16] can 
examine all alternatives and choose the plan that needs the least amount of time. 

 

2.2 Related Works 
In this subsection, several access methods of aggregation hierarchy will 

be briefly described.  We can divide access methods into two groups, i.e. the indexing 
technique and the signature technique. 
 
2.2.1 Indexing Techniques  

Much research has been done and is still going on to develop well-
founded data models. To be viable, not only the concept of OODB have to be supported 
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by an architecture that directly implements them but querying and maintaining the 
database should require an acceptable amount of time.  

The indexing technique is considered to accelerate database operations 
by constructing efficient access structures on a database given a certain physical 
implementation of the database. Secondary index on an attribute or a combination of 
attributes is useful for evaluating queries on a nested class in an object-oriented 
database. Classic research on index [6] has been performed on aggregation hierarchy, 
for example, multi index, nested index, path index. 

 
2.2.1.1 Multi Index 

   Multi index [6] is created for two classes that linked by the inherent 
pointer of the complex attribute.  If there is a relation of classes from C1C2C3…Cn, where 
C1 is the root class and Cn is the leaf class and C1 has an attribute whose domain is 
class C2 and so on, and there are n classes in this relation, then there will be n multi 
index.  For nth multi index, index will be created on a simple attribute of class Cn and the 
key will link to associated OIDs of objects in class Cn.  For ith multi index, index will be 
created on a complex attribute of class Ci and the key will link to associated OIDs of 
objects in class Ci.  If predicate is on indexed attribute of class Cn and the target is on 
class Ci and there is a relation from class Ci to class Cn,    (n- i+1) index lookup will be 
required.  Therefore, this index is not suitable for the query when the predicate class 
and the target class are far away.  However, multi index has the flexibility for the update 
because it is easy to update link between key index and associated OIDs. 

 
 
 2.2.1.2 Nested Index 
   This index [6] is created from the principle that there is a relation of 

classes from C1C2C3…Cn, where C1 is the root class and Cn is the leaf class.  The index 
is created on a simple attribute of the leaf class and the key will link to associated OIDs 
of objects in the root class.  We can see that it is suitable for the query that the predicate 
is specified on the indexed attribute of the leaf class and the target is on the root class.  
However, it is not suitable to use this index if the predicate class and the target class are 
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anywhere.  Furthermore, the update requires the reverse traversal from the updated 
object to its parent objects in the root class.  Therefore, the reverse pointer should be 
implemented in the aggregation hierarchy to support the update operation. 

 
2.2.1.3 Path Index 
   Path index [6] is similar to nested index.  The index is created on a 

simple attribute of the leaf class and this key will link to associated paths from class C1 
to class Cn.  The information stored in a path is the linking of OIDs of objects from 
classes on the path so that if the predicate is specified on the indexed attribute of the 
leaf class, the target class can be any classes.  Although the path index can support 
more queries than the nested index, it requires more storage overhead. 

 
2.2.1.4 Index of Direct Link 
   Direct link [24] is the structure stored in the secondary storage.  The 

information of an entry in this structure is OIDs of objects of the root class and OIDs of 
objects of the leaf class.  There are two kinds of the direct link as follows. 

- Forward Direct Link 
Each entry in the direct link is OID of an object in the root class and 
associated OID of an object in the leaf class.  The number of entries in the 
forward direct link is equal to the number of objects in the root class. 

- Reverse Direct Link  
Each entry in the direct link is OID of an object in the leaf class and 
associated OID of an object in the root class.  The number of entries in the 
reverse direct link is equal to the number of objects in the leaf class. 
 

  Index can be created for both forward direct link and reverse direct link 
and the clustering technique could be considered for low retrieval cost.  However, this 
index is only suitable when the predicate class and the target class are on the root class 
or the leaf class. 

 
2.2.1.5 Path Dictionary Index 
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   Path dictionary [21], [25], [26] is proposed in the concept of grouping all 
objects in the path that link to the same object in the leaf class.  Information that store in 
an entry of path dictionary is sufficient for the traversal of objects between classes in the 
path.  Redundancy of objects can be eliminated from this concept so that the identity 
index can be easily built on this path dictionary.  For associative search, the attribute 
index will be created on the path dictionary. So, for the key index, the target object from 
the qualified entry can be retrieved.  When compared with path index, Path dictionary 
index has lower cost in cost model.  Furthermore, it can cover more queries in such a 
way that the predicate class and the target class can be any classes in the path. 

 
 
2.2.1.6 Other Researches 
  Bertino [5] considered the usage of the path index from [6] in the 
framework of more general queries containing several predicates. Implicit joins over 
both overlapping and non-overlapping paths are analyzed to find the most suitable 
index along a path. A graph-theoretic approach to the path indexing [33] is proposed 
later. Finally, a set of parameters able to exactly model topologies of object references 
in object-oriented databases and their mathematical derivations are shown in [4]. 
  Although path indexes have been proposed for efficient processing of 
object-oriented queries, conventional join algorithms do not effectively utilize them. Cho 
[20] proposed a new join algorithm called OID join algorithm that effectively utilizes path 
indexes in object-oriented databases. 

The research from [3] extended work from [6] by providing an integrated 
support for queries involving both nested attributes of objects and inheritance 
hierarchies. It allows a query containing a predicate on a nested attribute and involving 
several classes in a given inheritance hierarchy to be solved with a single index lookup. 
  It is concluded from [3] that the nested inherited index offers the best 
retrieval performance (compared with multi-index and nested inherited multi index) in 
most cases. It is outperformed by the other organizations only when queries are mainly 
on the last class of the indexed path. Therefore, the nested inherited index organization 
should be mainly used when the number of nested predicates in queries is high.   



 

 

15
 

 

  Also the cost of modification of nested inherited index has better 
performance than other organizations. 

Similar work, but a different technique, Uniform indexing (U-index) 
proposed by [13] combines the hierarchical and nested indexing scheme. It provides 
path indexing with better retrieval performance than the original scheme (path index) 
and better performance. This scheme provides in one uniform index, combined class-
path-hierarchy index, and with that it is able to answer queries which are not answerable 
with the previous indexing schemes (nested index, path index and multi index). 
  Fotouhi [12] proposed a hybrid indexing technique called a generalized 
index, which can support class hierarchy (inheritance hierarchy) and aggregation 
hierarchy. This index method can share the value among the classes whose domains 
are identical and can be processed in parallel. 
  Later, the research in [10] attempted to select optimal index 
configuration in object oriented database from previous works [3], [6]. This research 
addressed the problem optimal index configuration for a single path and a path can be 
achieved by splitting the path into subpaths and by indexing each subpath with the 
optimal index organization. Algorithm for selection indexes is presented and existing 
indexing techniques were considered (simple index, inherited index, nested inherited 
index, multi index and multi inherited index). The body of the algorithm mainly consists 
of 3 procedures 

- computes the process costs for all possible subpaths with each index 
organization and represent it in a matrix. 

- determines the minimal costs in each row which indicates the best indexing 
technique for a subpath. 

- determines the optimal index configuration for a path. The idea of this 
procedure is based on the consideration of all possible ways to recombine 
the original path  from subpaths 

Seo [32] proposed the research that is similar to [10]. Their approach is 
to reduce the problem to that of selecting indexes in such a way that the sum of the cost 
savings is maximized subject to a given storage capacity. 
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Several indexing schemes mentioned above have been developed to 
evaluate predicate to identify complex object. However, support structures called object 
skeletons [15] are developed for the efficient execution of traversal to retrieve the 
required components.  Skeletons of complex objects contain only the semantic 
information (OIDs of the component objects and the semantic links between them) but 
the descriptive information of an object is stored separately from its object identifier.  
Traversal through the semantic links can be performed inexpensively because each 
node in the OID network is very small, a very large number of objects can fit in a disk 
page to facilitate efficient object navigation.  Once a skeleton has been loaded into 
memory, navigation along the skeleton can be done with no further disk accesses. 

Indexing techniques can efficiently support backward traversals. But this 
requires high storage and maintenance costs. These overheads may constrain to limit 
indices for multiple attributes of the classes. Therefore, on the whole, indices are 
maintained only for important attributes. 

 
2.2.2 Signature Technique 

The signatures can be used instead of index. Signature is rooted from 
applications in text databases, which require an efficient search method. The principles 
required by signatures are: 

- The method should be fast, requiring a few disk accesses to respond 
to simple queries 

- The method should not require rewriting on insertion 
- The method should handle insertion efficiently, without the need to 

excessively reorganize the database 
Signature is created by encoding the textual document using the 

hashing and superimposed coding method. By using superimposed coding (SC), the 
collection of document signatures gives a bit matrix, the way this bit matrix is stored 
affects the time on retrieval and insertion. There are several techniques about 
signatures, such as, sequential signature file, bit-sliced signature file and frame-slice 
signature file.  
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We can use the signature for object-oriented database as in [23] and 
[39] and many researchers recently interested in using it instead of using indexing 
scheme. The research about applying signatures for forward traversal query processing 
in object oriented database [39] is one of the researches that use a signature to 
expedite the forward traversal. Signature generation procedure through superimposed 
coding from data D = { G.D.Hong,25, Seoul } for the signature of D, SD, is shown in 
Table 2.1 adopted from [39]. 

 
            Value           Hashing result 
  

      G.D.Hong          1001 0000 1000 0001 
25          1000 1100 0000 0100 

                      Seoul          1000 0000 1100 1000 
                         Signature SD       1001 1100 1100 1101 
  

Table 2.1 Signature generation example (in case b = 16, k = 4) 

 
In this process, each value of the data (this value of attribute in one 

class) is hashed using a function having two parameters b and k, which represents 
hashing size of bits and number of bits to be set as ‘1’ respectively. The signature is 
then simply derived from ORing all these hashing results. 
  Using this signature, we can check whether the given value is in a 
signature or not. This checking procedure (called signature matching) selects candidate 
signatures to be examined. A signature S is qualified if and only if, for all bit-1 positions 
in the query signature, the corresponding bit positions in S are also set to 1.  To evaluate  
 
the query, we AND the query object signature with an instance’s object signature and 
compare the result with the query object signature. If the result is the same as the query 
object signature, the instance may satisfy the predicate specified in the query and we 
need to retrieve and examine the instance. If it is not the required instance we call this 
matching a false drop. 
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  In the research [39], the object signature of the referred object is stored 
into the referring object so nested predicates can be checked without inspecting 
referred objects, supporting for forward traversals. Paper [8] used the technique similar 
to [39], but extended object signature for the generalization hierarchy (inheritance 
hierarchy). This object signature consists of two parts; a reference signature and a 
structure signature. Like [39], a reference signature can be used to eliminate objects 
that do not match the nested predicates specified in the query. A structure signature 
can be used to eliminate objects that do not belong to the target classes. So object 
signature is generated from reference signature concatenated with structure signature. 
The research in [8] and [39] pointed out that object signatures could be used to 
eliminate objects that do not satisfy the predicates before we really retrieve and examine 
them from disk. Thus, this mechanism can greatly reduce the number of disk accesses. 
  Using other signature techniques also interest researchers in [22], [34] 
and [36].  In [36], three organizations (path index, path table, signature file with path 
table) based on multi attribute hashing for using in efficient evaluation of a query are 
considered. The researchers pointed out that a path index is not suitable for the queries 
that start at any intermediate positions. A path table based on hashing techniques may 
require the number of buckets retrieved but if signature file is used with path table, the 
retrieval will speed up (signature file eliminate most of the unqualified bucket). 
Furthermore, they showed from the experiment that storage cost for path table is the 
lowest (compared with path index and signature file with path table) and the retrieval 
cost is the lowest for signature file with path table (except for query on the last class, 
path index is the lowest). 
  For aggregation hierarchy, using the signature path dictionary [22] is 
extended from the path dictionary. Path dictionary is a secondary organization, which 
extracts the complex attribute from the database to represent the connection between 
objects. This structure is proposed to support efficient object traversal for nested query 
processing. An object signature is generated by superimposing only the bit strings 
generated from the simple attributes of the object (not OID referred by attribute not in 
the path). Instead of associating the signature files with classes, the signatures are 
associated with the OIDs of their corresponding objects in the path dictionary. The 
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comparison between signature path dictionary and signature path shows that the 
signature path dictionary yields a dramatic improvement on the storage, retrieval and 
update cost. 
  In [34], a new signature scheme, called the s-signature on the path 
dictionary is proposed to efficiently support query processing of different types of 
queries. The s-signature provides an efficient filtering mechanism so that accessing the 
database at the initial stage of query processing is unnecessary. In other word, s-
signature provides an efficient access method for the path dictionary instead of the 
sequential scanning. 

Ishikawa [17] considered retrieval of nested objects based on the set 
comparison operators such as ⊇ and ⊆. The paper proposed four set access facilities 
for nested objects and compare their performance in terms of retrieval cost, storage 
cost and update cost. The combination of the signature file method and the nested 
index is very promising for set retrieval of nested objects. 

 

 The next chapter will describe one of the access methods of the 
aggregation hierarchy as a tree called Direct Access to Terminal Virtual Path (DTVP). 
Also, the database operation and cost models will be presented. 

 

 
 
 
 



 

CHAPTER 3 
DIRECT ACCESS TO TERMINAL VIRTUAL PATH 

 

 This chapter describes the Direct Access to Terminal Virtual Path 
(DTVP) for query processing of the aggregation hierarchy as a tree. Its organization 
and database operation will be presented. Finally, the cost models in terms of the 
storage cost, the retrieval cost and the update cost will be formulated. 

 

3.1 Organization 

When the class schema of the object-oriented database is formed as an 
aggregation hierarchy as a tree, we will organize the structure to support query 
processing so that the access method between the root class and the leaf classes can 
be performed with efficiency. The necessary component used for supporting access 
method between the root class and the leaf classes are as follows. 

 

3.1.1 Terminal Virtual Path 

  The structure of the Terminal Virtual Path (TVP) [28] comes from the 
concept that all leaf classes of the aggregation hierarchy as a tree is grouped together. 
Therefore, when objects are instantiated, objects for the associated leaf classes will be 
stored together.  
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Person

Vehicle Company
Bank

EngineCourse

University
Computer

 
Figure 3.1 Aggregation hierarchy as a tree 

  From Figure 3.1, Person is the root class while Computer, University, 
Engine and Bank are leaf classes. All leaf classes will be organized as if there is a 
linking path between them called the Terminal Virtual Path (TVP). Therefore the class 
Computer, University, Engine and Bank will be grouped and their instances will be kept 
together in the secondary storage. If tiθ  represents the object of a leaf class ti, then the 
Terminal Virtual Path can be represented as follow. 

  Terminal Virtual Path (TVP) = { }tnttt θθθθ ,...,,, 321 when 
tnttt θθθθ ,...,,, 321 are associated OIDs of objects of the leaf classes t1, t2, t3,..,tn 

respectively in the aggregation hierarchy as a tree. The structure of the Terminal Virtual 
Path is shown in Figure 3.2. 

  OID of t1          OID of t2            OID of t3             .....                   OID of tn

 
Figure 3.2 The structure of Terminal Virtual Path 
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3.1.2 Root-Terminal Virtual Path Linking 

  To handle the direct access between objects of the root class and the 
associated objects in the Terminal Virtual Path, the representation will be described as 
follow. 

 { }),( 11 θθ tvpTVPR =→  where 

TVPR →  represents the linking between the object of the root class and the 
associated objects in Terminal Virtual Path. 

1θ  is the OID of the object in the root class and 1θtvp is the associated OIDs of the 
objects in the Terminal Virtual Path. 

The structure of Root Class-Terminal Virtual Path linking is shown in Figure 3.3. 

 

  OID of Root Class  OID of t1        OID of t2          OID of t3           .....             OID of tn

 
Figure 3.3 The structure of root class-Terminal Virtual Path linking 

 

3.1.3 Attribute Index 

  The attribute index is used for fast retrieving the qualified records of the 
linking file structure. Index will be created on some attributes of the root class. The 
linking records that match the key index will be accessed so that the required target 
objects of the Terminal Virtual Path will be achieved.    
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3.2 Database Operation 

The database operation in this case includes the retrieval and the update 
operation. The examples for these operations will be described in Section 3.2.1 and 
Section 3.2.2. 

 

3.2.1 Retrieval Operation 

This access method is appropriate for the query that the predicate is 
specified on the indexed attribute of the root class and target class is one of the leaf 
classes in the Terminal Virtual Path. In the research, It is assumed that the predicate is 
specified on the indexed attribute of the root class. Therefore, the key attribute is 
scanned from the attribute index to obtain the records of the linking file. For the records 
retrieved, the target objects are received from the target class. For example, the query " 
To find that Somsak own a car that manufactured by the company that connect to which 
bank". In this case, the predicate class is the Person class and the target class is the 
Bank class. If the index is created on the Name attribute of the Person class, the index 
will be scanned to achieve the qualified records of the linking file. Then for the qualified 
records, the OIDs of the target objects from the Terminal Virtual Path can be obtained to 
retrieve OID of the Bank class. Furthermore, from the structure of the Terminal Virtual 
Path, the associated objects can be retrieved from the other leaf classes, such as the  
Engine class, the University class and the Computer class for the object whose name is 
Somsak. Therefore, by using this access method, class traversal of the intermediate 
classes can be eliminated. 

 

3.2.2 Update Operation 

Objects of the leaf classes can be updated by specifying the object of 
the root class and its relevant object of the leaf class that will be modified. For example, 
if an object On of a leaf class tn relate to object O1 of the root class the object On is 
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changed to object O'n, the object O1 from the linking file will be searched and update the 
qualified record of object On of class tn to O'n.   

 

3.3 Cost Model 
  In this section, the cost model will be formulated in terms of storage cost, 
retrieval cost and update cost. The list of parameters is given below for the analysis. 
 
3.3.1 The Parameters of Cost Model 

Given an aggregation hierarchy as a tree, the parameters of the cost model are listed below. 

 
1C  : The root class of the aggregation hierarchy T . 

inC  : The ith leaf class of the aggregation hierarchy T . 
nLC  : The number of leaf classes of the aggregation hierarchy T . 

iN  : The number of objects in the class iC . 
A  : The attribute of the class 1C  that is selected for indexing. 
U  : The number of distinct values of A . 
q  : The ratio of shared attribute values between objects in the class 1C  and the  

  value for the attribute A . ( )UNq /1= . 
UIDL  : The length of Object Identifier. 
P  : Page size. 
pp  : The size of page pointer. 
f  : Average fan out of a non-leaf node. 
kl  : Average length of a key value in attribute index. 
kv  : Average of a key value in A. 
ll  : The length of the link number. 
cl  : The length of the link counter. 
h  : The number of levels of non-leaf node, i.e. the height of the attribute index - 1. 
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Since page is a basic unit to access data in the secondary storage, so it 
is used for cost estimation. All lengths and sizes above are in byte. 
 
To simplify the cost model, it is assumed that 
1. All attributes have a single value. 
2. All key values have the same length. 
3. Retrieval and update operation are performed on the objects of the classes on the 

linking structure. 
 
3.3.2 Storage Cost 

To simplify the analysis, the clustering index will be created for the 
attribute of the root class. There are 3 main parts for the storage cost, i.e. the linking file, 
the non-leaf node and the leaf node of the index. 
 
Linking file 

A linking record consists of OID of the root class and nLC OIDs of leaf 
classes. Therefore, the size of a linking record is 
( ) .1 UIDLnLC ∗+  
 

Each object in the root class can link directly to its Terminal Virtual Path. 
Therefore, the size of the linking file (SF) is 
 

( ) .11 UIDLnLCNSF ∗+∗=  
 
The number of pages needed is 
 

( )⎡ ⎤./11 PUIDLnLCNSFP ∗+∗=  
 
Non-leaf nodes 

The number of non-leaf pages can be derived from 
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⎡ ⎤ ⎡ ⎤⎡ ⎤ .1.../// +++= ffLOfLONLP  
 

where ( )LPULO ,min=  and LP is the number of leaf pages for 
index implementation. 
 
Leaf nodes 
 

Due to the clustering index, the length of a leaf node record is 
 

.clllppkvklXP ++++=  
 
Therefore, the number of leaf pages needed is 
 

⎣ ⎦⎡ ⎤XPPULP //= . 
 
The total storage cost for implementation is 
 

.LPNLPSFPSC ++=  
 
 
3.3.3 Retrieval Cost 
  It is assumed that the predicate is specified on the indexed attribute of 
the root class and the target class is any classes of the leaf classes. The query is 
tackled by searching through non-leaf nodes and leaf nodes of the attribute index. Then, 
the pointer from the leaf node will point to the target records of the linking file. The 
number of pages accessed is 
 

( )⎡ ⎤PUIDLnLCqhRC /11 ∗+∗++= . 
When the leaf page is less than the page size. 
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3.3.4 Update Cost 
  The update operation can be categorized as follows. 
A. Update linking between objects of the root class and objects of the leaf class 
B. Update the attribute index for objects of the root class 
 
Case A: Update linking between objects of the root class and objects of the leaf class. 

In this case, an object O1 of the root class that previously points to an 
object On of a leaf class Cn is changed to point to an object O'n of the leaf class Cn. It is 
apparently that the information of the involved linking record must be modified. The 
attribute index of the object in the root class can be used to search for the qualified 
linking record of the linking file and then modify that record. Therefore, the update cost 
consists of cost of the index scanning, cost of linking record retrieval and cost of linking 
record modification. 
 

( )⎡ ⎤ ( )⎡ ⎤PUIDLnLCPUIDLnLCqhUC /1/11 ∗++∗+∗++= . 
 
When the leaf page is less than the page size. 
 
Case B: Update the attribute index for objects of the root class. 
  In this case, the involved objects of the root class will be affected with 
the modified indexed attribute. Since two index scans are needed, the number of page 
accesses for the update is: 
 

 
⎡ ⎤( )./22 PXPhUC ∗+∗=  

 
  It is noticeable that the Direct Access to Terminal Virtual Path has the 
limit for the query that the target class is not the leaf class. In the next chapter, more 
flexible access method called Virtual Path Signature (VPS) will be presented. 

 
 



 

CHAPTER 4 
VIRTUAL PATH SIGNATURE 

 

This chapter proposes the application of the signature technique using 
with the virtual path called the Virtual Path Signature. The database operations and the 
cost models in terms of the storage cost, the retrieval cost and the update cost will be 
formulated thoroughly. 

 

4.1 Organization 

This access method can support various kinds of queries by using the 
signature technique on the virtual path [29]. The component of the Virtual Path Signature 
is as follows. 

 

4.1.1 Terminal Virtual Path 

  The structure of the Terminal Virtual Path is the same as mentioned in 
Section 3.1.1. Therefore, the Terminal Virtual Path (TVP) = { }tnttt θθθθ ,...,,, 321 when 

tnttt θθθθ ,...,,, 321 are associated OIDs of objects of the leaf classes t1, t2, t3,..,tn 
respectively in the aggregation hierarchy as a tree. The structure of the Terminal Virtual 
Path is shown in Figure 4.1. 

  OID of t1          OID of t2            OID of t3             .....                   OID of tn

 
  Figure 4.1 The structure of the Terminal Virtual Path 
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4.1.2 Non-Terminal Virtual Path 

  If ntiθ  represents the object of a leaf class nti, then the Non-Terminal 
Virtual Path can be represented as follow.  

  The Non-Terminal Virtual Path (NTVP) = { }ntmntntnt θθθθ ,...,,, 321 when 
ntmntntnt θθθθ ,...,,, 321 are associated OIDs of objects of the non-leaf classes nt1, nt2, 

nt3,..,ntm respectively in the aggregation hierarchy as a tree. The structure of the Non-
Terminal Virtual Path is shown in Figure 4.2. 

OID of nt1       OID of nt2        OID of nt3             .....              OID of ntm

 
  Figure 4.2 The structure of the Non-Terminal Virtual Path 

 

4.1.3 Virtual Path Signature 

  Non-Terminal Virtual Path and its associated Terminal Virtual Path are 
kept in a structure called a Virtual Path. It is similar to how to store tree of object 
instantiation so that the object traversal can be eliminated. However, the associative 
searching is also a crucial factor for query processing. It is possible that any attributes 
of any classes in the aggregation hierarchy may be queried but impossible to create 
index for every attribute. Therefore, the signature file is an alternative approach to 
manage multi key indexing. Signatures will be generated for all objects in the Terminal 
Virtual Path and all objects in the Non-Terminal Virtual Path. Then, the Virtual Path 
structure and its signature will be stored in a structure called the Virtual Path Signature. 

  The definition of the Virtual Path Signature is as follows. For the 
aggregation hierarchy of classes that form a tree, there will be only one signature file. 
The number of entries in this signature file is equal to the number of objects in the root 
class. Each entry consists of <Sig(TVP), TVP structure, Sig(NTVP), NTVP structure> 
where Sig(TVP) is the signature of the Terminal Virtual Path and Sig(NTVP) is the 
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signature of the Non-Terminal Virtual Path. The structure of the Virtual Path Signature is 
shown in Figure 4.3. 

 

  Figure 4.3 The structure of the Virtual Path Signature 

 

  The signature of the Terminal Virtual Path is generated as follows. 

1. The signature of the Terminal Virtual Path is obtained by superimposing the object 
signatures for objects on the Terminal Virtual Path of associated aggregation 
hierarchy. 

2. The signature of an object is generated by superimposing the signatures of all of its 
simple attributes. 

3. The signature of a simple attribute is obtained by hashing on the attribute values. 

  The generation of the signature of the Terminal Virtual Path is shown in 
Figure 4.4. 

Object of Class t1

Object of Class t2

Object of Class t3

Object of Class tn

Sig(Attribute 1)
Sig(Attribute 2)
Sig(Attribute k)

V

Signature of TVP

 
  Figure 4.4 The signature of the Terminal Virtual Path 

  

 The process how to generate the signature of the Non-Terminal Virtual Path is 
similar to that of above but it performs with objects on the Non-Terminal Virtual Path. 

 

Sig(TVP) TVP Structure Sig(NTVP) NTVP Structure 
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4.2 Database Operation 

The operation performed on the database will be presented such as the 
retrieval operation and the update operation. 

 

4.2.1 Retrieval Operation 

  A query of which values to be searched is transformed into a query 
signature SQ. If the query Q is on classes of TVP, SQ will be compared with every 
signature stored in Sig(TVP); otherwise SQ will be compared with every signature in 
Sig(NTVP). When the signature matches with the query signature, It will verified if that 
entry of the signature file is not false drop by retrieving information in OODB using OID 
of the predicate class stored in the Virtual Path. If it is a qualified object, the information 
will be retrieved from the database by using the OID obtained. 

  From the characteristic of the Virtual Path Signature, searching in OODB 
for the aggregation hierarchy as a tree can be performed with flexibility when compared 
with indexing techniques as follows. 

1. Associative searching can be performed with multi key on any attributes due to the 
signature. 

2. The cost of object traversal can be reduced due to the Virtual Path structure. 

3. The storage overhead of the signature is lower when compared with the index 
structure. 

 

4.2.2 Update Operation 

  The update operation can be categorized as follows. 
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A. Update the simple attribute of an object. 

B. Update the complex attribute of an object. 

 

Case A: Update the simple attribute of an object. 

In this case, a simple attribute will be changed to a new value. Since the 
simple attribute is used to generate the signature of an object, regenerating of the object 
signature is required. If the modified object is in the class of the Terminal Virtual Path, 
the signature of Terminal Virtual Path has to be regenerated. Similarly, the signature of 
Non-Terminal Virtual Path has to be regenerated if the modified object is in the class of 
Non-Terminal Virtual Path 

 

Case B: Update the complex attribute of an object.  

  In this case, a complex attribute will be changed so that the associated 
entries of the signature file will be modified.  

 

4.3 Cost Model 
  In this section, the cost model in terms of storage cost, retrieval cost and 
update cost for the Virtual Path Signature will be formulated. The parameters will be 
given below for the analysis. 
 
4.3.1 The Parameters of Cost Model 

Given an aggregation hierarchy as a tree, the parameters of the cost 
model are listed below. 
 
nNLC : The number of non-leaf classes of the aggregation hierarchy. 
nLC  : The number of leaf classes of the aggregation hierarchy. 
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iN  : The number of objects in the class iC . 
S  : The size of a signature. 
UIDL  : The length of Object Identifier. 
SZ  : The average size of an object. 
E  : The average size of an entry in the signature file. 
KS : The average size of a signature file. 
R  : The average matching rate of a query signature. 
P : Page size. 

iH  : The number of ancestor classes from the root class to ith class. 
parN  : The average number of parent objects for an object. 

 
 
4.3.2 Storage Cost 
  The structure of the Virtual Path Signature consists of the signature of 
Terminal Virtual Path, the TVP structure, the Signature of Non-Terminal Virtual Path and 
the NTVP structure. Therefore, the size of an entry of the signature file is: 
  

).()( UIDLnNLCSUIDLnLCSE ∗++∗+=  
).(2 nNLCnLCUIDLSE +∗+=  

 
Thus, the size of the signature file is: 
 

( ).)(21 nNLCnLCUIDLSNKS +∗+∗=  
 
The storage cost of the Virtual Path Signature is: 
 

⎡ ⎤PKSC S /= . 
 
4.3.3 Retrieval Cost 
  The cost of retrieval cost consists of the following. 
- Cost of scanning the signature file to check the query signature. 
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- Cost of accessing the candidate objects for the matching of the signature. 
 

It is assumed that the candidate objects are in different pages. 
Therefore, the number of page access is: 

⎡ ⎤ ( )⎡ ⎤PSZNRPKRC pS // ∗+= . 
 
When pN is the number of objects in the predicate class. 
 
4.3.4 Update Cost 
  The update cost is formulated according to the category in Section 4.2.2. 
I assume that the modified entries of the signature file are in different pages. 
 
A. Update the simple attribute of an object. 

It is assumed that the modified object in ith class of the aggregation 
hierarchy. The update cost consists of the following. 

1. Cost of scanning the signature file to find the specified object. 

2. Cost of accessing the modified object and associated objects to re-compute 
the object signature and the signature for the virtual path. 

3. Cost of writing the associated entries back to the signature file. 
 
⎡ ⎤ ⎡ ⎤ NPSZnCNPKUC Hi

par
Hi
parS +∗∗+= // . 

 
when nNLCnC =  if the modified object is in the class of NTVP, 
         nLCnC =  if the modified object is in the class of TVP. 
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B. Update the complex attribute of an object. 

The update cost consists of the following 

1. Cost of scanning the signature file to find the specified object. 

2. Cost of accessing the modified object and all associated objects to modify 
the entries in the signature file. 

3. Cost of writing the associated entries back to the signature file. 
 

The modification of an entry in the signature file consists of modification 
of TVP or NTVP structure and computation of the new signature for the virtual path. 
 

⎡ ⎤ ( ) ⎡ ⎤ NPSZnNLCnLCNPKUC Hi
par

Hi
parS +∗+∗+= // . 

 
  Although, the Virtual Path Signature is flexible for the query that the 
predicate can be specified on any attributes of a class, Its retrieval cost is still high when 
compared with the indexing technique. The next chapter will contribute to the new 
indexing technique called the branch index. The condition of reference sharing among 
objects will be considered in the formulation of cost models. 

 

 

 

 

 

 

 
 



 

CHAPTER 5 
BRANCH INDEX 

 

This chapter contributes to the new access method using the indexing 
technique called the Branch Index. Its organization and database operations are 
thoroughly explained. Like the previous chapters, the cost models in terms of the 
storage cost, the retrieval cost and the update cost are formulated. 

 

5.1 Organization 

In this access method [30], various kinds of queries can be solved, for 
example; the predicate class and the target class can be any classes of the aggregation 
hierarchy as a tree. Furthermore, the reference sharing between objects is considered, 
Several terms used in the analysis are defined as follows. 
 
5.1.1 Definitions 
  In this section, several definitions will be given for the Branch Index. 
 
Definition 1: 

For an aggregation hierarchy as a tree, if Cj is a non-leaf class or a leaf 
class and Cn is a leaf class and it is accessible from the class Cj, a relation from the 
class Cj to the class Cn will be called a branch in the aggregation hierarchy. 
Example 1: Let us consider the aggregation hierarchy as a tree in Figure 5.1. The 
following are possible branches for the aggregation hierarchy. 
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Person

Vehicle Company
Bank

EngineCourse

University
Computer

 
Figure 5.1 Aggregation hierarchy as a tree 

 
B1: Person → Vehicle → Company → Bank 
B2: Course → University 
B3: Engine 
B4: Computer 
 

Note that each class in a branch cannot be a member of other branches. 
The other possible branches can be as follows. 
 
B'1: Company → Bank 
B'2: Vehicle → Engine 
B'3: Course → University 
B'4: Person → Computer 
 
Definition 2: 

The branch length indicates the number of classes in a branch. A 
branch will be called a complete branch if its branch length is greater than one. If there 
is only one class in a branch, it will be called an incomplete branch. 
Example 2: From Example 1, B1 and B2 are complete branches because their branch 
length is 4 and 2 respectively. B3 and B4 have only one class, so they are incomplete 
branches. 
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Definition 3: 
For an aggregation hierarchy as a tree, the longest branch in the 

aggregation hierarchy is called the main branch. If L is a set of leaf classes in the 
aggregation hierarchy, the main branch will start from the root class C1 to a leaf class Cn; 
when Cn is a member in L. 
Example 3: The main branch from Example 1 is B1 because it is the longest branch and 
it starts from the root class Person to the leaf class Bank. 
 
Definition 4: 

For an aggregation hierarchy as a tree, if Ck is a class in the main branch 
Bi that references a class Cm,which is not on Bi, there will be a child branch of Bi starting 
from class Cm to its accessible leaf class in L. The class Ck will be called a join class. 
Therefore, a join class is a class of a branch that can link to its child branches. 
Example 4: Let us consider the aggregation hierarchy as a tree in Figure 5.1 and the 
example branches in Example 1. The branch B1 can link to the branch B3 by the join 
class Vehicle. The branch B2 and B4 are linked to B1 by the join class Person. Therefore, 
B2, B3 and B4 are child branches of B1. 
 
Definition 5: 

For a branch Bi of an aggregation hierarchy as a tree, if its child branch 
is an incomplete branch, this child branch will be called a leaf branch of Bi. 
Example 5: From Example 2, the branch B3 and B4 are incomplete branches. Since B3 
and B4 are child branches of the branch B1, they will be leaf branches of B1. 
 
5.1.2 Algorithm of Branch Generation 

The purpose of the algorithm is to generate the minimum number of 
complete branches. The smaller number of complete branches, the smaller joining 
between them. 

Given an aggregation hierarchy as a tree and L is a set of leaf classes in 
the aggregation hierarchy.  The procedure of the algorithm is as follows. 
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1. Find the main branch by considering a leaf class Cni in L that has the maximum 
number of classes between the root class C1 and the leaf class Cni. 

2. If Cn1 is the result of the leaf class in the main branch from 1, then the new set L = L 
– {Cn1}. 

3. Repeat step 4 and 5 while L is not empty. 
4. Consider a join class in an existing branch Bi and find the new longest branch from 

the child class of that join class of Bi. If a branch Bj is a child branch of Bi and Cnj is 
the ending class of the branch Bj 

4.1 If the branch length of Bj is greater than 1, then the new set L = L – {Cnj}. 
4.2 If the branch length of Bj is equal to 1, then the new branch is a leaf branch 

and will be combined to Bi. The new set L = L – {Cnj}. 
5. Go to step 3. 
An example of this algorithm is as follows:  
In Figure 5.1, L = {Bank, Engine, University, Computer}. It is apparently that the longest 
branch is from the Person class to the Bank class. Therefore, the main branch will be 
generated and Bank will be deleted from L. The new set of L = {Engine, University, 
Computer}. 

Since Course is the child of the Person class in the main branch, the new 
branch will start from the Course class to the candidate leaf classes in L. So the new 
branch is generated from the Course class to the University class.  For the remaining 
classes in L, the Engine class and the Computer class are direct child classes of the join 
class Vehicle and Person respectively. Since they are incomplete branches, Engine and 
Computer will be parts of the main branch. When set L is empty, the branch generation 
will be terminated. 

 
5.1.3 Branch Index Organization 

The architecture of the Branch Index is shown in Figure 5.2. The Branch 
Index is a separate structure from the object-oriented database and it is stored in the 
secondary storage. After using the algorithm of branch generation, the number of 
branches and the corresponding classes will be obtained. A set of attribute indexes and 
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identity indexes is on top of the branch. The Branch Index consists of the following 
components. 
 
Branch information 

The information in the branch is OIDs linkage of objects for the classes in 
the branch. Therefore, the class traversal can be handled in the branch information 
instead of traversal in the database. In case of any child branches, the OIDs and 
pointers of the parent branch are also included as the information of the child branch. 
So, the traversal from the child branch to its parent branch can be easily managed.  
 
Attribute Index 

While the branch information can facilitate traversal among objects of 
classes in the branch, it does not support predicate evaluation that involves searching 
the object meeting the conditions specified on their attribute values. To facilitate the 
associative searching, attribute indexes should be used to map attribute values to OIDs 
in the branch information. For example, to tackle the query “Find the person who own 
the vehicle manufactured by the company that connect to Bangkok Bank”, the attribute 
index should be created for the Name attribute of the Bank class. To find the target 
object of the Person class, the attribute index of the Name attribute of the Bank class is 
scanned to obtain the qualified OIDs of the Bank class and the entry location of the 
branch information that store those OIDs. Then, the OIDs linkage in the branch 
information is used to retrieve the qualified OIDs from the target class. 
 
Identity Index 

Instead of creating the index by mapping the value of simple attributes to 
OIDs in the branch information, the identity index uses the values of complex attributes. 
Therefore, the branch information can be obtained with a given OIDs by using the 
identity index. Since identity search is important for retrieval and update, the identity 
index can reduce the cost for retrieval and update operations.  
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Figure 5.2 The Branch index 
 
 

5.1.4 Details of the Branch Information 
For a complete branch Bi of the aggregation hierarchy as a tree, there is 

a relation from the starting class to the ending class of this branch. When objects are 
instantiated, in logical view, the objects of the starting class point to their child objects 
until the objects of the ending class. The linking of objects is represented with linking of 
their OIDs or OIDs linkage. Therefore, it is much faster to traverse by using OIDs linkage 
in a branch than objects in the database. The necessary information that should be kept 
in a complete branch consists of the following: 
- OIDs of objects of the classes in the branch and the pointers to their child objects. 
- OIDs of the parent objects for the branch, in case it is not the main branch, and the 

corresponding pointers to the parent branch. 
- OIDs of the leaf branch. 

When several objects in one class reference the same object of the child 
class, it is called the reference sharing. Therefore, OIDs linkage should be kept to save 
the storage in case of the reference sharing. Figure 5.3 shows an example of object 
instantiation and the reference sharing by using the information from Figure 5.1. 
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Person[1]

Person[2]

Person[3]

Person[4]

Person[5]

Person[6]

Vehicle[1]

Vehicle[2]

Vehicle[3]

Company[1]

Company[2]
Bank1]

Person[1]

Person[4]

Person[8]

Person[9]

University[1]
Course[1]

Course[2]

Engine[1]

Engine[2]

Vehicle[1]

Vehicle[2]

Vehicle[3]

Person[1]

Person[2]
Computer[1]

 
Figure 5.3 An example of object instantiation 

 
From Figure 5.3, the ith object of the Person class will be denoted as 

Person[i]. OIDs of objects of other classes will use the same notation. It is noticeable 
that Person[1] and Person[2] reference the same object Vehicle[1]. 

From the algorithm of branch generation presented earlier, two complete 
branches are obtained as the result as follows. 
- The main branch that starts from the Person class to Vehicle, Company and Bank. 

Since the Computer class and the Engine class are leaf branches of the main 
branch, they are also part of the main branch. 

- The child branch that starts from the Course class to the University class. 
 

To cope with the reference sharing, the concept that is similar to that of 
the path dictionary is used for storing information. All ancestor objects of an object in the 
ending class of the branch will be kept as an entry of the branch information. For 
example, for the object Bank[1] of the ending class, the entry of the main branch 
consists of Person[1] to Person[6], Vehicle[1] to Vehicle[3], Company[1] to Company[2] 
and Bank[1]. All linkages between objects are also kept, for example, pointer between 
Person[1] and Vehicle[1], pointer between Person[2] and Vehicle[1] and so on. Since 
the leaf branch Engine and Computer are parts of the main branch, their objects will 
correspond to the main branch. Therefore, Engine[1] will be linked from Vehicle[1] and 
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Vehicle[2]; Engine[2] will be linked from Vehicle[3]. Finally, Computer[1] will be linked 
from Person[1] and Person[2]. 
 
5.2 Implementation 

The structure of an entry of a branch is shown in Figure 5.4. 
 

Bi,1
Bi,2
   .
   .
Bi,n

offset
offset
   .
   .
offset

Information
of Bi,1

Information
of Bi,2

. . . . . Information
of Bi,n

 
Figure 5.4 The structure of an entry of a branch 

 
From Figure 5.4, Bi,1 denotes the starting class of ith branch while Bi,n 

denotes the ending class of ith branch. It is assumed that there are n classes that have 
relation in ith branch. The relation is in the form that Bi,1 references Bi,2 and Bi,2 references 
Bi,3 ,…, Bi,n-1 references B i,n. The offset for each class points to the location of 1st OID of 
the object in that class, for example, the offset of Bi,1 locates the address of 1st OID of 
object of the starting class. The example of an entry of the main branch is shown in 
Figure 5.5. 
 

Person
Vehicle
Company
Bank

offset
offset
offset
offset

Information
of Person

Information
of Vehicle

Information
of

Company

Information
of Bank

 
Figure 5.5 An example of the structure of an entry of the main branch 

 
There are four classes of the main branch and their associated 

information for each class. The offset will point to the first entry of the information for that 
class. Therefore, given a specified class, the information can be determined 
comfortably. The detail implementation of information for each class of a branch is 
shown in Figure 5.6. 
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OID(Bi,1,1)    PTR(Bi,2,j)    OID(PBj,k,l)    PTR(PBj,k,l)   ...   OID(PBj,k,m)  PTR(PBj,k,m)    OID(LBj,k) ... OID(LBm,l)

   ...

OID(Bi,1,n)    PTR(Bi,2,k)   OID(PBj,k,x)   PTR(PBj,k,x)  ...   OID(PBj,k,z)    PTR(PBj,k,z)     OID(LBj,p) ...  OID(LBj,q)

Parent objects of the
parent branch

Leaf branch
objects

Object of
this class

 
Figure 5.6 The structure of an information of a class in an entry of a branch 

 
From Figure 5.6, Bi,1,1 and Bi,1,n denotes the 1st object and the nth object of 

the starting class of the ith branch respectively. The n objects that belong to the starting 
class of the ith branch may point directly or indirectly to the same object of the ending 
class of the ith branch. Each object of the starting class is implemented as a record that 
consists of members as follows. 
1. OID of the object itself.    
2. Pointer to OID's child object. 
3. Multiple pairs of OID's parent object and its pointer to the parent branch (except the 

main branch). 
4. Multiple OIDs of leaf branch objects for the starting class in case that the starting 

class has leaf branches. 
In general, for the second class to the class before the ending class of a 

branch, a record for each object of the class consists of members as follows. 
1. OID of the object itself. 
2. Pointer to OID's child object. 
3. Multiple OIDs of leaf branch objects for the class in case it has leaf branches. 

Finally, for the ending class, the information will be only OID of the 
ending class. The number of OIDs for the ending class will be only one for each entry of 
the branch. Figure 5.7 shows an example of the information of the class Person, Vehicle, 
Company and Bank for an entry of the main branch. 
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Person[1]   PTR(Vehicle[1])   Computer[1]
Person[2]   PTR(Vehicle[1])    Computer[1]
Person[3]   PTR(Vehicle[2])        ....
Person[4]   PTR(Vehicle[2])        ....
Person[5]   PTR(Vehicle[2])        ....
Person[6]   PTR(Vehicle[3])        ....

Leaf branch
objects

Object of
this class

Vehicle[1]   PTR(Company[1])     Engine[1]
Vehicle[2]   PTR(Company[1])    Engine[1]
Vehicle[3]   PTR(Company[2])    Engine[2]

Leaf branch
objects

Object of
this class

Object of
this class

Company[1]    PTR(Bank[1])
Company[2]     PTR(Bank[1])

Object of
this class

Bank[1]

Object of
this class

(a)

(b)

(c) (d)  
Figure 5.7 An example of the information for all classes of an entry of the main branch 

 
From Figure 5.7, there is no information of the parent objects and the 

parent pointers because it is the ancestor branch of all branches. However, for the other 
branches, OID's parent objects and their pointers have to be kept as mentioned earlier. 
An example of the information for the child branch is shown in Figure 5.8. 

 

Course[1]    PTR(University[1])  Person[1]   PTR(Person[1])   Person[4]   PTR(Person[4])
Course[2]    PTR(University[1])  Person[8]   PTR(Person[8]    Person[9]   PTR(Person[9])

University[1]

Object of
this class

(b)

Object of
this class

Parent objects of the
parent branch

(a)

 
Figure 5.8 An example of the information for all classes of an entry of the child branch 

 
The information of the Course class and the University class is shown in 

Figure 5.8(a) and Figure 5.8(b) respectively. Notice that this child branch has no leaf 
branch for all classes of the branch. However, since it is the child branch of the main 
branch, the OIDs of the parent objects and pointers to the main branch have to be 
stored. 
  At present time, the price of the media storage is decreasing and the 
capacity of the storage is increasing. Therefore, the storage overhead of an access 
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method is not significant when compared with the retrieval performance. The branch 
information will be created for every branch generated in case that the predicate class 
and the target class can be any classes in the aggregation hierarchy. It will be stored 
sequentially on the secondary storage. However, if it is known exactly where the 
predicate class and the target class are, the branch information can be created for the 
branches involved. An entry of the branch information is not allowed to cross page 
boundaries unless its size is greater than the page size. Free space directory is required 
for each page to inform the free space left. If there is not space enough left for an entry 
of the branch, the new page will be allocated. Therefore, the free space directory will be 
stored before the branch information. 
  The data structure that is used to model the various indexes is based on 
tree-structures, such as B+-trees. The format of a non-leaf node for the identity index is 
similar to that of the attribute index. Figure 5.9(a) and Figure 5.9(b) shows the format of a 
non-leaf node for the identity index and the attribute index respectively. 
 

OID      Page pointer  Key value    Page pointer

(a) (b)  
Figure 5.9 Non-leaf node record of the identity index and the attribute index 

 
The format of a non-leaf node record of the identity index consists of OID 

and page pointer. The page pointer contains the address of the next level non-leaf page 
of the OID or the address of the leaf page of the OID. The format of a non-leaf node 
record of the attribute index is similar to that of the identity index. Key value is used for 
the attribute index instead of OID used for the identity index. 
  The format of a leaf node record of the identity index and the attribute 
index is shown in Figure 5.10. 
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  OID      Entry addr.   OID      no.of entries  addr1  addr2  ...  addrn

  key length  key value  no. of entries  <OID1,addr1>  <OID2,addr2> ... <OIDn,addrn>

(a) (b)

(c)  
Figure 5.10 Leaf node record of the identity index and the attribute index 

 
The identity index is created for all objects for each class of a branch. 

Therefore, if there are n classes involved in a branch, there will be n identity indexes for 
each class in the branch. A leaf node record for the identity index of any classes is 
shown in Figure 5.10(a). However, for the class that is a leaf branch, the identity index is 
shown in Figure 5.10(b). The leaf node for the attribute index is shown in Figure 5.10(c) 
of the corresponding OIDs and addresses for the indexed attribute. 
 
5.3 Retrieval and Update Operation 

In this section, the retrieval operation and the update operation are 
discussed on the Branch Index. 
 
5.3.1 Retrieval Operations 

The aggregation hierarchy as a tree shown in Figure 5.1 is used to 
discuss the retrieval operation. As mentioned in Section 5.1, there will be two branches 
generated when using the algorithm of branch generation. Therefore, B1 and B2 will 
represent the main branch and the child branch respectively. A query that involves the 
predicate class and the target class can be classified as follows. 
- The predicate class and the target class are on the same branch. 
- The predicate class and the target class are on different branches. 
 
A. The predicate class and the target class are on the same branch 

In this case, the predicate class and the target class can be any classes 
on the branch. For example, to find the owner of the car manufactured by the company 
that connected to Bangkok bank. Therefore, the predicate class is the Bank class and 
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the target class is the Person class of branch B1. In this case, if an index is created on 
the Name attribute of the Bank class, the qualified entries of the branch that associate 
with the indexed key can be determined. Since the information of an entry of a branch 
consists of OIDs of every class in the branch, OIDs of the objects in the Person class 
can be easily retrieved. Furthermore, if the target objects are on any classes of the 
branch, the OIDs of the objects for those classes can also be easily retrieved. Speaking 
about the leaf branch, it is also a part of a complete branch. The query that the 
predicate class or the target class are on the leaf branch is similar to that of discussion 
above, for example, to find the manufacturer of the car that own by the person who use 
the computer with OS UNIX. Therefore, the leaf branch, in this case, is the Computer 
class that is a part of the main branch B1. The predicate class is the Computer class and 
the target class is the Company class of branch B1. If an index is created on the Name 
attribute of the Computer class, this index can be used to find the qualified entries of the 
branch B1 and 0access the qualified OIDs from the Company class. It can be 
concluded that if the predicate class and the target class are on the same branch and 
the predicate is specified on the indexed attribute, the qualified OIDs of the target class 
can be accessed by scanning the indexed attribute. Several attribute indexes can be 
created with low storage overhead because the overhead occurs only for the non-leaf 
node records and leaf node records of the attribute indexes.  
 
B. The predicate class and the target class are on different branches 

In this case, the predicate class and the target class occurs on different 
branches, for example, a predicate is on a class of branch B1 and the target is on a 
class of branch B2. From Figure 5.1, the query "to find the university of the person who 
own the car manufactured by the company that connect to Bangkok bank" is an 
example above. Therefore, the predicate occurs on the Bank class of the main branch 
B1 and the target class is the University class of the child branch B2. The main branch B1 
connects to its child branch B2 by the Person class. If an index is created on the Name 
attribute of the Bank class, the OIDs of the Person class from the qualified entries of the 
main branch will be obtained. Then, the forward traversal technique can be used from 
each qualified OIDs of the Person class to the Course class and the University class of 
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branch B2 and access the qualified objects from the University class. Also, an alternative 
approach is to scan the identity index of the Person class for the qualified objects on the 
branch B2 to access the target objects of the University class from the qualified entries 
of branch B2. On the contrary, the query "to find the bank that is connected by the 
manufacturer of the car own by the person who take course at Chulalongkorn University" 
is somewhat different. Although the predicate class and the target class are on different 
branches, in this case, the join class cannot be used for the reverse traversal. If an index 
is created on the Name attribute of the University class of branch B2, this index can be 
scanned to obtain the qualified entries of the branch B2. Because the branch B2 is the 
child branch of B1 and the information of branch B2 consists of OIDs and the addresses 
of the parent branch B1, these information can be used to determine the qualified entries 
of branch B1 and retrieve the OIDs from the Bank class. Therefore, it can be concluded 
that the traversal from the child branch to its parent branch can be achieved easily by 
using the information stored in the child branch. However, information is not stored from 
the parent branch to its child branch because the forward traversal method can be used 
from the join objects to the target objects directly. 
 
5.3.2 Update Operations 

Figure 5.1 and Figure 5.3 are used to discuss the update operations. The 
update operation is considered only updating the complex attribute because it reflects 
the information stored in the branch. The update operations can be specified as follows. 
- Update the reference between the parent object and the child object on the same 

branch. 
- Update the reference between the parent object and the child object on different 

branches. 
 
A. Update the reference on the same branch. 

In this case, the parent object and its child object are on the classes of 
the same branch. It is assumed that an object O of class C changes the reference from 
an object O' of class C' to an object O" of class C'. The identity index of class C' has to 
be searched to find the entries that associate with object O' and O". Furthermore, It is 
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assumed that E1 and E2 are the corresponding entries for O' and O" respectively. If E1 is 
equal to E2, the pointer that O points will be changed from O' to O". However, when E1 is 
not equal to E2, OIDs and the pointers of class C and its ancestor classes that associate 
with object O' in E1 have to be deleted and add these information in the entry E2 that 
associates with object O". Also, the information stored in the child branch for the moved 
class has to be updated. Meanwhile, the associated identity indexes have to be 
updated. For example, if Vehicle[1] that references Company[1] changes to 
company[5], the entry of a branch for Company[1] and Company[5] has to searched. If 
the entries are different, Vehicle[1] and the pointer to Vehicle[1] will be deleted from the 
entry of Company[1] and add this information in the entry of Company[5]. Furthermore, 
Person[1], Person[2] and corresponding pointers have to be moved from the entry of 
Company[1] to the entry of  Company[5]. All associated leaf branch objects for 
Vehicle[1], Person[1] and Person[2] have to be moved. Therefore, Engine[1] and 
Computer[1] will be moved to the entry of Company[5]. The child branch B2 is affected 
when the entry of its parent branch is updated. Therefore, the information that 
associates with Person[1] in Course[1] will also be updated. Finally, the identity index for 
Person[1], Person[2], Vehicle[1], Engine[1] and Computer[1] have to be updated. 
Additionally, if the attribute index is created for the classes involved for the moving, the 
attribute index will also be updated, for example, if an index is created for the Name 
attribute of the Computer class, this attribute index has to be updated by removing the 
associated addresses with corresponding to Company[1] from the leaf node record and 
insert the address of the entry that corresponding to Company[5] to that leaf node 
record. 
 
B. Update the reference on different branches. 
   It is assumed that an object O in a class C of branch B1 changes the 
reference from an object O' in a class C' of branch B2 to an object O" in the class C' of 
branch B2. Therefore, the identity index of the class C' of the branch B2 has to be 
searched to find the entries that associate with the object O' and O" and it is assumed 
that they are E1 and E2 respectively. The branch B2 will be performed by deleting OID of 
O and the pointer of O from the entry of O' and insert them to the entry of O". For 
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example, Person[1] of branch B1 that previously references Course[1] of branch B2 is 
updated to reference Course[2]. Therefore, Person[1] and its pointer from Course[1] will 
be deleted and inserted to the entry of Course[2]. Finally, the identity index of Person[1] 
and the attribute index involved on the branch B2 will be updated. 
 
5.4 Cost Model 

In this section, the cost model in terms of storage overhead, retrieval 
cost and update cost will be formulated. The parameters that are used in the analysis 
will be given below.   
 
Parameters: 

jiN ,  : The number of objects in class j of branch i. 
jiA ,  : The complex attribute of class j on branch i. 
jiD ,  : Distinct value of complex attribute ., jiA  

UIDL  : The length of Object Identifier. 
P  : Page size. 
pp  : The size of page pointer. 
f  : Average fan out from a non-leaf node. 
kl   : Average length of a key value in attribute index. 
SL  : The length of start field in the branch information. 
FSL  : The length of free space in the branch information. 
PL  : The length of pointer in branch information. 

kjiSA ,,  : Simple attribute k of class j on branch i. 
kjiU ,,  : The number of distinct values for simple attribute kjiSA ,, . 
kjiq ,,  : The ratio of shared attribute value  = ./ ,,, kjiji UN  

iPk  : Reference sharing of the parent class of class i. 
jik ,  : Reference sharing of class j on branch i. 

jinlb ,  : The number of leaf branch of class j on branch i. 
 

Performance is measured by the number of I/O accesses. A page is 
used to estimate the storage overhead and the cost of performance because it is the 
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basic unit for data transfer between the main storage and the secondary storage. All 
lengths and sizes above are in bytes.  

 
Assumptions: 
1. There are no partial instantiation. This implies that .1,, += jiji ND  
2. All key values have the same length. 
3. All attributes are single-valued. 
 
5.4.1 Storage Cost 

In this subsection, the information of Figure 5.1 is used in the analysis. All 
branches are generated by using the algorithm of branch generation for the aggregation 
hierarchy of Figure 5.1. 
 
Branch Information 

For an aggregation hierarchy as a tree and after applying the algorithm 
of branch generation, It is assumed that m branches are generated. 

Also, It is assumed that there are n classes in a branch Bi. These classes 
are related as in the form C1C2C3…Cn. The size (SizeC1) that associates with one object 
of the class C1 of Bi consists of the following: 
- OID of this object for class C1 and its pointer to the child object. 
- OIDs and pointers of the parent objects for the object in the first class of branch Bi. 
- OIDs of leaf branch objects for class C1 of branch Bi. 
 
SizeC1 ++∗++= )()( PLUIDLPkPLUIDL i .)( 1, UIDLnlbi ∗  
SizeC1 .)()()1( 1, UIDLnlbPLUIDLPk ii ∗++∗+=  
SizeC1 .*)1()1( 1, PLPkUIDLnlbPk iii ++∗++=  
 

The size of an entry for one object in a class Cj  of branch Bi; when 
12 −≤≤ nj ; consists of the following: 

- OID of this object for class Cj and its pointer to the child object. 
- OIDs of leaf branch objects for class Cj of branch Bi. 
SizeCj .)( , UIDLnlbPLUIDL ji ∗++=  
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The size of an entry for one object in the class Cn of branch Bi: 
 
SizeCn .UIDL=  
The size of an entry for every object in class C1 of branch Bi: 

UIDLnlbPkkBSE ii

n

j
jii *)1[()()( 1,

1

1
,1, ++∗= ∏

−

=

  .]*)1( SLPLPki +++  

The size of an entry for every object in class Cj of branch Bi, 12 −≤≤ nj : 

UIDLnlbkBSE ji

n

jl
liji *)1[()()( ,

1

,, +∗= ∏
−

=

.] SLPL ++  

The size of an entry for every object in class Cn of branch Bi: 
 

.)( , SLUIDLBSE ni +=  
 
The total size of an entry of branch Bi: 

.)()()()(
1

2
,,1, ∑

−

=

++=
n

j
nijiii BSEBSEBSEBSE  

In case of the main branch B1. 
 
The size of an entry for every object in class Cj of branch B1, 11 −≤≤ nj : 

UIDLnlbkBSE j

n

jl
lij *)1[()()( ,1

1

,,1 +∗= ∏
−

=

.] SLPL ++  

The size of an entry for every object in class Cn of branch B1: 
 

.)( ,1 SLUIDLBSE n +=  
 
The total size of an entry of branch B1: 

.)()()(
1

1
,1,11 ∑

−

=

+=
n

j
nj BSEBSEBSE  

 
If iBP is the number of pages used for every entry in the branch Bi, then 
 

⎣ ⎦⎡ ⎤
⎡ ⎤⎩

⎨
⎧

>∗
≤

=
PBSEPBSEN
PBSEBSEPN

BP
iini

iini
i

)( if  ./)(
)( if ,)(//

,

,  
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The number of pages for the free space directory of branch Bi: 
 

⎡ ⎤ . /)( PFSLppBPFSD ii +∗=  
 
The total size for all branches. 
 

∑
=

+=
m

i
ii FSDBPTBP

1
)(  

 
Identity Index 

The identity index will be created for every object for each class of a 
branch. The average length of a leaf node index record for the identity index of class Cj. 
 

⎩
⎨
⎧

+
+

=
branch leafa  is  if

branch leafa not  is  if

  .*
          ,

jj

j

C

C

ppPkUIDL
ppUIDL

XI  

The number of leaf pages for the identity index of class Cj on branch Bi. 
 

⎣ ⎦⎡ ⎤ . //,,, XIPNLP jijiiden =  
 
The number of non-leaf pages for the identity index of class Cj on branch Bi. 
 
 ⎡ ⎤ += fLPNLP jiidenjiiden /,,,, ⎡ ⎤⎡ ⎤ffLP jiiden //,, .... x++  
If x < f and 1≠x , 1 will be added in jiidenNLP ,, for the root node. Therefore, the number 
of pages for the identity index of class Cj on branch Bi: 
 

.,,,,, jiidenjiidenji NLPLPIIP +=  
 
If there are n classes on the branch Bi, the number of pages for the identity index of 
branch Bi: 

.
1

,∑
=

=
n

j
jii IIPIIP  
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The number of of pages for the identity index of every branch is: 

.
1
∑
=

=
m

i
iIIPTIIP  

 
Attribute Index 

When creating the attribute index on a primitive value of a class j of 
branch Bi, kjiSA ,, represents a primitive value k of the class j of branch Bi and an index 
is created on kjiSA ,, . The average length of a leaf node index record for the attribute 
index is: 
 

).(,,,, ppUIDLqklXP kjiSA kji +∗+=  
 
The number of leaf pages of the attribute index on branch Bi is: 
 

⎣ ⎦⎡ ⎤
⎡ ⎤⎩

⎨
⎧

>∗
≤

=
PXPPXPU
PXPXPPU

LP
kjikji

kjikji
kji

SASAkji

SASAkji
SA

,,,,

,,,,
,,

 if  . /
 if ,//

,,

,,  

 
The number of non leaf pages of the attribute index on branch Bi is: 
 

kjiSANLP ,,  = ⎡ ⎤ ⎡ ⎤⎡ ⎤ ..../// ,,,, xffLOfLO kjikji SASA +++  
when kjiSALO ,, = ),min( ,,,, kjiSAkji LPU and .fx <  If 1≠x  add 1 to kjiSANLP ,, for the root 
node. 
Therefore, the number of pages for index on kjiSA ,, is: 

kjiSAAIP ,,  = .,,,, kjikji SASA NLPLP +  
 

Actually, many attribute indexes can be created. If there are n indexes 
on the branch Bi, the number of pages for these indexes is: 

iTAIP = ∑
=

n

j
indexi jAIP

1
,   

when jindexiAIP , is the jth index of branch Bi. 
The number of pages for the attribute index of every branch is: 

TAIP = ∑
=

m

i
iTAIP

1
.  
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Finally, the storage cost is: 
 

.TAIPTIIPTBPSC ++=  
 
5.4.2 Retrieval Cost 

To simplify the analysis, It is assumed that there is only one predicate 
attribute in the queries and the predicate is specified on the indexed attribute. Cost 
formula will be classified as in the discussion in Section 5.3.1. Furthermore, the identity 
index is chosen to scan for the required entries instead of the forward traversal 
technique. 
 
A. The predicate class and the target class are on the same branch 

In this case, the predicate class and the target class are on the same 
branch. Therefore, it is convenient to perform the class traversal in the branch when 
using the Branch Index.  
 
The retrieval cost of the branch index consists of the following: 
- Cost of the attribute index scanning. 
- Cost of the accessing the target objects from the target class for the qualified 

entries. 
 

⎡ ⎤ ⎡ ⎤PSENPXPhRC iBQPattrattr // / ∗++= . 
when hattr is the height of the attribute index-1, XPattr is the length of a leaf node index 
record, NP/Q is the number of the qualified entries of a branch Bi for the predicate P of 
query Q. 

 
B. The predicate and target class on different branches 

In this case, the predicate class and the target class are on different 
branches for the Branch Index.  The retrieval cost of the Branch Index can be classified 
on the location of the predicate class and the target class. 
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- The predicate class is on an ancestor branch of the target class 
There is no information of the child branch stored in the parent branch. 

Therefore, after scanning the attribute index and obtain the qualified join objects from 
the join class, the identity index of the join class will be used to retrieve the qualified 
entries of the child branch. The general formula for the branch index when the predicate 
is on a branch j and the target class is on a branch k is: 
 

⎡ ⎤ ⎡ ⎤PSENPXPhRC iBQPattrattr // / ∗++= ∑
−

=

+∗+ +

1

)1([ 1,

k

jl
idenj lll hN

⎡ ⎤ ]. /* 11, PSEN lll Bj +++  
 
when 1, +lljN are the qualified objects of the join class that link between the branch l and 
the branch l+1 and there are several branches between the branch j and branch k. 
 
- The target class is on an ancestor branch of the predicate class 

Because the information of the child branch can link directly to its parent 
branch, the retrieval cost in this case is: 
 

⎡ ⎤ ⎡ ⎤PSENPXPhRC iBQPattrattr // / ∗++= ⎡ ⎤ . /
1

11,∑
−

=

++ ∗+
k

jl
Bj PSEN lll  

 
5.4.3 Update Cost 

The update cost will be formulated as discussed in Section 5.3.2. To 
simplify the analysis, The cost due to page overflow caused by update operation will not 
be included. When a complex attribute of one object is updated, the possible result is as 
follows. 
- Update the reference on the same branch. 
- Update the reference on different branches. 
 
5.4.3.1 Update the Reference on the Same Branch 
In this case, the update of the reference on the same branch of the branch index is 
considered.  
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Four different cases are categorized as follows. 
 
A. The class of the updated object or its ancestor classes have no attribute index, no 

leaf branch and  no child branch 
In this case, It is assumed that the updated object is on the mth class of 

branch i. 
 

⎡ ⎤( )+∗++∗= PSEhUC iBiden /212 ).2()1(
1

1

1

, +∗+∑∏
−

=

−

=

iden

m

l

m

lj
ji hk  

when hiden is the height of the identity index - 1. 
 
B. The class of the updated object or its ancestor classes have an attribute index but no 

leaf branch and no child branch 
 

⎡ ⎤( )+∗++∗= PSEhUC iBiden /212 ++∗∑∏
−

=

−

=

)2()(
1

1

1

, iden

m

l

m

lj
ji hk

⎡ ⎤)./2( PXPh attrattr +  
 
C. The class of the updated object or its ancestor classes have an attribute index and 

leaf branches but no child branch. 
The number of objects for the leaf branches from objects of the first class 

to the updated objects is: 

].)*([ ,

1

1

1

,, mi

m

j

m

jl
liji nlbknlbNLO += ∑ ∏

−

=

−

=

 

 Therefore, the update cost is: 
 

⎡ ⎤( )+∗++∗= PSEhUC iBiden /212 ++∗++∑∏
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m
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ji hNLOk

⎡ ⎤)./2( PXPh attrattr ∗+  
 
D. The class of the updated object or its ancestor classes have an attribute index, leaf 

branches and child branches. 
Some parameters defined earlier will be used. So the update cost is: 



 

 

59
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when lincb , is the number of child branches of a branch i of class l and jlSCB ,  is the 
entry size of a child branch j of class l. 
 
5.4.3.2 Update the Reference on Different Branches 

The update of the branch index is performed only on the object of the 
first class of the child branch. The parent objects and associated pointers will be 
updated for the branch information of the child branch. Therefore, the update cost 
consists of the following: 
- The scanning of the identity index for the old and new OID of object of the first class 

of the child branch. 
- The update of the qualified entries of the child branch. 
- The update of the identity index of the parent object. 
 

⎡ ⎤( )PSEhUC jBiden /212 1 ∗++∗= ).2( 2 ++ idenh  
 
when jBSE is an entry size of a branch j; the child branch of a branch i. 
hiden1 is the height of the identity index - 1; of the first class of the branch j 
hiden2 is the height of the identity index - 1; of the parent class of the branch j 
 
  The next chapter will compare all access methods presented in Chapter 
3, Chapter 4 and Chapter 5 with the Path Dictionary Index of multi paths. The 
comparison of the storage cost, the retrieval cost and the update cost will be performed 
by assigning the value for the parameters and then analyzed them. 

 

 



 

CHAPTER 6 
COMPARISON OF ACCESS METHODS 

 

This chapter analyzes the comparison of cost models between those of 
access methods presented in Chapter 3, Chapter 4, Chapter 5 and that of the Path 
Dictionary Index for multi paths. The condition of the reference sharing between objects 
is considered for all cases and the comparison is presented in the graphical form with 
the analysis. 

 

6.1 Scope of the Comparison 

The aggregation hierarchy as a tree in Figure 6.1 will be used for the 
analysis of cost models. The scope and various kinds of queries for the comparison of 
access methods will be defined in subsection. 

                               

Person

Vehicle Company
Bank

EngineCourse

University
Computer

 
Figure 6.1 Aggregation hierarchy as a tree 

6.1.1 The Number of Access Methods Used in Comparison 

  The access methods described in Chapter 3, Chapter 4 and Chapter 5 
will be used in comparison because they are designed to cope with the aggregation 
hierarchy as a tree. Since the Path Dictionary Index is proved to be the best for the 
aggregation hierarchy in case of a path, multiple paths will be used to compare with the 
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three methods mentioned above. Therefore, the access methods used in comparison 
consist of the following. 

1. Direct Access to Terminal Virtual Path. 

2. Virtual path Signature. 

3. Branch Index. 

4. Path Dictionary Index 

 

6.1.2 The Queries Used in Comparison. 

It is assumed that the query is specified on the indexed attribute in case that the 
access method is one of the indexing techniques. The query will be categorized as 
follows. 

A. The predicate class is the root class and the target class is one of the remaining 
classes of the aggregation hierarchy as a tree. 

- The target class is an intermediate class. 

- The target class is a leaf class. 

B. The predicate class is a leaf class and the target class is one of the remaining 
classes of the aggregation hierarchy as a tree. 

- The target class is an intermediate class. 

- The target class is a leaf class. 

- The target class is the root class. 
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6.1.3 The parameters used in comparison  

  All parameters from Chapter 3, Chapter 4 and Chapter 5 will be used to 
analyze the cost models for the access methods. The chosen values of some 
parameters are adopted from [26] as they are listed in Table 6.1. 
 
 

 

 

 

Table 6.1 Parameters of cost models 

  Performance is measured by the number of I/O accesses. A page is 
used to estimate the storage cost and the cost of performance because it is the basic 
unit for data transfer between the storage and the secondary storage. All lengths and 
sizes above are in bytes. To facilitate the cost models, these assumptions will be used 
as follows. 

Assumptions: 

1. All key values have the same length. 

2. All attributes are single-valued. 

3. All child objects are referenced by the parent objects 

 

6.2 Storage Cost 

  The formula developed in Chapter 3, Chapter 4 and Chapter 5 will be 
used to compare the storage cost of these access methods with the path dictionary 
index. The attribute index will be created on one of the attributes of the Person class and 

UIDL = 8 OFFL = 2 I = 8
P = 4096 SL = 2 SZ = 320 
pp  = 4 FSL = 2 S = 2 
f = 218 EL = 4 ll = 2 
kv = 8 PL = 2 cl = 4 
kl = 1
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one of the attributes of the University class for the Branch Index and the Path Dictionary 
Index. The cardinality of the root class is fixed to 200,000. 

  Using the algorithm of branch generation for the aggregation hierarchy 
as a tree from Figure 6.1, two branches will be generated for the Branch Index. The 
main branch is from the Person class to the Bank class while the Engine class and the 
Computer class are its leaf branches. The second branch, the child branch, is from the 
Course class to the University class. Various paths of the Path Dictionary Index are 
created to mimic those of the Branch Index as follows. 

 Path 1: Person → Vehicle → Company → Bank 

 Path 2: Vehicle → Engine 

 Path 3: Person → Course → University 

 Path 4: Person → Computer 

  It is assumed that all reference sharing of all classes and the shared key 
values are set to the same value, which is represented as K . The impact of K  to the 
storage overhead and cost of performance will be used to observe.  

  The storage cost of each access methods will be compared and 
mathematical proved by replacing the constant value of parameters from Table 6.1. The 
value of K that impacts the storage cost will be appeared in the formula for 
comparison. 

- The Storage Cost of the Direct Access to Terminal Virtual Path. 

( )( )⎡ ⎤ ./*11 LPNLPPUIDLnLCNSC +++∗=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++= ...1111940

2
11

ffKP
N

P
NSC . 

Since the value of f is high, so the storage cost is: 
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.19401
⎟
⎠
⎞

⎜
⎝
⎛ +=

KP
NSC  

- The Storage Cost of the Virtual Path Signature. 

( )( )( )⎡ ⎤PnNLCnLCUIDLSNSC /21 +∗+∗= . 

( ).681

P
NSC =  

- The Storage cost of the Branch Index. 

Branch Information 

( ) .16101818 23
1 +++= KKKBSE  

( ) .21010 2
2 ++= KKBSE  

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NBP

32

1
1

16101818 . 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

KKP
NBP

2

1
2

21010 . 

The term of SFD  is ignored because it is very small when compared 
with BP . Therefore, the total branch information is: 

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NTBP

32

1 16122828 . 

Attribute Index 

.121 KXP +=  

⎟
⎠
⎞

⎜
⎝
⎛ += 1211

KP
NLP . 

NLP  is very small when compared with LP . Therefore, the attribute 
index is: 

⎟
⎠
⎞

⎜
⎝
⎛ += 1211

KP
NAIPerson . 
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⎟
⎠
⎞

⎜
⎝
⎛ +=

KKP
NAIUniversity

23

1 121 . 

⎟
⎠
⎞

⎜
⎝
⎛ +++= 121121

23

1

KKKP
NTAIP . 

Identity Index 

⎟
⎠
⎞

⎜
⎝
⎛=

KP
NLPBank

3

1 12 .  ⎟
⎠
⎞

⎜
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1 12 .  ⎟
⎠
⎞

⎜
⎝
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KP
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121 . 

( )121

P
NLPPerson = . ⎟
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⎞

⎜
⎝
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KP
NLPUniversity

2

1 12 . ⎟
⎠
⎞

⎜
⎝
⎛=

KP
NLPCourse

121 . 

⎟
⎠
⎞

⎜
⎝
⎛ +=

KKP
NLPEngine
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2

1 . ⎟
⎠
⎞

⎜
⎝
⎛ += 481

KP
NLPComputer . 

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NTIIP

32

1 12323628 . 

Therefore, the storage cost of the Branch Index is: 

.TIIPTAIPTBPSC ++=  

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NSC

32

1 29566568 . 

- The Storage cost of the Path Dictionary Index. 

S-Expression 

( ) .10101010 23
1 +++= KKKPSS  ( ) .16102 += KPSS  

( ) .181010 2
3 ++= KKPSS   ( ) .16104 += KPSS  

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NSSP

32

1
1

10101010 . ⎟
⎠
⎞

⎜
⎝
⎛ +=

KKP
NSSP

2

1
2

1610 . 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

KKP
NSSP

2

1
3

181010 .  ⎟
⎠
⎞

⎜
⎝
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NSSP 16101

4 . 

The total s-expression is: 
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⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NTSS

32

1 10444630 . 

Attribute Index 

.121 KXP +=  

⎟
⎠
⎞

⎜
⎝
⎛ += 1211

KP
NLP . 

NLP  is very small when compared with LP . Therefore, the attribute 
index is: 

⎟
⎠
⎞

⎜
⎝
⎛ += 1211

KP
NAIPerson . 

⎟
⎠
⎞

⎜
⎝
⎛ +=

KKP
NAIUniversity

23

1 121 . 

⎟
⎠
⎞

⎜
⎝
⎛ +++= 121121

23

1

KKKP
NTAIP . 

Identity Index 

The identity index is created for every object of all classes in the path. 

⎟
⎠
⎞

⎜
⎝
⎛ +++= 12121212

23

1
1

KKKP
NLP . ⎟

⎠
⎞

⎜
⎝
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NLP 1212

2

1
2 . 

⎟
⎠
⎞

⎜
⎝
⎛ ++= 121212

2

1
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KKP
NLP .  ⎟

⎠
⎞

⎜
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4
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NLP . 

⎟
⎠
⎞

⎜
⎝
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KKKP
NTIIP
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1 12364836 . 

Therefore, the storage cost of the Path Dictionary Index is: 

.TIIPTAIPTSSSC ++=  

⎟
⎠
⎞

⎜
⎝
⎛ +++=

KKKP
NSC

32

1 23929578 . 
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The upper bound and the lower bound of each access methods can be 
obtained by considering the value of K . The lower bound occurs when the value of 
K is high and the upper bound occurs when the value of K is equal to 1. Therefore the 
boundary of the storage cost of each access method is as follows. 

P
NSC

P
N

DTVP
11 5940

≤≤ . 

 
P
NSC VPS

168
= . 

P
NSC

P
N

BI
11 21868

≤≤ . 

P
NSC

P
N

PDI
11 28878

≤≤ . 

It is proved that the storage cost of the Direct Access to Terminal Virtual 
Path is the lowest. The storage cost of the Virtual Path Signature is constant and it is the 
second lowest. Although, the storage cost of the Branch Index is lower than that of the 
Path Dictionary Index, it is never less than those of the Direct Access to Terminal Virtual 
Path and the Virtual Path Signature for all ranges of K . 

The analysis by using graphical view is shown in Figure 6.2 by varying 
the value of K  from 2 to 10 at the x-axis. 
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Figure 6.2 The storage cost of access methods 

- Comparison: 

  From Figure 6.2, the Direct Access to Terminal Virtual Path (DTVP) has 
the lowest storage cost. Actually, the cost of the linking file structure is constant but the 
cost of the attribute index of the root class is varied from the value of K . When K  is 
bigger, the cost of the attribute index is lower. The result why DTVP has the lowest 
storage is due to its structure. As mentioned in Chapter 3, the structure of the linking file 
structure is stored by OID of the root class and associated OIDs of the leaf classes in 
Terminal Virtual Path. Therefore, less storage is required when the OIDs of the 
intermediate classes are ignored. 

  The storage cost of Virtual Path Signature (VPS) is constant and it is the 
second lowest. As mentioned from Chapter 4, the structure of the signature file depends 
on the signature of the Virtual Path and the number of classes in the aggregation 
hierarchy as a tree. Since the cardinality of the Person class is constant and the number 
of entries of the signature file is equal to the number of objects in the root class, so the 
storage cost of the Virtual Path Signature is constant and it does not depend on K .  
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The storage cost of the Virtual Path Signature is higher than that of the Direct Access to 
Terminal Virtual Path because of the additional cost from the Non-Terminal Virtual Path. 

  It is noticeable from Figure 6.2 that the storage cost of the Branch Index 
is lower than that of the Path Dictionary Index. The result for the less storage is as 
follows. 

- The total cost of branch information for two branches is lower than the total 
cost of s-expressions for four paths. 

- The overall identity index of branch index is lower. 

 

6.3 Retrieval Cost 

  The same parameters will be used as in the case of the analysis of the 
storage cost. To simplify the analysis, It is assumed that there is only one predicate 
attribute in the query and the predicate is specified on the indexed attribute. As 
described in Chapter 3, the Direct Access to Terminal Virtual Path (DTVP) is applicable 
when the predicate is specified on the indexed attribute of the root class and the target 
class can be any leaf classes of the aggregation hierarchy as a tree. Therefore, there 
will be only three access methods, i.e. the Virtual Path Signature (VPS), the Branch 
Index (BI) and the Path Dictionary Index (PDI) for the comparison of the retrieval cost 
when the condition of the query does not cover the Direct Access to Terminal Virtual 
Path (DTVP). The comparison will be performed as mentioned in subsection 6.1.2. 

 

6.3.1 The Predicate Class is the Root Class. 

In this case, the predicate is specified on the indexed attribute of the Person 
class and the target class is one of the remaining classes. 

- The target class is an intermediate class. 
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From Figure 6.1, the intermediate classes are the Vehicle class, the 
Company class and the Course class. The comparison of the retrieval cost will be 
performed only for the Virtual Path Signature (VPS), the Branch Index (BI) and the Path 
Dictionary Index (PDI). 

- The Retrieval Cost of the Virtual Path Signature. 

( ) ⎡ ⎤PNR
P
NRC /32068 1

1
∗∗+= . 

- The Retrieval Cost of the Branch Index. 

⎡ ⎤PSEKhRC Battr /1 1∗++= . 

 When .16101818 23
1 +++= KKKSEB  

- The Retrieval Cost of the Path Dictionary Index. 

⎡ ⎤PSSKhRC Pattr /1 1∗++= . 

 When .10101010 23
1 +++= KKKSSP  

  It is proved that the size of 1BSE grows more quickly than that of 1PSS . 
Therefore, it is concluded as follows. 

  .6  when1 ≥> KPSEB  

  .8  when1 ≥> KPSSP  

  The retrieval cost of the Virtual Path Signature is constant and it depends 
on the number of objects of the root class. Since the value of 1N is much bigger than 
the value of K in 1BSE or 1PSS , the retrieval cost of the Virtual Path Signature is the 
highest.  

  The retrieval cost of the Branch Index is equal to that of the Path 
Dictionary Index when 1BSE  is equal to 1PSS , i.e. when .6<K However, when 

,6≥K the size of 1BSE grows more quickly than that of 1PSS . Therefore, it is proved that 
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the retrieval cost of the Branch Index is more than that of the Path Dictionary Index when 
6≥K . 
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Figure 6.3 The retrieval cost when the predicate class is the Person class and the target 

class is the Vehicle class 
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Figure 6.4 The retrieval cost when the predicate class is the Person class and the target 

class is the Company class 
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Figure 6.5 The retrieval cost when the predicate class is the Person class and the target 

class is the Course class. 

- Comparison: 

  The retrieval cost of the Virtual Path Signature (VPS) from Figure 6.3, 
Figure 6.4 and Figure 6.5 is constant. It consists of scanning all entries of the signature 
file and for the qualified entries, accessing the candidate objects from the Person class 
to resolve the false drop. Since most of the retrieval cost of the Virtual Path Signature 
comes from the scanning of the signature file, so the retrieval cost of the Virtual Path 
Signature is much higher than the other two access methods. The retrieval cost of the 
Branch Index (BI) and the Path Dictionary Index (PDI) consists of scanning the attribute 
index and retrieve the qualified branch information or s-expression from the Branch 
Index and the Path Dictionary Index respectively. It is noticeable from these figures that 
the retrieval cost of the Branch Index is a little higher than that of the Path Dictionary 
Index because there are more information in the main branch of the Branch Index than 
in the Path1' s-expression of the Path Dictionary Index. However, the retrieval cost of the 
Branch Index and Path Dictionary Index is the same when K  is less than 6, because 
the storage of the branch information and the s-expression are still less than a page 
size.  
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- The target class is a leaf class. 

The comparison of the retrieval cost will be performed for the Direct Access 
to Terminal Virtual Path (DTVP), the Virtual Path Signature (VPS), the Branch Index (BI) 
and the Path Dictionary Index (PDI). Four leaf classes in Figure 6.1; i.e. the Bank class, 
the Engine class, the University class, the Computer class; will be considered as the 
target class respectively. 

When the target is at the leaf branch class such as the Engine class or the 
Computer class, the retrieval cost of access methods is: 

- The Retrieval Cost of the Direct Access to Terminal Virtual Path. 

⎡ ⎤PKKhRC attr /401 ∗++= . 

- The Retrieval Cost of the Virtual Path Signature. 

( ) ⎡ ⎤PNR
P
NRC /32068 1

1
∗∗+= . 

- The Retrieval Cost of the Branch Index. 

⎡ ⎤PSEKhRC Battr /1 1∗++= . 

 When .16101818 23
1 +++= KKKSEB  

- The Retrieval Cost of the Path Dictionary Index. 

⎡ ⎤PSSKhRC Pattr /1 1∗++= ( ) ⎡ ⎤( )PSShK iPiden /1 +++ . 

 When 10101010 23
1 +++= KKKSSP and .1610 += KSS iP  

 It is proved that the retrieval cost of the Direct Access to Terminal Virtual 
path is the lowest because the value of the last term in the equation is much lower than 
those of the remaining access methods. The retrieval cost of the Path Dictionary Index is 
higher than that of the Branch Index because of the additional terms of the equation. 
However, the retrieval cost of the Branch Index will close to that of the Path Dictionary 
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Index when the value of K is high because the value of 1BSE grows more quickly than 
that of 1PSS  and iPSS . 
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Figure 6.6 The retrieval cost when the predicate class is the Person class and the target 

class is the Bank class 
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Figure 6.7 The retrieval cost when the predicate class is the Person class and the target 

class is the Engine class 
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Figure 6.8 The retrieval cost when the predicate class is the Person class and the target 

class is the University class 
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Figure 6.9 The retrieval cost when the predicate class is the Person class and the target 

class is the Computer class 
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- Comparison: 

 From Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.9, the retrieval cost 
of the Direct Access to Terminal Virtual Path (DTVP) is the best. As described from 
Chapter 3, the information stored in an entry of the linking file structure is OID of the 
Person class and associated OIDs of the leaf classes in the Terminal Virtual Path (TVP). 
Since all entries of the linking file structure have the same space and they are less than 
a page, retrieval of the qualified entries after obtaining the attribute index is done 
efficiently. When the key shared value is more than 4, the retrieval cost is lower because 
the leaf node record is reduced until there is only one root node left. 

 The retrieval cost of the Virtual Path Signature (VPS) is the same as in the 
case that the target class is an intermediate class. It is noticeable that the location of the 
target class and value of K do not affect its retrieval cost. However, if we do not know 
what attribute will be involved in the predicate and that attribute is not indexed, the 
signature technique would be an alternative approach for accessing the qualified 
objects. 

 As the target class is the Engine class and the Computer class from 
Figure 6.7 and Figure 6.9, the retrieval cost of the Branch Index (BI) is lower than that of 
the Path Dictionary Index because the Engine class and the Computer class are leaf 
branches of the main branch. However, for the Path Dictionary Index, the Engine class 
and the Computer class are on other path dictionaries so that more accesses are 
required. The retrieval cost of the Branch Index is a little higher than that of the Path 
Dictionary Index in Figure 6.6 and Figure 6.8 when K is greater than 5. Since the Person 
class and Bank class are in the same branch of the Branch Index and they are also in 
the same path of the Path Dictionary Index, the Path Dictionary Index will gain a little 
lower retrieval cost. As the target class is the University class, the child branch of the 
Branch Index is required for obtaining the target objects so that a littler higher cost is 
occurred. 
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6.3.2 The Predicate Class is a Leaf Class. 

In this case, the predicate is specified on the indexed attribute of the 
University class and the target class is one of the remaining classes. The mathematical 
proof can be performed as the same way as in Section 6.3.1. 

- The target class is an intermediate class. 

The intermediate classes are the Vehicle class, the Company class and 
the Course class. The comparison of the retrieval cost will be performed only for the 
Virtual Path Signature (VPS), the Branch Index (BI) and the Path Dictionary Index (PDI). 
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Figure 6.10 The retrieval cost when the predicate class is the University class and the 
target class is the Vehicle class 
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Figure 6.11 The retrieval cost when the predicate class is the University class and the 
target class is the Company class 
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Figure 6.12 The retrieval cost when the predicate class is the University class and the 
target class is the Course class 

 



 

 

79
 

 

- Comparison: 

From Figure 6.10, Figure 6.11 and Figure 6.12, the retrieval cost of the 
Virtual Path Signature (VPS) has tendency to lower when K is higher because the 
number of objects in the University class is lower when K is higher and so do the 
candidate objects. However, its retrieval cost is still high when compared with those of 
the Branch Index (BI) and the Path Dictionary Index (PDI). 

It is shown clearly that the retrieval cost of the Branch Index in Figure 
6.10 and Figure 6.11 is lower than that of the Path Dictionary Index. As described from 
Chapter 5, the child branch of the Branch Index can link to its parent branch so that cost 
of object traversal is reduced. However, for the Path Dictionary Index, Path 3 has to be 
considered first to obtain the qualified objects in the Person class. Then Path 1 has to be 
searched next by using the identity index of the qualified objects from Path 3. 

From Figure 6.12, the retrieval cost of the Branch Index and that of the 
Path Dictionary is the same because the Course class and the University class are on 
the same branch information and s-expression respectively. Furthermore, the storage of 
each branch information and s-expression is not more than a page size so that only one 
page is required to retrieve the branch information or the s-expression. 

 

- The target class is a leaf class. 

The comparison of the retrieval cost will be performed for the Virtual Path 
Signature (VPS), the Branch Index (BI) and the Path Dictionary Index (PDI). The three 
remaining leaf classes in Figure 6.1; i.e. the Bank class, the Engine class, the Computer 
class; will be considered as the target class respectively. 
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Figure 6.13 The retrieval cost when the predicate class is the University class and the 

target class is the Bank class 
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Figure 6.14 The retrieval cost when the predicate class is the University class and the 

target class is the Engine class 



 

 

81
 

 

Retrieval Cost

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10
K

Pa
ge

s

VPS
BI
PDI

 
Figure 6.15 The retrieval cost when the predicate class is the University class and the 

target class is the Computer class 

 

- Comparison: 

  From Figure 6.13, Figure 6.14 and Figure 6.15, it is shown that the 
retrieval cost of the Branch Index (BI) is lower than that of the Path Dictionary Index 
(PDI). As explained previously, the Bank class, the Engine class and the Computer class 
are on the same main branch but they are on different paths of the Path Dictionary 
Index. It is noticeable that the retrieval cost of the Branch Index and that of the Path 
Dictionary Index will close to each other when the value of K increases. That is because 
more objects of the Person class are required so that the accessing of the branch 
information compensate the traversal of multiple paths of the Path Dictionary Index. 

  

- The target class is the root class. 

In this case, the Person class will be considered as the target class. 
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Figure 6.16 The retrieval cost when the predicate class is the University class and the 

target class is the Person class 

 

- Comparison: 

The retrieval cost of the Branch Index (BI) and that of the Path Dictionary 
Index is the same because the Person class and the University class are on the same 
branch information and s-expression as explained earlier. 

 

6.4 Update Cost 

  Update cost analysis will be considered only for the Branch Index and 
the Path Dictionary Index because they are efficient for retrieval and they covers all 
queries as analyzed in Section 6.3. Since update simple attributes does not affect the 
data in the branch information or the s-expression, only update of the object reference 
between classes of the aggregation hierarchy of Figure 6.1 will be considered. The 
same parameters will be used to analyze as in the case of the storage cost and the 
retrieval cost. 
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- Update the Reference of Class in the Same Branch. 

In this case, the update of reference between the Vehicle class and the 
Company class is used for the mathematical proof. 

- Update Cost of the Branch Index. 

( )⎡ ⎤( ) ( )2)1(2/16101818212 23 ++∗++++∗++∗= ideniden hKPKKKhUC  

 ⎡ ⎤( ) CBattr UCPXPh +++ /2 . 

 When CBUC is the update cost of the child branch. 

- Update Cost of the Path Dictionary Index. 

( )⎡ ⎤( ) ( )( )21/10101010212 23 ++++++∗++∗= ideniden hKPKKKhUC  

 ⎡ ⎤( )PXPhattr /2++ . 

 Since there are more terms in the formula of the update cost of the 
Branch Index, especially the term of the update of the child branch, the update 
cost of the Branch Index is proved to be higher than that of the Path Dictionary 
Index. 

However, If update is performed to the leaf branch such as the reference 
between the Vehicle class and the Engine class, the update cost of the Branch Index is 
as follow. 

( )⎡ ⎤( ) ( ).2/16101818212 23 +++++∗++∗= ideniden hPKKKhUC  

It is proved that the update cost of the attribute index of the parent class 
is unnecessary. Therefore when 6<K , the update cost of the Branch Index will lower 
than that of the Path Dictionary Index. However, as 6≥K the benefit gains is not much 
enough to compensate the higher value of 1BSE . 
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- Update the Reference of Class in Different Branches. 

In this case, the update is performed between the Person class and the 
Course class.  

- Update Cost of the Branch Index. 

⎡ ⎤( ) ( )2/212 221 ++∗++∗= idenBiden hPSEhUC . 

When 21010 2
2 ++= KKSEB , 

 1idenh is the height of the identity index of the Course class, 

 2idenh is the height of the identity index of the Person class. 

- Update Cost of the Path Dictionary Index. 

⎡ ⎤ ( )2)/21(2 3 ++∗++∗= idenPiden hPSShUC . 

When 181010 2
3 ++= KKSSP , 

 idenh is the height of the identity index of the Path Dictionary P3. 

As mentioned from the storage cost, the leaf page of the identity index of 

the Course class is ⎟
⎠
⎞

⎜
⎝
⎛

KP
N 121  and the leaf page of the identity index of the Person class 

is ( )121

P
N , but the leaf page of the identity index of the Path Dictionary P3 is 

⎟
⎠
⎞

⎜
⎝
⎛ ++

KKP
N

2

1 121212 . It is proved that the update cost of the Path Dictionary Index in this 

case never lower than that of the Branch Index. 
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Figure 6.17 The update cost of reference between the Person class and the Vehicle 

class 
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Figure 6.18 The update cost of reference between the Vehicle class and the Company 

class 
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Figure 6.19 The update cost of reference between the Company class and the Bank 

class 
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Figure 6.20 The update cost of reference between the Vehicle class and the Engine 

class 
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Figure 6.21 The update cost of reference between the Person class and the Course 

class 
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Figure 6.22 The update cost of reference between the Course class and the University 

class 
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Figure 6.23 The update cost of reference between the Person class and the Computer 

class 

- Comparison: 

  It is noticeable from Figure 6.17, Figure 6.18 and Figure 6.19 that the 
update cost of the Path Dictionary Index (PDI) is better than that of the Branch Index 
(BI). Since the information stored in the s-expression of the Path Dictionary Index is 
lower than those stored in the branch information of the Branch Index, update cost of the 
Branch Index will be higher when we have to read and write back the branch 
information. As the update is performed between the leaf branch as in Figure 6.20 and 
Figure 6.23, the update cost of the Branch Index is lower than that of the Path Dictionary 
Index when the value of K  is less than 6. That is because when K is less than 6, the 
storage of the branch information is not more than a page and only the identity index of 
the leaf branch need to be updated. It is no need to update the ancestor objects. 
However, as the value of K is more than 5, the benefit gained is not sufficient when 
compared with the higher storage of the branch information. When update operation is 
perform on the child branch as in Figure 6.21 and Figure 6.22, The update cost of the 
Branch Index is lower than that of the Path Dictionary Index. That is because the level of 
non-leaf node of the identity index of the University class and the Course class of the 
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Branch Index is smaller than that of the identity index of the path 3 of the Path Dictionary 
Index. 

  The next chapter will conclude the research and give the perspective for 
the further research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 7 
CONCLUSION AND PERSPECTIVE 

 

This chapter concludes the research for the access methods of the 
aggregation hierarchy as a tree and proposes the possible research in this area for the 
future. 

 

7.1 Conclusion 
  The aggregation hierarchy as a tree is considered as a more 
complicated form than a path. Therefore, the efficient access method to handle the 
query on the aggregation hierarchy should be developed. This research introduced the 
new access methods called the Direct Access to Terminal Virtual Path (DTVP), the 
Virtual Path Signature (VPS) and the Branch Index (BI) to evaluate the query on an 
aggregation hierarchy as a tree and then compared them with the Path Dictionary Index 
method for the path scheme. The reference sharing of classes and the shared key 
values were varied to observe the storage cost, the retrieval cost and the update cost of 
these access methods. 
  Path dictionaries were created to mimic the branches generated from the 
algorithm of the branch generation for the comparison. The attribute indexes were 
created on one of a simple attribute of the root class and one of a simple attribute of the 
leaf class of a sample of the aggregation hierarchy. The identity indexes were also 
created for the objects of every class on a branch of the Branch Index and on a path of 
the Path Dictionary Index for the complex attribute searching.  The result of the storage 
cost is that the storage cost of the Direct Access to Terminal Virtual Path (DTVP) is the 
lowest and the cost of the Virtual Path Signature (VPS) is the second lowest. The storage 
cost of the Branch Index (BI) is much lower than that of the Path Dictionary Index (PDI) 
because the information of the leaf branch can be stored as part of the complete branch 
so that the redundant path is eliminated.  
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  It can be concluded from the comparison of Chapter 6 that when the 
predicate is specified on the index attribute of the root class and the target is on any leaf 
classes, the Direct Access to Terminal Virtual Path is the most appropriate than any 
other access methods. However, if the predicate is specified on other classes, the 
Direct Access to Terminal Virtual Path is inapplicable. Although the retrieval cost of the 
Virtual Path Signature is high when compared with other methods, the Virtual Path 
Signature is the most flexible if we do not know if the predicate is specified on any 
attributes of any classes. Comparing the retrieval cost of the Branch Index and the Path 
Dictionary Index, the cost of the Branch Index is apparently lower than that of the Path 
Dictionary Index when the target class is on the ancestor path or branch of the predicate 
class. The retrieval cost of the Branch Index is slightly higher than that of the Path 
Dictionary Index when the predicate class and the target class are on the same path 
dictionary or branch and the entry size of the branch information is bigger than a page 
size. Generally speaking, if we do know that the predicate and the target class are on 
the same path, the Path Dictionary Index is more appropriate. However, if the predicate 
can be specified on any classes of the aggregation hierarchy as a tree and the entry 
size of the branch information is not more than a page size, the Branch Index is the most 
suitable of all access methods mentioned earlier. 

As explained in Chapter 6, the entry size of a branch may be bigger than 
the s-expression of a compared path dictionary because more information, such as the 
leaf branch and the associated parent branch, is stored in a branch. Therefore, the 
update cost of the branch index is higher than the update cost of the path dictionary 
index when the update of reference is performed on that branch. However, if the entry 
size of the branch information is not more than a page size, the update of reference 
between classes on different branches of the Branch Index is lower than that on a path 
of the Path Dictionary Index.  

It can be concluded that the Branch Index is more appropriate for the 
aggregation hierarchy as a tree than the Path Dictionary Index, especially when the 
retrieval operation is high and especially when the entry size of the branch information 
involved is not bigger than a page size. The Branch Index can be reduced to the form of 
the Path Dictionary Index when there is only one path of the aggregation hierarchy and 
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then all cost will be the same. Therefore, the Branch Index is more general than the Path 
Dictionary Index. 
 
 
7.2 Perspective 

  Throughout the research, there are some assumptions that limit the 
general case for the access method. Actually the value of an attribute can be multi value 
or a multiple sets of values. A complex query, such as those predicates with the logical 
expression ‘AND’ or ‘OR’ are also a challenge ones for query processing on the 
aggregation hierarchy. Furthermore, the access method for the most complicated form 
of the aggregation hierarchy as a graph should be in consideration in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

REFERENCES 
 
1. Banerjee, J; Kim, W.; and Kim, K.-C. Queries in Object-Oriented Databases. 

Proceedings of 4th International Conference on Data Engineering, pp. 31-38, 
1988. 

2. Bartels, D. ODMG 93- The Emerging Object Database Standard. Proceedings of 12th 
International Conference on Data Engineering, pp. 674-676, 1996. 

3. Bertino, E., and Foscoli, P. Index Organizations for Object-Oriented Database System. 
IEEE Transaction on Knowledge and Data Engineering, Vol. 7, No. 2, 1995:   
193-209. 

4. Bertino, E., and Foscoli, P. On Modeling Cost Functions for Object-Oriented 
Databases. IEEE Transaction on Knowledge and Data Engineering, Vol. 9, No. 3, 
1997: 500-508. 

5. Bertino, E., and Guglielmina, C. Optimization of Object-Oriented Queries Using Path 
Indices. Proceedings of 2nd International Workshop Research Issues on Data 
Engineering, pp. 140-149, 1992. 

6. Bertino, E., and Kim, W. Indexing Technique for Queries on Nested Objects. IEEE 
Transaction on Knowledge and Data Engineering, Vol. 1, No. 2, 1989: 196-214. 

7. Bertino, E.; Negri, M.; Pelagatti, G.; and Sbattella, L. Object-Oriented Query 
Languages: The Notion and the Issues. IEEE Transaction on Knowledge and 
Data Engineering, Vol. 4, No. 3, 1992: 223-237. 

8. Chen, Y.–H., and Chang, A.J.T. Object Signatures for Supporting Efficient Navigation 
in Object-Oriented Databases. Proceedings of 8th International Workshop on 
Database and Expert System Application, pp. 502-507, 1997. 

9. Cho, W.-S.; Lee, S.-S.; and Yoon, Y.-I. A Join Algorithm Utilizing Multiple Path Indexes 
in Object-Oriented Database Systems. Proceedings of 2nd International 
Conference on Engineering of Complex Systems, pp. 376-382, 1996. 

10. Choenni, S.; Bertino, E.; Blahken, H.M.; and Chang, T. On the Selection of Optimal 
Index Configuration in OO Databases. Proceedings of  10th International 
Conference on Data Engineering, pp. 526-537, 1994. 



 

 

94
 

 

11. Deux, O. et al. The Story of O2. IEEE Transaction on Knowledge and Data 
Engineering, Vol. 2, No. 1, 1990: 91-108. 

12. Fotouhi, F.; Lee, T.-G.; and Grosky, W.I. The Generalized Index Model for Object-
Oriented Database Systems. Proceedings of 10th Phoenix Conference on 
Computer and Communication, pp. 302-308, 1991. 

13. Gude, E. A Uniform Indexing Scheme for Object-Oriented Databases. Proceedings 
of 12th International Conference on Data Engineering, pp. 238-246, 1996. 

14. Han, J.; Xie, Z.; and Fu, Y. Join Index Hierarchy: An Indexing Structure for Efficient 
Navigation in Object-Oriented Databases. IEEE Transaction on Knowledge and 
Data Engineering, Vol. 11, No. 2, 1999: 321-337. 

15. Hua, K.A., and Tripathy, C. Object Skeleton: An Efficient navigation Structure for 
Object-Oriented Database System. Proceedings of 10th International Conference 
on Data Engineering, pp. 508-517, 1994. 

16. Ioannidis, Y.E. Query Optimization. ACM Computing Surveys, Vol. 28, No. 1, 1996: 
121-123. 

17. Ishikawa, Y., and Kitagawa, H. Analysis of Indexing Schemes to Support Set 
Retrieval of Nested Objects. Proceedings of International Symposium on 
Advanced Database Technologies and Their Integration, 1994. 

18. Kilger, C, and Moerkotte, G. Indexing Multiple Sets. Proceedings of 20th International 
Conference on VLDB, pp. 180-191, 1994. 

19. Kim, W. Object-Oriented Databases: Definition and Research Directions. IEEE 
Transaction on Knowledge and Data Engineering, Vol. 2, No.3, 1990 : 327-341. 

20. Kim, K.-C.; Kim, W.; and Dale, A. Cyclic Query Processing in Object-Oriented 
Databases. Proceedings of 5th International Conference on Data Engineering, 
pp. 564-571, 1989. 

21. Lee, D.L., and Lee, W.-C. Using path Information for a Query Processing in Object-
Oriented Database Systems. Proceedings of Conference on Information and 
Knowledge Management, pp. 64-71, 1994. 

22. Lee, D.L., and Lee, W.-C. Signature Path Dictionary for Nested Object Query 
Processing. Proceedings of 15th International Conference on Computers and 
Communications, pp. 275-281, 1996. 



 

 

95
 

 

23. Lee, W.-C., and Lee, D.L. Signature File Methods for Indexing Object-Oriented 
Database Systems. Proceedings of 2nd International Computer Science 
Conference, pp. 616-622, 1992. 

24. Lee, W.-C., and Lee, D.L. Short Cuts for Traversals in Object-Oriented Database 
Systems. Proceedings of Internaitonal Computer Symposium, pp. 1172-1177, 
1994. 

25. Lee, W.-C., and Lee, D.L. Combining indexing Technique with Path Dictionary for 
Nested Object Queries. Proceedings of 4th International Conference on 
Database Systems for Advanced Applications, pp. 107-114, 1995. 

26. Lee, W.-C., and Lee, D.L. Path Dictionary: A New Access Method for Query 
Processing in Object-Oriented Databases. IEEE Transaction on Knowledge and 
Data Engineering, Vol. 10, No.3, 1998:  371-388. 

27. Low, C.C.; Ooi, B.C.; and Lu, H. H-trees: A Dynamic Associative Search Index for 
OODB. Proceedings of SIGMOD International Conference on Management of 
Data, pp. 134-143, 1992. 

28. Mahatthanapiwat, P., and Rivepiboon, W. Direct Access to Terminal Virtual Path in 
OODB. Proceedings of National Computer Science and Engineering, 1999. 

29. Mahatthanapiwat, P., and Rivepiboon, W. Virtual Path Signature: An Approach for 
Flexible Searching in OODB. Proceedings of International Conference on 
Intelligent Technology, pp. 335-340, 2000. 

30. Mahatthanapiwat, P., and Rivepiboon, W. Branch Index: An Approach for Query 
Processing in OODB. International Journal of Information Technology, Vol. 7, No. 
2, 2001. 

31. Maier, D.; Stein, J.; Otis, A.; and Purdy, A. Development of an Object-Oriented 
DBMS. OOPSLA’86 Proceedings, pp. 472-482, 1986. 

32. Seo, S.K., and Lee, Y.J. Optimal Configuration of Nested Attribute Indexes in Object-
Oriented Databases. Proceedings of 20th EUROMICRO Conference on System 
Architecture and Integration, pp. 379-386, 1994. 

33. Shidlovsky, B., and Bertino, E. A Graph-Theoretic to Indexing in Object-Oriented 
Databases. Proceedings of 12th International Conference on Data Engineering, 
pp. 230-237, 1996. 



 

 

96
 

 

34. Shin, H., and Chang, J. A New Signature Scheme for Query Processing in Object-
Oriented Database. Proceedings of 20th International Conference on Computer 
Software and Applications, pp. 400-405, 1996. 

35. Sreenath, B., and Seshadri, S. The hcC-tree: An Efficient Index Structure for Object-
Oriented Databases. Proceedings of 20th International Conference on VLDB, pp. 
203-213, 1994. 

36. Sung, S.Y., and Fu, J. Access Methods on Aggregation of Object-Oriented 
Database. Proceedings of International Conference on Systems, Man and 
Cybernetics, Vol. 2, pp. 977-982, 1996. 

37. Taniar, D. Forward vs. Reverse Traversal in Path Expression Query Processing. 
Proceedings of Technology of Object-Oriented Languages, pp. 127-140, 1998. 

38. Xie, Z., and Han, J. Join Index Hierarchy for Supporting Efficient Navigation in 
Object-Oriented Databases. Proceedings of 20th International Conference on 
VLDB, pp. 522-533, 1994. 

39. Young, H.–S.; Lee, S.; and Kim, H.–J. Applying Signatures for Forward Traversal 
Query Processing in Object-Oriented Databases. Proceedings of 10th 
International Conference on Data Engineering,  pp. 518-525, 1994. 

 
 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

98
 

 

APPENDIX I 
COST MODEL OF THE PATH DICTIONARY INDEX 

 
Parameters : 

jiN ,  : The number of objects in class j of path dictionary i. 
jiA ,  : The complex attribute of class j on path dictionary i. 
jiD ,  : Distinct value of complex attribute ., jiA  

UIDL  : The length of Object Identifier. 
P  : Page size. 
pp  : The size of page pointer. 
f  : Average fan out from a non-leaf node. 
kl   : Average length of a key value in attribute index. 
OFFL  : The length of offset field in the path dictionary. 
SL  : The length of start field in the path dictionary. 
FSL  : The length of free space in path dictionary. 
EL  : The length of EOS in path dictionary. 

kjiSA ,,  : Simple attribute k of class j on path dictionary i. 
kjiU ,,  : The number of distinct values for simple attribute kjiSA ,, . 
kjiq ,,  : The ratio of shared attribute value  = ./ ,,, kjiji UN  

jik ,  : Reference sharing of class j on path dictionary i. 
 
Storage Overhead 
 
For the path dictionary i, the average number of objects in an s-expression is: 

.1
1

1

1

,∑
−

=

−

=

+=
n

l

n

lj

jikNOBJ C  

when there are n classes in the path dictionary i. 
 
The average size of an s-expression is: 
 

NOBJOFFLUIDLnSLSS ∗++−∗= )()1(  .EL+  
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The number of pages needed for all of the s-expressions on the path is: 
 

⎣ ⎦⎡ ⎤
⎡ ⎤⎩

⎨
⎧

>∗
≤

=
. if   /
, if  //

,

,

PSSPSSN
PSSSSPnN

SSP
ni

i  

 
The number of pages needed for the free space directory is: 
 

⎡ ⎤ . /)( PFSLppSSPFSD +∗=  
 
The total number of objects in this path dictionary is: 
 

., niNNOBJTOBJ ∗=  
 
identity index: 
The number of leaf pages needed for path dictionary i is: 
 

⎣ ⎦⎡ ⎤ . )/(/ ppUIDLPTOBJLPiden +=  
 
The number of non-leaf pages is: 
 

⎡ ⎤ ⎡ ⎤⎡ ⎤ ++= ffLPfLPNLP idenideniden ///  
      .... x++  
where x < f. If idenNLPx ,1≠ is increased by 1 for the root node. 
Therefore, the total number of identity index is: 
 

.ideniden NLPLPIIP +=  
 
attribute index: 
The average number of pages needed for a leaf node record is: 
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).(,,,, ppUIDLqklXP kjiSA kji +∗+=  
 
The number of leaf node pages is: 
 

⎣ ⎦⎡ ⎤
⎡ ⎤⎩

⎨
⎧

>∗

≤
=

. if   /

. if //

,,,,

,,,,

,,

,,

,,

PXPPXPU

PXPXPPU
LP

kjikji

kjikji

kji

SASAkji

SASAkji
SA  

The number of non-leaf pages is: 
 

⎡ ⎤ += fLONLP kjikji SASA /,,,, ⎡ ⎤⎡ ⎤ ....//,, xffLO kjiSA ++  
 
Where  ,, =kjiSALO min ),( ,,,, kjiSAkji LPU and x< f. If kjiSANLPx ,,,1≠ is increased by 1 for 
the root node. Therefore, the total number of pages for attribute index is: 
 

.,,,,,, kjikjikji SASASA NLPLPAIP +=  
In case of m attribute indexes: 
 

....21 indexmindexindex AIPAIPAIPAIP +++=  
 
Therefore, the storage cost for path dictionary i is: 
 

.iiiiPDI AIPIIPSSPFSDSC +++=  
 
Retrieval Cost 

It is assumed that there is only one predicate attribute in the queries and 
the predicate is specified on the indexed attribute. The retrieval cost of path dictionary 
index consists of the following: 
- Cost of attribute index scanning. 
- Cost of accessing the target objects for the qualified s-expressions when the target 

class is in the same s-expression as the predicate class, otherwise access the 
qualified join objects to traverse to the target objects in the other path dictionary. 
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Case 1: the predicate class and the target class are on the same path dictionary 
 

⎡ ⎤ ⎡ ⎤.// / PSSNPXPhRC QPattrattrPDI ∗++=  
when attrh is the height of the attribute index -1; for the predicate class. XPattr is the leaf 
node record of the attribute index. NP/Q is the number of the qualified  s-expressions for 
the predicate P of query Q. SS is an s-expression of the path dictionary. 
 
Case 2: the predicate class and the target class are on different path dictionaries 
 
We can formulate the retrieval cost according to the location of the target class and join 
class. 
 
- The target class is an ancestor class of the join class 
 

⎡ ⎤ ⎡ ⎤PSSNPXPhRC pQPattrattrPDI // / ∗++=    )]./()1[( PSShN tidenj ++∗+  
 
when SSp is an s-expression of path dictionary for the predicate class, SSt is an s-
expression of path dictionary for the  target class. Nj is the number of qualified join 
objects of the join class. hiden is the height of the identity index -1; of the join class. 
- The target class is a descendant class of the join class 
 
We can use the same formula above. Furthermore, we can use the forward traversal 
from the objects of the join class to the target objects of the target class. However, if the 
distance between the join class and the target class is high, we should use the identity 
index of the join class to retrieve the qualified s-expressions to access the target objects 
 
Update Cost 

When a complex attribute of one object is updated, Two different cases 
are categorized as follows. 

 
 



 

 

102
 

 

A. The class of the updated object or its ancestor classes have no attribute index 
  In this case, the update will be performed to the reference between 
objects. We can use the identity index of the old and new child objects to retrieve the 
qualified s-expressions and then update the information in the s-expressions. Finally, 
update of the identity index for the updated object and its ancestor objects have to be 
performed. We assume that the updated object is on the mth class of the path dictionary. 
 

⎡ ⎤ +∗++∗= )/21(2 PSShUC idenPDI ).2()1(
1

1

1

, +∗+∑
−

=

−

=

iden

m

l

m

lj

ji hkC  

when hiden is the height of the identity index - 1. 
 
B. The class of the updated object or its ancestor classes have an attribute index 

In addition to all terms in previously cost model, cost for update attribute 
index should be considered. 
 

⎡ ⎤ +∗++∗= )/21(2 PSShUC idenPDI ++∗+∑
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m

lj

ji hkC

⎡ ⎤)./2( PXPh attrattr ∗+  
when hiden is the height of the identity index-1and  
hattr is the height of the attribute index-1. 
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APPENDIX II 
LETTER OF ACCEPTANCE FROM IJIT 
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APPENDIX III 
ABSTRACT OF PAPER FROM IJIT 
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